Sample records for hexagonal system space

  1. New insights on strain energies in hexagonal systems

    NASA Astrophysics Data System (ADS)

    Thuinet, Ludovic; Besson, Rémy

    2012-06-01

    The preferential habit planes of coherent precipitates, strongly influencing alloy properties, can be investigated by direct-space elasticity methods, providing new insight into delicate issues such as elastic inhomogeneities or anharmonicity. Focusing on the poorly known hexagonal system, this work enlightens important trends overlooked hitherto, such as the critical role of C44, leading to the identification of distinct families of hexagonal alloys for precipitation. Moreover, it demonstrates the complex influence of inhomogeneities for real, finite-thickness morphologies. Finally, it provides the missing material required for atomic-scale studies of precipitation in low-symmetry systems with long-range interactions.

  2. Optimization of spherical facets for parabolic solar concentrators

    NASA Technical Reports Server (NTRS)

    White, J. E.; Erikson, R. J.; Sturgis, J. D.; Elfe, T. B.

    1986-01-01

    Solar concentrator designs which employ deployable hexagonal panels are being developed for space power systems. An offset optical configuration has been developed which offers significant system level advantages over previously proposed collector designs for space applications. Optical analyses have been performed which show offset reflector intercept factors to be only slightly lower than those for symmetric reflectors with the same slope error. Fluxes on the receiver walls are asymmetric but manageable by varying the tilt angle of the receiver. Greater producibility is achieved by subdividing the hexagonal panels into triangular mirror facets of spherical contour. Optical analysis has been performed upon these to yield near-optimum sizes and radii.

  3. Exploration of the Structure of the High Temperature Phase of the Hexagonal RMnO3 System

    NASA Astrophysics Data System (ADS)

    Wu, T.; Tyson, T. A.; Zhang, H.; Yu, T.; Page, K.; Ghose, S.

    Temperature dependent structural studies of the high temperature phase of hexagonal RMnO3 systems have been conducted. Both long range and local structural probes have been utilized. Discussions of the appropriate space groups and local distortions relevant to length scale will be given. Ab initio MD simulations are used to interpret the observations. This work is supported by DOE Grant DE-FG02-07ER46402.

  4. Artificial Hip Simulator with Crystal Models

    NASA Image and Video Library

    1966-06-21

    Robert Johnson, top, sets the lubricant flow while Donald Buckley adjusts the bearing specimen on an artificial hip simulator at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The simulator was supplemented by large crystal lattice models to demonstrate the composition of different bearing alloys. This this image by NASA photographer Paul Riedel was used for the cover of the August 15, 1966 edition of McGraw-Hill Product Engineering. Johnson was chief of Lubrication Branch and Buckley head of the Space Environment Lubrication Section in the Fluid System Components Division. In 1962 they began studying the molecular structure of metals. Their friction and wear testing revealed that the optimal structure for metal bearings was a hexagonal crystal structure with proper molecular space. Bearing manufacturers traditionally preferred cubic structures over hexagonal arrangements. Buckley and Johnson found that even though the hexagonal structural was not as inherently strong as its cubic counterpart, it was less likely to cause a catastrophic failure. The Lewis researchers concentrated their efforts on cobalt-molybdenum and titanium alloys for high temperatures applications. The alloys had a number of possible uses, included prosthetics. The alloys were similar in composition to the commercial alloys used for prosthetics, but employed the longer lasting hexagonal structure.

  5. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks

    PubMed Central

    Heo, Hoseok; Sung, Ji Ho; Cha, Soonyoung; Jang, Bo-Gyu; Kim, Joo-Youn; Jin, Gangtae; Lee, Donghun; Ahn, Ji-Hoon; Lee, Myoung-Jae; Shim, Ji Hoon; Choi, Hyunyong; Jo, Moon-Ho

    2015-01-01

    Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system. PMID:26099952

  6. Spontaneously Flowing Crystal of Self-Propelled Particles

    NASA Astrophysics Data System (ADS)

    Briand, Guillaume; Schindler, Michael; Dauchot, Olivier

    2018-05-01

    We experimentally and numerically study the structure and dynamics of a monodisperse packing of spontaneously aligning self-propelled hard disks. The packings are such that their equilibrium counterparts form perfectly ordered hexagonal structures. Experimentally, we first form a perfect crystal in a hexagonal arena which respects the same crystalline symmetry. Frustration of the hexagonal order, obtained by removing a few particles, leads to the formation of a rapidly diffusing "droplet." Removing more particles, the whole system spontaneously forms a macroscopic sheared flow, while conserving an overall crystalline structure. This flowing crystalline structure, which we call a "rheocrystal," is made possible by the condensation of shear along localized stacking faults. Numerical simulations very well reproduce the experimental observations and allow us to explore the parameter space. They demonstrate that the rheocrystal is induced neither by frustration nor by noise. They further show that larger systems flow faster while still remaining ordered.

  7. Pre-stressed thermal protection systems

    NASA Technical Reports Server (NTRS)

    Dunn, T. J. (Inventor)

    1984-01-01

    A hexagonal protective and high temperature resistant system for the Space Shuttle Orbiter consists of a multiplicity of pockets formed by hexagonally oriented spacer bars secured on the vehicle substructure. A packing of low density insulating batt material 18 in each pocket, and a thin protective panel of laterally resilient advanced carbon-carbon material surmounting the peripherals bars and packing. Each panel has three stepped or offset lips on contiguous edges. At the center of each pocket is a fully insulated stanchion secured to and connecting the substructure and panel for flexing the panel toward the substructure and thereby prestressing the panel and forcing the panel edges firmly against the spacer bars.

  8. Tropomodulin1 is required for membrane skeleton organization and hexagonal geometry of fiber cells in the mouse lens

    PubMed Central

    Nowak, Roberta B.; Fischer, Robert S.; Zoltoski, Rebecca K.; Kuszak, Jerome R.

    2009-01-01

    Hexagonal packing geometry is a hallmark of close-packed epithelial cells in metazoans. Here, we used fiber cells of the vertebrate eye lens as a model system to determine how the membrane skeleton controls hexagonal packing of post-mitotic cells. The membrane skeleton consists of spectrin tetramers linked to actin filaments (F-actin), which are capped by tropomodulin1 (Tmod1) and stabilized by tropomyosin (TM). In mouse lenses lacking Tmod1, initial fiber cell morphogenesis is normal, but fiber cell hexagonal shapes and packing geometry are not maintained as fiber cells mature. Absence of Tmod1 leads to decreased γTM levels, loss of F-actin from membranes, and disrupted distribution of β2-spectrin along fiber cell membranes. Regular interlocking membrane protrusions on fiber cells are replaced by irregularly spaced and misshapen protrusions. We conclude that Tmod1 and γTM regulation of F-actin stability on fiber cell membranes is critical for the long-range connectivity of the spectrin–actin network, which functions to maintain regular fiber cell hexagonal morphology and packing geometry. PMID:19752024

  9. Space Science

    NASA Image and Video Library

    1999-04-20

    NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for the solar concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.

  10. Space Science

    NASA Image and Video Library

    1999-04-20

    NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for solar the concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine, that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.

  11. The organization of the cone photoreceptor mosaic measured in the living human retina

    PubMed Central

    Sawides, Lucie; de Castro, Alberto; Burns, Stephen A.

    2016-01-01

    The cone photoreceptors represent the initial fundamental sampling step in the acquisition of visual information. While recent advances in adaptive optics have provided increasingly precise estimates of the packing density and spacing of the cone photoreceptors in the living human retina, little is known about the local cone arrangement beyond a tendency towards hexagonal packing. We analyzed the cone mosaic in data from 10 normal subjects. A technique was applied to calculate the local average cone mosaic structure which allowed us to determine the hexagonality, spacing and orientation of local regions. Using cone spacing estimates, we find the expected decrease in cone density with retinal eccentricity and higher densities along the horizontal meridians as opposed to the vertical meridians. Orientation analysis reveals an asymmetry in the local cone spacing of the hexagonal packing, with cones having a larger local spacing along the horizontal direction. This horizontal/vertical asymmetry is altered at eccentricities larger than 2 degrees in the superior meridian and 2.5 degrees in the inferior meridian. Analysis of hexagon orientations in the central 1.4° of the retina show a tendency for orientation to be locally coherent, with orientation patches consisting of between 35 and 240 cones. PMID:27353225

  12. Crystal Structure, Electric Polarization and Heat Capacity Measurements on Small R-Ion Multiferroic Hexagonal RMnO3

    NASA Astrophysics Data System (ADS)

    Yu, Tian; Gao, Peng; Wu, Tao; Tyson, Trevor; Lalancette, Roger

    2013-03-01

    Crystal structure, electric polarization and heat capacity measurements on the hexagonal multiferroic RMnO3 reveal that small R ion (Lu and lower cation size) systems are ferroelectric and possess the same space-group as YMnO3. Combined local and long range structural measurements were conducted by XAFS, PDF and single crystal and powder XRD methods. The influence of the Mn-O and R-O distribution on the electric polarization is discussed. Point charge estimates of the electrical polarization are given for comparison with the YMnO3 system. This work is supported by DOE Grant DE-FG02-07ER46402.

  13. A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J., Jr.

    1989-01-01

    Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of the primary visual cortex use a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. A mathematical model for this transformation is described. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, uses basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root of 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex.

  14. Size and space controlled hexagonal arrays of superparamagnetic iron oxide nanodots: magnetic studies and application

    PubMed Central

    Ghoshal, Tandra; Maity, Tuhin; Senthamaraikannan, Ramsankar; Shaw, Matthew T.; Carolan, Patrick; Holmes, Justin D.; Roy, Saibal; Morris, Michael A.

    2013-01-01

    Highly dense hexagonally arranged iron oxide nanodots array were fabricated using PS-b-PEO self-assembled patterns. The copolymer molecular weight, composition and choice of annealing solvent/s allows dimensional and structural control of the nanopatterns at large scale. A mechanism is proposed to create scaffolds through degradation and/or modification of cylindrical domains. A methodology based on selective metal ion inclusion and subsequent processing was used to create iron oxide nanodots array. The nanodots have uniform size and shape and their placement mimics the original self-assembled nanopatterns. For the first time these precisely defined and size selective systems of ordered nanodots allow careful investigation of magnetic properties in dimensions from 50 nm to 10 nm, which delineate the nanodots are superparamagnetic, well-isolated and size monodispersed. This diameter/spacing controlled iron oxide nanodots systems were demonstrated as a resistant mask over silicon to fabricate densely packed, identical ordered, high aspect ratio silicon nanopillars and nanowire features. PMID:24072037

  15. A ten-meter optical telescope for deep-space communications

    NASA Technical Reports Server (NTRS)

    Shaik, Kamran; Kerr, Edwin L.

    1990-01-01

    Optical communications using laser light in the visible spectral range is being considered for future deep-space missions. Such a system will require a large telescope in earth vicinity to be used as a receiving station for data return from the spacecraft. A preliminary discussion for a ground-based receiving station consisting of a 10-meter hexagonally segmented primary with high surface tolerance and a unique sunshade is presented.

  16. An orthogonal oriented quadrature hexagonal image pyramid

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J., Jr.

    1987-01-01

    An image pyramid has been developed with basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The pyramid operates on a hexagonal sample lattice. The set of seven basis functions consist of three even high-pass kernels, three odd high-pass kernels, and one low-pass kernel. The three even kernels are identified when rotated by 60 or 120 deg, and likewise for the odd. The seven basis functions occupy a point and a hexagon of six nearest neighbors on a hexagonal sample lattice. At the lowest level of the pyramid, the input lattice is the image sample lattice. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing sq rt 7 larger than the previous level, so that the number of coefficients is reduced by a factor of 7 at each level. The relationship between this image code and the processing architecture of the primate visual cortex is discussed.

  17. Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jipeng; Wang, Hengliang; Wen, Shuangchun

    2016-05-28

    We theoretically demonstrate the perfect absorption phenomena in the hexagonal boron nitride (hBN) crystals in the mid-infrared wavelength ranges by means of critical coupling with a one-dimensional photonic crystal spaced by the air. Different from the polymer absorbing layer composed by a metal-dielectric composite film, the hyperbolic dispersion characteristics of hBN can meet the condition of critical coupling and achieve the total absorption in the mid-infrared wavelength ranges. However, the critical coupling phenomenon can only appear in the hBN crystals with the type II dispersion. Moreover, we discuss the influence of the thickness of hBN, the incident angle, and themore » thickness and permittivity of the space dielectric on the total absorption. Ultimately, the conditions for absorption enhancement and the optimization methods of perfect absorption are proposed, and the design rules for a totally absorbing system under the different conditions are achieved.« less

  18. IMPROVED TYPE OF FUEL ELEMENT

    DOEpatents

    Monson, H.O.

    1961-01-24

    A radiator-type fuel block assembly is described. It has a hexagonal body of neutron fissionable material having a plurality of longitudinal equal- spaced coolant channels therein aligned in rows parallel to each face of the hexagonal body. Each of these coolant channels is hexagonally shaped with the corners rounded and enlarged and the assembly has a maximum temperature isothermal line around each channel which is approximately straight and equidistant between adjacent channels.

  19. Wargaming in Both Rectilinear and Hexagonal Spaces

    NASA Technical Reports Server (NTRS)

    Hoover, Alex

    2012-01-01

    There are two main approaches to managing wargame entity interactions (movement, line of sight, area of effect, etc) freespace and gridded In the freespace approach, the units exist as entities in a continuous volume of (usually) Cartesian 3D space. They move in any direction (based on interaction with "terrain" that occupies the same space) and interact with each other based on references and displacements from their position in that space. In the gridded approach, space is broken up into (usually regular) shaped pieces. Units are considered to occupy the entire volume of one of these pieces, movement, line of sight, and other interactions are based on the relationships among the spaces rather than the absolute positions of the units themselves. Both approaches have advantages and drawbacks. The general issue that this discussion has addressed is that there is no "perfect" approach to implementing a wargaming battlespace. Each of them (and this extends to others not discussed) has different sets of advantages and disadvantages. Nothing will change that basic nature of the various approaches, nor would it be desirable to do so. Along with the advantages, the challenges define the feel of the game and focus the thinking of the players on certain aspects and away from others. The proposed approach to combining square and hexagonal approaches, which we will call the rhombus interface, leverages rhombuses constructed from equilateral triangles into which the hexagon can be decomposed to bridge the gap between the approaches, maintain relative consistency between the two as much as possible, and provide most of the feel of the hexagonal approach.

  20. Plant Functional Traits Are More Consistent Than Plant Species on Periglacial Patterned Ground in the Rocky Mountains of Montana

    NASA Astrophysics Data System (ADS)

    Apple, M. E.; Ricketts, M. K.; Gallagher, J. H. R.

    2017-12-01

    Periglacial patterned ground exists as stripes and hexagons near glaciers and snowfields, some of which are former glaciers. The patterns are accentuated by profound differences in plant cover between the sloping surfaces, generally perceived as green, and the flat treads, generally perceived as brown but which are not devoid of plant life. On four sites in the Rocky Mountains of Montana we detected strong similarities in plant functional traits on the sloping surfaces of striped and hexagonal periglacial patterned ground. On Mt. Keokirk in the Pioneer Mountains, Kinnickinnick, Arctostaphylos uva-ursi, dominates narrow green stripes. On Goat Flat in the Pintler Mountains, Mountain Avens, Dryas octopetala, dominates the side walls of hexagonally patterned ground and narrow green stripes. At Glacier National Park, D. octopetala and the Arctic Willow, Salix arctica, co-dominate the green risers of widely-spaced striped periglacial patterned system at Siyeh Pass, while D. octopetala, S. arctica, and the Mountain Heather, Phyllodoce glanduliflora, co-dominate the green risers of the widely-spaced stripes of Piegan Pass. All four of these dictotyledonous angiosperm species are adventitiously-rooted dwarf shrubs with simple leaves. Of these, P. glanduliflora, A. uva-ursi and D. octopetala are evergreen. D. octopetala is symbiotic with N-fixing Frankia sp. All are mycorrhizal, although D. octopetala and S. arctica are ectomycorrhizal and P. glanduliflora and A. uva-ursi have ericaceous mycorrhizae. In contrast, dwarf shrubs are scarce on flat treads and within hexagons, which are chiefly inhabited by herbaceous, taprooted or rhizomatous, VAM angiosperms. As the green stripes and hexagon walls have greater plant cover, they likely have greater organic material due to leaf buildup and root turnover, anchor themselves and the soil with adventitious roots, their clonality suggests long lives, and N-fixing influences N dynamics of the periglacial patterned ground.

  1. Space station architectural elements model study

    NASA Technical Reports Server (NTRS)

    Taylor, T. C.; Spencer, J. S.; Rocha, C. J.; Kahn, E.; Cliffton, E.; Carr, C.

    1987-01-01

    The worksphere, a user controlled computer workstation enclosure, was expanded in scope to an engineering workstation suitable for use on the Space Station as a crewmember desk in orbit. The concept was also explored as a module control station capable of enclosing enough equipment to control the station from each module. The concept has commercial potential for the Space Station and surface workstation applications. The central triangular beam interior configuration was expanded and refined to seven different beam configurations. These included triangular on center, triangular off center, square, hexagonal small, hexagonal medium, hexagonal large and the H beam. Each was explored with some considerations as to the utilities and a suggested evaluation factor methodology was presented. Scale models of each concept were made. The models were helpful in researching the seven beam configurations and determining the negative residual (unused) volume of each configuration. A flexible hardware evaluation factor concept is proposed which could be helpful in evaluating interior space volumes from a human factors point of view. A magnetic version with all the graphics is available from the author or the technical monitor.

  2. Rotating non-Boussinesq Rayleigh-Benard convection

    NASA Astrophysics Data System (ADS)

    Moroz, Vadim Vladimir

    This thesis makes quantitative predictions about the formation and stability of hexagonal and roll patterns in convecting system unbounded in horizontal direction. Starting from the Navier-Stokes, heat and continuity equations, the convection problem is then reduced to normal form equations using equivariant bifurcation theory. The relative stabilities of patterns lying on a hexagonal lattice in Fourier space are then determined using appropriate amplitude equations, with coefficients obtained via asymptotic expansion of the governing partial differential equations, with the conducting state being the base state, and the control parameter and the non-Boussinesq effects being small. The software package Mathematica was used to calculate amplitude coefficients of the appropriate coupled Ginzburg-Landau equations for the rigid-rigid and free-free case. A Galerkin code (initial version of which was written by W. Pesch et al.) is used to determine pattern stability further from onset and for strongly non-Boussinesq fluids. Specific predictions about the stability of hexagon and roll patterns for realistic experimental conditions are made. The dependence of the stability of the convective patterns on the Rayleigh number, planform wavenumber and the rotation rate is studied. Long- and shortwave instabilities, both steady and oscillatory, are identified. For small Prandtl numbers oscillatory sideband instabilities are found already very close to onset. A resonant mode interaction in hexagonal patterns arising in non-Boussinesq Rayleigh-Benard convection is studied using symmetry group methods. The lowest-order coupling terms for interacting patterns are identified. A bifurcation analysis of the resulting system of equations shows that the bifurcation is transcritical. Stability properties of resulting patterns are discussed. It is found that for some fluid properties the traditional hexagon convection solution does not exist. Analytical results are supported by numerical solutions of the convection equations using the Galerkin procedure and a Floquet analysis.

  3. Field enhanced graphene based dual hexagonal ring optical antenna for tip-enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Aditya, Rachakonda A. N. S.; Thampy, Anand Sreekantan

    2018-05-01

    Field enhanced graphene based dual hexagonal ring optical antenna has been designed in IR regime. Outcomes of hexagonal rings with gold and graphene materials and their effect has been studied and analyzed. Graphene based structures are found to have better and enhanced results as compared to that of gold. In addition, a two fold increase in bandwidth (∼30 THz) and cross-section (∼6.00E+06 nm2) has been observed in case of graphene. Field patterns for various tip/corner curvatures are simulated and localized/regional field patterns are justified. The effect of inter ring spacing on absorption cross section has been studied for every 10 nm increase in spacing. This absorption enhancement in addition to field localization makes the current structure feasible for tip enhanced spectroscopy.

  4. Purification, crystallization and preliminary crystallographic analysis of a 6-pyruvoyltetrahydropterin synthase homologue from Esherichia coli.

    PubMed

    Seo, Kyung Hye; Supangat; Kim, Hye Lim; Park, Young Shik; Jeon, Che Ok; Lee, Kon Ho

    2008-02-01

    6-Pyruvoyltetrahydropterin synthase from E. coli (ePTPS) has been crystallized using the hanging-drop vapour-diffusion method. Hexagonal- and rectangular-shaped crystals were obtained. Diffraction data were collected from the hexagonal and rectangular crystals to 3.0 and 2.3 A resolution, respectively. The hexagonal plate-shaped crystals belonged to space group P321, with unit-cell parameters a = b = 112.59, c = 68.82 A , and contained two molecules in the asymmetric unit. The rectangular crystals belonged to space group I222, with unit-cell parameters a = 112.76, b = 117.66, c = 153.57 A , and contained six molecules in the asymmetric unit. The structure of ePTPS in both crystal forms has been determined by molecular replacement.

  5. Purification, crystallization and preliminary crystallographic analysis of a 6-pyruvoyltetrahydropterin synthase homologue from Esherichia coli

    PubMed Central

    Seo, Kyung Hye; Supangat; Kim, Hye Lim; Park, Young Shik; Jeon, Che Ok; Lee, Kon Ho

    2008-01-01

    6-Pyruvoyltetrahydropterin synthase from E. coli (ePTPS) has been crystallized using the hanging-drop vapour-diffusion method. Hexagonal- and rectangular-shaped crystals were obtained. Diffraction data were collected from the hexagonal and rectangular crystals to 3.0 and 2.3 Å resolution, respectively. The hexagonal plate-shaped crystals belonged to space group P321, with unit-cell parameters a = b = 112.59, c = 68.82 Å, and contained two molecules in the asymmetric unit. The rectangular crystals belonged to space group I222, with unit-cell parameters a = 112.76, b = 117.66, c = 153.57 Å, and contained six molecules in the asymmetric unit. The structure of ePTPS in both crystal forms has been determined by molecular replacement. PMID:18271114

  6. Evanescent Properties of Optical Diffraction from 2-Dimensional Hexagonal Photonic Crystals and Their Sensor Applications.

    PubMed

    Liao, Yu-Yang; Chen, Yung-Tsan; Chen, Chien-Chun; Huang, Jian-Jang

    2018-04-03

    The sensitivity of traditional diffraction grating sensors is limited by the spatial resolution of the measurement setup. Thus, a large space is required to improve sensor performance. Here, we demonstrate a compact hexagonal photonic crystal (PhC) optical sensor with high sensitivity. PhCs are able to diffract optical beams to various angles in azimuthal space. The critical wavelength that satisfies the phase matching or becomes evanescent was used to benchmark the refractive index of a target analyte applied on a PhC sensor. Using a glucose solution as an example, our sensor demonstrated very high sensitivity and a low limit of detection. This shows that the diffraction mechanism of hexagonal photonic crystals can be used for sensors when compact size is a concern.

  7. Phase relations in the pseudobinary systems RAO3-R2Ti2O7 (R: rare earth element and Y, A: Fe, Ga, Al, Cr and Mn) and syntheses of new compounds R(A1-xTix)O3+x/2 (2/3≤x≤3/4) at elevated temperatures in air

    NASA Astrophysics Data System (ADS)

    Brown, Francisco; Jacobo-Herrera, Ivan; Alvarez-Montaño, Victor; Kimizuka, Noboru; Kurashina, Keiji; Michiue, Yuichi; Matsuo, Yoji; Mori, Shigeo; Ikeda, Naoshi; Medrano, Felipe

    2017-07-01

    Phase relations in the pseudo-binary systems RFeO3-R2Ti2O7 (R: Lu, Ho and Dy), RGaO3-R2Ti2O7 (R: Lu and Er), LuAlO3-Lu2Ti2O7 and RAO3-R2Ti2O7 (R: Lu and Yb. A: Cr and Mn) at elevated temperatures in air were determined by means of a classic quenching method. There exist Lu(Fe1-xTix)O3+x/2, R(Ga1-xTix)O3+x/2 (R: Lu and Er) and Lu(Al1-xTix)O3+x/2 (2/3≤ x≤3/4) having the Yb(Fe1-xTix)O3+x/2-type of crystal structure (x=0.72, space group: R3m, a(Å)=17.9773 and c(Å)=16.978 as a hexagonal setting) in these pseudo binary systems. Eighteen compounds R(A1-xTix)O3+x/2 (R: Lu-Sm and Y, A: Fe, Ga and Al) were newly synthesized and their lattice constants as a hexagonal setting were measured by means of the X-ray powder diffraction method. The R occupies the octahedral site and both A and Ti does the trigonalbipyramidal one in these compounds. Relation between lattice constants for the rhombic R(A1-xTix)O3+x/2 and the monoclinic In(A1-xTix)O3+x/2 are as follows, ah≈5 x bm, ch≈3 x cm x sin β and am=31/2 x bm, where ah and ch are the lattice constants as a hexagonal setting for R(A1-xTix)O3+x/2 and am, bm, cm and β are those of the monoclinic In(A1-xTix)O3+x/2. Crystal structural relationships among α-InGaO3 (hexagonal, high pressure form, space group: P63/mmc), InGaO3 (rhombic, hypothetical), (RAO3)n(BO)m and RAO3(ZnO)m (R: Lu-Ho, Y and In, A: Fe, Ga, and Al, B: divalent cation element, m, n: natural number), the orthorhombic-and monoclinic In(A1-xTix)O3+x/2 (A: Fe, Ga, Al, Cr and Mn) and the hexagonal-and rhombic R(A1-xTix)O3+x/2 (R: Lu-Sm and Y, A: Fe, Ga and Al) are schematically presented. We concluded that the crystal structures of both the α-InGaO3 (high pressure form, hexagonal, space group: P63/mmc) and the hypothetical InGaO3 (rhombic) are the key structures for constructing the crystal structures of these compounds having the cations with CN=5.

  8. Effect of random vacancies on the electronic properties of graphene and T graphene: a theoretical approach

    NASA Astrophysics Data System (ADS)

    Sadhukhan, B.; Nayak, A.; Mookerjee, A.

    2017-12-01

    In this communication we present together four distinct techniques for the study of electronic structure of solids: the tight-binding linear muffin-tin orbitals, the real space and augmented space recursions and the modified exchange-correlation. Using this we investigate the effect of random vacancies on the electronic properties of the carbon hexagonal allotrope, graphene, and the non-hexagonal allotrope, planar T graphene. We have inserted random vacancies at different concentrations, to simulate disorder in pristine graphene and planar T graphene sheets. The resulting disorder, both on-site (diagonal disorder) as well as in the hopping integrals (off-diagonal disorder), introduces sharp peaks in the vicinity of the Dirac point built up from localized states for both hexagonal and non-hexagonal structures. These peaks become resonances with increasing vacancy concentration. We find that in presence of vacancies, graphene-like linear dispersion appears in planar T graphene and the cross points form a loop in the first Brillouin zone similar to buckled T graphene that originates from π and π* bands without regular hexagonal symmetry. We also calculate the single-particle relaxation time, τ (ěc {q}) of ěc {q} labeled quantum electronic states which originates from scattering due to presence of vacancies, causing quantum level broadening.

  9. Control over self-assembly of diblock copolymers on hexagonal and square templates for high area density circuit boards.

    PubMed

    Feng, Jie; Cavicchi, Kevin A; Heinz, Hendrik

    2011-12-27

    Self-assembled diblock copolymer melts on patterned substrates can induce a smaller characteristic domain spacing compared to predefined lithographic patterns and enable the manufacture of circuit boards with a high area density of computing and storage units. Monte Carlo simulation using coarse-grain models of polystyrene-b-polydimethylsiloxane shows that the generation of high-density hexagonal and square patterns is controlled by the ratio N(D) of the surface area per post and the surface area per spherical domain of neat block copolymer. N(D) represents the preferred number of block copolymer domains per post. Selected integer numbers support the formation of ordered structures on hexagonal (1, 3, 4, 7, 9) and square (1, 2, 5, 7) templates. On square templates, only smaller numbers of block copolymer domains per post support the formation of ordered arrays with significant stabilization energies relative to hexagonal morphology. Deviation from suitable integer numbers N(D) increases the likelihood of transitional morphologies between square and hexagonal. Upon increasing the spacing of posts on the substrate, square arrays, nested square arrays, and disordered hexagonal morphologies with multiple coordination numbers were identified, accompanied by a decrease in stabilization energy. Control over the main design parameter N(D) may allow an up to 7-fold increase in density of spherical block copolymer domains per surface area in comparison to the density of square posts and provide access to a wide range of high-density nanostructures to pattern electronic devices.

  10. Structural evaluation of concepts for a solar energy concentrator for Space Station advanced development program

    NASA Technical Reports Server (NTRS)

    Kenner, Winfred S.; Rhodes, Marvin D.

    1994-01-01

    Solar dynamic power systems have a higher thermodynamic efficiency than conventional photovoltaic systems; therefore they are attractive for long-term space missions with high electrical power demands. In an investigation conducted in support of a preliminary concept for Space Station Freedom, an approach for a solar dynamic power system was developed and a number of the components for the solar concentrator were fabricated for experimental evaluation. The concentrator consists of hexagonal panels comprised of triangular reflective facets which are supported by a truss. Structural analyses of the solar concentrator and the support truss were conducted using finite-element models. A number of potential component failure scenarios were postulated and the resulting structural performance was assessed. The solar concentrator and support truss were found to be adequate to meet a 1.0-Hz structural dynamics design requirement in pristine condition. However, for some of the simulated component failure conditions, the fundamental frequency dropped below the 1.0-Hz design requirement. As a result, two alternative concepts were developed and assessed. One concept incorporated a tetrahedral ring truss support for the hexagonal panels: the second incorporated a full tetrahedral truss support for the panels. The results indicate that significant improvements in stiffness can be obtained by attaching the panels to a tetrahedral truss, and that this concentrator and support truss will meet the 1.0-Hz design requirement with any of the simulated failure conditions.

  11. Novel high pressure hexagonal OsB2 by mechanochemistry

    NASA Astrophysics Data System (ADS)

    Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina; Andrew Payzant, E.; Cullen, David A.; Blair, Richard G.

    2014-07-01

    Hexagonal OsB2, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB2 begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB2 crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB2 phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from -225 °C to 1050 °C. The hexagonal OsB2 powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB2 at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods.

  12. Millimeter-wave antenna design

    NASA Technical Reports Server (NTRS)

    Leighton, R. B.

    1977-01-01

    Problems and opportunities are discussed for adapting certain design features and construction techniques, developed for producing high accuracy ground based radio dishes, to producing milimeter wave dishes for space use. Specifically considered is a foldable telescope of 24 m aperture and 9.6 m focal length, composed of 37 rigid hexagonal panels, which will fit within the 4.5 m diameter x 18 m long payload limits of space shuttle. As here conceived, the telescope would be a free flyer with its own power and pointing systems. Some of the structural design features and construction procedures are considered.

  13. First-principles characterization of potassium intercalation in the hexagonal 2H-MoS2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Amity; Kathmann, Shawn M.; Lilga, Michael A.

    2012-01-12

    Periodic density functional theory calculations were performed to study the structural and electronic properties of potassium intercalated into hexagonal MoS{sub 2} (2H-MoS{sub 2}). Metallic potassium (K) atoms are incrementally loaded in the hexagonal sites of the interstitial spaces between MoS2 sheets of the 2H-MoS{sub 2} bulk structure generating 2H-KxMoS2 (0.125 {<=} x {<=} 1.0) structures. To accommodate the potassium atoms, the interstitial spacing c parameter in the 2H-MoS{sub 2} bulk expands from 12.816 {angstrom} in 2H-MoS{sub 2} to 16.086 {angstrom} in 2H-K{sub 0.125}MoS{sub 2}. The second lowest potassium loading concentration (K{sub 0.25}MoS{sub 2}) results in the largest interstitial spacing expansionmore » (to c = 16.726 {angstrom}). Our calculations show that there is a small gradual contraction of the interstitial spacing as the potassium loading increases with c = 14.839 {angstrom} for KMoS{sub 2}. This interstitial contraction is correlated with an in-plane expansion of the MoS{sub 2} sheets, which is in good agreement with experimental X-ray diffraction (XRD) measurements. The electronic analysis shows that potassium readily donates its 4s electron to the conduction band of the 2H-K{sub x}MoS{sub 2}, and is largely ionic in character. As a result of the electron donation, the 2H-K{sub x}MoS{sub 2} system changes from a semiconductor to a more metallic system with increasing potassium intercalation. For loadings 0.25 {<=} x {<=} 0.625, triangular Mo-Mo-Mo moieties are prominent and tend to form rhombitrihexagonal motifs. Intercalation of H{sub 2}O molecules that solvate the K atoms is likely to occur in catalytic conditions. The inclusion of two H{sub 2}O molecules per K atom in the K{sub 0.25}MoS{sub 2} structure shows good agreement with XRD measurements.« less

  14. High-temperature molecular dynamics simulation of aragonite.

    PubMed

    Miyake, Akira; Kawano, Jun

    2010-06-09

    For molecular dynamics simulations using aragonite structure as the initial state, a new phase of space group P6₃22 (hexagonal aragonite) appeared at temperatures above 510 K at a pressure of 1 atm. It was a first-order phase transition which occurs metastably within the stable region of calcite and the dT/dP slope of the phase boundary between orthorhombic and hexagonal aragonite was about 1.25 × 10³ K GPa⁻¹. In the hexagonal aragonite structure, CO₃ groups were rotated by 30° around the c axis and move up and down along the c axis from their position in aragonite, and Ca ions were six-coordinated as they are in calcite. The CaO₆ octahedron of hexagonal aragonite was strongly distorted, whereas in the calcite structure it is an almost ideal octahedron. The transition between hexagonal and orthorhombic aragonite involves only small movements of CO₃ groups. Therefore, it is possible that hexagonal aragonite plays an important part in the metastable formation of aragonite within the stability field of calcite and in the development of sector trilling in aragonite.

  15. Time- and Space-Resolved SAXS Experiments Inform on Phase Transition Kinetics in Hydrated, Liquid-Crystalline Films of Polyion-Surfactant Ion "Complex Salts".

    PubMed

    Li, Joaquim; Gustavsson, Charlotte; Piculell, Lennart

    2016-05-24

    Detailed time- and space-resolved SAXS experiments show the variation with hydration of liquid crystalline structures in ethanol-cast 5-80 μm thick films of polyion-surfactant ion "complex salts" (CS). The CS were dodecyl- (C12) or hexadecyl- (C16) trimethylammonium surfactants with polyacrylate (DP 25 or 6000) counter-polyions. The experiments were carried out on vertical films in humid air above a movable water bath, so that gradients of hydration were generated, which could rapidly be altered. Scans over different positions along a film, kept fixed relative to the bath, showed that the surfactant aggregates of the various liquid-crystalline CS structures grow in cross-sectional area with decreasing hydration. This behavior is attributed to the low water content. Studies of films undergoing rapid dehydration, made possible by the original experimental setup, gave strong evidence that some of the investigated systems remain kinetically trapped for minutes in a nonequilibrium Pm3n micellar cubic phase before switching to the equilibrium P6mm 2D hexagonal phase. Both the length of the polyion and the length of the surfactant hydrocarbon "tail" affect the kinetics of the phase transition. The slowness of the cubic-to-hexagonal structural transition is attributed to the fact that it requires major rearrangements of the polyions and surfactant ions relative to each other. By contrast, other structure changes, such as between the hexagonal and rectangular phases, were observed to occur much more rapidly.

  16. Algebraic signal processing theory: 2-D spatial hexagonal lattice.

    PubMed

    Pünschel, Markus; Rötteler, Martin

    2007-06-01

    We develop the framework for signal processing on a spatial, or undirected, 2-D hexagonal lattice for both an infinite and a finite array of signal samples. This framework includes the proper notions of z-transform, boundary conditions, filtering or convolution, spectrum, frequency response, and Fourier transform. In the finite case, the Fourier transform is called discrete triangle transform. Like the hexagonal lattice, this transform is nonseparable. The derivation of the framework makes it a natural extension of the algebraic signal processing theory that we recently introduced. Namely, we construct the proper signal models, given by polynomial algebras, bottom-up from a suitable definition of hexagonal space shifts using a procedure provided by the algebraic theory. These signal models, in turn, then provide all the basic signal processing concepts. The framework developed in this paper is related to Mersereau's early work on hexagonal lattices in the same way as the discrete cosine and sine transforms are related to the discrete Fourier transform-a fact that will be made rigorous in this paper.

  17. Pyramidal dislocation induced strain relaxation in hexagonal structured InGaN/AlGaN/GaN multilayer

    NASA Astrophysics Data System (ADS)

    Yan, P. F.; Du, K.; Sui, M. L.

    2012-10-01

    Due to the special dislocation slip systems in hexagonal lattice, dislocation dominated deformations in hexagonal structured multilayers are significantly different from that in cubic structured systems. In this work, we have studied the strain relaxation mechanism in hexagonal structured InGaN/AlGaN/GaN multilayers with transmission electron microscopy. Due to lattice mismatch, the strain relaxation was found initiated with the formation of pyramidal dislocations. Such dislocations locally lie at only one preferential slip direction in the hexagonal lattice. This preferential slip causes a shear stress along the basal planes and consequently leads to dissociation of pyramidal dislocations and operation of the basal plane slip system. The compressive InGaN layers and "weak" AlGaN/InGaN interfaces stimulate the dissociation of pyramidal dislocations at the interfaces. These results enhance the understanding of interactions between dislocations and layer interfaces and shed new lights on deformation mechanism in hexagonal-lattice multilayers.

  18. Heat pipe nuclear reactor for space power

    NASA Technical Reports Server (NTRS)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  19. Diffractive centrosymmetric 3D-transmission phase gratings positioned at the image plane of optical systems transform lightlike 4D-WORLD as tunable resonators into spectral metrics...

    NASA Astrophysics Data System (ADS)

    Lauinger, Norbert

    1999-08-01

    Diffractive 3D phase gratings of spherical scatterers dense in hexagonal packing geometry represent adaptively tunable 4D-spatiotemporal filters with trichromatic resonance in visible spectrum. They are described in the (lambda) - chromatic and the reciprocal (nu) -aspects by reciprocal geometric translations of the lightlike Pythagoras theorem, and by the direction cosine for double cones. The most elementary resonance condition in the lightlike Pythagoras theorem is given by the transformation of the grating constants gx, gy, gz of the hexagonal 3D grating to (lambda) h1h2h3 equals (lambda) 111 with cos (alpha) equals 0.5. Through normalization of the chromaticity in the von Laue-interferences to (lambda) 111, the (nu) (lambda) equals (lambda) h1h2h3/(lambda) 111-factor of phase velocity becomes the crucial resonance factor, the 'regulating device' of the spatiotemporal interaction between 3D grating and light, space and time. In the reciprocal space equal/unequal weights and times in spectral metrics result at positions of interference maxima defined by hyperbolas and circles. A database becomes built up by optical interference for trichromatic image preprocessing, motion detection in vector space, multiple range data analysis, patchwide multiple correlations in the spatial frequency spectrum, etc.

  20. Structural, electronic and vibrational properties of LaF3 according to density functional theory and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oreshonkov, A. S.; Roginskii, E. M.; Krylov, A. S.; Ershov, A. A.; Voronov, V. N.

    2018-06-01

    Crystal structure of LaF3 single crystal is refined in tysonite-type trigonal unit cell P c1 using density functional theory calculations and Raman spectroscopy. It is shown that trigonal structure with P c1 space group is more energy-efficient than hexagonal structure with space group P63 cm. Simulated Raman spectra obtained using LDA approximation is in much better agreement with experimental data than that obtained with PBE and PBEsol functionals of GGA. The calculated frequency value of silent mode B 2 in case of hexagonal structure P63 cm was found to be imaginary (unstable mode), thus the energy surface obtains negative curvature with respect to the corresponding normal coordinates of the mode which leads to instability of the hexagonal structure in harmonic approximation. The A 1g line at 214 cm‑1 in Raman spectra of LaF3 related to the translation of F2 ions along c axis can be connected with F2 ionic conductivity.

  1. The influence of abutment screw tightening on screw joint configuration.

    PubMed

    Lang, Lisa A; Wang, Rui-Feng; May, Kenneth B

    2002-01-01

    Limiting abutment-to-implant hexagonal discrepancies and rotational movement of the abutment around the implant to less than 5 degrees would result in a more stable screw joint. However, the exact relationship after abutment screw tightening is unknown, as is the effect of a counter-torque device in limiting abutment movement during screw tightening. This study examined the orientation of the abutment hexagon to the implant hexagon after tightening of the abutment screw for several abutment systems with and without the use of a counter-torque device. Thirty conical self-tapping implants (3.75 x 10.0 mm) and 10 wide-platform Brånemark System implants (5.0 x 10.0 mm), along with 10 abutment specimens from the CeraOne, Estheticone, Procera, and AuraAdapt systems, were selected for this investigation. The implants were placed in a holding device prior to tightening of the abutments. When the tightening torque recommended for each abutment system was reached with the use of a torque controller, each implant abutment specimen was removed from the holding device and embedded in a hard resin medium. The specimens were sectioned in a horizontal direction at the level of the hexagons and cleansed of debris prior to examination. The hexagon orientations were assessed as the degree and direction of rotation of the abutment hexagon around the implant hexagon. The range of the maximum degrees of rotation for all 4 abutment groups tightened with or without the counter-torque device was slightly more than 3.53 degrees. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees with or without the use of the counter-torque device. The hexagon-to-hexagon orientation measured as rotational fit on all abutment systems was below the 5 degrees suggested as optimal for screw joint stability. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees regardless of whether the counter-torque device was used.

  2. New cellular automaton model for magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Chen, Hudong; Matthaeus, William H.

    1987-01-01

    A new type of two-dimensional cellular automation method is introduced for computation of magnetohydrodynamic fluid systems. Particle population is described by a 36-component tensor referred to a hexagonal lattice. By appropriate choice of the coefficients that control the modified streaming algorithm and the definition of the macroscopic fields, it is possible to compute both Lorentz-force and magnetic-induction effects. The method is local in the microscopic space and therefore suited to massively parallel computations.

  3. Grid cells on steeply sloping terrain: evidence for planar rather than volumetric encoding

    PubMed Central

    Hayman, Robin M. A.; Casali, Giulio; Wilson, Jonathan J.; Jeffery, Kate J.

    2015-01-01

    Neural encoding of navigable space involves a network of structures centered on the hippocampus, whose neurons –place cells – encode current location. Input to the place cells includes afferents from the entorhinal cortex, which contains grid cells. These are neurons expressing spatially localized activity patches, or firing fields, that are evenly spaced across the floor in a hexagonal close-packed array called a grid. It is thought that grids function to enable the calculation of distances. The question arises as to whether this odometry process operates in three dimensions, and so we queried whether grids permeate three-dimensional (3D) space – that is, form a lattice – or whether they simply follow the environment surface. If grids form a 3D lattice then this lattice would ordinarily be aligned horizontally (to explain the usual hexagonal pattern observed). A tilted floor would transect several layers of this putative lattice, resulting in interruption of the hexagonal pattern. We model this prediction with simulated grid lattices, and show that the firing of a grid cell on a 40°-tilted surface should cover proportionally less of the surface, with smaller field size, fewer fields, and reduced hexagonal symmetry. However, recording of real grid cells as animals foraged on a 40°-tilted surface found that firing of grid cells was almost indistinguishable, in pattern or rate, from that on the horizontal surface, with if anything increased coverage and field number, and preserved field size. It thus appears unlikely that the sloping surface transected a lattice. However, grid cells on the slope displayed slightly degraded firing patterns, with reduced coherence and slightly reduced symmetry. These findings collectively suggest that the grid cell component of the metric representation of space is not fixed in absolute 3D space but is influenced both by the surface the animal is on and by the relationship of this surface to the horizontal, supporting the hypothesis that the neural map of space is “multi-planar” rather than fully volumetric. PMID:26236245

  4. Self-Assembled Soft Optical Negative Index Materials

    DTIC Science & Technology

    2008-08-05

    within the MURI indicated that anodization of aluminum films provides hexagonal nano-hole arrays, which, when backfilled with e.g. silver via...bath determine pore size and spacing. Then AAO is removed with chromic and phosphoric acid at 70°C for 6 hrs. A 2nd anodization results in hexagonal...array of pores. Anodization time sets membrane thickness. Pores widened in acid such as phosphoric acid. The barrier layer is thinned by gradually

  5. Optical characteristics of novel bulk and nanoengineered laser host materials

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Sova, Stacey; Kelly, Lisa; Bevan, Talon; Arnold, Bradley; Cooper, Christopher; Choa, Fow-Sen; Singh, N. B.

    2018-02-01

    The hexagonal apatite single crystals have been investigated for their applications as laser host materials. Czochralksi and flux growth methods have been utilized to obtain single crystals. For low temperature processing (<100 0C), several techniques for crystal growth have been developed. The hexagonal apatite structure (space group P63/m) is characteristic of several compounds, some of which have extremely interesting and useful properties as laser hosts and bone materials. Calcium lanthanum silicate (Nd-doped) and lanthanum aluminate material systems were studied in detail. Nanoengineered calcium and lanthanum based silicates were synthesized by a solution method and their optical and morphological characteristics were compared with Czochralski grown bulk hydroxyapatite single crystals. Materials were evaluated by absorbance, fluorescence and Raman characteristics. Neodymium, iron and chromium doped crystals grown by a solution method showed weak but similar optical properties to that of Czochralski grown single crystals.

  6. Pucksat Payload Carrier

    NASA Technical Reports Server (NTRS)

    Milam, M. Bruce; Young, Joseph P.

    1999-01-01

    There is an ever-expanding need to provide economical space launch opportunities for relatively small science payloads. To address this need, a team at NASA's Goddard Space Flight Center has designed the Pucksat. The Pucksat is a highly versatile payload carrier structure compatible for launching on a Delta II two-stage vehicle as a system co-manifested with a primary payload. It is also compatible for launch on the Air Force Medium Class EELV. Pucksat's basic structural architecture consists of six honeycomb panels attached to six longerons in a hexagonal manner and closed off at the top and bottom with circular rings. Users may configure a co-manifested Pucksat in a number of ways. As examples, co-manifested configurations can be designed to accommodate dedicated missions, multiple experiments, multiple small deployable satellites, or a hybrid of the preceding examples. The Pucksat has fixed lateral dimensions and a downward scaleable height. The dimension across the panel hexagonal flats is 62 in. and the maximum height configuration dimension is 38.5 in. Pucksat has been designed to support a 5000 lbm primary payload, with the center of gravity located no greater than 60 in. from its separation plane, and to accommodate a total co-manifested payload mass of 1275 lbm.

  7. Research on the comparison of extension mechanism of cellular automaton based on hexagon grid and rectangular grid

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie

    2009-10-01

    Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of concept for hexagonal which has great dominance.

  8. Reflected Sunlight Reduction and Characterization for a Deep-Space Optical Receiver Antenna (DSORA)

    NASA Technical Reports Server (NTRS)

    Clymer, B. D.

    1990-01-01

    A baffle system for the elimination of first-order specular and diffuse reflection of sunlight from the sunshade of a deep-space optical receiver telescope is presented. This baffle system consists of rings of 0.5cm blades spaced 2.5 cm apart on the walls of GO hexagonal sunshade tubes that combine to form the telescope sunshade. The shadow cast by the blades, walls, and rims of the tubes prevent all first-order reflections of direct sunlight from reaching the primary mirror of the telescope. A reflection model of the sunshade without baffles is also presented for comparison. Since manufacturers of absorbing surfaces do not measure data near grazing incidence, the reflection properties at anticipated angles of incidence must be characterized. A description of reflection from matte surfaces in term of bidirectional reflection distribution function (BRDF) is presented along with a discussion of measuring BRDF near grazing incidence.

  9. Rotating non-Boussinesq convection: oscillating hexagons

    NASA Astrophysics Data System (ADS)

    Moroz, Vadim; Riecke, Hermann; Pesch, Werner

    2000-11-01

    Within weakly nonlinear theory hexagon patterns are expected to undergo a Hopf bifurcation to oscillating hexagons when the chiral symmetry of the system is broken. Quite generally, the oscillating hexagons are expected to exhibit bistability of spatio-temporal defect chaos and periodic dynamics. This regime is described by the complex Ginzburg-Landau equation, which has been investigated theoretically in great detail. Its complex dynamics have, however, not been observed in experiments. Starting from the Navier-Stokes equations with realistic boundary conditions, we derive the three coupled real Ginzburg-Landau equations describing hexagons in rotating non-Boussinesq convection. We use them to provide quantitative results for the wavenumber range of stability of the stationary hexagons as well as the range of existence and stability of the oscillating hexagons. Our investigation is complemented by direct numerical simulations of the Navier-Stokes equations.

  10. Internally Wrenching Nut

    NASA Technical Reports Server (NTRS)

    Cortes, R. G.

    1986-01-01

    Less space needed for installation and removal. Nut for use with short bolts torqued with allen wrench. In contrast with standard hexagonal nuts, new nut requires no external wrench clearance on installation surface. Nut has many uses in assemblies where space is limited, especially in automotive and aircraft industries.

  11. TakeTwo: an indexing algorithm suited to still images with known crystal parameters

    PubMed Central

    Ginn, Helen Mary; Roedig, Philip; Kuo, Anling; Evans, Gwyndaf; Sauter, Nicholas K.; Ernst, Oliver; Meents, Alke; Mueller-Werkmeister, Henrike; Miller, R. J. Dwayne; Stuart, David Ian

    2016-01-01

    The indexing methods currently used for serial femtosecond crystallography were originally developed for experiments in which crystals are rotated in the X-ray beam, providing significant three-dimensional information. On the other hand, shots from both X-ray free-electron lasers and serial synchrotron crystallo­graphy experiments are still images, in which the few three-dimensional data available arise only from the curvature of the Ewald sphere. Traditional synchrotron crystallography methods are thus less well suited to still image data processing. Here, a new indexing method is presented with the aim of maximizing information use from a still image given the known unit-cell dimensions and space group. Efficacy for cubic, hexagonal and orthorhombic space groups is shown, and for those showing some evidence of diffraction the indexing rate ranged from 90% (hexagonal space group) to 151% (cubic space group). Here, the indexing rate refers to the number of lattices indexed per image. PMID:27487826

  12. Performance of the Primary Mirror Center-of-Curvature Optical Metrology System during Cryogenic Testing of the JWST Pathfinder Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-01-01

    The JWST primary mirror consists of 18 1.5 m hexagonal segments, each with 6-DoF and RoC adjustment. The telescope will be tested at its cryogenic operating temperature at Johnson Space Center. The testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The performance of these metrology systems, including hardware, software, procedures, was assessed during two cryogenic tests at JSC, using the JWST Pathfinder telescope. This paper describes the test setup, the testing performed, and the resulting metrology system performance.

  13. Zonal wavefront estimation using an array of hexagonal grating patterns

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Boruah, Bosanta R.

    2014-10-01

    Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or pattern can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating patterns, eliminating the possibility of leakage of wavefront during the estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.

  14. Charge Structure and Counterion Distribution in Hexagonal DNA Liquid Crystal

    PubMed Central

    Dai, Liang; Mu, Yuguang; Nordenskiöld, Lars; Lapp, Alain; van der Maarel, Johan R. C.

    2007-01-01

    A hexagonal liquid crystal of DNA fragments (double-stranded, 150 basepairs) with tetramethylammonium (TMA) counterions was investigated with small angle neutron scattering (SANS). We obtained the structure factors pertaining to the DNA and counterion density correlations with contrast matching in the water. Molecular dynamics (MD) computer simulation of a hexagonal assembly of nine DNA molecules showed that the inter-DNA distance fluctuates with a correlation time around 2 ns and a standard deviation of 8.5% of the interaxial spacing. The MD simulation also showed a minimal effect of the fluctuations in inter-DNA distance on the radial counterion density profile and significant penetration of the grooves by TMA. The radial density profile of the counterions was also obtained from a Monte Carlo (MC) computer simulation of a hexagonal array of charged rods with fixed interaxial spacing. Strong ordering of the counterions between the DNA molecules and the absence of charge fluctuations at longer wavelengths was shown by the SANS number and charge structure factors. The DNA-counterion and counterion structure factors are interpreted with the correlation functions derived from the Poisson-Boltzmann equation, MD, and MC simulation. Best agreement is observed between the experimental structure factors and the prediction based on the Poisson-Boltzmann equation and/or MC simulation. The SANS results show that TMA is too large to penetrate the grooves to a significant extent, in contrast to what is shown by MD simulation. PMID:17098791

  15. Structural, magnetic, magneto-caloric and Mössbauer spectral study of Tb{sub 2}Fe{sub 17} compound synthesized by arc melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charfeddine, S.; LVMU, Centre National de Recherches en Sciences des Matériaux, Technopole de Borj-Cédria, BP 73 Soliman 8027; Zehani, K.

    We have synthesized the intermetallic Tb{sub 2}Fe{sub 17} compound in hexagonal crystal structure by arc-melting without annealing. X-ray diffraction pattern has been refined by Rietveld method. The crystal structure is hexagonal with P6{sub 3}/mmc space group (Th{sub 2}Ni{sub 17}-type). The Mössbauer spectrum of Tb{sub 2}Fe{sub 17} compound has been analyzed with seven magnetic sextets assigned to the inequivalent crystallographic sites. The temperature dependence of magnetization data revealed that Tb{sub 2}Fe{sub 17} exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of Curie temperature (T{sub C}=412 K). The relative cooling power around the magnetic transition and the Arrott plotsmore » are also reported. - Graphical abstract: A 3D surface showing the temperature and applied magnetic field dependencies of the magnetization for Tb{sub 2}Fe{sub 17} compound (left). Rietveld analysis of the XRD pattern (right). Crystal structure for the hexagonal P6{sub 3}/mmc Tb{sub 2}Fe{sub 17} (bottom). Display Omitted - Highlights: • Tb{sub 2}Fe{sub 17} single-phase synthesized by simple arc-melting without any heat treatment. • The crystal structure is hexagonal with P6{sub 3}/mmc space group. • The magnetic entropy change of the sample was determined by Maxwell relation. • Hyperfine parameters, magnetic and magnetocaloric properties were studied.« less

  16. Electrostatically Driven Assembly of Charged Amphiphiles Forming Crystallized Membranes, Vesicles and Nanofiber Arrays

    NASA Astrophysics Data System (ADS)

    Leung, Cheuk Yui Curtis

    Charged amphiphilic molecules can self-assemble into a large variety of objects including membranes, vesicles and fibers. These micro to nano-scale structures have been drawing increasing attention due to their broad applications, especially in biotechnology and biomedicine. In this dissertation, three self-assembled systems were investigated: +3/-1 self-assembled catanionic membranes, +2/-1 self-assembled catanionic membranes and +1 self-assembled nanofibers. Transmission electron microscopy (TEM) combined with synchrotron small and wide angle x-ray scattering (SAXS and WAXS) were used to characterize the coassembled structures from the mesoscopic to nanometer scale. We designed a system of +3 and -1 ionic amphiphiles that coassemble into crystalline ionic bilayer vesicles with large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes. The degree of ionization of the amphiphiles and their intermolecular electrostatic interactions can be controlled by varying pH. The molecular packing of these membranes showed a hexagonal to rectangular-C to hexagonal phase transition with increasing pH, resulting in significant changes to the membrane morphology. A similar mixture of +2 and -1 ionic amphiphiles was also investigated. In addition to varying pH, which controls the headgroup attractions, we also adjust the tail length of the amphiphiles to control the van der Waals interactions between the tails. A 2D phase diagram was developed to show how pH and tail length can be used to control the intermolecular packing within the membranes. Another system of self-assembled nanofiber network formed by positively charged amphiphiles was also studied. These highly charged fibers repel each other and are packed in hexagonal lattice with lattice constant at least eight times of the fiber diameter. The d-spacing and the crystal structure can be controlled by varying the solution concentration and temperature.

  17. Hexagonal wavelet processing of digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.

    1993-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.

  18. Oxygen hyperstoichiometric hexagonal ferrite CaBaFe4O7+δ (δ≈0.14): Coexistence of ferrimagnetism and spin glass behavior

    NASA Astrophysics Data System (ADS)

    Sarkar, Tapati; Duffort, V.; Pralong, V.; Caignaert, V.; Raveau, B.

    2011-03-01

    An oxygen hyperstoichiometric ferrite CaBaFe4O7+δ (δ ≈ 0.14) has been synthesized using “soft” reduction of CaBaFe4O8. Like the oxygen stoichiometric ferrimagnet CaBaFe4O7, this oxide also keeps the hexagonal symmetry (space group P63mc), and exhibits the same high Curie temperature of 270 K. However, the introduction of extra oxygen into the system weakens the ferrimagnetic interaction significantly at the cost of increased magnetic frustration at low temperature. Moreover, this canonical spin glass (Tg~166 K) exhibits an intriguing crossover from de Almeida-Thouless type to Gabay-Toulouse type critical line in the field temperature plane above a certain field strength, which can be identified as the anisotropy field. Domain-wall pinning is also observed below 110 K. These results are interpreted on the basis of cationic disordering on the iron sites.

  19. Structural phase transitions in GaAs to 108 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weir, S.T.; Vohra, Y.K.; Vanderborgh, C.A.

    1989-01-15

    The III-V compound GaAs was studied using energy-dispersive x-ray diffraction with a synchro- tron source up to a pressure of 108 GPa. When the pressure was increased to 16.6 GPa, the GaAs sample transformed from the zinc-blende structure to an orthorhombic structure (GaAs(II)), space group Pmm2, consisting of a primitive orthorhombic lattice with a basis of (0,0,0) and (0,(1/2,..cap alpha..), where ..cap alpha.. = 0.35. Upon a further increase of pressure to 24 +- 1 GPa, GaAs(II) transformed to another orthorhombic structure (GaAs(III)), space group Imm2, consisting of a body-centered orthorhombic lattice with a basis of (0,0,0) and (0, (1/2,..delta..),more » where ..delta.. is 0.425 at 28.1 GPa. With increasing pressure, ..delta.. approached (1/2 and the GaAs(III) structure gradually assumed the symmetry of the simple hexagonal structure. The transition to the simple hexagonal structure (GaAs(IV)) was completed in the vicinity of 60--80 GPa. The structure remains simple hexagonal up to at least 108 GPa, the highest pressure reached in this study.« less

  20. Crystallization of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus and preliminary characterization of two crystal forms.

    PubMed

    Rümbeli, R; Schirmer, T; Bode, W; Sidler, W; Zuber, H

    1985-11-05

    The light-harvesting protein phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus Cohn has been crystallized in two different crystal forms by vapour diffusion. In 5% (w/v) polyethylene glycol at pH 8.5, hexagonal crystals of space group P63 with cell constants a = b = 158 A, c = 40.6 A were obtained, which turned out to be almost isomorphous with the hexagonal crystals of C-phycocyanin from the same organism. Consequently, the conformation of both phycobiliproteins must be very similar. From 1.5 M-ammonium sulfate (pH 8.5), orthorhombic crystals of space group P2221 with cell constants a = 60.5 A, b = 105 A, c = 188 A could be grown. Density measurements of these crystals indicate that the unit cell contains 18 (alpha beta)-units. A detailed packing scheme is proposed that is consistent with the observed pseudo-hexagonal X-ray intensity pattern and with the known size and shape of (alpha beta)3-trimers of C-phycocyanin. Accordingly, disc-like (alpha beta)3-trimers are associated face-to-face and stacked one upon another in rods with a period of 60.5 A, corresponding to the cell dimension a.

  1. Defect chaos of oscillating hexagons in rotating convection

    PubMed

    Echebarria; Riecke

    2000-05-22

    Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convection. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the hexagonal pattern. At the band center these equations reduce to the usual CGLE and the system exhibits defect chaos. Away from the band center a transition to a frozen vortex state is found.

  2. Formation of hexagonal and cubic ice during low-temperature growth

    PubMed Central

    Thürmer, Konrad; Nie, Shu

    2013-01-01

    From our daily life we are familiar with hexagonal ice, but at very low temperature ice can exist in a different structure––that of cubic ice. Seeking to unravel the enigmatic relationship between these two low-pressure phases, we examined their formation on a Pt(111) substrate at low temperatures with scanning tunneling microscopy and atomic force microscopy. After completion of the one-molecule-thick wetting layer, 3D clusters of hexagonal ice grow via layer nucleation. The coalescence of these clusters creates a rich scenario of domain-boundary and screw-dislocation formation. We discovered that during subsequent growth, domain boundaries are replaced by growth spirals around screw dislocations, and that the nature of these spirals determines whether ice adopts the cubic or the hexagonal structure. Initially, most of these spirals are single, i.e., they host a screw dislocation with a Burgers vector connecting neighboring molecular planes, and produce cubic ice. Films thicker than ∼20 nm, however, are dominated by double spirals. Their abundance is surprising because they require a Burgers vector spanning two molecular-layer spacings, distorting the crystal lattice to a larger extent. We propose that these double spirals grow at the expense of the initially more common single spirals for an energetic reason: they produce hexagonal ice. PMID:23818592

  3. Hippocampal Spike-Timing Correlations Lead to Hexagonal Grid Fields

    NASA Astrophysics Data System (ADS)

    Monsalve-Mercado, Mauro M.; Leibold, Christian

    2017-07-01

    Space is represented in the mammalian brain by the activity of hippocampal place cells, as well as in their spike-timing correlations. Here, we propose a theory for how this temporal code is transformed to spatial firing rate patterns via spike-timing-dependent synaptic plasticity. The resulting dynamics of synaptic weights resembles well-known pattern formation models in which a lateral inhibition mechanism gives rise to a Turing instability. We identify parameter regimes in which hexagonal firing patterns develop as they have been found in medial entorhinal cortex.

  4. Zonal wavefront estimation using an array of hexagonal grating patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Biswajit, E-mail: b.pathak@iitg.ernet.in, E-mail: brboruah@iitg.ernet.in; Boruah, Bosanta R., E-mail: b.pathak@iitg.ernet.in, E-mail: brboruah@iitg.ernet.in

    2014-10-15

    Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or pattern can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating patterns, eliminating the possibility of leakage of wavefront during themore » estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.« less

  5. Hexagonal undersampling for faster MRI near metallic implants.

    PubMed

    Sveinsson, Bragi; Worters, Pauline W; Gold, Garry E; Hargreaves, Brian A

    2015-02-01

    Slice encoding for metal artifact correction acquires a three-dimensional image of each excited slice with view-angle tilting to reduce slice and readout direction artifacts respectively, but requires additional imaging time. The purpose of this study was to provide a technique for faster imaging around metallic implants by undersampling k-space. Assuming that areas of slice distortion are localized, hexagonal sampling can reduce imaging time by 50% compared with conventional scans. This work demonstrates this technique by comparisons of fully sampled images with undersampled images, either from simulations from fully acquired data or from data actually undersampled during acquisition, in patients and phantoms. Hexagonal sampling is also shown to be compatible with parallel imaging and partial Fourier acquisitions. Image quality was evaluated using a structural similarity (SSIM) index. Images acquired with hexagonal undersampling had no visible difference in artifact suppression from fully sampled images. The SSIM index indicated high similarity to fully sampled images in all cases. The study demonstrates the ability to reduce scan time by undersampling without compromising image quality. © 2014 Wiley Periodicals, Inc.

