Science.gov

Sample records for hexaploid wheat population

  1. Application of Population Sequencing (POPSEQ) for Ordering and Imputing Genotyping-by-Sequencing Markers in Hexaploid Wheat.

    PubMed

    Edae, Erena A; Bowden, Robert L; Poland, Jesse

    2015-11-03

    The advancement of next-generation sequencing technologies in conjunction with new bioinformatics tools enabled fine-tuning of sequence-based, high-resolution mapping strategies for complex genomes. Although genotyping-by-sequencing (GBS) provides a large number of markers, its application for association mapping and genomics-assisted breeding is limited by a large proportion of missing data per marker. For species with a reference genomic sequence, markers can be ordered on the physical map. However, in the absence of reference marker order, the use and imputation of GBS markers is challenging. Here, we demonstrate how the population sequencing (POPSEQ) approach can be used to provide marker context for GBS in wheat. The utility of a POPSEQ-based genetic map as a reference map to create genetically ordered markers on a chromosome for hexaploid wheat was validated by constructing an independent de novo linkage map of GBS markers from a Synthetic W7984 × Opata M85 recombinant inbred line (SynOpRIL) population. The results indicated that there is strong agreement between the independent de novo linkage map and the POPSEQ mapping approach in mapping and ordering GBS markers for hexaploid wheat. After ordering, a large number of GBS markers were imputed, thus providing a high-quality reference map that can be used for QTL mapping for different traits. The POPSEQ-based reference map and whole-genome sequence assemblies are valuable resources that can be used to order GBS markers and enable the application of highly accurate imputation methods to leverage the application GBS markers in wheat.

  2. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome

    PubMed Central

    2012-01-01

    Background A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. Results Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. Conclusions A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the

  3. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties.

    PubMed

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  4. Genetic Diversity and Population Structure Analysis of European Hexaploid Bread Wheat (Triticum aestivum L.) Varieties

    PubMed Central

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents. PMID:24718292

  5. Factors Affecting the Radiosensitivity of Hexaploid Wheat to -Irradiation: Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.).

    PubMed

    Han, Bing; Gu, Jiayu; Zhao, Linshu; Guo, Huijun; Xie, Yongdun; Zhao, Shirong; Song, Xiyun; Han, Longzhi; Liu, Luxiang

    2016-01-01

    Understanding the radiosensitivity of plants, an important factor in crop mutation breeding programs, requires a thorough investigation of the factors that contribute to this trait. In this study, we used the highly radiosensitive wheat (Triticum aestivum L.) variety HY1 and J411, a γ-irradiation-insensitive control, which were screened from a natural population, to examine the factors affecting radiosensitivity, including free radical content and total antioxidant capacity, as well as the expression of TaKu70 and TaKu80 (DNA repair-related genes) as measured by real-time PCR. We also investigated the alternative splicing of this gene in the wild-type wheat ecotype by sequence analysis. Free radical contents and total antioxidant capacity significantly increased upon exposure of HY1 wheat to γ-irradiation in a dose-dependent manner. By contrast, in J411, the free radical contents exhibited a similar trend, but the total antioxidant capacity exhibited a downward trend upon increasing γ-irradiation. Additionally, we detected dose-dependent increases in TaKu70 and TaKu80 expression levels in γ-irradiated HY1, while in J411, TaKu70 expression levels increased, followed by a decline. We also detected alternative splicing of TaKu70 mRNA, namely, intron retention, in HY1 but not in J411. Our findings indicate that γ-irradiation induces oxidative stress and DNA damage in hexaploid wheat, resulting in growth retardation of seedlings, and they suggest that TaKu70 may play a causal role in radiosensitivity in HY1. Further studies are required to exploit these factors to improve radiosensitivity in other wheat varieties. PMID:27551965

  6. The origin of spelt and free-threshing hexaploid wheat.

    PubMed

    Dvorak, Jan; Deal, Karin R; Luo, Ming-Cheng; You, Frank M; von Borstel, Keith; Dehghani, Hamid

    2012-01-01

    It is widely believed that hexaploid wheat originated via hybridization of hulled tetraploid emmer with Aegilops tauschii (genomes DD) and that the nascent hexaploid was spelt, from which free-threshing wheat evolved by mutations. To reassess the role of spelt in the evolution of Triticum aestivum, 4 disomic substitution lines of Ae. tauschii chromosome 2D in Chinese Spring wheat were developed and one of them was used to map the Tg locus, which controls glume tenacity in Ae. tauschii, relative to simple sequence repeat (SSR) and expressed sequence tag loci on wheat chromosome 2D. The segregation of SSR markers was used to assess the presence of Tg alleles in 11 accessions of spelt, both from Europe and from Asia. Ten of them had an inactive tg allele in the D genome and most had an active Tg allele in the B genome. This is consistent with spelt being derived from free-threshing hexaploid wheat by hybridization of free-threshing wheat with hulled emmer. It is proposed that the tetraploid parent of hexaploid wheat was not hulled emmer but a free-threshing form of tetraploid wheat.

  7. Comparison of Genomic Selection Models to Predict Flowering Time and Spike Grain Number in Two Hexaploid Wheat Doubled Haploid Populations.

    PubMed

    Thavamanikumar, Saravanan; Dolferus, Rudy; Thumma, Bala R

    2015-10-01

    Genomic selection (GS) is becoming an important selection tool in crop breeding. In this study, we compared the ability of different GS models to predict time to young microspore (TYM), a flowering time-related trait, spike grain number under control conditions (SGNC) and spike grain number under osmotic stress conditions (SGNO) in two wheat biparental doubled haploid populations with unrelated parents. Prediction accuracies were compared using BayesB, Bayesian least absolute shrinkage and selection operator (Bayesian LASSO / BL), ridge regression best linear unbiased prediction (RR-BLUP), partial least square regression (PLS), and sparse partial least square regression (SPLS) models. Prediction accuracy was tested with 10-fold cross-validation within a population and with independent validation in which marker effects from one population were used to predict traits in the other population. High prediction accuracies were obtained for TYM (0.51-0.84), whereas moderate to low accuracies were observed for SGNC (0.10-0.42) and SGNO (0.27-0.46) using cross-validation. Prediction accuracies based on independent validation are generally lower than those based on cross-validation. BayesB and SPLS outperformed all other models in predicting TYM with both cross-validation and independent validation. Although the accuracies of all models are similar in predicting SGNC and SGNO with cross-validation, BayesB and SPLS had the highest accuracy in predicting SGNC with independent validation. In independent validation, accuracies of all the models increased by using only the QTL-linked markers. Results from this study indicate that BayesB and SPLS capture the linkage disequilibrium between markers and traits effectively leading to higher accuracies. Excluding markers from QTL studies reduces prediction accuracies. PMID:26206349

  8. Functional characterization of GPC-1 genes in hexaploid wheat

    PubMed Central

    Pearce, Stephen; Jun, Yan; Uauy, Cristobal; Tabbita, Facundo; Fahima, Tzion; Slade, Ann; Dubcovsky, Jorge; Distelfeld, Assaf

    2016-01-01

    In wheat, monocarpic senescence is a tightly regulated process during which nitrogen (N) and micronutrients stored pre-anthesis are remobilized from vegetative tissues to the developing grains. Recently, a close connection between senescence and remobilization was shown through the map-based cloning of the GPC (Grain Protein Content) gene in wheat. GPC-B1 encodes a NAC transcription factor associated with earlier senescence and increased grain protein, iron and zinc content, and is deleted or non-functional in most commercial wheat varieties. In the current research, we identified 'loss of function' ethyl methane sulphonate mutants for the two GPC-B1 homoeologous genes; GPC-A1 and GPC-D1, in a hexaploid wheat mutant population. The single gpc-a1 and gpc-d1 mutants, the double gpc-1 mutant and control lines were grown under field conditions at four locations and were characterized for senescence, GPC, micronutrients and yield parameters. Our results show a significant delay in senescence in both the gpc-a1 and gpc-d1 single mutants and an even stronger effect in the gpc-1 double mutant in all the environments tested in this study. The accumulation of total N in the developing grains showed a similar increase in the control and gpc-1 plants until 25 days after anthesis (DAA) but at 41 and 60 DAA the control plants had higher Grain N content than the gpc-1 mutants. At maturity, GPC in all mutants was significantly lower than in control plants while grain weight was unaffected. These results demonstrate that theGPC-A1 and GPC-D1 genes have a redundant function and play a major role in the regulation of monocarpic senescence and nutrient remobilization in wheat. PMID:24170335

  9. Factors Affecting the Radiosensitivity of Hexaploid Wheat to γ-Irradiation: Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)

    PubMed Central

    Zhao, Linshu; Guo, Huijun; Xie, Yongdun; Zhao, Shirong; Song, Xiyun; Han, Longzhi; Liu, Luxiang

    2016-01-01

    Understanding the radiosensitivity of plants, an important factor in crop mutation breeding programs, requires a thorough investigation of the factors that contribute to this trait. In this study, we used the highly radiosensitive wheat (Triticum aestivum L.) variety HY1 and J411, a γ-irradiation-insensitive control, which were screened from a natural population, to examine the factors affecting radiosensitivity, including free radical content and total antioxidant capacity, as well as the expression of TaKu70 and TaKu80 (DNA repair-related genes) as measured by real-time PCR. We also investigated the alternative splicing of this gene in the wild-type wheat ecotype by sequence analysis. Free radical contents and total antioxidant capacity significantly increased upon exposure of HY1 wheat to γ-irradiation in a dose-dependent manner. By contrast, in J411, the free radical contents exhibited a similar trend, but the total antioxidant capacity exhibited a downward trend upon increasing γ-irradiation. Additionally, we detected dose-dependent increases in TaKu70 and TaKu80 expression levels in γ-irradiated HY1, while in J411, TaKu70 expression levels increased, followed by a decline. We also detected alternative splicing of TaKu70 mRNA, namely, intron retention, in HY1 but not in J411. Our findings indicate that γ-irradiation induces oxidative stress and DNA damage in hexaploid wheat, resulting in growth retardation of seedlings, and they suggest that TaKu70 may play a causal role in radiosensitivity in HY1. Further studies are required to exploit these factors to improve radiosensitivity in other wheat varieties. PMID:27551965

  10. Evolution of physiological responses to salt stress in hexaploid wheat.

    PubMed

    Yang, Chunwu; Zhao, Long; Zhang, Huakun; Yang, Zongze; Wang, Huan; Wen, Shanshan; Zhang, Chunyu; Rustgi, Sachin; von Wettstein, Diter; Liu, Bao

    2014-08-12

    Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K(+) Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na(+) retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na(+) removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat. PMID:25074914

  11. Evolution of physiological responses to salt stress in hexaploid wheat

    PubMed Central

    Yang, Chunwu; Zhao, Long; Zhang, Huakun; Yang, Zongze; Wang, Huan; Wen, Shanshan; Zhang, Chunyu; Rustgi, Sachin; von Wettstein, Diter; Liu, Bao

    2014-01-01

    Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K+ Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na+ retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na+ removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat. PMID:25074914

  12. Evolution of physiological responses to salt stress in hexaploid wheat.

    PubMed

    Yang, Chunwu; Zhao, Long; Zhang, Huakun; Yang, Zongze; Wang, Huan; Wen, Shanshan; Zhang, Chunyu; Rustgi, Sachin; von Wettstein, Diter; Liu, Bao

    2014-08-12

    Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K(+) Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na(+) retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na(+) removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat.

  13. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China.

    PubMed

    Yang, Wuyun; Liu, Dengcai; Li, Jun; Zhang, Lianquan; Wei, Huiting; Hu, Xiaorong; Zheng, Youliang; He, Zhouhu; Zou, Yuchun

    2009-09-01

    Synthetic hexaploid wheat (Triticum turgidumxAegilops tauschii) was created to explore for novel genes from T. turgidum and Ae. tauschii that can be used for common wheat improvement. In the present paper, research advances on the utilization of synthetic hexaploid wheat for wheat genetic improvement in China are reviewed. Over 200 synthetic hexaploid wheat (SHW) accessions from the International Maize and Wheat Improvement Centre (CIMMYT) were introduced into China since 1995. Four cultivars derived from these, Chuanmai 38, Chuanmai 42, Chuanmai 43 and Chuanmai 47, have been released in China. Of these, Chuanmai 42, with large kernels and resistance to stripe rust, had the highest average yield (>6 t/ha) among all cultivars over two years in Sichuan provincial yield trials, outyielding the commercial check cultivar Chuanmai 107 by 22.7%. Meanwhile, by either artificial chromosome doubling via colchicine treatment or spontaneous chromosome doubling via a union of unreduced gametes (2n) from T. turgidum-Ae. tauschii hybrids, new SHW lines were produced in China. Mitotic-like meiosis might be the cytological mechanism of spontaneous chromosome doubling. SHW lines with genes for spontaneous chromosome doubling may be useful for producing new SHW-alien amphidiploids and double haploid in wheat genetic improvement. PMID:19782955

  14. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome.

    PubMed

    Chapman, Jarrod A; Mascher, Martin; Buluç, Aydın; Barry, Kerrie; Georganas, Evangelos; Session, Adam; Strnadova, Veronika; Jenkins, Jerry; Sehgal, Sunish; Oliker, Leonid; Schmutz, Jeremy; Yelick, Katherine A; Scholz, Uwe; Waugh, Robbie; Poland, Jesse A; Muehlbauer, Gary J; Stein, Nils; Rokhsar, Daniel S

    2015-01-31

    Polyploid species have long been thought to be recalcitrant to whole-genome assembly. By combining high-throughput sequencing, recent developments in parallel computing, and genetic mapping, we derive, de novo, a sequence assembly representing 9.1 Gbp of the highly repetitive 16 Gbp genome of hexaploid wheat, Triticum aestivum, and assign 7.1 Gb of this assembly to chromosomal locations. The genome representation and accuracy of our assembly is comparable or even exceeds that of a chromosome-by-chromosome shotgun assembly. Our assembly and mapping strategy uses only short read sequencing technology and is applicable to any species where it is possible to construct a mapping population.