  6. The Polar Winds of Saturn as Determined by Cassini/VIMS: Seasonally Variable or Not?

    NASA Astrophysics Data System (ADS)

    Momary, Thomas W.; Baines, K. H.; Brown, R. H.; Buratti, B. J.; Clark, R. N.; Nicholson, P. D.; Sotin, C.; Cassini/VIMS Science Team

    2013-10-01

    The high inclination of Cassini's current orbit allows VIMS to once again obtain spectacular views of Saturn’s poles, not seen since 2008. We present new imagery and investigate the effect of seasonal variability on Saturn’s polar winds. The north pole now basks in spring daylight and we again observe the long-enduring northern Polar Hexagon, discovered in Voyager imagery by Godfrey (Icarus 76, 335-356, 1988). This feature seemed to stay fixed in a rotational system defined by the Voyager-era radio rotation rate (Desch & Kaiser, Geophys. Res. Lett, 8, 253-256, 1981) in both original Voyager and 2008 VIMS observations. Yet new images indicate a shift, with the hexagon rotating ~10° of longitude from Nov. 2012 to May 2013. Discrete clouds still race around the edges of the 5-μm-bright hexagon at speeds of ~100 m/s, as we observed in 2008 (Baines, Momary, et al., Plan. Space. Sci 57, 1671-1681, 2009). We also recover a massive storm system residing just inside the hexagon edge at ~80° N. lat. Since 2008, this storm has shifted poleward by 1.5° and turned 5 μm dark (cloudy), where it was 5 μm bright when last observed (i.e. cloud free). It now moves zonally faster at ~25 m/s vs. ~14 m/s in 2008. This enduring "shepherd" storm may force and maintain the hexagon shape. We also recover twin 5-μm-dark storms (Snake Eyes) moving slowly at ~15 m/s near 67° N lat. However, while the two features appear to maintain a relatively constant zonal separation on average (14° ), with the trailing feature remaining near 67° N lat., the leading storm appears to oscillate ~1° in latitude and drift in longitude. At the south pole, discrete clouds whirl, now in darkness, around a hurricane-like vortex consisting of a cloudless "eye" extending at least 1 bar deeper than surrounding rings of clouds. These clouds still appear to be moving as a classical vortex with winds reaching a maximum of ~200 m/s near 87° S lat. and then falling off to zero at the pole. In contrast, clouds near 75° S. lat. are nearly stationary, consistent with 2008 observations. Our preliminary results suggest limited seasonal variability of Saturn’s polar winds.

  7. The preparation and application of white graphene

    NASA Astrophysics Data System (ADS)

    Zhou, Chenghong

    2014-12-01

    In this article, another thin film named white graphene is introduced, containing its properties, preparation and potential applications. White graphene, which has the same structure with graphene but quite different electrical properties, can be exfoliated from its layered crystal, hexagonal boron nitride. Here two preparation methods of white graphene including supersonic cleavage and supercritical cleavage are presented. Inspired by the cleavage of graphene oxide, supersonic is applied to BN and few-layered films are obtained. Compared with supersonic cleavage, supercritical cleavage proves to be more successful. As supercritical fluid can diffuse into interlayer space of the layered hexagonal boron nitride easily, once reduce the pressure of the supercritical system fast, supercritical fluid among layers expands and escapes form interlayer, consequently exfoliating the hexagonal boron nitride into few layered structure. A series of characterization demonstrate that the monolayer white graphene prepared in the process matches its theoretical thickness 0.333nm and has lateral sizes at the order of 10μm. Supercritical cleavage proves to be successful and shows many advantages, such as good production quality and fast production cycle. Furthermore, the band energy of white graphene, which shows quite different from graphene, is simulated via tight-bonding in theory. The excellent properties will lead to extensive applications of white graphene. As white graphene has not received enough concern and exploration, it's potential to play a significant role in the fields of industry and science.

  8. TakeTwo: an indexing algorithm suited to still images with known crystal parameters

    DOE PAGES

    Ginn, Helen Mary; Roedig, Philip; Kuo, Anling; ...

    2016-08-01

    The indexing methods currently used for serial femtosecond crystallography were originally developed for experiments in which crystals are rotated in the X-ray beam, providing significant three-dimensional information. On the other hand, shots from both X-ray free-electron lasers and serial synchrotron crystallography experiments are still images, in which the few three-dimensional data available arise only from the curvature of the Ewald sphere. Traditional synchrotron crystallography methods are thus less well suited to still image data processing. Here, a new indexing method is presented with the aim of maximizing information use from a still image given the known unit-cell dimensions and spacemore » group. Efficacy for cubic, hexagonal and orthorhombic space groups is shown, and for those showing some evidence of diffraction the indexing rate ranged from 90% (hexagonal space group) to 151% (cubic space group). Here, the indexing rate refers to the number of lattices indexed per image.« less

  9. Hexagonal convection patterns and their evolutionary scenarios in electroconvection induced by a strong unipolar injection

    NASA Astrophysics Data System (ADS)

    Luo, Kang; Wu, Jian; Yi, Hong-Liang; Liu, Lin-Hua; Tan, He-Ping

    2018-05-01

    A regular hexagonal pattern of three-dimensional electroconvective flow induced by unipolar injection in dielectric liquids is numerically observed by solving the fully coupled governing equations using the lattice Boltzmann method. A small-amplitude perturbation in the form of a spatially periodic pattern of hexagonal cells is introduced initially. The transient development of convective cells that undergo a sequence of transitions agrees with the idea of flow seeking an optimal scale. Stable hexagonal convective cells and their subcritical bifurcation together with a hysteresis loop are clearly observed. In addition, the stability of the hexagonal flow pattern is analyzed in a wide range of relevant parameters, including the electric Rayleigh number T , nondimensional mobility M , and wave number k . It is found that centrally downflowing hexagonal cells, which are characterized by the central region being empty of charge, are preferred in the system.

  10. Extended arrays for nonlinear susceptibility magnitude imaging

    PubMed Central

    Ficko, Bradley W.; Giacometti, Paolo; Diamond, Solomon G.

    2016-01-01

    This study implements nonlinear susceptibility magnitude imaging (SMI) with multifrequency intermodulation and phase encoding. An imaging grid was constructed of cylindrical wells of 3.5-mm diameter and 4.2-mm height on a hexagonal two-dimensional 61-voxel pattern with 5-mm spacing. Patterns of sample wells were filled with 40-μl volumes of Fe3O4 starch-coated magnetic nanoparticles (mNPs) with a hydrodynamic diameter of 100 nm and a concentration of 25 mg/ml. The imaging hardware was configured with three excitation coils and three detection coils in anticipation that a larger imaging system will have arrays of excitation and detection coils. Hexagonal and bar patterns of mNP were successfully imaged (R2 > 0.9) at several orientations. This SMI demonstration extends our prior work to feature a larger coil array, enlarged field-of-view, effective phase encoding scheme, reduced mNP sample size, and more complex imaging patterns to test the feasibility of extending the method beyond the pilot scale. The results presented in this study show that nonlinear SMI holds promise for further development into a practical imaging system for medical applications. PMID:26124044

  11. WE-G-204-03: Photon-Counting Hexagonal Pixel Array CdTe Detector: Optimal Resampling to Square Pixels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, S; Vedantham, S; Karellas, A

    Purpose: Detectors with hexagonal pixels require resampling to square pixels for distortion-free display of acquired images. In this work, the presampling modulation transfer function (MTF) of a hexagonal pixel array photon-counting CdTe detector for region-of-interest fluoroscopy was measured and the optimal square pixel size for resampling was determined. Methods: A 0.65mm thick CdTe Schottky sensor capable of concurrently acquiring up to 3 energy-windowed images was operated in a single energy-window mode to include ≥10 KeV photons. The detector had hexagonal pixels with apothem of 30 microns resulting in pixel spacing of 60 and 51.96 microns along the two orthogonal directions.more » Images of a tungsten edge test device acquired under IEC RQA5 conditions were double Hough transformed to identify the edge and numerically differentiated. The presampling MTF was determined from the finely sampled line spread function that accounted for the hexagonal sampling. The optimal square pixel size was determined in two ways; the square pixel size for which the aperture function evaluated at the Nyquist frequencies along the two orthogonal directions matched that from the hexagonal pixel aperture functions, and the square pixel size for which the mean absolute difference between the square and hexagonal aperture functions was minimized over all frequencies up to the Nyquist limit. Results: Evaluation of the aperture functions over the entire frequency range resulted in square pixel size of 53 microns with less than 2% difference from the hexagonal pixel. Evaluation of the aperture functions at Nyquist frequencies alone resulted in 54 microns square pixels. For the photon-counting CdTe detector and after resampling to 53 microns square pixels using quadratic interpolation, the presampling MTF at Nyquist frequency of 9.434 cycles/mm along the two directions were 0.501 and 0.507. Conclusion: Hexagonal pixel array photon-counting CdTe detector after resampling to square pixels provides high-resolution imaging suitable for fluoroscopy.« less

  12. Measuring Intrinsic Curvature of Space with Electromagnetism

    ERIC Educational Resources Information Center

    Mabin, Mason; Becker, Maria; Batelaan, Herman

    2016-01-01

    The concept of curved space is not readily observable in everyday life. The educational movie "Sphereland" attempts to illuminate the idea. The main character, a hexagon, has to go to great lengths to prove that her world is in fact curved. We present an experiment that demonstrates a new way to determine if a two-dimensional surface,…

  13. Electric field driven evolution of topological domain structure in hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Yang, K. L.; Zhang, Y.; Zheng, S. H.; Lin, L.; Yan, Z. B.; Liu, J.-M.; Cheong, S.-W.

    2017-10-01

    Controlling and manipulating the topological state represents an important topic in condensed matters for both fundamental researches and applications. In this work, we focus on the evolution of a real-space topological domain structure in hexagonal manganites driven by electric field, using the analytical and numerical calculations based on the Ginzburg-Landau theory. It is revealed that the electric field drives a transition of the topological domain structure from the type-I pattern to the type-II one. In particular, it is identified that a high electric field can enforce the two antiphase-plus-ferroelectric (AP +FE ) domain walls with Δ Φ =π /3 to approach each other and to merge into one domain wall with Δ Φ = 2 π /3 eventually if the electric field is sufficiently high, where Δ Φ is the difference in the trimerization phase between two neighboring domains. Our simulations also reveal that the vortex cores of the topological structure can be disabled at a sufficiently high critical electric field by suppressing the structural trimerization therein, beyond which the vortex core region is replaced by a single ferroelectric domain without structural trimerization (Q = 0 ). Our results provide a stimulating reference for understanding the manipulation of real-space topological domain structure in hexagonal manganites.

  14. Load concentration due to missing members in planar faces of a large space truss

    NASA Technical Reports Server (NTRS)

    Waltz, J. E.

    1979-01-01

    A large space structure with members missing was investigated using a finite element analysis. The particular structural configuration was the tetrahedral truss, with attention restricted to one of its planar faces. Initially the finite element model of a complete face was verified by comparing it with known results for some basic loadings. Then an analysis was made of the structure with members near the center removed. Some calculations were made on the influence of the mesh size of a structure containing a hexagonal hole, and an analysis was also made of a structure with a rigid hexagonal insert. In general, load concentration effects in these trusses were significantly lower than classical stress concentration effects in an infinitely wide isotropic plate with a circular rigid inclusion, although larger effects were obtained when a hole extended over several rings of elements.

  15. Resistance to alveolar shape change limits range of force propagation in lung parenchyma.

    PubMed

    Ma, Baoshun; Smith, Bradford J; Bates, Jason H T

    2015-06-01

    We have recently shown that if the lung parenchyma is modeled in 2 dimensions as a network of springs arranged in a pattern of repeating hexagonal cells, the distortional forces around a contracting airway propagate much further from the airway wall than classic continuum theory predicts. In the present study we tested the hypothesis that this occurs because of the negligible shear modulus of a hexagonal spring network. We simulated the narrowing of an airway embedded in a hexagonal network of elastic alveolar walls when the hexagonal cells of the network offered some resistance to a change in shape. We found that as the forces resisting shape change approach about 10% of the forces resisting length change of an individual spring the range of distortional force propagation in the spring network fell of rapidly as in an elastic continuum. We repeated these investigations in a 3-dimensional spring network composed of space-filling polyhedral cells and found similar results. This suggests that force propagation away from a point of local parenchymal distortion also falls off rapidly in real lung tissue. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Verification Test of Automated Robotic Assembly of Space Truss Structures

    NASA Technical Reports Server (NTRS)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Cuong C.

    1995-01-01

    A multidisciplinary program has been conducted at the Langley Research Center to develop operational procedures for supervised autonomous assembly of truss structures suitable for large-aperture antennas. The hardware and operations required to assemble a 102-member tetrahedral truss and attach 12 hexagonal panels were developed and evaluated. A brute-force automation approach was used to develop baseline assembly hardware and software techniques. However, as the system matured and operations were proven, upgrades were incorporated and assessed against the baseline test results. These upgrades included the use of distributed microprocessors to control dedicated end-effector operations, machine vision guidance for strut installation, and the use of an expert system-based executive-control program. This paper summarizes the developmental phases of the program, the results of several assembly tests, and a series of proposed enhancements. No problems that would preclude automated in-space assembly or truss structures have been encountered. The test system was developed at a breadboard level and continued development at an enhanced level is warranted.

  17. Synthesis and oxygen content dependent properties of hexagonal DyMnO[subscript 3+delta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remsen, S.; Dabrowski, B.; Chmaissem, O.

    2011-10-28

    Oxygen deficient polycrystalline samples of hexagonal P6{sub 3}cm (space group No.185) DyMnO{sub 3+{delta}} ({delta} < 0) were synthesized in Ar by intentional decomposition of its perovskite phase obtained in air. The relative stability of these phases is in accord with our previous studies of the temperature and oxygen vacancy dependent tolerance factor. Thermogravimetric measurements have shown that hexagonal samples of DyMnO{sub 3+{delta}} (0 {le} {delta} {le} 0.4) exhibit unusually large excess oxygen content, which readily incorporates on heating near 300 C in various partial-pressures of oxygen atmospheres. Neutron and synchrotron diffraction data show the presence of two new structural phasesmore » at {delta} {approx} 0.25 (Hex{sub 2}) and {delta} {approx} 0.40 (Hex{sub 3}). Rietveld refinements of the Hex{sub 2} phase strongly suggest it is well modeled by the R3 space group (No.146). These phases were observed to transform back to P6{sub 3}cm above {approx} 350 C when material becomes stoichiometric in oxygen content ({delta} = 0). Chemical expansion of the crystal lattice corresponding to these large changes of oxygen was found to be 3.48 x 10{sup -2} mol{sup -1}. Thermal expansion of stoichiometric phases were determined to be 11.6 x 10{sup -6} and 2.1 x 10{sup -6} K{sup -1} for the P6{sub 3}cm and Hex{sub 2} phases, respectively. Our measurements also indicate that the oxygen non-stoichiometry of hexagonal RMnO{sub 3+{delta}} materials may have important influence on their multiferroic properties.« less

  18. ISS-based Development of Elements and Operations for Robotic Assembly of A Space Solar Power Collector

    NASA Technical Reports Server (NTRS)

    Valinia, Azita; Moe, Rud; Seery, Bernard D.; Mankins, John C.

    2013-01-01

    We present a concept for an ISS-based optical system assembly demonstration designed to advance technologies related to future large in-space optical facilities deployment, including space solar power collectors and large-aperture astronomy telescopes. The large solar power collector problem is not unlike the large astronomical telescope problem, but at least conceptually it should be easier in principle, given the tolerances involved. We strive in this application to leverage heavily the work done on the NASA Optical Testbed Integration on ISS Experiment (OpTIIX) effort to erect a 1.5 m imaging telescope on the International Space Station (ISS). Specifically, we examine a robotic assembly sequence for constructing a large (meter diameter) slightly aspheric or spherical primary reflector, comprised of hexagonal mirror segments affixed to a lightweight rigidizing backplane structure. This approach, together with a structured robot assembler, will be shown to be scalable to the area and areal densities required for large-scale solar concentrator arrays.

  19. Progress on ten-meter optical receiver telescope

    NASA Technical Reports Server (NTRS)

    Shaik, Kamran

    1992-01-01

    A ten-meter hexagonally segmented Cassegrain optical telescope is being considered at the Jet Propulsion Laboratory for use as a research and development facility for optical communications technology. The goal of the study is to demonstrate technology which can eventually be used to develop a network of such telescopes to continuously track and communicate with the spacecraft. Hence, the technology has to be economical enough to allow replication for a ground or space based network. As we need to collect signal photons only, the telescope cost can be substantially reduced by accepting lower image quality. An important design consideration for the telescope is its ability to look very close to the sun. The telescope for optical communications must function during the daytime. Indeed, for some planetary missions it may be necessary that the system be capable of looking within a few degrees of the sun. To enable this, a unique sunshade consisting of hexagonal tubes in precise alignment with the mirror segments has been proposed which will also serve as the support for the secondary. Recent progress on the design and analysis of such an optical reception station is discussed here.

  20. Magnetic ground state of the multiferroic hexagonal LuFe O3

    NASA Astrophysics Data System (ADS)

    Suresh, Pittala; Vijaya Laxmi, K.; Bera, A. K.; Yusuf, S. M.; Chittari, Bheema Lingam; Jung, Jeil; Anil Kumar, P. S.

    2018-05-01

    The structural, electric, and magnetic properties of bulk hexagonal LuFe O3 are investigated. Single phase hexagonal LuFe O3 has been successfully stabilized in the bulk form without any doping by sol-gel method. The hexagonal crystal structure with P 63c m space group has been confirmed by x-ray-diffraction, neutron-diffraction, and Raman spectroscopy study at room temperature. Neutron diffraction confirms the hexagonal phase of LuFe O3 persists down to 6 K. Further, the x-ray photoelectron spectroscopy established the 3+ oxidation state of Fe ions. The temperature-dependent magnetic dc susceptibility, specific heat, and neutron-diffraction studies confirm an antiferromagnetic ordering below the Néel temperature (TN)˜130 K . Analysis of magnetic neutron-diffraction patterns reveals an in-plane (a b -plane) 120∘ antiferromagnetic structure, characterized by a propagation vector k =(0 0 0 ) with an ordered moment of 2.84 μB/F e3 + at 6 K. The 120∘ antifferomagnetic ordering is further confirmed by spin-orbit coupling density functional theory calculations. The on-site coulomb interaction (U ) and Hund's parameter (JH) on Fe atoms reproduced the neutron-diffraction Γ1 spin pattern among the Fe atoms. P -E loop measurements at room temperature confirm an intrinsic ferroelectricity of the sample with remnant polarization Pr˜0.18 μ C /c m2 . A clear anomaly in the dielectric data is observed at ˜TN revealing the presence of magnetoelectric coupling. A change in the lattice constants at TN has also been found, indicating the presence of a strong magnetoelastic coupling. Thus a coupling between lattice, electric, and magnetic degrees of freedom is established in bulk hexagonal LuFe O3 .

  1. Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems

    PubMed Central

    Chen, Yulin; Ma, Ping; Gui, Shuangying

    2014-01-01

    Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330

  2. Anomalous fast dynamics of adsorbate overlayers near an incommensurate structural transition.

    PubMed

    Granato, Enzo; Ying, S C; Elder, K R; Ala-Nissila, T

    2013-09-20

    We investigate the dynamics of a compressively strained adsorbed layer on a periodic substrate via a simple two-dimensional model that admits striped and hexagonal incommensurate phases. We show that the mass transport is superfast near the striped-hexagonal phase boundary and in the hexagonal phase. For an initial step profile separating a bare substrate region (or "hole") from the rest of a striped incommensurate phase, the superfast domain wall dynamics leads to a bifurcation of the initial step profile into two interfaces or profiles propagating in opposite directions with a hexagonal phase in between. This yields a theoretical understanding of the recent experiments for the Pb/Si(111) system.

  3. Design of inside cut von koch fractal UWB MIMO antenna

    NASA Astrophysics Data System (ADS)

    Tharani, V.; Shanmuga Priya, N.; Rajesh, A.

    2017-11-01

    An Inside Cut Hexagonal Von Koch fractal MIMO antenna is designed for UWB applications and its characteristics behaviour are studied. Self-comparative and space filling properties of Koch fractal structure are utilized in the antenna design which leads to the desired miniaturization and wideband characteristics. The hexagonal shaped Von Koch Fractal antenna with Defected Ground Structure (DGS) is designed on FR4 substrate with a compact size of 30mm x 20mm x 1.6mm. The antenna achieves a maximum of -44dB and -51dB at 7.1GHz for 1-element and 2-element case respectively.

  4. Sound propagation in urban areas: a periodic disposition of buildings.

    PubMed

    Picaut, J; Hardy, J; Simon, L

    1999-10-01

    A numerical simulation of background noise propagation is performed for a network of hexagonal buildings. The obtained results suggest that the prediction of background noise in urban spaces is possible by means of a modified diffusion equation using two parameters: the diffusion coefficient that expresses the spreading out of noise resulting from diffuse scattering and multiple reflections by buildings, and an attenuation term accounting for the wall absorption, atmospheric attenuation, and absorption by the open top. The dependence of the diffusion coefficient with geometrical shapes and the diffusive nature of the buildings are investigated in the case of a periodic disposition of hexagonal buildings.

  5. Experimental implementation of fiber optic bundle array wide FOV free space optical communications receiver.

    PubMed

    Brown, Andrea M; Hahn, Daniel V; Brown, David M; Rolander, Nathan W; Bair, Chun-Huei; Sluz, Joseph E

    2012-06-20

    A gimbal-free wide field-of-regard (FOR) optical receiver has been built in a laboratory setting for proof-of-concept testing. Multiple datasets are presented that examine the overall FOR of the system and the receiver's ability to track and collect a signal from a moving source. The design is not intended to compete with traditional free space optical communication systems, but rather offer an alternative design that minimizes the number and complexity of mechanical components required at the surface of a small mobile platform. The receiver is composed of a micro-lens array and hexagonal bundles of large core optical fibers that route the optical signal to remote detectors and electronics. Each fiber in the bundle collects power from a distinct solid angle of space and a piezo-electric transducer is used to translate the micro-lens array and optimize coupling into a given fiber core in the bundle. The micro-lens to fiber bundle design is scalable, modular, and can be replicated in an array to increase aperture size.

  6. Energy Band Gap Dependence of Valley Polarization of the Hexagonal Lattice

    NASA Astrophysics Data System (ADS)

    Ghalamkari, Kazu; Tatsumi, Yuki; Saito, Riichiro

    2018-02-01

    The origin of valley polarization of the hexagonal lattice is analytically discussed by tight binding method as a function of energy band gap. When the energy gap decreases to zero, the intensity of optical absorption becomes sharp as a function of k near the K (or K') point in the hexagonal Brillouin zone, while the peak intensity at the K (or K') point keeps constant with decreasing the energy gap. When the dipole vector as a function of k can have both real and imaginary parts that are perpendicular to each other in the k space, the valley polarization occurs. When the dipole vector has only real values by selecting a proper phase of wave functions, the valley polarization does not occur. The degree of the valley polarization may show a discrete change that can be relaxed to a continuous change of the degree of valley polarization when we consider the life time of photo-excited carrier.

  7. Facile synthesis of Co3O4 hexagonal plates by flux method

    NASA Astrophysics Data System (ADS)

    Han, Ji-Long; Meng, Qing-Fen; Gao, Sheng-Li

    2018-01-01

    Using a novel flux method, a hexagonal plate of Co3O4 was directly synthesized. In this method, CoCl2·6H2O, NaOH, and the cosolvent H3BO3 were heated to 750 °C for 2 h in a corundum crucible. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high-resolution transmission electron microscope (HRTEM). Furthermore, XRD studies indicated that the product consisted of a cubic phase of Co3O4, and the phase existed in a completely crystalline form. Then, SEM results indicated that these hexagonal plates tiered up and they had diameters in the range of 2-10 μm. According to the results of SAED and HRTEM analyses, the interlayer spacing was about 0.24 nm, which corresponds to the interlayer distance of (3 1 1) crystal plane of cubic Co3O4.

  8. Micellar hexagonal phases in lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Amaral, L. Q.; Gulik, A.; Itri, R.; Mariani, P.

    1992-09-01

    The hexagonal cell parameter a of the system sodium dodecyl lauryl sulfate and water as a function of volume concentration cv in phase Hα shows the functional behavior expected for micelles of finite length: a~c-1/3v. The interpretation of x-ray data based on finite micelles leads to an alternative description of the hexagonal phase Hα: spherocylindrical micelles of constant radius with length that may grow along the range of the Hα phase. Results are compared with recent statistical-mechanical calculations for the isotropic I-Hα transition. The absence of diffraction in the direction perpendicular to the hexagonal plane is ascribed to polydispersity of micellar length, which also is a necessary condition for the occurrence of direct I-Hα transitions.

  9. Parasol cell mosaics are unlikely to drive the formation of structured orientation maps in primary visual cortex.

    PubMed

    Hore, Victoria R A; Troy, John B; Eglen, Stephen J

    2012-11-01

    The receptive fields of on- and off-center parasol cell mosaics independently tile the retina to ensure efficient sampling of visual space. A recent theoretical model represented the on- and off-center mosaics by noisy hexagonal lattices of slightly different density. When the two lattices are overlaid, long-range Moiré interference patterns are generated. These Moiré interference patterns have been suggested to drive the formation of highly structured orientation maps in visual cortex. Here, we show that noisy hexagonal lattices do not capture the spatial statistics of parasol cell mosaics. An alternative model based upon local exclusion zones, termed as the pairwise interaction point process (PIPP) model, generates patterns that are statistically indistinguishable from parasol cell mosaics. A key difference between the PIPP model and the hexagonal lattice model is that the PIPP model does not generate Moiré interference patterns, and hence stimulated orientation maps do not show any hexagonal structure. Finally, we estimate the spatial extent of spatial correlations in parasol cell mosaics to be only 200-350 μm, far less than that required to generate Moiré interference. We conclude that parasol cell mosaics are too disordered to drive the formation of highly structured orientation maps in visual cortex.

  10. Theoretical study on third-order nonlinear optical properties in hexagonal graphene nanoflakes: Edge shape effect

    NASA Astrophysics Data System (ADS)

    Nagai, Hiroshi; Nakano, Masayoshi; Yoneda, Kyohei; Fukui, Hitoshi; Minami, Takuya; Bonness, Sean; Kishi, Ryohei; Takahashi, Hideaki; Kubo, Takashi; Kamada, Kenji; Ohta, Koji; Champagne, Benoît; Botek, Edith

    2009-08-01

    Using hybrid density functional theory methods, we investigate the second hyperpolarizabilities ( γ) of hexagonal shaped finite graphene fragments, which are referred to as hexagonal graphene nanoflakes (HGNFs), with two types of edge shapes: zigzag (Z) and armchair (A) edges. It is found that Z-HGNF, which gives intermediate diradical characters ( y), exhibits about 3.3 times larger orthogonal components of γ ( γ xxxx = γ yyyy in this case) than A-HGNF, which gives zero y value (closed-shell system). The γ density analysis reveals that this enhancement originates in the significant contribution of γ densities on edge regions in Z-HGNF. These observations strongly indicate that Z-HGNF is a promising candidate of open-shell singlet NLO systems.

  11. Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery.

    PubMed

    Fonseca-Santos, Bruno; Dos Santos, Aline Martins; Rodero, Camila Fernanda; Gremião, Maria Palmira Daflon; Chorilli, Marlus

    From previous studies, it has been found that curcumin exhibits an anti-inflammatory activity and is being used for the treatment of skin disorders; however, it is hydrophobic and has weak penetrating ability, resulting in poor drug transport through the stratum corneum. The aim of this study was to develop liquid crystalline systems for topical administration of curcumin for the treatment of inflammation. These liquid crystalline systems were developed from oleic acid, polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol, and water as the surfactant, oil phase, and aqueous phase, respectively. These systems were characterized, and polarized light microscopy showed anisotropy with lamellar mesophases (Formulation 1) and hexagonal mesophases (Formulations 2 and 3), which were confirmed by the peak ratio measured using small-angle X-ray scattering. In addition, rheological tests revealed that the formulations exhibited gel-like behavior (G'>G″), as evidenced by the increased G' values that indicate structured systems. Texture profile analysis showed that hexagonal mesophases have high values of hardness, adhesiveness, and compressibility, which indicate structured systems. In vitro studies on bioadhesion revealed that the hexagonal mesophases increased the bioadhesiveness of the systems to the skin of the pig ear. An in vivo inflammation experiment showed that the curcumin-loaded hexagonal mesophase exhibited an anti-inflammatory activity as compared to the positive control (dexamethasone). The results suggest that this system has a potential to be used as a bioadhesive vehicle for the topical administration of curcumin. Therefore, it is possible to conclude that these systems can be used for the optimization of drug delivery systems to the skin.

  12. Four experimental demonstrations of active vibration control for flexible structures

    NASA Technical Reports Server (NTRS)

    Phillips, Doug; Collins, Emmanuel G., Jr.

    1990-01-01

    Laboratory experiments designed to test prototype active-vibration-control systems under development for future flexible space structures are described, summarizing previously reported results. The control-synthesis technique employed for all four experiments was the maximum-entropy optimal-projection (MEOP) method (Bernstein and Hyland, 1988). Consideration is given to: (1) a pendulum experiment on large-amplitude LF dynamics; (2) a plate experiment on broadband vibration suppression in a two-dimensional structure; (3) a multiple-hexagon experiment combining the factors studied in (1) and (2) to simulate the complexity of a large space structure; and (4) the NASA Marshall ACES experiment on a lightweight deployable 45-foot beam. Extensive diagrams, drawings, graphs, and photographs are included. The results are shown to validate the MEOP design approach, demonstrating that good performance is achievable using relatively simple low-order decentralized controllers.

  13. Off into Space: The Pleasures of Jumping out of a Plane.

    ERIC Educational Resources Information Center

    Dubrovsky, Vladimir; Sharygin, Igor

    1992-01-01

    Presents illustrated examples that promote problem solving through the student's consideration of a visible predicament from a three-dimensional viewpoint rather than the typical planar perspective. Includes six student exercises involving rays, circles, quadrilaterals, and hexagons, with hints and solutions provided. (JJK)

  14. Room temperature single photon source using fiber-integrated hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Vogl, Tobias; Lu, Yuerui; Lam, Ping Koy

    2017-07-01

    Single photons are a key resource for quantum optics and optical quantum information processing. The integration of scalable room temperature quantum emitters into photonic circuits remains to be a technical challenge. Here we utilize a defect center in hexagonal boron nitride (hBN) attached by Van der Waals force onto a multimode fiber as a single photon source. We perform an optical characterization of the source in terms of spectrum, state lifetime, power saturation and photostability. A special feature of our source is that it allows for easy switching between fiber-coupled and free space single photon generation modes. In order to prove the quantum nature of the emission we measure the second-order correlation function {{g}(2)}≤ft(τ \\right) . For both fiber-coupled and free space emission, the {{g}(2)}≤ft(τ \\right) dips below 0.5 indicating operation in the single photon regime. The results so far demonstrate the feasibility of 2D material single photon sources for scalable photonic quantum information processing.

  15. Homotopy-Theoretic Study & Atomic-Scale Observation of Vortex Domains in Hexagonal Manganites

    PubMed Central

    Li, Jun; Chiang, Fu-Kuo; Chen, Zhen; Ma, Chao; Chu, Ming-Wen; Chen, Cheng-Hsuan; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2016-01-01

    Essential structural properties of the non-trivial “string-wall-bounded” topological defects in hexagonal manganites are studied through homotopy group theory and spherical aberration-corrected scanning transmission electron microscopy. The appearance of a “string-wall-bounded” configuration in RMnO3 is shown to be strongly linked with the transformation of the degeneracy space. The defect core regions (~50 Å) mainly adopt the continuous U(1) symmetry of the high-temperature phase, which is essential for the formation and proliferation of vortices. Direct visualization of vortex strings at atomic scale provides insight into the mechanisms and macro-behavior of topological defects in crystalline materials. PMID:27324701

  16. Spin-density wave state in simple hexagonal graphite

    NASA Astrophysics Data System (ADS)

    Mosoyan, K. S.; Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.

    2018-02-01

    Simple hexagonal graphite, also known as AA graphite, is a metastable configuration of graphite. Using tight-binding approximation, it is easy to show that AA graphite is a metal with well-defined Fermi surface. The Fermi surface consists of two sheets, each shaped like a rugby ball. One sheet corresponds to electron states, another corresponds to hole states. The Fermi surface demonstrates good nesting: a suitable translation in the reciprocal space superposes one sheet onto another. In the presence of the electron-electron repulsion, a nested Fermi surface is unstable with respect to spin-density-wave ordering. This instability is studied using the mean-field theory at zero temperature, and the spin-density-wave order parameter is evaluated.

  17. Structural Physics of Bee Honeycomb

    NASA Astrophysics Data System (ADS)

    Kaatz, Forrest; Bultheel, Adhemar; Egami, Takeshi

    2008-03-01

    Honeybee combs have aroused interest in the ability of honeybees to form regular hexagonal geometric constructs since ancient times. Here we use a real space technique based on the pair distribution function (PDF) and radial distribution function (RDF), and a reciprocal space method utilizing the Debye-Waller Factor (DWF) to quantify the order for a range of honeycombs made by Apis mellifera. The PDFs and RDFs are fit with a series of Gaussian curves. We characterize the order in the honeycomb using a real space order parameter, OP3, to describe the order in the combs and a two-dimensional Fourier transform from which a Debye-Waller order parameter, u, is derived. Both OP3 and u take values from [0, 1] where the value one represents perfect order. The analyzed combs have values of OP3 from 0.33 to 0.60 and values of u from 0.83 to 0.98. RDF fits of honeycomb histograms show that naturally made comb can be crystalline in a 2D ordered structural sense, yet is more `liquid-like' than cells made on `foundation' wax. We show that with the assistance of man-made foundation wax, honeybees can manufacture highly ordered arrays of hexagonal cells.

  18. Remnants of the devil's staircase of phase transitions in the model of dimer adsorption at nonzero temperature

    NASA Astrophysics Data System (ADS)

    Akimenko, S. S.; Fefelov, V. F.; Myshlyavtsev, A. V.; Stishenko, P. V.

    2018-02-01

    The model of dimers adsorption on hexagonal lattice with different orientations to surface and hard-spheres lateral interactions has been studied at nonzero temperature. The transfer-matrix method was used as the main one and the Monte Carlo method was used for checking of some extreme cases. Adsorption isotherms, dependencies of the entropy from the density of the adsorption layer and of the energy from the system temperature at certain points of the phase space, were computed. It was found that at least the first ten phases of the ground state still persist at nonzero temperatures.

  19. In situ SAXS study on cationic and non-ionic surfactant liquid crystals using synchrotron radiation.

    PubMed

    Fritscher, C; Hüsing, N; Bernstorff, S; Brandhuber, D; Koch, T; Seidler, S; Lichtenegger, H C

    2005-11-01

    In situ synchrotron small-angle X-ray scattering was used to investigate various surfactant/water systems with hexagonal and lamellar structures regarding their structural behaviour upon heating and cooling. Measurements of the non-ionic surfactant Triton X-45 (polyethylene glycol 4-tert-octylphenyl ether) at different surfactant concentrations show an alignment of the lamellar liquid-crystalline structure close to the wall of the glass capillaries and also a decrease in d-spacing following subsequent heating/cooling cycles. Additionally, samples were subjected to a weak magnetic field (0.3-0.7 T) during heating and cooling, but no influence of the magnetic field was observed.

  20. The phase behavior of cationic lipid-DNA complexes.

    PubMed Central

    May, S; Harries, D; Ben-Shaul, A

    2000-01-01

    We present a theoretical analysis of the phase behavior of solutions containing DNA, cationic lipids, and nonionic (helper) lipids. Our model allows for five possible structures, treated as incompressible macroscopic phases: two lipid-DNA composite (lipoplex) phases, namely, the lamellar (L(alpha)(C)) and hexagonal (H(II)(C)) complexes; two binary (cationic/neutral) lipid phases, that is, the bilayer (L(alpha)) and inverse-hexagonal (H(II)) structures, and uncomplexed DNA. The free energy of the four lipid-containing phases is expressed as a sum of composition-dependent electrostatic, elastic, and mixing terms. The electrostatic free energies of all phases are calculated based on Poisson-Boltzmann theory. The phase diagram of the system is evaluated by minimizing the total free energy of the three-component mixture with respect to all the compositional degrees of freedom. We show that the phase behavior, in particular the preferred lipid-DNA complex geometry, is governed by a subtle interplay between the electrostatic, elastic, and mixing terms, which depend, in turn, on the lipid composition and lipid/DNA ratio. Detailed calculations are presented for three prototypical systems, exhibiting markedly different phase behaviors. The simplest mixture corresponds to a rigid planar membrane as the lipid source, in which case, only lamellar complexes appear in solution. When the membranes are "soft" (i.e., low bending modulus) the system exhibits the formation of both lamellar and hexagonal complexes, sometimes coexisting with each other, and with pure lipid or DNA phases. The last system corresponds to a lipid mixture involving helper lipids with strong propensity toward the inverse-hexagonal phase. Here, again, the phase diagram is rather complex, revealing a multitude of phase transitions and coexistences. Lamellar and hexagonal complexes appear, sometimes together, in different regions of the phase diagram. PMID:10733951

  1. On the dynamical nature of Saturn's North Polar hexagon

    NASA Astrophysics Data System (ADS)

    Rostami, Masoud; Zeitlin, Vladimir; Spiga, Aymeric

    2017-11-01

    An explanation of long-lived Saturn's North Polar hexagonal circumpolar jet in terms of instability of the coupled system polar vortex - circumpolar jet is proposed in the framework of the rotating shallow water model, where scarcely known vertical structure of the Saturn's atmosphere is averaged out. The absence of a hexagonal structure at Saturn's South Pole is explained similarly. By using the latest state-of-the-art observed winds in Saturn's polar regions a detailed linear stability analysis of the circumpolar jet is performed (i) excluding (;jet-only; configuration), and (2) including (;jet + vortex; configuration) the north polar vortex in the system. A domain of parameters: latitude of the circumpolar jet and curvature of its azimuthal velocity profile, where the most unstable mode of the system has azimuthal wavenumber 6, is identified. Fully nonlinear simulations are then performed, initialized either with the most unstable mode of small amplitude, or with the random combination of unstable modes. It is shown that developing barotropic instability of the ;jet+vortex; system produces a long-living structure akin to the observed hexagon, which is not the case of the ;jet-only; system, which was studied in this context in a number of papers in literature. The north polar vortex, thus, plays a decisive dynamical role. The influence of moist convection, which was recently suggested to be at the origin of Saturn's North Polar vortex system in the literature, is investigated in the framework of the model and does not alter the conclusions.

  2. On the dynamical nature of Saturn's North Polar hexagon

    NASA Astrophysics Data System (ADS)

    Rostami, Masoud; Zeitlin, Vladimir; Spiga, Aymeric

    2017-04-01

    An explanation of long-lived Saturn's North Pole hexagonal circumpolar jet in terms of instability of the coupled system polar vortex - circumpolar jet is proposed in the framework of the rotating shallow water model, where scarcely known vertical structure of the Saturn's atmosphere is averaged out. The absence of a hexagonal structure at the Saturn's South Pole is explained along the same lines. By using the latest state-of-the-art observed winds in Saturn's polar regions a detailed linear stability analysis of the circumpolar jet is performed (i) excluding (``jet-only" configuration), and (2) including (``jet+vortex" configuration) the north polar vortex in the system. A domain of parameters: latitude of the circumpolar jet and curvature of its azimuthal velocity profile, where the most unstable mode of the system has azimuthal wavenumber 6, is identified. Fully nonlinear simulations are then performed, initialized either with the most unstable mode of small amplitude, or with the random combination of unstable modes. It is shown that developing barotropic instability of the ``jet+vortex" system produces a long-living structure akin to the observed hexagon, which is not the case of the ``jet-only" system, which was studied in this context in a number of papers in literature. The north polar vortex, thus, plays a decisive dynamical role. The influence of moist convection, which was recently suggested to be at the origin of Saturn's north polar vortex system in the literature, is investigated in the framework of the model and does not alter the conclusions.

  3. Modular reflector concept study

    NASA Technical Reports Server (NTRS)

    Vaughan, D. H.

    1981-01-01

    A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.

  4. Mathematical Foundation for Plane Covering Using Hexagons

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    1999-01-01

    This work is to indicate the development and mathematical underpinnings of the algorithms previously developed for covering the plane and the addressing of the elements of the covering. The algorithms are of interest in that they provides a simple systematic way of increasing or decreasing resolution, in the sense that if we have the covering in place and there is an image superimposed upon the covering, then we may view the image in a rough form or in a very detailed form with minimal effort. Such ability allows for quick searches of crude forms to determine a class in which to make a detailed search. In addition, the addressing algorithms provide an efficient way to process large data sets that have related subsets. The algorithms produced were based in part upon the work of D. Lucas "A Multiplication in N Space" which suggested a set of three vectors, any two of which would serve as a bases for the plane and also that the hexagon is the natural geometric object to be used in a covering with a suggested bases. The second portion is a refinement of the eyeball vision system, the globular viewer.

  5. Phase diagram of the CF{sub 4} monolayer and bilayer on graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Petros; Hess, George B., E-mail: gbh@virginia.edu

    2014-05-21

    We report an experimental study of physisorbed monolayers and bilayers of CF{sub 4} on graphite using infrared reflection absorption spectroscopy supplemented by ellipsometry. The symmetric C–F stretch mode ν{sub 3} near 1283 cm{sup −1} in the gas is strongly blue shifted in the film by dynamic dipole coupling. This blue shift provides a very sensitive measure of the inter-molecular spacing in the monolayer and, less directly, in the bilayer. We find that important corrections are necessary to the volumetric coverage scales used in previous heat capacity and x-ray diffraction studies of this system. This requires quantitative and some qualitative changesmore » to the previously proposed phase diagram. We find evidence for a new phase transition in the middle of the hexagonal incommensurate region and construct new phase diagrams in both the variables coverage-temperature and chemical potential-temperature. We determine the compressibility and thermal expansion in the low-pressure hexagonal incommensurate phase and values for the entropy change in several phase transitions. Below about 55 K there is evidence of solution of up to 7% of an impurity, most likely CO, in our monolayer but not the bilayer film.« less

  6. Syntheses, Crystal Structures, and Properties of New Layered Tungsten(VI)-Containing Materials Based on the Hexagonal-WO 3 Structure: M2(WO 3) 3SeO 3 ( M = NH 4, Rb, Cs)

    NASA Astrophysics Data System (ADS)

    Harrison, William T. A.; Dussack, Laurie L.; Vogt, Thomas; Jacobson, Allan J.

    1995-11-01

    The hydrothermal syntheses and crystal structures of (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3, two new noncentrosymmetric, layered tungsten(VI)-containing phases are reported. Infrared, Raman, and thermogravimetric data are also presented. (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3 are isostructural phases built up from hexagonal-tungsten-oxide-like, anionic layers of vertex-sharing WO6 octahedra, capped on one side by Se atoms (as selenite groups). Interlayer NH+4 or Cs+ cations provide charge balance. The full H-bonding scheme in (NH4)2(WO3)3SeO3 has been elucidated from Rietveld refinement against neutron powder diffraction data. The WO6 octahedra display a 3 short + 3 long W-O bond-distance distribution within the WO6 unit in both these phases. (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3 are isostructural with their molybdenum(VI)-containing analogues (NH4)2(MoO3)3SeO3 and Cs2 (MoO3)3SeO3. Crystal data: (NH4)2(WO3)3SeO3, Mr = 858.58, hexagonal, space group P63 (No. 173), a = 7.2291(2) Å, c = 12.1486(3) Å, V = 549.82(3) Å3, Z = 2, Rp = 1.81%, and Rwp = 2.29% (2938 neutron powder data). Cs2(WO3)3SeO3, Mr = 1088.31, hexagonal, space group P63 (no. 173), a = 7.2615(2) Å, c = 12.5426(3) Å, V = 572.75(3) Å3, Z = 2, Rp = 4.84%, and Rwp = 5.98% (2588 neutron powder data).

  7. X-ray crystallographic studies on C-phycocyanins from cyanobacteria from different habitats: marine and freshwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satyanarayana, L.; Suresh, C. G., E-mail: cgsuresh@ncl.res.in; Patel, Anamika

    2005-09-01

    The protein C-phycocyanin, involved in photosynthesis, has been purified from three cyanobacterial species: Spirulina, Phormidium and Lyngbya. These three proteins have been crystallized and characterized using X-ray crystallography. C-phycocyanins from three cyanobacterial cultures of freshwater and marine habitat, Spirulina, Phormidium and Lyngbya spp., were purified to homogeneity and crystallized using the hanging-drop vapour-diffusion method. Blue-coloured crystals in different crystal forms, monoclinic and hexagonal, were obtained for the three species. The crystals took 1–12 weeks to grow to full size using polyethylene glycols of different molecular weights as precipitants. The amino-acid sequences of these proteins show high similarity to other knownmore » C-phycocyanins from related organisms; however, the C-phycocyanins reported here showed different biochemical and biophysical properties, i.e. molecular weight, stability etc. The X-ray diffraction data were collected at resolutions of 3.0 Å for the monoclinic and 3.2 and 3.6 Å for the hexagonal forms. The unit-cell parameters corresponding to the monoclinic space group P2{sub 1} are a = 107.33, b = 115.64, c = 183.26 Å, β = 90.03° for Spirulina sp. C-phycocyanin and are similar for crystals of Phormidium and Lyngbya spp. C-phycocyanins. Crystals belonging to the hexagonal space group P6{sub 3}, with unit-cell parameters a = b = 154.97, c = 40.35 Å and a = b = 151.96, c = 39.06 Å, were also obtained for the C-phycocyanins from Spirulina and Lyngbya spp., respectively. The estimated solvent content is around 50% for the monoclinic crystals of all three species assuming the presence of two hexamers per asymmetric unit. The solvent content is 66.5 and 64.1% for the hexagonal crystals of C-phycocyanin from Spirulina and Lyngbya spp. assuming the presence of one αβ monomer per asymmetric unit.« less

  8. Comparative study on different types of segmented micro deformable mirrors

    NASA Astrophysics Data System (ADS)

    Qiao, Dayong; Yuan, Weizheng; Li, Kaicheng; Li, Xiaoying; Rao, Fubo

    2006-02-01

    In an adaptive-optical (AO) system, the wavefront of optical beam can be corrected with deformable mirror (DM). Based on MicroElectroMechanical System (MEMS) technology, segmented micro deformable mirrors can be built with denser actuator spacing than continuous face-sheet designs and have been widely researched. But the influence of the segment structure has not been thoroughly discussed until now. In this paper, the design, performance and fabrication of several micromachined, segmented deformable mirror for AO were investigated. The wavefront distorted by atmospheric turbulence was simulated in the frame of Kolmogorov turbulence model. Position function was used to describe the surfaces of the micro deformable mirrors in working state. The performances of deformable mirrors featuring square, brick, hexagonal and ring segment structures were evaluated in criteria of phase fitting error, the Strehl ratio after wavefront correction and the design considerations. Then the micro fabrication process and mask layout were designed and the fabrication of micro deformable mirrors was implemented. The results show that the micro deformable mirror with ring segments performs the best, but it is very difficult in terms of layout design. The micro deformable mirrors with square and brick segments are easy to design, but their performances are not good. The micro deformable mirror with hexagonal segments has not only good performance in terms of phase fitting error, the Strehl ratio and actuation voltage, but also no overwhelming difficulty in layout design.

  9. In situ field application of electrokinetic remediation for an As-, Cu-, and Pb-contaminated rice paddy site using parallel electrode configuration.

    PubMed

    Jeon, Eun-Ki; Jung, Ji-Min; Ryu, So-Ri; Baek, Kitae

    2015-10-01

    The applicability of an in situ electrokinetic process with a parallel electrode configuration was evaluated to treat an As-, Cu-, and Pb-contaminated paddy rice field in full scale (width, 17 m; length, 12.2 m; depth, 1.6 m). A constant voltage of 100 V was supplied and electrodes were spaced 2 m apart. Most As, Cu, and Pb were bound to Fe oxide and the major clay minerals in the test site were kaolinite and muscovite. The electrokinetic system removed 48.7, 48.9, and 54.5 % of As, Cu, and Pb, respectively, from the soil during 24 weeks. The removal of metals in the first layer (0-0.4 m) was higher than that in the other three layers because it was not influenced by groundwater fluctuation. Fractionation analysis showed that As and Pb bound to amorphous Fe and Al oxides decreased mainly, and energy consumption was 1.2 kWh/m(3). The standard deviation of metal concentration in the soil was much higher compared to the hexagonal electrode configuration because of a smaller electrical active area; however, the electrode configuration removed similar amounts of metals compared to the hexagonal system. From these results, it was concluded that the electrokinetic process could be effective at remediating As-, Cu-, and Pb-contaminated paddy rice field in situ.

  10. An experimental design method leading to chemical Turing patterns.

    PubMed

    Horváth, Judit; Szalai, István; De Kepper, Patrick

    2009-05-08

    Chemical reaction-diffusion patterns often serve as prototypes for pattern formation in living systems, but only two isothermal single-phase reaction systems have produced sustained stationary reaction-diffusion patterns so far. We designed an experimental method to search for additional systems on the basis of three steps: (i) generate spatial bistability by operating autoactivated reactions in open spatial reactors; (ii) use an independent negative-feedback species to produce spatiotemporal oscillations; and (iii) induce a space-scale separation of the activatory and inhibitory processes with a low-mobility complexing agent. We successfully applied this method to a hydrogen-ion autoactivated reaction, the thiourea-iodate-sulfite (TuIS) reaction, and noticeably produced stationary hexagonal arrays of spots and parallel stripes of pH patterns attributed to a Turing bifurcation. This method could be extended to biochemical reactions.

  11. Pivoting-Head Wrench

    NASA Technical Reports Server (NTRS)

    Bradley, Glen L.

    1993-01-01

    Wrench ends pivot so it can be used to loosen or tighten nuts or bolts in confined spaces. One end equipped with open-end socket; other end, with double-hexagon socket. Heads pivot on pins. Pins fit tightly so heads do not flop; friction on pins sufficient to hold heads in positions until rotated intentionally.

  12. Shapes on a plane: Evaluating the impact of projection distortion on spatial binning

    USGS Publications Warehouse

    Battersby, Sarah E.; Strebe, Daniel “daan”; Finn, Michael P.

    2017-01-01

    One method for working with large, dense sets of spatial point data is to aggregate the measure of the data into polygonal containers, such as political boundaries, or into regular spatial bins such as triangles, squares, or hexagons. When mapping these aggregations, the map projection must inevitably distort relationships. This distortion can impact the reader’s ability to compare count and density measures across the map. Spatial binning, particularly via hexagons, is becoming a popular technique for displaying aggregate measures of point data sets. Increasingly, we see questionable use of the technique without attendant discussion of its hazards. In this work, we discuss when and why spatial binning works and how mapmakers can better understand the limitations caused by distortion from projecting to the plane. We introduce equations for evaluating distortion’s impact on one common projection (Web Mercator) and discuss how the methods used generalize to other projections. While we focus on hexagonal binning, these same considerations affect spatial bins of any shape, and more generally, any analysis of geographic data performed in planar space.

  13. Selective MBE growth of hexagonal networks of trapezoidal and triangular GaAs nanowires on patterned (1 1 1)B substrates

    NASA Astrophysics Data System (ADS)

    Tamai, Isao; Hasegawa, Hideki

    2007-04-01

    As a combination of novel hardware architecture and novel system architecture for future ultrahigh-density III-V nanodevice LSIs, the authors' group has recently proposed a hexagonal binary decision diagram (BDD) quantum circuit approach where gate-controlled path switching BDD node devices for a single or few electrons are laid out on a hexagonal nanowire network to realize a logic function. In this paper, attempts are made to establish a method to grow highly dense hexagonal nanowire networks for future BDD circuits by selective molecular beam epitaxy (MBE) on (1 1 1)B substrates. The (1 1 1)B orientation is suitable for BDD architecture because of the basic three-fold symmetry of the BDD node device. The growth experiments showed complex evolution of the cross-sectional structures, and it was explained in terms of kinetics determining facet boundaries. Straight arrays of triangular nanowires with 60 nm base width as well as hexagonal arrays of trapezoidal nanowires with a node density of 7.5×10 6 cm -2 were successfully grown with the aid of computer simulation. The result shows feasibility of growing high-density hexagonal networks of GaAs nanowires with precise control of the shape and size.

  14. Selective directed self-assembly of coexisting morphologies using block copolymer blends

    NASA Astrophysics Data System (ADS)

    Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.

    2016-08-01

    Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. Here we expand on traditional DSA chemical patterning. A blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This is in contrast to the typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.

  15. Hexagonal Hollow Tube Based Energy Absorbing Crash Buffers for Roadside Fixed Objects

    NASA Astrophysics Data System (ADS)

    Uddin, M. S.; Amirah Shafie, Nurul; Zivkovic, Grad

    2017-03-01

    The purpose of this study was to investigate the deformation of the energy absorbing hexagonal hollow tubes in a lateral compression. The aim is to design cost effective and high energy-absorbing buffer systems, which are capable of controlling out-of-control vehicles in high-speed zones. A nonlinear quasi-static finite element analysis was applied to determine the deformation and energy absorption capacity. The main parameters in the design were diameter and wall thickness of the tubes. Experimental test simulating the lateral compressive loading on a single tube was performed. Results show that as the diameter and the thickness increase, the deformation strength increases. Hexagonal tube with diameter of 219 mm and thickness of 4 mm is shown to have the highest energy absorption capability. Compared to existing cylindrical and octagonal shapes, the hexagonal tubes show the highest energy absorption capacity. Hexagonal tubes therefore can be regarded as a potential candidate for buffer designs in high speed zones. In addition, they would be compact, cost effective and facilitate ease of installation.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalsi, Deepti; Rayaprol, S.; Siruguri, V.

    We report the crystallographic properties of RE{sub 2}NiGe{sub 3} (RE=La, Ce) synthesized by arc melting. Rietveld refinement on the powder neutron diffraction (ND) data suggest both compounds are isostructural and crystallize in the non-centrosymmetric Er{sub 2}RhSi{sub 3} type structure having hexagonal space group P6{sup ¯}2c. In the crystal structure of RE{sub 2}NiGe{sub 3}, two dimensional arrangements of nickel and germanium atoms lead to the formation of hexagonal layers with rare earth atoms sandwiched between them. Magnetic susceptibility measurements performed in low fields exhibit antiferromagnetic ordering in cerium compound around (T{sub o}=) 3.2 K. Neutron diffraction measurements at 2.8 K (i.e.,more » at T« less

  17. The study of radiation effects in emerging micro and nano electro mechanical systems (M and NEMs)

    NASA Astrophysics Data System (ADS)

    Arutt, Charles N.; Alles, Michael L.; Liao, Wenjun; Gong, Huiqi; Davidson, Jim L.; Schrimpf, Ronald D.; Reed, Robert A.; Weller, Robert A.; Bolotin, Kirill; Nicholl, Ryan; Pham, Thang Toan; Zettl, Alex; Qingyang, Du; Hu, Juejun; Li, Mo; Alphenaar, Bruce W.; Lin, Ji-Tzuoh; Shurva, Pranoy Deb; McNamara, Shamus; Walsh, Kevin M.; X-L Feng, Philip; Hutin, Louis; Ernst, Thomas; Homeijer, Brian D.; Polcawich, Ronald G.; Proie, Robert M.; Jones, Jacob L.; Glaser, Evan R.; Cress, Cory D.; Bassiri-Gharb, Nazanin

    2017-01-01

    The potential of micro and nano electromechanical systems (M and NEMS) has expanded due to advances in materials and fabrication processes. A wide variety of materials are now being pursued and deployed for M and NEMS including silicon carbide (SiC), III-V materials, thin-film piezoelectric and ferroelectric, electro-optical and 2D atomic crystals such as graphene, hexagonal boron nitride (h-BN), and molybdenum disulfide (MoS2). The miniaturization, functionality and low-power operation offered by these types of devices are attractive for many application areas including physical sciences, medical, space and military uses, where exposure to radiation is a reliability consideration. Understanding the impact of radiation on these materials and devices is necessary for applications in radiation environments.

  18. Phase equilibria and crystal chemistry of rubidium niobates and rubidium tantalates

    NASA Technical Reports Server (NTRS)

    Minor, D. B.; Roth, R. S.; Parker, H. S.; Brower, W. S.

    1977-01-01

    The phase equilibria relations and crystal chemistry of portions of the Rb2O-Nb2O5 and Rb2O-Ta2O5 systems were investigated for structures potentially useful as ionic conductors. A hexagonal tungsten bronze-type (HTB) structure was found in both systems as well as three hexagonal phases with mixed HTB-pyrochlore type structures. Ion exchange experiments between various alkali ions are described for several phases. Unit cell dimensions and X-ray diffraction powder patterns are reported.

  19. Investigation of electronic and magnetic properties of FeS: First principle and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bouachraoui, Rachid; El Hachimi, Abdel Ghafour; Ziat, Younes; Bahmad, Lahoucine; Tahiri, Najim

    2018-06-01

    Electronic and magnetic properties of hexagonal Iron (II) Sulfide (hexagonal FeS) have been investigated by combining the Density functional theory (DFT) and Monte Carlo simulations (MCS). This compound is constituted by magnetic hexagonal lattice occupied by Fe2+ with spin state (S = 2). Based on ab initio method, we calculated the exchange coupling JFe-Fe between two magnetic atoms Fe-Fe in different directions. Also phase transitions, magnetic stability and magnetizations have been investigated in the framework of Monte Carlo simulations. Within this method, a second phase transition is observed at the Néel temperature TN = 450 K. This finding in good agreement with the reported data in the literature. The effect of the applied different parameters showed how can these parameters affect the critical temperature of this system. Moreover, we studied the density of states and found that the hexagonal FeS will be a promoting material for spintronic applications.

  20. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquez Rossy, Andres E.; Armstrong, Beth L.; Elliott, Amy M.

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to anmore » azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.« less

  1. Synergistic cosolubilization of omega-3 fatty acid esters and CoQ10 in dilutable microemulsions.

    PubMed

    Deutch-Kolevzon, Rivka; Aserin, Abraham; Garti, Nissim

    2011-10-01

    Water-dilutable microemulsions were prepared and loaded with two types of omega-3 fatty acid esters (omega-3 ethyl esters, OEE; and omega-3 triacylglycerides, OTG), each separately and together with ubiquinone (CoQ(10)). The microemulsions showed high and synergistic loading capabilities. The linear fatty acid ester (OEE) solubilization capacity was greater than that of the bulky and robust OTG. The location of the guest molecules within the microemulsions at any dilution point were determined by electrical conductivity, viscosity, DSC, SAXS, cryo-TEM, SD-NMR, and DLS. We found that OEE molecules pack well within the surfactant tails to form reverse micelles that gradually, upon water dilution, invert into bicontinuous phase and finally into O/W droplets. The CoQ(10) increases the stabilization and solubilization of the omega-3 fatty acid esters because it functions as a kosmotropic agent in the micellar system. The hydrophobic and bulky OTG molecule strongly interferes with the tail packing and spaces them significantly - mainly in the low and medium range water dilutions. When added to the micellar system, CoQ(10) forms some reverse hexagonal mesophases. The inversion into direct micelles is more difficult in comparison to the OEE system and requires additional water dilution. The OTG with or without CoQ(10) destabilizes the structures and decreases the solubilization capacity since it acts as a chaotropic agent to the micellar system and as a kosmotropic agent to hexagonal packing. These results explain the differences in the behavior of these molecules with vehicles that solubilize them in aqueous phases. Temperature disorders the bicontinuous structures and reduces the supersaturation of the system containing OEE with CoQ(10); as a result CoQ(10) crystallization is retarded. Copyright © 2011. Published by Elsevier Ireland Ltd.

  2. Nature of Bonding in Bowl-Like B36 Cluster Revisited: Concentric (6π+18π) Double Aromaticity and Reason for the Preference of a Hexagonal Hole in a Central Location.

    PubMed

    Li, Rui; You, Xue-Rui; Wang, Kang; Zhai, Hua-Jin

    2018-05-04

    The bowl-shaped C 6v B 36 cluster with a central hexagon hole is considered an ideal molecular model for low-dimensional boron-based nanosystems. Owing to the electron deficiency of boron, chemical bonding in the B 36 cluster is intriguing, complicated, and has remained elusive despite a couple of papers in the literature. Herein, a bonding analysis is given through canonical molecular orbitals (CMOs) and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The concerted computational data establish the idea of concentric double π aromaticity for the B 36 cluster, with inner 6π and outer 18π electron counting, which both conform to the (4n+2) Hückel rule. The updated bonding picture differs from existing knowledge of the system. A refined bonding model is also proposed for coronene, of which the B 36 cluster is an inorganic analogue. It is further shown that concentric double π aromaticity in the B 36 cluster is retained and spatially fixed, irrespective of the migration of the hexagonal hole; the latter process changes the system energetically. The hexagonal hole is a destabilizing factor for σ/π CMOs. The central hexagon hole affects substantially fewer CMOs, thus making the bowl-shaped C 6v B 36 cluster the global minimum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Crystallization and preliminary crystallographic analysis of the cellulose biosynthesis-related protein CMCax from Acetobacter xylinum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawano, Shin; Yasutake, Yoshiaki; Tajima, Kenji

    2005-02-01

    The cellulose biosynthesis-related protein CMCax from A. xylinum has been purified and crystallized. The crystals of CMCax belong to the primitive hexagonal space group P6{sub 1} or P6{sub 5}, with unit-cell parameters a = b = 89.1, c = 94.2 Å.

  4. Improved expression, purification and crystallization of a putative N-acetyl-γ-glutamyl-phosphate reductase from rice (Oryza sativa)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura-Ohnuma, Jun; Nonaka, Tsuyoshi; Katoh, Shizue

    2005-12-01

    Crystals of OsAGPR were obtained using the sitting-drop vapour-diffusion method at 293 K and diffract X-rays to at least 1.8 Å resolution. They belong to the hexagonal space group P6{sub 1}, with unit-cell parameters a = 86.11, c = 316.3 Å. N-Acetyl-γ-glutamyl-phosphate reductase (AGPR) catalyzes the third step in an eight-step arginine-biosynthetic pathway that starts with glutamate. This enzyme converts N-acetyl-γ-glutamyl phosphate to N-acetylglutamate-γ-semialdehyde by an NADPH-dependent reductive dephosphorylation. AGPR from Oryza sativa (OsAGPR) was expressed in Escherichia coli at 291 K as a soluble fusion protein with an upstream thioredoxin-hexahistidine [Trx-(His){sub 6}] extension. OsAGPR(Ala50–Pro366) was purified and crystals weremore » obtained using the sitting-drop vapour-diffusion method at 293 K and diffract X-rays to at least 1.8 Å resolution. They belong to the hexagonal space group P6{sub 1}, with unit-cell parameters a = 86.11, c = 316.3 Å.« less

  5. Average and local crystal structures of (Ga 1–xZn x)(N 1–xO x) solid solution nanoparticles

    DOE PAGES

    Feygenson, Mikhail; Neuefeind, Joerg C.; Tyson, Trevor A.; ...

    2015-11-06

    We report the comprehensive study of the crystal structure of (Ga 1–xZn x)(N 1–xO x) solid solution nanoparticles by means of neutron and synchrotron x-ray scattering. In our study we used four different types of (Ga 1–xZn x)(N 1–xO x) nanoparticles, with diameters of 10–27 nm and x = 0.075–0.51, which show the narrow energy-band gaps from 2.21 to 2.61 eV. The Rietveld analysis of the neutron diffraction data revealed that the average crystal structure is the hexagonal wurtzite (space group P6 3mc), in agreement with previous reports on similar bulk materials. The pair-distribution function (PDF) analysis of the samemore » data found that the local structure is more disordered than the average one. It is best described by the model with a lower symmetry space group P1, where atoms are quasirandomly distorted from their nominal positions in the hexagonal wurtzite lattice.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Peter J.; Song, Chaeyeon; Deek, Joanna

    Tau, an intrinsically disordered protein confined to neuronal axons, binds to and regulates microtubule dynamics. Although there have been observations of string-like microtubule fascicles in the axon initial segment (AIS) and hexagonal bundles in neurite-like processes in non-neuronal cells overexpressing Tau, cell-free reconstitutions have not replicated either geometry. Here we map out the energy landscape of Tau-mediated, GTP-dependent ‘active’ microtubule bundles at 37°C, as revealed by synchrotron SAXS and TEM. Widely spaced bundles (wall-to-wall distance D w–w≈25–41nm) with hexagonal and string-like symmetry are observed, the latter mimicking bundles found in the AIS. A second energy minimum (D w–w≈16–23nm) is revealedmore » under osmotic pressure. The wide spacing results from a balance between repulsive forces, due to Tau’s projection domain (PD), and a stabilizing sum of transient sub-k BT cationic/anionic charge–charge attractions mediated by weakly penetrating opposing PDs. In the end, we find that this landscape would be significantly affected by charge-altering modifications of Tau associated with neurodegeneration.« less

  7. Correction of a Space Telescope Active Primary Mirror Using Adaptive Optics in a Woofer-Tweeter Configuration

    DTIC Science & Technology

    2015-09-01

    shows the elements of an AHM. The substrate is a rib-stiffened silicon carbide ( SiC ) structure cast to meet the required optical figure. The...right) 2. SMT Three Point Linearity Test The active mirror under study is a 1-meter hexagonal SiC AHM mirror with 156 face sheet actuators. The...CORRECTION OF A SPACE TELESCOPE ACTIVE PRIMARY MIRROR USING ADAPTIVE OPTICS IN A WOOFER-TWEETER CONFIGURATION by Matthew R. Allen September 2015

  8. Efficiency of Launching Highly Confined Polaritons by Infrared Light Incident on a Hyperbolic Material.

    PubMed

    Dai, Siyuan; Ma, Qiong; Yang, Yafang; Rosenfeld, Jeremy; Goldflam, Michael D; McLeod, Alex; Sun, Zhiyuan; Andersen, Trond I; Fei, Zhe; Liu, Mengkun; Shao, Yinming; Watanabe, Kenji; Taniguchi, Takashi; Thiemens, Mark; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M; Basov, D N

    2017-09-13

    We investigated phonon-polaritons in hexagonal boron nitride-a naturally hyperbolic van der Waals material-by means of the scattering-type scanning near-field optical microscopy. Real-space nanoimages we have obtained detail how the polaritons are launched when the light incident on a thin hexagonal boron nitride slab is scattered by various intrinsic and extrinsic inhomogeneities, including sample edges, metallic nanodisks deposited on its top surface, random defects, and surface impurities. The scanned tip of the near-field microscope is itself a polariton launcher whose efficiency proves to be superior to all the other types of polariton launchers we studied. Our work may inform future development of polaritonic nanodevices as well as fundamental studies of collective modes in van der Waals materials.

  9. Vertical architecture for enhancement mode power transistors based on GaN nanowires

    NASA Astrophysics Data System (ADS)

    Yu, F.; Rümmler, D.; Hartmann, J.; Caccamo, L.; Schimpke, T.; Strassburg, M.; Gad, A. E.; Bakin, A.; Wehmann, H.-H.; Witzigmann, B.; Wasisto, H. S.; Waag, A.

    2016-05-01

    The demonstration of vertical GaN wrap-around gated field-effect transistors using GaN nanowires is reported. The nanowires with smooth a-plane sidewalls have hexagonal geometry made by top-down etching. A 7-nanowire transistor exhibits enhancement mode operation with threshold voltage of 1.2 V, on/off current ratio as high as 108, and subthreshold slope as small as 68 mV/dec. Although there is space charge limited current behavior at small source-drain voltages (Vds), the drain current (Id) and transconductance (gm) reach up to 314 mA/mm and 125 mS/mm, respectively, when normalized with hexagonal nanowire circumference. The measured breakdown voltage is around 140 V. This vertical approach provides a way to next-generation GaN-based power devices.

  10. Circles and Hexagons

    NASA Image and Video Library

    2017-10-09

    Saturn's cloud belts generally move around the planet in a circular path, but one feature is slightly different. The planet's wandering, hexagon-shaped polar jet stream breaks the mold -- a reminder that surprises lurk everywhere in the solar system. This atmospheric feature was first observed by the Voyager mission in the early 1980s, and was dubbed "the hexagon." Cassini's visual and infrared mapping spectrometer was first to spy the hexagon during the mission, since it could see the feature's outline while the pole was still immersed in wintry darkness. The hexagon became visible to Cassini's imaging cameras as sunlight returned to the northern hemisphere. This view looks toward the northern hemisphere of Saturn -- in summer when this view was acquired -- from above 65 degrees north latitude. The image was taken with the Cassini spacecraft wide-angle camera on June 28, 2017 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers. The view was acquired at a distance of approximately 536,000 miles (862,000 kilometers) from Saturn. Image scale is 32 miles (52 kilometers) per pixel. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21348

  11. Order parameters from image analysis: a honeycomb example

    NASA Astrophysics Data System (ADS)

    Kaatz, Forrest H.; Bultheel, Adhemar; Egami, Takeshi

    2008-11-01

    Honeybee combs have aroused interest in the ability of honeybees to form regular hexagonal geometric constructs since ancient times. Here we use a real space technique based on the pair distribution function (PDF) and radial distribution function (RDF), and a reciprocal space method utilizing the Debye-Waller Factor (DWF) to quantify the order for a range of honeycombs made by Apis mellifera ligustica. The PDFs and RDFs are fit with a series of Gaussian curves. We characterize the order in the honeycomb using a real space order parameter, OP 3 , to describe the order in the combs and a two-dimensional Fourier transform from which a Debye-Waller order parameter, u, is derived. Both OP 3 and u take values from [0, 1] where the value one represents perfect order. The analyzed combs have values of OP 3 from 0.33 to 0.60 and values of u from 0.59 to 0.69. RDF fits of honeycomb histograms show that naturally made comb can be crystalline in a 2D ordered structural sense, yet is more ‘liquid-like’ than cells made on ‘foundation’ wax. We show that with the assistance of man-made foundation wax, honeybees can manufacture highly ordered arrays of hexagonal cells. This is the first description of honeycomb utilizing the Debye-Waller Factor, and provides a complete analysis of the order in comb from a real-space order parameter and a reciprocal space order parameter. It is noted that the techniques used are general in nature and could be applied to any digital photograph of an ordered array.

  12. Delineation of First-Order Elastic Property Closures for Hexagonal Metals Using Fast Fourier Transforms

    PubMed Central

    Landry, Nicholas W.; Knezevic, Marko

    2015-01-01

    Property closures are envelopes representing the complete set of theoretically feasible macroscopic property combinations for a given material system. In this paper, we present a computational procedure based on fast Fourier transforms (FFTs) for delineation of elastic property closures for hexagonal close packed (HCP) metals. The procedure consists of building a database of non-zero Fourier transforms for each component of the elastic stiffness tensor, calculating the Fourier transforms of orientation distribution functions (ODFs), and calculating the ODF-to-elastic property bounds in the Fourier space. In earlier studies, HCP closures were computed using the generalized spherical harmonics (GSH) representation and an assumption of orthotropic sample symmetry; here, the FFT approach allowed us to successfully calculate the closures for a range of HCP metals without invoking any sample symmetry assumption. The methodology presented here facilitates for the first time computation of property closures involving normal-shear coupling stiffness coefficients. We found that the representation of these property linkages using FFTs need more terms compared to GSH representations. However, the use of FFT representations reduces the computational time involved in producing the property closures due to the use of fast FFT algorithms. Moreover, FFT algorithms are readily available as opposed to GSH codes. PMID:28793566

  13. Spin-1 Dirac-Weyl fermions protected by bipartite symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zeren; School of Physics, Peking University, Beijing 100871; Liu, Zhirong, E-mail: LiuZhiRong@pku.edu.cn

    2015-12-07

    We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T{sub 3}, an extensivelymore » studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′.« less

  14. Construction of Prototype Lightweight Mirrors

    NASA Technical Reports Server (NTRS)

    Robinson, William G.

    1997-01-01

    This contract and the work described was in support of a Seven Segment Demonstrator (SSD) and demonstration of a different technology for construction of lightweight mirrors. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities; Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form space telescope with large aperture. Provide very large (less than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or quaternary mirror into a quasi-continuous surface with individual subapertures phased so that near diffraction limited imaging in the visible wavelength region is achieved. Continuous compensation of optical wavefront due to perturbations caused by imperfections, natural disturbances, and equipment induced vibrations/deflections to provide near diffraction limited imaging performance in the visible wavelength region. Demonstrate the feasibility of fabricating such systems with reduced mass and cost compared to past approaches. While the SSD could not be expected to satisfy all of the above capabilities, the intent was to start identifying and understanding new technologies that might be applicable to these goals.

  15. Synthesis, crystal structure, and properties of new lead barium borate with B3O6 plane hexagonal rings

    NASA Astrophysics Data System (ADS)

    Zhao, Wenwu

    2017-08-01

    A new lead barium borate Ba8.02Pb0.98(B3O6)6 with B3O6 plane hexagonal rings was synthesized through spontaneous nucleation from a high-temperature solution utilizing PbO, H3BO3, and BaF2 as reagents. Its crystal structure was determined from single-crystal X-ray diffraction data and further characterized by FT-IR. It crystallizes in space group R32 and the crystallographic structure of Ba8.02Pb0.98(B3O6)6 can be described as a layer-like structure, there is stacking along the c-axis of B3O6 plane hexagonal rings with the Ba2 and Pb/Ba1 atoms alternately occupying sites between the B3O6 sheets. A comparison of the structures of Ba8.02Pb0.98(B3O6)6, PbBa2(B3O6)2 and α-BaB2O4 is presented. UV-Vis-NIR diffuse-reflectance spectrum indicates that the absorption edge of Ba8.02Pb0.98(B3O6)6 is about 399 nm.

  16. Strong and weak second-order topological insulators with hexagonal symmetry and ℤ3 index

    NASA Astrophysics Data System (ADS)

    Ezawa, Motohiko

    2018-06-01

    We propose second-order topological insulators (SOTIs) whose lattice structure has a hexagonal symmetry C6. We start with a three-dimensional weak topological insulator constructed on a stacked triangular lattice, which has only side topological surface states. We then introduce an additional mass term which gaps out the side surface states but preserves the hinge states. The resultant system is a three-dimensional SOTI. The bulk topological quantum number is shown to be the Z3 index protected by inversion time-reversal symmetry I T and rotoinversion symmetry I C6 . We obtain three phases: trivial, strong, and weak SOTI phases. We argue the origin of these two types of SOTIs. A hexagonal prism is a typical structure respecting these symmetries, where six topological hinge states emerge at the side. The building block is a hexagon in two dimensions, where topological corner states emerge at the six corners in the SOTI phase. Strong and weak SOTIs are obtained when the interlayer hopping interaction is strong and weak, respectively.

  17. 7-Hexagon Multifocal Electroretinography for an Objective Functional Assessment of the Macula in 14 Seconds.

    PubMed

    Schönbach, Etienne M; Chaikitmongkol, Voraporn; Annam, Rachel; McDonnell, Emma C; Wolfson, Yulia; Fletcher, Emily; Scholl, Hendrik P N

    2017-01-01

    We present the multifocal electroretinogram (mfERG) with a 7-hexagon array as an objective test of macular function that can be recorded in 14 s. We provide normal values and investigate its reproducibility and validity. Healthy participants underwent mfERG testing according to International Society for Clinical Electrophysiology of Vision (ISCEV) standards using the Espion Profile/D310 multifocal ERG system (Diagnosys, LLC, Lowell, MA, USA). One standard recording of a 61-hexagon array and 2 repeated recordings of a custom 7-hexagon array were obtained. A total of 13 subjects (mean age 46.9 years) were included. The median response densities were 12.5 nV/deg2 in the center and 5.2 nV/deg2 in the periphery. Intereye correlations were strong in both the center (ρCenter = 0.821; p < 0.0001) and the periphery (ρPeriphery = 0.862; p < 0.0001). Intraeye correlations were even stronger: ρCenter = 0.904 with p < 0.0001 and ρPeriphery = 0.955 with p < 0.0001. Bland-Altman plots demonstrated an acceptable retest mean difference in both the center and periphery, and narrow limits of agreement. We found strong correlations of the center (ρCenter = 0.826; p < 0.0001) and periphery (ρPeriphery = 0.848; p < 0.0001), with recordings obtained by the 61-hexagon method. The 7-hexagon mfERG provides reproducible results in agreement with results obtained according to the ISCEV standard. © 2017 S. Karger AG, Basel.

  18. Phonon Transport at the Interfaces of Vertically Stacked Graphene and Hexagonal Boron Nitride Heterostructures

    DOE PAGES

    Yan, Zhequan; Chen, Liang; Yoon, Mina; ...

    2016-01-12

    Hexagonal boron nitride (h-BN) is a substrate for graphene based nano-electronic devices. We investigate the ballistic phonon transport at the interface of vertically stacked graphene and h-BN heterostructures using first principles density functional theory and atomistic Green's function simulations considering the influence of lattice stacking. We compute the frequency and wave-vector dependent transmission function and observe distinct stacking-dependent phonon transmission features for the h-BN/graphene/h-BN sandwiched systems. We find that the in-plane acoustic modes have the dominant contributions to the phonon transmission and thermal boundary conductance (TBC) for the interfaces with the carbon atom located directly on top of the boronmore » atom (C–B matched) because of low interfacial spacing. The low interfacial spacing is a consequence of the differences in the effective atomic volume of N and B and the difference in the local electron density around N and B. For the structures with the carbon atom directly on top of the nitrogen atom (C–N matched), the spatial distance increases and the contribution of in-plane modes to the TBC decreases leading to higher contributions by out-of-plane acoustic modes. We find that the C–B matched interfaces have stronger phonon–phonon coupling than the C–N matched interfaces, which results in significantly higher TBC (more than 50%) in the C–B matched interface. The findings in this study will provide insights to understand the mechanism of phonon transport at h-BN/graphene/h-BN interfaces, to better explain the experimental observations and to engineer these interfaces to enhance heat dissipation in graphene based electronic devices.« less

  19. Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.

    PubMed

    Lim, Sung-Hwan; Lee, Taehoon; Oh, Younghoon; Narayanan, Theyencheri; Sung, Bong June; Choi, Sung-Min

    2017-08-25

    Synthesis of binary nanoparticle superlattices has attracted attention for a broad spectrum of potential applications. However, this has remained challenging for one-dimensional nanoparticle systems. In this study, we investigate the packing behavior of one-dimensional nanoparticles of different diameters into a hexagonally packed cylindrical micellar system and demonstrate that binary one-dimensional nanoparticle superlattices of two different symmetries can be obtained by tuning particle diameter and mixing ratios. The hexagonal arrays of one-dimensional nanoparticles are embedded in the honeycomb lattices (for AB 2 type) or kagome lattices (for AB 3 type) of micellar cylinders. The maximization of free volume entropy is considered as the main driving force for the formation of superlattices, which is well supported by our theoretical free energy calculations. Our approach provides a route for fabricating binary one-dimensional nanoparticle superlattices and may be applicable for inorganic one-dimensional nanoparticle systems.Binary mixtures of 1D particles are rarely observed to cooperatively self-assemble into binary superlattices, as the particle types separate into phases. Here, the authors design a system that avoids phase separation, obtaining binary superlattices with different symmetries by simply tuning the particle diameter and mixture composition.

  20. Evidence of an inverted hexagonal phase in self-assembled phospholipid-DNA-metal complexes

    NASA Astrophysics Data System (ADS)

    Francescangeli, O.; Pisani, M.; Stanic, V.; Bruni, P.; Weiss, T. M.

    2004-08-01

    We report the first observation of an inverted hexagonal phase of phospholipid-DNA-metal complexes. These ternary complexes are formed in a self-assembled manner when water solutions of neutral lipid dioleoylphosphatidylethanolamine (DOPE), DNA and divalent metal cations (Me2+; Me=Fe, Co, Mg, Mn) are mixed, which represents a striking example of supramolecular chemistry. The structure, derived from synchrotron X-ray diffraction, consists of cylindrical DNA strands coated by neutral lipid monolayers and arranged on a two-dimensional hexagonal lattice (HIIc). Besides the fundamental aspects, DOPE-DNA-Me2+ complexes may be of great interest as efficient nonviral delivery systems in gene therapy applications because of the low inherent cytotoxicity and the potential high transfection efficiency.

  1. Research Technology

    NASA Image and Video Library

    1998-09-16

    A team of engineers at Marshall Space Flight Center (MSFC) has designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket that produces lower thrust but has better thrust efficiency than the chemical combustion engines. This segmented array of mirrors is the solar concentrator test stand at MSFC for firing the thermal propulsion engines. The 144 mirrors are combined to form an 18-foot diameter array concentrator. The mirror segments are aluminum hexagons that have the reflective surface cut into it by a diamond turning machine, which is developed by MSFC Space Optics Manufacturing Technology Center.

  2. Self-Assembled Polystyrene Beads for Templated Covalent Functionalization of Graphitic Substrates Using Diazonium Chemistry.

    PubMed

    Van Gorp, Hans; Walke, Peter; Bragança, Ana M; Greenwood, John; Ivasenko, Oleksandr; Hirsch, Brandon E; De Feyter, Steven

    2018-04-11

    A network of self-assembled polystyrene beads was employed as a lithographic mask during covalent functionalization reactions on graphitic surfaces to create nanocorrals for confined molecular self-assembly studies. The beads were initially assembled into hexagonal arrays at the air-liquid interface and then transferred to the substrate surface. Subsequent electrochemical grafting reactions involving aryl diazonium molecules created covalently bound molecular units that were localized in the void space between the nanospheres. Removal of the bead template exposed hexagonally arranged circular nanocorrals separated by regions of chemisorbed molecules. Small molecule self-assembly was then investigated inside the resultant nanocorrals using scanning tunneling microscopy to highlight localized confinement effects. Overall, this work illustrates the utility of self-assembly principles to transcend length scale gaps in the development of hierarchically patterned molecular materials.

  3. Old friends in a new light: “SnSb” revisited

    NASA Astrophysics Data System (ADS)

    Norén, Lasse; Withers, Ray L.; Schmid, Siegbert; Brink, Frank J.; Ting, Valeska

    2006-02-01

    The binary pnictide 'SnSb' has been re-investigated using a combination of X-ray, synchrotron and electron diffraction as well as electron microprobe analysis. Its structure was found to be incommensurately modulated with an underlying rhombohedral parent structure of space group symmetry R3¯m (No. 166), unit cell parameters a=b=4.3251(4) Å, c=5.3376(6) Å in the hexagonal setting. The incommensurate primary modulation wave vector q=1.3109(9)ch* and the superspace group symmetry is R3¯m (0, 0, ˜1.311) (No. 166.1). The refinement of the incommensurate structure indicates that the satellite reflections arise from displacive shifts of presumably essentially pure Sn and Sb layers along the hexagonal c-axis, with increasing distance between the Sn-layers and decreasing distance between the Sb layers.

  4. Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization.

    PubMed

    Kim, Min-A; Jang, Dawon; Tejima, Syogo; Cruz-Silva, Rodolfo; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho; Endo, Morinobu

    2016-03-23

    Large efforts have been made over the last 40 years to increase the mechanical strength of polyacrylonitrile (PAN)-based carbon fibers (CFs) using a variety of chemical or physical protocols. In this paper, we report a new method to increase CFs mechanical strength using a slow heating rate during the carbonization process. This new approach increases both the carbon sp(3) bonding and the number of nitrogen atoms with quaternary bonding in the hexagonal carbon network. Theoretical calculations support a crosslinking model promoted by the interstitial carbon atoms located in the graphitic interlayer spaces. The improvement in mechanical performance by a controlled crosslinking between the carbon hexagonal layers of the PAN based CFs is a new concept that can contribute further in the tailoring of CFs performance based on the understanding of their microstructure down to the atomic scale.

  5. Broadening and shifting of Bragg reflections of nanoscale-microtwinned LT-Ni3Sn2

    NASA Astrophysics Data System (ADS)

    Leineweber, Andreas; Krumeich, Frank

    2013-12-01

    The effect of nanoscale microtwinning of long-range ordered domains in LT-Ni3Sn2 on its diffraction behaviour was studied by X-ray powder diffraction and electron microscopy. LT-Ni3Sn2 exhibits a Ni2In/NiAs-type structure with a superstructure breaking the symmetry relative to the hexagonal high-temperature (HT) to the orthorhombic low-temperature (LT) phase, implying three different twin-domain orientations. The microstructure was generated by annealing HT-Ni3Sn2 considerably below the order-disorder transition temperature, establishing the LT phase avoiding too much domain coarsening. High-resolution electron microscopy reveals domain sizes of 100-200 Å compatible with the Scherrer broadening of the superstructure reflections recorded by X-ray diffraction. Whereas the orthorhombic symmetry of the LT phase leads in powder-diffraction patterns from coarse-domain size material to splitting of the fundamental reflections, this splitting does not occur for the LT-Ni3Sn2 with nanoscale domains. Instead, a (pseudo)hexagonal indexing is possible giving hexagonal lattice parameters, which are, however, incompatible with the positions of the superstructure reflections. This can be attributed to interference between X-rays scattered by the differently oriented, truly orthorhombic domains leading to merging of the fundamental reflections. These show pronounced anisotropic microstrain-like broadening, where the integral breadths ? on the reciprocal d-spacing scale of a series of higher order reflection increase in a non-linear fashion with upward curvature with the reciprocal d-spacings ? of these reflections. Such a type of unusual microstrain broadening appears to be typical for microstructures which are inhomogeneous on the nanoscale, and in which the structural inhomogeneities lead to small phase shifts of the scattered radiation from different locations (e.g. domains).

  6. An integral sunshade for optical reception antennas

    NASA Technical Reports Server (NTRS)

    Kerr, E. L.

    1988-01-01

    Optical reception antennas (telescopes) must be capable of receiving communications even when the deep-space laser source is located within a small angle of the Sun. Direst sunlight must not be allowed to shine on the primary reflector of an optical reception antenna, because too much light would be scattered into the signal detectors. A conventional sunshade that does not obstruct the antenna aperture would have to be about five times longer than its diameter in order to receive optical communications at a solar elongation of 12 degrees without interference. Such a long sunshade could not be accommodated within the dome of any existing large-aperture astronomical facility, and providing a new dome large enough would be prohibitively expensive. It is also desirable to reduce the amount of energy a space-based large-aperture optical reception facility would expend orienting a structure with such a sizable moment of inertia. Since a large aperture optical reception antenna will probably have a hexagonally segmented primary reflector, a sunshade consisting of hexagonal tubes can be mounted in alignment with the segmentation without producing any additional geometric obstruction. An analysis of the duration and recurrence of solar-conjunction communications outages (caused when a deep-space probe near an outer planet appears to be closer to the Sun than a given minimum solar elongation), and the design equations for the integral sunshade are appended.

  7. Topological dynamics of vortex-line networks in hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Wang, Nan; Wang, Xueyun; Ji, Yanzhou; Cheong, Sang-Wook; Chen, Long-Qing

    2018-01-01

    The two-dimensional X Y model is the first well-studied system with topological point defects. On the other hand, although topological line defects are common in three-dimensional systems, the evolution mechanism of line defects is not fully understood. The six domains in hexagonal manganites converge to vortex lines in three dimensions. Using phase-field simulations, we predicted that during the domain coarsening process, the vortex-line network undergoes three types of basic topological changes, i.e., vortex-line loop shrinking, coalescence, and splitting. It is shown that the vortex-antivortex annihilation controls the scaling dynamics.

  8. A logarithmic detection system suitable for a 4π array

    NASA Astrophysics Data System (ADS)

    Westfall, G. D.; Yurkon, J. E.; van der Plicht, J.; Koenig, Z. M.; Jacak, B. V.; Fox, R.; Crawley, G. M.; Maier, M. R.; Hasselquist, B. E.; Tickle, R. S.; Horn, D.

    1985-08-01

    A low pressure multiwire proportional counter, a Bragg curve counter, and an array of CaF2/plastic scintillator telescopes have been developed in a geometry suitable for close packing into a 4π detector designed to study nucleus-nucleus reactions at 100-200 MeV/nucleon. The multiwire counter is hexagonal in shape and gives X-Y position information using resistive charge division from nichrome-coated stretched polypropylene foils. The Bragg curve counter is a hexagonal pyramid with the charge taken from a Frisch gridded anode. A field shaping grid gives the Bragg curve counter a radial field. The scintillator telescopes are shaped as truncated triangular pyramids such that when stacked together they form a truncated hexagonal pyramid. The light signal of the CaF2-plastic combination is read with one phototube using a phoswich technique to separate the ΔE signal from the E signal. The entire system has been tested so far for particles with 1 <= Z <= 18 and gives good position, charge, and time resolution.

  9. Unconventional imaging with contained granular media

    NASA Astrophysics Data System (ADS)

    Quadrelli, Marco B.; Basinger, Scott; Sidick, Erkin

    2017-09-01

    Typically, the cost of a space-borne imaging system is driven by the size and mass of the primary aperture. The solution that we propose uses a method to construct an imaging system in space in which the nonlinear optical properties of a cloud of micron-sized particles, shaped into a specific surface by electromagnetic means, and allows one to form a very large and lightweight aperture of an optical system, hence reducing overall mass and cost. Recent work at JPL has investigated the feasibility of a granular imaging system, concluding that such a system could be built and controlled in orbit. We conducted experiments and simulation of the optical response of a granular lens. In all cases, the optical response, measured by the Modulation Transfer Function, of hexagonal reflectors was closely comparable to that of a conventional spherical mirror. We conducted some further analyses by evaluating the sensitivity to fill factor and grain shape, and found a marked sensitivity to fill factor but no sensitivity to grain shape. We have also found that at fill factors as low as 30%, the reflection from a granular lens is still excellent. Furthermore, we replaced the monolithic primary mirror in an existing integrated model of an optical system (WFIRST Coronagraph) with a granular lens, and found that the granular lens that can be useful for exoplanet detection provides excellent contrast levels. We will present our testbed and simulation results in this paper.

  10. Using Latex Balls and Acrylic Resin Plates to Investigate the Stacking Arrangement and Packing Efficiency of Metal Crystals

    ERIC Educational Resources Information Center

    Ohashi, Atsushi

    2015-01-01

    A high-school third-year or undergraduate first-semester general chemistry laboratory experiment introducing simple-cubic, face-centered cubic, body-centered cubic, and hexagonal closest packing unit cells is presented. Latex balls and acrylic resin plates are employed to make each atomic arrangement. The volume of the vacant space in each cell is…

  11. Analysis and trade-off studies of large lightweight mirror structures. [large space telescope

    NASA Technical Reports Server (NTRS)

    Soosaar, K.; Grin, R.; Ayer, F.

    1975-01-01

    A candidate mirror, hexagonally lightweighted, is analyzed under various loadings using as complete a procedure as possible. Successive simplifications are introduced and compared to an original analysis. A model which is a reasonable compromise between accuracy and cost is found and is used for making trade-off studies of the various structural parameters of the lightweighted mirror.

  12. Selective directed self-assembly of coexisting morphologies using block copolymer blends

    PubMed Central

    Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.

    2016-01-01

    Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. Here we expand on traditional DSA chemical patterning. A blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This is in contrast to the typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist. PMID:27480327

  13. TIMo/sub 2/ /SUP IV/ P/sub 3/O/sub 12/: a molybdenophosphate with a tunnel structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leclaire, A.; Monier, J.C.; Raveau, B.

    1985-10-01

    A molybdenophosphate, TIMo/sub 2/ /SUP IV/ P/sub 3/O/sub 12/, with an original tunnel structure, has been isolated. Its structure has been determined by X-ray diffraction on a single crystal. It crystallizes in the orthorhombic system with a = 8.836(1), b = 9.255(1), c = 12.288(1) A, possible space groups Pbcm and Pbc2/sub 1/ with /ZETA/ = 4. The structure was solved and refined in the centrosymmetric space group Pbcm. The host lattice ''Mo/sub 3/P/sub 3/O/sub 12/'' is built up from corner-sharing octahedra and tetrahedra and forms tunnels running along the b axis and cages where the TI+ ions are located.more » The relationships of this framework wit that of the phosphate tungsten bronze CsP/sub 8/W/sub 8/O/sub 40/ and that of the hexagonal tungsten bronze are discussed.« less

  14. Selective directed self-assembly of coexisting morphologies using block copolymer blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, A.; Wright, G.; Yager, K. G.

    Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. We expand on traditional DSA chemical patterning. Moreover, a blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This contrastsmore » with typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.« less

  15. Selective directed self-assembly of coexisting morphologies using block copolymer blends

    DOE PAGES

    Stein, A.; Wright, G.; Yager, K. G.; ...

    2016-08-02

    Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. We expand on traditional DSA chemical patterning. Moreover, a blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This contrastsmore » with typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.« less

  16. Tau mediates microtubule bundle architectures mimicking fascicles of microtubules found in the axon initial segment

    DOE PAGES

    Chung, Peter J.; Song, Chaeyeon; Deek, Joanna; ...

    2016-07-25

    Tau, an intrinsically disordered protein confined to neuronal axons, binds to and regulates microtubule dynamics. Although there have been observations of string-like microtubule fascicles in the axon initial segment (AIS) and hexagonal bundles in neurite-like processes in non-neuronal cells overexpressing Tau, cell-free reconstitutions have not replicated either geometry. Here we map out the energy landscape of Tau-mediated, GTP-dependent ‘active’ microtubule bundles at 37°C, as revealed by synchrotron SAXS and TEM. Widely spaced bundles (wall-to-wall distance D w–w≈25–41nm) with hexagonal and string-like symmetry are observed, the latter mimicking bundles found in the AIS. A second energy minimum (D w–w≈16–23nm) is revealedmore » under osmotic pressure. The wide spacing results from a balance between repulsive forces, due to Tau’s projection domain (PD), and a stabilizing sum of transient sub-k BT cationic/anionic charge–charge attractions mediated by weakly penetrating opposing PDs. In the end, we find that this landscape would be significantly affected by charge-altering modifications of Tau associated with neurodegeneration.« less

  17. Six-Message Electromechanical Display System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.

    2007-01-01

    A proposed electromechanical display system would be capable of presenting as many as six distinct messages. In the proposed system, each display element would include a cylinder having a regular hexagonal cross section.

  18. Hysteresis behaviors in a ferrimagnetic Ising nanotube with hexagonal core-shell structure

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Wang, Wei; Lv, Dan; Zhao, Xue-ru; Huang, Te; Wang, Ze-yuan

    2018-07-01

    Monte Carlo simulation has been employed to study the hysteresis behaviors of a ferrimagnetic mixed-spin (1, 3/2) Ising nanotube with hexagonal core-shell structure. The effects of different single-ion anisotropies, exchange couplings and temperature on the hysteresis loops of the system and sublattices are discussed in detail. Multiple hysteresis loops such as triple loops have been observed in the system under certain physical parameters. It is found that the anisotropy, the exchange coupling and the temperature strongly affect the coercivities and the remanences of the system and the sublattices. Comparing our results with other theoretical and experimental studies, a satisfactory agreement can be achieved qualitatively.

  19. Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.

    PubMed

    Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha

    2015-09-03

    Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.

  20. Performance of the primary mirror center-of-curvature optical metrology system during cryogenic testing of the JWST Pathfinder telescope

    NASA Astrophysics Data System (ADS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-07-01

    The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse and fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment and phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development and spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software and procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate and efficient cryogenic testing of the JWST flight telescope.

  1. Performance of the Primary Mirror Center-of-curvature Optical Metrology System During Cryogenic Testing of the JWST Pathfinder Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-01-01

    The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius-of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse & fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment & phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development & spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software & procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate & efficient cryogenic testing of the JWST flight telescope.

  2. Resistance of three implant-abutment interfaces to fatigue testing

    PubMed Central

    RIBEIRO, Cleide Gisele; MAIA, Maria Luiza Cabral; SCHERRER, Susanne S.; CARDOSO, Antonio Carlos; WISKOTT, H. W. Anselm

    2011-01-01

    The design and retentive properties of implant-abutment connectors affect the mechanical resistance of implants. A number of studies have been carried out to compare the efficacy of connecting mechanisms between abutment and fixture. Objectives The aims of this study were: 1) to compare 3 implant-abutment interfaces (external hexagon, internal hexagon and cone-in-cone) regarding the fatigue resistance of the prosthetic screw, 2) to evaluate the corresponding mode of failure, and 3) to compare the results of this study with data obtained in previous studies on Nobel Biocare and Straumann connectors. Materials and Methods In order to duplicate the alternating and multivectorial intraoral loading pattern, the specimens were submitted to the rotating cantilever beam test. The implants, abutments and restoration analogs were spun around their longitudinal axes while a perpendicular force was applied to the external end. The objective was to determine the force level at which 50% of the specimens survived 106 load cycles. The mean force levels at which 50% failed and the corresponding 95% confidence intervals were determined using the staircase procedure. Results The external hexagon interface presented better than the cone-in-cone and internal hexagon interfaces. There was no significant difference between the cone-in-cone and internal hex interfaces. Conclusion Although internal connections present a more favorable design, this study did not show any advantage in terms of strength. The external hexagon connector used in this study yielded similar results to those obtained in a previous study with Nobel Biocare and Straumann systems. However, the internal connections (cone-in-cone and internal hexagon) were mechanically inferior compared to previous results. PMID:21710094

  3. Summary of LSST systems analysis and integration task for SPS flight test articles

    NASA Astrophysics Data System (ADS)

    Greenberg, H. S.

    1981-02-01

    The structural and equipment requirements for two solar power satellite (SPS) test articles are defined. The first SPS concept uses a hexagonal frame structure to stabilize the array of primary tension cables configured to support a Mills Cross antenna containing 17,925 subarrays composed of dipole radiating elements and solid state power amplifier modules. The second test article consists of a microwave antenna and its power source, a 20 by 200 m array of solar cell blankets, both of which are supported by the solar blanket array support structure. The test article structure, a ladder, is comprised of two longitudinal beams (215 m long) spaced 10 m apart and interconnected by six lateral beams. The system control module structure and bridge fitting provide bending and torsional stiffness, and supplement the in plane Vierendeel structure behavior. Mission descriptions, construction, and structure interfaces are addressed.

  4. Low rank factorization of the Coulomb integrals for periodic coupled cluster theory.

    PubMed

    Hummel, Felix; Tsatsoulis, Theodoros; Grüneis, Andreas

    2017-03-28

    We study a tensor hypercontraction decomposition of the Coulomb integrals of periodic systems where the integrals are factorized into a contraction of six matrices of which only two are distinct. We find that the Coulomb integrals can be well approximated in this form already with small matrices compared to the number of real space grid points. The cost of computing the matrices scales as O(N 4 ) using a regularized form of the alternating least squares algorithm. The studied factorization of the Coulomb integrals can be exploited to reduce the scaling of the computational cost of expensive tensor contractions appearing in the amplitude equations of coupled cluster methods with respect to system size. We apply the developed methodologies to calculate the adsorption energy of a single water molecule on a hexagonal boron nitride monolayer in a plane wave basis set and periodic boundary conditions.

  5. Detector shape in hexagonal sampling grids

    NASA Astrophysics Data System (ADS)

    Baronti, Stefano; Capanni, Annalisa; Romoli, Andrea; Santurri, Leonardo; Vitulli, Raffaele

    2001-12-01

    Recent improvements in CCD technology make hexagonal sampling attractive for practical applications and bring a new interest on this topic. In the following the performances of hexagonal sampling are analyzed under general assumptions and compared with the performances of conventional rectangular sampling. This analysis will take into account both the lattice form (squared, rectangular, hexagonal, and regular hexagonal), and the pixel shape. The analyzed hexagonal grid will not based a-priori on a regular hexagon tessellation, i.e., no constraints will be made on the ratio between the sampling frequencies in the two spatial directions. By assuming an elliptic support for the spectrum of the signal being sampled, sampling conditions will be expressed for a generic hexagonal sampling grid, and a comaprison with the well-known sampling conditions for a comparable rectangular lattice will be performed. Further, by considering for sake of clarity a spectrum with a circular support, the comparison will be performed under the assumption of same number of pixels for unity of surface, and the particular case of regular hexagonal sampling grid will also be considered. Regular hexagonal lattice with regular hexagonal sensitivity shape of the detector elements will result as the best trade-off between the proposed sampling requirement. Concerning the detector shape, the hexagonal is more advantageous than the rectangular. To show that a figure of merit is defined which takes into account that the MTF (modulation transfer function) of a hexagonal detector is not separable, conversely from that of a rectangular detector. As a final result, octagonal shape detectors are compared to those with rectangular and hexagonal shape in the two hypotheses of equal and ideal fill factor, respectively.

  6. Active hexagonally segmented mirror to investigate new optical phasing technologies for segmented telescopes.

    PubMed

    Gonté, Frédéric; Dupuy, Christophe; Luong, Bruno; Frank, Christoph; Brast, Roland; Sedghi, Baback

    2009-11-10

    The primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies. The core element of the test bench is an active segmented mirror composed of 61 flat hexagonal segments with a size of 17 mm side to side. Each of them can be controlled in piston, tip, and tilt by three piezoactuators with a precision better than 1 nm. The context of this development, the requirements, the design, and the integration of this system are explained. The first results on the final precision obtained in closed-loop control are also presented.

  7. Self-assembled quantum dot structures in a hexagonal nanowire for quantum photonics.

    PubMed

    Yu, Ying; Dou, Xiu-Ming; Wei, Bin; Zha, Guo-Wei; Shang, Xiang-Jun; Wang, Li; Su, Dan; Xu, Jian-Xing; Wang, Hai-Yan; Ni, Hai-Qiao; Sun, Bao-Quan; Ji, Yuan; Han, Xiao-Dong; Niu, Zhi-Chuan

    2014-05-01

    Two types of quantum nanostructures based on self-assembled GaAs quantumdots embedded into GaAs/AlGaAs hexagonal nanowire systems are reported, opening a new avenue to the fabrication of highly efficient single-photon sources, as well as the design of novel quantum optics experiments and robust quantum optoelectronic devices operating at higher temperature, which are required for practical quantum photonics applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Containerless Processing: Fabrication of Advanced Functional Materials from Undercooled Oxide Melt

    NASA Astrophysics Data System (ADS)

    Kumar, M. S. Vijaya; Ishikawa, Takehiko; Yoda, Shinichi; Kuribayashi, Kazuhiko

    2012-07-01

    Materials science in Microgravity condition is one of newly established cutting edge science field. After the effort of space development and space utilization, microgravity of space environment has been considered as one of novel tools for materials science because it assures containerless levitation. Containerless processing is a promising technique to explore the technologically important materials using rapid solidification of an undercooled melt. Recently, rare-earth ferrites and manganites have attracted great interest towards their wide applications in the field of electronic industry. Among these new hexagonal phases with a space group of P6 _{3}cm are technologically important materials because of multiferroic characteristics, i.e., the coexistence of ferroelectricity and magnetism in one compound. In the present study, containerless solidification of the R-Fe-O, and R-Mn-O melts were carried out to fabricate multiferroics under the controlled Po _{2}. Containerless processing is a promising technique to explore the new materials using rapid solidification of an undercooled melt because it provides large undercooling prior to nucleation. In order to undercool the melt deeply below the melting temperature under a precisely controlled oxygen partial pressure, an aerodynamic levitator (ADL) combined with ZrO _{2} oxygen sensor was designed. A spherical RFeO _{3} and RMnO _{3} sample was levitated by an ADL and completely melted by a CO _{2} laser in an atmosphere with predetermined Po _{2}.The surface temperature of the levitated droplet was monitored by a two-color pyrometer. Then, the droplet was cooled by turning off the CO _{2} laser. The XRD results of the rapidly solidified LuFeO _{3} and LuMnO _{3} samples at Po _{2} of 1x10 ^{5} Pa confirms the existence of the hexagonal metastable LuFeO _{3} phase. On the other hand, orthorhombic RFeO _{3} (R=Yb, Er, Y and Dy)and hexagonal RMnO _{3} (R=Ho-Lu)phases were identified. The cross-sectioned scanning electron microscopy (SEM) images and TG/DTA results revealed the existence of the stable and metastable phases with decreasing Po _{2}. The magnetic properties of the as-solidified samples were studied using vibrating sample magnetometer (VSM). These results indicate that a metastable and stable phase solidifies directly from the undercooled melt even when the melt is undercooled much below the peritectic temperature.

  9. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malolepsza, Edyta; Keyes, Tom

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less

  10. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-12-01

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less

  11. Reprogramming hMSCs morphology with silicon/porous silicon geometric micro-patterns.

    PubMed

    Ynsa, M D; Dang, Z Y; Manso-Silvan, M; Song, J; Azimi, S; Wu, J F; Liang, H D; Torres-Costa, V; Punzon-Quijorna, E; Breese, M B H; Garcia-Ruiz, J P

    2014-04-01

    Geometric micro-patterned surfaces of silicon combined with porous silicon (Si/PSi) have been manufactured to study the behaviour of human Mesenchymal Stem Cells (hMSCs). These micro-patterns consist of regular silicon hexagons surrounded by spaced columns of silicon equilateral triangles separated by PSi. The results show that, at an early culture stage, the hMSCs resemble quiescent cells on the central hexagons with centered nuclei and actin/β-catenin and a microtubules network denoting cell adhesion. After 2 days, hMSCs adapted their morphology and cytoskeleton proteins from cell-cell dominant interactions at the center of the hexagonal surface. This was followed by an intermediate zone with some external actin fibres/β-catenin interactions and an outer zone where the dominant interactions are cell-silicon. Cells move into silicon columns to divide, migrate and communicate. Furthermore, results show that Runx2 and vitamin D receptors, both specific transcription factors for skeleton-derived cells, are expressed in cells grown on micropatterned silicon under all observed circumstances. On the other hand, non-phenotypic alterations are under cell growth and migration on Si/PSi substrates. The former consideration strongly supports the use of micro-patterned silicon surfaces to address pending questions about the mechanisms of human bone biogenesis/pathogenesis and the study of bone scaffolds.

  12. Thermodynamic States of the Mixed Spin 1/2 and Spin 1 Hexagonal Nanowire System Obtained from a Seven-Site Cluster Within an Improved Mean Field Approximation

    NASA Astrophysics Data System (ADS)

    Mendes, R. G. B.; Barreto, F. C. Sá; Santos, J. P.

    2018-04-01

    The mean field approximation results in the mixedspin 1/2 Ising model and spin 1 Blume-Capel model, in the hexagonal nanowire system, are obtained from the Bogoliubov inequality. The Gibbs free energy, magnetization, and critical frontiers are obtained. Besides the stable branches of the order parameters, we obtain the metastable and unstable parts of these curves and also find phase transitions of the metastable branches of the order parameters. The classification of the stable, metastable, and unstable states is made by comparing the free energy values of these states.

  13. Single-layer graphdiyne-covered Pt(111) surface: improved catalysis confined under two-dimensional overlayer

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Lin, Zheng-Zhe

    2018-05-01

    In recent years, two-dimensional confined catalysis, i.e., the enhanced catalytic reactions in confined space between metal surface and two-dimensional overlayer, makes a hit and opens up a new way to enhance the performance of catalysts. In this work, graphdiyne overlayer was proposed as a more excellent material than graphene or hexagonal boron nitride for two-dimensional confined catalysis on Pt(111) surface. Density functional theory calculations revealed the superiority of graphdiyne overlayer originates from the steric hindrance effect which increases the catalytic ability and lowers the reaction barriers. Moreover, with the big triangle holes as natural gas tunnels, graphdiyne possesses higher efficiency for the transit of gaseous reactants and products than graphene or hexagonal boron nitride. The results in this work would benefit future development of two-dimensional confined catalysis. [Figure not available: see fulltext.

  14. Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization

    PubMed Central

    Kim, Min-A; Jang, Dawon; Tejima, Syogo; Cruz-Silva, Rodolfo; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho; Endo, Morinobu

    2016-01-01

    Large efforts have been made over the last 40 years to increase the mechanical strength of polyacrylonitrile (PAN)-based carbon fibers (CFs) using a variety of chemical or physical protocols. In this paper, we report a new method to increase CFs mechanical strength using a slow heating rate during the carbonization process. This new approach increases both the carbon sp3 bonding and the number of nitrogen atoms with quaternary bonding in the hexagonal carbon network. Theoretical calculations support a crosslinking model promoted by the interstitial carbon atoms located in the graphitic interlayer spaces. The improvement in mechanical performance by a controlled crosslinking between the carbon hexagonal layers of the PAN based CFs is a new concept that can contribute further in the tailoring of CFs performance based on the understanding of their microstructure down to the atomic scale. PMID:27004752

  15. Raman Scattering Study of the Soft Phonon Mode in the Hexagonal Ferroelectric Crystal KNiCl 3

    NASA Astrophysics Data System (ADS)

    Machida, Ken-ichi; Kato, Tetsuya; Chao, Peng; Iio, Katsunori

    1997-10-01

    Raman spectra of some phonon modes of the hexagonal ferroelectriccrystal KNiCl3are obtained in the temperature range between 290 K and 590 K, which includes the structural phase transition point T2(=561 K) at which previous measurements of dielectric constant and spontaneouspolarization as a function of temperature had shown that KNiCl3 undergoes a transition between polar phases II and III. An optical birefringence measurement carried outas a complement to the present Raman scattering revealed that this transition is of second order. Towards this transition point, the totally symmetric phonon mode with the lowest frequency observed in the room-temperature phasewas found to soften with increasing temperature.The present results provide new information on the phase-transitionmechanism and the space groups of thehigher (II)- and lower (III)-symmetric phases around T2.

  16. Fabrication of a Stable New Polymorph Gold Nanowire with Sixfold Rotational Symmetry.

    PubMed

    Lee, Seonhee; Bae, Changdeuck; Lee, Jubok; Lee, Subin; Oh, Sang Ho; Kim, Jeongyong; Park, Gyeong-Su; Jung, Hyun Suk; Shin, Hyunjung

    2018-04-01

    Gold is known as the most noblest metal with only face-centered cubic (fcc) structure in ambient conditions. Here, stable hexagonal non-close-packed (ncp) gold nanowires (NWs), having a diameter of about 50 nm and aspect ratios of well over 400, are reported. Au NWs are grown in the confined system of nanotubular TiO 2 arrays via photoelectrochemical reduction of HAuCl 4 precursors. Some of the resulting Au NWs are proved to have sixfold rotational symmetry, observed by transmission electron microscopy tilting experiments. This new polymorph is identified as a hexagonal ncp-structure with lattice parameters of a = 2.884 Å and c = 7.150 Å, showing quite a large interplanar spacing (c/a ≈ 2.48). That is, Au atoms are close-packed along the ab plane, but each plane is not closely stacked along the c axis like in graphite. The structure is usually expected to be unstable, but the present ncp-2H gold is stable under ambient conditions and intense electron beam irradiation, and shows thermal stability up to 400 °C. Moreover, the resulting physical properties as a result of the corresponding change in electronic structures are investigated by comparing the optical properties of fcc and ncp-2H Au NWs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki

    2009-09-15

    Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectramore » showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted« less

  18. Bootstrapping a five-loop amplitude using Steinmann relations

    DOE PAGES

    Caron-Huot, Simon; Dixon, Lance J.; McLeod, Andrew; ...

    2016-12-05

    Here, the analytic structure of scattering amplitudes is restricted by Steinmann relations, which enforce the vanishing of certain discontinuities of discontinuities. We show that these relations dramatically simplify the function space for the hexagon function bootstrap in planar maximally supersymmetric Yang-Mills theory. Armed with this simplification, along with the constraints of dual conformal symmetry and Regge exponentiation, we obtain the complete five-loop six-particle amplitude.

  19. Synthesis and structural characterization of the Zintl phases Na{sub 3}Ca{sub 3}TrPn{sub 4}, Na{sub 3}Sr{sub 3}TrPn{sub 4}, and Na{sub 3}Eu{sub 3}TrPn{sub 4} (Tr=Al, Ga, In; Pn=P, As, Sb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Suen, Nian-Tzu; College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002

    15 new quaternary Zintl phases have been synthesized by solid-state reactions from the respective elements, and their structures have been determined by single-crystal X-ray diffraction. Na{sub 3}E{sub 3}TrPn{sub 4} (E=Ca, Sr, Eu; Tr=Al, Ga, In; Pn=P, As, Sb) crystallize in the hexagonal crystal system with the non-centrosymmetric space group P6{sub 3}mc (No. 186). The structure represents a variant of the K{sub 6}HgS{sub 4} structure type (Pearson index hP22) and features [TrPn{sub 4}]{sup 9–} tetrahedral units, surrounded by Na{sup +} and Ca{sup 2+}, Sr{sup 2+}, Eu{sup 2+} cations. The nominal formula rationalization [Na{sup +}]{sub 3}[E{sup 2+}]{sub 3}[TrPn{sub 4}]{sup 9–} follows themore » octet rule, suggesting closed-shell configurations for all atoms and intrinsic semiconducting behavior. However, structure refinements for several members hint at disorder and mixing of cations that potentially counteract the optimal valence electron count. - Graphical abstract: The hexagonal, non-centrosymmetric structure of Na{sub 3}E{sub 3}TrPn{sub 4} (E=Ca, Sr, Eu; Tr=Al, Ga, In; Pn=P, As, Sb) features [TrPn{sub 4}]{sup 9–} tetrahedral units, surrounded by Na{sup +} and Ca{sup 2+}, Sr{sup 2+}, Eu{sup 2+} cations. - Highlights: • 15 quaternary phosphides, arsenides, and antimonides are synthesized and structurally characterized. • The structure is a variant of the hexagonal K{sub 6}HgS{sub 4}-type, with distinctive pattern for the cations. • Occupational and/or positional disorder of yet unknown origin exists for some members of the series.« less

  20. Nanoscale heterogeneity as remnant hexagonal-type local structures in shocked Cu-Pb and Zr

    NASA Astrophysics Data System (ADS)

    Tayal, Akhil; Conradson, Steven D.; Batuk, Olga N.; Fensin, Saryu; Cerreta, Ellen; Gray, George T.; Saxena, Avadh

    2017-09-01

    Extended X-ray absorption fine structure spectroscopy was used to determine the local structure in: (1) Zr that had undergone quasistatic elongation; (2) Zr that had undergone plastic deformation by shock at pressures above and below the ω-phase transformation; and (3) shocked Cu that contained a few percent of insoluble Pb. Below the transition pressure, Zr samples showed only general disorder as increases in the widths of the Zr-Zr pair distributions. Above this pressure, Zr that was a mixture of the original hcp and the high pressure ω-phase when measured by diffraction showed two sets of peaks in its distribution corresponding to these two phases. Some of the ones from the ω-phase were at distances substantially different from those calculated from the diffraction pattern, although they are still consistent with small domains exhibiting stacking faults associated with hexagonal-type structural components exhibiting variability in the [0001] basal plane spacing. A similar result, new pairs at just over 3 and 4 Å consistent with hexagonal-type stacking faults in addition to the original fcc structure, is found in shocked Cu despite the absence of a second diffraction pattern and peak pressures being far below those expected to induce an fcc to hcp transition. This result, therefore, demonstrates that the correlation between high strain rates and reduced stacking fault energy continues down to the length scale of atom pairs. These findings are significant as: (1) a microscopic description of the behavior of systems far from equilibrium; (2) a demonstration of the importance of strain rate at short length scales; and (3) a bridge between the abruptness of macroscopic pressure-induced phase transitions and the continuity of martensitic ones over their fluctuation region in terms of the inverse relationship between the length scale of the martensitic texture, manifested here as ordered lattice distortions and the lower pressure at which such texture first appears relative to the bulk transition pressure.

  1. Analysis on the geometrical shape of T-honeycomb structure by finite element method (FEM)

    NASA Astrophysics Data System (ADS)

    Zain, Fitri; Rosli, Muhamad Farizuan; Effendi, M. S. M.; Abdullah, Mohamad Hariri

    2017-09-01

    Geometric in design is much related with our life. Each of the geometrical structure interacts with each other. The overall shape of an object contains other shape inside, and there shapes create a relationship between each other in space. Besides that, how geometry relates to the function of the object have to be considerate. In this project, the main purpose was to design the geometrical shape of modular furniture with the shrinking of Polyethylene Terephthalate (PET) jointing system that has good strength when applied load on it. But, the goal of this paper is focusing on the analysis of Static Cases by FEM of the hexagonal structure to obtain the strength when load apply on it. The review from the existing product has many information and very helpful to finish this paper. This project focuses on hexagonal shape that distributed to become a shelf inspired by honeycomb structure. It is very natural look and simple in shape and its modular structure more easily to separate and combine. The method discusses on chapter methodology are the method used to analysis the strength when the load applied to the structure. The software used to analysis the structure is Finite Element Method from CATIA V5R21 software. Bending test is done on the jointing part between the edges of the hexagonal shape by using Universal Tensile Machine (UTM). The data obtained have been calculate by bending test formulae and sketch the graph between flexural strains versus flexural stress. The material selection of the furniture is focused on wood. There are three different types of wood such as balsa, pine and oak, while the properties of jointing also be mentioned in this thesis. Hence, the design structural for honeycomb shape already have in the market but this design has main objective which has a good strength that can withstand maximum load and offers more potentials in the form of furniture.

  2. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2017-12-08

    A view of the one dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the tennis-court-sized sunshield are the largest and most visible components of the Webb telescope. However, there are four smaller components that are less visible, yet critical. The instruments that will fly aboard Webb - cameras and spectrographs with detectors able to record extremely faint signals — are part of the Integrated Science Instrument Module (ISIM), which is currently undergoing its final cryogenic vacuum test and will be integrated with the mirror later this year. Read more: www.nasa.gov/feature/goddard/2016/by-the-dozen-nasas-jame... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2016-01-07

    Caption: One dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the tennis-court-sized sunshield are the largest and most visible components of the Webb telescope. However, there are four smaller components that are less visible, yet critical. The instruments that will fly aboard Webb - cameras and spectrographs with detectors able to record extremely faint signals — are part of the Integrated Science Instrument Module (ISIM), which is currently undergoing its final cryogenic vacuum test and will be integrated with the mirror later this year. Read more: www.nasa.gov/feature/goddard/2016/by-the-dozen-nasas-jame... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. The effects of Rashba spin-orbit coupling on spin-polarized transport in hexagonal graphene nano-rings and flakes

    NASA Astrophysics Data System (ADS)

    Laghaei, M.; Heidari Semiromi, E.

    2018-03-01

    Quantum transport properties and spin polarization in hexagonal graphene nanostructures with zigzag edges and different sizes were investigated in the presence of Rashba spin-orbit interaction (RSOI). The nanostructure was considered as a channel to which two semi-infinite armchair graphene nanoribbons were coupled as input and output leads. Spin transmission and spin polarization in x, y, and z directions were calculated through applying Landauer-Buttiker formalism with tight binding model and the Green's function to the system. In these quantum structures it is shown that changing the size of system, induce and control the spin polarized currents. In short, these graphene systems are typical candidates for electrical spintronic devices as spin filtering.

  5. Deconvolution of interferometric data using interior point iterative algorithms

    NASA Astrophysics Data System (ADS)

    Theys, C.; Lantéri, H.; Aime, C.

    2016-09-01

    We address the problem of deconvolution of astronomical images that could be obtained with future large interferometers in space. The presentation is made in two complementary parts. The first part gives an introduction to the image deconvolution with linear and nonlinear algorithms. The emphasis is made on nonlinear iterative algorithms that verify the constraints of non-negativity and constant flux. The Richardson-Lucy algorithm appears there as a special case for photon counting conditions. More generally, the algorithm published recently by Lanteri et al. (2015) is based on scale invariant divergences without assumption on the statistic model of the data. The two proposed algorithms are interior-point algorithms, the latter being more efficient in terms of speed of calculation. These algorithms are applied to the deconvolution of simulated images corresponding to an interferometric system of 16 diluted telescopes in space. Two non-redundant configurations, one disposed around a circle and the other on an hexagonal lattice, are compared for their effectiveness on a simple astronomical object. The comparison is made in the direct and Fourier spaces. Raw "dirty" images have many artifacts due to replicas of the original object. Linear methods cannot remove these replicas while iterative methods clearly show their efficacy in these examples.

  6. Cermet-fueled reactors for advanced space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, C.L.; Palmer, R.S.; Taylor, I.N.

    Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel weremore » carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.« less

  7. Battery-powered thin film deposition process for coating telescope mirrors in space

    NASA Astrophysics Data System (ADS)

    Sheikh, David A.

    2016-07-01

    Aluminum films manufactured in the vacuum of space may increase the broadband reflectance response of a space telescope operating in the EUV (50-nm to 115-nm) by eliminating absorbing metal-fluorides and metal-oxides, which significantly reduce aluminum's reflectance below 115-nm. Recent developments in battery technology allow small lithium batteries to rapidly discharge large amounts of energy. It is therefore conceivable to power an array of resistive evaporation filaments in a space environment, using a reasonable mass of batteries and other hardware. This paper presents modeling results for coating thickness as a function of position, for aluminum films made with a hexagonal array of battery powered evaporation sources. The model is based on measured data from a single battery-powered evaporation source.

  8. Structure of 18R shifted hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} revisited by neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Fengqi; Kuang, Xiaojun, E-mail: kuangxj@glut.edu.cn

    The structure of 18-layer shifted B-site deficient hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} compound has been re-examined by neutron powder diffraction. Structural analysis reveals that La{sub 6}MgTi{sub 4}O{sub 18} compound adopts a 18R octahedral-tilted structure with LaO{sub 3} layer stacking sequence of (hhcccc){sub 3} in space group R{sup {sup -}}3, in contrast with the previously proposed R3m. La{sub 6}MgTi{sub 4}O{sub 18} demonstrates partially ordered Mg cation distribution with a preference on the central octahedral sites over the outer octahedral sites in the cubic perovskite blocks isolated by the single vacant octahedral layers between the two consecutive hexagonal layers. The instabilitymore » of the La{sub 6}MgTi{sub 4}O{sub 18} on alumina ceramic substrate at high temperature and its dependencies of cell parameters and permittivity were characterized as well. - Graphical abstract: 18-layer shifted hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} adopts octahedral-tilted structure in R{sup {sup -}}3 and demonstrates partially ordered Mg distribution in the cubic perovskite blocks isolated by the vacant octahedral layers. - Highlights: • Neutron diffraction reveals an octahedra-tilted structure in R{sup {sup -}}3 for La{sub 6}MgTi{sub 4}O{sub 18}. • Mg/Ti distribution in La{sub 6}MgTi{sub 4}O{sub 18} is partially ordered in the perovskite blocks. • Instability of La{sub 6}MgTi{sub 4}O{sub 18} on alumina ceramic at high temperature is demonstrated.« less

  9. Formation of metastable phases during heat treatment of multilayers in the Al-Pt system

    NASA Astrophysics Data System (ADS)

    Lábár, János L.; Kovács, András; Barna, Péter B.; Gas, Patrick

    2001-12-01

    This communication reports that several metastable phases form subsequently during heat treatment (up to 500 °C) of Al-rich Al-Pt multilayers. Besides the known a(amorphous)-Al2Pt, formation of two metastable phases with a composition close to Al5Pt was also observed in a transmission electron microscope. One of them corresponds to a phase given by space group P4 in Pearson's collection of intermetallic compounds. The other, a hexagonal phase (a=12.4 Å and c=26.2 Å) is the one that was observed in rapidly solidified Al-Pt alloys [L. Ma, R. Wang, and K. H. Kuo, J. Less-Common Met. 163, 37 (1990)]. Formation of these phases under different conditions is reported here.

  10. Novel Red-Orange Phosphors Na2BaMg(PO4)2:Pr3+: Synthesis, Crystal Structure and Photoluminescence Performance

    NASA Astrophysics Data System (ADS)

    Pan, Lu; Yang, Xiaozhan; Xiong, Chaoyue; Deng, Dashen; Qin, Chunlin; Feng, Wenlin

    2018-01-01

    A series of new red-orange emission phosphors Na2BaMg(PO4)2:Pr3+ were synthesised by a high-temperature solid-state reaction. The crystal structure and photoluminescence properties of these samples were characterised by X-ray diffraction and spectroscopic measurements. This compound holds P3̅m1 space group of the trigonal system with the lattice parameters of hexagonal cell a=0.5304(3) nm and c=0.6989(3) nm. The phosphor emits the strongest peak at 606 nm when excited by 449 nm. The average Commission Internationale de l'Eclairage chromaticity coordinates calculated for the phosphors are (0.52, 0.46). The results demonstrate the potential application of these phosphors in solid-state lighting and other fields.

  11. Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire.

    PubMed

    Jang, A-Rang; Hong, Seokmo; Hyun, Chohee; Yoon, Seong In; Kim, Gwangwoo; Jeong, Hu Young; Shin, Tae Joo; Park, Sung O; Wong, Kester; Kwak, Sang Kyu; Park, Noejung; Yu, Kwangnam; Choi, Eunjip; Mishchenko, Artem; Withers, Freddie; Novoselov, Kostya S; Lim, Hyunseob; Shin, Hyeon Suk

    2016-05-11

    Large-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order. A facile method for transferring hexagonal boron nitride onto other target substrates was developed, which provides the opportunity for using hexagonal boron nitride as a substrate in practical electronic circuits. A graphene field effect transistor fabricated on our hexagonal boron nitride sheets shows clear quantum oscillation and highly improved carrier mobility because the ultraflatness of the hexagonal boron nitride surface can reduce the substrate-induced degradation of the carrier mobility of two-dimensional materials.

  12. Synthesis, structure, and polymorphism of A{sub 3}LnSi{sub 2}O{sub 7} (A=Na, K; Ln=Sm, Ho, Yb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latshaw, Allison M.; Yeon, Jeongho; Smith, Mark D.

    2016-03-15

    Four new members of the A{sub 3}LnSi{sub 2}O{sub 7} family, K{sub 3}SmSi{sub 2}O{sub 7}, Na{sub 3}HoSi{sub 2}O{sub 7}, and two polymorphs of Na{sub 3}YbSi{sub 2}O{sub 7}, are reported. K{sub 3}SmSi{sub 2}O{sub 7} crystallizes in the hexagonal space group P6{sub 3}/mcm, Na{sub 3}HoSi{sub 2}O{sub 7} and Na{sub 3}YbSi{sub 2}O{sub 7} crystallize in the hexagonal space group P6{sub 3}/m, and Na{sub 3}YbSi{sub 2}O{sub 7} crystallizes in the trigonal space group P31c. The Na{sub 3}YbSi{sub 2}O{sub 7} composition that crystallizes in P31c is a new structure type. The magnetic properties for the Ho and Yb analogs are reported. - Graphical abstract: The differentmore » structure types and polymorphs of the A{sub 3}LnSi{sub 2}O{sub 7} family reported. - Highlights: • Four new members of the A{sub 3}LnSi{sub 2}O{sub 7} family are presented. • Na{sub 3}YbSi{sub 2}O{sub 7} is reported as two polymorphs, one is a new structure type. • Crystals synthesized out of molten fluoride fluxes.« less

  13. Multilayer hexagonal silicon forming in slit nanopore

    PubMed Central

    He, Yezeng; Li, Hui; Sui, Yanwei; Qi, Jiqiu; Wang, Yanqing; Chen, Zheng; Dong, Jichen; Li, Xiongying

    2015-01-01

    The solidification of two-dimensional liquid silicon confined to a slit nanopore has been studied using molecular dynamics simulations. The results clearly show that the system undergoes an obvious transition from liquid to multilayer hexagonal film with the decrease of temperature, accompanied by dramatic change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the cooling process, some hexagonal islands randomly appear in the liquid first, then grow up to grain nuclei, and finally connect together to form a complete polycrystalline film. Moreover, it is found that the quenching rate and slit size are of vital importance to the freezing structure of silicon film. The results also indicate that the slit nanopore induces the layering of liquid silicon, which further induces the slit size dependent solidification behavior of silicon film with different electrical properties. PMID:26435518

  14. Syntheses, crystal structures, and properties of new layered tungsten(VI)-containing materials based on the hexagonal-WO{sub 3} structure: M{sub 2}(WO{sub 3}){sub 3}SeO{sub 3} (M = NH{sub 4}, Rb, Cs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, W.T.A.; Dussack, L.L.; Jacobson, A.J.