  15. Divergent Development of Hexaploid Triticale by a Wheat - Rye -Psathyrostachys huashanica Trigeneric Hybrid Method.

    PubMed

    Kang, Houyang; Wang, Hao; Huang, Juan; Wang, Yujie; Li, Daiyan; Diao, Chengdou; Zhu, Wei; Tang, Yao; Wang, Yi; Fan, Xing; Zeng, Jian; Xu, Lili; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong

    2016-01-01

    Hexaploid triticale is an important forage crop and a promising energy plant. Some forms were previously reported for developing the hexaploid triticale, such as crossing tetraploid wheat or hexaploid wheat with rye, crossing hexaploid triticale and/or hexaploid wheat with octoploid triticale, and spontaneously appearing in the selfed progenies of octoploid triticale. In the present study, we developed an effective method for production of diverse types of hexaploid triticale via wheat-rye-Psathyrostachys huashanica trigeneric hybrid. Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) karyotyping revealed that D genome chromosomes were completely eliminated and the whole A, B, and R genome chromosomes were retained in three lines. More interestingly, the composite genome of the line K14-489-2 consisted of complete A and B genomes and chromosomes 1D, 2R, 3R, 4R, 5R, 6R, and 7R, that of line K14-491-2 was 12 A-genome (1A-6A), 14 B-genome (1B-7B), 12 R-genome (1R-3R, 5R-7R), and chromosomes 1D and 3D, and that of the line K14-547-1 had 26A/B and 14R chromosomes, plus one pair of centric 6BL/2DS translocations. This finding implies that some of D genome chromosomes can be spontaneously and stably incorporated into the hexaploid triticale. Additionally, a variety of high-molecular-weight glutenin subunits (HMW-GS) compositions were detected in the six hexaploid triticale lines, respectively. Besides, compared with its recurrent triticale parent Zhongsi828, these lines showed high level of resistance to stripe rust (Puccinia striiformis f. sp. tritici, Pst) pathogens prevalent in China, including V26/Gui 22. These new hexaploid triticales not only enhanced diversification of triticale but also could be utilized as valuable germplasm for wheat improvement. PMID:27182983

  16. Genetic diversity among synthetic hexaploid wheat accessions with resistance to several fungal diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic hexaploid wheat (SHW) is known to be an excellent vehicle for transferring large genetic variations especially the many useful traits present in the D genome of Aegilops tauschii Coss (2n=2x=14, DD) for improvement of cultivated wheat (Triticum aestivum L., 2n=6x=42, AABBDD). The objectiv...

  17. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew.

    PubMed

    Wang, Yanpeng; Cheng, Xi; Shan, Qiwei; Zhang, Yi; Liu, Jinxing; Gao, Caixia; Qiu, Jin-Long

    2014-09-01

    Sequence-specific nucleases have been applied to engineer targeted modifications in polyploid genomes, but simultaneous modification of multiple homoeoalleles has not been reported. Here we use transcription activator-like effector nuclease (TALEN) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 (refs. 4,5) technologies in hexaploid bread wheat to introduce targeted mutations in the three homoeoalleles that encode MILDEW-RESISTANCE LOCUS (MLO) proteins. Genetic redundancy has prevented evaluation of whether mutation of all three MLO alleles in bread wheat might confer resistance to powdery mildew, a trait not found in natural populations. We show that TALEN-induced mutation of all three TaMLO homoeologs in the same plant confers heritable broad-spectrum resistance to powdery mildew. We further use CRISPR-Cas9 technology to generate transgenic wheat plants that carry mutations in the TaMLO-A1 allele. We also demonstrate the feasibility of engineering targeted DNA insertion in bread wheat through nonhomologous end joining of the double-strand breaks caused by TALENs. Our findings provide a methodological framework to improve polyploid crops. PMID:25038773

  18. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew.

    PubMed

    Wang, Yanpeng; Cheng, Xi; Shan, Qiwei; Zhang, Yi; Liu, Jinxing; Gao, Caixia; Qiu, Jin-Long

    2014-09-01

    Sequence-specific nucleases have been applied to engineer targeted modifications in polyploid genomes, but simultaneous modification of multiple homoeoalleles has not been reported. Here we use transcription activator-like effector nuclease (TALEN) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 (refs. 4,5) technologies in hexaploid bread wheat to introduce targeted mutations in the three homoeoalleles that encode MILDEW-RESISTANCE LOCUS (MLO) proteins. Genetic redundancy has prevented evaluation of whether mutation of all three MLO alleles in bread wheat might confer resistance to powdery mildew, a trait not found in natural populations. We show that TALEN-induced mutation of all three TaMLO homoeologs in the same plant confers heritable broad-spectrum resistance to powdery mildew. We further use CRISPR-Cas9 technology to generate transgenic wheat plants that carry mutations in the TaMLO-A1 allele. We also demonstrate the feasibility of engineering targeted DNA insertion in bread wheat through nonhomologous end joining of the double-strand breaks caused by TALENs. Our findings provide a methodological framework to improve polyploid crops.

  19. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome

    SciTech Connect

    Chapman, Jarrod A.; Mascher, Martin; Buluc, Aydin; Barry, Kerrie; Georganas, Evangelos; Session, Adam; Strnadova, Veronika; Jenkins, Jerry; Sehgal, Sunish; Oliker, Leonid; Schmutz, Jeremy; Yelick, Katherine A.; Scholz, Uwe; Waugh, Robbie; Poland, Jesse A.; Muehlbauer, Gary J.; Stein, Nils; Rokhsar, Daniel S.

    2015-01-31

    We report that polyploid species have long been thought to be recalcitrant to whole-genome assembly. By combining high-throughput sequencing, recent developments in parallel computing, and genetic mapping, we derive, de novo, a sequence assembly representing 9.1 Gbp of the highly repetitive 16 Gbp genome of hexaploid wheat, Triticum aestivum, and assign 7.1 Gb of this assembly to chromosomal locations. The genome representation and accuracy of our assembly is comparable or even exceeds that of a chromosome-by-chromosome shotgun assembly. Our assembly and mapping strategy uses only short read sequencing technology and is applicable to any species where it is possible to construct a mapping population.

  20. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome

    DOE PAGES

    Chapman, Jarrod A.; Mascher, Martin; Buluc, Aydin; Barry, Kerrie; Georganas, Evangelos; Session, Adam; Strnadova, Veronika; Jenkins, Jerry; Sehgal, Sunish; Oliker, Leonid; et al

    2015-01-31

    We report that polyploid species have long been thought to be recalcitrant to whole-genome assembly. By combining high-throughput sequencing, recent developments in parallel computing, and genetic mapping, we derive, de novo, a sequence assembly representing 9.1 Gbp of the highly repetitive 16 Gbp genome of hexaploid wheat, Triticum aestivum, and assign 7.1 Gb of this assembly to chromosomal locations. The genome representation and accuracy of our assembly is comparable or even exceeds that of a chromosome-by-chromosome shotgun assembly. Our assembly and mapping strategy uses only short read sequencing technology and is applicable to any species where it is possible tomore » construct a mapping population.« less

  1. Construction and characterization of a bacterial artificial chromosome library for hexaploid wheat line 92R137

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For map-based cloning of genes conferring important traits in the hexaploid wheat line 92R137, a bacterial artificial chromosome (BAC) library, including two sub libraries, was constructed using the genomic DNA of 92R137 digested with restriction enzymes HindIII and BamHI. The BAC library was compos...

  2. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool.

    PubMed

    Winfield, Mark O; Allen, Alexandra M; Burridge, Amanda J; Barker, Gary L A; Benbow, Harriet R; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; King, Julie; West, Claire; Griffiths, Simon; King, Ian; Bentley, Alison R; Edwards, Keith J

    2016-05-01

    In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra-high-density Axiom(®) genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site. PMID:26466852

  3. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool.

    PubMed

    Winfield, Mark O; Allen, Alexandra M; Burridge, Amanda J; Barker, Gary L A; Benbow, Harriet R; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; King, Julie; West, Claire; Griffiths, Simon; King, Ian; Bentley, Alison R; Edwards, Keith J

    2016-05-01

    In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra-high-density Axiom(®) genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site.

  4. Identification of quantitative trait loci for abscisic acid responsiveness in the D-genome of hexaploid wheat.

    PubMed

    Iehisa, Julio C M; Matsuura, Takakazu; Mori, Izumi C; Yokota, Hirokazu; Kobayashi, Fuminori; Takumi, Shigeo

    2014-06-15

    In crop species such as wheat, abiotic stresses and preharvest sprouting reduce grain yield and quality. The plant hormone abscisic acid (ABA) plays important roles in abiotic stress tolerance and seed dormancy. In previous studies, we evaluated ABA responsiveness of 67 Aegilops tauschii accessions and their synthetic hexaploid wheat lines, finding wide variation that was due to the D-genome. In this study, quantitative trait locus (QTL) analysis was performed using an F2 population derived from crosses of highly ABA-responsive and less-responsive synthetic wheat lines. A significant QTL was detected on chromosome 6D, in a similar location to that reported for ABA responsiveness using recombinant inbred lines derived from common wheat cultivars Mironovskaya 808 and Chinese Spring. A comparative map and physiological and expression analyses of the 6D QTL suggested that this locus involved in line differences among wheat synthetics is different from that involved in cultivar differences in common wheat. The common wheat 6D QTL was found to affect seed dormancy and the regulation of cold-responsive/late embryogenesis abundant genes during dehydration. However, in synthetic wheat, we failed to detect any association of ABA responsiveness with abiotic stress tolerance or seed dormancy, at least under our experimental conditions. Development of near-isogenic lines will be important for functional analyses of the synthetic wheat 6D QTL. PMID:24877675

  5. High Transferability of Homoeolog-Specific Markers between Bread Wheat and Newly Synthesized Hexaploid Wheat Lines

    PubMed Central

    Zeng, Deying; Luo, Jiangtao; Li, Zenglin; Chen, Gang; Zhang, Lianquan; Ning, Shunzong; Yuan, Zhongwei; Zheng, Youliang; Hao, Ming; Liu, Dengcai

    2016-01-01

    Bread wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) has a complex allohexaploid genome, which makes it difficult to differentiate between the homoeologous sequences and assign them to the chromosome A, B, or D subgenomes. The chromosome-based draft genome sequence of the ‘Chinese Spring’ common wheat cultivar enables the large-scale development of polymerase chain reaction (PCR)-based markers specific for homoeologs. Based on high-confidence ‘Chinese Spring’ genes with known functions, we developed 183 putative homoeolog-specific markers for chromosomes 4B and 7B. These markers were used in PCR assays for the 4B and 7B nullisomes and their euploid synthetic hexaploid wheat (SHW) line that was newly generated from a hybridization between Triticum turgidum (AABB) and the wild diploid species Aegilops tauschii (DD). Up to 64% of the markers for chromosomes 4B or 7B in the SHW background were confirmed to be homoeolog-specific. Thus, these markers were highly transferable between the ‘Chinese Spring’ bread wheat and SHW lines. Homoeolog-specific markers designed using genes with known functions may be useful for genetic investigations involving homoeologous chromosome tracking and homoeolog expression and interaction analyses. PMID:27611704

  6. High Transferability of Homoeolog-Specific Markers between Bread Wheat and Newly Synthesized Hexaploid Wheat Lines.

    PubMed

    Zeng, Deying; Luo, Jiangtao; Li, Zenglin; Chen, Gang; Zhang, Lianquan; Ning, Shunzong; Yuan, Zhongwei; Zheng, Youliang; Hao, Ming; Liu, Dengcai

    2016-01-01

    Bread wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) has a complex allohexaploid genome, which makes it difficult to differentiate between the homoeologous sequences and assign them to the chromosome A, B, or D subgenomes. The chromosome-based draft genome sequence of the 'Chinese Spring' common wheat cultivar enables the large-scale development of polymerase chain reaction (PCR)-based markers specific for homoeologs. Based on high-confidence 'Chinese Spring' genes with known functions, we developed 183 putative homoeolog-specific markers for chromosomes 4B and 7B. These markers were used in PCR assays for the 4B and 7B nullisomes and their euploid synthetic hexaploid wheat (SHW) line that was newly generated from a hybridization between Triticum turgidum (AABB) and the wild diploid species Aegilops tauschii (DD). Up to 64% of the markers for chromosomes 4B or 7B in the SHW background were confirmed to be homoeolog-specific. Thus, these markers were highly transferable between the 'Chinese Spring' bread wheat and SHW lines. Homoeolog-specific markers designed using genes with known functions may be useful for genetic investigations involving homoeologous chromosome tracking and homoeolog expression and interaction analyses. PMID:27611704

  7. Divergent Development of Hexaploid Triticale by a Wheat – Rye –Psathyrostachys huashanica Trigeneric Hybrid Method

    PubMed Central

    Huang, Juan; Wang, Yujie; Li, Daiyan; Diao, Chengdou; Zhu, Wei; Tang, Yao; Wang, Yi; Fan, Xing; Zeng, Jian; Xu, Lili; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong

    2016-01-01

    Hexaploid triticale is an important forage crop and a promising energy plant. Some forms were previously reported for developing the hexaploid triticale, such as crossing tetraploid wheat or hexaploid wheat with rye, crossing hexaploid triticale and/or hexaploid wheat with octoploid triticale, and spontaneously appearing in the selfed progenies of octoploid triticale. In the present study, we developed an effective method for production of diverse types of hexaploid triticale via wheat—rye—Psathyrostachys huashanica trigeneric hybrid. Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) karyotyping revealed that D genome chromosomes were completely eliminated and the whole A, B, and R genome chromosomes were retained in three lines. More interestingly, the composite genome of the line K14-489-2 consisted of complete A and B genomes and chromosomes 1D, 2R, 3R, 4R, 5R, 6R, and 7R, that of line K14-491-2 was 12 A-genome (1A-6A), 14 B-genome (1B-7B), 12 R-genome (1R-3R, 5R-7R), and chromosomes 1D and 3D, and that of the line K14-547-1 had 26A/B and 14R chromosomes, plus one pair of centric 6BL/2DS translocations. This finding implies that some of D genome chromosomes can be spontaneously and stably incorporated into the hexaploid triticale. Additionally, a variety of high-molecular-weight glutenin subunits (HMW-GS) compositions were detected in the six hexaploid triticale lines, respectively. Besides, compared with its recurrent triticale parent Zhongsi828, these lines showed high level of resistance to stripe rust (Puccinia striiformis f. sp. tritici, Pst) pathogens prevalent in China, including V26/Gui 22. These new hexaploid triticales not only enhanced diversification of triticale but also could be utilized as valuable germplasm for wheat improvement. PMID:27182983

  8. Analysis of fatty acid steryl esters in tetraploid and hexaploid wheats: identification and comparison between chromatographic methods.

    PubMed

    Caboni, Maria Fiorenza; Iafelice, Giovanna; Pelillo, Marco; Marconi, Emanuele

    2005-09-21

    Fatty acid steryl esters (FASE) in whole meal of 14 genotypes of tetraploid wheats (Triticum dicocconand T. durum) and 17 genotypes of hexaploid wheats (T. spelta and T. aestivum) were analyzed using different chromatographic strategies. By both GC-FID and HPLC-ELSD, tetraploid wheats are lacking two major peaks. The amounts of FASE, calculated on the basis of the GC-FID analysis, were double in hexaploid species as compared to tetraploids (40 and 20 mg/100 g db, respectively). HPLC with ESI-MS detection enabled the identification of FASE by the characteristic fragmentations and ion-adducts of each molecule. The distribution of steryl residues was not different between the wheat species: the main class of steryl derivatives found was the beta-sitosteryl derivatives, followed by campesteryl derivatives with small amounts of stigmasteryl esters. The esterified fatty acids explain the difference between the hexaploid and tetraploid wheats. In particular, small amounts of campesteryl and beta-sitosteryl, while no trace of stigmasteryl palmitates, were found in T. durum or its hulled ancestor T. dicoccon. Steryl oleates were not detectable in T. aestivum or its hulled ancestor T. spelta, which is consistent with the filogenesis of tetraploid and hexaploid species. Both chromatographic techniques (GC and HPLC) showed that FASE are useful to discriminate between hexaploid and tetraploid wheats from both qualitative and quantitative points of view.