    The hydrothermal syntheses and crystal structures of (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3}, two new noncentrosymmetric, layered tungsten(VI)-containing phases are reported. Infrared, Raman, and thermogravimetric data are also presented. (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3} are isostructural phases built up from hexagonal-tungsten-oxide-like, anionic layers of vertex-sharing WO{sub 6} octahedra, capped on one side by Se atoms (as selenite groups). Interlayer NH{sub 4}{sup +} or Cs{sup +} cations provide charge balance. The full H-bonding scheme in (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} has been elucidated from Rietveld refinement againstmore » neutron powder diffraction data. The WO{sub 6} octahedra display a 3 short + 3 long W-O bond-distance distribution within the WO{sub 6} unit in both these phases. (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3} are isostructural with their molybdenum(VI)-containing analogues (NH{sub 4}){sub 2}(MoO{sub 3}){sub 3}SeO{sub 3} and Cs{sub 2} (MoO{sub 3}){sub 3}SeO{sub 3}. Crystal data: (NH{sub 4}){sub 2}(WO{sub 3}){sub 3}SeO{sub 3}, M{sub r} = 858.58, hexagonal, space group P6{sub 3} (No. 173), a = 7.2291(2) {angstrom}, c = 12.1486(3) {angstrom}, V = 549.82(3) {angstrom}{sup 3}, Z = 2, R{sub p} = 1.81%, and R{sub wp} = 2.29% (2938 neutron powder data). Cs{sub 2}(WO{sub 3}){sub 3}SeO{sub 3}, M{sub r} = 1088.31, hexagonal, space group P6{sub 3} (no. 173), a = 7.2615(2) {angstrom}, c = 12.5426(3) {angstrom}{sup 3}, Z = 2, R{sub p} = 4.84%, and R{sub wp} = 5.98% (2588 neutron powder data).« less

  15. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce G. Schnitzler; Stanley K. Borowski

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified asmore » the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.« less

  16. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Schnitzler, Bruce G.; Borowski, Stanley K.

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.

  17. Wear at the Implant-Abutment Interface of Zirconia Abutments Manufactured by Three CAD/CAM Systems.

    PubMed

    Pinheiro Tannure, Ana Luiza; Cunha, Alfredo Gonçalves; Borges Junior, Luiz Antônio; da Silva Concílio, Laís Regiane; Claro Neves, Ana Christina

    To evaluate the changes in the external-hexagon surface of the titanium (Ti) implant before and after mechanical cycling, when coupled with zirconia (Zr) abutments (A) manufactured by three computer-aided design/computer-aided manufacturing (CAD/CAM) systems (Neodent Digital, Zirkonzahn, and AmannGirrbach) and the ZrTi abutment manufactured by Neodent. Four groups were formed (n = 6): titanium implant with Zr AmannGirrbach abutment (AZrAG), with Zr Zirkonzahn abutment (AZrZ), with Zr Neodent abutment (AZrN), and with Zr abutment with infrastructure in Ti Neodent (AZrTiN). Standardized abutments were made from three identical abutments milled in wax. Images of the surface of each side of the hexagons of the implant were obtained by scanning electron microscopy, before and after mechanical cycling, to evaluate the parameters: (1) scratches in the hexagon face; (2) hexagon superior shoulder kneading; (3) hexagon shoulder wear; (4) alterations on the hexagon base; and (5) scratches on the hexagon top. The abutments were coupled with the implants, and Cr-Co crowns were cemented. The implant/abutment/crown assemblies were submitted to mechanical cycling (400 N, 8.0 Hz) for 1 million cycles. The observed changes were classified as follows: absence (0), mild (1), moderate (2), and severe (3). The results were analyzed using the Mann-Whitney, Kruskal-Wallis, and Dunn tests (P < .05). For parameter 1, a significant difference (P = .008) was observed between AZrZ and AZrAG, with more scratches in AZrZ; and between AZrN and AZrTiN (P = .006), with more scratches in AZrN. For parameter 2, a significant difference (P < .05) was observed between AZrZ and AZrAG and between AZrZ and AZrN, with greater kneading in AZrZ; among AZrN and AZrTiN, there was no significant difference (P = .103). For parameter 3, a significant difference (P < .05) was observed between AZrZ and the other groups of Zr, with more wear in AZrZ; between AZrN and AZrTiN, there was no significant difference (P = .107). For parameter 4, a significant difference (P < .05) was observed between AZrZ and AZrN, with more scratches in AZrZ; a significant difference (P = .002) was also observed between AZrN and AZrTiN, with more scratches in AZrN. For parameter 5, a significant difference (P < .05) was observed between AZrZ and AZrAG and between AZrZ and AZrN, with the fewest scratches in AZrZ; a significant difference (P = .006) was also observed between AZrN and AZrTiN, with more alterations in AZrN. Considering all the alterations, the AZrZ group showed more surface alteration, 1.74 (0.99); followed by AZrN, 1.43 (0.92); AZrAG, 1.32 (0.96); and AZrTiN, 0.88 (0.94). Among the Neodent abutments, the AZrN group had shown more surface alterations. Among the Zr groups, AZrZ samples had shown the most altered surfaces, suggesting that alterations on the implant/Zr abutment hexagon surfaces are related to the abutment milled hexagon shape.

  18. Immersion Freezing of Aluminas: The Effect of Crystallographic Properties on Ice Nucleation

    NASA Astrophysics Data System (ADS)

    King, M.; Chong, E.; Freedman, M. A.

    2017-12-01

    Atmospheric aerosol particles serve as the nuclei for heterogeneous ice nucleation, a process that allows for ice to form at higher temperatures and lower supersaturations with respect to ice. This process is essential to the formation of ice in cirrus clouds. Heterogeneous ice nucleation is affected by many factors including the composition, crystal structure, porosity, and surface area of the particles. However, these factors are not well understood and, as such, are difficult to account for in climate models. To test the effects of crystal structure on ice nucleation, a system of transition aluminas (Al2O3) that differ only in their crystal structure, despite being compositionally similar, were tested using immersion freezing. Particles were immersed in water and placed into a temperature controlled chamber. Freezing events were then recorded as the chamber was cooled to negative 30 °. Alpha-alumina, which is a member of the hexagonal crystal system, showed a significantly higher temperature at which all particles froze in comparison to other samples. This supports the hypothesis that, since a hexagonal crystal structure is the lowest energy state for ice, hexagonal surface structures would best facilitate ice nucleation. However, a similar sample of hexagonal chi-alumina did not show the same results. Further analysis of the samples will be done to characterize surface structures and composition. These conflicting data sets raise interesting questions about the effect of other surface features, such as surface area and porosity, on ice nucleation.

  19. Geometric Triangular Chiral Hexagon Crystal-Like Complexes Organization in Pathological Tissues Biological Collision Order

    PubMed Central

    Díaz, Jairo A.; Jaramillo, Natalia A.; Murillo, Mauricio F.

    2007-01-01

    The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC) in human pathological tissues.The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further interdisciplinary studies must be carried out to reproduce, manipulate and amplify their activity and probably use them as a base to develop new therapeutic strategies in cancer. PMID:18074008

  20. A Realtime Active Feedback Control System For Coupled Nonlinear Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Tompkins, Nathan; Fraden, Seth

    2012-02-01

    We study the manipulation and control of oscillatory networks. As a model system we use an emulsion of Belousov-Zhabotinsky (BZ) oscillators packed on a hexagonal lattice. Each drop is observed and perturbed by a Programmable Illumination Microscope (PIM). The PIM allows us to track individual BZ oscillators, calculate the phase and order parameters of every drop, and selectively perturb specific drops with photo illumination, all in realtime. To date we have determined the native attractor patterns for drops in 1D arrays and 2D hexagonal packing as a function of coupling strength as well as determined methods to move the system from one attractor basin to another. Current work involves implementing these attractor control methods with our experimental system and future work will likely include implementing a model neural network for use with photo controllable BZ emulsions.

  1. Spatial Factors in the Integration of Speed Information

    NASA Technical Reports Server (NTRS)

    Verghese, P.; Stone, L. S.; Hargens, Alan R. (Technical Monitor)

    1995-01-01

    We reported that, for a 21FC task with multiple Gabor patches in each interval, thresholds for speed discrimination decreased with the number of patches, while simply increasing the area of a single patch produced no such effect. This result could be explained by multiple patches reducing spatial uncertainty. However, the fact that thresholds decrease with number even when the patches are in fixed positions argues against this explanation. We therefore performed additional experiments to explore the lack of an area effect. Three observers did a 21FC speed discrimination task with 6 Gabor patches in each interval, and were asked to pick the interval in which the gratings moved faster. The 50% contrast patches were placed on a circle at 4 deg. eccentricity, either equally spaced and maximally separated (hexagonal array), or closely-spaced, in consecutive positions (string of pearls). For the string-of-pearls condition, the grating phases were either random, or consistent with a full-field grating viewed through multiple Gaussian windows. When grating phases were random, the thresholds for the hexagonal and string-of-pearls layouts were indistinguishable. For the string-of-pearls layout, thresholds in the consistent-phase condition were higher by 15 +/- 6% than in the random-phase condition. (Thresholds increased by 57 +/- 7% in going from 6 patches to a single patch of equivalent area.). For random-phase patches, the lower thresholds for 6 patches does not depend on a specific spacing or spatial layout. Multiple, closely-spaced, consistent-phase patches that can be interpreted as a single grating, result in thresholds closer to that produced by a single patch. Together, our results suggest that object segmentation may play a role in the integration of speed information.

  2. The four-loop six-gluon NMHV ratio function

    DOE PAGES

    Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.

    2016-01-11

    We use the hexagon function bootstrap to compute the ratio function which characterizes the next-to-maximally-helicity-violating (NMHV) six-point amplitude in planar N=4 super-Yang-Mills theory at four loops. A powerful constraint comes from dual superconformal invariance, in the form of a Q¯ differential equation, which heavily constrains the first derivatives of the transcendental functions entering the ratio function. At four loops, it leaves only a 34-parameter space of functions. Constraints from the collinear limits, and from the multi-Regge limit at the leading-logarithmic (LL) and next-to-leading-logarithmic (NLL) order, suffice to fix these parameters and obtain a unique result. We test the result againstmore » multi-Regge predictions at NNLL and N 3LL, and against predictions from the operator product expansion involving one and two flux-tube excitations; all cross-checks are satisfied. We study the analytical and numerical behavior of the parity-even and parity-odd parts on various lines and surfaces traversing the three-dimensional space of cross ratios. As part of this program, we characterize all irreducible hexagon functions through weight eight in terms of their coproduct. As a result, we also provide representations of the ratio function in particular kinematic regions in terms of multiple polylogarithms.« less

  3. The four-loop six-gluon NMHV ratio function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.

    2016-01-11

    We use the hexagon function bootstrap to compute the ratio function which characterizes the next-to-maximally-helicity-violating (NMHV) six-point amplitude in planar N = 4 super-Yang-Mills theory at four loops. A powerful constraint comes from dual superconformal invariance, in the form of a Q - differential equation, which heavily constrains the first derivatives of the transcendental functions entering the ratio function. At four loops, it leaves only a 34-parameter space of functions. Constraints from the collinear limits, and from the multi-Regge limit at the leading-logarithmic (LL) and next-to-leading-logarithmic (NLL) order, suffice to fix these parameters and obtain a unique result. We testmore » the result against multi- Regge predictions at NNLL and N 3LL, and against predictions from the operator product expansion involving one and two flux-tube excitations; all cross-checks are satisfied. We also study the analytical and numerical behavior of the parity-even and parity-odd parts on various lines and surfaces traversing the three-dimensional space of cross ratios. As part of this program, we characterize all irreducible hexagon functions through weight eight in terms of their coproduct. Furthermore, we provide representations of the ratio function in particular kinematic regions in terms of multiple polylogarithms.« less

  4. Enhancement of magnetocaloric effect by external hydrostatic pressure in MnNi0.75Fe0.25Ge alloy

    NASA Astrophysics Data System (ADS)

    Mandal, K.; Dutta, P.; Dasgupta, P.; Pramanick, S.; Chatterjee, S.

    2018-06-01

    A systematic investigation on the structural and magnetic properties of an Fe-doped MnNiGe alloy with nominal composition MnNi0.75Fe0.25Ge has been performed. Temperature dependent x-ray diffraction studies indicate a clear structural phase transition (martensitic type) from the high temperature hexagonal austenite phase (space group P63/mmc) to the low temperature orthorhombic martensite phase (space group Pnma). Interestingly, about 1.4% of the high temperature hexagonal phase has been observed at 15 K, which is well below the martensitic phase transition (MPT) temperature. The studied alloy is found to be ferromagnetic in nature at the lowest temperature of measurement and the saturation moment increases in the presence of external hydrostatic pressure (P). In addition, it shows a significantly large conventional (negative) magnetocaloric effect with an adiabatic entropy change () of about ‑16.2 J kg‑1 K‑1 around the MPT for a magnetic field changing from 0  →  5 T. The most interesting observation is the  ∼40.1% increase in the peak value of on application of 6 kbar of external P. A considerable increment in the refrigeration capacity has also been noted with the applied P.

  5. Crystallization and preliminary X-ray diffraction analysis of a novel Arg49 phospholipase A{sub 2} homologue from Zhaoermia mangshanensis venom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Mário T.; Center for Applied Toxinology, CAT-CEPID, São Paulo, SP; Advanced Center for Genomics and Proteomics, UNESP-State University of São Paulo, São José do Rio Preto 15054-000

    2007-07-01

    A single crystal of zhaoermiatoxin with maximum dimensions of 0.2 × 0.2 × 0.5 mm was used for X-ray diffraction data collection to a resolution of 2.05 Å using synchrotron radiation and the diffraction pattern was indexed in the hexagonal space group P6{sub 4}, with unit-cell parameters a = 72.9, b = 72.9, c = 93.9 Å. Zhaoermiatoxin, an Arg49 phospholipase A{sub 2} homologue from Zhaoermia mangshanensis (formerly Trimeresurus mangshanensis, Ermia mangshanensis) venom is a novel member of the PLA{sub 2}-homologue family that possesses an arginine residue at position 49, probably arising from a secondary Lys49→Arg substitution that does notmore » alter the catalytic inactivity towards phospholipids. Like other Lys49 PLA{sub 2} homologues, zhaoermiatoxin induces oedema and strong myonecrosis without detectable PLA{sub 2} catalytic activity. A single crystal with maximum dimensions of 0.2 × 0.2 × 0.5 mm was used for X-ray diffraction data collection to a resolution of 2.05 Å using synchrotron radiation and the diffraction pattern was indexed in the hexagonal space group P6{sub 4}, with unit-cell parameters a = 72.9, b = 72.9, c = 93.9 Å.« less

  6. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2016-01-03

    Caption: One dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the tennis-court-sized sunshield are the largest and most visible components of the Webb telescope. However, there are four smaller components that are less visible, yet critical. The instruments that will fly aboard Webb - cameras and spectrographs with detectors able to record extremely faint signals — are part of the Integrated Science Instrument Module (ISIM), which is currently undergoing its final cryogenic vacuum test and will be integrated with the mirror later this year.

  7. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2016-01-03

    A view of the one dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the tennis-court-sized sunshield are the largest and most visible components of the Webb telescope. However, there are four smaller components that are less visible, yet critical. The instruments that will fly aboard Webb - cameras and spectrographs with detectors able to record extremely faint signals — are part of the Integrated Science Instrument Module (ISIM), which is currently undergoing its final cryogenic vacuum test and will be integrated with the mirror later this year.

  8. The barium iron ruthenium oxide system

    NASA Technical Reports Server (NTRS)

    Kemmler-Sack, S.; Ehmann, A.

    1986-01-01

    In the system BaFe(1-x)Ru(x)O(3-y), three phases, separated by immiscibility gaps, are present: an Fe-rich phase (x = 0 to 0.75) with hexagonal BaTiO3 structure (6H; sequence (hcc)2), a Ru-rich phase (x = 0.9) of hexagonal 4H-type (sequence (hc)2), and the pure Ru compounds BaRuO3 with rhombohedral 9R structure (sequence (hhc)3). By vibrational spectroscopic investigations in the 6H phase a transition from n-type semiconduction (Fe-rich compounds with complete O lattice) can be detected. The 4H and 9R stacking polytypes are good, metal-like conductors. The lattice parameters are given.

  9. Two-dimensional inorganic-organic perovskite hexagonal nanosheets: growth and mechanism

    NASA Astrophysics Data System (ADS)

    Shakya, Suman; Prakash, G. Vijaya

    2015-03-01

    In this era of novel technological materials, inorganic-organic (IO) materials has emerged as new class of materials for their application in photonic materials, miniaturized sensors, optoelectronic devices, non-linear optical apparatus by exploiting the properties of both constituents in a single entity. Here we present the formation and growth mechanism of two dimensional Inorganic-organic (IO) perovskite structures from anisotropically grown PbO hexagonal nanosheets, in three steps: Fabrication of hexagonal PbO nanosheets by the versatile bottom-up electrochemical deposition technique, iodinization of PbO into PbI2, followed by conversion of PbI2 into IO hybrid by the intercalation of organic moiety. A systematic and detailed structural study reveals that PbO nanosheet formation is more likely to result from an oriented attachment mechanism, in which the sheets formed by the reduction in surface area that happens during aggregation of small nanoparticle that each has a net dipole moment, which tends to form a self-assembled structure. Intercalation of organic moiety into the PbI2 layers yielded a selfassembled quantum-wells system of one of the IO hybrid, i.e. (C6H9C2H4NH3)2PbI4 (CHPI), sustaining the hexagonal shape.

  10. Surface micromachined MEMS deformable mirror based on hexagonal parallel-plate electrostatic actuator

    NASA Astrophysics Data System (ADS)

    Ma, Wenying; Ma, Changwei; Wang, Weimin

    2018-03-01

    Deformable mirrors (DM) based on microelectromechanical system (MEMS) technology are being applied in adaptive optics (AO) system for astronomical telescopes and human eyes more and more. In this paper a MEMS DM with hexagonal actuator is proposed and designed. The relationship between structural design and performance parameters, mainly actuator coupling, is analyzed carefully and calculated. The optimum value of actuator coupling is obtained. A 7-element DM prototype is fabricated using a commercial available standard three-layer polysilicon surface multi-user-MEMS-processes (PolyMUMPs). Some key performances, including surface figure and voltage-displacement curve, are measured through a 3D white light profiler. The measured performances are very consistent with the theoretical values. The proposed DM will benefit the miniaturization of AO systems and lower their cost.

  11. Domain configurations in dislocations embedded hexagonal manganite systems: From the view of graph theory

    NASA Astrophysics Data System (ADS)

    Cheng, Shaobo; Zhang, Dong; Deng, Shiqing; Li, Xing; Li, Jun; Tan, Guotai; Zhu, Yimei; Zhu, Jing

    2018-04-01

    Topological defects and their interactions often arouse multiple types of emerging phenomena from edge states in Skyrmions to disclination pairs in liquid crystals. In hexagonal manganites, partial edge dislocations, a prototype topological defect, are ubiquitous and they significantly alter the topologically protected domains and their behaviors. Herein, combining electron microscopy experiment and graph theory analysis, we report a systematic study of the connections and configurations of domains in this dislocation embedded system. Rules for domain arrangement are established. The dividing line between domains, which can be attributed by the strain field of dislocations, is accurately described by a genus model from a higher dimension in the graph theory. Our results open a door for the understanding of domain patterns in topologically protected multiferroic systems.

  12. Load-Bearing Capacity and Retention of Newly Developed Micro-Locking Implant Prosthetic System: An In Vitro Pilot Study.

    PubMed

    Choi, Jae-Won; Choi, Kyung-Hee; Chae, Hee-Jin; Chae, Sung-Ki; Bae, Eun-Bin; Lee, Jin-Ju; Lee, So-Hyoun; Jeong, Chang-Mo; Huh, Jung-Bo

    2018-04-06

    The aim of this study was to introduce the newly developed micro-locking implant prosthetic system and to evaluate the resulting its characteristics. To evaluate load-bearing capacity, 25 implants were divided into five groups: external-hexagon connection (EH), internal-octagon connection (IO), internal-hexagon connection (IH), one-body implant (OB), micro-locking implant system (ML). The maximum compressive load was measured using a universal testing machine (UTM) according to the ISO 14801. Retention was evaluated in two experiments: (1) a tensile test of the structure modifications of the components (attachment and implant) and (2) a tensile test after cyclic loading (total 5,000,000 cycles, 100 N, 2 Hz). The load-bearing capacity of the ML group was not significantly different from the other groups ( p > 0.05). The number of balls in the attachment and the presence of a hexagonal receptacle did not show a significant correlation with retention ( p > 0.05), but the shape of the retentive groove in the implant post had a statistically significant effect on retention ( p < 0.05). On the other hand, the retention loss was observed during the initial 1,000,000 cycles, but an overall constant retention was maintained afterward. Various preclinical studies on this novel micro-locking implant prosthetic system should continue so that it can be applied in clinical practice.

  13. Load-Bearing Capacity and Retention of Newly Developed Micro-Locking Implant Prosthetic System: An In Vitro Pilot Study

    PubMed Central

    Choi, Kyung-Hee; Chae, Hee-Jin; Chae, Sung-Ki; Bae, Eun-Bin; Lee, Jin-Ju; Lee, So-Hyoun; Jeong, Chang-Mo; Huh, Jung-Bo

    2018-01-01

    The aim of this study was to introduce the newly developed micro-locking implant prosthetic system and to evaluate the resulting its characteristics. To evaluate load-bearing capacity, 25 implants were divided into five groups: external-hexagon connection (EH), internal-octagon connection (IO), internal-hexagon connection (IH), one-body implant (OB), micro-locking implant system (ML). The maximum compressive load was measured using a universal testing machine (UTM) according to the ISO 14801. Retention was evaluated in two experiments: (1) a tensile test of the structure modifications of the components (attachment and implant) and (2) a tensile test after cyclic loading (total 5,000,000 cycles, 100 N, 2 Hz). The load-bearing capacity of the ML group was not significantly different from the other groups (p > 0.05). The number of balls in the attachment and the presence of a hexagonal receptacle did not show a significant correlation with retention (p > 0.05), but the shape of the retentive groove in the implant post had a statistically significant effect on retention (p < 0.05). On the other hand, the retention loss was observed during the initial 1,000,000 cycles, but an overall constant retention was maintained afterward. Various preclinical studies on this novel micro-locking implant prosthetic system should continue so that it can be applied in clinical practice. PMID:29642407

  14. [Study of the interaction of alpha-tocopherol with phospholipids, fatty acids, and their oxygenated derivatives by (31)P-NMR spectroscopy].

    PubMed

    Chudinova, V V; Zakharova, E I; Alekseev, S M; Chupin, V V; Evstigneeva, R P

    1993-02-01

    Interaction of alpha-tocopherol with phospholipids, oleic, ricinoleic acids and linoleic acid hydroperoxides was investigated by means of 31P NMR spectroscopy on a model artificial membranes containing egg phosphatidylcholine and lysophosphatidylcholine. alpha-Tocopherol was shown to support the bilayer organization of lysophospholipids, whereas its introduction into the lecithin-water system stimulated the hexagonal phase formation. Free fatty acids exhibited a synergism to alpha-tocopherol, the effect of the hexagonal phase formation being at most increased by oxygenated acids--ricinoleic acid and linoleic acid hydroperoxides. In accordance with the experimental data, a conclusion about modifying and structuring action of alpha-tocopherol was made. Origin of the alpha-tocopherol's modulating effect on the membrane structure and a possible role of hexagonal phase forming upon its action in the course of peroxidation of lipids was discussed.

  15. Wet formation and structural characterization of quasi-hexagonal monolayers.

    PubMed

    Batys, Piotr; Weroński, Paweł; Nosek, Magdalena

    2016-01-01

    We have presented a simple and efficient method for producing dense particle monolayers with controlled surface coverage. The method is based on particle sedimentation, manipulation of the particle-substrate electrostatic interaction, and gentle mechanical vibration of the system. It allows for obtaining quasi-hexagonal structures under wet conditions. Using this method, we have produced a monolayer of 3 μm silica particles on a glassy carbon substrate. By optical microscopy, we have determined the coordinates of the particles and surface coverage of the obtained structure to be 0.82. We have characterized the monolayer structure by means of the pair-correlation function and power spectrum. We have also compared the results with those for a 2D hexagonal monolayer and monolayer generated by random sequential adsorption at the coverage 0.50. We have found the surface fractal dimension to be 2.5, independently of the monolayer surface coverage. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. 61Ni synchrotron radiation-based Mössbauer spectroscopy of nickel-based nanoparticles with hexagonal structure

    PubMed Central

    Masuda, Ryo; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Yoda, Yoshitaka; Mitsui, Takaya; Hosoi, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi; Seto, Makoto

    2016-01-01

    We measured the synchrotron-radiation (SR)-based Mössbauer spectra of Ni-based nanoparticles with a hexagonal structure that were synthesised by chemical reduction. To obtain Mössbauer spectra of the nanoparticles without 61Ni enrichment, we developed a measurement system for 61Ni SR-based Mössbauer absorption spectroscopy without X-ray windows between the 61Ni84V16 standard energy alloy and detector. The counting rate of the 61Ni nuclear resonant scattering in the system was enhanced by the detection of internal conversion electrons and the close proximity between the energy standard and the detector. The spectrum measured at 4 K revealed the internal magnetic field of the nanoparticles was 3.4 ± 0.9 T, corresponding to a Ni atomic magnetic moment of 0.3 Bohr magneton. This differs from the value of Ni3C and the theoretically predicted value of hexagonal-close-packed (hcp)-Ni and suggested the nanoparticle possessed intermediate carbon content between hcp-Ni and Ni3C of approximately 10 atomic % of Ni. The improved 61Ni Mössbauer absorption measurement system is also applicable to various Ni materials without 61Ni enrichment, such as Ni hydride nanoparticles. PMID:26883185

  17. Defect chaos and bursts: hexagonal rotating convection and the complex Ginzburg-Landau equation.

    PubMed

    Madruga, Santiago; Riecke, Hermann; Pesch, Werner

    2006-02-24

    We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq convection in a rotating system using water as the working fluid. We identify two regimes. For weak non-Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscillations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau equation.

  18. Development of Low-cost, High Energy-per-unit-area Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Chitre, S.; Rhee, S. S.

    1978-01-01

    The development of two hexagonal solar cell process sequences, a laserscribing process technique for scribing hexagonal and modified hexagonal solar cells, a large through-put diffusion process, and two surface macrostructure processes suitable for large scale production is reported. Experimental analysis was made on automated spin-on anti-reflective coating equipment and high pressure wafer cleaning equipment. Six hexagonal solar cell modules were fabricated. Also covered is a detailed theoretical analysis on the optimum silicon utilization by modified hexagonal solar cells.

  19. Measurement area and repeatability of semiautomated assessment of corneal endothelium in the Topcon specular microscope SP-2000P and IMAGEnet system.

    PubMed

    Ding, Xiaohu; Huang, Qunxiao; Zheng, Yingfeng; Jiang, Yuzhen; Huang, Shengsong; He, Mingguang

    2012-10-01

    To investigate the repeatability of the semiautomatic assessment of corneal endothelial cells and its association with the measurement area in the Topcon SP-2000P microscope and IMAGEnet system. Specular microscopic images of 86 healthy subjects were captured and analyzed using the Topcon SP-2000P microscope and IMAGEnet system. The same images were analyzed twice, on separate days, by the same examiner using the built-in measurement tool of the IMAGEnet system. The measurement areas were defined with a frame mounted on a computer screen. Four different-sized measurement areas were chosen for the semiautomatic measurements: box A (5.4 × 13.9 cm(2)), box B (4 × 10 cm(2)), box C (4 × 7 cm(2)), and box D (2 × 5 cm(2)). Average cell size (ACS), endothelial cell density (ECD), coefficient of variance, and hexagonality were measured. Repeatability was assessed based on the limit of agreement (LOA). The means of ACS, ECD, and hexagonality were not statistically different across 4 measurement areas (analysis of variance, P > 0.05). The mean differences (bias) were modest for ACS (range, -1.9∼3.9 μm(2)), ECD (range, -27.2∼14.6 cells per square millimeter), coefficient of variance (range, -0.14∼1.00), and hexagonality (range, -1.3%∼6.8%). Limits of agreement (mean difference ± 1.96× SD) were greater in the measurements with smaller areas: limit of agreement values for ECD were 14.6 ± 99.6, -3.8 ± 101.1, -27.2 ± 179, and -15.8 ± 488 cells per square millimeter for boxes A, B, C, and D, respectively. Similar trends were found in the repeatability of ACS and hexagonality. Repeatability is improved when larger measurement areas are chosen.

  20. Print

    NASA Image and Video Library

    2013-09-30

    ISS043-S-001 (April 2013) --- The hexagon (six-sided) shape of the Expedition 43 patch represents the six crew members living and working onboard the orbital outpost. The International Space Station (ISS) is portrayed in orbit around the Earth, representing the multi-national partnership that has constructed, developed, and continues to operate the ISS for the benefit of all humankind. The sunrise marks the beginning of a new day, reflecting the fact that we're at the dawn of our history as a space faring species. The moon and planets represent future exploration of our solar system, for which the ISS is a stepping stone. Finally, the five stars honor the crews who have lost their lives during the pursuit of human spaceflight. The NASA insignia design for shuttle flights and station increments is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  1. Curie-Weiss behavior of Y1-xSrxMnO3 (x = 0 and 0.03)

    NASA Astrophysics Data System (ADS)

    Thakur, Rajesh K.; Thakur, Rasna; Gaur, N. K.; Bharathi, A.; Kaurav, N.; Okram, G. S.

    2015-06-01

    The effect of bivalent cation Sr-doping on magnetic properties in multiferroic YMnO3 manganites was systemically studied by DC magnetic measurements. Both of the reported samples were prepared by solid-state reaction method with composition Y1-xSrxMnO3 (x = 0.00 and 0.03). The X-ray diffraction (XRD) results show that the compounds are synthesized in hexagonal crystal structure with space group P63cm (JCPDS: 25-1079) and slight increase in the lattice parameter is observed with strontium doping. The magnetisation versus temperature curve shows no clear anomaly near the antiferromagnetic transition temperature (TN), however from the magnetic measurements at 1000Oe a slight increase in the magnetisation is clearly witnessed with increasing Stront ium content to the Y-site.

  2. Magneto-elastic coupling across the first-order transition in the distorted kagome lattice antiferromagnet Dy3Ru4Al12

    PubMed Central

    Henriques, M.S.; Gorbunov, D.I.; Kriegner, D.; Vališka, M.; Andreev, A.V.; Matěj, Z.

    2018-01-01

    Structural changes through the first-order paramagnetic-antiferromagnetic phase transition of Dy3Ru4Al12 at 7 K have been studied by means of X-ray diffraction and thermal expansion measurements. The compound crystallizes in a hexagonal crystal structure of Gd3Ru4Al12 type (P63/mmc space group), and no structural phase transition has been found in the temperature interval between 2.5 and 300 K. Nevertheless, due to the spin-lattice coupling the crystal volume undergoes a small orthorhombic distortion of the order of 2×10-5 as the compound enters the antiferromagnetic state. We propose that the first-order phase transition is not driven by the structural changes but rather by the exchange interactions present in the system. PMID:29445250

  3. Pattern formation in superdiffusion Oregonator model

    NASA Astrophysics Data System (ADS)

    Feng, Fan; Yan, Jia; Liu, Fu-Cheng; He, Ya-Feng

    2016-10-01

    Pattern formations in an Oregonator model with superdiffusion are studied in two-dimensional (2D) numerical simulations. Stability analyses are performed by applying Fourier and Laplace transforms to the space fractional reaction-diffusion systems. Antispiral, stable turing patterns, and travelling patterns are observed by changing the diffusion index of the activator. Analyses of Floquet multipliers show that the limit cycle solution loses stability at the wave number of the primitive vector of the travelling hexagonal pattern. We also observed a transition between antispiral and spiral by changing the diffusion index of the inhibitor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Research Foundation of Education Bureau of Hebei Province, China (Grant Nos. Y2012009 and ZD2015025), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project.

  4. Direct detection of metal-insulator phase transitions using the modified Backus-Gilbert method

    NASA Astrophysics Data System (ADS)

    Ulybyshev, Maksim; Winterowd, Christopher; Zafeiropoulos, Savvas

    2018-03-01

    The detection of the (semi)metal-insulator phase transition can be extremely difficult if the local order parameter which characterizes the ordered phase is unknown. In some cases, it is even impossible to define a local order parameter: the most prominent example of such system is the spin liquid state. This state was proposed to exist in the Hubbard model on the hexagonal lattice in a region between the semimetal phase and the antiferromagnetic insulator phase. The existence of this phase has been the subject of a long debate. In order to detect these exotic phases we must use alternative methods to those used for more familiar examples of spontaneous symmetry breaking. We have modified the Backus-Gilbert method of analytic continuation which was previously used in the calculation of the pion quasiparticle mass in lattice QCD. The modification of the method consists of the introduction of the Tikhonov regularization scheme which was used to treat the ill-conditioned kernel. This modified Backus-Gilbert method is applied to the Euclidean propagators in momentum space calculated using the hybrid Monte Carlo algorithm. In this way, it is possible to reconstruct the full dispersion relation and to estimate the mass gap, which is a direct signal of the transition to the insulating state. We demonstrate the utility of this method in our calculations for the Hubbard model on the hexagonal lattice. We also apply the method to the metal-insulator phase transition in the Hubbard-Coulomb model on the square lattice.

  5. Nucleation Control for Large, Single Crystalline Domains of Monolayer Hexagonal Boron Nitride via Si-Doped Fe Catalysts

    PubMed Central

    2015-01-01

    The scalable chemical vapor deposition of monolayer hexagonal boron nitride (h-BN) single crystals, with lateral dimensions of ∼0.3 mm, and of continuous h-BN monolayer films with large domain sizes (>25 μm) is demonstrated via an admixture of Si to Fe catalyst films. A simple thin-film Fe/SiO2/Si catalyst system is used to show that controlled Si diffusion into the Fe catalyst allows exclusive nucleation of monolayer h-BN with very low nucleation densities upon exposure to undiluted borazine. Our systematic in situ and ex situ characterization of this catalyst system establishes a basis for further rational catalyst design for compound 2D materials. PMID:25664483

  6. Hexagonal spherical Ln3+-doped NaGdF4: A facile double solvent hydrothermal synthesis and luminescent properties

    NASA Astrophysics Data System (ADS)

    Wu, Kelu; Huang, Zhuanzhuan; Yu, Qiao-He; Wang, Yi-Yan; Xia, Tian-Long

    2017-04-01

    Different sizes of hexagonal spherical NaGdF4:Eu3+ particles are synthesized via a facile hydrothermal method with the use of ethylene glycol (EG), propylene glycol (PG) or butylene glycol (BG) as another solvent. The particle size decreases with the addition of EG, PG or BG and the decreasing trend in BG/H2O system is significantly more than that in the other two systems. Meanwhile, results show that luminescent properties of NaGdF4:Eu3+ are enhanced along with the decrease of particle size. Besides, the energy transfer from Dy3+ to Eu3+ is directly observed in the PL spectra of NaGdF4:Eu3+/Dy3+.

  7. Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, Y.; Grush, M.; Callcott, T.A.

    1997-04-01

    Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called {open_quotes}super diamond,{close_quotes} and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reactionmore » process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods.« less

  8. Domain configurations in dislocations embedded hexagonal manganite systems: From the view of graph theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Shaobo; Zhang, Dong; Deng, Shiqing

    Topological defects and their interactions often arouse multiple types of emerging phenomena from edge states in Skyrmions to disclination pairs in liquid crystals. In hexagonal manganites, partial edge dislocations, a prototype topological defect, are ubiquitous and they significantly alter the topologically protected domains and their behaviors. In this work, combining electron microscopy experiment and graph theory analysis, we report a systematic study of the connections and configurations of domains in this dislocation embedded system. Rules for domain arrangement are established. The dividing line between domains, which can be attributed by the strain field of dislocations, is accurately described by amore » genus model from a higher dimension in the graph theory. In conclusion, our results open a door for the understanding of domain patterns in topologically protected multiferroic systems.« less

  9. Domain configurations in dislocations embedded hexagonal manganite systems: From the view of graph theory

    DOE PAGES

    Cheng, Shaobo; Zhang, Dong; Deng, Shiqing; ...

    2018-04-19

    Topological defects and their interactions often arouse multiple types of emerging phenomena from edge states in Skyrmions to disclination pairs in liquid crystals. In hexagonal manganites, partial edge dislocations, a prototype topological defect, are ubiquitous and they significantly alter the topologically protected domains and their behaviors. In this work, combining electron microscopy experiment and graph theory analysis, we report a systematic study of the connections and configurations of domains in this dislocation embedded system. Rules for domain arrangement are established. The dividing line between domains, which can be attributed by the strain field of dislocations, is accurately described by amore » genus model from a higher dimension in the graph theory. In conclusion, our results open a door for the understanding of domain patterns in topologically protected multiferroic systems.« less

  10. Observation of dynamical vortices after quenches in a system with topology

    NASA Astrophysics Data System (ADS)

    Fläschner, N.; Vogel, D.; Tarnowski, M.; Rem, B. S.; Lühmann, D.-S.; Heyl, M.; Budich, J. C.; Mathey, L.; Sengstock, K.; Weitenberg, C.

    2018-03-01

    Topological phases constitute an exotic form of matter characterized by non-local properties rather than local order parameters1. The paradigmatic Haldane model on a hexagonal lattice features such topological phases distinguished by an integer topological invariant known as the first Chern number2. Recently, the identification of non-equilibrium signatures of topology in the dynamics of such systems has attracted particular attention3-6. Here, we experimentally study the dynamical evolution of the wavefunction using time- and momentum-resolved full state tomography for spin-polarized fermionic atoms in driven optical lattices7. We observe the appearance, movement and annihilation of dynamical vortices in momentum space after sudden quenches close to the topological phase transition. These dynamical vortices can be interpreted as dynamical Fisher zeros of the Loschmidt amplitude8, which signal a so-called dynamical phase transition9,10. Our results pave the way to a deeper understanding of the connection between topological phases and non-equilibrium dynamics.

  11. Studying topology and dynamical phase transitions with ultracold quantum gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Sengstock, Klaus

    Topological properties lie at the heart of many fascinating phenomena in solid-state systems such as quantum Hall systems or Chern insulators. The topology of the bands can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Using fermionic ultracold atoms in a hexagonal optical lattice, we engineered the Berry curvature of the Bloch bands using resonant driving and show a full momentum-resolved state tomography from which we obtain the Berry curvature and Chern number. Furthermore, we study the time-evolution of the many-body wavefunction after a sudden quench of the lattce parameters and observe the appearance, movement, and annihilation of vortices in reciprocal space. We identify their number as a dynamical topological order parameter, which suddenly changes its value at critical times. Our measurements constitute the first observation of a so called dynamical topological phase transition`, which we show to be a fruitful concept for the understanding of quantum dynamics far from equilibrium

  12. Phase transitions and dielectric properties of a hexagonal ABX3 perovskite-type organic-inorganic hybrid compound: [C3H4NS][CdBr3].

    PubMed

    Liao, Wei-Qiang; Ye, Heng-Yun; Zhang, Yi; Xiong, Ren-Gen

    2015-06-21

    A new organic-inorganic hexagonal perovskite-type compound with the formula ABX3, thiazolium tribromocadmate(ii) (1), in which thiazolium cations are situated in the space between the one-dimensional chains of face-sharing CdBr(6) octahedra, has been successfully synthesized. Systematic characterizations including differential scanning calorimetry measurements, variable-temperature structural analyses, and dielectric measurements reveal that it undergoes two structural phase transitions, at 180 and 146 K. These phase transitions are accompanied by remarkable dielectric relaxation and anisotropy. The thiazolium cations remain orientationally disordered during the two phase transition processes. The origins of the phase transitions at 180 and 146 K are ascribed to the slowing down and reorientation of the molecular motions of the cations, respectively. Moreover, the dielectric relaxation process well described by the Cole-Cole equation and the prominent dielectric anisotropy are also connected with the dynamics of the dipolar thiazolium cations.

  13. Preparation of high-content hexagonal boron nitride composite film and characterization of atomic oxygen erosion resistance

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Min; Gu, Yizhuo; Wang, Shaokai; Zhang, Zuoguang

    2017-04-01

    Space aircrafts circling in low earth orbit are suffered from highly reactive atomic oxygen (AO). To shield AO, a flexible thin film with 80 wt.% hexagonal boron nitride (h-BN) and h-BN/epoxy film were fabricated through vacuum filtration and adding nanofibrillated cellulose fibers. H-BN nanosheets were hydroxylated for enhancing interaction in the films. Mass loss and erosion yield at accumulated AO fluence about 3.04 × 1020 atoms/cm2 were adopted to evaluate the AO resistance properties of the films. A carpet-like rough surface, chemical oxidations and change in crystal structure of h-BN were found after AO treatment, and the degrading mechanism was proposed. The mass loss and erosion yield under AO attack were compared between h-BN film and h-BN/epoxy film, and the comparison was also done for various types of shielding AO materials. Excellent AO resistance property of h-BN film is shown, and the reasons are analyzed.

  14. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions.

    PubMed

    Parzefall, M; Bharadwaj, P; Jain, A; Taniguchi, T; Watanabe, K; Novotny, L

    2015-12-01

    The ultrafast conversion of electrical signals to optical signals at the nanoscale is of fundamental interest for data processing, telecommunication and optical interconnects. However, the modulation bandwidths of semiconductor light-emitting diodes are limited by the spontaneous recombination rate of electron-hole pairs, and the footprint of electrically driven ultrafast lasers is too large for practical on-chip integration. A metal-insulator-metal tunnel junction approaches the ultimate size limit of electronic devices and its operating speed is fundamentally limited only by the tunnelling time. Here, we study the conversion of electrons (localized in vertical gold-hexagonal boron nitride-gold tunnel junctions) to free-space photons, mediated by resonant slot antennas. Optical antennas efficiently bridge the size mismatch between nanoscale volumes and far-field radiation and strongly enhance the electron-photon conversion efficiency. We achieve polarized, directional and resonantly enhanced light emission from inelastic electron tunnelling and establish a novel platform for studying the interaction of electrons with strongly localized electromagnetic fields.

  15. Study of magnetic behavior in hexagonal-YMn1-xFexO3 (x=0 and 0.2) nanoparticles using remanent magnetization curves

    NASA Astrophysics Data System (ADS)

    Chauhan, Samta; Singh, Amit Kumar; Srivastava, Saurabh Kumar; Chandra, Ramesh

    2016-09-01

    We have studied the magnetic behavior of YMn1-xFexO3 (x=0 and 0.2) nanoparticles synthesized by conventional solid state reaction method. The as-synthesized nanoparticles were found to have hexagonal phase with P63cm space group confirmed by X-Ray diffraction. The particle size was found to be ~70 nm as confirmed by both X-Ray diffraction and Transmission Electron Microscopy. DC magnetization and memory effect measurements imply that the h-YMnO3 nanoparticles bear a resemblance to super spin-glass state following de Almeida-Thouless like behavior which is being suppressed by Fe-doping. The Fe-doping in YMnO3 enhances the antiferromagnetic (AFM) transition temperature TN to ~79 K and induces a new magnetic state due to the surface spins which is realized as diluted antiferromagnet in a field (DAFF) as explored by the thermoremanent and isothermoremanent magnetization measured with different applied magnetic field.

  16. Interplay between topology and disorder in a two-dimensional semi-Dirac material

    NASA Astrophysics Data System (ADS)

    Sriluckshmy, P. V.; Saha, Kush; Moessner, Roderich

    2018-01-01

    We investigate the role of disorder in a two-dimensional semi-Dirac material characterized by a linear dispersion in one direction and a parabolic dispersion in the orthogonal direction. Using the self-consistent Born approximation, we show that disorder can drive a topological Lifshitz transition from an insulator to a semimetal, as it generates a momentum-independent off-diagonal contribution to the self-energy. Breaking time-reversal symmetry enriches the topological phase diagram with three distinct regimes—single-node trivial, two-node trivial, and two-node Chern. We find that disorder can drive topological transitions from both the single- and two-node trivial to the two-node Chern regime. We further analyze these transitions in an appropriate tight-binding Hamiltonian of an anisotropic hexagonal lattice by calculating the real-space Chern number. Additionally, we compute the disorder-averaged entanglement entropy which signals both the topological Lifshitz and Chern transition as a function of the anisotropy of the hexagonal lattice. Finally, we discuss experimental aspects of our results.

  17. A series of three-dimensional lanthanide coordination polymers with rutile and unprecedented rutile-related topologies.

    PubMed

    Qin, Chao; Wang, Xin-Long; Wang, En-Bo; Su, Zhong-Min

    2005-10-03

    The complexes of formulas Ln(pydc)(Hpydc) (Ln = Sm (1), Eu (2), Gd (3); H2pydc = pyridine-2,5-dicarboxylic acid) and Ln(pydc)(bc)(H2O) (Ln = Sm (4), Gd (5); Hbc = benzenecarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR, TG analysis, and single-crystal X-ray diffraction. Compounds 1-3 are isomorphous and crystallize in the orthorhombic system, space group Pbcn. Their final three-dimensional racemic frameworks can be considered as being constructed by helix-linked scalelike sheets. Compounds 4 and 5 are isostructural and crystallize in the monoclinic system, space group P2(1)/c. pydc ligands bridge dinuclear lanthanide centers to form the three-dimensional frameworks featuring hexagonal channels along the a-axis that are occupied by one-end-coordinated bc ligands. From the topological point of view, the five three-dimensional nets are binodal with six- and three-connected nodes, the former of which exhibit a rutile-related (4.6(2))(2)(4(2).6(9).8(4)) topology that is unprecedented within coordination frames, and the latter two species display a distorted rutile (4.6(2))(2)(4(2).6(10).8(3)) topology. Furthermore, the luminescent properties of 2 were studied.

  18. Measuring the order in ordered porous arrays: can bees outperform humans?

    NASA Astrophysics Data System (ADS)

    Kaatz, F. H.

    2006-08-01

    A method that explains how to quantify the amount of order in “ordered” and “highly ordered” porous arrays is derived. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete radial distribution function (RDF). Nanoporous anodized aluminum oxide (AAO), hexagonal arrays from functional materials, hexagonal arrays from nanosphere lithography, and square arrays defined by interference lithography (all taken from the literature) are compared to two-dimensional model systems. These arrays have a range of pore diameters from ˜60 to 180 nm. An order parameter, OP 3 , is defined to evaluate the total order in a given array such that an ideal network has the value of 1. When we compare RDFs of man-made arrays with that of our honeycomb (pore diameter ˜5.89 mm), a locally grown version made by Apis mellifera without the use of foundation comb, we find OP 3 =0.399 for the honeycomb and OP 3 =0.572 for man’s best hexagonal array. The nearest neighbor peaks range from 4.65 for the honeycomb to 5.77 for man’s best hexagonal array, while the ideal hexagonal array has an average of 5.93 nearest neighbors. Ordered arrays are now becoming quite common in nanostructured science, while bee honeycombs were studied for millennia. This paper describes the first method to quantify the order found in these arrays with a simple yet elegant procedure that provides a precise measurement of the order in one array compared to other arrays.

  19. Chain hexagonal cacti with the extremal eccentric distance sum.

    PubMed

    Qu, Hui; Yu, Guihai

    2014-01-01

    Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.

  20. A rational repeating template method for synthesis of 2D hexagonally ordered mesoporous precious metals.

    PubMed

    Takai, Azusa; Doi, Yoji; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2011-03-01

    A repeating template method is presented for the synthesis of mesoporous metals with 2D hexagonal mesostructures. First, a silica replica (i.e., silica nanorods arranged periodically) is prepared by using 2D hexagonally ordered mesoporous carbon as the template. After that, the obtained silica replica is used as the second template for the preparation of mesoporous ruthenium. After the ruthenium species are introduced into the silica replica, the ruthenium species are then reduced by a vapor-infiltration method by using the reducing agent dimethylamine borane. After the ruthenium deposition, the silica is chemically removed. Analysis by transmission and scanning electron microscopies, a nitrogen-adsorption-desorption isotherm, and small-angle X-ray scattering revealed that the mesoporous ruthenium had a 2D hexagonal mesostructure, although the mesostructural ordering is decreased compared to that of the original mesoporous carbon template. This method is widely applicable to other metal systems. By changing the metal species introduced into the silica replica, several mesoporous metals (palladium and platinum) can be synthesized. Ordered mesoporous ruthenium and palladium, which are not easily attainable by the soft-templating methods, can be prepared. This study has overcome the composition variation limitations of the soft-templating method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Investigation of a Tricarbide Grooved Ring Fuel Element for a Nuclear Thermal Rocket

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Emrich, Bill; Tucker, Dennis; Barnes, Marvin; Donders, Nicolas; Benensky, Kelsa

    2017-01-01

    Deep space exploration, especially that of Mars, is on the horizon as the next big challenge for space exploration. Nuclear propulsion, through which high thrust and efficiency can be achieved, is a promising option for decreasing the cost and logistics of such a mission. Work on nuclear thermal engines goes back to the days of the NERVA program. Currently, nuclear thermal propulsion is under development again in various forms to provide a superior propulsion system for deep space exploration. The authors have been working to develop a concept nuclear thermal engine that uses a grooved ring fuel element as an alternative to the traditional hexagonal rod design. The authors are also studying the use of carbide fuels. The concept was developed in order to increase surface area and heat transfer to the propellant. The use of carbides would also raise the temperature limitations of the reactor. It is hoped that this could lead to a higher thrust to weight nuclear thermal engine. This paper describes the modeling of neutronics, heat transfer, and fluid dynamics of this alternative nuclear fuel element geometry. Fabrication experiments of grooved rings from carbide refractory metals are also presented along with material characterization and interactions with a hot hydrogen environment.

  2. An Explanation for Saturn's Hexagon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    For over three decades, weve been gathering observations of the mysterious hexagonal cloud pattern encircling Saturns north pole. Now, researchers believe they have a model that can better explain its formation.Fascinating GeometrySaturns northern Hexagon is a cloud band circling Saturns north pole at 78 N, first observed by the Voyager flybys in 198081. This remarkable pattern has now persisted for more than a Saturn year (29.5 Earth years).Eight frames demonstrating the motion within Saturns Hexagon. Click to watch the animation! The view is from a reference frame rotating with Saturn. [NASA/JPL-Caltech/SSI/Hampton University]Observations by Voyager and, more recently, Cassini have helped to identify many key characteristics of this bizarre structure. Two interesting things weve learned are:The Hexagon is associated with an eastward zonal jet moving at more than 200 mph.The cause of the Hexagon is believed to be a jet stream, similar to the ones that we experience on Earth. The path of the jet itself appears to follow the hexagons outline.The Hexagon rotates at roughly the same rate as Saturns overall rotation.While we observe individual storms and cloud patterns moving at different speeds within the Hexagon, the vertices of the Hexagon move at almost exactly the same rotational speed as that of Saturn itself.Attempts to model the formation of the Hexagon with a jet stream have yet to fully reproduce all of the observed features and behavior. But now, a team led by Ral Morales-Juberas of the New Mexico Institute of Mining and Technology believes they have created a model that better matches what we see.Simulating a Meandering JetThe team ran a series of simulations of an eastward, Gaussian-profile jet around Saturns pole. They introduced small perturbations to the jet and demonstrated that, as a result of the perturbations, the jet can meander into a hexagonal shape. With the initial conditions of the teams model, the meandering jet is able to settle into a stable hexagonal shape that rotates with very nearly the same period as Saturns rotational period.The formation of this hexagon depends on factors such as the initial amplitude and curvature of the jet. The models treatment of the wind profile within Saturns atmosphere is another key component that allowed them to match the observed characteristics of the Hexagon, such as its shape, vorticity behavior, temperature gradient, and seasonal stability.BonusThe gif below shows part of an animation the authors produced of the jet evolution in their model. You can see a hexagon begin to develop at around 230 days into the simulation, and by about 400 days it becomes stable and non-rotating (were looking at it from a reference frame rotating with Saturn). The full animation can be viewed here. [Morales-Juberas et al., 2015]CitationR. Morales-Juberas et al.2015 ApJ 806 L18 doi:10.1088/2041-8205/806/1/L18

  3. An exact solution for the steady state phase distribution in an array of oscillators coupled on a hexagonal lattice

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2004-01-01

    When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.

  4. Transitions induced by solubilized fat into reverse hexagonal mesophases.

    PubMed

    Amar-Yuli, Idit; Garti, Nissim

    2005-06-25

    Lyotropic liquid crystals of glycerol monooleate (GMO) and water binary mixtures have been extensively studied and their resemblance to human membranes has intrigued many scientists. Biological systems as well as food mixtures are composed of lipids and fat components including triacylglycerols (TAGs, triglycerides) that can affect the nature of the assembly of the mesophase. The present study examines the effect of TAGs of different chain lengths (C(2)-C(18)) at various water/GMO compositions, on phase transitions from lamellar or cubic to reverse hexagonal (L(alpha)-H(II) and Q-H(II)). The ability of the triglycerides to promote the formation of an H(II) mesophase is chain length-dependent. It was found that TAG molecules with very short acyl chains (triacetin) can hydrate the head groups of the lipid and do not affect the critical packing parameter (CPP) of the amphiphile; therefore, they do not affect the self-assembly of the GMO in water, and the mesophase remains lamellar or cubic. However, TAGs with medium chain fatty acids will solvate the tails of the lipid, and will affect the CPP of the GMO, and transform the lamellar or cubic phases into hexagonal mesophase. TAGs with long chain fatty acids are very bulky, not very miscible with the GMO, and therefore, kinetically are very slow to solvate the lipid tails of the amphiphile and are difficult to accommodate into the lipophilic parts of the GMO. Their effect on the transitions from a lamellar or cubic phase to hexagonal is detected only after months of equilibration. In order to enhance the effect of the TAG on the phase transitions in the GMO/triglyceride/water systems, temperature and electrolytes effects were examined. In the presence of short and medium chain triglycerides, increasing temperature caused a transition from lamellar or hexagonal to L(2) phase (highest CPP value). However, in the presence of long chain TAGs, increasing temperature to ca. 40 degrees C caused a formation of H(II) mesophase. In addition, it was found that in tricaprylin/GMO/water systems, the increase in temperature caused a decrease in the lattice parameter. The effect of NaCl on the H(II) mesophase revealed interesting results. At low concentration of tricaprylin (5 wt%), the addition of only 0.1 wt% of NaCl was sufficient to cause the formation of well-defined H(II) mesophase, while further addition of electrolyte increased the hexagonal lattice parameters. At higher TAGs concentrations (10 wt%), addition of electrolyte resulted in the formation of H(II) with modifications of the lattice parameter. All the examined effects were more pronounced with increasing water content.

  5. Comparative study of MYSat attitude stability effect on power generation and lifetime

    NASA Astrophysics Data System (ADS)

    Amilia Ismail, Norilmi; Thaheer, Ahmad Shaqeer Mohamed; Izmir Yamin, Mohd.

    2018-05-01

    Universiti Sains Malaysia Space System Lab (USSL) is currently developing a 1U cubesat named MYSat. The satellite mission is to measure electron-density in the Ionosphere E-Layer. Power generation from a solar panel is limited due to a small area of the satellite. Apart from that, the satellite is expecting to continuously spinning and tumbling throughout the mission lifetime as the satellite will be launched without an attitude control system. This paper compares the effect on power generation and the lifetime of MYSat of two conditions; first is with attitude controll where satellite pointing to nadir and later is uncontrol attitude of the satellite. The analysis has been conducted using Analytical Graphics, Inc. (AGI) Systems Tool Kit (STK) software. This study assumed the satellite used a hexagonal solar cell with a theoretical efficiency of 29% identical to an Ultra Triple-Junction (UTJ) solar cell. The simulation is done in one year duration on different attitude configuration. The worst-case condition, where the Earth is positioned at apogee, has been chosen for the comparative study and the lifetime of the satellite is also simulated and compared.

  6. Optical Epitaxial Growth of Gold Nanoparticle Arrays.

    PubMed

    Huang, Ningfeng; Martínez, Luis Javier; Jaquay, Eric; Nakano, Aiichiro; Povinelli, Michelle L

    2015-09-09

    We use an optical analogue of epitaxial growth to assemble gold nanoparticles into 2D arrays. Particles are attracted to a growth template via optical forces and interact through optical binding. Competition between effects determines the final particle arrangements. We use a Monte Carlo model to design a template that favors growth of hexagonal particle arrays. We experimentally demonstrate growth of a highly stable array of 50 gold particles with 200 nm diameter, spaced by 1.1 μm.

  7. The One-Pot Directed Assembly of Cylinder-Forming Block Copolymer on Adjacent Chemical Patterns for Bimodal Patterning.

    PubMed

    Chang, Tzu-Hsuan; Xiong, Shisheng; Liu, Chi-Chun; Liu, Dong; Nealey, Paul F; Ma, Zhenqiang

    2017-09-01

    The direct self-assembly of cylinder-forming poly(styrene-block-methyl-methacrylate) (PS-b-PMMA) block copolymer is successfully assembled into two orientations, according to the underlying guiding pattern in different areas. Lying-down and perpendicular cylinders are formed, respectively, depending on the design of chemical pattern: sparse line/space pattern or hexagonal dot array. The first chemical pattern composed of prepatterned cross-linked polystyrene (XPS) line/space structure has a period (L S ) equal to twice the intercylinder period of the block copolymer (L 0 ). The PS-b-PMMA thin film on the prepared chemical template after thermal annealing forms a lying-down cylinder morphology when the width of the PS strips is less than the width of PS block in the PS-b-PMMA block copolymer. The morphology is only applicable at the discrete thickness of the PS-b-PMMA film. In addition to forming the lying-down cylinders directly on the XPS guiding pattern, the cylinder-forming block copolymer can also be assembled in a perpendicular way on the second guiding pattern (the hexagonal dot array). The block copolymer films are registered into two orientations in a single directed self-assembly process. The features of the assembled patterns are successfully transferred down to the silicon oxide substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Crystallization and preliminary crystallographic analysis of mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sá-Moura, Bebiana; Albuquerque, Luciana; Empadinhas, Nuno

    2008-08-01

    The enzyme mannosyl-3-phosphoglycerate synthase from R. xylanophilus has been expressed, purified and crystallized. The crystals belong to the hexagonal space group P6{sub 5}22 and diffract to 2.2 Å resolution. Rubrobacter xylanophilus is the only Gram-positive bacterium known to synthesize the compatible solute mannosylglycerate (MG), which is commonly found in hyperthermophilic archaea and some thermophilic bacteria. Unlike the salt-dependent pattern of accumulation observed in (hyper)thermophiles, in R. xylanophilus MG accumulates constitutively. The synthesis of MG in R. xylanophilus was tracked from GDP-mannose and 3-phosphoglycerate, but the genome sequence of the organism failed to reveal any of the genes known to bemore » involved in this pathway. The native enzyme was purified and its N-terminal sequence was used to identify the corresponding gene (mpgS) in the genome of R. xylanophilus. The gene encodes a highly divergent mannosyl-3-phosphoglycerate synthase (MpgS) without relevant sequence homology to known mannosylphosphoglycerate synthases. In order to understand the specificity and enzymatic mechanism of this novel enzyme, it was expressed in Escherichia coli, purified and crystallized. The crystals thus obtained belonged to the hexagonal space group P6{sub 5}22 and contained two protein molecules per asymmetric unit. The structure was solved by SIRAS using a mercury derivative.« less

  9. Solar Concentrator Advanced Development Program

    NASA Technical Reports Server (NTRS)

    Knasel, Don; Ehresman, Derik

    1989-01-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  10. Effect of platform connection and abutment material on stress distribution in single anterior implant-supported restorations: a nonlinear 3-dimensional finite element analysis.

    PubMed

    Carvalho, Marco Aurélio; Sotto-Maior, Bruno Salles; Del Bel Cury, Altair Antoninha; Pessanha Henriques, Guilherme Elias

    2014-11-01

    Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Study of retro reflector array for the polarimeter-interferometer system on EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Lan, T.; Wang, S. X.; Liu, H. Q.; Liu, J.; Jie, Y. X.; Zou, Z. Y.; Li, W. M.; Gao, X.; Qin, H.

    2015-12-01

    In this paper, we experimentally verify the feasibility of replacing individual retro reflectors (RRs) with retro reflector array (RRA) in EAST POlarimeter/INTerferometer (POINT) system, by considering mode transformation and power wastage. Being exposed to plasma environment directly, RRs have risks of deformation, erosion and deposition. RRA is preferable because it can be installed within a smaller space and provide a gap of several centimeters for the shutter design. This protective structure can reduce the cost of device maintenance and bring down system errors. According to Helmholtz-Kirchhoff integral theorem, the optimized incident diameter for the RRA, constituted by seven hexagonal RR cells, is 40 mm in POINT system. The corresponding bench tests are carried out by measuring the propagation properties of reflected beams by plane RRA for perpendicular incidence and reflected beams by terrace RRA for oblique incidence. The experimental results illustrate that RRA can be satisfactorily applied in POINT system at the optimized incident diameter. In view of the energy wastage caused by plasma film coating, it is found that RRA has more advantages for diagnostics using shorter wavelengths, such as the case in ITER.

  12. On domain symmetry and its use in homogenization

    DOE PAGES

    Barbarosie, Cristian A.; Tortorelli, Daniel A.; Watts, Seth E.

    2017-03-08

    The present study focuses on solving partial differential equations in domains exhibiting symmetries and periodic boundary conditions for the purpose of homogenization. We show in a systematic manner how the symmetry can be exploited to significantly reduce the complexity of the problem and the computational burden. This is especially relevant in inverse problems, when one needs to solve the partial differential equation (the primal problem) many times in an optimization algorithm. The main motivation of our study is inverse homogenization used to design architected composite materials with novel properties which are being fabricated at ever increasing rates thanks to recentmore » advances in additive manufacturing. For example, one may optimize the morphology of a two-phase composite unit cell to achieve isotropic homogenized properties with maximal bulk modulus and minimal Poisson ratio. Typically, the isotropy is enforced by applying constraints to the optimization problem. However, in two dimensions, one can alternatively optimize the morphology of an equilateral triangle and then rotate and reflect the triangle to form a space filling D 3 symmetric hexagonal unit cell that necessarily exhibits isotropic homogenized properties. One can further use this D 3 symmetry to reduce the computational expense by performing the “unit strain” periodic boundary condition simulations on the single triangle symmetry sector rather than the six fold larger hexagon. In this paper we use group representation theory to derive the necessary periodic boundary conditions on the symmetry sectors of unit cells. The developments are done in a general setting, and specialized to the two-dimensional dihedral symmetries of the abelian D 2, i.e. orthotropic, square unit cell and nonabelian D 3, i.e. trigonal, hexagon unit cell. We then demonstrate how this theory can be applied by evaluating the homogenized properties of a two-phase planar composite over the triangle symmetry sector of a D 3 symmetric hexagonal unit cell.« less

  13. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, David S.

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although amore » large T c value is unlikely.« less

  14. Technique for the control of the crystal habit of ultrafine particles in the gas-evaporation technique

    NASA Astrophysics Data System (ADS)

    Kasukabe, S.; Mihama, K.

    1986-12-01

    Magnesium ultrafine particles have clear-cut habits such as hexagonal plates and polyhedra. When magnesium is evaporated downwards using a tube with holes at the bottom, hexagonal plates are formed exclusively throughout the smoke. Their size is controlled by selecting an inert gas. The growth process of an hexagonal plate can be considered to be a coalescent growth of other hexagonal plates.

  15. Thermal conductivity of hexagonal Si, Ge, and Si1-xGex alloys from first-principles

    NASA Astrophysics Data System (ADS)

    Gu, Xiaokun; Zhao, C. Y.

    2018-05-01

    Hexagonal Si and Ge with a lonsdaleite crystal structure are allotropes of silicon and germanium that have recently been synthesized. These materials as well as their alloys are promising candidates for novel applications in optoelectronics. In this paper, we systematically study the phonon transport and thermal conductivity of hexagonal Si, Ge, and their alloys by using the first-principle-based Peierls-Boltzmann transport equation approach. Both three-phonon and four-phonon scatterings are taken into account in the calculations as the phonon scattering mechanisms. The thermal conductivity anisotropy of these materials is identified. While the thermal conductivity parallel to the hexagonal plane for hexagonal Si and Ge is found to be larger than that perpendicular to the hexagonal plane, alloying effectively tunes the thermal conductivity anisotropy by suppressing the thermal conductivity contributions from the middle-frequency phonons. The importance of four-phonon scatterings is assessed by comparing the results with the calculations without including four-phonon scatterings. We find that four-phonon scatterings cannot be ignored in hexagonal Si and Ge as the thermal conductivity would be overestimated by around 10% (40%) at 300 K (900) K. In addition, the phonon mean free path distribution of hexagonal Si, Ge, and their alloys is also discussed.

  16. Hexagonal bubble formation and nucleation in sodium chloride solution

    NASA Astrophysics Data System (ADS)

    Wang, Lifen; Liu, Lei; Mohsin, Ali; Wen, Jianguo; Gu, Gong; Miller, Dean

    The bubble is formed frequently at a solid-liquid interface when the surface of the solid or liquid has a tendency of accumulating molecular species due to unbalanced surface hydrophobicity attraction. Morphology and shape of the bubble are thought to be associated with the Laplace pressure that spherical-cap-shaped object are commonly observed. Dynamic surface nanobubble formation and nucleation in the controlled system have been not fully investigated due to the direct visualization challenge in liquid systems. Here, utilizing in situ TEM, dynamic formation and collapse of spherical-shaped nanobubbles were observed at the water-graphene interface, while hexagonal nanobubbles grew and merged with each other at water-crystalline sodium chloride interface. Our finding demonstrates that different hydrophobic-hydrophilic interaction systems give rise to the varied morphology of surface nanobubble, leading to the fundamental understanding of the interface-interaction-governed law on the formation of surface nanobubble.

  17. Effect of plasma absorption on dust lattice waves in hexagonal dust crystals

    NASA Astrophysics Data System (ADS)

    Kerong, HE; Hui, CHEN; Sanqiu, LIU

    2018-04-01

    In the present paper, the effect of plasma absorption on lattice waves in 2D hexagonal dust crystals is investigated. The dispersion relations with the effect of plasma absorption are derived. It is found that the temperature effect (electron-to-ion temperature ratio τ) enhances the frequency of the dust lattice waves, while the spatial effect (dimensionless Debye shielding parameter \\tilde{κ }) weakens the frequency of the dust lattice waves. In addition, the system stabilities under the conditions of plasma absorption are studied. It is found that the temperature effect narrows the range of instability, while the spatial effect extends this range. And the range of instability is calculated, i.e. the system will always in the stable state regardless of the value of \\tilde{κ } when τ > 3.5. However, the system will be unstable when τ = 1 and \\tilde{κ }> 4.1.

  18. Proposal for generating synthetic magnetic fields in hexagonal optical lattices

    NASA Astrophysics Data System (ADS)

    Tian, Binbin; Endres, Manuel; Pekker, David

    2015-05-01

    We propose a new approach to generating synthetic magnetic fields in ultra cold atom systems that does not rely on either Raman transitions nor periodic drive. Instead, we consider a hexagonal optical lattice produced by the intersection of three laser beams at 120 degree angles, where the intensity of one or more of the beams is spatially non-uniform. The resulting optical lattice remains hexagonal, but has spatially varying hopping matrix elements. For atoms near the Dirac points, these spatial variations appear as a gauge field, similar to the fictitious gauge field that is induced for for electrons in strained graphene. We suggest that a robust way to generate a gauge field that corresponds to a uniform flux is to aligning three gaussian beams to intersect in an equilateral triangle. Using realistic experimental parameters, we show how the proposed setup can be used to observe cyclotron motion of an atom cloud - the conventional Hall effect and distinct Landau levels - the integer quantum Hall effect.

  19. Polymorphism of phosphoric oxide

    USGS Publications Warehouse

    Hill, W.L.; Faust, G.T.; Hendricks, S.B.

    1943-01-01

    The melting points and monotropic relationship of three crystalline forms of phosphoric oxide were determined by the method of quenching. Previous vapor pressure data are discussed and interpreted to establish a pressure-temperature diagram (70 to 600??) for the one-component system. The system involves three triple points, at which solid, liquid and vapor (P4O10) coexist in equilibrium, namely: 420?? and 360 cm., 562?? and 43.7 cm. and 580?? and 55.5 cm., corresponding to the hexagonal, orthorhombic and stable polymorphs, respectively, and at least two distinct liquids, one a stable polymer of the other, which are identified with the melting of the stable form and the hexagonal modification, respectively. Indices of refraction of the polymorphs and glasses were determined. The density and the thermal, hygroscopic and structural properties of the several phases are discussed.

  20. Fabrication of multi-focal microlens array on curved surface for wide-angle camera module

    NASA Astrophysics Data System (ADS)

    Pan, Jun-Gu; Su, Guo-Dung J.

    2017-08-01

    In this paper, we present a wide-angle and compact camera module that consists of microlens array with different focal lengths on curved surface. The design integrates the principle of an insect's compound eye and the human eye. It contains a curved hexagonal microlens array and a spherical lens. Compared with normal mobile phone cameras which usually need no less than four lenses, but our proposed system only uses one lens. Furthermore, the thickness of our proposed system is only 2.08 mm and diagonal full field of view is about 100 degrees. In order to make the critical microlens array, we used the inkjet printing to control the surface shape of each microlens for achieving different focal lengths and use replication method to form curved hexagonal microlens array.

  1. Phase stability and mechanical properties of Mo1-xNx with 0 ≤ x ≤ 1

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Karthik; Huang, Liping; Gall, Daniel

    2017-11-01

    First-principle density-functional calculations coupled with the USPEX evolutionary phase-search algorithm are employed to calculate the convex hull of the Mo-N binary system. Eight molybdenum nitride compound phases are found to be thermodynamically stable: tetragonal β-Mo3N, hexagonal δ-Mo3N2, cubic γ-Mo11N8, orthorhombic ɛ-Mo4N3, cubic γ-Mo14N11, monoclinic σ-MoN and σ-Mo2N3, and hexagonal δ-MoN2. The convex hull is a straight line for 0 ≤ x ≤ 0.44 such that bcc Mo and the five listed compound phases with x ≤ 0.44 are predicted to co-exist in thermodynamic equilibrium. Comparing the convex hulls of cubic and hexagonal Mo1-xNx indicates that cubic structures are preferred for molybdenum rich (x < 0.3) compounds, and hexagonal phases are favored for nitrogen rich (x > 0.5) compositions, while similar formation enthalpies for cubic and hexagonal phases at intermediate x = 0.3-0.5 imply that kinetic factors play a crucial role in the phase formation. The volume per atom Vo of the thermodynamically stable Mo1-xNx phases decreases from 13.17 to 9.56 Å3 as x increases from 0.25 to 0.67, with plateaus at Vo = 11.59 Å3 for hexagonal and cubic phases and Vo = 10.95 Å3 for orthorhombic and monoclinic phases. The plateaus are attributed to the changes in the average coordination numbers of molybdenum and nitrogen atoms, which increase from 2 to 6 and decrease from 6 to 4, respectively, indicating an increasing covalent bonding character with increasing x. The change in bonding character and the associated phase change from hexagonal to cubic/orthorhombic to monoclinic cause steep increases in the isotropic elastic modulus E = 387-487 GPa, the shear modulus G = 150-196 GPa, and the hardness H = 14-24 GPa in the relatively narrow composition range x = 0.4-0.5. This also causes a drop in Poisson's ratio from 0.29 to 0.24 and an increase in Pugh's ratio from 0.49 to 0.64, indicating a ductile-to-brittle transition between x = 0.44 and 0.5.

  2. Validation of the colour difference plot scoring system analysis of the 103 hexagon multifocal electroretinogram in the evaluation of hydroxychloroquine retinal toxicity.

    PubMed

    Graves, Gabrielle S; Adam, Murtaza K; Stepien, Kimberly E; Han, Dennis P

    2014-08-01

    To evaluate sensitivity, specificity and reproducibility of colour difference plot analysis (CDPA) of 103 hexagon multifocal electroretinogram (mfERG) in detecting established hydroxychloroquine (HCQ) retinal toxicity. Twenty-three patients taking HCQ were divided into those with and without retinal toxicity and were compared with a control group without retinal disease and not taking HCQ. CDPA with two masked examiners was performed using age-corrected mfERG responses in the central ring (Rc ; 0-5.5 degrees from fixation) and paracentral ring (Rp ; 5.5-11 degrees from fixation). An abnormal ring was defined as containing any hexagons with a difference in two or more standard deviations from normal (colour blue or black). Categorical analysis (ring involvement or not) showed Rc had 83% sensitivity and 93% specificity. Rp had 89% sensitivity and 82% specificity. Requiring abnormal hexagons in both Rc and Rp yielded sensitivity and specificity of 83% and 95%, respectively. If required in only one ring, they were 89% and 80%, respectively. In this population, there was complete agreement in identifying toxicity when comparing CDPA using Rp with ring ratio analysis using R5/R4 P1 ring responses (89% sensitivity and 95% specificity). Continuous analysis of CDPA with receiver operating characteristic analysis showed optimized detection (83% sensitivity and 96% specificity) when ≥4 abnormal hexagons were present anywhere within the Rp ring outline. Intergrader agreement and reproducibility were good. Colour difference plot analysis had sensitivity and specificity that approached that of ring ratio analysis of R5/R4 P₁ responses. Ease of implementation and reproducibility are notable advantages of CDPA. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  3. Summer is Coming!

    NASA Image and Video Library

    2013-05-20

    NASA Cassini spacecraft takes full advantage of the sunlight to capture these amazing views of the north polar hexagon and myriad storms, large and small, that comprise the weather systems in the polar region.

  4. Comparison of presumptive blood test kits including hexagon OBTI.

    PubMed

    Johnston, Emma; Ames, Carole E; Dagnall, Kathryn E; Foster, John; Daniel, Barbara E

    2008-05-01

    Four presumptive blood tests, Hexagon OBTI, Hemastix(R), Leucomalachite green (LMG), and Kastle-Meyer (KM) were compared for their sensitivity in the identification of dried bloodstains. Stains of varying blood dilutions were subjected to each presumptive test and the results compared. The Hexagon OBTI buffer volume was also reduced to ascertain whether this increased the sensitivity of the kit. The study found that Hemastix(R) was the most sensitive test for trace blood detection. Only with the reduced buffer volume was the Hexagon OBTI kit as sensitive as the LMG and KM tests. However, the Hexagon OBTI kit has the advantage of being a primate specific blood detection kit. This study also investigated whether the OBTI buffer within the kit could be utilized for DNA profiling after presumptive testing. The results show that DNA profiles can be obtained from the Hexagon OBTI kit buffer directly.

  5. Magnetic self-orientation of lyotropic hexagonal phases based on long chain alkanoic (fatty) acids.

    PubMed

    Douliez, Jean-Paul

    2010-07-06

    It is presently shown that long chain (C14, C16, and C18) alkanoic (saturated fatty) acids can form magnetically oriented hexagonal phases in aqueous concentrated solutions in mixtures with tetrabutylammonium (TBAOH) as the counterion. The hexagonal phase occurred for a molar ratio, alkanoic acid/TBAOH, higher than 1, i.e., for an excess of fatty acid. The hexagonal phase melted to an isotropic phase (micelles) upon heating at a given temperature depending on the alkyl chain length. The self-orientation of the hexagonal phase occurred upon cooling from the "high-temperature" isotropic phase within the magnetic field. The long axis of the hexagonal phase was shown to self-orient parallel to the magnetic field as evidenced by deuterium solid-state NMR. This finding is expected to be of interest in the field of structural biology and materials chemistry for the synthesis of oriented materials.

  6. Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film

    NASA Astrophysics Data System (ADS)

    Nych, Andriy; Fukuda, Jun-Ichi; Ognysta, Uliana; Žumer, Slobodan; Muševič, Igor

    2017-12-01

    Skyrmions are coreless vortex-like excitations emerging in diverse condensed-matter systems, and real-time observation of their dynamics is still challenging. Here we report the first direct optical observation of the spontaneous formation of half-skyrmions. In a thin film of a chiral liquid crystal, depending on experimental conditions including film thickness, they form a hexagonal lattice whose lattice constant is a few hundred nanometres, or appear as isolated entities with topological defects compensating their charge. These half-skyrmions exhibit intriguing dynamical behaviour driven by thermal fluctuations. Numerical calculations of real-space images successfully corroborate the experimental observations despite the challenge because of the characteristic scale of the structures close to the optical resolution limit. A thin film of a chiral liquid crystal thus offers an intriguing platform that facilitates a direct investigation of the dynamics of topological excitations such as half-skyrmions and their manipulation with optical techniques.

  7. Curie-Weiss behavior of Y{sub 1-x}Sr{sub x}MnO{sub 3} (x = 0 and 0.03)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakur, Rajesh K., E-mail: thakur.rajesh2009@gmail.com; Thakur, Rasna; Gaur, N. K.

    2015-06-24

    The effect of bivalent cation Sr-doping on magnetic properties in multiferroic YMnO{sub 3} manganites was systemically studied by DC magnetic measurements. Both of the reported samples were prepared by solid-state reaction method with composition Y{sub 1−x}Sr{sub x}MnO{sub 3} (x = 0.00 and 0.03). The X-ray diffraction (XRD) results show that the compounds are synthesized in hexagonal crystal structure with space group P6{sub 3}cm (JCPDS: 25-1079) and slight increase in the lattice parameter is observed with strontium doping. The magnetisation versus temperature curve shows no clear anomaly near the antiferromagnetic transition temperature (T{sub N}), however from the magnetic measurements at 1000Oemore » a slight increase in the magnetisation is clearly witnessed with increasing Stront ium content to the Y-site.« less

  8. Polar order in nanostructured organic materials

    NASA Astrophysics Data System (ADS)

    Sayar, M.; Olvera de la Cruz, M.; Stupp, S. I.

    2003-02-01

    Achiral multi-block liquid crystals are not expected to form polar domains. Recently, however, films of nanoaggregates formed by multi-block rodcoil molecules were identified as the first example of achiral single-component materials with macroscopic polar properties. By solving an Ising-like model with dipolar and asymmetric short-range interactions, we show here that polar domains are stable in films composed of aggregates as opposed to isolated molecules. Unlike classical molecular systems, these nanoaggregates have large intralayer spacings (a approx 8 nm), leading to a reduction in the repulsive dipolar interactions which oppose polar order within layers. In finite-thickness films of nanostructures, this effect enables the formation of polar domains. We compute exactly the energies of the possible structures consistent with the experiments as a function of film thickness at zero temperature (T). We also provide Monte Carlo simulations at non-zero T for a disordered hexagonal lattice that resembles the smectic-like packing in these nanofilms.

  9. 3D coherent X-ray diffractive imaging of an Individual colloidal crystal grain

    NASA Astrophysics Data System (ADS)

    Shabalin, A.; Meijer, J.-M.; Sprung, M.; Petukhov, A. V.; Vartanyants, I. A.

    Self-assembled colloidal crystals represent an important model system to study nucleation phenomena and solid-solid phase transitions. They are attractive for applications in photonics and sensorics. We present results of a coherent x-ray diffractive imaging experiment performed on a single colloidal crystal grain. The full three-dimensional (3D) reciprocal space map measured by an azimuthal rotational scan contained several orders of Bragg reflections together with the coherent interference signal between them. Applying the iterative phase retrieval approach, the 3D structure of the crystal grain was reconstructed and positions of individual colloidal particles were resolved. We identified an exact stacking sequence of hexagonal close-packed layers including planar and linear defects. Our results open up a breakthrough in applications of coherent x-ray diffraction for visualization of the inner 3D structure of different mesoscopic materials, such as photonic crystals. Present address: University of California - San Diego, USA.

  10. Metastable phases of silver and gold in hexagonal structure

    NASA Astrophysics Data System (ADS)

    Jona, F.; Marcus, P. M.

    2004-07-01

    Metastable phases of silver and gold in hexagonal close-packed structures are investigated by means of first-principles total-energy calculations. Two different methods are employed to find the equilibrium states: determination of the minima along the hexagonal epitaxial Bain path, and direct determination of minima of the total energy by a new minimum-path procedure. Both metals have two equilibrium states at different values of the hexagonal axial ratio c/a. For both metals, the elastic constants show that the high-c/a states are stable, hence, since the ground states are face-centred cubic, these states represent hexagonal close-packed metastable phases. The elastic constants of the low-c/a states show that they are unstable.

  11. Nature of Molecular Interactions of Peptides with Gold, Palladium, and Pd-Au Bimetal Surfaces in Aqueous Solution

    DTIC Science & Technology

    2009-06-24

    bimetallic surfaces also possess additional polarity, approximated by atomic charges of +0.3e and -0.3e at the Pd and Au sides of the interface , which...as well as polarization and charge transfer at the metal interface (only qualitatively considered here). A hexagonal spacing of ∼1.6 Å between...as results from quantum-mechanical calculations on small peptide and surface fragments. Interfaces were modeled using the consistent valence force

  12. Real-Space Formation and Dissipation Dynamics of Hexagonal Reconstruction on Au(100) in Aqueous Media as Explored by Potentiodynamic Scanning Tunneling Microscopy

    DTIC Science & Technology

    1993-04-01

    the clusters appear to form monoatomic layers on the (i x 1) substrate. This assertion, derived from the apparent z-corrugation in the STH images, is...top-layer lattice and thereby displacing one of the nearest-neighbor atoms. A related , although more concerted, atomic motion can also provide a viable...microscopic rate-limiting step(s) for this process are not necessarily related straightforwardly to the free- energy difference for the overall macroscopic

  13. Synthesis of hexagonal wurtzite Cu{sub 2}ZnSnS{sub 4} prisms by an ultrasound-assisted microwave solvothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Fei, E-mail: long.drf@gmail.com; Chi, Shangsen; Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083

    Wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) hexagonal prisms were synthesized by a simple ultrasound-microwave solvothermal method. The product was characterized by XRD, FESEM, EDS, TEM, Raman and UV–vis spectrometer. The hexagonal prisms were 0.5–2 μm wide and 5–12 μm long. The PVP played an important role in the formation of the CZTS hexagonal prisms. In addition, the ultrasound-assisted microwave process was helpful for synthesis of wurtzite rather than kesterite phase CZTS. A nucleation–dissolution–recrystallization mechanism was also proposed to explain the growth of the CZTS hexagonal prisms. - Graphical abstract: Wurtzite Cu{sub 2}ZnSnS{sub 4} hexagonal prisms were synthesized by ultrasound-microwave solvothermal method.more » The ultrasound-assisted microwave process and PVP were useful to the growth of CZTS. A nucleation–dissolution–recrystallization growth mechanism was also proposed. - Highlights: • Wurtzite Cu{sub 2}ZnSnS{sub 4} was prepared by ultrasound-assisted microwave solvothermal method. • The wurtzite CZTS hexagonal prisms are demonstrated a band gap of 1.49 eV. • Synergistic effect of ultrasound and microwave is helpful to prepare Wurtzite CZTS. • PVP plays an important role in the formation of the CZTS hexagonal prisms. • Nucleation–dissolution–recrystallization growth mechanism of the CZTS was proposed.« less

  14. Deployable antenna kinematics using tensegrity structure design

    NASA Astrophysics Data System (ADS)

    Knight, Byron Franklin

    With vast changes in spacecraft development over the last decade, a new, cheaper approach was needed for deployable kinematic systems such as parabolic antenna reflectors. Historically, these mesh-surface reflectors have resembled folded umbrellas, with incremental redesigns utilized to save packaging size. These systems are typically over-constrained designs, the assumption being that high reliability necessary for space operations requires this level of conservatism. But with the rapid commercialization of space, smaller launch platforms and satellite buses have demanded much higher efficiency from all space equipment than can be achieved through this incremental approach. This work applies an approach called tensegrity to deployable antenna development. Kenneth Snelson, a student of R. Buckminster Fuller, invented Tensegrity structures in 1948. Such structures use a minimum number of compression members (struts); stability is maintain using tension members (ties). The novelty introduced in this work is that the ties are elastic, allowing the struts to extend or contract, and in this way changing the surface of the antenna. Previously, the University of Florida developed an approach to quantify the stability and motion of parallel manipulators. This approach was applied to deployable, tensegrity, antenna structures. Based on the kinematic analyses for the 3-3 (octahedron) and 4-4 (square anti-prism) structures, the 6-6 (hexagonal anti-prism) analysis was completed which establishes usable structural parameters. The primary objective for this work was to prove the stability of this class of deployable structures, and their potential application to space structures. The secondary objective is to define special motions for tensegrity antennas, to meet the subsystem design requirements, such as addressing multiple antenna-feed locations. This work combines the historical experiences of the artist (Snelson), the mathematician (Ball), and the space systems engineer (Wertz) to develop a new, practical design approach. This kinematic analysis of tensegrity structures blends these differences to provide the design community with a new approach to lightweight, robust, adaptive structures with the high reliability that space demands. Additionally, by applying Screw Theory, a tensegrity structure antenna can be commanded to move along a screw axis, and therefore meeting the requirement to address multiple feed locations.

  15. Face Centered Cubic and Hexagonal Close Packed Skyrmion Crystals in Centrosymmetric Magnets

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Batista, Cristian D.

    2018-02-01

    Skyrmions are disklike objects that typically form triangular crystals in two-dimensional systems. This situation is analogous to the so-called pancake vortices of quasi-two-dimensional superconductors. The way in which Skyrmion disks or "pancake Skyrmions" pile up in layered centrosymmetric materials is dictated by the interlayer exchange. Unbiased Monte Carlo simulations and simple stabilization arguments reveal face centered cubic and hexagonal close packed Skyrmion crystals for different choices of the interlayer exchange, in addition to the conventional triangular crystal of Skyrmion lines. Moreover, an inhomogeneous current induces a sliding motion of pancake Skyrmions, indicating that they behave as effective mesoscale particles.

  16. Inter-layer potential for hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded

    2014-03-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  17. Search for giant magnetic anisotropy in transition-metal dimers on defected hexagonal boron nitride sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Wang, H.; Wu, R. Q., E-mail: wur@uci.edu

    2016-05-28

    Structural and magnetic properties of many transition-metal dimers embedded in a defected hexagonal boron nitride monolayer are investigated through density functional calculations to search for systems with magnetic anisotropy energies (MAEs) larger than 30meV. In particular, Ir–Ir@Dh–BN is found to have both large MAE (∼126 meV) and high structural stability against dissociation and diffusion, and it hence can serve as magnetic unit in spintronics and quantum computing devices. This giant MAE mainly results from the spin orbit coupling and the magnetization of the upper Ir atom, which is in a rather isolated environment.

  18. Germanium layers grown by zone thermal crystallization from a discrete liquid source

    NASA Astrophysics Data System (ADS)

    Yatsenko, A. N.; Chebotarev, S. N.; Lozovskii, V. N.; Mohamed, A. A. A.; Erimeev, G. A.; Goncharova, L. M.; Varnavskaya, A. A.

    2017-11-01

    It is proposed and investigated a method for growing thin uniform germanium layers onto large silicon substrates. The technique uses the hexagonally arranged local sources filled with liquid germanium. Germanium evaporates on very close substrate and in these conditions the residual gases vapor pressure highly reduces. It is shown that to achieve uniformity of the deposited layer better than 97% the critical thickness of the vacuum zone must be equal to l cr = 1.2 mm for a hexagonal arranged system of round local sources with the radius of r = 0.75 mm and the distance between the sources of h = 0.5 mm.

  19. Elaboration, Rietveld refinements and vibrational spectroscopic study of Na₁-xKxCaPb₃(PO₄)₃ lacunar apatites (0 ⩽ x ⩽ 1).

    PubMed

    Lahrich, S; Elmhammedi, M A; Manoun, B; Tamraoui, Y; Mirinioui, F; Azrour, M; Lazor, P

    2015-06-15

    Synthesis of apatites, Na1-xKxCaPb3(PO4)3 0 ⩽ x ⩽ 1, with anion vacancy were carried out using solid state reactions. The solid solution of apatite-type structure crystallize in the hexagonal system, space group P63/m (No. 176). Rietveld refinements showed that around 90% of Pb(2+) cations are located in the (6h) sites, the left amount of Pb(2+) cations are located in the (4f) sites; 27-31% of Ca(2+) cations are located in the (6h) sites, the left amount of Ca(2+) cations are located in the (4f) sites. The ninefold coordination sites (4f) are also occupied by the K(+) and Na(+) monovalent ions. The structure can be described as built up from [PO4](3-) tetrahedra and Pb(2+)/Ca(2+) of sixfold coordination cavities (6h positions), which delimit void hexagonal tunnels running along [001]. These tunnels are connected by cations of mixed sites (4f) which are half occupied by Pb(2+)/Ca(2+) and half by Na(+)/K(+) mixed cations. The assignment of the observed frequencies in the Raman and infrared spectra is discussed on the basis of a unit cell group analysis and by comparison with other apatites. Vibrational spectra of all the compositions are similar and show some linear shifts of the frequencies as a function of the composition toward lower values due the substitutions of Na(+) by K(+) with a larger radius. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. 46 CFR 56.25-20 - Bolting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... chapter for exceptions on bolting used in fluid power and control systems. (b) Carbon steel bolts or bolt... less than that at the root of the threads. They must have heavy semifinished hexagonal nuts in...

  1. Resummed tree heptagon

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    2018-04-01

    The form factor program for the regularized space-time S-matrix in planar maximally supersymmetric gauge theory, known as the pentagon operator product expansion, is formulated in terms of flux-tube excitations propagating on a dual two-dimensional world-sheet, whose dynamics is known exactly as a function of 't Hooft coupling. Both MHV and non-MHV amplitudes are described in a uniform, systematic fashion within this framework, with the difference between the two encoded in coupling-dependent helicity form factors expressed via Zhukowski variables. The nontrivial SU(4) tensor structure of flux-tube transitions is coupling independent and is known for any number of charged excitations from solutions of a system of Watson and Mirror equations. This description allows one to resum the infinite series of form factors and recover the space-time S-matrix exactly in kinematical variables at a given order of perturbation series. Recently, this was done for the hexagon. Presently, we successfully perform resummation for the seven-leg tree NMHV amplitude. To this end, we construct the flux-tube integrands of the fifteen independent Grassmann component of the heptagon with an infinite number of small fermion-antifermion pairs accounted for in NMHV two-channel conformal blocks.

  2. Exploring the free energy surface using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-01

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Richa Naja, E-mail: ltprichanaja@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    The electronic structure and hydrogen storage capability of Yttrium-doped BNNTs has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom prefers the hollow site in the center of the hexagonal ring with a binding energy of 0.8048eV. Decorating by Y makes the system half-metallic and magnetic with a magnetic moment of 1.0µ{sub B}. Y decorated Boron-Nitride (8,0) nanotube can adsorb up to five hydrogen molecules whose average binding energy is computed as 0.5044eV. All the hydrogen molecules are adsorbed with an average desorption temperature of 644.708 K. Taking that the Y atoms can be placed only in alternatemore » hexagons, the implied wt% comes out to be 5.31%, a relatively acceptable value for hydrogen storage materials. Thus, this system can serve as potential hydrogen storage medium.« less

  4. A transmitting antenna with hexagon illumination shape for four-color VLC

    NASA Astrophysics Data System (ADS)

    Liu, Kexin; Zhang, Lijun; Hu, Shanshan; Xing, Jichuan; Li, Ping'an

    2018-01-01

    This paper demonstrated a compact white light transmitting antenna based on four-color VLC system, which included an integrating rod and a Fresnel lens system. This paper mainly analyzed the homogenizer: the hexagon integrating rod. After simulation and optimizing, the size of this rod is designed as 60mm (length) x 4.35mm (D). As a result of experiments, this antenna which mixes RGBY-LEDs' beam into white light with high uniformity (67.18%), and illuminate the area of 0.75m x 0.75m at 1.77m transmission distance. The color temperature of the detection surface is 5583K, the chromatic aberration is 0.0021, compared with light source E of standard illumination, less than eye solution (0.005). Also, we verified that this antenna could ensure a stable SNR in mobile communication.

  5. Macroscopic self-reorientation of interacting two-dimensional crystals

    PubMed Central

    Woods, C. R.; Withers, F.; Zhu, M. J.; Cao, Y.; Yu, G.; Kozikov, A.; Ben Shalom, M.; Morozov, S. V.; van Wijk, M. M.; Fasolino, A.; Katsnelson, M. I.; Watanabe, K.; Taniguchi, T.; Geim, A. K.; Mishchenko, A.; Novoselov, K. S.

    2016-01-01

    Microelectromechanical systems, which can be moved or rotated with nanometre precision, already find applications in such fields as radio-frequency electronics, micro-attenuators, sensors and many others. Especially interesting are those which allow fine control over the motion on the atomic scale because of self-alignment mechanisms and forces acting on the atomic level. Such machines can produce well-controlled movements as a reaction to small changes of the external parameters. Here we demonstrate that, for the system of graphene on hexagonal boron nitride, the interplay between the van der Waals and elastic energies results in graphene mechanically self-rotating towards the hexagonal boron nitride crystallographic directions. Such rotation is macroscopic (for graphene flakes of tens of micrometres the tangential movement can be on hundreds of nanometres) and can be used for reproducible manufacturing of aligned van der Waals heterostructures. PMID:26960435

  6. Electronic properties of two-dimensional zinc oxide in hexagonal, (4,4)-tetragonal, and (4,8)-tetragonal structures by using Hybrid Functional calculation

    NASA Astrophysics Data System (ADS)

    Supatutkul, C.; Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.

    2017-09-01

    This work reports the structures and electronic properties of two-dimensional (2D) ZnO in hexagonal, (4,8)-tetragonal, and (4,4)-tetragonal monolayer using GGA and HSE-hybrid functional. The calculated results show that the band gaps of 2D ZnO sheets are wider than those of the bulk ZnO. The hexagonal and (4,8)-tetragonal phases yield direct band gaps, which are 4.20 eV, and 4.59 eV respectively, while the (4,4)-tetragonal structure has an indirect band gap of 3.02 eV. The shrunken Zn-O bond lengths in the hexagonal and (4,8)-tetragonal indicate that they become more ionic in comparison with the bulk ZnO. In addition, the hexagonal ZnO sheet is the most energetically favourable. The total energy differences of (4,8)-tetragonal and (4,4)-tetragonal sheets from that of hexagonal monolayer (per formula unit) are 197 meV and 318 meV respectively.

  7. Study of a Tricarbide Grooved Ring Fuel Element for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Emrich, Bill; Tucker, Dennis; Barnes, Marvin; Donders, Nicolas; Benensky, Kelsa

    2018-01-01

    Deep space exploration, especially that of Mars, is on the horizon as the next big challenge for space exploration. Nuclear propulsion, through which high thrust and efficiency can be achieved, is a promising option for decreasing the cost and logistics of such a mission. Work on nuclear thermal engines goes back to the days of the NERVA program. Currently, nuclear thermal propulsion is under development again in various forms to provide a superior propulsion system for deep space exploration. The authors have been working to develop a concept nuclear thermal engine that uses a grooved ring fuel element as an alternative to the traditional hexagonal rod design. The authors are also studying the use of carbide fuels. The concept was developed in order to increase surface area and heat transfer to the propellant. The use of carbides would also raise the operating temperature of the reactor. It is hoped that this could lead to a higher thrust to weight nuclear thermal engine. This paper describes the modeling of neutronics, heat transfer, and fluid dynamics of this alternative nuclear fuel element geometry. Fabrication experiments of grooved rings from carbide refractory metals are also presented along with material characterization and interactions with a hot hydrogen environment. Results of experiments and associated analysis are discussed. The authors demonstrated success in reaching desired densities with some success in material distribution and reaching a solid solution. Future work is needed to improve distribution of material, minimize oxidation during the milling process, and define a fabrication process that will serve for constructing grooved ring fuel rods for large system tests.

  8. Study of a Tricarbide Grooved Ring Fuel Element for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Emrich, Bill; Tucker, Dennis; Barnes, Marvin; Donders, Nicolas; Benensky, Kelsa

    2018-01-01

    Deep space exploration, especially that of Mars, is on the horizon as the next big challenge for space exploration. Nuclear propulsion, through which high thrust and efficiency can be achieved, is a promising option for decreasing the cost and logistics of such a mission. Work on nu- clear thermal engines goes back to the days of the NERVA program. Currently, nuclear thermal propulsion is under development again in various forms to provide a superior propulsion system for deep space exploration. The authors have been working to develop a concept nuclear thermal engine that uses a grooved ring fuel element as an alternative to the traditional hexagonal rod design. The authors are also studying the use of carbide fuels. The concept was developed in order to increase surface area and heat transfer to the propellant. The use of carbides would also raise the operating temperature of the reactor. It is hoped that this could lead to a higher thrust to weight nuclear thermal engine. This paper describes the modeling of neutronics, heat transfer, and fluid dynamics of this alternative nuclear fuel element geometry. Fabrication experiments of grooved rings from carbide refractory metals are also presented along with material characterization and interactions with a hot hydrogen environment. Results of experiments and associated analysis are desired densities with some success in material distribution and reaching a solid solution. Future work is needed to improve distribution of material, minimize oxidation during the milling process, and de ne a fabrication process that will serve for constructing grooved ring fuel rods for large system tests.

  9. The pinwheel pupil discovery: exoplanet science & improved processing with segmented telescopes

    NASA Astrophysics Data System (ADS)

    Breckinridge, James Bernard

    2018-01-01

    In this paper, we show that by using a “pinwheel” architecture for the segmented primary mirror and curved supports for the secondary mirror, we can achieve a near uniform diffraction background in ground and space large telescope systems needed for high SNR exoplanet science. Also, the point spread function will be nearly rotationally symmetric, enabling improved digital image reconstruction. Large (>4-m) aperture space telescopes are needed to characterize terrestrial exoplanets by direct imaging coronagraphy. Launch vehicle volume constrains these apertures are segmented and deployed in space to form a large mirror aperture that is masked by the gaps between the hexagonal segments and the shadows of the secondary support system. These gaps and shadows over the pupil result in an image plane point spread function that has bright spikes, which may mask or obscure exoplanets.These telescope artifact mask faint exoplanets, making it necessary for the spacecraft to make a roll about the boresight and integrate again to make sure no planets are missed. This increases integration time, and requires expensive space-craft resources to do bore-sight roll.Currently the LUVOIR and HabEx studies have several significant efforts to develop special purpose A/O technology and to place complex absorbing apodizers over their Hex pupils to shape the unwanted diffracted light. These strong apodizers absorb light, decreasing system transmittance and reducing SNR. Implementing curved pupil obscurations will eliminate the need for the highly absorbing apodizers and thus result in higher SNR.Quantitative analysis of diffraction patterns that use the pinwheel architecture are compared to straight hex-segment edges with a straight-line secondary shadow mask to show a gain of over a factor of 100 by reducing the background. For the first-time astronomers are able to control and minimize image plane diffraction background “noise”. This technology will enable 10-m segmented apertures to perform nearly the same as a 10-meter monolith filled aperture. The pinwheel pupil will enable a significant gain in exoplanet SNR.

  10. The Space Station: From concept to evolving reality

    NASA Technical Reports Server (NTRS)

    Fries, Sylvia Doughty; Ordway, Frederick I., III

    1987-01-01

    This review surveys the origin and conceptual evolution of the space station. It opens with U.S. President Ronald W. Reagan's announcement that one would be developed during the coming decade, continues with an assessment by the Space Science Board of the U.S. National Academy of Sciences of requirements for and potential benefits of a space station, and offers NASA's rationale for its development, construction, and utilization. The review examines early space station concepts, beginning with Edward Everell Hale's Brick Moon of 1869-1870 and going on to proposals by space pioneers Tsiolkovskii of Russia, Oberth of Germany, Noordung and von Pirquet of Austria, and others. Considerable attention is focused on designs put forward during the 1950's, 1960's, and 1970's by individuals, by NASA investigators, and by industrial and other contractors. Langley's rotating hexagon, the space base configurations, and other designs are reviewed and strategies are considered for resolving the problem of integrating a multidisciplinary research program with varying and sometimes incompatible engineering and design requirements. The article describes the power tower and dual keel configurations of the 1980's. The interdisciplinary nature of the space station is evident throughout.

  11. Survival and failure modes: platform-switching for internal and external hexagon cemented fixed dental prostheses.

    PubMed

    Anchieta, Rodolfo B; Machado, Lucas S; Hirata, Ronaldo; Coelho, Paulo G; Bonfante, Estevam A

    2016-10-01

    This study evaluated the probability of survival (reliability) of platform-switched fixed dental prostheses (FDPs) cemented on different implant-abutment connection designs. Eighty-four-three-unit FDPs (molar pontic) were cemented on abutments connected to two implants of external or internal hexagon connection. Four groups (n = 21 each) were established: external hexagon connection and regular platform (ERC); external hexagon connection and switched platform (ESC); internal hexagon and regular platform (IRC); and internal hexagon and switched platform (ISC). Prostheses were subjected to step-stress accelerated life testing in water. Weibull curves and probability of survival for a mission of 100,000 cycles at 400 N (two-sided 90% CI) were calculated. The beta values of 0.22, 0.48, 0.50, and 1.25 for groups ERC, ESC, IRC, and ISC, respectively, indicated a limited role of fatigue in damage accumulation, except for group ISC. Survival decreased for both platform-switched groups (ESC: 74%, and ISC: 59%) compared with the regular matching platform counterparts (ERC: 95%, and IRC: 98%). Characteristic strength was higher only for ERC compared with ESC, but not different between internal connections. Failures chiefly involved the abutment screw. Platform switching decreased the probability of survival of FDPs on both external and internal connections. The absence in loss of characteristic strength observed in internal hexagon connections favor their use compared with platform-switched external hexagon connections. © 2016 Eur J Oral Sci.

  12. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; Zinkle, Steven J.; Bei, Hongbin; Lang, Maik; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-01

    High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.

  13. Efficient threshold for volumetric segmentation

    NASA Astrophysics Data System (ADS)

    Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel

    2015-07-01

    Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.

  14. Stress and deformation analysis of tapered cantilever castellated beam using numerical method

    NASA Astrophysics Data System (ADS)

    Ilham Maulana, Taufiq; Soebandono, Bagus; Satria Jagad, Beta; Prayuda, Hakas

    2018-05-01

    The castellated beam is often used in buildings because of its lighter weight compared with a normal steel beam. There are many types of an opening in the castellated beam, one of which is hexagonal openings. This paper will discuss the analysis of stress and deformation on castellated beam with a variation of openings diameter, space between holes, and angle of hexagonal openings. Furthermore, stress distribution on specimen will be seen under static loading. This study used IWF section 150x75x5x7 with 4 variations of the span with one fixed support, and yield strength is 400 MPa. Linear finite element analysis is used with 10-node tetrahedron solid element, by observing von Misses stress. The software used in this study are freeware, which is LISAFEA 8.0 for analyzing and FreeCAD for drawing. The result shows that value of stress and deformation for each sample is quite volatile, but it can be concluded that stress distribution around the opening is larger than in web and flange.

  15. Magnetic transition in Y-site doped multiferroic YMnO3

    NASA Astrophysics Data System (ADS)

    Thakur, Rajesh K.; Thakur, Rasna; Gaur, N. K.

    2016-05-01

    We have synthesized polycrystalline hexagonal Y1-xSrxMnO3 (x=0.02, 0.1) compounds by using conventional solid state reaction method. The detailed structural investigations are carried out by using XRD studies which reveals the single phase formation of the reported compounds with hexagonal structure and space group P63cm (JCPDS: 25-1079). Further the XRD data of reported compounds were analyzed by RIETVELD (FULLPROFF) method which shows the decrease in the lattice parameter with increasing concentration of divalent strontium to Y-site. The observed pointed kinks in the specific heat study are indicative of the probable coupling in between the electric and magnetic orders in this class of materials. The reported systematic specific heat studies shows that the antiferromagnetic (AFM) transition temperature (TN) shifts to higher value with increasing concentration of Sr2+ ion in the YMnO3 compound which is attributed to the enhanced lattice contribution to the specific heat in the this compound. The present compound shows the independence of specific heat and magnetic transition temperature with applied magnetic field of 8T and 12T.

  16. Ultraconfined Plasmonic Hotspots Inside Graphene Nanobubbles.

    PubMed

    Fei, Z; Foley, J J; Gannett, W; Liu, M K; Dai, S; Ni, G X; Zettl, A; Fogler, M M; Wiederrecht, G P; Gray, S K; Basov, D N

    2016-12-14

    We report on a nanoinfrared (IR) imaging study of ultraconfined plasmonic hotspots inside graphene nanobubbles formed in graphene/hexagonal boron nitride (hBN) heterostructures. The volume of these plasmonic hotspots is more than one-million-times smaller than what could be achieved by free-space IR photons, and their real-space distributions are controlled by the sizes and shapes of the nanobubbles. Theoretical analysis indicates that the observed plasmonic hotspots are formed due to a significant increase of the local plasmon wavelength in the nanobubble regions. Such an increase is attributed to the high sensitivity of graphene plasmons to its dielectric environment. Our work presents a novel scheme for plasmonic hotspot formation and sheds light on future applications of graphene nanobubbles for plasmon-enhanced IR spectroscopy.

  17. Frictional Magneto-Coulomb Drag in Graphene Double-Layer Heterostructures.

    PubMed

    Liu, Xiaomeng; Wang, Lei; Fong, Kin Chung; Gao, Yuanda; Maher, Patrick; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Dean, Cory; Kim, Philip

    2017-08-04

    Coulomb interaction between two closely spaced parallel layers of conductors can generate the frictional drag effect by interlayer Coulomb scattering. Employing graphene double layers separated by few-layer hexagonal boron nitride, we investigate density tunable magneto- and Hall drag under strong magnetic fields. The observed large magnetodrag and Hall-drag signals can be related with Laudau level filling status of the drive and drag layers. We find that the sign and magnitude of the drag resistivity tensor can be quantitatively correlated to the variation of magnetoresistivity tensors in the drive and drag layers, confirming a theoretical formula for magnetodrag in the quantum Hall regime. The observed weak temperature dependence and ∼B^{2} dependence of the magnetodrag are qualitatively explained by Coulomb scattering phase-space argument.

  18. Measuring Intrinsic Curvature of Space with Electromagnetism

    NASA Astrophysics Data System (ADS)

    Mabin, Mason; Becker, Maria; Batelaan, Herman

    2016-10-01

    The concept of curved space is not readily observable in everyday life. The educational movie "Sphereland" attempts to illuminate the idea. The main character, a hexagon, has to go to great lengths to prove that her world is in fact curved. We present an experiment that demonstrates a new way to determine if a two-dimensional surface, the 2-sphere, is curved. The behavior of an electric field, placed on a spherical surface, is shown to be related to the intrinsic Gaussian curvature. This approach allows students to gain some understanding of Einstein's theory of general relativity, which relates the curvature of spacetime to the presence of mass and energy. Additionally, an opportunity is provided to investigate the dimensionality of Gauss's law.

  19. COMPASS Final Report: Enceladus Solar Electric Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    The results of the NASA Glenn Research Center (GRC) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) internal Solar Electric Propulsion (SEP) stage design are documented in this report (Figure 1.1). The SEP Stage was designed to deliver a science probe to Saturn (the probe design was performed separately by the NASA Goddard Space Flight Center s (GSFC) Integrated Mission Design Center (IMDC)). The SEP Stage delivers the 2444 kg probe on a Saturn trajectory with a hyperbolic arrival velocity of 5.4 km/s. The design carried 30 percent mass, 10 percent power, and 6 percent propellant margins. The SEP Stage relies on the probe for substantial guidance, navigation and control (GN&C), command and data handling (C&DH), and Communications functions. The stage is configured to carry the probe and to minimize the packaging interference between the probe and the stage. The propulsion system consisted of a 1+1 (one active, one spare) configuration of gimbaled 7 kW NASA Evolutionary Xenon Thruster (NEXT) ion propulsion thrusters with a throughput of 309 kg Xe propellant. Two 9350 W GaAs triple junction (at 1 Astronomical Unit (AU), includes 10 percent margin) ultra-flex solar arrays provided power to the stage, with Li-ion batteries for launch and contingency operations power. The base structure was an Al-Li hexagonal skin-stringer frame built to withstand launch loads. A passive thermal control system consisted of heat pipes to north and south radiator panels, multilayer insulation (MLI) and heaters for the Xe tank. All systems except tanks and solar arrays were designed to be single fault tolerant.

  20. A Multi-Dimensional Heat Transfer Model of a Tie-Tube and Hexagonal Fuel Element for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gomez, C. F.; Mireles, O. R.; Stewart, E.

    2016-01-01

    The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.

  1. Structure and energetics of carbon, hexagonal boron nitride, and carbon/hexagonal boron nitride single-layer and bilayer nanoscrolls

    NASA Astrophysics Data System (ADS)

    Siahlo, Andrei I.; Poklonski, Nikolai A.; Lebedev, Alexander V.; Lebedeva, Irina V.; Popov, Andrey M.; Vyrko, Sergey A.; Knizhnik, Andrey A.; Lozovik, Yurii E.

    2018-03-01

    Single-layer and bilayer carbon and hexagonal boron nitride nanoscrolls as well as nanoscrolls made of bilayer graphene/hexagonal boron nitride heterostructure are considered. Structures of stable states of the corresponding nanoscrolls prepared by rolling single-layer and bilayer rectangular nanoribbons are obtained based on the analytical model and numerical calculations. The lengths of nanoribbons for which stable and energetically favorable nanoscrolls are possible are determined. Barriers to rolling of single-layer and bilayer nanoribbons into nanoscrolls and barriers to nanoscroll unrolling are calculated. Based on the calculated barriers nanoscroll lifetimes in the stable state are estimated. Elastic constants for bending of graphene and hexagonal boron nitride layers used in the model are found by density functional theory calculations.

  2. Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles

    NASA Astrophysics Data System (ADS)

    Raya-Moreno, Martí; Aramberri, Hugo; Seijas-Bellido, Juan Antonio; Cartoixà, Xavier; Rurali, Riccardo

    2017-07-01

    We calculate the thermal conductivity, κ, of the recently synthesized hexagonal diamond (lonsdaleite) Si using first-principles calculations and solving the Boltzmann Transport Equation. We find values of κ which are around 40% lower than in the common cubic diamond polytype of Si. The trend is similar for [111] Si nanowires, with reductions of the thermal conductivity that are even larger than in the bulk in some diameter range. The Raman active modes are identified, and the role of mid-frequency optical phonons that arise as a consequence of the reduced symmetry of the hexagonal lattice is discussed. We also show briefly that popular classic potentials used in molecular dynamics might not be suited to describe hexagonal polytypes, discussing the case of the Tersoff potential.

  3. Engineering and Localization of Quantum Emitters in Large Hexagonal Boron Nitride Layers.

    PubMed

    Choi, Sumin; Tran, Toan Trong; Elbadawi, Christopher; Lobo, Charlene; Wang, Xuewen; Juodkazis, Saulius; Seniutinas, Gediminas; Toth, Milos; Aharonovich, Igor

    2016-11-02

    Hexagonal boron nitride is a wide-band-gap van der Waals material that has recently emerged as a promising platform for quantum photonics experiments. In this work, we study the formation and localization of narrowband quantum emitters in large flakes (up to tens of micrometers wide) of hexagonal boron nitride. The emitters can be activated in as-grown hexagonal boron nitride by electron irradiation or high-temperature annealing, and the emitter formation probability can be increased by ion implantation or focused laser irradiation of the as-grown material. Interestingly, we show that the emitters are always localized at the edges of the flakes, unlike most luminescent point defects in three-dimensional materials. Our results constitute an important step on the roadmap of deploying hexagonal boron nitride in nanophotonics applications.

  4. A computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors

    DOE PAGES

    Hu, Rui; Yu, Yiqi

    2016-09-08

    For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneouslymore » in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. In addition, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.« less

  5. Single photon emission from plasma treated 2D hexagonal boron nitride.

    PubMed

    Xu, Zai-Quan; Elbadawi, Christopher; Tran, Toan Trong; Kianinia, Mehran; Li, Xiuling; Liu, Daobin; Hoffman, Timothy B; Nguyen, Minh; Kim, Sejeong; Edgar, James H; Wu, Xiaojun; Song, Li; Ali, Sajid; Ford, Mike; Toth, Milos; Aharonovich, Igor

    2018-05-03

    Artificial atomic systems in solids are becoming increasingly important building blocks in quantum information processing and scalable quantum nanophotonic networks. Amongst numerous candidates, 2D hexagonal boron nitride has recently emerged as a promising platform hosting single photon emitters. Here, we report a number of robust plasma and thermal annealing methods for fabrication of emitters in tape-exfoliated hexagonal boron nitride (hBN) crystals. A two-step process comprising Ar plasma etching and subsequent annealing in Ar is highly robust, and yields an eight-fold increase in the concentration of emitters in hBN. The initial plasma-etching step generates emitters that suffer from blinking and bleaching, whereas the two-step process yields emitters that are photostable at room temperature with emission wavelengths greater than ∼700 nm. Density functional theory modeling suggests that the emitters might be associated with defect complexes that contain oxygen. This is further confirmed by generating the emitters via annealing hBN in air. Our findings advance the present understanding of the structure of quantum emitters in hBN and enhance the nanofabrication toolkit needed to realize integrated quantum nanophotonic circuits.

  6. Magnetic properties and photovoltaic applications of ZnO:Mn nanocrystals.

    PubMed

    Zhang, Ying; Han, Fengxiang; Dai, Qilin; Tang, Jinke

    2018-05-01

    A simple and large-scale synthetic method of Mn doped ZnO (ZnO:Mn) was developed in this work. ZnO:Mn nanocrystals with hexagonal structure were prepared by thermal decomposition of zinc acetate and manganese acetate in the presence of oleylamine and oleic acid with different temperatures, ligand ratios, and Mn doping concentrations. The particle size (47-375 nm) and morphology (hexagonal nanopyramid, hexagonal nanodisk and irregular nanospheres) of ZnO:Mn nanocrystals can be controlled by the ratio of capping ligand, reaction temperature, reaction time and Mn doping concentration. The corresponding optical and magnetic properties were systemically studied and compared. All samples were found to be paramagnetic with antiferromagnetic (AFM) exchange interactions between the Mn moments in the ZnO lattice, which can be affected by the reaction conditions. The quantum dot sensitized solar cells (QDSSCs) were fabricated based on ZnO:Mn nanocrystals and CdS quantum dots, and the device performance affected by Mn doping concentration was also studied and compared. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Thermodynamic Behavior of Nano-sized Gold Clusters on the (001) Surface

    NASA Technical Reports Server (NTRS)

    Paik, Sun M.; Yoo, Sung M.; Namkung, Min; Wincheski, Russell A.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    We have studied thermal expansion of the surface layers of the hexagonally reconstructed Au (001) surface using a classical Molecular Dynamics (MD) simulation technique with an Embedded Atomic Method (EAM) type many-body potential. We find that the top-most hexagonal layer contracts as temperature increases, whereas the second layer expands or contracts depending on the system size. The magnitude of expansion coefficient of the top layer is much larger than that of the other layers. The calculated thermal expansion coefficients of the top-most layer are about -4.93 x 10(exp -5)Angstroms/Kelvin for the (262 x 227)Angstrom cluster and -3.05 x 10(exp -5)Angstroms/Kelvin for (101 x 87)Angstrom cluster. The Fast Fourier Transform (FFT) image of the atomic density shows that there exists a rotated domain of the top-most hexagonal cluster with rotation angle close to 1 degree at temperature T less than 1000Kelvin. As the temperature increases this domain undergoes a surface orientational phase transition. These predictions are in good agreement with previous phenomenological theories and experimental studies.

  8. Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.

    PubMed

    Kalkan, B; Sen, S; Clark, S M

    2011-09-28

    The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics

  9. Hexagonal pattern instabilities in rotating Rayleigh-Bénard convection of a non-Boussinesq fluid: experimental results.

    PubMed

    Guarino, Alessio; Vidal, Valerie

    2004-06-01

    Motivated by the Küppers-Lortz instability of roll patterns in the presence of rotation, we have investigated the effects of rotation on a hexagonal pattern in Rayleigh-Bénard convection. While several theoretical models have been developed, experimental data cannot be found in the literature. In order to check the validity of the predictions and to study the effects of rotation on the behavior of the system, we present experimental results for a non-Boussinesq Rayleigh-Bénard convection with rotation about the vertical axis. Rotation introduces an additional control parameter, namely the dimensionless rotation rate Omega= 2 pi f d(2)/nu, where f is the rotation rate (in Hz), d is the thickness of the cell, and nu is the kinematic viscosity. We observe that the cell rotation induces a slow rotation of the pattern in the opposite direction (approximately Omega x 10(-4) ) in the rotating frame. Moreover, it tends to destroy the convective pattern. No oscillation of the hexagonal pattern over the range of its existence (Omega< or =6) has been observed.

  10. Site specific physics in RT5 (R = rare earths and T = transition metals) materials

    NASA Astrophysics Data System (ADS)

    Paudyal, Durga

    Most of RT5 compounds form in hexagonal CaCu5-type structure with three non-equivalent sites: R (1a), T (2c), and T (3g). R atoms sit in the middle of the T (2c) hexagonal layers. Advanced density functional theory calculations including on-site electron correlation and spin orbit coupling show crystal field split localized R 4f states, which are responsible for the large part of the magnetic anisotropy exhibited by these systems. In addition, the hexagonal T (2c) layers help enhancing the magnetic anisotropy. Partially quenched R 4f orbital moment is the origin of magnetic anisotropy which also helps enhancing magnetic moment. The interchange of T sites by other transition metals and the partial substitution of R atoms by transition metals could optimize needed magnetic moment and magnetic anisotropy by forming a complex geometry structure favoring permanent magnetic properties. This research is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing office.

  11. Controlling the interparticle spacing of Au-salt loaded micelles and Au nanoparticles on flat surfaces.

    PubMed

    Bansmann, J; Kielbassa, S; Hoster, H; Weigl, F; Boyen, H G; Wiedwald, U; Ziemann, P; Behm, R J

    2007-09-25

    The self-organization of diblock copolymers into micellar structures in an appropriate solvent allows the deposition of well ordered arrays of pure metal and alloy nanoparticles on flat surfaces with narrow distributions in particle size and interparticle spacing. Here we investigated the influence of the materials (substrate and polymer) and deposition parameters (temperature and emersion velocity) on the deposition of metal salt loaded micelles by dip-coating from solution and on the order and inter-particle spacing of the micellar deposits and thus of the metal nanoparticle arrays resulting after plasma removal of the polymer shell. For identical substrate and polymer, variation of the process parameters temperature and emersion velocity enables the controlled modification of the interparticle distance within a certain length regime. Moreover, also the degree of hexagonal order of the final array depends sensitively on these parameters.

  12. Space Shuttle Projects

    NASA Image and Video Library

    1993-05-01

    Designed by members of the flight crew, the STS-58 insignia depicts the Space Shuttle Columbia with a Spacelab module in its payload bay in orbit around Earth. The Spacelab and the lettering Spacelab Life Sciences ll highlight the primary mission of the second Space Shuttle flight dedicated to life sciences research. An Extended Duration Orbiter (EDO) support pallet is shown in the aft payload bay, stressing the scheduled two-week duration of the longest Space Shuttle mission to date. The hexagonal shape of the patch depicts the carbon ring, a molecule common to all living organisms. Encircling the inner border of the patch is the double helix of DNA, representing the genetic basis of life. Its yellow background represents the sun, energy source for all life on Earth. Both medical and veterinary caducei are shown to represent the STS- 58 life sciences experiments. The position of the spacecraft in orbit about Earth with the United States in the background symbolizes the ongoing support of the American people for scientific research intended to benefit all mankind.

  13. Why square lattices are not seen on curved ionic membranes

    NASA Astrophysics Data System (ADS)

    Thomas, Creighton; Olvera de La Cruz, Monica

    2013-03-01

    Ionic crystalline membranes on curved surfaces are ubiquitous in nature, appearing for example on the membranes of halophilic organisms. Even when these membranes buckle into polyhedra with square or rectangular sides, the crystalline structure is seen to have hexagonal symmetry. Here, we theoretically and numerically investigate the effects of curvature on square lattices. Our model system consists of both positive and negative ions with a 1:1 charge ratio adsorbed onto the surface of a sphere. In flat space, the lowest-energy configuration of this system can be a square lattice. This bipartite arrangement is favored because there are two types of ions. It leads to a fundamentally different defect structure than what has been seen when triangular lattices are favored. We classify these defects and find that curvature disrupts long-range square symmetry in a crystal. Through numerical simulations, we see that small square regions are possible in some cases, but this phase coexists with other structures, limiting the scale of these square-lattice microstructures. Thus, at large length scales, curvature leads to triangular structures.

  14. Adsorption and Transport of Methane Molecules through One-Dimensional Channels in Dipeptide-Based Materials

    NASA Astrophysics Data System (ADS)

    Paradiso, Daniele; Perelli Cippo, Enrico; Gorini, Giuseppe; Rossi, Giorgio; Larese, John Z.

    The development of new materials for use in energy and environmental applications is of great interest, in particular in the areas of gas separation and carbon capture, where molecular transport plays a significant role. The dipeptides are organic molecules that offer an attractive possibility in such areas, because they form open hexagonal crystalline structures (space group P61) with quasi one-dimensional channels of tunable pore diameters in the range 3-6 Å. These molecular crystals exhibit selective adsorption, as well as, water and gas transport properties: these are believed to result from collective vibrations of the crystal structure that are coupled to the motions of the guest molecules within the channels. Current studies focus on characterizing the system methane and L-Isoleucyl-L-Valine (IV): this was initially done with high-resolution adsorption isotherms; then, high-resolution Inelastic Neutron Scattering measurements at the Spallation Neutron Source (BASIS spectrometer) revealed clear rotational tunneling peaks, offering details to unravel the potential energy surface of the system, as well as, evidences that channels flexibility and dynamical motion of the molecules have influence on the dipeptides adsorption properties.

  15. Spiral waves in driven strongly coupled Yukawa systems

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Das, Amita

    2018-06-01

    Spiral wave formations are ubiquitous in nature. In the present paper, the excitation of spiral waves in the context of driven two-dimensional dusty plasma (Yukawa system) has been demonstrated at particle level using molecular-dynamics simulations. The interaction amidst dust particles is modeled by the Yukawa potential to take account of the shielding of dust charges by the lighter electron and ion species. The spatiotemporal evolution of these spiral waves has been characterized as a function of the frequency and amplitude of the driving force and dust neutral collisions. The effect of strong coupling has been studied, which shows that the excited spiral wave structures get clearer as the medium gets more strongly coupled. The radial propagation speed of the spiral wave is observed to remain unaltered with the coupling parameter. However, it is found to depend on the screening parameter of the dust medium and decreases when it is increased. In the crystalline phase (with screening parameter κ >0.58 ), the spiral wavefronts are shown to be hexagonal in shape. This shows that the radial propagation speed depends on the interparticle spacing.

  16. In pursuit of the rhabdophane crystal structure: from the hydrated monoclinic LnPO{sub 4}.0.667H{sub 2}O to the hexagonal LnPO{sub 4} (Ln = Nd, Sm, Gd, Eu and Dy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesbah, Adel, E-mail: adel.mesbah@cea.fr; Clavier, Nicolas; Elkaim, Erik

    The dehydration process of the hydrated rhabdophane LnPO{sub 4}.0.667H{sub 2}O (Ln = La to Dy) was thoroughly studied over the combination of in situ high resolution synchrotron powder diffraction and TGA experiments. In the case of SmPO{sub 4}.0.667H{sub 2}O (monoclinic, C2), a first dehydration step was identified around 80 °C leading to the formation of SmPO{sub 4}.0.5H{sub 2}O (Monoclinic, C2) with Z =12 and a =17.6264(1) Å, b =6.9704(1) Å, c =12.1141(1) Å, β=133.74(1) °, V =1075.33(1) Å{sup 3}. In agreement with the TGA and dilatometry experiments, all the water molecules were evacuated above 220 °C yielding to the anhydrousmore » form, which crystallizes in the hexagonal P3{sub 1}21 space group with a =7.0389(1) Å, c =6.3702(1) Å and V =273.34(1) Å{sup 3}. This study was extended to selected LnPO{sub 4}.0.667H{sub 2}O samples (Ln= Nd, Gd, Eu, Dy) and the obtained results confirmed the existence of two dehydration steps before the stabilization of the anhydrous form, with the transitory formation of LnPO{sub 4}.0.5H{sub 2}O. - Graphical abstract: The dehydration process of the rhabdophane SmPO{sub 4}.0.667H{sub 2}O was studied over combination of in situ high resolution synchrotron powder diffraction and TGA techniques, a first dehydration was identified around 80 °C leading to the formation of SmPO{sub 4}.0.5H{sub 2}O (Monoclinic, C2). Then above 220 °C, the anhydrous form of the rhabdophane SmPO{sub 4} was stabilized and crystallizes in the hexagonal P3{sub 1}21 space group. - Highlights: • In situ synchrotron powder diffraction was carried out during the dehydration of the rhabdopahe LnPO{sub 4}.0.667H{sub 2}O. • The heat of the rhabdophane LnPO{sub 4}.0.667H{sub 2}O leads to LnPO{sub 4}.0.5H{sub 2}O then to anhydrous rhabdophane LnPO{sub 4}. • LnPO{sub 4}.0.5H{sub 2}O (monoclinic, C2) and LnPO{sub 4} (Hexagonal, P3{sub 1}21) were solved over the use of direct methods.« less

  17. Properties of solar generators with reflectors and radiators

    NASA Astrophysics Data System (ADS)

    Ebeling, W. D.; Rex, D.; Bierfischer, U.

    1980-06-01

    Radiation cooled concentrator systems using silicon and GaAs cells were studied. The principle of radiation cooling by the reflector surfaces is discussed for cylindrical parabolic reflectors (SARA), truncated hexagonal pyramids, and a small trough configuration. Beam paths, collection properties for imperfect orientation, and thermal optimization parameters were analyzed. The three concentrating systems with radiation cooling offer advantages over the plane panel and over the large trough. With silicon solar cells they exhibit considerably lower solar cell consumption per Kw and also lower mass per kW. With GaAs cells the SARA system reduces the number of solar cells needed per kW to less than 10%. Also in all other cases SARA offers the best values for alpha and F sub sol, as long as narrow angular tolerances of the panel orientation can be met. Analysis of the energy collecting properties for imperfect orientation shows the superiority of the hexagonal concentrator. This device can produce power for even large angles between the sun and the panel normal.

  18. Optical Design of Segmented Hexagon Array Solar Mirror

    NASA Technical Reports Server (NTRS)

    Huegele, Vince

    2000-01-01

    A segmented array of mirrors was designed for a solar concentrator test stand at MSFC for firing solar thermal propulsion engines. The 144 mirrors each have a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The mirror segments are aluminum hexagons that had the surface diamond turned and quartz coated. The array focuses sunlight reflected from a heliostat to a 4 inch diameter spot containing 10 kw of power at the 15-foot focal point. The derivation of the surface figure for the respective mirror elements is shown. The alignment process of the array is discussed and test results of the system's performance is given.