  9. Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat.

    PubMed

    Sohail, Quahir; Inoue, Tomoe; Tanaka, Hiroyuki; Eltayeb, Amin Elsadig; Matsuoka, Yoshihiro; Tsujimoto, Hisashi

    2011-12-01

    Few genes are available to develop drought-tolerant bread wheat (Triticum aestivum L.) cultivars. One way to enhance bread wheat's genetic diversity would be to take advantage of the diversity of wild species by creating synthetic hexaploid wheat (SW) with the genomic constitution of bread wheat. In this study, we compared the expression of traits encoded at different ploidy levels and evaluated the applicability of Aegilops tauschii drought-related traits using 33 Ae. tauschii accessions along with their corresponding SW lines under well-watered and drought conditions. We found wide variation in Ae. tauschii, and even wider variation in the SW lines. Some SW lines were more drought-tolerant than the standard cultivar Cham 6. Aegilops tauschii from some regions gave better performing SW lines. The traits of Ae. tauschii were not significantly correlated with their corresponding SW lines, indicating that the traits expressed in wild diploid relatives of wheat may not predict the traits that will be expressed in SW lines derived from them. We suggest that, regardless of the adaptability and performance of the Ae. tauschii under drought, production of SW could probably result in genotypes with enhanced trait expression due to gene interactions, and that the traits of the synthetic should be evaluated in hexaploid level.

  10. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat

    PubMed Central

    2014-01-01

    Background Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution ‘nullisomic-tetrasomic’ lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. Results We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. Conclusions We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution. PMID:24726045

  11. Synthetic hexaploids derived from under-exploited tetraploids as a new resource for disease resistance in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic hexaploid wheat (SHW) (2n = 6x = 42, genome AABBDD), which is developed from the hybridization between tetraploid wheat (Triticum turgidum L., 2n = 4x = 28, genome AABB) and Aegilops tauschii Coss. (2n = 2x = 14, genome DD), is a useful bridging germplasm for the introgression of desirable...

  12. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome.

    PubMed

    2014-07-18

    An ordered draft sequence of the 17-gigabase hexaploid bread wheat (Triticum aestivum) genome has been produced by sequencing isolated chromosome arms. We have annotated 124,201 gene loci distributed nearly evenly across the homeologous chromosomes and subgenomes. Comparative gene analysis of wheat subgenomes and extant diploid and tetraploid wheat relatives showed that high sequence similarity and structural conservation are retained, with limited gene loss, after polyploidization. However, across the genomes there was evidence of dynamic gene gain, loss, and duplication since the divergence of the wheat lineages. A high degree of transcriptional autonomy and no global dominance was found for the subgenomes. These insights into the genome biology of a polyploid crop provide a springboard for faster gene isolation, rapid genetic marker development, and precise breeding to meet the needs of increasing food demand worldwide.

  13. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome.

    PubMed

    2014-07-18

    An ordered draft sequence of the 17-gigabase hexaploid bread wheat (Triticum aestivum) genome has been produced by sequencing isolated chromosome arms. We have annotated 124,201 gene loci distributed nearly evenly across the homeologous chromosomes and subgenomes. Comparative gene analysis of wheat subgenomes and extant diploid and tetraploid wheat relatives showed that high sequence similarity and structural conservation are retained, with limited gene loss, after polyploidization. However, across the genomes there was evidence of dynamic gene gain, loss, and duplication since the divergence of the wheat lineages. A high degree of transcriptional autonomy and no global dominance was found for the subgenomes. These insights into the genome biology of a polyploid crop provide a springboard for faster gene isolation, rapid genetic marker development, and precise breeding to meet the needs of increasing food demand worldwide. PMID:25035500

  14. Genome interplay in the grain transcriptome of hexaploid bread wheat.

    PubMed

    Pfeifer, Matthias; Kugler, Karl G; Sandve, Simen R; Zhan, Bujie; Rudi, Heidi; Hvidsten, Torgeir R; Mayer, Klaus F X; Olsen, Odd-Arne

    2014-07-18

    Allohexaploid bread wheat (Triticum aestivum L.) provides approximately 20% of calories consumed by humans. Lack of genome sequence for the three homeologous and highly similar bread wheat genomes (A, B, and D) has impeded expression analysis of the grain transcriptome. We used previously unknown genome information to analyze the cell type-specific expression of homeologous genes in the developing wheat grain and identified distinct co-expression clusters reflecting the spatiotemporal progression during endosperm development. We observed no global but cell type- and stage-dependent genome dominance, organization of the wheat genome into transcriptionally active chromosomal regions, and asymmetric expression in gene families related to baking quality. Our findings give insight into the transcriptional dynamics and genome interplay among individual grain cell types in a polyploid cereal genome.

  15. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars

    PubMed Central

    Cavanagh, Colin R.; Chao, Shiaoman; Wang, Shichen; Huang, Bevan Emma; Stephen, Stuart; Kiani, Seifollah; Forrest, Kerrie; Saintenac, Cyrille; Brown-Guedira, Gina L.; Akhunova, Alina; See, Deven; Bai, Guihua; Pumphrey, Michael; Tomar, Luxmi; Wong, Debbie; Kong, Stephan; Reynolds, Matthew; da Silva, Marta Lopez; Bockelman, Harold; Talbert, Luther; Anderson, James A.; Dreisigacker, Susanne; Baenziger, Stephen; Carter, Arron; Korzun, Viktor; Morrell, Peter Laurent; Dubcovsky, Jorge; Morell, Matthew K.; Sorrells, Mark E.; Hayden, Matthew J.; Akhunov, Eduard

    2013-01-01

    Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat. PMID:23630259

  16. A whole-genome, radiation hybrid mapping resource of hexaploid wheat.

    PubMed

    Tiwari, Vijay K; Heesacker, Adam; Riera-Lizarazu, Oscar; Gunn, Hilary; Wang, Shichen; Wang, Yi; Gu, Young Q; Paux, Etienne; Koo, Dal-Hoe; Kumar, Ajay; Luo, Ming-Cheng; Lazo, Gerard; Zemetra, Robert; Akhunov, Eduard; Friebe, Bernd; Poland, Jesse; Gill, Bikram S; Kianian, Shahryar; Leonard, Jeffrey M

    2016-04-01

    Generating a contiguous, ordered reference sequence of a complex genome such as hexaploid wheat (2n = 6x = 42; approximately 17 GB) is a challenging task due to its large, highly repetitive, and allopolyploid genome. In wheat, ordering of whole-genome or hierarchical shotgun sequencing contigs is primarily based on recombination and comparative genomics-based approaches. However, comparative genomics approaches are limited to syntenic inference and recombination is suppressed within the pericentromeric regions of wheat chromosomes, thus, precise ordering of physical maps and sequenced contigs across the whole-genome using these approaches is nearly impossible. We developed a whole-genome radiation hybrid (WGRH) resource and tested it by genotyping a set of 115 randomly selected lines on a high-density single nucleotide polymorphism (SNP) array. At the whole-genome level, 26 299 SNP markers were mapped on the RH panel and provided an average mapping resolution of approximately 248 Kb/cR1500 with a total map length of 6866 cR1500 . The 7296 unique mapping bins provided a five- to eight-fold higher resolution than genetic maps used in similar studies. Most strikingly, the RH map had uniform bin resolution across the entire chromosome(s), including pericentromeric regions. Our research provides a valuable and low-cost resource for anchoring and ordering sequenced BAC and next generation sequencing (NGS) contigs. The WGRH developed for reference wheat line Chinese Spring (CS-WGRH), will be useful for anchoring and ordering sequenced BAC and NGS based contigs for assembling a high-quality, reference sequence of hexaploid wheat. Additionally, this study provides an excellent model for developing similar resources for other polyploid species.

  17. Genome-Wide Association Mapping for Seedling and Adult Plant Resistance to Stripe Rust in Synthetic Hexaploid Wheat

    PubMed Central

    Makdis, Farid; Badebo, Ayele; Ogbonnaya, Francis C.

    2014-01-01

    Use of genetic diversity from related wild and domesticated species has made a significant contribution to improving wheat productivity. Synthetic hexaploid wheats (SHWs) exhibit natural genetic variation for resistance and/or tolerance to biotic and abiotic stresses. Stripe rust caused by (Puccinia striiformis f. sp. tritici; Pst), is an important disease of wheat worldwide. To characterise loci conferring resistance to stripe rust in SHWs, we conducted a genome-wide association study (GWAS) with a panel of 181 SHWs using the wheat 9K SNP iSelect array. The SHWs were evaluated for their response to the prevailing races of Pst at the seedling and adult plant stages, the latter in replicated field trials at two sites in Ethiopia in 2011. About 28% of the SHWs exhibited immunity at the seedling stage while 56% and 83% were resistant to Pst at the adult plant stage at Meraro and Arsi Robe, respectively. A total of 27 SNPs in nine genomic regions (1BS, 2AS, 2BL, 3BL, 3DL, 5A, 5BL, 6DS and 7A) were linked with resistance to Pst at the seedling stage, while 38 SNPs on 18 genomic regions were associated with resistance at the adult plant stage. Six genomic regions were commonly detected at both locations using a mixed linear model corrected for population structure, kinship relatedness and adjusted for false discovery rate (FDR). The loci on chromosome regions 1AS, 3DL, 6DS and 7AL appeared to be novel QTL; our results confirm that resynthesized wheat involving its progenitor species is a rich source of new stripe (yellow) rust resistance that may be useful in choosing SHWs and incorporating diverse yellow rust (YR) resistance loci into locally adapted wheat cultivars. PMID:25153126

  18. Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat.

    PubMed

    Zegeye, Habtemariam; Rasheed, Awais; Makdis, Farid; Badebo, Ayele; Ogbonnaya, Francis C

    2014-01-01

    Use of genetic diversity from related wild and domesticated species has made a significant contribution to improving wheat productivity. Synthetic hexaploid wheats (SHWs) exhibit natural genetic variation for resistance and/or tolerance to biotic and abiotic stresses. Stripe rust caused by (Puccinia striiformis f. sp. tritici; Pst), is an important disease of wheat worldwide. To characterise loci conferring resistance to stripe rust in SHWs, we conducted a genome-wide association study (GWAS) with a panel of 181 SHWs using the wheat 9 K SNP iSelect array. The SHWs were evaluated for their response to the prevailing races of Pst at the seedling and adult plant stages, the latter in replicated field trials at two sites in Ethiopia in 2011. About 28% of the SHWs exhibited immunity at the seedling stage while 56% and 83% were resistant to Pst at the adult plant stage at Meraro and Arsi Robe, respectively. A total of 27 SNPs in nine genomic regions (1 BS, 2 AS, 2 BL, 3 BL, 3 DL, 5A, 5 BL, 6DS and 7A) were linked with resistance to Pst at the seedling stage, while 38 SNPs on 18 genomic regions were associated with resistance at the adult plant stage. Six genomic regions were commonly detected at both locations using a mixed linear model corrected for population structure, kinship relatedness and adjusted for false discovery rate (FDR). The loci on chromosome regions 1 AS, 3 DL, 6 DS and 7 AL appeared to be novel QTL; our results confirm that resynthesized wheat involving its progenitor species is a rich source of new stripe (yellow) rust resistance that may be useful in choosing SHWs and incorporating diverse yellow rust (YR) resistance loci into locally adapted wheat cultivars.

  19. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat.

    PubMed

    Pearce, Stephen; Saville, Robert; Vaughan, Simon P; Chandler, Peter M; Wilhelm, Edward P; Sparks, Caroline A; Al-Kaff, Nadia; Korolev, Andrey; Boulton, Margaret I; Phillips, Andrew L; Hedden, Peter; Nicholson, Paul; Thomas, Stephen G

    2011-12-01

    The introduction of the Reduced height (Rht)-B1b and Rht-D1b semidwarfing genes led to impressive increases in wheat (Triticum aestivum) yields during the Green Revolution. The reduction in stem elongation in varieties containing these alleles is caused by a limited response to the phytohormone gibberellin (GA), resulting in improved resistance to stem lodging and yield benefits through an increase in grain number. Rht-B1 and Rht-D1 encode DELLA proteins, which act to repress GA-responsive growth, and their mutant alleles Rht-B1b and Rht-D1b are thought to confer dwarfism by producing more active forms of these growth repressors. While no semidwarfing alleles of Rht-A1 have been identified, we show that this gene is expressed at comparable levels to the other homeologs and represents a potential target for producing novel dwarfing alleles. In this study, we have characterized additional dwarfing mutations in Rht-B1 and Rht-D1. We show that the severe dwarfism conferred by Rht-B1c is caused by an intragenic insertion, which results in an in-frame 90-bp insertion in the transcript and a predicted 30-amino acid insertion within the highly conserved amino-terminal DELLA domain. In contrast, the extreme dwarfism of Rht-D1c is due to overexpression of the semidwarfing Rht-D1b allele, caused by an increase in gene copy number. We show also that the semidwarfing alleles Rht-B1d and Rht-B1e introduce premature stop codons within the amino-terminal coding region. Yeast two-hybrid assays indicate that these newly characterized mutations in Rht-B1 and Rht-D1 confer "GA-insensitive" dwarfism by producing DELLA proteins that do not bind the GA receptor GA INSENSITIVE DWARF1, potentially compromising their targeted degradation. PMID:22013218

  20. Mapping-by-sequencing in complex polyploid genomes using genic sequence capture: a case study to map yellow rust resistance in hexaploid wheat.

    PubMed

    Gardiner, Laura-Jayne; Bansept-Basler, Pauline; Olohan, Lisa; Joynson, Ryan; Brenchley, Rachel; Hall, Neil; O'Sullivan, Donal M; Hall, Anthony

    2016-08-01

    Previously we extended the utility of mapping-by-sequencing by combining it with sequence capture and mapping sequence data to pseudo-chromosomes that were organized using wheat-Brachypodium synteny. This, with a bespoke haplotyping algorithm, enabled us to map the flowering time locus in the diploid wheat Triticum monococcum L. identifying a set of deleted genes (Gardiner et al., 2014). Here, we develop this combination of gene enrichment and sliding window mapping-by-synteny analysis to map the Yr6 locus for yellow stripe rust resistance in hexaploid wheat. A 110 MB NimbleGen capture probe set was used to enrich and sequence a doubled haploid mapping population of hexaploid wheat derived from an Avalon and Cadenza cross. The Yr6 locus was identified by mapping to the POPSEQ chromosomal pseudomolecules using a bespoke pipeline and algorithm (Chapman et al., 2015). Furthermore the same locus was identified using newly developed pseudo-chromosome sequences as a mapping reference that are based on the genic sequence used for sequence enrichment. The pseudo-chromosomes allow us to demonstrate the application of mapping-by-sequencing to even poorly defined polyploidy genomes where chromosomes are incomplete and sub-genome assemblies are collapsed. This analysis uniquely enabled us to: compare wheat genome annotations; identify the Yr6 locus - defining a smaller genic region than was previously possible; associate the interval with one wheat sub-genome and increase the density of SNP markers associated. Finally, we built the pipeline in iPlant, making it a user-friendly community resource for phenotype mapping. PMID:27144898

  1. Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes.

    PubMed

    Mohammadi, Mohsen; Kav, Nat N V; Deyholos, Michael K

    2007-05-01

    We used a long-oligonucleotide microarray to identify transcripts that increased or decreased in abundance in roots of dehydration-tolerant hexaploid bread wheat, in response to withholding of water. We observed that the major classes of dehydration-responsive genes (e.g. osmoprotectants, compatible solutes, proteases, glycosyltransferases/hydrolases, signal transducers components, ion transporters) were generally similar to those observed previously in other species and osmotic stresses. More specifically, we highlighted increases in transcript expression for specific genes including those putatively related to the synthesis of asparagine, trehalose, oligopeptide transporters, metal-binding proteins, the gamma-aminobutyric acid (GABA) shunt and transcription factors. Conversely, we noted a decrease in transcript abundance for diverse classes of glutathione and sulphur-related enzymes, specific amino acids, as well as MATE-efflux carrier proteins. From these data, we identified a novel, dehydration-induced putative AP2/ERF transcription factor, which we predict to function as a transcriptional repressor. We also identified a dehydration-induced 'little protein' (LitP; predicted mass: 8 kDa) that is highly conserved across spermatophytes. Using qRT-PCR, we compared the expression patterns of selected genes between two related wheat genotypes that differed in their susceptibility to dehydration, and confirmed that these novel genes were highly inducible by water limitation in both genotypes, although the magnitude of induction differed.

  2. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome.

    PubMed

    Akbari, Mona; Wenzl, Peter; Caig, Vanessa; Carling, Jason; Xia, Ling; Yang, Shiying; Uszynski, Grzegorz; Mohler, Volker; Lehmensiek, Anke; Kuchel, Haydn; Hayden, Mathew J; Howes, Neil; Sharp, Peter; Vaughan, Peter; Rathmell, Bill; Huttner, Eric; Kilian, Andrzej

    2006-11-01

    Despite a substantial investment in the development of panels of single nucleotide polymorphism (SNP) markers, the simple sequence repeat (SSR) technology with a limited multiplexing capability remains a standard, even for applications requiring whole-genome information. Diversity arrays technology (DArT) types hundreds to thousands of genomic loci in parallel, as previously demonstrated in a number diploid plant species. Here we show that DArT performs similarly well for the hexaploid genome of bread wheat (Triticum aestivum L.). The methodology previously used to generate DArT fingerprints of barley also generated a large number of high-quality markers in wheat (99.8% allele-calling concordance and approximately 95% call rate). The genetic relationships among bread wheat cultivars revealed by DArT coincided with knowledge generated with other methods, and even closely related cultivars could be distinguished. To verify the Mendelian behaviour of DArT markers, we typed a set of 90 Cranbrook x Halberd doubled haploid lines for which a framework (FW) map comprising a total of 339 SSR, restriction fragment length polymorphism (RFLP) and amplified fragment length polymorphism (AFLP) markers was available. We added an equal number of DArT markers to this data set and also incorporated 71 sequence tagged microsatellite (STM) markers. A comparison of logarithm of the odds (LOD) scores, call rates and the degree of genome coverage indicated that the quality and information content of the DArT data set was comparable to that of the combined SSR/RFLP/AFLP data set of the FW map. PMID:17033786

  3. Using the Hexaploid Nature of Wheat To Create Variability in Starch Characteristics.

    PubMed

    Inokuma, Takayuki; Vrinten, Patricia; Shimbata, Tomoya; Sunohara, Ai; Ito, Hiroyuki; Saito, Mika; Taniguchi, Yoshinori; Nakamura, Toshiki

    2016-02-01

    In hexaploid crops, such as bread wheat, it should be possible to fine-tune phenotypic traits by identifying wild-type and null genes from each of the three genomes and combining them in a calculated manner. Here, we demonstrate this with gene combinations for two starch synthesis genes, SSIIa and GBSSI. Lines with inactive copies of both enzymes show a very dramatic change in phenotype, so to create intermediate phenotypes, we used marker-assisted selection to develop near-isogenic lines (NILs) carrying homozygous combinations of null alleles. For both genes, gene dosage effects follow the order B > D ≥ A; therefore, we completed detailed analysis of starch characteristics for NIL 3-3, which is null for the B-genome copy of the SSIIa and GBSSI genes, and NIL 5-5, which has null mutations in the B- and D-genome-encoded copies of both of these genes. The effects of the combinations on phenotypic traits followed the order expected on the basis of genotype, with NIL 5-5 showing the largest differences from the wild type, while NIL 3-3 characteristics were intermediate between NIL 5-5 and the wild type. Differences among genotypes were significant for many starch characteristics, including percent amylose, chain length distribution, gelatinization temperature, retrogradation, and pasting properties, and these differences appeared to translate into improvements in end-product quality, since bread made from type 5-5 flour showed a 3 day lag in staling.

  4. Major quality trait analysis and QTL detection in hexaploid wheat in humid rain-fed agriculture.

    PubMed

    Li, H M; Tang, Z X; Zhang, H Q; Yan, B J; Ren, Z L

    2013-05-21

    Humid rain-fed agriculture is a special environment for wheat (Triticum aestivum) culture that tends to negatively affect wheat yield and quality. To identify quality characters of wheat in a humid environment, we conducted quality analysis and quantitative trait loci (QTL) detection in a recombinant inbred line whose parent had a high level of quality for several years. We found that high-quality wheat had less gluten content and lower protein content. Apparently, wheat quality and associated quantity traits were in a dynamic state of equilibrium. We detected 83 QTL for 10 wheat quality traits in this recombinant inbred line population. Nine QTL were detected in both evaluation years; Q.DT.scau-2A, linked to Xwmc522-2A, was detected at the same genetic location in both years. Other QTL for different traits were detected simultaneously in more than one location. Consequently, there appeared to be pleiotropic genes that control wheat quality. Based on previous studies and our research on QTL analysis of grain protein content, we conclude that there must be one or more genes for grain protein content on chromosome 6B, whose expression was little affected by environment. We constructed a consensus map and projected the QTL on it. It was useful for choosing optimal markers for marker-assisted breeding and map-based cloning.

  5. Variability and genetics of spacer DNA sequences between the ribosomal-RNA genes of hexaploid wheat (Triticum aestivum).

    PubMed

    May, C E; Appels, R

    1987-09-01

    Using restriction enzyme digests of genomic DNA extracted from the leaves of 25 hexaploid wheat (Triticum aestivum L. em. Thell.) cultivars and their hybrids, restriction fragment length polymorphisms of the spacer DNA which separates the ribosomal-RNA genes have been examined. (From one to three thousand of these genes are borne on chromosomes 1B and 6B of hexaploid wheat). The data show that there are three distinct alleles of the 1B locus, designated Nor-B1a, Nor-B1b, and Nor-B1c, and at least five allelic variants of the 6B locus, designated Nor-B2a, Nor-B2b, Nor-B2c, Nor-B2d, and Nor-B2e. A further, previously reported allele on 6B has been named Nor-B2f. Chromosome 5D has only one allelic variant, Nor-D3. Whereas the major spacer variants of the 1B alleles apparently differ by the loss or gain of one or two of the 133 bp sub-repeat units within the spacer DNA, the 6B allelic variants show major differences in their compositions and lengths. This may be related to the greater number of rDNA repeat units at this locus. The practical implications of these differences and their application to wheat breeding are discussed.

  6. HMW and LMW glutenin alleles among putative tetraploid and hexaploid European spelt wheat (Triticum spelta L.) progenitors.

    PubMed

    Yan, Y; Hsam, S L K; Yu, J Z; Jiang, Y; Ohtsuka, I; Zeller, F J

    2003-11-01

    The allelic compositions of high- and low-molecular-weight subunits of glutenins (HMW-GS and LMW-GS) among European spelt ( Triticum spelta L.) and related hexaploid and tetraploid Triticum species were investigated by one- and two-dimensional polyacrylamide-gel electrophoresis (PAGE) and capillary electrophoresis (CE). A total of seven novel glutenin alleles (designated A1a*, B1d*, B1g*, B1f*, B1j*, D1a* at Glu-1 and A3h at the Glu-3 loci, respectively) in European spelt wheat were detected by SDS-PAGE, which were confirmed further by employing A-PAGE and CE methods. Particularly, two HMW-GS alleles, Glu-B1d* coding the subunits 6.1 and 22.1, and Glu-B1f* coding the subunits 13 and 22*, were found to occur in European spelt with frequencies of 32.34% and 5.11%, respectively. These two alleles were present in cultivated emmer (Triticum dicoccum), but they were not observed in bread wheat (Triticum aestivum L.). The allele Glu-B1g* coding for 13* and 19* subunits found in spelt wheat was also detected in club wheat (Triticum compactum L.). Additionally, two alleles coding for LMW-GS, Glu-A3h and Glu-B3d, occurred with high frequencies in spelt, club and cultivated emmer wheat, whereas these were not found or present with very low frequencies in bread wheat. Our results strongly support the secondary origin hypothesis, namely European spelt wheat originated from hybridization between cultivated emmer and club wheat. This is also confirmed experimentally by the artificial synthesis of spelt through crossing between old European emmer wheat, T. dicoccum and club wheat, T. compactum.

  7. Population divergence in the wheat leaf rust fungus Puccinia triticina is correlated with wheat evolution

    PubMed Central

    Liu, M; Rodrigue, N; Kolmer, J

    2014-01-01

    Co-evolution of fungal pathogens with their host species during the domestication of modern crop varieties has likely affected the current genetic divergence of pathogen populations. The objective of this study was to determine if the evolutionary history of the obligate rust pathogen on wheat, Puccinia triticina, is correlated with adaptation to hosts with different ploidy levels. Sequence data from 15 loci with different levels of polymorphism were generated. Phylogenetic analyses (parsimony, Bayesian, maximum likelihood) showed the clear initial divergence of P. triticina isolates collected from Aegilops speltoides (the likely B genome donor of modern wheat) in Israel from the other isolates that were collected from tetraploid (AB genomes) durum wheat and hexaploid (ABD genomes) common wheat. Coalescence-based genealogy samplers also indicated that P. triticina on A. speltoides, diverged initially, followed by P. triticina isolates from durum wheat in Ethiopia and then by isolates from common wheat. Isolates of P. triticina found worldwide on cultivated durum wheat were the most recently coalesced and formed a clade nested within the isolates from common wheat. By a relative time scale, the divergence of P. triticinia as delimited by host specificity appears very recent. Significant reciprocal gene flow between isolates from common wheat and isolates from durum wheat that are found worldwide was detected, in addition to gene flow from isolates on common wheat to isolates on durum wheat in Ethiopia. PMID:24301080

  8. [Analysis of wheat and rye semidwarfing gene distribution in spring hexaploid triticale (Triticosecale Wittm.) varieties and lines].

    PubMed

    Korshunova, A D; Divashchuk, M G; Solov'ev, A A; Karlov, G I

    2015-03-01

    A collection of spring hexaploid triticale varieties and promising breeding lines has been examined for the presence of wheat Rht-B1b, Rht-B1e, and Rht8c semidwarfing genes and the rye Hl semidwarfing gene. It was discovered in spring triticale that these semidwarfing genes are represented by only one, the Rht-B1b wheat gene. The presence of this gene is associated with shortening of spring triticale plants by 28 cm on average, which constituted 26% of their initial height. Rht-B1b was found in all of the studied commercial varieties of spring triticale, which rendered it possible to conclude that plant height reduction is a necessary condition for increasing the competitiveness of this crop culture. PMID:26027372

  9. Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis

    PubMed Central

    2014-01-01

    Background Grain size and shape greatly influence grain weight which ultimately enhances grain yield in wheat. Digital imaging (DI) based phenomic characterization can capture the three dimensional variation in grain size and shape than has hitherto been possible. In this study, we report the results from using digital imaging of grain size and shape to understand the relationship among different components of this trait, their contribution to enhance grain weight, and to identify genomic regions (QTLs) controlling grain morphology using genome wide association mapping with high density diversity array technology (DArT) and allele-specific markers. Results Significant positive correlations were observed between grain weight and grain size measurements such as grain length (r = 0.43), width, thickness (r = 0.64) and factor from density (FFD) (r = 0.69). A total of 231 synthetic hexaploid wheats (SHWs) were grouped into five different sub-clusters by Bayesian structure analysis using unlinked DArT markers. Linkage disequilibrium (LD) decay was observed among DArT loci > 10 cM distance and approximately 28% marker pairs were in significant LD. In total, 197 loci over 60 chromosomal regions and 79 loci over 31 chromosomal regions were associated with grain morphology by genome wide analysis using general linear model (GLM) and mixed linear model (MLM) approaches, respectively. They were mainly distributed on homoeologous group 2, 3, 6 and 7 chromosomes. Twenty eight marker-trait associations (MTAs) on the D genome chromosomes 2D, 3D and 6D may carry novel alleles with potential to enhance grain weight due to the use of untapped wild accessions of Aegilops tauschii. Statistical simulations showed that favorable alleles for thousand kernel weight (TKW), grain length, width and thickness have additive genetic effects. Allelic variations for known genes controlling grain size and weight, viz. TaCwi-2A, TaSus-2B, TaCKX6-3D and TaGw2-6A, were also associated

  10. Chromosome Bin Map of Expressed Sequence Tags in Homoeologous Group 1 of Hexaploid Wheat and Homoeology With Rice and Arabidopsis

    PubMed Central

    Peng, J. H.; Zadeh, H.; Lazo, G. R.; Gustafson, J. P.; Chao, S.; Anderson, O. D.; Qi, L. L.; Echalier, B.; Gill, B. S.; Dilbirligi, M.; Sandhu, D.; Gill, K. S.; Greene, R. A.; Sorrells, M. E.; Akhunov, E. D.; Dvořák, J.; Linkiewicz, A. M.; Dubcovsky, J.; Hossain, K. G.; Kalavacharla, V.; Kianian, S. F.; Mahmoud, A. A.; Miftahudin; Conley, E. J.; Anderson, J. A.; Pathan, M. S.; Nguyen, H. T.; McGuire, P. E.; Qualset, C. O.; Lapitan, N. L. V.