  19. Estimating Regional Mass Balance of Himalayan Glaciers Using Hexagon Imagery: An Automated Approach

    NASA Astrophysics Data System (ADS)

    Maurer, J. M.; Rupper, S.

    2013-12-01

    Currently there is much uncertainty regarding the present and future state of Himalayan glaciers, which supply meltwater for river systems vital to more than 1.4 billion people living throughout Asia. Previous assessments of regional glacier mass balance in the Himalayas using various remote sensing and field-based methods give inconsistent results, and most assessments are over relatively short (e.g., single decade) timescales. This study aims to quantify multi-decadal changes in volume and extent of Himalayan glaciers through efficient use of the large database of declassified 1970-80s era Hexagon stereo imagery. Automation of the DEM extraction process provides an effective workflow for many images to be processed and glacier elevation changes quantified with minimal user input. The tedious procedure of manual ground control point selection necessary for block-bundle adjustment (as ephemeral data is not available for the declassified images) is automated using the Maximally Stable Extremal Regions algorithm, which matches image elements between raw Hexagon images and georeferenced Landsat 15 meter panchromatic images. Additional automated Hexagon DEM processing, co-registration, and bias correction allow for direct comparison with modern ASTER and SRTM elevation data, thus quantifying glacier elevation and area changes over several decades across largely inaccessible mountainous regions. As consistent methodology is used for all glaciers, results will likely reveal significant spatial and temporal patterns in regional ice mass balance. Ultimately, these findings could have important implications for future water resource management in light of environmental change.

  20. Environmentally friendly gamma-MnO2 hexagon-based nanoarchitectures: structural understanding and their energy-saving applications.

    PubMed

    Wu, Changzheng; Xie, Wei; Zhang, Miao; Bai, Liangfei; Yang, Jinlong; Xie, Yi

    2009-01-01

    Although about 200,000 metric tons of gamma-MnO(2) are used annually worldwide for industrial applications, the gamma-MnO(2) structure is still known to possess a highly ambiguous crystal lattice. To better understand the gamma-MnO(2) atomic structure, hexagon-based nanoarchitectures were successfully synthesized and used to elucidate its internal structure for the present work. The structural analysis results, obtained from the hexagon-based nanoarchitectures, clearly show the coexistence of akhtenskite (epsilon-MnO(2)), pyrolusite (beta-MnO(2)), and ramsdellite in the so-called gamma-MnO(2) phase and verified the heterogeneous phase assembly of the gamma-MnO(2) state, which violates the well-known "De Wolff" model and derivative models, but partially accords with Heuer's results. Furthermore, heterogeneous gamma-MnO(2) assembly was found to be a metastable structure under hydrothermal conditions, and the individual components of the heterogeneous gamma-MnO(2) system have structural similarities and a high lattice matches with pyrolusite (beta-MnO(2)). The as-obtained gamma-MnO(2) nanoarchitectures are nontoxic and environmentally friendly, and the application of such nanoarchitectures as support matrices successfully mitigates the common problems for phase-change materials of inorganic salts, such as phase separation and supercooling-effects, thereby showing prospect in energy-saving applications in future "smart-house" systems.

  1. A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Hsueh; Huang, Ping-Ju; Wu, Jui-Yi; Hsieh, Po-Yuan; Huang, Yi-Pai

    2017-05-01

    The paper proposes a new display which could switch 2D and 3D images on a monitor, and we call it as Hybrid Display. In 3D display technologies, the reduction of image resolution is still an important issue. The more angle information offer to the observer, the less spatial resolution would offer to image resolution because of the fixed panel resolution. Take it for example, in the integral photography system, the part of image without depth, like background, will reduce its resolution by transform from 2D to 3D image. Therefore, we proposed a method by using liquid crystal component to quickly switch the 2D image and 3D image. Meanwhile, the 2D image is set as a background to compensate the resolution.. In the experiment, hexagonal liquid crystal lens array would be used to take the place of fixed lens array. Moreover, in order to increase lens power of the hexagonal LC lens array, we applied high resistance (Hi-R) layer structure on the electrode. Hi-R layer would make the gradient electric field and affect the lens profile. Also, we use panel with 801 PPI to display the integral image in our system. Hence, the consequence of full resolution 2D background with the 3D depth object forms the Hybrid Display.

  2. Sodium-Doped Mesoporous Ni2P2O7 Hexagonal Tablets for High-Performance Flexible All-Solid-State Hybrid Supercapacitors.

    PubMed

    Wei, Chengzhen; Cheng, Cheng; Wang, Shanshan; Xu, Yazhou; Wang, Jindi; Pang, Huan

    2015-08-01

    A simple hydrothermal method has been developed to prepare hexagonal tablet precursors, which are then transformed into porous sodium-doped Ni2P2O7 hexagonal tablets by a simple calcination method. The obtained samples were evaluated as electrode materials for supercapacitors. Electrochemical measurements show that the electrode based on the porous sodium-doped Ni2P2O7 hexagonal tablets exhibits a specific capacitance of 557.7 F g(-1) at a current density of 1.2 A g(-1) . Furthermore, the porous sodium-doped Ni2P2O7 hexagonal tablets were successfully used to construct flexible solid-state hybrid supercapacitors. The device is highly flexible and achieves a maximum energy density of 23.4 Wh kg(-1) and a good cycling stability after 5000 cycles, which confirms that the porous sodium-doped Ni2P2 O7 hexagonal tablets are promising active materials for flexible supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. "Hexagonal molybdenum trioxide"--known for 100 years and still a fount of new discoveries.

    PubMed

    Lunk, Hans-Joachim; Hartl, Hans; Hartl, Monika A; Fait, Martin J G; Shenderovich, Ilya G; Feist, Michael; Frisk, Timothy A; Daemen, Luke L; Mauder, Daniel; Eckelt, Reinhard; Gurinov, Andrey A

    2010-10-18

    In 1906, the preparation of “molybdic acid hydrate” was published by Arthur Rosenheim. Over the past 40 years, a multitude of isostructural compounds, which exist within a wide phase range of the system MoO3−NH3−H2O, have been published. The reported molecular formulas of “hexagonal molybdenum oxide” varied from MoO3 to MoO3·0.33NH3 to MoO3·nH2O (0.09 ≤ n ≤ 0.69) to MoO3·mNH3·nH2O (0.09 ≤ m ≤ 0.20; 0.18 ≤ n ≤ 0.60). Samples, prepared by the acidification route were investigated using thermal analysis coupled online to a mass spectrometer for evolved gas analysis, X-ray powder diffraction, Fourier transform infrared, Raman, magic-angle-spinning 1H- and 15N NMR spectroscopy, and incoherent inelastic neutron scattering. A comprehensive characterization of these samples will lead to a better understanding of their structure and physical properties as well as uncover the underlying relationship between the various compositions. The synthesized polymeric parent samples can be represented by the structural formula (NH4)(x∞)(3)[Mo(y square 1−y)O(3y)(OH)(x)(H2O)(m−n)]·nH2O with 0.10 ≤ x ≤ 0.14, 0.84 ≤ y ≤ 0.88, and m + n ≥ 3 − x − 3y. The X-ray study of a selected monocrystal confirmed the presence of the well-known 3D framework of edge- and corner-sharing MoO6 octahedra. The colorless monocrystal crystallizes in the hexagonal system with space group P6(3)/m, Z = 6, and unit cell parameters of a = 10.527(1) Å, c = 3.7245(7) Å, V = 357.44(8) Å3, and ρ = 3.73 g·cm(−3). The structure of the prepared monocrystal can best be described by the structural formula (NH4)(0.13∞)(3)[Mo(0.86 square 0.14)O2.58(OH)0.13(H2O)(0.29−n)]·nH2O, which is consistent with the existence of one vacancy (square) for six molybdenum sites. The sample MoO3·0.326NH3·0.343H2O, prepared by the ammoniation of a partially dehydrated MoO3·0.170NH3·0.153H2O with dry gaseous ammonia, accommodates NH3 in the hexagonal tunnels, in addition to [NH4]+ cations and H2O. The “chimie douce” reaction of MoO3·0.155NH3·0.440H2O with a 1:1 mixture of NO/NO2 at 100 °C resulted in the synthesis of MoO3·0.539H2O. This material is of great interest as a host of various molecules and cations.

  4. Structure refinement of the δ1p phase in the Fe-Zn system by single-crystal X-ray diffraction combined with scanning transmission electron microscopy.

    PubMed

    Okamoto, Norihiko L; Tanaka, Katsushi; Yasuhara, Akira; Inui, Haruyuki

    2014-04-01

    The structure of the δ1p phase in the iron-zinc system has been refined by single-crystal synchrotron X-ray diffraction combined with scanning transmission electron microscopy. The large hexagonal unit cell of the δ1p phase with the space group of P63/mmc comprises more or less regular (normal) Zn12 icosahedra, disordered Zn12 icosahedra, Zn16 icosioctahedra and dangling Zn atoms that do not constitute any polyhedra. The unit cell contains 52 Fe and 504 Zn atoms so that the compound is expressed with the chemical formula of Fe13Zn126. All Fe atoms exclusively occupy the centre of normal and disordered icosahedra. Iron-centred normal icosahedra are linked to one another by face- and vertex-sharing forming two types of basal slabs, which are bridged with each other by face-sharing with icosioctahedra, whereas disordered icosahedra with positional disorder at their vertex sites are isolated from other polyhedra. The bonding features in the δ1p phase are discussed in comparison with those in the Γ and ζ phases in the iron-zinc system.

  5. Visible light CrO4(2-) reduction using the new CuAlO2/CdS hetero-system.

    PubMed

    Brahimi, R; Bessekhouad, Y; Nasrallah, N; Trari, M

    2012-06-15

    In this study, 64% of hexavalent chromium Cr(VI) reduction from the initial concentration (10(-4) M) is reported under visible light using the (CuAlO(2)/CdS) hetero-system. In this new hetero-system, low doped CuAlO(2) delafossite, synthesized by sol-gel works as an electrons reservoir with a wide space charge region (440 nm). In this case, the electron transfer to chromate is mediated via the hexagonal CdS variety, whose conduction band level is at -1.08 V with respect to the saturated calomel electrode which is more negative than the CrO(4)(2-)/Cr(3+) level. This high reduction rate is achieved under optimized pH and CuAlO(2) percentage. Moreover, salicylic acid gives the best performance among hole scavengers and CuAlO(2) approaches 100% photostability at pH 7.5. The photo-catalytic process follows a pseudo first order kinetic with a half life of 2h. The reaction products are identified by UV-visible spectrophotometry and linear voltametry at a platinum rotating electrode. The results reveal the presence of Cr(3+) after irradiation. Copyright © 2012. Published by Elsevier B.V.

  6. Some studies related to a new Hexagonal Compound Parabolic Concentrator (HCPC) as a secondary in tandem with a solar tower

    NASA Astrophysics Data System (ADS)

    Suresh, Deivarajan

    Secondary concentrators operate in the focal plane of a point focusing system such as a paraboloidal dish or a tower and, when properly designed, are capable of enhancing the overall concentration ratio of the optical system at least by factor of two to five. The viability of using different shapes was demonstrated both analytically as well as experimentally in recent years, including Compound Parabolic Concentrators (CPCs) of circular cross section and 'trumpets' as secondaries. Current research effort is centered around a HCPC (Hexagonal CPC). Major areas addressed include an overview on the state of development of secondary concentrators, some background information related to the design of a HCPC, the results of an analytical study on the thermal behavior of this HCPC under concentrated flux conditions, and a computer modeling for assessing the possible thermal interactions between the secondary and a high temperature receiver.

  7. Light-stimulated cargo release from a core–shell structured nanocomposite for site-specific delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yun; Ling, Li; Li, Xiaofang

    This paper reported a core–shell structured site-specific delivery system with a light switch triggered by low energy light (λ=510 nm). Its core was composed of supermagnetic Fe{sub 3}O{sub 4} nanoparticles for magnetic guiding and targeting. Its outer shell consisted of mesoporous silica molecular sieve MCM-41 which offered highly ordered hexagonal tunnels for cargo capacity. A light switch N1-(4aH-cyclopenta[1,2-b:5,4-b′]dipyridin-5(5aH)-ylidene)benzene-1, 4-diamine (CBD) was covalently grafted into these hexagonal tunnels, serving as light stimuli acceptor with loading content of 1.1 μM/g. This composite was fully characterized and confirmed by SEM, TEM, XRD patterns, N{sub 2} adsorption/desorption, thermogravimetric analysis, IR, UV–vis absorption and emissionmore » spectra. Experimental data suggested that this composite had a core as wide as 150 nm and could be magnetically guided to specific sites. Its hexagonal tunnels were as long as 180 nm. Upon light stimuli of “on” and “off” states, controllable release was observed with short release time of ~900 s (90% capacity). - Graphical abstract: A core–shell structured site-specific delivery system with a light switch triggered by yellow light was constructed. Controllable release was observed with short release time of ~900 s (90% capacity). - Highlights: • A core–shell structured site-specific delivery system was constructed. • It consisted of Fe{sub 3}O{sub 4} core and MCM-41 shell grafted with light switch. • This delivery system was triggered by low energy light. • Controllable release was observed with short release time of ~900 s.« less

  8. Influence of the height of the external hexagon and surface treatment on fatigue life of commercially pure titanium dental implants.

    PubMed

    Gil, Francisco Javier; Aparicio, Conrado; Manero, Jose M; Padros, Alejandro

    2009-01-01

    This study evaluated the effect of external hexagon height and commonly applied surface treatments on the fatigue life of titanium dental implants. Electropolished commercially pure titanium dental implants (seven implants per group) with three different external hexagon heights (0.6, 1.2, and 1.8 mm) and implants with the highest external hexagon height (1.8 mm) and different surface treatments (electropolishing, grit blasting with aluminium oxide, and acid etching with sulfuric acid) were tested to evaluate their mechanical fatigue life. To do so, 10-Hz triangular flexural load cycles were applied at 37 degrees C in artificial saliva, and the number of load cycles until implant fracture was determined. Tolerances of the hexagon/abutment fit and implant surface roughness were analyzed by scanning electron microscopy and light interferometry. Transmission electron microscopy and electron diffraction analyses of titanium hydrides were performed. First, the fatigue life of implants with the highest hexagon (8,683 +/- 978 load cycles) was more than double that of the implants with the shortest hexagons (3,654 +/- 789 load cycles) (P < .02). Second, the grit-blasted implants had the longest fatigue life of the tested materials (21,393 +/- 2,356 load cycles), which was significantly greater than that of the other surfaces (P < .001). The compressive surface residual stresses induced when blasting titanium are responsible for this superior mechanical response. Third, precipitation of titanium hydrides in grain boundaries of titanium caused by hydrogen adsorption from the acid solution deteriorates the fatigue life of acid-etched titanium dental implants. These implants had the shortest fatigue life (P < .05). The fatigue life of threaded root-form dental implants varies with the height of the external hexagon and/or the surface treatment of the implant. An external hexagon height of 1.8 mm and/or a blasting treatment appear to significantly increase fatigue life of dental implants.

  9. The MaNGA integral field unit fiber feed system for the Sloan 2.5 m telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drory, N.; MacDonald, N.; Byler, N.

    2015-02-01

    We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 10{sup 4} local galaxies covering 360–1030 nm at R∼2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3–7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffermore » fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of throughput and fiber metrology. Future applications include larger IFUs, higher fill factors with stripped buffer, de-cladding, and lenslet coupling.« less

  10. The MaNGA Integral Field Unit Fiber Feed System for the Sloan 2.5 m Telescope

    NASA Astrophysics Data System (ADS)

    Drory, N.; MacDonald, N.; Bershady, M. A.; Bundy, K.; Gunn, J.; Law, D. R.; Smith, M.; Stoll, R.; Tremonti, C. A.; Wake, D. A.; Yan, R.; Weijmans, A. M.; Byler, N.; Cherinka, B.; Cope, F.; Eigenbrot, A.; Harding, P.; Holder, D.; Huehnerhoff, J.; Jaehnig, K.; Jansen, T. C.; Klaene, M.; Paat, A. M.; Percival, J.; Sayres, C.

    2015-02-01

    We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 104 local galaxies covering 360-1030 nm at R˜ 2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3-7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffer fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of throughput and fiber metrology. Future applications include larger IFUs, higher fill factors with stripped buffer, de-cladding, and lenslet coupling.

  11. Concrete structure construction on the Moon

    NASA Technical Reports Server (NTRS)

    Matsumoto, Shinji; Namba, Haruyuki; Kai, Yoshiro; Yoshida, Tetsuji

    1992-01-01

    This paper describes a precast prestressed concrete structure system on the Moon and erection methods for this system. The horizontal section of the structural module is hexagonal so that various layouts of the modules are possible by connecting the adjacent modules to each other. For erection of the modules, specially designed mobile cranes are used.

  12. Tuning transport properties of graphene three-terminal structures by mechanical deformation

    NASA Astrophysics Data System (ADS)

    Torres, V.; Faria, D.; Latgé, A.

    2018-04-01

    Straintronic devices made of carbon-based materials have been pushed up due to the graphene high mechanical flexibility and the possibility of interesting changes in transport properties. Properly designed strained systems have been proposed to allow optimized transport responses that can be explored in experimental realizations. In multiterminal systems, comparisons between schemes with different geometries are important to characterize the modifications introduced by mechanical deformations, especially if the deformations are localized at a central part of the system or extended in a large region. Then, in the present analysis, we study the strain effects on the transport properties of triangular and hexagonal graphene flakes, with zigzag and armchair edges, connected to three electronic terminals, formed by semi-infinite graphene nanoribbons. Using the Green's function formalism with circular renormalization schemes, and a single band tight-binding approximation, we find that resonant tunneling transport becomes relevant and is more affected by localized deformations in the hexagonal graphene flakes. Moreover, triangular systems with deformation extended to the leads, like longitudinal three-folded type, are shown as an interesting scenario for building nanoscale waveguides for electronic current.

  13. Solar concentrator advanced development project

    NASA Technical Reports Server (NTRS)

    Corrigan, Robert D.; Ehresman, Derik T.

    1987-01-01

    A solar dynamic concentrator design developed for use with a solar-thermodynamic power generation module intended for the Space Station is considered. The truss hexagonal panel reflector uses a modular design approach and is flexible in attainable flux profiles and assembly techniques. Preliminary structural, thermal, and optical analysis results are discussed. Accuracy of the surface reflectors should be within 5 mrad rms slope error, resulting in the need for close fabrication tolerances. Significant fabrication issues to be addressed include the facet reflective and protective coating processes and the surface specularity requirements.

  14. Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors.

    PubMed

    Wu, Mao-Sung; Huang, Kuo-Chih

    2011-11-28

    A nickel hydroxide electrode with open-ended hexagonal nanotube arrays, prepared by hydrolysis of nickel chloride in the presence of hexagonal ZnO nanorods, shows a very high capacitance of 1328 F g(-1) at a discharge current density of 1 A g(-1) due to the significantly improved ion transport.

  15. New Findings on the Phase Transitions in Li(sub 1-x)CoO(sub 2) and Li(sub 1-x)NiO(sub 2) Cathode Materials During Cycling: In Situ Synchrotron X-Ray Diffraction Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X. Q.; Sun, X.; McBreen, J.

    The authors have utilized synchrotron x-ray radiation to perform ''in situ'' x-ray diffraction studies on Li{sub 1-x}CoO{sub 2} and Li{sub 1-x}NiO{sub 2} cathodes. A C/10 charging rate was used for a Li/Li{sub 1-x}CoO{sub 2} cell. For the Li/Li{sub 1-x}NiO{sub 2} cells, C/13 and C/84 rates were applied. The in situ XRD data were collected during the first charge from 3.5 to 5.2 V. For the Li{sub 1-x}CoO{sub 2} cathode, in the composition range of x = 0 to x = 0.5, a new intermediate phase H2a was observed in addition to the two expected hexagonal phases H1 and H2. Inmore » the region very close to x = 0.5, some spectral signatures for the formation of a monoclinic phase M1 were also observed. Further, in the x = 0.8 to x = 1 region, the formation of a CdI{sub 2} type hexagonal phase has been confirmed. However, this new phase is transformed from a CdCl{sub 2} type hexagonal phase, rather than from a monoclinic phase M2 as previously reported in the literature. For the Li{sub 1-x}NiO{sub 2} system, by taking the advantage of the high resolution in 2{theta} angles through the synchrotron based XRD technique, they were able to identify a two-phase coexistence region of hexagonal phase H1 and H2, which has been mistakenly indexed as a single phase region for monoclinic phase M1. Interesting similarities and differences between these two systems are also discussed.« less

  16. Syntheses, crystal structures and Raman spectra of Ba(BF{sub 4})(PF{sub 6}), Ba(BF{sub 4})(AsF{sub 6}) and Ba{sub 2}(BF{sub 4}){sub 2}(AsF{sub 6})(H{sub 3}F{sub 4}); the first examples of metal salts containing simultaneously tetrahedral BF{sub 4}{sup -} and octahedral AF{sub 6}{sup -} anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lozinsek, Matic; Bunic, Tina; Goreshnik, Evgeny, E-mail: evgeny.goreshnik@ijs.s

    2009-10-15

    In the system BaF{sub 2}/BF{sub 3}/PF{sub 5}/anhydrous hydrogen fluoride (aHF) a compound Ba(BF{sub 4})(PF{sub 6}) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF{sub 4})(PF{sub 6}) crystallizes in a hexagonal P6-bar2m space group with a=10.2251(4) A, c=6.1535(4) A, V=557.17(5) A{sup 3} at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF{sub 4}{sup -} and PF{sub 6}{sup -} anions. In the analogous system with AsF{sub 5} instead of PF{sub 5} the compound Ba(BF{sub 4})(AsF{sub 6}) was isolated and characterized.more » It crystallizes in an orthorhombic Pnma space group with a=10.415(2) A, b=6.325(3) A, c=11.8297(17) A, V=779.3(4) A{sup 3} at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF{sub 6}{sup -} and four F atoms from BF{sub 4}{sup -} anions. When the system BaF{sub 2}/BF{sub 3}/AsF{sub 5}/aHF is made basic with an extra addition of BaF{sub 2}, the compound Ba{sub 2}(BF{sub 4}){sub 2}(AsF{sub 6})(H{sub 3}F{sub 4}) was obtained. It crystallizes in a hexagonal P6{sub 3}/mmc space group with a=6.8709(9) A, c=17.327(8) A, V=708.4(4) A{sup 3} at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF{sub 4}{sup -}, three AsF{sub 6}{sup -} and three H{sub 3}F{sub 4}{sup -} anions. All F atoms, except the central atom in H{sub 3}F{sub 4} moiety, act as mu{sub 2}-bridges yielding a complex 3-D structural network. - Graphical abstract: The first three compounds, containing simultaneously tetrahedral BF{sub 4}{sup -} and octahedral AF{sub 6}{sup -} (A=P, As) anions have been synthesized and characterized by Raman spectroscopy and X-ray single crystal diffraction. In the system BaF{sub 2}/BF{sub 3}/PF{sub 5}/anhydrous hydrogen fluoride (aHF) the compound Ba(BF{sub 4})(PF{sub 6}) was isolated. In the analogous system with AsF{sub 5} instead of PF{sub 5} the compound Ba(BF{sub 4})(AsF{sub 6}) was obtained. When the system BaF{sub 2}/BF{sub 3}/AsF{sub 5}/aHF is made basic with an extra addition of BaF{sub 2}, the compound Ba{sub 2}(BF{sub 4}){sub 2}(AsF{sub 6})(H{sub 3}F{sub 4}) was prepared.« less

  17. Removal Torque and Biofilm Accumulation at Two Dental Implant-Abutment Joints After Fatigue.

    PubMed

    Pereira, Jorge; Morsch, Carolina S; Henriques, Bruno; Nascimento, Rubens M; Benfatti, Cesar Am; Silva, Filipe S; López-López, José; Souza, Júlio Cm

    2016-01-01

    The aim of this study was to evaluate the removal torque and in vitro biofilm penetration at Morse taper and hexagonal implant-abutment joints after fatigue tests. Sixty dental implants were divided into two groups: (1) Morse taper and (2) external hexagon implant-abutment systems. Fatigue tests on the implant-abutment assemblies were performed at a normal force (FN) of 50 N at 1.2 Hz for 500,000 cycles in growth medium containing human saliva for 72 hours. Removal torque mean values (n = 10) were measured after fatigue tests. Abutments were then immersed in 1% protease solution in order to detach the biofilms for optical density and colony-forming unit (CFU/cm²) analyses. Groups of implant-abutment assemblies (n = 8) were cross-sectioned at 90 degrees relative to the plane of the implant-abutment joints for the microgap measurement by field-emission guns scanning electron microscopy. Mean values of removal torque on abutments were significantly lower for both Morse taper (22.1 ± 0.5 μm) and external hexagon (21.1 ± 0.7 μm) abutments after fatigue tests than those recorded without fatigue tests (respectively, 24 ± 0.5 μm and 24.8 ± 0.6 μm) in biofilm medium for 72 hours (P = .04). Mean values of microgap size for the Morse taper joints were statistically signicantly lower without fatigue tests (1.7 ± 0.4 μm) than those recorded after fatigue tests (3.2 ± 0.8 μm). Also, mean values of microgap size for external hexagon joints free of fatigue were statistically signicantly lower (1.5 ± 0.4 μm) than those recorded after fatigue tests (8.1 ± 1.7 μm) (P < .05). The optical density of biofilms and CFU mean values were lower on Morse taper abutments (Abs630nm at 0.06 and 2.9 × 10⁴ CFU/cm²) than that on external hexagon abutments (Abs630nm at 0.08 and 4.5 × 10⁴ CFU/cm²) (P = .01). The mean values of removal torque, microgap size, and biofilm density recorded at Morse taper joints were lower in comparison to those recorded at external hexagon implant-abutment joints after fatigue tests in a simulated oral environment for 72 hours.

  18. Hexagon solar power panel

    NASA Technical Reports Server (NTRS)

    Rubin, I. (Inventor)

    1978-01-01

    A solar energy panel support is described upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  19. Non-Reciprocal on Wafer Microwave Devices

    DTIC Science & Technology

    2015-05-27

    filter uses a barium hexagonal ferrite film incorporated into the dielectric layer of a microstrip transmission line. The zero-field operational...Fal,, Robert E. Camley. Millimeter wave phase shifter based on ferromagnetic resonancein a hexagonal barium ferrite thin film, Applied Physics...materials for on-wafer microwave devices concentrated on barium hexagonal ferrite (BaM) films grown on Si because these material is a good candidate

  20. Hexagon solar power panel

    DOEpatents

    Rubin, Irwin

    1978-01-01

    A solar energy panel comprises a support upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  1. Self-Assembly of a [1+1] Ionic Hexagonal Macrocycle and its Antiproliferative Activity

    NASA Astrophysics Data System (ADS)

    Singh, Khushwant; Gangrade, Ankit; Bhowmick, Sourav; Jana, Achintya; Mandal, Biman B.; Das, Neeladri

    2018-04-01

    A unique irregular hexagon was self-assembled using an organic donor clip (bearing terminal pyridyl units) and a complementary organometallic acceptor clip. The resulting metallamacrocycle was characterized by multinuclear NMR, mass spectrometry, and elemental analyses. Molecular modeling confirmed hexagonal shaped cavity for this metallamacrocycle which is a unique example of a discrete hexagonal framework self-assembled from only two building blocks. Cytotoxicity of the Pt-based acceptor tecton and the self-assembled PtII-based macrocycle was evaluated using three cancer cell lines and results were compared with cisplatin. Results confirmed a positive effect of the metallamacrocycle formation on cell growth inhibition.

  2. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets.

    PubMed

    Wang, Qisheng; Safdar, Muhammad; Xu, Kai; Mirza, Misbah; Wang, Zhenxing; He, Jun

    2014-07-22

    Van der Waals epitaxy (vdWE) is of great interest due to its extensive applications in the synthesis of ultrathin two-dimensional (2D) layered materials. However, vdWE of nonlayered functional materials is still not very well documented. Here, although tellurium has a strong tendency to grow into one-dimensional nanoarchitecture due to its chain-like structure, we successfully realize 2D hexagonal tellurium nanoplates on flexible mica sheets via vdWE. Chemically inert mica surface is found to be crucial for the lateral growth of hexagonal tellurium nanoplates since it (1) facilitates the migration of tellurium adatoms along mica surface and (2) allows a large lattice mismatch. Furthermore, 2D tellurium hexagonal nanoplates-based photodetectors are in situ fabricated on flexible mica sheets. Efficient photoresponse is obtained even after bending the device for 100 times, indicating 2D tellurium hexagonal nanoplates-based photodetectors on mica sheets have a great application potential in flexible and wearable optoelectronic devices. We believe the fundamental understanding of vdWE effect on the growth of 2D tellurium hexagonal nanoplate can pave the way toward leveraging vdWE as a useful channel to realize the 2D geometry of other nonlayered materials.

  3. Controllable growth of shaped graphene domains by atmospheric pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Fan, Lili; Li, Zhen; Li, Xiao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Zhu, Hongwei

    2011-12-01

    Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed.Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed. Electronic supplementary information (ESI) available: Schematics of CVD setups for graphene growth, Raman spectra and SEM images. See DOI: 10.1039/c1nr11480h

  4. Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex.

    PubMed

    Mhatre, Himanshu; Gorchetchnikov, Anatoli; Grossberg, Stephen

    2012-02-01

    Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. It has previously been shown how a self-organizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? This article describes a simple and general mathematical property of the trigonometry of spatial navigation which favors hexagonal patterns. The article also develops a neural model that can learn to exploit this trigonometric relationship. This GRIDSmap self-organizing map model converts path integration signals into hexagonal grid cell patterns of multiple scales. GRIDSmap creates only grid cell firing patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support an emerging unified computational framework based on a hierarchy of self-organizing maps for explaining how entorhinal-hippocampal interactions support spatial navigation. Copyright © 2010 Wiley Periodicals, Inc.

  5. The amazing evolutionary dynamics of non-linear optical systems with feedback

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Leonid

    2013-09-01

    Optical systems with feedback are, generally, non-linear dynamic systems. As such, they exhibit evolutionary behavior. In the paper we present results of experimental investigation of evolutionary dynamics of several models of such systems. The models are modifications of the famous mathematical "Game of Life". The modifications are two-fold: "Game of Life" rules are made stochastic and mutual influence of cells is made spatially non-uniform. A number of new phenomena in the evolutionary dynamics of the models are revealed: - "Ordering of chaos". Formation, from seed patterns, of stable maze-like patterns with chaotic "dislocations" that resemble natural patterns, such as skin patterns of some animals and fishes, see shell, fingerprints, magnetic domain patterns and alike, which one can frequently find in the nature. These patterns and their fragments exhibit a remarkable capability of unlimited growth. - "Self-controlled growth" of chaotic "live" formations into "communities" bounded, depending on the model, by a square, hexagon or octagon, until they reach a certain critical size, after which the growth stops. - "Eternal life in a bounded space" of "communities" after reaching a certain size and shape. - "Coherent shrinkage" of "mature", after reaching a certain size, "communities" into one of stable or oscillating patterns preserving in this process isomorphism of their bounding shapes until the very end.

  6. Spectral radiation analyses of the GOES solar illuminated hexagonal cell scan mirror back

    NASA Technical Reports Server (NTRS)

    Fantano, Louis G.

    1993-01-01

    A ray tracing analytical tool has been developed for the simulation of spectral radiation exchange in complex systems. Algorithms are used to account for heat source spectral energy, surface directional radiation properties, and surface spectral absorptivity properties. This tool has been used to calculate the effective solar absorptivity of the geostationary operational environmental satellites (GOES) scan mirror in the calibration position. The development and design of Sounder and Imager instruments on board GOES is reviewed and the problem of calculating the effective solar absorptivity associated with the GOES hexagonal cell configuration is presented. The analytical methodology based on the Monte Carlo ray tracing technique is described and results are presented and verified by experimental measurements for selected solar incidence angles.

  7. Polygon patterns on Europa

    NASA Technical Reports Server (NTRS)

    Smalley, I. J.

    1981-01-01

    The formation of polygon patterns in the development of crack networks in cooling basalt flows and similar contracting systems, and under natural conditions in an essentially unbounded basalt flow, are analyzed, and the characteristics of hexagonal and pentagonal patterns in isotropic stress fields are discussed.

  8. Emergence of chirality in hexagonally packed monolayers of hexapentyloxytriphenylene on Au(111): a joint experimental and theoretical study.

    PubMed

    Sleczkowski, Piotr; Katsonis, Nathalie; Kapitanchuk, Oleksiy; Marchenko, Alexandr; Mathevet, Fabrice; Croset, Bernard; Lacaze, Emmanuelle

    2014-11-11

    We investigate the expression of chirality in a monolayer formed spontaneously by 2,3,6,7,10,11-pentyloxytriphenylene (H5T) on Au(111). We resolve its interface morphology by combining scanning tunneling microscopy (STM) with theoretical calculations of intermolecular and interfacial interaction potentials. We observe two commensurate structures. While both of them belong to a hexagonal space group, analogical to the triangular symmetry of the molecule and the hexagonal symmetry of the substrate surface, they surprisingly reveal a 2D chiral character. The corresponding breaking of symmetry arises for two reasons. First it is due to the establishment of a large molecular density on the substrate, which leads to a rotation of the molecules with respect to the molecular network crystallographic axes to avoid steric repulsion between neighboring alkoxy chains. Second it is due to the molecule-substrate interactions, leading to commensurable large crystallographic cells associated with the large size of the molecule. As a consequence, molecular networks disoriented with respect to the high symmetry directions of the substrate are induced. The high simplicity of the intermolecular and molecule-substrate van der Waals interactions leading to these observations suggests a generic character for this kind of symmetry breaking. We demonstrate that, for similar molecular densities, only two kinds of molecular networks are stabilized by the molecule-substrate interactions. The most stable network favors the interfacial interactions between terminal alkoxy tails and Au(111). The metastable one favors a specific orientation of the triphenylene core with its symmetry axes collinear to the Au⟨110⟩. This specific orientation of the triphenylene cores with respect to Au(111) appears associated with an energy advantage larger by at least 0.26 eV with respect to the disoriented core.

  9. Can Retinal Ganglion Cell Dipoles Seed Iso-Orientation Domains in the Visual Cortex?

    PubMed Central

    Schottdorf, Manuel; Eglen, Stephen J.; Wolf, Fred; Keil, Wolfgang

    2014-01-01

    It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex. PMID:24475081

  10. New quaternary carbide Mg1.52Li0.24Al0.24C0.86 as a disorder derivative of the family of hexagonal close-packed (hcp) structures and the effect of structure modification on the electrochemical behaviour of the electrode.

    PubMed

    Pavlyuk, Volodymyr; Kulawik, Damian; Ciesielski, Wojciech; Pavlyuk, Nazar; Dmytriv, Grygoriy

    2018-03-01

    Magnesium alloys are the basis for the creation of light and ultra-light alloys. They have attracted attention as potential materials for the accumulation and storage of hydrogen, as well as electrode materials in metal-hydride and magnesium-ion batteries. The search for new metal hydrides has involved magnesium alloys with rare-earth transition metals and doped by p- or s-elements. The synthesis and characterization of a new quaternary carbide, namely dimagnesium lithium aluminium carbide, Mg 1.52 Li 0.24 Al 0.24 C 0.86 , belonging to the family of hexagonal close-packed (hcp) structures, are reported. The title compound crystallizes with hexagonal symmetry (space group P-6m2), where two sites with -6m2 symmetry and one site with 3m. symmetry are occupied by an Mg/Li statistical mixture (in Wyckoff position 1a), an Mg/Al statistical mixture (in position 1d) and C atoms (2i). The cuboctahedral coordination is typical for Mg/Li and Mg/Al, and the C atom is enclosed in an octahedron. Electronic structure calculations were used for elucidation of the ability of lithium or aluminium to substitute magnesium, and evaluation of the nature of the bonding between atoms. The presence of carbon in the carbide phase improves the corrosion resistance of the Mg 1.52 Li 0.24 Al 0.24 C 0.86 alloy compared to the ternary Mg 1.52 Li 0.24 Al 0.24 alloy and Mg.

  11. Phase coexistence and magnetic behavior in the low-dimensional hexagonal cobaltites BaxA1-xCoO3-δ (A = Mg or Ca and 0 ⩽ x ⩽ 0.20)

    NASA Astrophysics Data System (ADS)

    Oliveira, M. P.; Mercena, S. G.; Meneses, C. T.; Jesus, C. B. R.; Pagliuso, P. G.; Duque, J. G. S.

    2018-04-01

    In this work, we report on X-ray diffraction and magnetization measurements carried out in the low-dimensional hexagonal cobaltites BaxA1-xCoO3-δ (A = Mg or Ca, 0 ⩽ x ⩽ 0.20 and δ = 0 or 0.4). Polycrystalline samples have been synthesized by solid-state reaction. The Rietveld refinements of the X-ray diffraction patterns show clearly a phase coexistence of both BaCoO2.6 and BaCoO3 hexagonal polytype structures (space group: P63/mmc), which is dependent on both the dopant ion and doping level. At low temperatures (T < 50K), the ZFC-FC data recorded at H = 1 kOe for Ca-doped (x < 0.15) and Ba0.80Mg0.20CoO3-δ samples present a broad peak and strong thermal hysteresis. Besides, a second anomaly around room temperature is also observed in susceptibility curves for all samples. Further increasing in the Ca-doping produces a continuous decreasing of magnetization and for the samples with x > 0.10 the low temperature hysteresis is not observed anymore. The field-dependence of ZFC-FC curves taken for the sample grown with x = 0 show a displacement of the peak position into low temperature region. Except for the sample grown with x = 0.20, the MvsH loops taken at T = 2 K show multiple steps in the field region ranging - 15 ⩽ H ⩽ 15 kOe . Finally, the saturation magnetization values are consistent with a low-spin state for the Co2+ or Co4+ ions.

  12. Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?

    PubMed

    Schottdorf, Manuel; Eglen, Stephen J; Wolf, Fred; Keil, Wolfgang

    2014-01-01

    It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex.

  13. Communication Applications for Deformable Mirror Devices.

    DTIC Science & Technology

    1997-06-01

    is mean deflection [after Rhoadarmer. 1994] 4.5 Improved interference microscope system for micromirror characterization [after Michalicek. et...identical hexagonal micromirrors [after Michalicek. et al.. 1995] 4.7 (a) Optical system design for micromirror array (or DMD ) interfacing...constructive and destructive interference between the reflective and nonreflective portions of the element (about 75% of the element is reflective

  14. STIR: Novel Electronic States by Gating Strongly Correlated Materials

    DTIC Science & Technology

    2016-03-01

    plan built on my group’s recent demonstration of electrolyte gating in Strontium Titanate, using an atomically thin hexagonal Boron Nitride barrier to...demonstration of electrolyte gating in Strontium Titanate, using an atomically thin hexagonal Boron Nitride barrier to prevent disorder and chemical...techniques and learned to apply thin hexagonal Boron Nitride to single crystals of materials expected to show some of the most exciting correlated

  15. Calibration of а single hexagonal NaI(Tl) detector using a new numerical method based on the efficiency transfer method

    NASA Astrophysics Data System (ADS)

    Abbas, Mahmoud I.; Badawi, M. S.; Ruskov, I. N.; El-Khatib, A. M.; Grozdanov, D. N.; Thabet, A. A.; Kopatch, Yu. N.; Gouda, M. M.; Skoy, V. R.

    2015-01-01

    Gamma-ray detector systems are important instruments in a broad range of science and new setup are continually developing. The most recent step in the evolution of detectors for nuclear spectroscopy is the construction of large arrays of detectors of different forms (for example, conical, pentagonal, hexagonal, etc.) and sizes, where the performance and the efficiency can be increased. In this work, a new direct numerical method (NAM), in an integral form and based on the efficiency transfer (ET) method, is used to calculate the full-energy peak efficiency of a single hexagonal NaI(Tl) detector. The algorithms and the calculations of the effective solid angle ratios for a point (isotropic irradiating) gamma-source situated coaxially at different distances from the detector front-end surface, taking into account the attenuation of the gamma-rays in the detector's material, end-cap and the other materials in-between the gamma-source and the detector, are considered as the core of this (ET) method. The calculated full-energy peak efficiency values by the (NAM) are found to be in a good agreement with the measured experimental data.

  16. Neutron diffraction study of water freezing on aircraft engine combustor soot.

    PubMed

    Tishkova, V; Demirdjian, B; Ferry, D; Johnson, M

    2011-12-14

    The study of the formation of condensation trails and cirrus clouds on aircraft emitted soot particles is important because of its possible effects on climate. In the present work we studied the freezing of water on aircraft engine combustor (AEC) soot particles under conditions of pressure and temperature similar to the upper troposphere. The microstructure of the AEC soot was found to be heterogeneous containing both primary particles of soot and metallic impurities (Fe, Cu, and Al). We also observed various surface functional groups such as oxygen-containing groups, including sulfate ions, that can act as active sites for water adsorption. Here we studied the formation of ice on the AEC soot particles by using neutron diffraction. We found that for low amount of adsorbed water, cooling even up to 215 K did not lead to the formation of hexagonal ice. Whereas, larger amount of adsorbed water led to the coexistence of liquid water (or amorphous ice) and hexagonal ice (I(h)); 60% of the adsorbed water was in the form of ice I(h) at 255 K. Annealing of the system led to the improvement of the crystal quality of hexagonal ice crystals as demonstrated from neutron diffraction.

  17. Insights in the Diffusion Controlled Interfacial Flow Synthesis of Au Nanostructures in a Microfluidic System.

    PubMed

    Kulkarni, Amol A; Sebastian Cabeza, Victor

    2017-12-19

    Continuous segmented flow interfacial synthesis of Au nanostructures is demonstrated in a microchannel reactor. This study brings new insights into the growth of nanostructures at continuous interfaces. The size as well as the shape of the nanostructures showed significant dependence on the reactant concentrations, reaction time, temperature, and surface tension, which actually controlled the interfacial mass transfer. The microchannel reactor assisted in achieving a high interfacial area, as well as uniformity in mass transfer effects. Hexagonal nanostructures were seen to be formed in synthesis times as short as 10 min. The wettability of the channel showed significant effect on the particle size as well as the actual shape. The hydrophobic channel yielded hexagonal structures of relatively smaller size than the hydrophilic microchannel, which yielded sharp hexagonal bipyramidal particles (diagonal distance of 30 nm). The evolution of particle size and shape for the case of hydrophilic microchannel is also shown as a function of the residence time. The interfacial synthesis approach based on a stable segmented flow promoted an excellent control on the reaction extent, reduction in axial dispersion as well as the particle size distribution.

  18. Growth of Ferromagnetic Epitaxial Film of Hexagonal FeGe on (111) Ge Surface

    NASA Astrophysics Data System (ADS)

    Kumar, Dushyant; Joshi, P. C.; Hossain, Z.; Budhani, R. C.

    2014-03-01

    The realization of semiconductors showing ferromagnetic order at easily accessible temperatures has been of interest due to their potential use in spintronic devices where long spin life times are of key interest. We have realized the growth of FeGe thin films on Ge (111) wafers using pulsed laser deposition (PLD). The stoichiometric and single phase FeGe target used in PLD chamber has been made by arc melting. A typical θ-2 θ diffraction spectra performed on 40 nm thick FeGe film suggests the stabilization of β-Ni2In (B82-type) hexagonal phase with an epitaxial orientation of (0001)FeGe ||(111)Ge and [11-20]FeGe ||[-110]Ge. SEM images shows a granular structure with the formation of very large grains of about 100 to 500 nm in lateral dimension. The magnetization vs. temperature data taken from SQUID reveal the TC of ~ 270K. Since, PLD technique makes it easier to stabilize the B82 (Ni2In) hexagonal phase in thin FeGe films, this work opens opportunities to reinvestigate many conflicting results on various properties of the FeGe system.

  19. Scalable and Tunable Carbide-Phosphide Composite Catalyst System for the Thermochemical Conversion of Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regmi, Yagya; Rogers, Bridget; Labbe, Nicole

    We have prepared composite materials of hexagonal nickel phosphide and molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method comprised of carbothermic reduction followed by hydrothermal incubation. We observe the monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) ratios. Upon increasing the proportion of P:C, the carbide surface becomes saturated, and we detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is achievable using the composite material as a catalyst, and we monitor the resulting product slates usingmore » pyrolysis gas chromatography/mass spectrometry. Our analysis of the product vapors indicates that variation of the P:C molar ratio in the composite material affords product slates of varying complexity and composition, which is indicated by the number of products and their relative proportions in the product slate. Our results demonstrate that targeted vapor product composition can be obtained, which can potentially be utilized to tune the composition of the bio-oil downstream.« less

  20. Scalable and Tunable Carbide-Phosphide Composite Catalyst System for the Thermochemical Conversion of Biomass

    DOE PAGES

    Regmi, Yagya; Rogers, Bridget; Labbe, Nicole; ...

    2017-07-13

    We have prepared composite materials of hexagonal nickel phosphide and molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method comprised of carbothermic reduction followed by hydrothermal incubation. We observe the monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) ratios. Upon increasing the proportion of P:C, the carbide surface becomes saturated, and we detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is achievable using the composite material as a catalyst, and we monitor the resulting product slates usingmore » pyrolysis gas chromatography/mass spectrometry. Our analysis of the product vapors indicates that variation of the P:C molar ratio in the composite material affords product slates of varying complexity and composition, which is indicated by the number of products and their relative proportions in the product slate. Our results demonstrate that targeted vapor product composition can be obtained, which can potentially be utilized to tune the composition of the bio-oil downstream.« less

  1. Crystal structure and ligand affinity of avidin in the complex with 4‧-hydroxyazobenzene-2-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Strzelczyk, Paweł; Bujacz, Grzegorz

    2016-04-01

    Avidin is a protein found in egg white that binds numerous organic compounds with high affinity, especially biotin and its derivatives. Due to its extraordinary affinity for its ligands, avidin is extensively used in biotechnology. X-ray crystallography and fluorescence-based biophysical techniques were used to show that avidin binds the dye 4‧-hydroxyazobenzene-2-carboxylic acid (HABA) with a lower affinity than biotin. The apparent dissociation constant determined for the avidin complex with HABA by microscale thermophoresis (MST) is 4.12 μM. The crystal structure of avidin-HABA complex was determined at a resolution of 2.2 Å (PDB entry 5chk). The crystals belong to a hexagonal system, in the space group P6422. In that structure, the hydrazone tautomer of HABA is bound at the bottom part of the central calyx near the polar residues. We show interactions of the dye with avidin and compare them with the previously reported avidin-biotin complex.

  2. Principle of Magnetodynamics for Composite Magnetic Pole

    NASA Astrophysics Data System (ADS)

    Animalu, Alexander

    2014-03-01

    It is shown in this paper that geometry provides the key to the new magnetodynamics principle of operation of the machine (invented by Dr. Ezekiel Izuogu) which has an unexpected feature of driving a motor with static magnetic field. Essentially, because an array of like magnetic poles of the machine is arranged in a half circular array of a cylindrical geometry, the array creates a non-pointlike magnet pole that may be represented by a ``magnetic current loop'' at the position of the pivot of the movable arm. As a result, in three-dimensional space, it is possible to characterize the symmetry of the stator magnetic field B and the magnetic current loop J as a cube-hexagon system by a 6-vector (J,B) (with J.B ≠0) comprising a 4x4 antisymmetric tensor analogous to the conventional electric and magnetic 6-vector (E,B) (with E.B ≠0) comprising the 4x4 antisymmetric tensor of classical electrodynamics The implications are discussed. Supported by International Centre for Basic Research, Abuja, Nigeria.

  3. Developing a scalable inert gas ion thruster

    NASA Technical Reports Server (NTRS)

    James, E.; Ramsey, W.; Steiner, G.

    1982-01-01

    Analytical studies to identify and then design a high performance scalable ion thruster operating with either argon or xenon for use in large space systems are presented. The magnetoelectrostatic containment concept is selected for its efficient ion generation capabilities. The iterative nature of the bounding magnetic fields allows the designer to scale both the diameter and length, so that the thruster can be adapted to spacecraft growth over time. Three different thruster assemblies (conical, hexagonal and hemispherical) are evaluated for a 12 cm diameter thruster and performance mapping of the various thruster configurations shows that conical discharge chambers produce the most efficient discharge operation, achieving argon efficiencies of 50-80% mass utilization at 240-310 eV/ion and xenon efficiencies of 60-97% at 240-280 eV/ion. Preliminary testing of the large 30 cm thruster, using argon propellant, indicates a 35% improvement over the 12 cm thruster in mass utilization efficiency. Since initial performance is found to be better than projected, a larger 50 cm thruster is already in the development stage.

  4. Magnetic transition in Y-site doped multiferroic YMnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakur, Rajesh K., E-mail: thakur.rajesh2009@gmail.com; Thakur, Rasna, E-mail: rasnathakur@yahoo.com; Gaur, N. K., E-mail: srl-nkgaur@yahoo.co.in

    2016-05-06

    We have synthesized polycrystalline hexagonal Y{sub 1-x}Sr{sub x}MnO{sub 3} (x=0.02, 0.1) compounds by using conventional solid state reaction method. The detailed structural investigations are carried out by using XRD studies which reveals the single phase formation of the reported compounds with hexagonal structure and space group P6{sub 3}cm (JCPDS: 25-1079). Further the XRD data of reported compounds were analyzed by RIETVELD (FULLPROFF) method which shows the decrease in the lattice parameter with increasing concentration of divalent strontium to Y-site. The observed pointed kinks in the specific heat study are indicative of the probable coupling in between the electric and magneticmore » orders in this class of materials. The reported systematic specific heat studies shows that the antiferromagnetic (AFM) transition temperature (T{sub N}) shifts to higher value with increasing concentration of Sr{sup 2+} ion in the YMnO{sub 3} compound which is attributed to the enhanced lattice contribution to the specific heat in the this compound. The present compound shows the independence of specific heat and magnetic transition temperature with applied magnetic field of 8T and 12T.« less

  5. Two-dimensional liquid crystalline growth within a phase-field-crystal model.

    PubMed

    Tang, Sai; Praetorius, Simon; Backofen, Rainer; Voigt, Axel; Yu, Yan-Mei; Wang, Jincheng

    2015-07-01

    By using a two-dimensional phase-field-crystal (PFC) model, the liquid crystalline growth of the plastic triangular phase is simulated with emphasis on crystal shape and topological defect formation. The equilibrium shape of a plastic triangular crystal (PTC) grown from an isotropic phase is compared with that grown from a columnar or smectic-A (CSA) phase. While the shape of a PTC nucleus in the isotropic phase is almost identical to that of the classical PFC model, the shape of a PTC nucleus in CSA is affected by the orientation of stripes in the CSA phase, and irregular hexagonal, elliptical, octagonal, and rectangular shapes are obtained. Concerning the dynamics of the growth process, we analyze the topological structure of the nematic order, which starts from nucleation of +1/2 and -1/2 disclination pairs at the PTC growth front and evolves into hexagonal cells consisting of +1 vortices surrounded by six satellite -1/2 disclinations. It is found that the orientational and the positional order do not evolve simultaneously; the orientational order evolves behind the positional order, leading to a large transition zone, which can span over several lattice spacings.

  6. Signatures of Phonon and Defect-Assisted Tunneling in Planar Metal-Hexagonal Boron Nitride-Graphene Junctions.

    PubMed

    Chandni, U; Watanabe, K; Taniguchi, T; Eisenstein, J P

    2016-12-14

    Electron tunneling spectroscopy measurements on van der Waals heterostructures consisting of metal and graphene (or graphite) electrodes separated by atomically thin hexagonal boron nitride tunnel barriers are reported. The tunneling conductance, dI/dV, at low voltages is relatively weak, with a strong enhancement reproducibly observed to occur at around |V| ≈ 50 mV. While the weak tunneling at low energies is attributed to the absence of substantial overlap, in momentum space, of the metal and graphene Fermi surfaces, the enhancement at higher energies signals the onset of inelastic processes in which phonons in the heterostructure provide the momentum necessary to link the Fermi surfaces. Pronounced peaks in the second derivative of the tunnel current, d 2 I/dV 2 , are observed at voltages where known phonon modes in the tunnel junction have a high density of states. In addition, features in the tunneling conductance attributed to single electron charging of nanometer-scale defects in the boron nitride are also observed in these devices. The small electronic density of states of graphene allows the charging spectra of these defect states to be electrostatically tuned, leading to "Coulomb diamonds" in the tunneling conductance.

  7. Abhurite, a new tin hydroxychloride mineral, and a comparative study with a synthetic basic tin chloride.

    USGS Publications Warehouse

    Matzko, J.J.; Evans, H.T.; Mrose, M.E.; Aruscavage, P.

    1985-01-01

    Abhurite is a new mineral species found in blister-like protuberances on the surface of tin ingots submerged at a depth of 35 m in the Red Sea. It forms 1.5 mm diameter hexagonal plates bounded by the negative rhombohedron (0115); is colourless, transparent with opalescent lustre, white streak, hackly fracture, with no cleavage, and H.approx 2; D(calc) 4.34, D(meas) 4.29 g/cm3; epsilon approx 2.11, omega 2.06. Chemical analysis gave 73.4 wt.% Sn, 15.7 Cl, 11.0 0 and 0.4 H. leading to the formula Sn3O(OH)2Cl2. DTA shows release of H2O at 235oC and SnCl2 at 525oC. Indexed XRD powder data are tabulated; prominent lines 2.5313(100), 2.8915(70), 4.139(50), 3.404(50), 2.8175(50) A; a 10.0175(3), c 44.014(2) A; space group R3m, R3m or R32; Z = 21. Comparison is made with a hexagonal synthetic dimorph. The name refers to the geographical origin, an arm of the Red Sea known as Sharm Abhur.-L.T.T.

  8. Stages in molecular beam epitaxy growth of GaAs nanowires studied by x-ray diffraction.

    PubMed

    Mariager, Simon O; Lauridsen, Søren L; Sørensen, Claus B; Dohn, Asmus; Willmott, Phillip R; Nygård, Jesper; Feidenhans'l, Robert

    2010-03-19

    GaAs nanowires were grown by molecular beam epitaxy and studied by glancing-angle x-ray diffraction during five different stages of the growth process. An entire forest of randomly positioned epitaxial nanowires was sampled simultaneously and a large variation in the Au-Ga catalyst was found. Au, AuGa, AuGa(2) and the hexagonal beta phase were all identified in several orientations and in similar amounts. The nanowires are shown to consist of regular zinc blende crystal, its twin and the hexagonal wurtzite. The evolution of the various Au-Ga catalysts and the development in the twin to the wurtzite abundance ratio indicate that the Au catalyst is saturated upon initiation of growth leading to an increased amount of wurtzite structure in the wires. A specular x-ray scan identifies the various Au-Ga alloys, three Au lattice constants and a rough interface between nanowires and catalyst. Reciprocal space maps were obtained around Au Bragg points and show the development of the Au catalyst from a distribution largely oriented with respect to the lattice to a non-uniform distribution with several well-defined lattice constants.

  9. Direct Observation of the BCC (100) Plane in Thin Films of Sphere-forming Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul

    2010-03-01

    In sphere-forming diblock copolymers, periodic arrays of spheres are arranged in a body-centred cubic (BCC) lattice structure in bulk. However, in thin films different surface morphologies were observed as a function of the film thickness, and the transition from the hexagonal array to the BCC (110) arrangement of spheres on film surfaces was located with respect to the increase of the film thickness. Here we report the first direct observation of the BCC (100) plane in thin films of poly (styrene-b-methyl methacrylate) diblock copolymers on homogeneous substrates. By balancing the surface energies of both blocks, the lower energy BCC (100) plane corresponding to a square arrangement of half spheres, formed on film surfaces when the film thickness was commensurate with the spacing, L100, between (100) planes or greater than 2 L100. A hexagonal arrangement of spheres was only observed when the thickness was less than 2 L100 and incommensurate with 1 L100. Monte Carlo (MC) simulation confirmed our experimental observation and was used to investigate the transition of the arrangement of spheres as a function of the film thickness.

  10. Facile synthesis and structure characterization of hexagonal tungsten bronzes crystals

    NASA Astrophysics Data System (ADS)

    Lee, Jiann-Shing; Liu, Hao-Chuan; Peng, Gao-De; Tseng, Yawteng

    2017-05-01

    A facile molten-salt route was used to synthesize hexagonal Cs0.33WO3, Rb0.33WO3 and K0.30WO3 crystals. The three isostructural compounds were successfully prepared from the reaction of MxWO3 powders (M = Cs, Rb, K) in the CsCl/NaCl, RbCl/NaCl and KCl/NaCl fluxes, respectively. The structure determination and refinement, based on single-crystal X-ray diffraction data, are in agreement with previous works, possessing space group P63/mcm. The a and c parameters vary non-linearly with increasing radii of the M+ cations (rM) that is coordinated to twelve oxygen atoms. Both the volumes of unit-cell and WO6 octahedra vary linearly with rM, which become smaller from Cs0.33WO3 to K0.30WO3. The distortion of WO6 octahedra as well as isotropic displacement parameters increases from Cs0.33WO3 to K0.30WO3. The geometry of the WO6 octahedron becomes more regular with increasing rM. These structural trends arise from the effective size of the M+ cation.

  11. 2D-crystallization of Rhodococcus 20S proteasome at the liquid-liquid interface

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazuhiro

    1996-10-01

    The 2D-crystallization method using the liquid-liquid interface between a aqueous phase (protein solution) and a thin organic liquid (dehydroabietylamine) layer has been applied to the Rhodococcus 20S proteasome. The 20S proteasome is known to be the core complex of the 26S proteasome, which is the central protease of the ubiquitin-dependent pathway. Two types of ordered arrays were obtained, both large enough for high resolution analysis by electron crystallography. The first one had a four-fold symmetry, whereas the second one was found out to be a hexagonally close-packed array. By image analysis based on a real space correlation averaging (CAV) technique, the close-packed array was found to be hexagonally packed, but the molecules had presumably rotational freedom. The four-fold array was found to be a true crystal with p4 symmetry. Lattice constants were a = b = 20.0 nm and α = 90°. The unit cell of this crystal contained two molecules. The diffraction pattern computed from the original picture showed spots up to (4, 5) that corresponds to 3.1 nm resolution. After applying an unbending procedure, the diffraction pattern showed spots extending to 1.8 nm resolution.

  12. Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method

    NASA Astrophysics Data System (ADS)

    Gunaseelan, M.; Yamini, S.; Kumar, G. A.; Senthilselvan, J.

    2018-01-01

    A new reverse microemulsion system is proposed for the first time to synthesize NaYF4:Yb,Er nanocrystals, which demonstrated high upconversion emission in 550 and 662 nm at 980 nm diode laser excitation. The reverse microemulsion (μEs) system is comprised of CTAB and oleic acid as surfactant and 1-butanol co-surfactant and isooctane oil phase. The surfactant to water ratio is able to tune the microemulsion droplet size from 14 to 220 nm, which eventually controls the crystallinity and particulate morphology of NaYF4:Yb,Er. Also, the microemulsion precursor and calcination temperature plays certain role in transforming the cubic NaYF4:Yb,Er to highly luminescent hexagonal crystal structured upconversion material. Single phase hexagonal NaYF4:YbEr nanorod prepared by water-in-oil reverse microemulsion (μEs) gives intense red upconversion emission. Both nanosphere and nanorod shaped NaYF4:Yb,Er was obtained, but nanorod morphology resulted an enhanced upconversion luminescence. The structural, morphological, thermal and optical luminescence properties of the NaYF4:Yb,Er nanoparticles are discussed in detail by employing powder X-ray diffraction, dynamic light scattering, high resolution electron microscopy, TGA-DTA, UV-DRS, FTIR and photoluminescence spectroscopy. Intense upconversion emission achieved in the microemulsion synthesized NaYF4:Yb3+,Er3+ nanocrystal can make it as useful optical phosphor for solar cell applications.

  13. Effect of fatty acids on self-assembly of soybean lecithin systems.

    PubMed

    Godoy, C A; Valiente, M; Pons, R; Montalvo, G

    2015-07-01

    With the increasing interest in natural formulations for drug administration and functional foods, it is desirable a good knowledge of the phase behavior of lecithin/fatty acid formulations. Phase structure and properties of ternary lecithin/fatty acids/water systems are studied at 37°C, making emphasis in regions with relatively low water and fatty acid content. The effect of fatty acid saturation degree on the phase microstructure is studied by comparing a fully saturated (palmitic acid, C16:0), monounsaturated (oleic acid, C18:1), and diunsaturated (linoleic acid, C18:2) fatty acids. Phase determinations are based on a combination of polarized light microscopy and small-angle X-ray scattering measurements. Interestingly, unsaturated (oleic acid and linoleic acid) fatty acid destabilizes the lamellar bilayer. Slight differences are observed between the phase diagrams produced by the unsaturated ones: small lamellar, medium cubic and large hexagonal regions. A narrow isotropic fluid region also appears on the lecithin-fatty acid axis, up to 8wt% water. In contrast, a marked difference in phase microsctructure was observed between unsaturated and saturated systems in which the cubic and isotropic fluid phases are not formed. These differences are, probably, a consequence of the high Krafft point of the C16 saturated chains that imply rather rigid chains. However, unsaturated fatty acids result in more flexible tails. The frequent presence of, at least, one unsaturated chain in phospholipids makes it very likely a better mixing situation than in the case of more rigid chains. This swelling potential favors the formation of reverse hexagonal, cubic, and micellar phases. Both unsaturated fatty acid systems evolve by aging, with a reduction of the extension of reverse hexagonal phase and migration of the cubic phase to lower fatty acid and water contents. The kinetic stability of the systems seems to be controlled by the unsaturation of fatty acids. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Experimental static aerodynamics of a regular hexagonal prism in a low density hypervelocity flow

    NASA Technical Reports Server (NTRS)

    Guy, R. W.; Mueller, J. N.; Lee, L. P.

    1972-01-01

    A regular hexagonal prism, having a fineness ratio of 1.67, has been tested in a wind tunnel to determine its static aerodynamic characteristics in a low-density hypervelocity flow. The prism tested was a 1/4-scale model of the graphite heat shield which houses the radioactive fuel for the Viking spacecraft auxiliary power supply. The basic hexagonal prism was also modified to simulate a prism on which ablation of one of the six side flats had occurred. This modified hexagonal prism was tested to determine the effects on the aerodynamic characteristics of a shape change caused by ablation during a possible side-on stable reentry.

  15. Effect of hexagonal hillock on luminescence characteristic of multiple quantum wells structure

    NASA Astrophysics Data System (ADS)

    Du, Jinjuan; Xu, Shengrui; Li, Peixian; Zhang, Jincheng; Zhao, Ying; Peng, Ruoshi; Fan, Xiaomeng; Hao, Yue

    2018-04-01

    GaN based ultraviolet multiple quantum well structures grown on a c-plane sapphire substrate by metal organic chemical deposition showed a microstructure with a large amount of huge hexagonal hillocks. The polarity of the sample is confirmed by etching with sodium hydroxide solution. The luminous intensity distribution of a typical hexagonal hillock was investigated by the phototluminescent mapping and the luminous intensity at hillock top regions was found to be 15 times higher than that of the regions around hillocks. The reduction of dislocations, the decreasing of the quantum confirmed stack effect caused by semipolar plane and the inclination of the sidewalls of the hexagonal hillock were responsible for the enhancement of luminous intensity.

  16. Variability of Young’s modulus and Poisson’s ratio of hexagonal crystals

    NASA Astrophysics Data System (ADS)

    Komarova, M. A.; Gorodtsov, V. A.; Lisovenko, D. S.