    2004-01-01

    A total of 944 expressed sequence tags (ESTs) generated 2212 EST loci mapped to homoeologous group 1 chromosomes in hexaploid wheat (Triticum aestivum L.). EST deletion maps and the consensus map of group 1 chromosomes were constructed to show EST distribution. EST loci were unevenly distributed among chromosomes 1A, 1B, and 1D with 660, 826, and 726, respectively. The number of EST loci was greater on the long arms than on the short arms for all three chromosomes. The distribution of ESTs along chromosome arms was nonrandom with EST clusters occurring in the distal regions of short arms and middle regions of long arms. Duplications of group 1 ESTs in other homoeologous groups occurred at a rate of 35.5%. Seventy-five percent of wheat chromosome 1 ESTs had significant matches with rice sequences (E ≤ e−10), where large regions of conservation occurred between wheat consensus chromosome 1 and rice chromosome 5 and between the proximal portion of the long arm of wheat consensus chromosome 1 and rice chromosome 10. Only 9.5% of group 1 ESTs showed significant matches to Arabidopsis genome sequences. The results presented are useful for gene mapping and evolutionary and comparative genomics of grasses. PMID:15514039

  11. An Ethylmethane Sulfonate Mutant Resource in Pre-Green Revolution Hexaploid Wheat

    PubMed Central

    Dhaliwal, Amandeep K.; Mohan, Amita; Sidhu, Gaganjot; Maqbool, Rizwana; Gill, Kulvinder S.

    2015-01-01

    Mutagenesis is a powerful tool used for studying gene function as well as for crop improvement. It is regaining popularity because of the development of effective and cost efficient methods for high-throughput mutation detection. Selection for semi-dwarf phenotype during green revolution has reduced genetic diversity including that for agronomically desirable traits. Most of the available mutant populations in wheat (Triticum aestivum L.) were developed in post-green revolution cultivars. Besides the identification and isolation of agronomically important alleles in the mutant population of pre-green revolution cultivar, this population can be a vital resource for expanding the genetic diversity for wheat breeding. Here we report an Ethylmethane Sulfonate (EMS) generated mutant population consisting of 4,180 unique mutant plants in a pre-green revolution spring wheat cultivar ‘Indian’. Released in early 1900s, ‘Indian’ is devoid of any known height-reducing mutations. Unique mutations were captured by proceeding with single M2 seed from each of the 4,180 M1 plants. Mutants for various phenotypic traits were identified by detailed phenotyping for altered morphological and agronomic traits on M2 plants in the greenhouse and M3 plants in the field. Of the 86 identified mutants, 75 (87%) were phenotypically stable at the M4 generation. Among the observed phenotypes, variation in plant height was the most frequent followed by the leaf morphology. Several mutant phenotypes including looped peduncle, crooked plant morphology, ‘gritty’ coleoptiles, looped lower internodes, and burnt leaf tips are not reported in other plant species. Considering the extent and diversity of the observed mutant phenotypes, this population appears to be a useful resource for the forward and reverse genetic studies. This resource is available to the scientific community. PMID:26678261

  12. An Ethylmethane Sulfonate Mutant Resource in Pre-Green Revolution Hexaploid Wheat.

    PubMed

    Dhaliwal, Amandeep K; Mohan, Amita; Sidhu, Gaganjot; Maqbool, Rizwana; Gill, Kulvinder S

    2015-01-01

    Mutagenesis is a powerful tool used for studying gene function as well as for crop improvement. It is regaining popularity because of the development of effective and cost efficient methods for high-throughput mutation detection. Selection for semi-dwarf phenotype during green revolution has reduced genetic diversity including that for agronomically desirable traits. Most of the available mutant populations in wheat (Triticum aestivum L.) were developed in post-green revolution cultivars. Besides the identification and isolation of agronomically important alleles in the mutant population of pre-green revolution cultivar, this population can be a vital resource for expanding the genetic diversity for wheat breeding. Here we report an Ethylmethane Sulfonate (EMS) generated mutant population consisting of 4,180 unique mutant plants in a pre-green revolution spring wheat cultivar 'Indian'. Released in early 1900s, 'Indian' is devoid of any known height-reducing mutations. Unique mutations were captured by proceeding with single M2 seed from each of the 4,180 M1 plants. Mutants for various phenotypic traits were identified by detailed phenotyping for altered morphological and agronomic traits on M2 plants in the greenhouse and M3 plants in the field. Of the 86 identified mutants, 75 (87%) were phenotypically stable at the M4 generation. Among the observed phenotypes, variation in plant height was the most frequent followed by the leaf morphology. Several mutant phenotypes including looped peduncle, crooked plant morphology, 'gritty' coleoptiles, looped lower internodes, and burnt leaf tips are not reported in other plant species. Considering the extent and diversity of the observed mutant phenotypes, this population appears to be a useful resource for the forward and reverse genetic studies. This resource is available to the scientific community. PMID:26678261

  13. AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides x T. tauschii) as a source of favourable alleles for milling and baking quality traits.

    PubMed

    Kunert, Antje; Naz, Ali Ahmad; Dedeck, Oliver; Pillen, Klaus; Léon, Jens

    2007-09-01

    The advanced backcross QTL (AB-QTL) strategy was utilised to locate quantitative trait loci (QTLs) for baking quality traits in two BC(2)F(3) populations of winter wheat. The backcrosses are derived from two German winter wheat cultivars, Batis and Zentos, and two synthetic, hexaploid wheat accessions, Syn022 and Syn086. The synthetics originate from hybridisations of wild emmer (T. turgidum spp. dicoccoides) and T. tauschii, rather than from durum wheat and T. tauschii and thus allowed for the first time to test for exotic QTL effects on wheat genomes A and B in addition to genome D. The investigated quality traits comprised hectolitre weight, grain hardness, flour yield Type 550, falling number, grain protein content, sedimentation volume and baking volume. One hundred and forty-nine SSR markers were applied to genotype a total of 400 BC(2)F(3) lines. For QTL detection, a mixed-model ANOVA was conducted, including the effects DNA marker, BC(2)F(3) line, environment and marker x environment interaction. Overall 38 QTLs significant for a marker main effect were detected. The exotic allele improved trait performance at 14 QTLs (36.8%), while the elite genotype contributed the favourable effect at 24 QTLs (63.2%). The favourable exotic alleles were mainly associated with grain protein content, though the greatest improvement of trait performance due to the exotic alleles was achieved for the traits falling number and sedimentation volume. At the QTL on chromosome 4B the exotic allele increased the falling number by 19.6% and at the QTL on chromosome 6D the exotic allele led to an increase of the sedimentation volume by 21.7%. The results indicate that synthetic wheat derived from wild emmer x T. tauschii carries favourable QTL alleles for baking quality traits, which might be useful for breeding improved wheat varieties by marker-assisted selection.

  14. Cloning and comparative analysis of carotenoid β-hydroxylase genes provides new insights into carotenoid metabolism in tetraploid (Triticum turgidum ssp. durum) and hexaploid (Triticum aestivum) wheat grains.

    PubMed

    Qin, Xiaoqiong; Zhang, Wenjun; Dubcovsky, Jorge; Tian, Li

    2012-12-01

    Carotenoid β-hydroxylases attach hydroxyl groups to the β-ionone rings (β-rings) of carotenoid substrates, resulting in modified structures and functions of carotenoid molecules. We cloned and characterized two genes (each with three homeologs), HYD1 and HYD2, which encode β-hydroxylases in wheat. The results from bioinformatic and nested degenerate PCR analyses collectively suggest that HYD1 and HYD2 may represent the entire complement of non-heme di-iron β-hydroxylases in wheat. The homeologs of wheat HYDs exhibited major β-ring and minor ε-ring hydroxylation activities in carotenoid-accumulating E. coli strains. Distinct expression patterns were observed for different HYD genes and homeologs in vegetative tissues and developing grains of tetraploid and hexaploid wheat, suggesting their functional divergence and differential regulatory control in tissue-, grain development-, and ploidy-specific manners. An intriguing observation was that the expression of HYD1, particularly HYD-B1, reached highest levels at the last stage of tetraploid and hexaploid grain development, suggesting that carotenoids (at least xanthophylls) were still actively synthesized in mature grains. This result challenges the common perception that carotenoids are simply being turned over during wheat grain development after their initial biosynthesis at the early grain development stages. Overall, this improved understanding of carotenoid biosynthetic gene expression and carotenoid metabolism in wheat grains will contribute to the improvement of the nutritional value of wheat grains for human consumption.

  15. Cloning and comparative analysis of carotenoid β-hydroxylase genes provides new insights into carotenoid metabolism in tetraploid (Triticum turgidum ssp. durum) and hexaploid (Triticum aestivum) wheat grains.

    PubMed

    Qin, Xiaoqiong; Zhang, Wenjun; Dubcovsky, Jorge; Tian, Li

    2012-12-01

    Carotenoid β-hydroxylases attach hydroxyl groups to the β-ionone rings (β-rings) of carotenoid substrates, resulting in modified structures and functions of carotenoid molecules. We cloned and characterized two genes (each with three homeologs), HYD1 and HYD2, which encode β-hydroxylases in wheat. The results from bioinformatic and nested degenerate PCR analyses collectively suggest that HYD1 and HYD2 may represent the entire complement of non-heme di-iron β-hydroxylases in wheat. The homeologs of wheat HYDs exhibited major β-ring and minor ε-ring hydroxylation activities in carotenoid-accumulating E. coli strains. Distinct expression patterns were observed for different HYD genes and homeologs in vegetative tissues and developing grains of tetraploid and hexaploid wheat, suggesting their functional divergence and differential regulatory control in tissue-, grain development-, and ploidy-specific manners. An intriguing observation was that the expression of HYD1, particularly HYD-B1, reached highest levels at the last stage of tetraploid and hexaploid grain development, suggesting that carotenoids (at least xanthophylls) were still actively synthesized in mature grains. This result challenges the common perception that carotenoids are simply being turned over during wheat grain development after their initial biosynthesis at the early grain development stages. Overall, this improved understanding of carotenoid biosynthetic gene expression and carotenoid metabolism in wheat grains will contribute to the improvement of the nutritional value of wheat grains for human consumption. PMID:23015203

  16. Identification and characterization of the three homeologues of a new sucrose transporter in hexaploid wheat (Triticum aestivum L.)

    PubMed Central

    2013-01-01

    Background Sucrose transporters (SUTs) play important roles in regulating the translocation of assimilates from source to sink tissues. Identification and characterization of new SUTs in economically important crops such as wheat provide insights into their role in determining seed yield. To date, however, only one SUT of wheat has been reported and functionally characterized. The present study reports the isolation and characterization of a new SUT, designated as TaSUT2, and its homeologues (TaSUT2A, TaSUT2B and TaSUT2D) in hexaploid wheat (Triticum aestivum L.). Results TaSUT2A and TaSUT2B genes each encode a protein with 506 amino acids, whereas TaSUT2D encodes a protein of 508 amino acids. The molecular mass of these proteins is predicted to be ~ 54 kDA. Topological analysis of the amino acid sequences of the three homeologues revealed that they contain 12 transmembrane spanning helices, which are described as distinct characteristic features of glycoside-pentoside-hexuronide cation symporter family that includes all known plant SUTs, and a histidine residue that appears to be localized at and associated conformationally with the sucrose binding site. Yeast SUSY7/ura3 strain cells transformed with TaSUT2A, TaSUT2B and TaSUT2D were able to uptake sucrose and grow on a medium containing sucrose as a sole source of carbon; however, our subcellular localization study with plant cells revealed that TaSUT2 is localized to the tonoplast. The expression of TaSUT2 was detected in the source, including flag leaf blade, flag leaf sheath, peduncle, glumes, palea and lemma, and sink (seed) tissues. The relative contributions of the three genomes of wheat to the total expression of TaSUT2 appear to differ with tissues and developmental stages. At the cellular level, TaSUT2 is expressed mainly in the vein of developing seeds and subepidermal mesophyll cells of the leaf blade. Conclusion This study demonstrated that TaSUT2 is a new wheat SUT protein. Given that TaSUT2 is

  17. [Development and study of spring bread wheat variety Pamyati Maystrenko with introgression of genetic material from synthetic hexaploid Triticum timopheevii zhuk. x Aegilops tauschii Coss].

    PubMed

    Laikova, L I; Belan, I A; Badaeva, E D; Posseeva, L P; Shepelev, S S; Shumny, V K; Pershina, L A

    2013-01-01

    Synthetic hexaploids are bridges for transferring new genes that determine resistance to stress factors from wild-type species to bread wheat. In the present work, the method of developing the spring bread wheat variety Pamyati Maystrenko and the results of its study are described. This variety was obtained using one of the immune lines produced earlier via the hybridization of the spring bread wheat variety Saratovskaya 29 with the synthetic hexaploid T. timopheevii Zhuk. x Ae. tauschii Coss. The C-staining of chromosomes in the Pamyati Maystrenko variety revealed substitutions of 2B and 6B chromosomes by the homeologous chromosomes of the G genome of T. timopheevii and the substitution of chromosome 1D by an orthologous chromosome ofAe. tauschii. It was found that this variety is characterized by resistance to leaf and stem rust, powdery mildew, and loose smut as well as by high grain and bread-making qualities. The role of the alien genetic material introgressed into the bread-wheat genome in the expression of adaptive and economically valuable traits in the Pamyati Maystrenko variety is discussed.

  18. Dryland Wheat Domestication Changed the Development of Aboveground Architecture for a Well-Structured Canopy

    PubMed Central

    Li, Pu-Fang; Cheng, Zheng-Guo; Ma, Bao-Luo; Palta, Jairo A.; Kong, Hai-Yan; Mo, Fei; Wang, Jian-Yong; Zhu, Ying; Lv, Guang-Chao; Batool, Asfa; Bai, Xue; Li, Feng-Min; Xiong, You-Cai

    2014-01-01

    We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUEi). Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate. PMID:25181037

  19. Rmg8, a New Gene for Resistance to Triticum Isolates of Pyricularia oryzae in Hexaploid Wheat.

    PubMed

    Anh, Vu Lan; Anh, Nguyen Tuan; Tagle, Analiza Grubanzo; Vy, Trinh Thi Phuong; Inoue, Yoshihiro; Takumi, Shigeo; Chuma, Izumi; Tosa, Yukio

    2015-12-01

    Blast, caused by Pyricularia oryzae, is one of the major diseases of wheat in South America. We identified a new gene for resistance to Triticum isolates of P. oryzae in common wheat 'S-615', and designated it "resistance to Magnaporthe grisea 8" (Rmg8). Rmg8 was assigned to chromosome 2B through molecular mapping with simple-sequence repeat markers. To identify an avirulence gene corresponding to Rmg8, Triticum isolate Br48 (avirulent on S-615) was crossed with 200R29 (virulent on S-615), an F1 progeny derived from a cross between an Eleusine isolate (MZ5-1-6) and Br48. Segregation analysis of their progeny revealed that avirulence of Br48 on S-615 was conditioned by a single gene, which was designated AVR-Rmg8. AVR-Rmg8 was closely linked to AVR-Rmg7, which corresponded to Rmg7 located on chromosome 2A of tetraploid wheat.