    2018-04-01

    In this paper, the variability of elastic characteristics (Young’s modulus and Poisson’s ratio) of hexagonal crystals has been studied. Analytic expressions for Young’s modulus and Poisson’s ratio are obtained. Stationary values for these elastic characteristics are found. Young’s modulus has three stationary values, and Poisson’s ratio has eight stationary values. Numerical analysis of these elastic characteristics for hexagonal crystals is given based on the experimental data from the Landolt-Börnstein handbook. Global extrema of Young’s modulus and Poisson’s ratio for hexagonal crystals are found. Crystals are found in which the maximum values exceeds the upper limit for isotropic materials.

  17. Large aperture telescope technology: a design for an active lightweight multi-segmented fold-out space mirror

    NASA Astrophysics Data System (ADS)

    Thompson, S. J.; Doel, A. P.; Whalley, M.; Edeson, R.; Edeson, R.; Tosh, I.; Poyntz-Wright, O.; Atad-Ettedgui, E.; Montgomery, D.; Nawasra, J.

    2017-11-01

    Large aperture telescope technology (LATT) is a design study for a differential lidar (DIAL) system; the main investigation being into suitable methods, technologies and materials for a 4-metre diameter active mirror that can be stowed to fit into a typical launch vehicle (e.g. ROKOT launcher with 2.1-metre diameter cargo) and can self-deploy - in terms of both leaving the space vehicle and that the mirrors unfold and self-align to the correct optical form within the tolerances specified. The primary mirror requirements are: main wavelength of 935.5 nm, RMS corrected wavefront error of λ/6, optical surface roughness better than 5 nm, areal density of less than 16 kg/m2 and 1-2 mirror shape corrections per orbit. The primary mirror consists of 7 segments - a central hexagonal mirror and 6 square mirror petals which unfold to form the 4-meter diameter aperture. The focus of the UK LATT consortium for this European Space Agency (ESA) funded project is on using lightweighted aluminium or carbon-fibre-composite materials for the mirror substrate in preference to more traditional materials such as glass and ceramics; these materials have a high strength and stiffness to weight ratio, significantly reducing risk of damage due to launch forces and subsequent deployment in orbit. We present an overview of the design, which includes suitable actuators for wavefront correction, petal deployment mechanisms and lightweight mirror technologies. Preliminary testing results from manufactured lightweight mirror samples will also be summarised.

  18. Discovery of a hexagonal ultradense hydrous phase in (Fe,Al)OOH

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Yuan, Hongsheng; Meng, Yue; Mao, Ho-kwang

    2018-03-01

    A deep lower-mantle (DLM) water reservoir depends on availability of hydrous minerals which can store and transport water into the DLM without dehydration. Recent discoveries found hydrous phases AlOOH (Z = 2) with a CaCl2-type structure and FeOOH (Z = 4) with a cubic pyrite-type structure stable under the high-pressure–temperature (P-T) conditions of the DLM. Our experiments at 107–136 GPa and 2,400 K have further demonstrated that (Fe,Al)OOH is stabilized in a hexagonal lattice. By combining powder X-ray-diffraction techniques with multigrain indexation, we are able to determine this hexagonal hydrous phase with a = 10.5803(6) Å and c = 2.5897(3) Å at 110 GPa. Hexagonal (Fe,Al)OOH can transform to the cubic pyrite structure at low T with the same density. The hexagonal phase can be formed when δ-AlOOH incorporates FeOOH produced by reaction between water and Fe, which may store a substantial quantity of water in the DLM.

  19. Bi2Te3 thin hexagonal nanoplatelets: Synthesis and its characterization studies

    NASA Astrophysics Data System (ADS)

    Vinoth, S.; Balaganapathi, T.; KaniAmuthan, B.; Arun, T.; Muthuselvam, I. Panneer; Chou, Fang-Cheng; Thilakan, P.

    2017-08-01

    Solvothermal synthesis and optimization of pure Bismuth telluride (Bi2Te3) hexagonal nanoplatelets was carried out from Bismuth Oxide (Bi2O3) and Tellurium dioxide (TeO2). XRD measurements revealed a sensitive change in crystallization behaviour in correlation with variation in Te/Bi stoichiometry identified through the exchange in intensities between (10 10 ̅) and (110) peaks. Further, Energy Dispersive X-ray (EDAX) analysis revealed the variation in Te/Bi ratio with respect to autoclave temperature. Field emission scanning electron Microscope (FESEM) and the high resolution transmission electron Microscope (HRTEM) studies show the complete growth of hexagonal nanoplatelets at 200 °C. Confocal Micro-Raman measurements revealed the occurrence of symmetry breaking in the synthesized hexagonal nanoplatelets. The electrical conductivity and the activation energy were recorded as 6.01×10-3 S/m and 0.042 eV respectively. Highest maximum absolute value of Seebeck coefficient of -355 μV/K was obtained for the hexagonal nanoplatelets.

  20. Design considerations for quasi-phase-matching in doubly resonant lithium niobate hexagonal micro-resonators

    NASA Astrophysics Data System (ADS)

    Sono, Tleyane J.; Riziotis, Christos; Mailis, Sakellaris; Eason, Robert W.

    2017-09-01

    Fabrication capabilities of high optical quality hexagonal superstructures by chemical etching of inverted ferroelectric domains in lithium niobate platform suggests a route for efficient implementation of compact hexagonal microcavities. Such nonlinear optical hexagonal micro-resonators are proposed as a platform for second harmonic generation (SHG) by the combined mechanisms of total internal reflection (TIR) and quasi-phase-matching (QPM). The proposed scheme for SHG via TIR-QPM in a hexagonal microcavity can improve the efficiency and also the compactness of SHG devices compared to traditional linear-type based devices. A simple theoretical model based on six-bounce trajectory and phase matching conditions was capable for obtaining the optimal cavity size. Furthermore numerical simulation results based on finite difference time domain beam propagation method analysis confirmed the solutions obtained by demonstrating resonant operation of the microcavity for the second harmonic wave produced by TIR-QPM. Design aspects, optimization issues and characteristics of the proposed nonlinear device are presented.

  1. Surfactant-assisted growth and optical properties of ZnO hexagonal bilayer disk-like microstructures

    NASA Astrophysics Data System (ADS)

    Zhu, Q. P.; Shen, X. Y.; Wang, L. L.; Zhu, L. P.; Wang, L. J.; Liao, G. H.

    2018-01-01

    ZnO hexagonal bilayer disk-like microstructures are successfully fabricated using a simple solvothermal method assisted with surfactant. The structure and morphology were investigated by XRD, SEM, and EDS. XRD result indicated that the as-obtained samples were well-crystallized wurtzite hexagonal ZnO structure. SEM images showed that the ZnO hexagonal bilayer disk-like assembles consist of two uniform and smooth disks with an average edge length of 6 μm and thickness of ˜4 μm. UV-vis spectrum reveals that ZnO sampls show an appreciable red shift and the band gap energy of the obtained ZnO samples were about 3.15 eV. A very strong UV emission at the ultraviolet (UV) region was observed in the photoluminescence (PL) spectrum of the as-prepared ZnO samples tested at room-temperature. A possible growth process of the ZnO hexagonal bilayer disk-like microstructures was schematically illustrated.

  2. Is hexagonal boron nitride always good as a substrate for carbon nanotube-based devices?

    PubMed

    Kang, Seoung-Hun; Kim, Gunn; Kwon, Young-Kyun

    2015-02-21

    Hexagonal boron nitride sheets have been noted especially for their enhanced properties as substrates for sp(2) carbon-based nanodevices. To evaluate whether such enhanced properties would be retained under various realistic conditions, we investigate the structural and electronic properties of semiconducting carbon nanotubes on perfect and defective hexagonal boron nitride sheets under an external electric field as well as with a metal impurity, using density functional theory. We verify that the use of a perfect hexagonal boron nitride sheet as a substrate indeed improves the device performances of carbon nanotubes, compared with the use of conventional substrates such as SiO2. We further show that even the hexagonal boron nitride with some defects can show better performance as a substrate. Our calculations, on the other hand, also suggest that some defective boron nitride layers with a monovacancy and a nickel impurity could bring about poor device behavior since the imperfections impair electrical conductivity due to residual scattering under an applied electric field.

  3. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstratemore » such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.« less

  4. Graph Theoretical Representation of Atomic Asymmetry and Molecular Chirality of Benzenoids in Two-Dimensional Space

    PubMed Central

    Zhao, Tanfeng; Zhang, Qingyou; Long, Hailin; Xu, Lu

    2014-01-01

    In order to explore atomic asymmetry and molecular chirality in 2D space, benzenoids composed of 3 to 11 hexagons in 2D space were enumerated in our laboratory. These benzenoids are regarded as planar connected polyhexes and have no internal holes; that is, their internal regions are filled with hexagons. The produced dataset was composed of 357,968 benzenoids, including more than 14 million atoms. Rather than simply labeling the huge number of atoms as being either symmetric or asymmetric, this investigation aims at exploring a quantitative graph theoretical descriptor of atomic asymmetry. Based on the particular characteristics in the 2D plane, we suggested the weighted atomic sum as the descriptor of atomic asymmetry. This descriptor is measured by circulating around the molecule going in opposite directions. The investigation demonstrates that the weighted atomic sums are superior to the previously reported quantitative descriptor, atomic sums. The investigation of quantitative descriptors also reveals that the most asymmetric atom is in a structure with a spiral ring with the convex shape going in clockwise direction and concave shape going in anticlockwise direction from the atom. Based on weighted atomic sums, a weighted F index is introduced to quantitatively represent molecular chirality in the plane, rather than merely regarding benzenoids as being either chiral or achiral. By validating with enumerated benzenoids, the results indicate that the weighted F indexes were in accordance with their chiral classification (achiral or chiral) over the whole benzenoids dataset. Furthermore, weighted F indexes were superior to previously available descriptors. Benzenoids possess a variety of shapes and can be extended to practically represent any shape in 2D space—our proposed descriptor has thus the potential to be a general method to represent 2D molecular chirality based on the difference between clockwise and anticlockwise sums around a molecule. PMID:25032832

  5. Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deb, Moumita, E-mail: moumitadeb44@gmail.com; Ghosh, Asim Kumar, E-mail: asimkumar96@yahoo.com

    2016-05-23

    Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu{sub 3}WO{sub 6}.

  6. The Physical Meaning Of The Titius - Bode Formula

    NASA Astrophysics Data System (ADS)

    Smirnov, Vladimir

    The process of evolution of the solar system means the development of the structure of gas-dust cloud after the initial impulse by way of the impact of a supernova explosion. Thus the wave motions are practically excluded from consideration. As the experience shows at the time of the formation of standing waves with the observed acoustic resonance the wave motions at the nodal points can accumulate clumps of matter that make up the primary cloud. (A similar pattern is observed in the experiments of Chladni E.). J. Kepler's plan of the solar system, which took into account the distribution of the planets according to their distance from the Sun, was built as a series of inscribed and circumscribed Platonic figures (J. Kepler ;1939): Welt-Harmonik, Verlag R.Oldenbourg, Munchen-Berlin,p. 403). According to his scheme the average distances of the planets from the Sun could be obtained in the form of the radiuses of the circumscribed spheres. This fact indicates the existence of a common measure of the Platonic figures constructed in such a way. In the time of Kepler the concepts of the wavelength were not yet used. That’s why Kepler could come to the conclusion that the length of a standing wave lambda, emitted by the central formation of the Solar system that forms waves of energy into space, which are shaping with the reflected waves from the interface of more dense environmental conditions of the gaseous nebula and less dense environmental conditions of the surrounding space, could serve as a common measure for measuring distances of the planets from the sun. If the standing wave in the one-dimensional case is formed in the Y axis direction with the displacement X, the wave equation can be written as : X=acos(2pi\\char92lambda)Ycos(2pi\\char92T)t The planets are being formed in the nodes generated in the wave where the oscillation amplitude is zero. In astronomical units the distances from the sun are determined at the points along the axisY=((2n+1)\\char924)lambda, wherein n=0,1,2... The comparison of the observed and calculated distances from the planets to the Sun and the distances from the satellites to the planets according to the proposed wave principle one can find in the author's work: 'The Wave Principle of Material Distribution within the Solar System’, published in Proceedings of the International Meteor Conference, Cerkno, Slovenia, 20 - 23 September 2001 Pp 64 - 71 The above formula for the distances from the planets to the Sun, the distances from the planets to their satellites, reveals the physical meaning of the well-known formula, composed empirically by Bode - Titius: Y=0,4+0,3*2 (n) , wherein n=1,2,4,5... Note that in some cases the standing waves are responsible for the formation of symmetrical shapes of galaxies by cosmic objects that resemble the inscribed and circumscribed Platonic figures and the vortex formation in the form of hexagon on Saturn recently shown on the Internet. According to the observations the elementary calculation shows that the hexagon vortex is formed by a standing wave with a wavelength lambda=6250km According to the reports of the Hubble telescope’s (Hubble EP) observations in outer space the energy waves are observed in the substance of the outer space while the evolution of galaxies and other objects, and the length of these energy waves reaches lambda hundreds of light years.

  7. Barium Titanate Photonic Crystal Electro-Optic Modulators for Telecommunication and Data Network Applications

    NASA Astrophysics Data System (ADS)

    Girouard, Peter D.

    The microwave, optical, and electro-optic properties of epitaxial barium titanate thin films grown on (100) MgO substrates and photonic crystal electro-optic modulators fabricated on these films were investigated to demonstrate the applicability of these devices for telecommunication and data networks. The electrical and electro-optical properties were characterized up to modulation frequencies of 50 GHz, and the optical properties of photonic crystal waveguides were determined for wavelengths spanning the optical C band between 1500 and 1580 nm. Microwave scattering parameters were measured on coplanar stripline devices with electrode gap spacings between 5 and 12 mum on barium titanate films with thicknesses between 230 and 680 nm. The microwave index and device characteristic impedance were obtained from the measurements. Larger (lower) microwave indices (impedances) were obtained for devices with narrower electrode gap spacings and on thicker films. Thinner film devices have both lower index mismatch between the co-propagating microwave and optical signals and lower impedance mismatch to a 50O system, resulting in a larger predicted electro-optical 3 dB bandwidth. This was experimentally verified with electro-optical frequency response measurements. These observations were applied to demonstrate a record high 28 GHz electro-optic bandwidth measured for a BaTiO3 conventional ridge waveguide modulator having 1mm long electrodes and 12 mum gap spacing on a 260nm thick film. The half-wave voltage and electro-optic coefficients of barium titanate modulators were measured for films having thicknesses between 260 and 500 nm. The half-wave voltage was directly measured at low frequencies using a polarizer-sample-compensator-analyzer setup by over-driving waveguide integrated modulators beyond their linear response regime. Effective in-device electro-optic coefficients were obtained from the measured half-wave voltages. The effective electro-optic coefficients were found to increase with both applied electrical dc bias and with film thickness. A record low 0.39V ˙ cm (0.45V ˙ cm) voltage-length product was measured for barium titanate modulators operating at telecommunication wavelengths on a device with 5 ?m electrode gap spacing on a 500nm thick film modulated at a frequency of 100 Hz (1 MHz). This measured voltage-length product is more than a factor of 5 lower than that reported for state-of-the-art silicon conventional waveguide modulators. The electro-optical characterization of BaTiO3 films revealed a trade-off that exists for traveling wave BaTiO3 modulators: lower voltages are obtained in thicker film devices with narrow electrode gap spacing while larger bandwidths are obtained in thinner film devices with wider electrode gap spacing. These findings were supported by calculations of the film thickness dependent half-wave voltage and electro-optic bandwidth. In order to demonstrate modulators having simultaneously low voltage operation and high electro-optic bandwidth, photonic crystal waveguide modulators with large group index were investigated through theory and experiment. The theory for slow light phase delay in linear optical materials was extended for second order nonlinear optical materials. This theory was incorporated into a detailed model for predicting photonic crystal modulator performance in terms of voltage-length product and electro-optic bandwidth. Modeling shows that barium titanate photonic crystal modulators with sub-millimeter length, sub-volt operation, and greater than 40 GHz electro-optic bandwidth are achievable in a single device. Two types of photonic crystal waveguides (PC) on BaTiO3 films were designed, fabricated, and characterized: waveguides with hexagonal lattice symmetry and waveguides with hexagonal symmetry having a line defect oriented in the direction of light propagation. Excellent agreement was obtained between the simulated and measured transmission for hexagonal lattice PC waveguides. An extinction of 20 dB was measured across a 9.9 nm stop band edge, yielding a record large band edge sharpness of 2 dB/nm for all photonic crystal waveguides on ferroelectric films. A 12-fold enhancement of the electro-optic coefficient was measured via optical spectral analysis in a line defect BaTiO3 modulator, yielding an effective electro-optic coefficient of 900 pm/V in the photonic crystal region at a modulation frequency of 10 GHz. This enhancement was demonstrated over a 48 nm range, demonstrating the wideband operation of these devices.

  8. Selforganization of modular activity of grid cells

    PubMed Central

    Urdapilleta, Eugenio; Si, Bailu

    2017-01-01

    Abstract A unique topographical representation of space is found in the concerted activity of grid cells in the rodent medial entorhinal cortex. Many among the principal cells in this region exhibit a hexagonal firing pattern, in which each cell expresses its own set of place fields (spatial phases) at the vertices of a triangular grid, the spacing and orientation of which are typically shared with neighboring cells. Grid spacing, in particular, has been found to increase along the dorso‐ventral axis of the entorhinal cortex but in discrete steps, that is, with a modular structure. In this study, we show that such a modular activity may result from the self‐organization of interacting units, which individually would not show discrete but rather continuously varying grid spacing. Within our “adaptation” network model, the effect of a continuously varying time constant, which determines grid spacing in the isolated cell model, is modulated by recurrent collateral connections, which tend to produce a few subnetworks, akin to magnetic domains, each with its own grid spacing. In agreement with experimental evidence, the modular structure is tightly defined by grid spacing, but also involves grid orientation and distortion, due to interactions across modules. Thus, our study sheds light onto a possible mechanism, other than simply assuming separate networks a priori, underlying the formation of modular grid representations. PMID:28768062

  9. Effect of reductant and PVP on morphology and magnetic property of ultrafine Ni powders prepared via hydrothermal route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun, E-mail: j-zhang@126.com; Wang, Xiucai; Li, Lili

    2013-10-15

    Graphical abstract: The ultrafine Ni powders with the shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using different reductants. Their saturation magnetization, remanent magnetization and coercivity sequentially increase, and the coercivity of hexagonal sheet-like Ni powders increases by 25% compared with the Ni bulk counterpart. - Highlights: • The ultrafine Ni powders with various shapes of sphere, fish-bone, hexagonal sheet, etc. • Facile and one-step hydrothermal reduction using three reductants and PVP additive was developed. • Magnetic properties of the ultrafine Ni powders with different shapes were measured. • Compared with bulkmore » Ni material, coercivity of hexagonal sheet Ni increases by 25%. • The formation mechanism of the shapes was suggested. - Abstract: The ultrafine nickel particles with different shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using hydrazine hydrate, sodium hypophosphite and ethylene glycol as reductants, polyvinylpyrrolidone as structure-directing agent. It has been verified with the characterization of X-ray powder diffraction and transmission/scanning electronic microscopy that as-prepared products belong to face-centered cubic structure of nickel microcrystals with high purity and fine dispersity. The magnetic hysteresis loops measured at room temperature reveal that the values of saturation magnetization, remanent magnetization and coercivity rise sequentially from silknet, sphere to hexagonal sheet. In comparison with nickel bulk counterpart, the coercivity of the hexagonal sheet nickel powders increases by 25%.« less

  10. KSC-01pp1551

    NASA Image and Video Library

    2001-08-31

    JOHNSON SPACE CENTER, HOUSTON, TEXAS -- EXPEDITION FOUR INSIGNIA -- The International Space Station (ISS) Expedition Four crew patch has an overall diamond shape, showing the "diamond in the rough" configuration of the Station during expedition four. The red hexagonal shape with stylized American and Russian flags represents the cross-sectional view of the S0 truss segment, which the crew will attach to the U.S. Lab Destiny. The persistent Sun shining on the Earth and Station represents the constant challenges that the crew and ground support team will face every day while operating the International Space Station, while shedding new light through daily research. The green portion of the Earth represents the fourth color in the visible spectrum and the black void of space represents humankind's constant quest to explore the unknown. The NASA insignia design for Shuttle flights ts is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced

  11. Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1998-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Four different crystal morphologies have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed, Crystals grown at 15 C were generally tetragonal, with space group P43212. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P21212 1. The tetragonal much less than orthorhombic morphology transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 0.8 -1.2M magnesium sulfate at pH 7.6 - 8.0 gave a hexagonal (trigonal) crystal form, space group P3121, which diffracted to 2.8 A. Ammonium sulfate was also found to result in a monoclinic form, space group C2. Small twinned monoclinic crystals of approx. 0.2 mm on edge were grown by dialysis followed by seeded sitting drop crystallization.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suen, Nian-Tzu; Broda, Matthew; Bobev, Svilen, E-mail: bobev@udel.edu

    Reported are the synthesis and the structural characterization of an extended family of rare-earth metal–germanides with a general formula RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu; x<2). All twelve phases are isotypic, crystallizing with the Mn{sub 5}Si{sub 3} structure type (Pearson index hP16, hexagonal space group P6{sub 3}/mcm); they are the Ca-substituted variants of the corresponding RE{sub 5}Ge{sub 3} binaries. Across the series, despite some small variations in the Ca-uptake, the unit cell volumes decrease monotonically, following the lanthanide contraction. Temperature dependent DC magnetization measurements reveal paramagnetic behavior in the high temperature range, and the obtained effectivemore » moments are consistent with free-ion RE{sup 3+} ground state, as expected from prior studies of the binary RE{sub 5}Ge{sub 3} phases. The onset of magnetic ordering is observed in the low temperature range, and complex magnetic interactions (ferromagnetic/ferrimagnetic) can be inferred, different from the binary phases RE{sub 5}Ge{sub 3}, which are known as antiferromagnetic. In order to understand the role of Ca in the bonding, the electronic structures of the La{sub 5}Ge{sub 3} and the hypothetical compounds La{sub 2}Ca{sub 3}Ge{sub 3} and La{sub 3}Ca{sub 2}Ge{sub 3} with ordered metal atoms are compared and discussed. - Graphical abstract: The family of rare-earth metal–calcium–germanides with the general formula RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu) crystallize in the hexagonal space group P6{sub 3}/mcm (No. 193, Pearson symbol hP16) with a structure that is a variant of the Mn{sub 5}Si{sub 3} structure type. - Highlights: • The newly synthesized RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu) constitute an extended family. • The structure is a substitution variant of the hexagonal Mn{sub 5}Si{sub 3} structure type. • Ca-uptake is the highest in the early members, and decreases for the late rare-earth metal analogs. • Experimental and theoretical work suggest limiting solubility range RE{sub ≈3}Ca{sub ≈2}Ge{sub 3}.« less

  13. Probing the amphiphile micellar to hexagonal phase transition using Positron Annihilation Lifetime Spectroscopy.

    PubMed

    Dong, Aurelia W; Fong, Celesta; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2013-07-15

    Positron Annihilation Lifetime Spectroscopy (PALS) has been utilised only sparingly for structural characterisation in self assembled materials. Inconsistencies in approaches to experimental configuration and data analysis between studies has complicated comparisons between studies, meaning that the technique has not provided a cohesive data set across the study of different self assembled systems that advance the technique towards an important tool in soft matter research. In the current work a systematic study was conducted using ionic and non-ionic micellar systems with increasing surfactant concentration to probe positron behaviour on changes between micellar phase structures, and data analysed using contemporary approaches to fit four component spectra. A characteristic orthopositronium lifetime (in the organic regions) of 3.5±0.2 ns was obtained for the hexagonal phase for surfactants with C12 alkyl chains. Chemical quenching of the positron species was also observed for systems with ionic amphiphiles. The application of PALS has also highlighted an inconsistency in the published phase diagram for the octa(ethylene oxide) monododecyl ether (C12EO8) system. These results provide new insight into how the physical properties of micellar systems can be related to PALS parameters and means that the PALS technique can be applied to other more complex self-assembled amphiphile systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Imaging system design for improved information capacity

    NASA Technical Reports Server (NTRS)

    Fales, C. L.; Huck, F. O.; Samms, R. W.

    1984-01-01

    Shannon's theory of information for communication channels is used to assess the performance of line-scan and sensor-array imaging systems and to optimize the design trade-offs involving sensitivity, spatial response, and sampling intervals. Formulations and computational evaluations account for spatial responses typical of line-scan and sensor-array mechanisms, lens diffraction and transmittance shading, defocus blur, and square and hexagonal sampling lattices.

  15. Design of a New Superconducting Magnet System for High Strength Minimum-B Fields for ECRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.

    A novel Mixed Axial and Radial field System (MARS) seeks to enhance the B fields inside the plasma chamber within the limits of a given conductor, thereby making it possible to raise the operating fields for Electron Cyclotron Resonance Ion Sources (ECRISs). The MARS concept consists of a hexagonally shaped closed-loop coil and a set of auxiliary solenoids. The application of MARS will be combined with a hexagonal plasma chamber to maximize the use of the radial fields at the chamber inner surfaces. Calculations using Opera's TOSCA-3D solver have shown that MARS can potentially generate up to 50% higher fieldsmore » and use of only about one half of the same superconducting wire, as compared with existing magnet designs in ECRISs. A MARS magnet system built with Nb 3 Sn coils could generate a high strength minimum-B field of maxima of ≥ 10 T on axis and ~6 T radially in an ECRIS plasma chamber. Following successful development, the MARS magnet system will be the best magnet scheme for the next generation of ECRISs. This paper will present the MARS concept, magnet design, prototyping a copper closed-loop coil, and discussions.« less

  16. Design of a New Superconducting Magnet System for High Strength Minimum-B Fields for ECRIS

    DOE PAGES

    Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.; ...

    2016-06-01

    A novel Mixed Axial and Radial field System (MARS) seeks to enhance the B fields inside the plasma chamber within the limits of a given conductor, thereby making it possible to raise the operating fields for Electron Cyclotron Resonance Ion Sources (ECRISs). The MARS concept consists of a hexagonally shaped closed-loop coil and a set of auxiliary solenoids. The application of MARS will be combined with a hexagonal plasma chamber to maximize the use of the radial fields at the chamber inner surfaces. Calculations using Opera's TOSCA-3D solver have shown that MARS can potentially generate up to 50% higher fieldsmore » and use of only about one half of the same superconducting wire, as compared with existing magnet designs in ECRISs. A MARS magnet system built with Nb 3 Sn coils could generate a high strength minimum-B field of maxima of ≥ 10 T on axis and ~6 T radially in an ECRIS plasma chamber. Following successful development, the MARS magnet system will be the best magnet scheme for the next generation of ECRISs. This paper will present the MARS concept, magnet design, prototyping a copper closed-loop coil, and discussions.« less

  17. New techniques for fusion bonding and replication for large glass reflectors

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.

    1983-01-01

    Lightweight, space-deployable glass honeycomb telescope primary mirror structures are produced by a novel method which involves the heating to softening temperature of many borosilicate or silica glass tube sections that are packed to form a honeycomb matrix and filled with a high expansion coefficient refractory sand. The close packed tubes yield a hexagonal-cell honeycomb. Attention is given to the results of an experiment in which a highly refractory master was used to shape a honeycomb of less refractory glass, employing a 1-micron thick, vacuum-deposited gold coating as a parting layer between the two.

  18. Experimental vizualization of 2D photonic crystal equi-frequency contours

    NASA Astrophysics Data System (ADS)

    Senderakova, Dagmar; Drzik, Milan; Pisarcik, Matej

    2017-12-01

    Photonic crystals have been extensively studied for their unique optical properties that promise interesting novel devices. Our contribution is focused on a 2D photonic crystal structure formed by Al2O3 layer on silicon substrate, patterned with periodic hexagonal lattice of deep air holes. Azimuthal angle dependences of the specular light reflection were recorded photo-electrically at various angles of icidence and wavelengths. Data obtained were processed via mapping in reciprocal k-space. The method promises a possibility to visualize the equi-frequency contours and get more detailed information about the properties of the sample used.

  19. Characterization of Carbon Nanotube Reinforced Nickel

    NASA Technical Reports Server (NTRS)

    Gill, Hansel; Hudson, Steve; Bhat, Biliyar; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Carbon nanotubes are cylindrical molecules composed of carbon atoms in a regular hexagonal arrangement. If nanotubes can be uniformly dispersed in a supporting matrix to form structural materials, the resulting structures could be significantly lighter and stronger than current aerospace materials. Work is currently being done to develop an electrolyte-based self-assembly process that produces a Carbon Nanotube/Nickel composite material with high specific strength. This process is expected to produce a lightweight metal matrix composite material, which maintains it's thermal and electrical conductivities, and is potentially suitable for applications such as advanced structures, space based optics, and cryogenic tanks.

  20. Grid Modernization | NREL

    Science.gov Websites

    development to improve the nation's electrical grid infrastructure, making it more flexible, reliable Standard, IEEE 1547 Blue cover page of report with hexagon shapes over electric grid Basic Research Needs Controls Power Systems Design and Studies Security and Resilience Institutional Support NREL grid research

  1. STS-58 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Designed by members of the flight crew, the STS-58 insignia depicts the Space Shuttle Columbia with a Spacelab module in its payload bay in orbit around Earth. The Spacelab and the lettering Spacelab Life Sciences ll highlight the primary mission of the second Space Shuttle flight dedicated to life sciences research. An Extended Duration Orbiter (EDO) support pallet is shown in the aft payload bay, stressing the scheduled two-week duration of the longest Space Shuttle mission to date. The hexagonal shape of the patch depicts the carbon ring, a molecule common to all living organisms. Encircling the inner border of the patch is the double helix of DNA, representing the genetic basis of life. Its yellow background represents the sun, energy source for all life on Earth. Both medical and veterinary caducei are shown to represent the STS- 58 life sciences experiments. The position of the spacecraft in orbit about Earth with the United States in the background symbolizes the ongoing support of the American people for scientific research intended to benefit all mankind.

  2. Plasmonic metamaterial based unified broadband absorber/near infrared emitter for thermophotovoltaic system based on hexagonally packed tungsten doughnuts

    NASA Astrophysics Data System (ADS)

    Behera, Saraswati; Joseph, Joby

    2017-11-01

    In this paper, we report a simple and effective design of a polarization independent and wide incident angle plasmonic metamaterial based unified broadband absorber and thermal emitter consisting of hexagonally packed tungsten doughnuts (hexa-rings) for thermophotovoltaic system. The proposed design shows more than 85% of absorption over 0.3 to 2.18 μm, that is, over the broad spectral range from the ultraviolet to the near infrared (NIR), and 100% absorption and thermal emission at 2.18 μm. Further, the NIR plasmonic absorption and thermal emission peak is tuned from the spectral range 2.18 to 3 μm for different low bandgap photovoltaic materials by varying the design parameters such as inner and outer ring radius, instead of varying any other design parameters in the proposed design. The possibility of the realization of hexa-doughnut structures through a single-step phase engineered interference lithography technique is also demonstrated through the realization of micro/nanostructure samples over large area.

  3. Oxygen ingress study of 3D printed gaseous radiation detector enclosures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steer, Christopher A.; Durose, Aaron

    2015-07-01

    As part of our ongoing studies into the potential application of 3D printing techniques to gaseous radiation detectors, we have studied the ability of 3D printed enclosures to resist environmental oxygen ingress. A set of cuboid and hexagonal prism shaped enclosures with wall thicknesses of 4 mm, 6 mm, 8 mm and 10 mm were designed and printed in nylon using a EOSINT P 730 Selective Laser Sintering 3D printer system These test enclosures provide a comparison of different environmental gas ingress for different 3D printing techniques. The rate of change of oxygen concentration was found to be linear, decreasingmore » as the wall thickness increases. It was also found that the hexagonal prism geometry produced a lower rate of change of oxygen concentration compared with the cuboid shaped enclosures. Possible reasons as to why these results were obtained are discussed The implications for the this study for deployable systems are also discussed (authors)« less

  4. Structural and dielectric behaviors of Bi4Ti3O12 - lyotropic liquid crystalline nanocolloids

    NASA Astrophysics Data System (ADS)

    Shukla, Ravi K.; Raina, K. K.

    2018-03-01

    We investigated the structural and dielectric dynamics of nanocolloids comprising lyotropic liquid crystals and bismuth titanate (Bi4Ti3O12) spherical nanoparticles (≈16-18 nm) of varying concentration 0.05 and 0.1 wt%. The lyotropic liquid crystalline mixture was prepared by a binary mixture of cetylpyridinuium chloride and ethylene glycol mixed in 5:95 wt% ratio. Binary lyotropic mixture exhibited hexagonal lyotropic phase. Structural and textural characterizations of nanocolloids infer that the nanoparticles were homogeneously dispersed in the liquid crystalline matrix and did not perturb the hexagonal ordering of the lyotropic phase. The dielectric constant and dielectric strength were found to be increased with the rise in the Bi4Ti3O12 nanoparticles concertation in the lyotropic matrix. A significant increase of one order was observed in the ac conductivity of colloidal systems as compared to the non-doped lyotropic liquid crystal. Relaxation parameters of the non-doped lyotropic liquid crystal and colloidal systems were computed and correlated with other parameters.

  5. The ARIANNA Hexagonal Radio Array - performance and prospects

    NASA Astrophysics Data System (ADS)

    Hallgren, Allan

    2016-04-01

    The origin of the highest energy cosmic rays at ˜1020 eV is still unknown. Ultra-high energy neutrinos from the GZK process should provide information on the sources and their properties. A promising and cost effective method for observing GZK-neutrinos is based on detection of Askaryan radio pulses with antennas installed in ice. The ARIANNA project aims at instrumenting a 36*36 km2 large area on the Ross Ice Shelf with an array of radio detection stations. The deployment of a test system for ARIANNA, the Hexagonal Radio Array (HRA), was completed in December 2014. The three first stations were installed in 2012. Solar panels are used to drive the < 10 W stations. The system hibernated at sunset in April and all stations returned to operation in September. The site is essentially free of anthropogenic noise. Simple cuts eliminate background and provides for efficient selection of neutrino events. Prospects for the sensitivity of the full ARIANNA array to the flux of GZK neutrinos are shown.

  6. Spatiotemporal patterns in reaction-diffusion system and in a vibrated granular bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinney, H.L.; Lee, K.J.; McCormick, W.D.

    Experiments on a quasi-two-dimensional reaction-diffusion system reveal transitions from a uniform state to stationary hexagonal, striped, and rhombic spatial patterns. For other reactor conditions lamellae and self-replicating spot patterns are observed. These patterns form in continuously fed thin gel reactors that can be maintained indefinitely in well-defined nonequilibrium states. Reaction-diffusion models with two chemical species yield patterns similar to those observed in the experiments. Pattern formation is also being examined in vertically oscillated thin granular layers (typically 3-30 particle diameters deep). For small acceleration amplitudes, a granular layer is flat, but above a well-defined critical acceleration amplitude, spatial patterns spontaneouslymore » form. Disordered time-dependent granular patterns are observed as well as regular patterns of squares, stripes, and hexagons. A one-dimensional model consisting of a completely inelastic ball colliding with a sinusoidally oscillating platform provides a semi-quantitative description of most of the observed bifurcations between the different spatiotemporal regimes.« less

  7. Nonequilibrium phase transitions of sheared colloidal microphases: Results from dynamical density functional theory

    NASA Astrophysics Data System (ADS)

    Stopper, Daniel; Roth, Roland

    2018-06-01

    By means of classical density functional theory and its dynamical extension, we consider a colloidal fluid with spherically symmetric competing interactions, which are well known to exhibit a rich bulk phase behavior. This includes complex three-dimensional periodically ordered cluster phases such as lamellae, two-dimensional hexagonally packed cylinders, gyroid structures, or spherical micelles. While the bulk phase behavior has been studied extensively in earlier work, in this paper we focus on such structures confined between planar repulsive walls under shear flow. For sufficiently high shear rates, we observe that microphase separation can become fully suppressed. For lower shear rates, however, we find that, e.g., the gyroid structure undergoes a kinetic phase transition to a hexagonally packed cylindrical phase, which is found experimentally and theoretically in amphiphilic block copolymer systems. As such, besides the known similarities between the latter and colloidal systems regarding the equilibrium phase behavior, our work reveals further intriguing nonequilibrium relations between copolymer melts and colloidal fluids with competing interactions.

  8. Quasi-random array imaging collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-20

    A hexagonally shaped quasi-random no-two-holes-touching imaging collimator. The quasi-random array imaging collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasing throughput by elimination of a substrate. The present invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  9. Random array grid collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-22

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  10. Surface charge conductivity of a topological insulator in a magnetic field: The effect of hexagonal warping

    NASA Astrophysics Data System (ADS)

    Akzyanov, R. S.; Rakhmanov, A. L.

    2018-02-01

    We investigate the influence of hexagonal warping on the transport properties of topological insulators. We study the charge conductivity within Kubo formalism in the first Born approximation using low-energy expansion of the Hamiltonian near the Dirac point. The effects of disorder, magnetic field, and chemical-potential value are analyzed in detail. We find that the presence of hexagonal warping significantly affects the conductivity of the topological insulator. In particular, it gives rise to the growth of the longitudinal conductivity with the increase of the disorder and anisotropic anomalous in-plane magnetoresistance. Hexagonal warping also affects the quantum anomalous Hall effect and anomalous out-of-plane magnetoresistance. The obtained results are consistent with the experimental data.

  11. Multilayer DNA origami packed on hexagonal and hybrid lattices.

    PubMed

    Ke, Yonggang; Voigt, Niels V; Gothelf, Kurt V; Shih, William M

    2012-01-25

    "Scaffolded DNA origami" has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology. © 2011 American Chemical Society

  12. A first principles study of commonly observed planar defects in Ti/TiB system

    DOE PAGES

    Nandwana, Peeyush; Gupta, Niraj; Srinivasan, Srivilliputhur G.; ...

    2018-04-20

    Here, TiB exhibits a hexagonal cross-section with growth faults on (1 0 0) planes and contains B27-B f bicrystals. The hexagonal cross-section is presently explained by surface free energy minimization principle. We show that interfacial energy calculations explain the longer (1 0 0) facet compared to (1 0 1) type facets whereas free surface energy arguments do not provide the true picture. No quantitative explanation of stacking faults and B27-B f interfaces in TiB exists. We show that the low formation energy of stacking faults and B27-B f interfaces explain their abundance. The low energy barrier for B f formationmore » is shown to be responsible for their presence in TiB.« less

  13. Heat transfer to four fineness-ratio-1.6 hexagonal prisms with various corner radii at Mach 6

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.

    1972-01-01

    An investigation was conducted in the Langley 20-inch Mach 6 tunnel to define the aerodynamic heat transfer to the radioisotope fuel cask (heat source) of the SNAP-19/Pioneer power system. The shape of the SNAP-19/Pioneer heat source is that of a hexagonal prism with flat ends; the fineness ratio, based on maximum (edge to edge) diameter, is 1.61. Phase-change-paint heat-transfer data and schlieren photographs were obtained on four possible 1/2-scale entry configurations of the SNAP-19/Pioneer heat source. Tests were conducted over a wide range of attitudes and at nominal Reynolds numbers, based on the length of the unablated configuration, of 33,000; 84,000; and 2,200,000.

  14. Hexagonal boron nitride and water interaction parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu; Wagner, Lucas K.

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics andmore » ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.« less

  15. A first principles study of commonly observed planar defects in Ti/TiB system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandwana, Peeyush; Gupta, Niraj; Srinivasan, Srivilliputhur G.

    Here, TiB exhibits a hexagonal cross-section with growth faults on (1 0 0) planes and contains B27-B f bicrystals. The hexagonal cross-section is presently explained by surface free energy minimization principle. We show that interfacial energy calculations explain the longer (1 0 0) facet compared to (1 0 1) type facets whereas free surface energy arguments do not provide the true picture. No quantitative explanation of stacking faults and B27-B f interfaces in TiB exists. We show that the low formation energy of stacking faults and B27-B f interfaces explain their abundance. The low energy barrier for B f formationmore » is shown to be responsible for their presence in TiB.« less

  16. [Plasma temperature of white-eye hexagonal pattern in dielectric barrier discharge].

    PubMed

    Zhao, Yang; Dong, Li-fang; Fu, Hong-yan

    2015-01-01

    By using the water-electrode discharge experimental setup, the white-eye hexagonal pattern is firstly observed and investigated in the dielectric barrier discharge with the mixture of argon and air whose content can be varied whenever necessary, and the study shows that the white-eye cell is an interleaving of three different hexagonal sub-structures: the spot, the ring, and the halo. The white-eye hexagonal pattern has the excellent discharge stability and sustainability during the experiment. Pictures recorded by ordinary camera with long exposure time in the same argon content condition show that the spot, the ring, and the halo of the white-eye hexagonal pattern have different brightness, which may prove that their plasma states are different. And, it is worth noting that there are obvious differences not only on the brightness but also on the color of the white-eye cell in conditions of different argon content, which shows that its plasma state also changed with the variation of the argon content. The white-eye hexagonal pattern is observed at a lower applied voltage so that the temperature of the water electrodes almost keeps unchanged during the whole experiment, which is advantageous for the long term stable measurement. The plasma state will not be affected by the temperature of the electrodes during the continuous discharge. Based on the above phenomena, plasma temperatures of the spot, the ring, and the halo in white-eye hexagonal pattern including molecule vibrational temperature and variations of electron density at different argon content are investigated by means of optical emission spectroscopy (OES). The emission spectra of the N2 second positive band(C3Πu-->B3Πg)are measured, and the molecule vibrational temperature of the spot, the ring, and the halo of the white-eye hexagonal pattern are calculated by the emission intensities. Furthermore, emission spectra of Ar I (2P2-->1S5)is collected and the changes of its width with different argon content are used to estimate the variations of electron density of the spot, the ring, and the halo of the white-eye hexagonal pattern. In the same argon content condition, the molecule vibrational temperatures of halo, ring, and spot in the white-eye hexagonal pattern are in descending order, while the electron densities of halo, ring, and spot are in ascending order. With argon content increasing from 70% to 90%, both the molecule vibrational temperature and the electron density of the spot increase, while both of them of the halo decrease. And the molecule vibrational temperature of the ring keeps constant, while its electron density decreases. The experimental results indicate that the plasma state of the spot, the halo and the ring in a white-eye cell of the white-eye hexagonal pattern is different. These results are of great importance to the investigation of the multilayer structure of the patterns in dielectric barrier discharge and applications in industry.

  17. Generation Algorithm of Discrete Line in Multi-Dimensional Grids

    NASA Astrophysics Data System (ADS)

    Du, L.; Ben, J.; Li, Y.; Wang, R.

    2017-09-01

    Discrete Global Grids System (DGGS) is a kind of digital multi-resolution earth reference model, in terms of structure, it is conducive to the geographical spatial big data integration and mining. Vector is one of the important types of spatial data, only by discretization, can it be applied in grids system to make process and analysis. Based on the some constraint conditions, this paper put forward a strict definition of discrete lines, building a mathematic model of the discrete lines by base vectors combination method. Transforming mesh discrete lines issue in n-dimensional grids into the issue of optimal deviated path in n-minus-one dimension using hyperplane, which, therefore realizing dimension reduction process in the expression of mesh discrete lines. On this basis, we designed a simple and efficient algorithm for dimension reduction and generation of the discrete lines. The experimental results show that our algorithm not only can be applied in the two-dimensional rectangular grid, also can be applied in the two-dimensional hexagonal grid and the three-dimensional cubic grid. Meanwhile, when our algorithm is applied in two-dimensional rectangular grid, it can get a discrete line which is more similar to the line in the Euclidean space.

  18. Self-assembling Gold Nanoparticle Monolayers in a Three-phase System - Overcoming Ligand Size Limitations

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Nanda, Jagjit; Wang, Boya; Chen, Gang; Hallinan, Daniel T., Jr.

    An effective self-assembly technique was developed to prepare centimeter-scale monolayer gold nanoparticle (Au NP) films of long-range order with hydrophobic ligands. Aqueous Au NPs were entrapped in the organic/aqueous interface where the Au NP surface was in situ modified with different types of amine ligands, including amine-terminated polystyrene. The Au NPs then spontaneously relocated to the air/water interface to form an NP monolayer. The spontaneous formation of an Au NP film at the organic/water interface was due to the minimization of the system Helmholtz free energy. Self-assembled Au NP films has a hexagonal close packed structure. The interparticle spacing was dictated by the amine ligand length. Thus-assembled Au NP monolayers exhibit tunable surface plasma resonance and excellent spacial homogeneity of surface-enhanced Raman-scattering. The ``air/water/oil'' self-assembly method developed in this study not only benefits the fundamental understanding of NP ligand conformations, but is also promising to scale up the manufacture of plasmonic nanoparticle devices with precisely designed optical properties. This study was financially supported by start-up funding supplied by the Florida State University and the FAMU-FSU College of Engineering.

  19. Hexagonal Pixels and Indexing Scheme for Binary Images

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    2004-01-01

    A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg, and 120deg to the original horizontal coordinate axis. The net result is that one has checked for line segments at angular intervals of 30deg. For even finer angular resolution, one could, for example, then rotate the rectangular-grid image +/-45deg before sampling to perform checking for line segments at angular intervals of 15deg.

  20. Three-dimensional visualization of coated vesicle formation in fibroblasts

    PubMed Central

    1980-01-01

    Fibroblasts apparently ingest low density lipoproteins (LDL) by a selective mechanism of receptor-mediated endocytosis involving the formation of coated vesicles from the plasma membrane. However, it is not known exactly how coated vesicles collect LDL receptors and pinch off from the plasma membrane. In this report, the quick-freeze, deep- etch, rotary-replication method has been applied to fibroblasts; it displays with unusual clarity the coats that appear under the plasma membrane at the start of receptor-mediated endocytosis. These coats appear to be polygonal networks of 7-nm strands or struts arranged into 30-nm polygons, most of which are hexagons but some of which are 5- and 7-sided rings. The proportion of pentagons in each network increases as the coated area of the plasma membrane puckers up from its planar configuration (where the network is mostly hexagons) to its most sharply curved condition as a pinched-off coated vesicle. Coats around the smallest vesicles (which are icosahedrons of hexagons and pentagons) appear only slightly different from "empty coats" purified from homogenized brain, which are less symmetrical baskets containing more pentagons than hexagons. A search for structural intermediates in this coat transformation allows a test of T. Kanaseki and K. Kadota's (1969. J. Cell Biol. 42:202--220.) original idea that an internal rearrangement in this basketwork from hexagons to pentagons could "power" coated vesicle formation. The most noteworthy variations in the typical hexagonal honeycomb are focal juxtapositions of 5- and 7-sided polygons at points of partial contraction and curvature in the basketwork. These appear to precede complete contraction into individual pentagons completely surrounded by hexagons, which is the pattern that characterizes the final spherical baskets around coated vesicles. PMID:6987244

  1. Interlocking egg-crate type grid assembly

    DOEpatents

    Kast, Steven J.

    1987-01-01

    Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120.degree. at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking and interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.

  2. Interlocking egg-crate type grid assembly

    DOEpatents

    Kast, S.J.

    1985-03-15

    Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120/sup 0/ at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.

  3. Hexagonal comb cells of honeybees are not produced via a liquid equilibrium process

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel; Bienefeld, Kaspar

    2013-01-01

    The nests of European honeybees ( Apis mellifera) are organised into wax combs that contain many cells with a hexagonal structure. Many previous studies on comb-building behaviour have been made in order to understand how bees produce this geometrical structure; however, it still remains a mystery. Direct construction of hexagons by bees was suggested previously, while a recent hypothesis postulated the self-organised construction of hexagonal comb cell arrays; however, infrared and thermographic video observations of comb building in the present study failed to support the self-organisation hypothesis because bees were shown to be engaged in direct construction. Bees used their antennae, mandibles and legs in a regular sequence to manipulate the wax, while some bees supported their work by actively warming the wax. During the construction of hexagonal cells, the wax temperature was between 33.6 and 37.6 °C. This is well below 40 °C, i.e. the temperature at which wax is assumed to exist in the liquid equilibrium that is essential for self-organised building.

  4. Manifestations of Kitaev physics in thermodynamic properties of hexagonal iridates and α-RuCl3

    NASA Astrophysics Data System (ADS)

    Tsirlin, Alexander

    Kitaev model is hard to achieve in real materials. Best candidates available so far are hexagonal iridates M2IrO3 (M = Li and Na) and the recently discovered α-RuCl3 featuring hexagonal layers coupled by weak van der Waals bonding. I will review recent progress in crystal growth of these materials and compare their thermodynamic properties. Both hexagonal iridates and α-RuCl3 feature highly anisotropic Curie-Weiss temperatures that not only differ in magnitude but also change sign depending on the direction of the applied magnetic field. Néel temperatures are largely suppressed compared to the energy scale of the Curie-Weiss temperatures. These experimental observations will be linked to features of the electronic structure and to structural peculiarities associated with deviations from the ideal hexagonal symmetry. I will also discuss how the different nature of ligand atoms affects electronic structure and magnetic superexchange. This work has been done in collaboration with M. Majumder, M. Schmidt, M. Baenitz, F. Freund, and P. Gegenwart.

  5. Preparation of novel layer-stack hexagonal CdO micro-rods by a pre-oxidation and subsequent evaporation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Kun, E-mail: kpeng@hnu.edu.cn; Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082; Jiang, Pan

    2014-12-15

    Graphical abstract: Layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared. - Highlights: • Novel hexagonal layer-stack structure CdO micro-rods were synthesized by a thermal evaporation method. • The pre-oxidation, vapor pressure and substrate nature play a key role on the formation of CdO rods. • The formation mechanism of CdO micro-rods was explained. - Abstract: Novel layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared by pre-oxidizing Cd granules and subsequent thermal oxidation under normal atmospheric pressure. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the phase structure and microstructure. The pre-oxidation process, vapor pressure and substratemore » nature were the key factors for the formation of CdO micro-rods. The diameter of micro-rod and surface rough increased with increasing of thermal evaporation temperature, the length of micro-rod increased with the increasing of evaporation time. The formation of hexagonal layer-stack structure was explained by a vapor–solid mechanism.« less

  6. Epitaxial hexagonal materials on IBAD-textured substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a <111> oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substratesmore » to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.« less

  7. Loss of preload in screwed implant joints as a function of time and tightening/untightening sequences.

    PubMed

    Bernardes, Sérgio Rocha; da Gloria Chiarello de Mattos, Maria; Hobkirk, John; Ribeiro, Ricardo Faria

    2014-01-01

    The purpose of this study was to determine whether abutment screw tightening and untightening influenced loss of preload in three different implant/abutment interfaces, or on the implant body. Five custom-fabricated machined titanium implants were used, each with its respective abutment, with different connection types, retention screws, and torque values (external hexagon with titanium screw/32 Ncm, external hexagon with coated screw/32 Ncm, internal hexagon/20 Ncm and internal conical/20 and 32 Ncm). Each implant tested had two strain gauges attached and was submitted to five tightening/untightening sequences. External hexagons resulted in the lowest preload values generated in the implant cervical third (mean of 27.75 N), while the internal hexagon had the highest values (mean of 219.61 N). There was no immediate significant loss of preload after screw tightening. Tightening/untightening sequences, regardless of the implant/abutment interface design or type of screw used in the study, did not result in any significant loss of initial preload. Conical implant connections demonstrated greater structural reinforcement within the internal connections.

  8. First-principles study of the structural properties of Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, K.J.; Cohen, M.L.

    1986-12-15

    With the use of an ab initio pseudopotential method, the structural properties of Ge are investigated at normal and high pressures. The pressure-induced structural phase transitions from cubic diamond to ..beta..-Sn, to simple hexagonal (sh), and to double hexagonal close packed (dhcp) are examined. With the possible exception of the dhcp structure, the calculated transition pressures, transition volumes, and axial ratios are in good agreement with experimental results. We find that sh Ge has characteristics similar to those of sh Si; the bonds between hexagonal layers are stronger than intralayer bonds and the transverse phonon modes become soft near themore » transitions from the sh to ..beta..-Sn and the sh to hcp structures. At normal pressures, we compare the crystal energies for the cubic diamond, hexagonal 2H, and hexagonal 4H structures. Because of the similar sp/sup 3/ bonds in these structures, the structural energy differences are less than about 14 meV, and the 2H and 4H phases are metastable with respect to the cubic diamond structure. The equation of state is also presented and compared with experiment.« less

  9. Adaptive Full Aperture Wavefront Sensor Study

    NASA Technical Reports Server (NTRS)

    Robinson, William G.

    1997-01-01

    This grant and the work described was in support of a Seven Segment Demonstrator (SSD) and review of wavefront sensing techniques proposed by the Government and Contractors for the Next Generation Space Telescope (NGST) Program. A team developed the SSD concept. For completeness, some of the information included in this report has also been included in the final report of a follow-on contract (H-27657D) entitled "Construction of Prototype Lightweight Mirrors". The original purpose of this GTRI study was to investigate how various wavefront sensing techniques might be most effectively employed with large (greater than 10 meter) aperture space based telescopes used for commercial and scientific purposes. However, due to changes in the scope of the work performed on this grant and in light of the initial studies completed for the NGST program, only a portion of this report addresses wavefront sensing techniques. The wavefront sensing techniques proposed by the Government and Contractors for the NGST were summarized in proposals and briefing materials developed by three study teams including NASA Goddard Space Flight Center, TRW, and Lockheed-Martin. In this report, GTRI reviews these approaches and makes recommendations concerning the approaches. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities: Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form a space telescope with large aperture. Provide very large (greater than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or quaternary mirror into a quasi-continuous surface with individual subapertures phased so that near diffraction limited imaging in the visible wavelength region is achieved. Continuous compensation of optical wavefront due to perturbations caused by imperfections, natural disturbances, and equipment induced vibrations/deflections to provide near diffraction limited imaging performance in the visible wavelength region. Demonstrate the feasibility of fabricating such systems with reduced mass and cost compared to past approaches.

  10. Method of manufacture of atomically thin boron nitride

    DOEpatents

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  11. Neutron economic reactivity control system for light water reactors

    DOEpatents

    Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.; Gregurech, Steve

    1989-01-01

    A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.

  12. Evolution of Moiré Profiles from van der Waals Superstructures of Boron Nitride Nanosheets

    PubMed Central

    Liao, Yunlong; Cao, Wei; Connell, John W.; Chen, Zhongfang; Lin, Yi

    2016-01-01

    Two-dimensional (2D) van der Waals (vdW) superstructures, or vdW solids, are formed by the precise restacking of 2D nanosheet lattices, which can lead to unique physical and electronic properties that are not available in the parent nanosheets. Moiré patterns formed by the crystalline mismatch between adjacent nanosheets are the most direct features for vdW superstructures under microscopic imaging. In this article, transmission electron microscopy (TEM) observation of hexagonal Moiré patterns with unusually large micrometer-sized lateral areas (up to ~1 μm2) and periodicities (up to ~50 nm) from restacking of liquid exfoliated hexagonal boron nitride nanosheets (BNNSs) is reported. This observation was attributed to the long range crystallinity and the contaminant-free surfaces of these chemically inert nanosheets. Parallel-line-like Moiré fringes with similarly large periodicities were also observed. The simulations and experiments unambiguously revealed that the hexagonal patterns and the parallel fringes originated from the same rotationally mismatched vdW stacking of BNNSs and can be inter-converted by simply tilting the TEM specimen following designated directions. This finding may pave the way for further structural decoding of other 2D vdW superstructure systems with more complex Moiré images. PMID:27188697

  13. The Hardest Superconducting Metal Nitride

    DOE PAGES

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; ...

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore » crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  14. The Hardest Superconducting Metal Nitride

    NASA Astrophysics Data System (ADS)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-01

    Transition-metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock-salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10-20 GPa. Here, we report high-pressure synthesis of hexagonal δ-MoN and cubic γ-MoN through an ion-exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 - 80 μm. Based on indentation testing on single crystals, hexagonal δ-MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ-MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo-N network than that in cubic phase. The measured superconducting transition temperatures for δ-MoN and cubic γ-MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  15. Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors.

    PubMed

    Deori, Kalyanjyoti; Ujjain, Sanjeev Kumar; Sharma, Raj Kishore; Deka, Sasanka

    2013-11-13

    Cubic spinel Co3O4 nanoparticles with spherical (0D) and hexagonal platelet (2D) morphologies were synthesized using a simple solvothermal method by tuning the reaction time. XRD and HRTEM analyses revealed pure phase with growth of Co3O4 particles along [111] and [110] directions. UV-vis studies showed two clear optical absorption peaks corresponding to two optical band gaps in the range of 400-500 nm and 700-800 nm, respectively, related to the ligand to metal charge transfer events (O(2-) → Co(2+,3+)). Under the electrochemical study in two electrode assembly system (Co3O4/KOH/Co3O4) without adding any large area support or a conductive filler, the hexagonal platelet Co3O4 particles exhibited comparatively better characteristics with high specific capacitance (476 F g(-1)), energy density 42.3 Wh kg(-1) and power density 1.56 kW kg(-1) at current density of 0.5 Ag(-1), that suited for potential applications in supercapacitors. The observed better electrochemical properties of the nanoporous Co3O4 particles is attributed to the layered platelet structural arrangement of the hexagonal platelet and the presence of exceptionally high numbers of regularly ordered pores.

  16. Experimental Investigation of Hexagon Stability in Two Frequency Forced Faraday Waves

    NASA Astrophysics Data System (ADS)

    Ding, Yu; Umbanhowar, Paul

    2003-03-01

    We have conducted experiments on a deep layer of silicone oil vertically oscillated with an acceleration a(t) = Am sin(m ω t + φ_m) + An sin(n ω t + φ_n). The stability of hexagonal surface wave patterns is investigated as a function of the overall acceleration, the ratio m:n, and the phase of the two rationally related driving frequencies. When the ratio A_m/An is chosen so the system is near a co-dimension two point, the stability of hexagons above onset is determined by the acceleration amplitude and the relative phase. Recent results by Porter and Silver (J. Porter and M. Silber, Phys. Rev. Lett. 084501, 2002) predicts that the range of pattern stability above onset as a function of acceleration is determined by cos(Φ), where Φ = π/4 - m φn / 2- n φm /2. We have tested this prediction for a number of m:n ratios and for various values of the dimensionless damping coefficient γ. We find that the patterns exhibit the predicted functional dependence on s(Φ) but with an additional phase offset. We measure the phase offset as a function of m:n and γ for varying frequency ω and fluid viscosity 5 cS <= ν <= 30 cS.

  17. Strain-Induced Extrinsic High-Temperature Ferromagnetism in the Fe-Doped Hexagonal Barium Titanate

    PubMed Central

    Zorko, A.; Pregelj, M.; Gomilšek, M.; Jagličić, Z.; Pajić, D.; Telling, M.; Arčon, I.; Mikulska, I.; Valant, M.

    2015-01-01

    Diluted magnetic semiconductors possessing intrinsic static magnetism at high temperatures represent a promising class of multifunctional materials with high application potential in spintronics and magneto-optics. In the hexagonal Fe-doped diluted magnetic oxide, 6H-BaTiO3-δ, room-temperature ferromagnetism has been previously reported. Ferromagnetism is broadly accepted as an intrinsic property of this material, despite its unusual dependence on doping concentration and processing conditions. However, the here reported combination of bulk magnetization and complementary in-depth local-probe electron spin resonance and muon spin relaxation measurements, challenges this conjecture. While a ferromagnetic transition occurs around 700 K, it does so only in additionally annealed samples and is accompanied by an extremely small average value of the ordered magnetic moment. Furthermore, several additional magnetic instabilities are detected at lower temperatures. These coincide with electronic instabilities of the Fe-doped 3C-BaTiO3-δ pseudocubic polymorph. Moreover, the distribution of iron dopants with frozen magnetic moments is found to be non-uniform. Our results demonstrate that the intricate static magnetism of the hexagonal phase is not intrinsic, but rather stems from sparse strain-induced pseudocubic regions. We point out the vital role of internal strain in establishing defect ferromagnetism in systems with competing structural phases. PMID:25572803

  18. Structural and electronic stability of a volleyball-shaped B80 fullerene

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian

    2010-10-01

    We have studied the structural and electronic characteristics of a volleyball-shaped B80 cage using first-principles density-functional calculations. In contrast to the popularly ratified “magic” B80 buckyball with 20 hexagonal pyramids and 12 hollow pentagons, the volleyball-shaped B80 constitutes 12 pentagonal pyramids, 8 hexagonal pyramids, and 12 hollow hexagons. The B80 volleyball is markedly more stable than the previously assumed magic B80 buckyball, which is attributed to the improved aromaticity associated with the distinct configuration.

  19. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsipas, P.; Kassavetis, S.; Tsoutsou, D.

    Ultrathin (sub-monolayer to 12 monolayers) AlN nanosheets are grown epitaxially by plasma assisted molecular beam epitaxy on Ag(111) single crystals. Electron diffraction and scanning tunneling microscopy provide evidence that AlN on Ag adopts a graphite-like hexagonal structure with a larger lattice constant compared to bulk-like wurtzite AlN. This claim is further supported by ultraviolet photoelectron spectroscopy indicating a reduced energy bandgap as expected for hexagonal AlN.

  20. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  1. Hexagonally packed DNA within bacteriophage T7 stabilized by curvature stress.

    PubMed Central

    Odijk, T

    1998-01-01

    A continuum computation is proposed for the bending stress stabilizing DNA that is hexagonally packed within bacteriophage T7. Because the inner radius of the DNA spool is rather small, the stress of the curved DNA genome is strong enough to balance its electrostatic self-repulsion so as to form a stable hexagonal phase. The theory is in accord with the microscopically determined structure of bacteriophage T7 filled with DNA within the experimental margin of error. PMID:9726924

  2. Epitaxial Growth of Cubic Crystalline Semiconductor Alloys on Basal Plane of Trigonal or Hexagonal Crystal

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)

    2011-01-01

    Hetero-epitaxial semiconductor materials comprising cubic crystalline semiconductor alloys grown on the basal plane of trigonal and hexagonal substrates, in which misfit dislocations are reduced by approximate lattice matching of the cubic crystal structure to underlying trigonal or hexagonal substrate structure, enabling the development of alloyed semiconductor layers of greater thickness, resulting in a new class of semiconductor materials and corresponding devices, including improved hetero-bipolar and high-electron mobility transistors, and high-mobility thermoelectric devices.

  3. Thermal barrier coating

    DOEpatents

    Bowker, Jeffrey Charles; Sabol, Stephen M.; Goedjen, John G.

    2001-01-01

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  4. Facilities | Concentrating Solar Power | NREL

    Science.gov Websites

    sun in elevation and azimuth. Concentrating collectors require 2-axis tracking to focus sunlight on a would imply tracking to minimize variation in solar resource during on-sun testing. As applicable, the . Hexagonal mirrors of the HFSF's primary system concentrate the sun, which can be further concentrated as

  5. Characterization of the secondary flow in hexagonal ducts

    NASA Astrophysics Data System (ADS)

    Marin, O.; Vinuesa, R.; Obabko, A. V.; Schlatter, P.

    2016-12-01

    In this work we report the results of DNSs and LESs of the turbulent flow through hexagonal ducts at friction Reynolds numbers based on centerplane wall shear and duct half-height Reτ,c ≃ 180, 360, and 550. The evolution of the Fanning friction factor f with Re is in very good agreement with experimental measurements. A significant disagreement between the DNS and previous RANS simulations was found in the prediction of the in-plane velocity, and is explained through the inability of the RANS model to properly reproduce the secondary flow present in the hexagon. The kinetic energy of the secondary flow integrated over the cross-sectional area yz decreases with Re in the hexagon, whereas it remains constant with Re in square ducts at comparable Reynolds numbers. Close connection between the values of Reynolds stress u w ¯ on the horizontal wall close to the corner and the interaction of bursting events between the horizontal and inclined walls is found. This interaction leads to the formation of the secondary flow, and is less frequent in the hexagon as Re increases due to the 120∘ aperture of its vertex, whereas in the square duct the 90∘ corner leads to the same level of interaction with increasing Re. Analysis of turbulence statistics at the centerplane and the azimuthal variance of the mean flow and the fluctuations shows a close connection between hexagonal ducts and pipe flows, since the hexagon exhibits near-axisymmetric conditions up to a distance of around 0.15DH measured from its center. Spanwise distributions of wall-shear stress show that in square ducts the 90∘ corner sets the location of a high-speed streak at a distance zv+≃50 from it, whereas in hexagons the 120∘ aperture leads to a shorter distance of zv+≃38 . At these locations the root mean square of the wall-shear stresses exhibits an inflection point, which further shows the connections between the near-wall structures and the large-scale motions in the outer flow.

  6. Characterization of the secondary flow in hexagonal ducts

    DOE PAGES

    Marin, O.; Vinuesa, R.; Obabko, A. V.; ...

    2016-12-06

    In this work we report the results of DNSs and LESs of the turbulent flow through hexagonal ducts at friction Reynolds numbers based on centerplane wall shear and duct half-height Re τ,c ≃ 180, 360, and 550. The evolution of the Fanning friction factor f with Re is in very good agreement with experimental measurements. A significant disagreement between the DNS and previous RANS simulations was found in the prediction of the in-plane velocity, and is explained through the inability of the RANS model to properly reproduce the secondary flow present in the hexagon. The kinetic energy of the secondarymore » flow integrated over the cross-sectional area < K > yz decreases with Re in the hexagon, whereas it remains constant with Re in square ducts at comparable Reynolds numbers. Close connection between the values of Reynolds stress uw¯ on the horizontal wall close to the corner and the interaction of bursting events between the horizontal and inclined walls is found. This interaction leads to the formation of the secondary flow, and is less frequent in the hexagon as Re increases due to the 120° aperture of its vertex, whereas in the square duct the 90° corner leads to the same level of interaction with increasing Re. Analysis of turbulence statistics at the centerplane and the azimuthal variance of the mean flow and the fluctuations shows a close connection between hexagonal ducts and pipe flows, since the hexagon exhibits near-axisymmetric conditions up to a distance of around 0.15 DH measured from its center. Spanwise distributions of wall-shear stress show that in square ducts the 90° corner sets the location of a high-speed streak at a distance z + v≃50 from it, whereas in hexagons the 120° aperture leads to a shorter distance of z + v≃38. Finally, at these locations the root mean square of the wall-shear stresses exhibits an inflection point, which further shows the connections between the near-wall structures and the large-scale motions in the outer flow.« less

  7. Observation of topological edge states of acoustic metamaterials at subwavelength scale

    NASA Astrophysics Data System (ADS)

    Dai, Hongqing; Jiao, Junrui; Xia, Baizhan; Liu, Tingting; Zheng, Shengjie; Yu, Dejie

    2018-05-01

    Topological states are of key importance for acoustic wave systems owing to their unique transport properties. In this study, we develop a hexagonal array of hexagonal columns with Helmholtz resonators to obtain subwavelength Dirac cones. Rotation operations are performed to open the Dirac cones and obtain acoustic valley vortex states. In addition, we calculate the angular-dependent frequencies for the band edges at the K-point. Through a topological phase transition, the topological phase of pattern A can change into that of pattern B. The calculations for the bulk dispersion curves show that the acoustic metamaterials exhibit BA-type and AB-type topological edge states. Experimental results demonstrate that a sound wave can transmit well along the topological path. This study could reveal a simple approach to create acoustic topological edge states at the subwavelength scale.

  8. Development of dielectrophoresis MEMS device for PC12 cell patterning to elucidate nerve-network generation

    NASA Astrophysics Data System (ADS)

    Nakamachi, Eiji; Koga, Hirotaka; Morita, Yusuke; Yamamoto, Koji; Sakamoto, Hidetoshi

    2018-01-01

    We developed a PC12 cell trapping and patterning device by combining the dielectrophoresis (DEP) methodology and the micro electro mechanical systems (MEMS) technology for time-lapse observation of morphological change of nerve network to elucidate the generation mechanism of neural network. We succeeded a neural network generation, which consisted of cell body, axon and dendrites by using tetragonal and hexagonal cell patterning. Further, the time laps observations was carried out to evaluate the axonal extension rate. The axon extended in the channel and reached to the target cell body. We found that the shorter the PC12 cell distance, the less the axonal connection time in both tetragonal and hexagonal structures. After 48 hours culture, a maximum success rate of network formation was 85% in the case of 40 μm distance tetragonal structure.

  9. A selection principle for Benard-type convection

    NASA Technical Reports Server (NTRS)

    Knightly, G. H.; Sather, D.

    1985-01-01

    In a Benard-type convection problem, the stationary flows of an infinite layer of fluid lying between two rigid horizontal walls and heated uniformly from below are determined. As the temperature difference across the layer increases beyond a certain value, other convective motions appear. These motions are often cellular in character in that their streamlines are confined to certain well-defined cells having, for example, the shape of rolls or hexagons. A selection principle that explains why hexagonal cells seem to be preferred for certain ranges of the parameters is formulated. An operator-theoretical formulation of one generalized Bernard problem is given. The infinite dimensional problem is reduced to one of solving a finite dimensional system of equations, namely, the selection equations. These equations are solved and a linearized stability analysis of the resultant stationary flows is presented.

  10. A selection principle in Benard-type convection

    NASA Technical Reports Server (NTRS)

    Knightly, G. H.; Sather, D.

    1983-01-01

    In a Benard-type convection problem, the stationary flows of an infinite layer of fluid lying between two rigid horizontal walls and heated uniformly from below are determined. As the temperature difference across the layer increases beyond a certain value, other convective motions appear. These motions areoften cellular in character in that their streamlines are confined to certain well-defined cells having, for example, the shape of rolls or hexagons. A selection principle that explains why hexagonal cells seem to be preferred for certain ranges of the parameters is formulated. An operator-theoretical formulation of one generalized Bernard problem is given. The infinite dimensional problem is reduced to one of solving a finite dimensional system of equations, namely, the selection equations. These equations are solved and a linearized stability analysis of the resultant stationary flows is presented.

  11. Multi-object detection and tracking technology based on hexagonal opto-electronic detector

    NASA Astrophysics Data System (ADS)

    Song, Yong; Hao, Qun; Li, Xiang

    2008-02-01

    A novel multi-object detection and tracking technology based on hexagonal opto-electronic detector is proposed, in which (1) a new hexagonal detector, which is composed of 6 linear CCDs, has been firstly developed to achieve the field of view of 360 degree, (2) to achieve the detection and tracking of multi-object with high speed, the object recognition criterions of Object Signal Width Criterion (OSWC) and Horizontal Scale Ratio Criterion (HSRC) are proposed. In this paper, Simulated Experiments have been carried out to verify the validity of the proposed technology, which show that the detection and tracking of multi-object can be achieved with high speed by using the proposed hexagonal detector and the criterions of OSWC and HSRC, indicating that the technology offers significant advantages in Photo-electric Detection, Computer Vision, Virtual Reality, Augment Reality, etc.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J.; Monserrat, Bartomeu

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range frommore » −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.« less

  13. Structures, phase transitions and microwave dielectric properties of the 6H perovskites Ba 3BSb 2O 9, B=Mg, Ca, Sr, Ba

    NASA Astrophysics Data System (ADS)

    Ling, Chris D.; Rowda, Budwy; Avdeev, Maxim; Pullar, Robert

    2009-03-01

    We present a complete temperature-composition phase diagram for Ba 3BSb 2O 9, B=Mg, Ca, Sr, Ba, along with their electrical behavior as a function of B. These compounds have long been recognized as 6H-type perovskites, but (with the exception of B=Mg) their exact structures and properties were unknown due to their low symmetries, temperature-dependent phase transitions, and difficulties in synthesizing pure samples. The full range of possible space group symmetries is observed, from ideal hexagonal P6 3/ mmc to monoclinic C2/ c to triclinic P1¯. Direct second-order transitions between these phases are plausible according to group theory, and no evidence was seen for any further intermediate phases. The phase diagram with respect to temperature and the effective ionic radius of B is remarkably symmetrical for B=Mg, Ca, and Sr. For B=Ba, a first-order phase transition to a locally distorted phase allows a metastable hexagonal phase to persist to lower temperatures than expected before decomposing around 600 K. Electrical measurements revealed that dielectric permittivity corrected for porosity does not change significantly as a function of B and is in a good agreement with the values predicted by the Clausius-Mossotti equation.

  14. Corrigendum to "Microstructural Characterization of Metal Foams: An Examination of the Applicability of the Theoretical Models for Modeling Foams"

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2011-01-01

    Establishing the geometry of foam cells is useful in developing microstructure-based acoustic and structural models. Since experimental data on the geometry of the foam cells are limited, most modeling efforts use an idealized three-dimensional, space-filling Kelvin tetrakaidecahedron. The validity of this assumption is investigated in the present paper. Several FeCrAlY foams with relative densities varying between 3 and 15% and cells per mm (c.p.mm.) varying between 0.2 and 3.9 c.p.mm. were microstructurally evaluated. The number of edges per face for each foam specimen was counted by approximating the cell faces by regular polygons, where the number of cell faces measured varied between 207 and 745. The present observations revealed that 50-57% of the cell faces were pentagonal while 24-28% were quadrilateral and 15-22% were hexagonal. The present measurements are shown to be in excellent agreement with literature data. It is demonstrated that the Kelvin model, as well as other proposed theoretical models, cannot accurately describe the FeCrAlY foam cell structure. Instead, it is suggested that the ideal foam cell geometry consists of 11 faces with 3 quadrilateral, 6 pentagonal faces and 2 hexagonal faces consistent with the 3-6-2 Matzke cell

  15. Angle-resolved electron energy loss spectroscopy in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Fossard, Frédéric; Sponza, Lorenzo; Schué, Léonard; Attaccalite, Claudio; Ducastelle, François; Barjon, Julien; Loiseau, Annick

    2017-09-01

    Electron energy loss spectra were measured on hexagonal boron nitride single crystals employing an electron energy loss spectroscopic setup composed of an electron microscope equipped with a monochromator and an in-column filter. This setup provides high-quality energy-loss spectra and allows also for the imaging of energy-filtered diffraction patterns. These two acquisition modes provide complementary pieces of information, offering a global view of excitations in reciprocal space. As an example of the capabilities of the method we show how easily the core loss spectra at the K edges of boron and nitrogen can be measured and imaged. Low losses associated with interband and/or plasmon excitations are also measured. This energy range allows us to illustrate that our method provides results whose quality is comparable to that obtained from nonresonant x-ray inelastic scattering but with advantageous specificities such as an enhanced sensitivity at low q and a much greater simplicity and versatility that make it well adapted to the study of two-dimensional materials and related heterostructures. Finally, by comparing theoretical calculations to our measures, we are able to relate the range of applicability of ab initio calculations to the anisotropy of the sample and assess the level of approximation required for a proper simulation of our acquisition method.

  16. Silicon Nitride Equation of State

    NASA Astrophysics Data System (ADS)

    Swaminathan, Pazhayannur; Brown, Robert

    2015-06-01

    This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.

  17. On plastic flow in notched hexagonal close packed single crystals

    NASA Astrophysics Data System (ADS)

    Selvarajou, Balaji; Kondori, Babak; Benzerga, A. Amine; Joshi, Shailendra P.

    2016-09-01

    The micromechanics of anisotropic plastic flow by combined slip and twinning is investigated computationally in single crystal notched specimens. Constitutive relations for hexagonal close packed materials are used which take into account elastic anisotropy, thirty potential deformation systems, various hardening mechanisms and rate-sensitivity. The specimens are loaded perpendicular to the c-axis but the presence of a notch generates three-dimensional triaxial stress states. The study is motivated by recent experiments on a polycrystalline magnesium alloy. To enable comparisons with these where appropriate, three sets of activation thresholds for the various deformation systems are used. For the conditions that most closely mimic the alloy material, attention is focused on the relative roles of pyramidal 〈 c + a 〉 and prismatic 〈 a 〉 slip, as well as on the emergence of {1012bar}[101bar1] extension twinning at sufficiently high triaxiality. In all cases, the spatial variations of stress triaxiality and plastic strain, inclusive of various system activities, are quantified along with their evolution upon straining. The implications of these findings in fundamental understanding of ductile failure of HCP alloys in general and Mg alloys in particular are discussed.

  18. Simultaneous and coordinated rotational switching of all molecular rotors in a network

    DOE PAGES

    Zhang, Y.; Kersell, H.; Stefak, R.; ...

    2016-05-09

    A range of artificial molecular systems have been created that can exhibit controlled linear and rotational motion. In the development of such systems, a key step is the addition of communication between molecules in a network. Here, we show that a two-dimensional array of dipolar molecular rotors can undergo simultaneous rotational switching by applying an electric field from the tip of a scanning tunnelling microscope. Several hundred rotors made from porphyrin-based double-decker complexes can be simultaneously rotated when in a hexagonal rotor network on a Cu(111) surface by applying biases above ±1 V at 80 K. The phenomenon is observedmore » only in a hexagonal rotor network due to the degeneracy of the ground state dipole rotational energy barrier of the system. Defects are essential to increase electric torque on the rotor network and to stabilize the switched rotor domains. At low biases and low initial rotator angles, slight reorientations of individual rotors can occur resulting in the rotator arms pointing in different directions. In conclusion, analysis reveals that the rotator arm directions here are not random, but are coordinated to minimize energy via cross talk among the rotors through dipolar interactions.« less

  19. Three-dimensional Distribution of Azimuthal and Radial Anisotropy in the Japan Subduction

    NASA Astrophysics Data System (ADS)

    Ishise, M.; Kawakatsu, H.; Shiomi, K.

    2014-12-01

    Seismic anisotropy has close relationships with past and present tectonic and dynamic processes. Therefore, detailed description of seismic anisotropy of subduction zones provides important information for our understanding of the subduction system. The most common method of detecting anisotropy is the S-wave splitting measurement. However, conventional S-wave splitting analysis is not an appropriate way to investigate anisotropy in the mantle and slab because the technique has no vertical resolution. Thus, we have improved common traveltime tomography to estimate three-dimensional anisotropic structures of P-wave, assuming that the modeling space is composed of weakly anisotropic medium with a hexagonal symmetry about a horizontal axis (Ishise & Oda, 2005, JGR; Ishise & Oda, 2008, PEPI). Recently, we extended the anisotropic tomography for P-wave radial anisotropy with vertical hexagonal symmetry axis (Ishise & Kawakatsu, 2012 JpGU). In this study, we expand the study area of our previous regional analyses of P-wave azimuthal and radial anisotropic tomography (Ishise & Oda, 2005; Ishise & Kawakatsu, 2012, JpGU; Ishise et al., 2012, SSJ) using Hi-net arrival time data and examine the subduction system around the Japan islands, where two trenches with different strike directions and plate junction are included. Here are some of the remarkable results associated with the PAC slab and mantle structure. (1) N-S-trending fast axis of P-wave anisotropy is dominant in the PAC slab. (2) the mantle wedge shows trench-normal anisotropy across the trench-trench junction. (3) horizontal velocity (PH) tends to be faster than vertical velocity (PV) in the slab. (4) PV tends to be faster than PH in the mantle wedge. The characteristics of the obtained azimuthal and radial anisotropy of the PAC slab and the mantle wedge qualitatively consistent with heterogeneous plate models (e.g., Furumura & Kennet, 2005) and numerical simulations of mantle flow (Morishige & Honda, 2011; 2013). In addition, the azimuthal anisotropy in the PAC slab that we obtained is subparallel to that in the PAC plate before subducting (e.g., Shimamura et al., 1983). Therefore, we suggest that the slab anisotropy is "frozen anisotropy", which is attributed to the episode before subduction, and mantle wedge anisotropy reflects present dynamics.

  20. Crystalline structures of particles interacting through the harmonic-repulsive pair potential

    NASA Astrophysics Data System (ADS)

    Levashov, V. A.

    2017-09-01

    The behavior of identical particles interacting through the harmonic-repulsive pair potential has been studied in 3D using molecular dynamics simulations at a number of different densities. We found that at many densities, as the temperature of the systems decreases, the particles crystallize into complex structures whose formation has not been anticipated in previous studies on the harmonic-repulsive pair potential. In particular, at certain densities, crystallization into the structure I a 3 ¯ d (space group #230) with 16 particles in the unit cell occupying Wyckoff special positions (16b) was observed. This crystal structure has not been observed previously in experiments or in computer simulations of single component atomic or soft matter systems. At another density, we observed a liquid which is rather stable against crystallization. Yet, we observed crystallization of this liquid into the monoclinic C2/c (space group #15) structure with 32 particles in the unit cell occupying four different non-special Wyckoff (8f) sites. In this structure particles located at different Wyckoff sites have different energies. From the perspective of the local atomic environment, the organization of particles in this structure resembles the structure of some columnar quasicrystals. At a different value of the density, we did not observe crystallization at all despite rather long molecular dynamics runs. At two other densities, we observed the formation of the β S n distorted diamond structures instead of the expected diamond structure. Possibly, we also observed the formation of the R 3 ¯ c hexagonal lattice with 24 particles per unit cell occupying non-equivalent positions.

  1. Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO(3) nanocrystals of one dimensional structure.

    PubMed

    Chithambararaj, Angamuthuraj; Bose, Arumugam Chandra

    2011-01-01

    Hexagonal molybdenum oxide (h-MoO(3)) was synthesized by a solution based chemical precipitation technique. Analysis by X-ray diffraction (XRD) confirmed that the as-synthesized powder had a metastable hexagonal structure. The characteristic vibrational band of Mo-O was identified from Fourier transform infrared spectroscopy (FT-IR). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images clearly depicted the morphology and size of h-MoO(3.) The morphology study showed that the product comprises one-dimensional (1D) hexagonal rods. From the electron energy loss spectroscopy (EELS) measurement, the elemental composition was investigated and confirmed from the characteristic peaks of molybdenum and oxygen. Thermogravimetric (TG) analysis on metastable MoO(3) revealed that the hexagonal phase was stable up to 430 °C and above this temperature complete transformation into a highly stable orthorhombic phase was achieved. The optical band gap energy was estimated from the Kubelka-Munk (K-M) function and was found to be 2.99 eV. Finally, the ethanol vapor-sensing behavior was investigated and the sensing response was found to vary linearly as a function of ethanol concentration in the parts per million (ppm) range.

  2. On the buckling of hexagonal boron nitride nanoribbons via structural mechanics

    NASA Astrophysics Data System (ADS)

    Giannopoulos, Georgios I.

    2018-03-01

    Monolayer hexagonal boron nitride nanoribbons have similar crystal structure as graphene nanoribbons, have excellent mechanical, thermal insulating and dielectric properties and additionally present chemical stability. These allotropes of boron nitride can be used in novel applications, in which graphene is not compatible, to achieve remarkable performance. The purpose of the present work is to provide theoretical estimations regarding the buckling response of hexagonal boron nitride monolayer under compressive axial loadings. For this reason, a structural mechanics method is formulated which employs the exact equilibrium atomistic structure of the specific two-dimensional nanomaterial. In order to represent the interatomic interactions appearing between boron and nitrogen atoms, the Dreiding potential model is adopted which is realized by the use of three-dimensional, two-noded, spring-like finite elements of appropriate stiffness matrices. The critical compressive loads that cause the buckling of hexagonal boron nitride nanoribbons are computed with respect to their size and chirality while some indicative buckled shapes of them are illustrated. Important conclusions arise regarding the effect of the size and chirality on the structural stability of the hexagonal boron nitride monolayers. An analytical buckling formula, which provides good fitting of the numerical outcome, is proposed.

  3. Polarization-free integrated gallium-nitride photonics

    PubMed Central

    Bayram, C.; Liu, R.

    2017-01-01

    Gallium Nitride (GaN) materials are the backbone of emerging solid state lighting. To date, GaN research has been primarily focused on hexagonal phase devices due to the natural crystallization. This approach limits the output power and efficiency of LEDs, particularly in the green spectrum. However, GaN can also be engineered to be in cubic phase. Cubic GaN has a lower bandgap (~200 meV) than hexagonal GaN that enables green LEDs much easily. Besides, cubic GaN has more isotropic properties (smaller effective masses, higher carrier mobility, higher doping efficiency, and higher optical gain than hexagonal GaN), and cleavage planes. Due to phase instability, however, cubic phase materials and devices have remained mostly unexplored. Here we review a new method of cubic phase GaN generation: Hexagonal-to-cubic phase transition, based on novel nano-patterning. We report a new crystallographic modelling of this hexagonal-to-cubic phase transition and systematically study the effects of nano-patterning on the GaN phase transition via transmission electron microscopy and electron backscatter diffraction experiments. In summary, silicon-integrated cubic phase GaN light emitters offer a unique opportunity for exploration in next generation photonics. PMID:29307953

  4. Synthesis of hexagonal ultrathin tungsten oxide nanowires with diameters below 5 nm for enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lu, Huidan; Zhu, Qin; Zhang, Mengying; Yan, Yi; Liu, Yongping; Li, Ming; Yang, Zhishu; Geng, Peng

    2018-04-01

    Semiconductor with one dimension (1D) ultrathin nanostructure has been proved to be a promising nanomaterial in photocatalytic field. Great efforts were made on preparation of monoclinic ultrathin tungsten oxide nanowires. However, non-monoclinic phase tungsten oxides with 1D ultrathin structure, especially less than 5 nm width, have not been reported. Herein, we report the synthesis of hexagonal ultrathin tungsten oxide nanowires (U-WOx NW) by modified hydrothermal method. Microstructure characterization showed that U-WOx NW have the diameters of 1-3 nm below 5 nm and are hexagonal phase sub-stoichiometric WOx. U-WOx NW show absorption tail in the visible and near infrared region due to oxygen vacancies. For improving further photocatalytic performance, Ag co-catalyst was grown directly onto U-WOx NW surface by in situ redox reaction. Photocatalytic measurements revealed hexagonal U-WOx NW have better photodegradation activity, compared with commercial WO3(C-WO3) and oxidized U-WOx NW, ascribe to larger surface area, short diffusion length of photo-generated charge carriers and visible absorption of oxygen-vacancy-rich hexagonal ultrathin nanostructures. Moreover, the photocatalytic activity and stability of U-WOx NW using Ag co-catalyst were further improved.

  5. Cubic ice and large humidity with respect to ice in cold cirrus clouds

    NASA Astrophysics Data System (ADS)

    Bogdan, A.; Loerting, T.

    2009-04-01

    Recently several studies have reported about the possible formation of cubic ice in upper-tropospheric cirrus ice clouds and its role in the observed elevated relative humidity with respect to hexagonal ice, RHi, within the clouds. Since cubic ice is metastable with respect to stable hexagonal ice, its vapour pressure is higher. A key issue in determining the ratio of vapour pressures of cubic ice Pc and hexagonal ice Ph is the enthalpy of transformation from cubic to hexagonal ice Hc→h. By dividing the two integrated forms of the Clausius-Clapeyron equation for cubic ice and hexagonal ice, one obtains the relationship (1): ln Pc-- ln P*c-=--(Hc→h--) Ph P*h R 1T-- 1T* (1) from which the importance of Hc→h is evident. In many literature studies the approximation (2) is used: ln Pc-= Hc-→h. Ph RT (2) Using this approximated form one can predict the ratio of vapour pressures by measuring Hc→h. Unfortunately, the measurement of Hc→h is difficult. First, the enthalpy difference is very small, and the transition takes place over a broad temperature range, e.g., between 230 K and 260 K in some of our calorimetry experiments. Second, cubic ice (by contrast to hexagonal ice) can not be produced as a pure crystal. It always contains hexagonal stacking faults, which are evidenced by the (111)-hexagonal Bragg peak in the powder diffractogram. If the number of hexagonal stacking faults in cubic ice is high, then one could even consider this material as hexagonal ice with cubic stacking faults. Using the largest literature value of the change of enthalpy of transformation from cubic to hexagonal ice, Hc→h ? 160 J/mol, Murphy and Koop (2005) calculated that Pc would be ~10% higher than that of hexagonal ice Phat 180 K - 190 K, which agrees with the measurements obtained later by Shilling et al. (2006). Based on this result Shilling et al. concluded that "the formation of cubic ice at T < 202 K may significantly contribute to the persistent in-cloud water supersaturations" in the upper-tropospheric cold cirrus clouds. Using instead the value of Hc→h ? 50 J/mol (Handa et al., 1986; Mayer and Hallbrucker, 1987) the calculation gives that Pc is only ~3% larger than that of Ph. Recently it has been reported that emulsified water droplets freeze to cubic ice when being cooled at a rate of 10 K/min (Murray and Bertram, 2006,). We prepared emulsified droplets using the same emulsification technique and studied them with a differential scanning calorimeter (DSC) between 278 and 180 K using a scanning rate of 10 K/min. During the warming of the samples we observed a very broad, tiny exothermal peak approximately between 230 and 260 K. Kohl et al. (2000) observed exothermal peak at ~230 K during the warming at 30 K/min of several samples of hyperquenched glassy water (HGW) prepared at temperature between 130 and 190 K. They attributed this peak to the cubic-to-hexagonal ice transition and estimated Hc→h to be between ~33 and 75 J/mol. Johari (2005) used the value of Hc→h ? 37 J/mol. Assuming that in our case the broad peak between 230 and 260 K is also due to the cubic-to-hexagonal ice transition we obtained approximately between 10 and 25 J/mol for Hc→h. This low enthalpy of transformation suggests that cubic ice in the atmosphere contains many hexagonal stacking faults. Using these values of Hc→h for cubic ice as produced at atmospheric cooling rates, the above mentioned formula gives that Pc is larger than that of Ph only by ~1%. We, therefore, suggest that the difference in the water vapor pressures between ice Ic and ice Ih is small and does not play a significant role in the elevation of RHi in cold cirrus clouds. Murphy, D. M., and T. Koop (2005), Q. J. R. Meteorol. Soc. 131, 1539-1565. Shilling, J. E. et al. (2006). Geophys. Res. Lett. 33, L17801, doi:1029/2006GL026671. Handa, P. Y., D. D. Klug, and E. Whalley (1986). J. Chem. Phys. 84, 7009-7010. Mayer, E., and A. Hallbrucker (1987), Nature, 325, 601-602. Murray, B. J. and A. K. Bertram (2006), Phys. Chem. Chem. Phys. 8, 186-192. Kohl, I., E. Mayer, and A. Hallbrucker (2000), Phys. Chem. Chem. Phys. 2, 1579-1586. G. P. Johari, (2005), J. Chem. Phys. 122, 194504.

  6. Controlling insulin release from reverse hexagonal (HII) liquid crystalline mesophase by enzymatic lipolysis.

    PubMed

    Mishraki-Berkowitz, Tehila; Cohen, Guy; Aserin, Abraham; Garti, Nissim

    2018-01-01

    In the present study we aimed to control insulin release from the reverse hexagonal (H II ) mesophase using Thermomyces lanuginosa lipase (TLL) in the environment (outer TLL) or within the H II cylinders (inner TLL). Two insulin-loaded systems differing by the presence (or absence) of phosphatidylcholine (PC) were examined. In general, incorporation of PC into the H II interface (without TLL) increased insulin release, as a more cooperative system was formed. Addition of TLL to the systems' environments resulted in lipolysis of the H II structure. In the absence of PC, the lipolysis was more dominant and led to a significant increase in insulin release (50% after 8h). However, the presence of PC stabilized the interface, hindering the lipolysis, and therefore no impact on the release profile was detected during the first 8h. Entrapment of TLL within the H II cylinders (with and without PC) drastically increased insulin release in both systems up to 100%. In the presence of PC insulin released faster and the structure was more stable. Consequently, the presence of lipases (inner or outer) both enhanced the destruction of the carrier, and provided sustained release of the entrapped insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy.

    PubMed

    Prasad, Tushar; Colvin, Vicki L; Mittleman, Daniel M

    2007-12-10

    We measure the normal-incidence transmission coefficient of photonic crystal slabs with hexagonal arrays of air holes in silicon. The transmission spectra exhibit sharp resonant features with Fano line shapes. They are produced due to the coupling of the leaky photonic crystal modes, called guided resonances, to the continuum of free-space modes. We investigate the effects of several types of structural disorder on the spectra of these resonances. Our results indicate that guided resonances are very tolerant to disorder in the hole diameter and to interface roughness, but very sensitive to disorder in the lattice periodicity.

  8. Electromagnetic scattering and absorption by thin walled dielectric cylinders with application to ice crystals

    NASA Technical Reports Server (NTRS)

    Senior, T. B. A.; Weil, H.

    1977-01-01

    Important in the atmospheric heat balance are the reflection, transmission, and absorption of visible and infrared radiation by clouds and polluted atmospheres. Integral equations are derived to evaluate the scattering and absorption of electromagnetic radiation from thin cylindrical dielectric shells of arbitrary cross section when irradiated by a plane wave of any polarization incident in a plane perpendicular to the generators. Application of the method to infinitely long hexagonal cylinders has yielded numerical scattering and absorption data which simulate columnar sheath ice crystals. It is found that the numerical procedures are economical for cylinders having perimeters less than approximately fifteen free-space wavelengths.

  9. Optimal packing size of non-ligated CdSe nanoclusters for microstructure synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tefera, Anteneh G.; Mochena, Mogus D.; Johnson, Elijah

    2014-09-14

    Structural and electrostatic properties of nanoclusters of CdSe of diameter 1–2 nm are studied with first principle calculations to determine the optimal size for synthesizing microstructures. Based on robustness of the core structure, i.e., the retention of tetrahedral geometry, hexagonal ring structure, and overall wu{sup ¨}rtzite structure to surface relaxations, we conclude that nanoclusters of ~2 nm diameter are the best candidates to form a dense microstructure with minimal interstitial space. Se-terminated surfaces retain a zigzag structure as Se atoms are pulled out and Cd atoms are pulled in due to relaxation, therefore, are best suited for inter-nanocluster formations.

  10. Ferromagnetic interactions in chromium (III) doped YMnO3

    NASA Astrophysics Data System (ADS)

    Thakur, Rajesh K.; Thakur, Rasna; Kaurav, N.; Okram, G. S.; Gaur, N. K.

    2016-05-01

    Both of the reported compounds with compositions YMn1-xCrxO3 (x = 0.1 and 0.2) are synthesized by using the conventional solid state reaction method and their magnetic properties are analyzed vigilantly. The XRD pattern reveals the hexagonal structure of the reported compounds with space group P63cm (25-1079). The in-depth analysis of the magnetic measurements reveals the enhancement in the ferromagnetic character with Cr doping in YMnO3 compounds. The observed enhancement in the ferromagnetism is found to be due to the increased double exchange interactions among the Cr3+ and Mn3+ ions with Cr doping.

  11. Epitaxial growth and photoluminescence of hexagonal CdS 1- xSe x alloy films

    NASA Astrophysics Data System (ADS)

    Grün, M.; Gerlach, H.; Breitkopf, Th.; Hetterich, M.; Reznitsky, A.; Kalt, H.; Klingshirn, C.

    1995-01-01

    CdSSe ternary alloy films were grown on GaAs(111) by hot-wall beam epitaxy. The hexagonal crystal phase is obtained. The composition varies from 0 to 40% selenium. Luminescence spectroscopy at low temperatures shows a dominant effect by alloy disorder. Localization of carriers, for example, is still observed at a pulsed optical excitation density of 6 mJ/cm 2. The overall quality of the CdSSe films is sufficient to use them as buffer layers for the growth of hexagonal superlattices.

  12. Copper vapor-assisted growth of hexagonal graphene domains on silica islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Que, Yande; Jiang, Lili

    2016-07-11

    Silica (SiO{sub 2}) islands with a dendritic structure were prepared on polycrystalline copper foil, using silane (SiH{sub 4}) as a precursor, by annealing at high temperature. Assisted by copper vapor from bare sections of the foil, single-layer hexagonal graphene domains were grown directly on the SiO{sub 2} islands by chemical vapor deposition. Scanning electron microscopy, atomic force microscopy, Raman spectra, and X-ray photoelectron spectroscopy confirm that hexagonal graphene domains, each measuring several microns, were synthesized on the silica islands.

  13. Monoclinic structure of hydroxylpyromorphite Pb10(PO4)6(OH)2 - hydroxylmimetite Pb10(AsO4)6(OH)2 solid solution series

    NASA Astrophysics Data System (ADS)

    Giera, Alicja; Manecki, Maciej; Borkiewicz, Olaf; Zelek, Sylwia; Rakovan, John; Bajda, Tomasz; Marchlewski, Tomasz

    2016-04-01

    Seven samples of hydroxyl analogues of pyromorphite-mimetite solid solutions series were synthesized from aqueous solutions at 80° C in a computer-controlled chemistate: 200 mL aqueous solutions of 0.05M Pb(NO3)2 and 0.03M KH2AsO4 and/or KH2PO4 were dosed with a 0.25 mL/min rate to a glass beaker, which initially contained 100 mL of distilled water. Constant pH of 8 was maintained using 2M KOH. The syntheses yielded homogeneous fine-grained white precipitates composition of which was close to theoretical Pb10[(PO4)6-x(AsO4)x](OH)2, where x = 0, 1, 2, 3, 4, 5, 6. High-resolution powder X-ray diffraction data were obtained in transmission geometry at the beamline 11-BM at the Advanced Photon Source (Argonne National Laboratory in Illinois, USA). The structure Rietveld refinements based on starting parameters of either hexagonal hydroxylpyromorphite or monoclinic mimetite-M were performed using GSAS+EXPGUI software. Apatite usually crystallizes in the hexagonal crystal system with the space group P63/m. For the first time, however, the lowering of the hexagonal to monoclinic crystal symmetry was observed in the hydroxyl variety of pyromorphite-mimetite solid solution series. This is indicated by better fitting of the modeled monoclinic structure to the experimental data. The same is not the case for analogous calcium hydroxylapatite series Ca5(PO4)3OH - Ca5(AsO4)3OH (Lee et al. 2009). Systematical linear increase of unit cell parameters is observed with As substitution from a=9.88, b=19.75, and c=7.43 for Pb10(PO4)6(OH)2 to a=10.23, b=20.32, and c=7.51 for Pb10(AsO4)6(OH)2. A strong pseudohexagonal character (γ ≈ 120° and b ≈ 2a) of the analyzed monoclinic phases was established. This work is partially funded by AGH research grant no 11.11.140.319 and partially by Polish NCN grant No 2011/01/M/ST10/06999. Lee Y.J., Stephens P.W., Tang Y., Li W., Philips B.L., Parise J.B., Reeder R.J., 2009. Arsenate substitution in hydroxylapatite: Structural characterization of the Ca5(PxAs1-xO4)3OH solid solution. American Mineralogist, 94, 666-675.

  14. Structural evaluation of crystalline ternary γ-cyclodextrin complex.

    PubMed

    Higashi, Kenjirou; Ideura, Saori; Waraya, Haruka; Moribe, Kunikazu; Yamamoto, Keiji

    2011-01-01

    The structure of a crystalline γ-cyclodextrin (γ-CD) ternary complex containing salicylic acid (SA) and flurbiprofen (FBP) prepared by sealed heating was investigated. FBP/γ-CD inclusion complex was prepared by coprecipitation; its molar ratio was determined as 1/1. Powder X-ray diffraction measurements showed that the molecular packing of γ-CD changed from hexagonal to monoclinic columnar form by sealed heating of SA with dried FBP/γ-CD inclusion complex, indicating ternary complex formation. The stoichiometry of SA/FBP/γ-CD was estimated as 2/1/1. Solid-state transformation of γ-CD molecular packing upon water vapor adsorption and desorption was irreversible for this ternary complex, in contrast to the reversible transition for the FBP/γ-CD inclusion complex. The ternary complex contained one FBP molecule in the cavity of γ-CD and two SA molecules in the intermolecular space between neighboring γ-CD column stacks. Infrared and (13) C solid-state NMR spectroscopies revealed that the molecular states of SA and FBP changed upon ternary complex formation. In the complex, dimer FBP molecules were sandwiched between two γ-CD molecules whereas each monomer SA molecule was present in the intermolecular space of γ-CD. Ternary complex formation was also observed for other drug-guest systems using naproxen and ketoprofen. Thus, the complex can be used to formulate variety of drugs. Copyright © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  15. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen

    2018-04-01

    The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

  16. Phase stabilisation of hexagonal barium titanate doped with transition metals: A computational study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, J.A., E-mail: mtp09jd@sheffield.ac.uk; Freeman, C.L.; Harding, J.H.

    Interatomic potentials recently developed for the modelling of BaTiO{sub 3} have been used to explore the stabilisation of the hexagonal polymorph of BaTiO{sub 3} by doping with transition metals (namely Mn, Co, Fe and Ni) at the Ti-site. Classical simulations have been completed on both the cubic and hexagonal polymorphs to investigate the energetic consequences of transition metal doping on each polymorph. Ti-site charge compensation mechanisms have been used for the multi-valent transition metal ions and cluster binding energies have been considered. Simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti{submore » 2} sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. This energetic difference between the two polymorphs is true for all transition metals tested and all charge states and in the case of tri- and tetra-valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions as observed experimentally. Oxidation during incorporation of Ni{sup 2+} and Fe{sup 3+} ions has also been considered. - Graphical abstract: The representation of the strongest binding energy clusters for tri-valent dopants—(a) Ti{sub 2}/O{sub 1} cluster and (b) Ti{sub 2}/O{sub 2} cluster. Highlights: ► Classical simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. ► This energetic difference between the two polymorphs is true for all transition metals tested and all charge states. ► In the case of tri- and tetra- valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions.« less

  17. Synthesis, analysis and processing of novel materials in the yttrium oxide-aluminum oxide system

    NASA Astrophysics Data System (ADS)

    Marchal, Julien Claudius

    In the current work, liquid feed flame spray pyrolysis (LF-FSP) was used to create three novel nanopowders in the Y2O3-Al 2O3 system: alpha-Al2O3, YAG (garnet Y3Al5O12) and hexagonal Y3Al 5O12. For example, LF-FSP combustion of metalloorganic yttrium and aluminum precursors in a 3/5 ratio forms hexagonal Y3Al5O 12, a newly discovered crystalline phase detailed in this work. The resulting 15-35 nm average particle size, single crystal nanopowders were characterized by TGA-DTA, XRD, HR-TEM, electron diffraction and FTIR. The data was used to establish a model for the crystal structure of this new phase (hexagonal, with crystal parameter of a = 0.736 nm, c = 1.052) consisting of a superlattice of substituted hexagonal YAlO3. YAG has been extensively investigated for its applications as scintillators, phosphors and as a laser host. Fully dispersible, unaggregated single crystal YAG nanopowders with average particle sizes of 35-50 nm were obtained from hexagonal Y3Al5O12 after annealing at 850°C-1200°C (for 2h-8d). The resulting YAG nanopowder was processed into green bodies using cold isostatic pressing after adding binders. 99%+ dense monoliths were obtained after sintering at 1400°C in vacuum (6-8 h), while maintaining grain sizes < 500 nm. The ability to sinter while keeping sub-micron grains differs from present techniques (where translucency is obtained through exaggerated grain growth to 5-10 microns) reported in the literature for sintering polycrystalline YAG, and is the first step for improving polycrystalline YAG laser host optical properties. LF-FSP processing of transition Al2O3 nanopowders converts them to single crystal alpha-Al2O3 nanopowders, previously thought impossible to obtain. The alpha-Al2O 3 nanopowders thus obtained, consist of unaggregated 30-40 nm single particles. These nanopowders were characterized by XRD, HR-TEM, SEM, DLS, FTIR. Green bodies of alpha-Al2O3 nanopowders were sintered to 99% density without sintering aids at 1400°C (6-8 h). After HIPing at 1400°C and 138 MPa, the pellets exhibited some transparency. LF-FSP thus allows synthesis of large quantities of previously unavailable alpha-Al 2O3 nanopowders necessary for developing nanograined alpha-Al 2O3 ceramic monoliths for transparent armors, polycrystalline laser hosts and prosthetic implants. Most importantly, it demonstrates the use of LF-FSP to modify the crystalline phase of nanopowders, without causing aggregation.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Li; Thompson, Gregory, E-mail: gthompson@eng.ua.edu

    A series of 40–2 nm bilayer spacing Ti/Fe multilayers were sputter-deposited. As the length scale of individual Ti layers equaled to 2 nm, Ti phase transforms from a hexagonal close packed (hcp)-to-body centered cubic (bcc) crystal structures for equal layer thicknesses in Ti/Fe multilayers. Further equal reductions in bilayer spacing to less than 1 nm resulted in an additional transformation from a crystalline to amorphous structure. Atom probe tomography reveals significant intermixing between layers which contributes to the observed phase transformations. Real-time, intrinsic growth stress measurements were also performed to relate the adatom mobility to these phase transformations. For the hcp Ti/bcc Femore » multilayers of equivalent volume fractions, the multilayers undergo an overall tensile stress state to a compressive stress state with decreasing bilayer thickness for the multilayers. When the above phase transformations occurred, a modest reduction in the overall compressive stress of the multilayer was noted. Depending on the Fe thickness, the Ti growth was observed to be a tensile to compressive growth change to a purely compressive growth for thinner bilayer spacing. Fe retained a tensile growth stress regardless of the bilayer spacing studied.« less

  19. Instrument adjustment knob locks to prevent accidental maladjustment

    NASA Technical Reports Server (NTRS)

    1964-01-01

    A device, incorporating a collar with a hexagonal opening which fits snugly over a hexagonal nut used to engage instrument panel components, keeps the adjustment knob locked. A quick release mechanism frees the knob for rotational adjustment.

  20. Oxygen interaction with hexagonal OsB 2 at high temperature

    DOE PAGES

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...

    2016-08-10

    The stability of ReB 2-type hexagonal OsB 2 powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB 2 ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB 2 lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure,more » sintering of OsB 2 powders occurred at a relatively low temperature (900°C). Finally, hexagonal OsB 2 ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures.« less

  1. Formation mechanism of graphite hexagonal pyramids by argon plasma etching of graphite substrates

    NASA Astrophysics Data System (ADS)

    Glad, X.; de Poucques, L.; Bougdira, J.

    2015-12-01

    A new graphite crystal morphology has been recently reported, namely the graphite hexagonal pyramids (GHPs). They are hexagonally-shaped crystals with diameters ranging from 50 to 800 nm and a constant apex angle of 40°. These nanostructures are formed from graphite substrates (flexible graphite and highly ordered pyrolytic graphite) in low pressure helicon coupling radiofrequency argon plasma at 25 eV ion energy and, purportedly, due to a physical etching process. In this paper, the occurrence of peculiar crystals is shown, presenting two hexagonal orientations obtained on both types of samples, which confirms such a formation mechanism. Moreover, by applying a pretreatment step with different time durations of inductive coupling radiofrequency argon plasma, for which the incident ion energy decreases at 12 eV, uniform coverage of the surface can be achieved with an influence on the density and size of the GHPs.

  2. Optical Temperature Sensor Based on Infrared Excited Green Upconversion Emission in Hexagonal Phase NaLuF4:Yb3+/Er3+ Nanorods.

    PubMed

    Li, Dongyu; Tian, Linlin; Huang, Zhen; Shao, Lexi; Quan, Jun; Wang, Yuxiao

    2016-04-01

    Hexagonal phase NaLuF4:Yb3+/Er3+ nanorods were synthesized hydrothermally. An analysis of the intense green upconversion emissions at 525 nm and 550 nm in hexagonal phase NaLuF4:Yb3/+Er3+ nanorods under excitation power density of 4.2 W/cm2 available from a diode laser emitting at 976 nm, have been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive green upconversion emissions at 525 nm and 550 nm in this material was recorded in the physiological range from 295 to 343 K. The maximum sensitivity derived from the FIR technique of the green upconversion emissions is approximately 0.0044 K-1. Experimental results implied that hexagonal phase NaLuF4:Yb3/+Er3+ nanorods was a potential candidate for optical temperature sensor.

  3. Oxygen interaction with hexagonal OsB 2 at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina

    The stability of ReB 2-type hexagonal OsB 2 powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB 2 ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB 2 lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure,more » sintering of OsB 2 powders occurred at a relatively low temperature (900°C). Finally, hexagonal OsB 2 ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures.« less

  4. Water freezing and ice melting

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, T S(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubicmore » ice↔liquid, with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  5. Kinematic dynamo action in square and hexagonal patterns.

    PubMed

    Favier, B; Proctor, M R E

    2013-11-01

    We consider kinematic dynamo action in rapidly rotating Boussinesq convection just above onset. The velocity is constrained to have either a square or a hexagonal pattern. For the square pattern, large-scale dynamo action is observed at onset, with most of the magnetic energy being contained in the horizontally averaged component. As the magnetic Reynolds number increases, small-scale dynamo action becomes possible, reducing the overall growth rate of the dynamo. For the hexagonal pattern, the breaking of symmetry between up and down flows results in an effective pumping velocity. For intermediate rotation rates, this additional effect can prevent the growth of any mean-field dynamo, so that only a small-scale dynamo is eventually possible at large enough magnetic Reynolds number. For very large rotation rates, this pumping term becomes negligible, and the dynamo properties of square and hexagonal patterns are qualitatively similar. These results hold for both perfectly conducting and infinite magnetic permeability boundary conditions.

  6. A digital retina-like low-level vision processor.

    PubMed

    Mertoguno, S; Bourbakis, N G

    2003-01-01

    This correspondence presents the basic design and the simulation of a low level multilayer vision processor that emulates to some degree the functional behavior of a human retina. This retina-like multilayer processor is the lower part of an autonomous self-organized vision system, called Kydon, that could be used on visually impaired people with a damaged visual cerebral cortex. The Kydon vision system, however, is not presented in this paper. The retina-like processor consists of four major layers, where each of them is an array processor based on hexagonal, autonomous processing elements that perform a certain set of low level vision tasks, such as smoothing and light adaptation, edge detection, segmentation, line recognition and region-graph generation. At each layer, the array processor is a 2D array of k/spl times/m hexagonal identical autonomous cells that simultaneously execute certain low level vision tasks. Thus, the hardware design and the simulation at the transistor level of the processing elements (PEs) of the retina-like processor and its simulated functionality with illustrative examples are provided in this paper.

  7. Comparative study of the interfaces of graphene and hexagonal boron nitride with silver

    NASA Astrophysics Data System (ADS)

    Garnica, Manuela; Schwarz, Martin; Ducke, Jacob; He, Yuanqin; Bischoff, Felix; Barth, Johannes V.; Auwärter, Willi; Stradi, Daniele

    2016-10-01

    Silver opens up interesting perspectives in the fabrication of complex systems based on heteroepitaxial layers after the growth of a silicene layer on its (111) face has been proposed. In this work we explore different synthesis methods of hexagonal boron nitride (h -BN) and graphene sheets on silver. The resulting layers have been examined by high-resolution scanning tunneling microscopy. A comparison of the interfacial electronic band structure upon growth of the distinct two-dimensional (2D) layers has been performed by scanning tunneling spectroscopy and complementary first-principle calculations. We demonstrate that the adsorption of the 2D layers has an effect on the binding energy of the Shockley state and the surface potential by lowering the local work function. These effects are larger in the case of graphene where the surface state of Ag(111) is depopulated due to charge transfer to the graphene. Furthermore, we show that the electronic properties of the h -BN/silver system can be tuned by employing different thicknesses of silver ranging from a few monolayers on Cu(111) to the single crystal Ag substrate.

  8. History of the formerly top secret KH-9 Hexagon spy satellite

    NASA Astrophysics Data System (ADS)

    Pressel, Phil

    2014-12-01

    This paper is about the development, design, fabrication and use of the KH-9 Hexagon spy in the sky satellite camera system that was finally declassified by the National Reconnaissance Office on September 17, 2011 twenty five years after the program ended. It was the last film based reconnaissance camera and was known by experts in the field as "the most complicated system ever put up in orbit." It provided important intelligence for the United States government and was the reason that President Nixon was able to sign the SALT treaty, and when President Reagan said "Trust but Verify" it provided the means of verification. Each satellite weighed 30,000 pounds and carried two cameras thereby permitting photographs of the entire landmass of the earth to be taken in stereo. Each camera carried up to 30 miles of film for a total of 60 miles of film. Ultra-complex mechanisms controlled the structurally "wimpy" film that traveled at speeds up to 204 inches per second at the focal plane and was perfectly synchronized to the optical image.

  9. NASA's James Webb Space Telescope Primary Mirror Fully Assembled

    NASA Image and Video Library

    2016-02-04

    The 18th and final primary mirror segment is installed on what will be the biggest and most powerful space telescope ever launched. The final mirror installation Wednesday at NASA’s Goddard Space Flight Center in Greenbelt, Maryland marks an important milestone in the assembly of the agency’s James Webb Space Telescope. “Scientists and engineers have been working tirelessly to install these incredible, nearly perfect mirrors that will focus light from previously hidden realms of planetary atmospheres, star forming regions and the very beginnings of the Universe,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington. “With the mirrors finally complete, we are one step closer to the audacious observations that will unravel the mysteries of the Universe.” Using a robotic arm reminiscent of a claw machine, the team meticulously installed all of Webb's primary mirror segments onto the telescope structure. Each of the hexagonal-shaped mirror segments measures just over 4.2 feet (1.3 meters) across -- about the size of a coffee table -- and weighs approximately 88 pounds (40 kilograms). Once in space and fully deployed, the 18 primary mirror segments will work together as one large 21.3-foot diameter (6.5-meter) mirror. Credit: NASA/Goddard/Chris Gunn Credits: NASA/Chris Gunn

  10. Hexagonal gradient scheme with RF spoiling improves spoiling performance for high-flip-angle fast gradient echo imaging.

    PubMed

    Hess, Aaron T; Robson, Matthew D

    2017-03-01

    To present a framework in which time-varying gradients are applied with RF spoiling to reduce unwanted signal, particularly at high flip angles. A time-varying gradient spoiler scheme compatible with RF spoiling is defined, in which spoiler gradients cycle through the vertices of a hexagon, which we call hexagonal spoiling. The method is compared with a traditional constant spoiling gradient both in the transition to and in the steady state. Extended phase graph (EPG) simulations, phantom acquisitions, and in vivo images were used to assess the method. Simulations, phantom and in vivo experiments showed that unwanted signal was markedly reduced by employing hexagonal spoiling, both in the transition to and in the steady state. For adipose tissue at 1.5 Tesla, the unwanted signal in the steady state with a 60 ° flip angle was reduced from 22% with constant spoiling to 2% with hexagonal spoiling. A time-varying gradient spoiler scheme that works with RF spoiling, called "hexagonal spoiling," has been presented and found to offer improved spoiling over the traditional constant spoiling gradient. Magn Reson Med 77:1231-1237, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  11. Comparative study of torque resistance and microgaps between a combined Octatorx-cone connection and an internal hexagon implant-abutment connection.

    PubMed

    Khongkhunthian, Pathawee; Khongkhunthian, Sakornratana; Weerawatprachya, Winai; Pongpat, Kanuengnit; Aunmeungtong, Weerapan

    2015-05-01

    Although the implant-abutment connection may prevent crestal bone loss around dental implants, its failure often leads to treatment failure. Microgap and micromovement of the implant-abutment connection could be causes of bone resorption around dental implant neck. The purpose of this study was to compare torque resistance and microgaps between a new cone and index connection (Octatorx) and an internal hexagon implant-abutment connection (Internal hex). Twenty Octatorx and 20 internal hexagon connections were attached with retaining screws at 30 Ncm. In a torsion resistance test, 10 of each type of connection were attached to a universal testing machine. Torque resistance with 90 degrees per minute rotation speed was recorded. For microgap measurement, each of 10 connections was embedded in clear acrylic resin. The blocks were cut longitudinally. Twenty specimens of each connection were evaluated. Twelve measurements of microgaps (6 on each side of specimen) were recorded under scanning electron microscopy. The average torsion resistance of Octatorx (203.6 ±17.4 Ncm) was significantly greater than that of the internal hexagon (146.4 ±16.1 Ncm, P<.05). For the microgap, there was a significant difference (P=.001) between the median values of Octatorx (1.19 μm) and the internal hexagon (3.80 μm). In this study, the new connection, Octatorx, had a smaller microgap and greater torque resistance than the internal hexagon connection. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Molecular Effects on Coacervate-Driven Block Copolymer Self Assembly

    NASA Astrophysics Data System (ADS)

    Lytle, Tyer; Radhakrishna, Mithun; Sing, Charles

    Two oppositely charged polymers can undergo associative phase separation in a salt solution in a process known as \\x98complex coacervation. Recent work has used this as a motif to control the self-assembly behavior of a mixture of oppositely-charged block copolymers which form nanoscale structures. The materials formed from these complex coacervate-block copolymers (BCPs) have potential use as drug delivery systems, gels, and sensors. We have developed a hybrid Monte Carlo-Single Chain in a Mean Field (MC-SCMF) simulation method that is able to determine morphological phase diagrams for BCPs. This technique is an efficient way to calculate morphological phase diagrams and provides a clear link between molecular level features and self-assembly behaviors. Morphological phase diagrams showing the effects of polymer concentration, salt concentration, chain length, and charge-block fraction at large charge densities on self-assembly behavior have been determined. An unexpected phase transition from disorder to hexagonal packing at large salt concentrations has been observed for charge-block fractions equal to and larger than 0.5. This is attributed to the salt filling space stabilizing the morphology of the BCP.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingchao, E-mail: zhang@unl.edu, E-mail: yyue@whu.edu.cn; Hong, Yang; Yue, Yanan, E-mail: zhang@unl.edu, E-mail: yyue@whu.edu.cn

    As the dimensions of nanocircuits and nanoelectronics shrink, thermal energies are being generated in more confined spaces, making it extremely important and urgent to explore for efficient heat dissipation pathways. In this work, the phonon energy transport across graphene and hexagonal boron-nitride (h-BN) interface is studied using classic molecular dynamics simulations. Effects of temperature, interatomic bond strength, heat flux direction, and functionalization on interfacial thermal transport are investigated. It is found out that by hydrogenating graphene in the hybrid structure, the interfacial thermal resistance (R) between graphene and h-BN can be reduced by 76.3%, indicating an effective approach to manipulatemore » the interfacial thermal transport. Improved in-plane/out-of-plane phonon couplings and broadened phonon channels are observed in the hydrogenated graphene system by analyzing its phonon power spectra. The reported R results monotonically decrease with temperature and interatomic bond strengths. No thermal rectification phenomenon is observed in this interfacial thermal transport. Results reported in this work give the fundamental knowledge on graphene and h-BN thermal transport and provide rational guidelines for next generation thermal interface material designs.« less

  14. In situ high temperature microwave microscope for nondestructive detection of surface and sub-surface defects.

    PubMed

    Wang, Peiyu; Li, Zhencheng; Pei, Yongmao

    2018-04-16

    An in situ high temperature microwave microscope was built for detecting surface and sub-subsurface structures and defects. This system was heated with a self-designed quartz lamp radiation module, which is capable of heating to 800°C. A line scanning of a metal grating showed a super resolution of 0.5 mm (λ/600) at 1 GHz. In situ scanning detections of surface hole defects on an aluminium plate and a glass fiber reinforced plastic (GFRP) plate were conducted at different high temperatures. A post processing algorithm was proposed to remove the background noises induced by high temperatures and the 3.0 mm-spaced hole defects were clearly resolved. Besides, hexagonal honeycomb lattices were in situ detected and clearly resolved under a 1.0 mm-thick face panel at 20°C and 50°C, respectively. The core wall positions and bonding width were accurately detected and evaluated. In summary, this in situ microwave microscope is feasible and effective in sub-surface detection and super resolution imaging at different high temperatures.

  15. Structural and thermoelectric properties of n-type Sr1- x Ti x MnO3- δ perovskite system

    NASA Astrophysics Data System (ADS)

    Kim, C. M.; Seo, J. W.; Choi, S.-M.; Seo, W.-S.; Lee, S.; Lim, Y. S.; Park, K.

    2015-03-01

    A series of Sr1- x Ti x MnO3- δ (0.05 ≤ x ≤ 0.3) was fabricated by the solid-state reaction method. We studied the structural and thermoelectric properties of Sr1- x Ti x MnO3- δ , with respect to the partial substitution of Ti4+ for Sr2+. The sintered Sr1- x Ti x MnO3- δ crystallized in the hexagonal perovskite-type structure with a space group of P6 3 / mmc. For x ≤ 0.1, the partial substitution of Ti4+ for Sr2+ led to increases in the electrical conductivity and the absolute value of the Seebeck coefficient, thus enhancing the power factor. The highest power factor (2.5 × 10-5 Wm-1K-2) was obtained for Sr0.9Ti0.1MnO3- δ at 800°C. The partial substitution of Ti4+ for Sr2+ in SrMnO3- δ led to a significant improvement in the thermoelectric properties. [Figure not available: see fulltext.

  16. An Easily Constructed Model of a Coordination Polyhedron that Represents the Hexagonal Closest-Packed Structure.

    ERIC Educational Resources Information Center

    Yamana, Shukichi

    1987-01-01

    Illustrates the 29 steps involved in the development of a model of a coordination polyhedron that represents the hexagonal closest packed structure. Points out it is useful in teaching stereochemistry. (TW)

  17. In-situ X-ray diffraction study of phase transformations in the Am-O system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebreton, Florent, E-mail: florent.lebreton@cea.fr; GEMH, ENSCI, 87065 Limoges; Belin, Renaud C., E-mail: renaud.belin@cea.fr

    2012-12-15

    In the frame of minor actinides recycling, americium can be transmuted by adding it in UO{sub 2} or (U, Pu)O{sub 2} fuels. Americium oxides exhibiting a higher oxygen potential than U or Pu oxides, its addition alters the fuel properties. To comprehend its influence, a thorough knowledge of the Am-O phase equilibria diagram and of thermal expansion behavior is of main interest. Due to americium scarcity and high radiotoxicity, few experimental reports on this topic are available. Here we present in-situ high-temperature XRD results on the reduction from AmO{sub 2} to Am{sub 2}O{sub 3}. We show that fluorite (Fm-3m) AmO{submore » 2} is reduced to cubic (Ia-3) C Prime -type Am{sub 2}O{sub 3+{delta}}, and then into hexagonal (P6{sub 3}/mmc) A-type Am{sub 2}O{sub 3}, which remains stable up to 1840 K. We also demonstrate the transitional existence of the monoclinic (C2/m) B-type Am{sub 2}O{sub 3}. At last, we describe, for the first time, the thermal expansion behavior of the hexagonal Am{sub 2}O{sub 3} between room temperature and 1840 K. - Graphical abstract: Americium dioxide was in situ studied by high-temperature X-ray diffraction. First, fluorite AmO{sub 2} is reduced to cubic C Prime -type Am{sub 2}O{sub 3+{delta}} and then transforms into hexagonal A-type Am{sub 2}O{sub 3}, which remains stable up to 1840 K. Then, we demonstrate the transitional existence of monoclinic B-type Am{sub 2}O{sub 3}. At last, we describe, for the first time, the thermal expansion of A-type Am{sub 2}O{sub 3} between room temperature and 1840 K. This work may contribute to a better understanding of Am oxide behavior. Highlights: Black-Right-Pointing-Pointer We realize an in-situ high-temperature X-ray diffraction study on an AmO{sub 2} sample. Black-Right-Pointing-Pointer Fluorite AmO{sub 2} transforms to cubic Am{sub 2}O{sub 3+{delta}} and then to hexagonal Am{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Little-known monoclinic Am{sub 2}O{sub 3} is observed during the cubic-to-hexagonal transition. Black-Right-Pointing-Pointer Lattice parameter thermal expansion of hexagonal Am{sub 2}O{sub 3} is given up to 1840 K. Black-Right-Pointing-Pointer We give additional data on AmO{sub 2} lattice parameter expansion under self-irradiation.« less

  18. Testing and Evaluation of the Bear Medical Systems, Inc. Bear 33 Volume Ventilator System

    DTIC Science & Technology

    1990-12-01

    approved for publication. RICHARD J. KNECHT, Lt Col, USAF, NC ROGER L STORK , Col, USAF, BSC Project Scientist Chief, Crew Systems Branch EORCHENDER...no problems. After the vibration tests, a visual inspection of the humidifier revealed that a screw and metal clip from a terminal on the incoming...hexagonal J-bolt nuts, which secure the sled to the litter, with larger wing nuts. This modification will allow the sled to be adequately secured by

  19. Thermodynamics of dilute 3He-4He solid solutions with hcp structure

    NASA Astrophysics Data System (ADS)

    Chishko, K. A.

    2018-02-01

    To interpret the anomalies in heat capacity CV(T) and temperature-dependent pressure P(T) of solid hexagonal close-packed (hcp) 4He we exploit the model of hcp crystalline polytype with specific lattice degrees of freedom and describe the thermodynamics of impurity-free 4He solid as superposition of phononic and polytypic contributions. The hcp-based polytype is a stack of 2D basal atomic monolayers on triangular lattice packed with arbitrary long (up to infinity) spatial period along the hexagonal c axis perpendicular to the basal planes. It is a crystal with perfect ordering along the layers, but without microscopic translational symmetry in perpendicular direction (which remains, nevertheless, the rotational crystallographic axis of third order, so that the polytype can be considered as semidisordered system). Each atom of the hcp polytype has twelve crystallographic neighbors in both first and second coordination spheres at any arbitrary packing order. It is shown that the crystal of such structure behaves as anisotropic elastic medium with specific dispersion law of phonon excitations along c axis. The free energy and the heat capacity consist of two terms: one of them is a normal contribution [with CV(T) ˜ T3] from phonon excitations in an anisotropic lattice of hexagonal symmetry, and another term (an "excessive" heat) is a contribution resulted by packing entropy from quasi-one-dimensional system of 2D basal planes on triangular lattice stacked randomly along c axis without braking the closest pack between neighboring atomic layers. The excessive part of the free energy has been treated within 1D quasi-Ising (lattice gas) model using the transfer matrix approach. This model makes us possible to interpret successfully the thermodynamic anomaly (heat capacity peak in hcp 4He) observed experimentally.

  20. Rare earth indates (RE: La-Yb): influence of the synthesis route and heat treatment on the crystal structure.

    PubMed

    Shukla, Rakesh; Grover, Vinita; Srinivasu, Kancharlapalli; Paul, Barnita; Roy, Anushree; Gupta, Ruma; Tyagi, Avesh Kumar

    2018-05-15

    Rare earth indates are an interesting class of compounds with rich crystallography. The present study explores the crystallographic phases observed in REInO3 (RE: La-Yb) systems and their dependence on synthesis routes and annealing temperature. All REInO3 compositions were synthesized by a solid state route as well as gel-combustion synthesis (GC) followed by annealing at different temperatures. The systems were well characterized by powder XRD studies and were analysed by Rietveld refinement for the structural parameters. The cell parameters were observed to decrease in accordance with the trend in ionic radii on proceeding from lighter to heavier rare earth ions. Interestingly, the synthesis route and the annealing temperature had a profound bearing on the phase relationships observed in the REInO3 series. The solid state synthesized samples depicted an orthorhombic phase (Pbnm) field for LaInO3 to SmInO3, followed by a hexagonal-type phase (P63cm) for GdInO3 to DyInO3. However, the phase field distribution was greatly influenced upon employing gel-combustion (GC) wherein both single-phasic hexagonal and orthorhombic phase fields were found to shrink. Annealing the GC-synthesized compositions to still higher temperatures (1250 °C) further evolved the phase boundaries. An important outcome of the study is observance of polymorphism in SmInO3 which crystallized in the hexagonal phase when synthesized by GC and orthorhombic phase by solid state synthesis. This reveals the all-important role played by synthesis conditions. The existence and energetics of the two polymorphs have been elucidated and discussed with the aid of theoretical studies.

Top