  20. Rmg8, a New Gene for Resistance to Triticum Isolates of Pyricularia oryzae in Hexaploid Wheat.

    PubMed

    Anh, Vu Lan; Anh, Nguyen Tuan; Tagle, Analiza Grubanzo; Vy, Trinh Thi Phuong; Inoue, Yoshihiro; Takumi, Shigeo; Chuma, Izumi; Tosa, Yukio

    2015-12-01

    Blast, caused by Pyricularia oryzae, is one of the major diseases of wheat in South America. We identified a new gene for resistance to Triticum isolates of P. oryzae in common wheat 'S-615', and designated it "resistance to Magnaporthe grisea 8" (Rmg8). Rmg8 was assigned to chromosome 2B through molecular mapping with simple-sequence repeat markers. To identify an avirulence gene corresponding to Rmg8, Triticum isolate Br48 (avirulent on S-615) was crossed with 200R29 (virulent on S-615), an F1 progeny derived from a cross between an Eleusine isolate (MZ5-1-6) and Br48. Segregation analysis of their progeny revealed that avirulence of Br48 on S-615 was conditioned by a single gene, which was designated AVR-Rmg8. AVR-Rmg8 was closely linked to AVR-Rmg7, which corresponded to Rmg7 located on chromosome 2A of tetraploid wheat. PMID:26555672

  1. Transcriptomic analysis of starch biosynthesis in the developing grain of hexaploid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The expression of genes involved in starch synthesis in wheat was analyzed together with the accumulation profiles of soluble sugars, starch, protein, and starch granule distribution in developing caryopses obtained from the same biological materials used for profiling of gene expression using DN...

  2. Genetic maps of stem rust resistance gene Sr35 in diploid and hexaploid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Puccinia graminis f. sp. tritici is the causal agent of stem rust of wheat. A new race designated TTKSK (also known as Ug99) has recently spread through East Africa, Yemen and on to Iran. TTKSK and its variants (TTKST and TTTSK) are virulent to most of the stem rust resistance genes currently deploy...

  3. A comparison of the levels of hydroxamic acids in Aegilops speltoides and a hexaploid wheat and effects on Rhopalosiphum padi behaviour and fecundity.

    PubMed

    Elek, Henriett; Smart, Lesley; Ahmad, S; Anda, Angéla; Werner, C P; Pickett, J A

    2014-03-01

    Hydroxamic acids (HAs) are plant secondary metabolites produced by certain cereals, which have been found to be toxic to pest aphids in artificial diet assays. Previous studies have shown that tetraploid and hexaploid wheat varieties, the leaf tissues of which contained higher levels of these compounds than used in artificial diets, did not reduce aphid settling or fecundity. This current study reports findings on a high HA producing B genome accession of the diploid ancestor of wheat, Aegilops speltoides. We found that this accession does have a negative impact on aphid host selection and substantially reduces nymph production. Whole leaf tissue assays showed very high levels of HAs, well in excess of the toxic level determined in the artificial diet assays. Extraction of the apoplast fluid (AF) from this accession showed that the HA level is much lower than that of the whole tissue, but is still close to the artificial diet toxic level. Furthermore the HA level in the AF increases in response to aphid feeding. These observations could explain why hexaploid wheat remains susceptible to aphids, despite having whole leaf tissue HA levels in excess of the toxic levels determined in artificial diets.

  4. Genome-Wide Association Mapping of Anther Extrusion in Hexaploid Spring Wheat

    PubMed Central

    Muqaddasi, Quddoos H.; Lohwasser, Ulrike; Nagel, Manuela; Börner, Andreas; Pillen, Klaus; Röder, Marion S.

    2016-01-01

    In a number of crop species hybrids are able to outperform line varieties. The anthers of the autogamous bread wheat plant are normally extruded post anthesis, a trait which is unfavourable for the production of F1 hybrid grain. Higher anther extrusion (AE) promotes cross fertilization for more efficient hybrid seed production. Therefore, this study aimed at the genetic dissection of AE by genome wide association studies (GWAS) and determination of the main effect QTL. We applied GWAS approach to identify DArT markers potentially linked to AE to unfold its genetic basis in a panel of spring wheat accessions. Phenotypic data were collected for three years and best linear unbiased estimate (BLUE) values were calculated across all years. The extent of the AE correlation between growing years and BLUE values ranged from r = +0.56 (2013 vs 2015) to 0.91 (2014 vs BLUE values). The broad sense heritability was 0.84 across all years. Six accessions displayed stable AE >80% across all the years. Genotyping data included 2,575 DArT markers (with minimum of 0.05 minor allele frequency applied). AE was influenced both by genotype and by the growing environment. In all, 131 significant marker trait associations (MTAs) (|log10 (P)| >FDR) were established for AE. AE behaved as a quantitative trait, with five consistently significant markers (significant across at least two years with a significant BLUE value) contributing a minor to modest proportion (4.29% to 8.61%) of the phenotypic variance and affecting the trait either positively or negatively. For this reason, there is potential for breeding for improved AE by gene pyramiding. The consistently significant markers linked to AE could be helpful for marker assisted selection to transfer AE to high yielding varieties allowing to promote the exploitation of hybrid-heterosis in the key crop wheat. PMID:27191600

  5. Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat

    PubMed Central

    Atkinson, Jonathan A.; Wingen, Luzie U.; Griffiths, Marcus; Pound, Michael P.; Gaju, Oorbessy; Foulkes, M. John; Le Gouis, Jacques; Griffiths, Simon; Bennett, Malcolm J.; King, Julie; Wells, Darren M.

    2015-01-01

    Seedling root traits of wheat (Triticum aestivum L.) have been shown to be important for efficient establishment and linked to mature plant traits such as height and yield. A root phenotyping pipeline, consisting of a germination paper-based screen combined with image segmentation and analysis software, was developed and used to characterize seedling traits in 94 doubled haploid progeny derived from a cross between the winter wheat cultivars Rialto and Savannah. Field experiments were conducted to measure mature plant height, grain yield, and nitrogen (N) uptake in three sites over 2 years. In total, 29 quantitative trait loci (QTLs) for seedling root traits were identified. Two QTLs for grain yield and N uptake co-localize with root QTLs on chromosomes 2B and 7D, respectively. Of the 29 root QTLs identified, 11 were found to co-localize on 6D, with four of these achieving highly significant logarithm of odds scores (>20). These results suggest the presence of a major-effect gene regulating seedling root vigour/growth on chromosome 6D. PMID:25740921

  6. Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat.

    PubMed

    Atkinson, Jonathan A; Wingen, Luzie U; Griffiths, Marcus; Pound, Michael P; Gaju, Oorbessy; Foulkes, M John; Le Gouis, Jacques; Griffiths, Simon; Bennett, Malcolm J; King, Julie; Wells, Darren M

    2015-04-01

    Seedling root traits of wheat (Triticum aestivum L.) have been shown to be important for efficient establishment and linked to mature plant traits such as height and yield. A root phenotyping pipeline, consisting of a germination paper-based screen combined with image segmentation and analysis software, was developed and used to characterize seedling traits in 94 doubled haploid progeny derived from a cross between the winter wheat cultivars Rialto and Savannah. Field experiments were conducted to measure mature plant height, grain yield, and nitrogen (N) uptake in three sites over 2 years. In total, 29 quantitative trait loci (QTLs) for seedling root traits were identified. Two QTLs for grain yield and N uptake co-localize with root QTLs on chromosomes 2B and 7D, respectively. Of the 29 root QTLs identified, 11 were found to co-localize on 6D, with four of these achieving highly significant logarithm of odds scores (>20). These results suggest the presence of a major-effect gene regulating seedling root vigour/growth on chromosome 6D.

  7. Fine mapping and marker development for the crossability gene SKr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.).

    PubMed

    Alfares, Walid; Bouguennec, Annaig; Balfourier, François; Gay, Georges; Bergès, Hélène; Vautrin, Sonia; Sourdille, Pierre; Bernard, Michel; Feuillet, Catherine

    2009-10-01

    Most elite wheat varieties cannot be crossed with related species thereby restricting greatly the germplasm that can be used for alien introgression in breeding programs. Inhibition to crossability is controlled genetically and a number of QTL have been identified to date, including the major gene Kr1 on 5BL and SKr, a strong QTL affecting crossability between wheat and rye on chromosome 5BS. In this study, we used a recombinant SSD population originating from a cross between the poorly crossable cultivar Courtot (Ct) and the crossable line MP98 to characterize the major dominant effect of SKr and map the gene at the distal end of the chromosome near the 5B homeologous GSP locus. Colinearity with barley and rice was used to saturate the SKr region with new markers and establish orthologous relationships with a 54-kb region on rice chromosome 12. In total, five markers were mapped within a genetic interval of 0.3 cM and 400 kb of BAC contigs were established on both sides of the gene to lay the foundation for map-based cloning of SKr. Two SSR markers completely linked to SKr were used to evaluate a collection of crossable wheat progenies originating from primary triticale breeding programs. The results confirm the major effect of SKr on crossability and the usefulness of the two markers for the efficient introgression of crossability in elite wheat varieties. PMID:19652174

  8. A genome-wide analysis of the auxin/indole-3-acetic acid gene family in hexaploid bread wheat (Triticum aestivum L.)

    PubMed Central

    Qiao, Linyi; Zhang, Xiaojun; Han, Xiao; Zhang, Lei; Li, Xin; Zhan, Haixian; Ma, Jian; Luo, Peigao; Zhang, Wenping; Cui, Lei; Li, Xiaoyan; Chang, Zhijian

    2015-01-01

    The Auxin/indole-3-acetic acid (Aux/IAA) gene family plays key roles in the primary auxin-response process and controls a number of important traits in plants. However, the characteristics of the Aux/IAA gene family in hexaploid bread wheat (Triticum aestivum L.) have long been unknown. In this study, a comprehensive identification of the Aux/IAA gene family was performed using the latest draft genome sequence of the bread wheat “Chinese Spring.” Thirty-four Aux/IAA genes were identified, 30 of which have duplicated genes on the A, B or D sub-genome, with a total of 84 Aux/IAA sequences. These predicted Aux/IAA genes were non-randomly distributed in all the wheat chromosomes except for chromosome 2D. The information of wheat Aux/IAA proteins is also described. Based on an analysis of phylogeny, expression and adaptive evolution, we prove that the Aux/IAA family in wheat has been replicated twice in the two allopolyploidization events of bread wheat, when the tandem duplication also occurred. The duplicated genes have undergone an evolutionary process of purifying selection, resulting in the high conservation of copy genes among sub-genomes and functional redundancy among several members of the TaIAA family. However, functional divergence probably existed in most TaIAA members due to the diversity of the functional domain and expression pattern. Our research provides useful information for further research into the function of Aux/IAA genes in wheat. PMID:26483801

  9. Genome wide identification of C1-2i zinc finger proteins and their response to abiotic stress in hexaploid wheat.

    PubMed

    Cheuk, Arnaud; Houde, Mario

    2016-04-01

    The C1-2i wheat Q-type C2H2 zinc finger protein (ZFP) transcription factor subclass has been reported to play important roles in plant stress responses. This subclass of ZFPs has not been studied in hexaploid wheat (Triticum aestivum) and we aimed to identify all members of this subclass and evaluate their responses to different abiotic stresses causing oxidative stress. Exploiting the recently published wheat draft genome sequence, we identified 53 members (including homoeologs from A, B and D genomes) of the C1-2i wheat Q-type C2H2 ZFPs (TaZFPs) representing 21 genes. Evolution analysis revealed that 9 TaZFPs members are directly inherited from the parents Triticum urartu and Aegilops tauschii, while 15 diverged through neoploidization events. This TaZFP subclass is responsive to the oxidative stress generator H2O2 and to high light, drought stress and flooding. Most TaZFPs are responsive to H2O2 (37/53), high light (44/53), flooding (31/53) or drought (37/53); 32 TaZFPs were up-regulated by at least 3 stresses and 16 were responsive to all stresses tested. A large number of these TaZFPs were physically mapped on different wheat draft genome sequences with known markers useful for QTL mapping. Our results show that the C1-2i subclass of TaZFPs is associated with responses to different abiotic stresses and that most TaZFPs (30/53 or 57 %) are located on group 5 chromosomes known to be involved in environment adaptation. Detailed characterization of these novel wheat TaZFPs and their association to QTL or eQTL may help to design wheat cultivars with improved tolerance to abiotic stress.

  10. mRNA and Small RNA Transcriptomes Reveal Insights into Dynamic Homoeolog Regulation of Allopolyploid Heterosis in Nascent Hexaploid Wheat[W][OPEN

    PubMed Central

    Li, Aili; Liu, Dengcai; Wu, Jun; Zhao, Xubo; Hao, Ming; Geng, Shuaifeng; Yan, Jun; Jiang, Xiaoxue; Zhang, Lianquan; Wu, Junyan; Yin, Lingjie; Zhang, Rongzhi; Wu, Liang; Zheng, Youliang; Mao, Long

    2014-01-01

    Nascent allohexaploid wheat may represent the initial genetic state of common wheat (Triticum aestivum), which arose as a hybrid between Triticum turgidum (AABB) and Aegilops tauschii (DD) and by chromosome doubling and outcompeted its parents in growth vigor and adaptability. To better understand the molecular basis for this success, we performed mRNA and small RNA transcriptome analyses in nascent allohexaploid wheat and its following generations, their progenitors, and the natural allohexaploid cultivar Chinese Spring, with the assistance of recently published A and D genome sequences. We found that nonadditively expressed protein-coding genes were rare but relevant to growth vigor. Moreover, a high proportion of protein-coding genes exhibited parental expression level dominance, with genes for which the total homoeolog expression level in the progeny was similar to that in T. turgidum potentially participating in development and those with similar expression to that in Ae. tauschii involved in adaptation. In addition, a high proportion of microRNAs showed nonadditive expression upon polyploidization, potentially leading to differential expression of important target genes. Furthermore, increased small interfering RNA density was observed for transposable element–associated D homoeologs in the allohexaploid progeny, which may account for biased repression of D homoeologs. Together, our data provide insights into small RNA–mediated dynamic homoeolog regulation mechanisms that may contribute to heterosis in nascent hexaploid wheat. PMID:24838975

  11. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway.

    PubMed

    Scofield, Steven R; Huang, Li; Brandt, Amanda S; Gill, Bikram S

    2005-08-01

    Virus-induced gene silencing (VIGS) is an important tool for the analysis of gene function in plants. In VIGS, viruses engineered to carry sequences derived from plant gene transcripts activate the host's sequence-specific RNA degradation system. This mechanism targets the RNAs of the viral genome for degradation, and as the virus contains transcribed plant sequence, homologous host mRNAs are also targeted for destruction. While routinely used in some dicots, no VIGS system was known for monocot plants until the recent report of silencing in barley (Hordeum vulgare) by barley stripe mosaic virus (BSMV). Here, we report development of protocols for use of BSMV to efficiently silence genes in hexaploid wheat (Triticum aestivum). The VIGS system was first optimized in studies silencing phytoene desaturase expression. Next, we used it to assay genes functioning in leaf rust resistance mediated by Lr21, which encodes a nucleotide binding site-leucine-rich repeat class resistance gene product. We demonstrated that infection with BSMV constructs carrying a 150-bp fragment of Lr21 caused conversion of incompatible interactions to compatible, whereas infection with a control construct or one that silences phytoene desaturase had no effect on resistance or susceptibility. Additionally, silencing the RAR1, SGT1, and HSP90 genes, known to be required in many but not all nucleotide binding site-leucine-rich repeat resistance pathways in diverse plant species, resulted in conversion to compatibility, indicating that these genes are essential in Lr21-mediated resistance. These studies indicate that BSMV-VIGS is a powerful tool for dissecting the genetic pathways of disease resistance in hexaploid wheat.

  12. Mapping QTLs for Fusarium Head Blight Resistance in an Interspecific Wheat Population

    PubMed Central

    Giancaspro, Angelica; Giove, Stefania L.; Zito, Daniela; Blanco, A.; Gadaleta, Agata

    2016-01-01

    Fusarium head blight (scab) is one of the most widespread and damaging diseases of wheat, causing grain yield and quality losses and production of harmful mycotoxins. Development of resistant varieties is hampered by lack of effective resistance sources in the tetraploid wheat primary gene pool. Here we dissected the genetic basis of resistance in a new durum wheat (Triticum turgidum ssp. durum) Recombinant inbred lines (RILs) population obtained by crossing an hexaploid resistant line and a durum susceptible cultivar. A total of 135 RILs were used for constituting a genetic linkage map and mapping loci for head blight incidence, severity, and disease-related plant morphological traits (plant height, spike compactness, and awn length). The new genetic map accounted for 4,366 single nucleotide polymorphism markers assembled in 52 linkage groups covering a total length of 4,227.37 cM. Major quantitative trait loci (QTL) for scab incidence and severity were mapped on chromosomes 2AS, 3AL, and 2AS, 2BS, 4BL, respectively. Plant height loci were identified on 3A, 3B, and 4B, while major QTL for ear compactness were found on 4A, 5A, 5B, 6A, and 7A. In this work, resistance to Fusarium was transferred from hexaploid to durum wheat, and correlations between the disease and morphological traits were assessed. PMID:27746787

  13. Line differences in Cor/Lea and fructan biosynthesis-related gene transcript accumulation are related to distinct freezing tolerance levels in synthetic wheat hexaploids.

    PubMed

    Yokota, Hirokazu; Iehisa, Julio C M; Shimosaka, Etsuo; Takumi, Shigeo

    2015-03-15

    In common wheat, cultivar differences in freezing tolerance are considered to be mainly due to allelic differences at two major loci controlling freezing tolerance. One of the two loci, Fr-2, is coincident with a cluster of genes encoding C-repeat binding factors (CBFs), which induce downstream Cor/Lea genes during cold acclimation. Here, we conducted microarray analysis to study comprehensive changes in gene expression profile under long-term low-temperature (LT) treatment and to identify other LT-responsive genes related to cold acclimation in leaves of seedlings and crown tissues of a synthetic hexaploid wheat line. The microarray analysis revealed marked up-regulation of a number of Cor/Lea genes and fructan biosynthesis-related genes under the long-term LT treatment. For validation of the microarray data, we selected four synthetic wheat lines that contain the A and B genomes from the tetraploid wheat cultivar Langdon and the diverse D genomes originating from different Aegilops tauschii accessions with distinct levels of freezing tolerance after cold acclimation. Quantitative RT-PCR showed increased transcript levels of the Cor/Lea, CBF, and fructan biosynthesis-related genes in more freezing-tolerant lines than in sensitive lines. After a 14-day LT treatment, a significant difference in fructan accumulation was observed among the four lines. Therefore, the fructan biosynthetic pathway is associated with cold acclimation in development of wheat freezing tolerance and is another pathway related to diversity in freezing tolerance, in addition to the CBF-mediated Cor/Lea expression pathway.

  14. Molecular characterization of the puroindoline-a and b alleles in synthetic hexaploid wheats and in silico functional and structural insights into Pina-D1.

    PubMed

    Ali, Iftikhar; Sardar, Zainab; Rasheed, Awais; Mahmood, Tariq

    2015-07-01

    Kernel hardness determined by two tightly linked Puroindoline genes, Pina-D1 and Pinb-D1, located on chromosome 5DS define commercially important characteristics, uses, major grades and export markets of wheat. This study was conducted to characterize Pina-D1 and Pinb-D1 alleles, in fifteen synthetic hexaploid wheats (SHWs) and its relation with grain hardness. Additionally, in silico functional analyses of puroindoline-a protein was conducted for better understanding of their putative importance in grain quality. Six different Pina-D1 alleles were identified in the SHWs, of which three i.e. Pina-D1a, Pina-D1c and Pina-D1d were already known whereas the other three had new sequence polymorphisms and were designated as Pina-D1w, Pina-D1x and Pina-D1y. Three different Pinb-D1 alleles were identified which have been reported earlier and no novel sequence polymorphism was detected. It was concluded that despite some primary, secondary and 3D structure variations, ligand binding sites and disulfide bonds discrepancies, the main features of PINA, i.e. the tryptophan-rich domain, the cysteine backbone, the signal peptide and basic identity of the proteins were all conserved. In silico analysis showed that puroindolines having binding capacity with small parts of prolamins causing celiac disease of human, however their potential role is not obvious. Conclusively, the new Pina-D1 alleles with modest effect on grain hardness, and insight into their functional and structural characteristics are important findings and their putative role in celiac disease require further studies to validate. PMID:25865523

  15. A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block

    PubMed Central

    2010-01-01

    Background The complexity of the wheat genome has resulted from waves of retrotransposable element insertions. Gene deletions and disruptions generated by the fast replacement of repetitive elements in wheat have resulted in disruption of colinearity at a micro (sub-megabase) level among the cereals. In view of genomic changes that are possible within a given time span, conservation of genes between species tends to imply an important functional or regional constraint that does not permit a change in genomic structure. The ctg1034 contig completed in this paper was initially studied because it was assigned to the Sr2 resistance locus region, but detailed mapping studies subsequently assigned it to the long arm of 3B and revealed its unusual features. Results BAC shotgun sequencing of the hexaploid wheat (Triticum aestivum cv. Chinese Spring) genome has been used to assemble a group of 15 wheat BACs from the chromosome 3B physical map FPC contig ctg1034 into a 783,553 bp genomic sequence. This ctg1034 sequence was annotated for biological features such as genes and transposable elements. A three-gene island was identified among >80% repetitive DNA sequence. Using bioinformatics analysis there were no observable similarity in their gene functions. The ctg1034 gene island also displayed complete conservation of gene order and orientation with syntenic gene islands found in publicly available genome sequences of Brachypodium distachyon, Oryza sativa, Sorghum bicolor and Zea mays, even though the intergenic space and introns were divergent. Conclusion We propose that ctg1034 is located within the heterochromatic C-band region of deletion bin 3BL7 based on the identification of heterochromatic tandem repeats and presence of significant matches to chromodomain-containing gypsy LTR retrotransposable elements. We also speculate that this location, among other highly repetitive sequences, may account for the relative stability in gene order and orientation within the gene

  16. Genome-wide association mapping for resistance to leaf and stripe rust in winter-habit hexaploid wheat landraces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf rust, caused by Puccinia triticina (Pt), and stripe rust, caused by P. striiformis f. sp. tritici (Pst), are destructive foliar diseases of wheat worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst re...

  17. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landrace and cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domesticated crops have experienced strong human-driven selection aimed at the development of improved varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated DNA m...

  18. Genome-Wide Association Mapping for Resistance to Leaf and Stripe Rust in Winter-Habit Hexaploid Wheat Landraces.

    PubMed

    Kertho, Albert; Mamidi, Sujan; Bonman, J Michael; McClean, Phillip E; Acevedo, Maricelis

    2015-01-01

    Leaf rust, caused by Puccinia triticina (Pt), and stripe rust, caused by P. striiformis f. sp. tritici (Pst), are destructive foliar diseases of wheat worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Here we report a genome-wide association analysis of 567 winter wheat (Triticum aestivum) landrace accessions using the Infinium iSelect 9K wheat SNP array to identify loci associated with seedling resistance to five races of Pt (MDCL, MFPS, THBL, TDBG, and TBDJ) and one race of Pst (PSTv-37) frequently found in the Northern Great Plains of the United States. Mixed linear models identified 65 and eight significant markers associated with leaf rust and stripe rust, respectively. Further, we identified 31 and three QTL associated with resistance to Pt and Pst, respectively. Eleven QTL, identified on chromosomes 3A, 4A, 5A, and 6D, are previously unknown for leaf rust resistance in T. aestivum.

  19. Genome-Wide Association Mapping for Resistance to Leaf and Stripe Rust in Winter-Habit Hexaploid Wheat Landraces

    PubMed Central

    Kertho, Albert; Mamidi, Sujan; Bonman, J. Michael; McClean, Phillip E.; Acevedo, Maricelis

    2015-01-01

    Leaf rust, caused by Puccinia triticina (Pt), and stripe rust, caused by P. striiformis f. sp. tritici (Pst), are destructive foliar diseases of wheat worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Here we report a genome-wide association analysis of 567 winter wheat (Triticum aestivum) landrace accessions using the Infinium iSelect 9K wheat SNP array to identify loci associated with seedling resistance to five races of Pt (MDCL, MFPS, THBL, TDBG, and TBDJ) and one race of Pst (PSTv-37) frequently found in the Northern Great Plains of the United States. Mixed linear models identified 65 and eight significant markers associated with leaf rust and stripe rust, respectively. Further, we identified 31 and three QTL associated with resistance to Pt and Pst, respectively. Eleven QTL, identified on chromosomes 3A, 4A, 5A, and 6D, are previously unknown for leaf rust resistance in T. aestivum. PMID:26076040

  20. Genome-Wide Association Mapping for Resistance to Leaf and Stripe Rust in Winter-Habit Hexaploid Wheat Landraces.

    PubMed

    Kertho, Albert; Mamidi, Sujan; Bonman, J Michael; McClean, Phillip E; Acevedo, Maricelis

    2015-01-01

    Leaf rust, caused by Puccinia triticina (Pt), and stripe rust, caused by P. striiformis f. sp. tritici (Pst), are destructive foliar diseases of wheat worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Here we report a genome-wide association analysis of 567 winter wheat (Triticum aestivum) landrace accessions using the Infinium iSelect 9K wheat SNP array to identify loci associated with seedling resistance to five races of Pt (MDCL, MFPS, THBL, TDBG, and TBDJ) and one race of Pst (PSTv-37) frequently found in the Northern Great Plains of the United States. Mixed linear models identified 65 and eight significant markers associated with leaf rust and stripe rust, respectively. Further, we identified 31 and three QTL associated with resistance to Pt and Pst, respectively. Eleven QTL, identified on chromosomes 3A, 4A, 5A, and 6D, are previously unknown for leaf rust resistance in T. aestivum. PMID:26076040

  1. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.)

    PubMed Central

    2010-01-01

    higher extent of LD in the wheat D-genome versus the A- and B-genomes likely reflects the episodes of recent introgression and population bottleneck accompanying the origin of hexaploid wheat. The assessment of LD and population structure in this assembled panel of diverse lines provides critical information for the development of genetic resources for genome-wide association mapping of agronomically important traits in wheat. PMID:21190581

  2. Activation of latent nucleolus organizers induced by experimental polyploidization in cells of hexaploid wheat Triticum aestivum L.

    PubMed

    Lazareva, E M; Khoudoleeva, O A; Chentsov YuS; Polyakov VYu

    2000-01-01

    The effect of prolonged colchicine-induced polyploidization on activation of latent nucleolus-organizing regions (NOR) of chromosomes was studied in diploid meristematic cells and polyploid root cells of Triticum aestivum L. It has been shown that control diploid and tetraploid cells have maximal number of nucleoli equal to four, which corresponds to the number of nucleolar chromosomes (NC) with active (visualized by staining with AgNO3) NOR (two pairs of homologous chromosomes 1B and 6B). Treatment of wheat seedlings with colchicine for 30 h results in following changes in polyploid cells: (1) impregnation of NOR with silver is observed on homologues of either chromosomes 1A or 5D in all tetraploid metaphase plates (4n, 2x, 4c), which is indicative of the NOR activation on this chromosome in pre-mitotic polyploid interphase; (2) In tetraploid metaphase, NOR in all four homologues of activated chromosomes or in only two of them may be stained; (3) maximal number of nucleoli in tetraploid nuclei is increased till 12, which confirms activation of transcription of additional rRNA gene clusters in polyploids; (4) activation of the rRNA gene expression is induced by the cell polyploidization rather than by colchicine, since in the colchicine-treated diploid cells both maximal number of nucleoli and the number of metaphase chromosomes with active NOR is not changed as compared with control. The obtained data allow us to suggest that structural "separation" of NC in polyploid nuclei stimulates activation of latent NOR. PMID:11093578

  3. New insights into the origin of the B genome of hexaploid wheat: Evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides

    PubMed Central

    Salse, Jérome; Chagué, Véronique; Bolot, Stéphanie; Magdelenat, Ghislaine; Huneau, Cécile; Pont, Caroline; Belcram, Harry; Couloux, Arnaud; Gardais, Soazic; Evrard, Aurélie; Segurens, Béatrice; Charles, Mathieu; Ravel, Catherine; Samain, Sylvie; Charmet, Gilles; Boudet, Nathalie; Chalhoub, Boulos

    2008-01-01

    Background Several studies suggested that the diploid ancestor of the B genome of tetraploid and hexaploid wheat species belongs to the Sitopsis section, having Aegilops speltoides (SS, 2n = 14) as the closest identified relative. However molecular relationships based on genomic sequence comparison, including both coding and non-coding DNA, have never been investigated. In an attempt to clarify these relationships, we compared, in this study, sequences of the Storage Protein Activator (SPA) locus region of the S genome of Ae. speltoides (2n = 14) to that of the A, B and D genomes co-resident in the hexaploid wheat species (Triticum aestivum, AABBDD, 2n = 42). Results Four BAC clones, spanning the SPA locus of respectively the A, B, D and S genomes, were isolated and sequenced. Orthologous genomic regions were identified as delimited by shared non-transposable elements and non-coding sequences surrounding the SPA gene and correspond to 35 268, 22 739, 43 397 and 53 919 bp for the A, B, D and S genomes, respectively. Sequence length discrepancies within and outside the SPA orthologous regions are the result of non-shared transposable elements (TE) insertions, all of which inserted after the progenitors of the four genomes divergence. Conclusion On the basis of conserved sequence length as well as identity of the shared non-TE regions and the SPA coding sequence, Ae speltoides appears to be more evolutionary related to the B genome of T. aestivum than the A and D genomes. However, the differential insertions of TEs, none of which are conserved between the two genomes led to the conclusion that the S genome of Ae. speltoides has diverged very early from the progenitor of the B genome which remains to be identified. PMID:19032732

  4. Wheat in the Mediterranean revisited – tetraploid wheat landraces assessed with elite bread wheat Single Nucleotide Polymorphism markers

    PubMed Central

    2014-01-01

    Background Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat. Results We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer. Conclusions SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat. PMID:24885044

  5. Scarlet-Rz1, an EMS-generated hexaploid wheat with tolerance to the soilborne necrotrophic pathogens Rhizoctonia solani AG-8 and R. oryzae.

    PubMed

    Okubara, Patricia Ann; Steber, Camille M; Demacon, Victor L; Walter, Nathalie L; Paulitz, Timothy C; Kidwell, Kimberlee K

    2009-07-01

    The necrotrophic root pathogens Rhizoctonia solani AG-8 and R. oryzae cause Rhizoctonia root rot and damping-off, yield-limiting diseases that pose barriers to the adoption of conservation tillage in wheat production systems. Existing control practices are only partially effective, and natural genetic resistance to Rhizoctonia has not been identified in wheat or its close relatives. We report the first genetic resistance/tolerance to R. solani AG-8 and R. oryzae in wheat (Triticum aestivum L. em Thell) germplasm 'Scarlet-Rz1'. Scarlet-Rz1 was derived from the allohexaploid spring wheat cultivar Scarlet using EMS mutagenesis. Tolerant seedlings displayed substantial root and shoot growth after 14 days in the presence of 100-400 propagules per gram soil of R. solani AG-8 and R. oryzae in greenhouse assays. BC(2)F(4) individuals of Scarlet-Rz1 showed a high and consistent degree of tolerance. Seedling tolerance was transmissible and appeared to be dominant or co-dominant. Scarlet-Rz1 is a promising genetic resource for developing Rhizoctonia-tolerant wheat cultivars because the tolerance trait immediately can be deployed into wheat breeding germplasm through cross-hybridization, thereby avoiding difficulties with transfer from secondary or tertiary relatives as well as constraints associated with genetically modified plants. Our findings also demonstrate the utility of chemical mutagenesis for generating tolerance to necrotrophic pathogens in allohexaploid wheat.

  6. Genetically Divergent Types of the Wheat Leaf Fungus Puccinia triticina in Ethiopia, a Center of Tetraploid Wheat Diversity.

    PubMed

    Kolmer, J A; Acevedo, M A

    2016-04-01

    Collections of Puccinia triticina, the wheat leaf rust fungus, were obtained from tetraploid and hexaploid wheat in the central highlands of Ethiopia, and a smaller number from Kenya, from 2011 to 2013, in order to determine the genetic diversity of this wheat pathogen in a center of host diversity. Single-uredinial isolates were derived and tested for virulence phenotype to 20 lines of Thatcher wheat that differ for single leaf rust resistance genes and for molecular genotypes with 10 simple sequence repeat (SSR) primers. Nine virulence phenotypes were described among the 193 isolates tested for virulence. Phenotype BBBQJ, found only in Ethiopia, was predominantly collected from tetraploid wheat. Phenotype EEEEE, also found only in Ethiopia, was exclusively collected from tetraploid wheat and was avirulent to the susceptible hexaploid wheat 'Thatcher'. Phenotypes MBDSS and MCDSS, found in both Ethiopia and Kenya, were predominantly collected from common wheat. Phenotypes CCMSS, CCPSS, and CBMSS were found in Ethiopia from common wheat at low frequency. Phenotypes TCBSS and TCBSQ were found on durum wheat and common wheat in Kenya. Four groups of distinct SSR genotypes were described among the 48 isolates genotyped. Isolates with phenotypes BBBQJ and EEEEE were in two distinct SSR groups, and isolates with phenotypes MBDSS and MCDSS were in a third group. Isolates with CCMSS, CCPSS, CBMSS, TCBSS, and TCBSQ phenotypes were in a fourth SSR genotype group. The diverse host environment of Ethiopia has selected and maintained a genetically divergent population of P. triticina.

  7. Niche differentiation between diploid and hexaploid Aster amellus.

    PubMed

    Raabová, Jana; Fischer, Markus; Münzbergová, Zuzana

    2008-12-01

    The maintenance of separated diploid and polyploid populations within a contact zone is possible due to both prezygotic and postzygotic isolation mechanisms. Niche differentiation between two cytotypes may be an important prezygotic isolating mechanism and can be studied using reciprocal transplant experiments. We investigated niche differentiation between diploid and hexaploid Aster amellus in their contact zone in the Czech Republic. Diploid populations are confined to habitats with low productivity, whereas hexaploid populations occur in habitats with both low and high productivity. Thus, we chose three diploid populations and six hexaploid populations, three in each of the two different habitat types. We analyzed habitat characteristics and carried out reciprocal transplant experiments in the field using both seeds and adult plants. Sites of diploid and hexaploid populations differed significantly in vegetation and soil properties. The mean number of juveniles was higher at sites of home ploidy level than at sites of foreign ploidy level, suggesting niche differentiation between the two cytotypes. On the other hand, transplanted adult plants survived at all sites and juvenile plants were able to establish at some sites of the foreign cytotype. Furthermore, the mean number of juveniles, survival, and flowering percentages were higher at home sites than at foreign sites, indicating local adaptation. We conclude that niche differentiation between the two cytotypes and local adaptation within each cytotype may contribute to the maintenance of diploid and hexaploid populations of A. amellus in their contact zone. Moreover, further factors, such as differences in flowering phenology and exclusion of minority cytotypes, should also be considered.

  8. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are causing large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using...

  9. A 3,000-loci transcription map of chromosome 3B unravels the structural and functional features of gene islands in hexaploid wheat.

    PubMed

    Rustenholz, Camille; Choulet, Frédéric; Laugier, Christel; Safár, Jan; Simková, Hana; Dolezel, Jaroslav; Magni, Federica; Scalabrin, Simone; Cattonaro, Federica; Vautrin, Sonia; Bellec, Arnaud; Bergès, Hélène; Feuillet, Catherine; Paux, Etienne

    2011-12-01

    To improve our understanding of the organization and regulation of the wheat (Triticum aestivum) gene space, we established a transcription map of a wheat chromosome (3B) by hybridizing a newly developed wheat expression microarray with bacterial artificial chromosome pools from a new version of the 3B physical map as well as with cDNA probes derived from 15 RNA samples. Mapping data for almost 3,000 genes showed that the gene space spans the whole chromosome 3B with a 2-fold increase of gene density toward the telomeres due to an increase in the number of genes in islands. Comparative analyses with rice (Oryza sativa) and Brachypodium distachyon revealed that these gene islands are composed mainly of genes likely originating from interchromosomal gene duplications. Gene Ontology and expression profile analyses for the 3,000 genes located along the chromosome revealed that the gene islands are enriched significantly in genes sharing the same function or expression profile, thereby suggesting that genes in islands acquired shared regulation during evolution. Only a small fraction of these clusters of cofunctional and coexpressed genes was conserved with rice and B. distachyon, indicating a recent origin. Finally, genes with the same expression profiles in remote islands (coregulation islands) were identified suggesting long-distance regulation of gene expression along the chromosomes in wheat.

  10. A 3,000-Loci Transcription Map of Chromosome 3B Unravels the Structural and Functional Features of Gene Islands in Hexaploid Wheat1[W

    PubMed Central

    Rustenholz, Camille; Choulet, Frédéric; Laugier, Christel; Šafář, Jan; Šimková, Hana; Doležel, Jaroslav; Magni, Federica; Scalabrin, Simone; Cattonaro, Federica; Vautrin, Sonia; Bellec, Arnaud; Bergès, Hélène; Feuillet, Catherine; Paux, Etienne

    2011-01-01

    To improve our understanding of the organization and regulation of the wheat (Triticum aestivum) gene space, we established a transcription map of a wheat chromosome (3B) by hybridizing a newly developed wheat expression microarray with bacterial artificial chromosome pools from a new version of the 3B physical map as well as with cDNA probes derived from 15 RNA samples. Mapping data for almost 3,000 genes showed that the gene space spans the whole chromosome 3B with a 2-fold increase of gene density toward the telomeres due to an increase in the number of genes in islands. Comparative analyses with rice (Oryza sativa) and Brachypodium distachyon revealed that these gene islands are composed mainly of genes likely originating from interchromosomal gene duplications. Gene Ontology and expression profile analyses for the 3,000 genes located along the chromosome revealed that the gene islands are enriched significantly in genes sharing the same function or expression profile, thereby suggesting that genes in islands acquired shared regulation during evolution. Only a small fraction of these clusters of cofunctional and coexpressed genes was conserved with rice and B. distachyon, indicating a recent origin. Finally, genes with the same expression profiles in remote islands (coregulation islands) were identified suggesting long-distance regulation of gene expression along the chromosomes in wheat. PMID:22034626

  11. Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Frost tolerance is a key trait to ensure winter wheat survival. Natural variation for this trait is mainly associated with allelic differences at the VERNALIZATION 1 (VRN1) and FROST RESISTANCE 2 (FR2) loci. VRN1 regulates the transition between vegetative and reproductive stages and FR2, a locus in...

  12. Population Density and Distribution of Wheat Bugs Infesting Durum Wheat in Sardinia, Italy

    PubMed Central

    Salis, Luigi; Goula, Marta; Izquierdo, Jordi; Gordún, Elena

    2013-01-01

    Wheat is a very important crop in Italy, and is infested by wheat bugs belonging to the genera Eurygaster (Hemiptera: Scutellaridae) and Aelia (Hemiptera: Pentatomidae). Many wheat bug infestations have been reported in the north, south, and center of Italy, both in the past as well as recently. The present study was carried out in Sardinia, Italy, during two years (2007 and 2008). The objective of this study was to determine the species and distribution of wheat bugs in durum wheat fields in Sardinia, and to estimate their population density in order to know the incidence of the pest on the island. Sampling took place twice a year (May and June) in three zones, representative of durum wheat cropping in the island. Four species of wheat bugs were found; the predominant species was Eurygaster austriaca (Schrank), followed by Aelia germari (Kuster), Eurygaster maura L., and Aelia acuminata L. The average density of wheat bugs was low (1.1 individuals/m2), but in certain areas it was above the damage threshold (4 individuals/m2). For this reason, the conclusion of the study is that this pest should be monitored in order to control outbreaks and prevent their further spread. PMID:23906035

  13. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.).

    PubMed

    Maccaferri, Marco; Zhang, Junli; Bulli, Peter; Abate, Zewdie; Chao, Shiaoman; Cantu, Dario; Bossolini, Eligio; Chen, Xianming; Pumphrey, Michael; Dubcovsky, Jorge

    2015-01-20

    New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease.

  14. A Genome-Wide Association Study of Resistance to Stripe Rust (Puccinia striiformis f. sp. tritici) in a Worldwide Collection of Hexaploid Spring Wheat (Triticum aestivum L.)

    PubMed Central

    Maccaferri, Marco; Zhang, Junli; Bulli, Peter; Abate, Zewdie; Chao, Shiaoman; Cantu, Dario; Bossolini, Eligio; Chen, Xianming; Pumphrey, Michael; Dubcovsky, Jorge

    2015-01-01

    New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease. PMID:25609748

  15. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.).

    PubMed

    Maccaferri, Marco; Zhang, Junli; Bulli, Peter; Abate, Zewdie; Chao, Shiaoman; Cantu, Dario; Bossolini, Eligio; Chen, Xianming; Pumphrey, Michael; Dubcovsky, Jorge

    2015-03-01

    New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease. PMID:25609748

  16. Application of population sequencing (POPSEQ) for ordering and inputting genotyping-by-sequencing markers in hexaploid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The advancement of next-generation sequencing technologies in conjunction with new bioinformatics tools enabled fine-tuning of sequence-based high resolution mapping strategies for complex genomes. Although genotyping-by-sequencing (GBS) provides a large number of markers, its application for assoc...

  17. Contribution of wheat endogenous and wheat kernel associated microbial endoxylanases to changes in the arabinoxylan population during breadmaking.

    PubMed

    Dornez, Emmie; Cuyvers, Sven; Gebruers, Kurt; Delcour, Jan A; Courtin, Christophe M

    2008-03-26

    Wheat kernel associated endoxylanases consist of a majority of microbial endoxylanases and a minority of endogenous endoxylanases. At least part of these enzymes can be expected to end up in wheat flour upon milling. In this study, the contribution of both types of these endoxylanases to changes in the arabinoxylan (AX) population during wheat flour breadmaking was assessed. To this end, wheat flour produced from two wheat varieties with different endoxylanase activity levels, both before and after sodium hypochlorite surface treatment of the wheat kernels, was used in a straight dough breadmaking procedure. Monitoring of the AX population during the breadmaking process showed that changes in AX are to a large extent caused by endogenous endoxylanases, whereas the contribution of microbial endoxylanases to these changes was generally very low. The latter points to a limited contamination of wheat flour with microbial enzymes during milling or to an extensive inactivation of these wheat flour associated microbial endoxylanases by endoxylanase inhibitors, present in wheat flour. When all wheat kernel associated microbial endoxylanases were first washed from the kernels and then added to the bread recipe, they drastically affected the AX population, suggesting that they can have a large impact on whole meal breadmaking.

  18. Genetic basis of triticale breeding (x triticale). IV. Embryo culture for synthesizing primary hexaploid triticales

    SciTech Connect

    Gordei, I.A.; Khodortsova, L.F.

    1986-07-01

    Results are reported on enhancing the efficiency of embryo culture for synthesizing primary hexaploid triticales (AABBRR, 2n = 42). The antioxidant tomatoside has a positive effect on the reduction of progamous incompatibility of wheat with rye and increases the output of wheat-rye amphihaploids. It has been established that irradiation of embryos, cultured on nutrient medium, with helium-neon laser, increases significantly (P < 0.01) the regeneration frequency of the wheat-rye hybrid embryos. The highest frequency (40%) of amphidiploids was obtained by treating the plants with 0.15% colchicine through roots during the tillering phase. Hexaploid triticales from 11 cross combinations between tetraploid wheats (AABB, 2n = 28) and diploid rye (RR, 2n = 14) formed the initial material for breeding.

  19. Genetic mapping of race-specific stem rust resistance in the synthetic hexaploid W7984 x Opata M85 mapping population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem rust (caused by Puccinia graminis f. sp. tritici) has historically caused severe yield losses of wheat (Triticum aestivum) worldwide and has been one of the most feared diseases of wheat and barley (Hordeum vulgare). Stem rust has been controlled successfully through the use of resistant varie...

  20. Whole genome mapping and QTL analysis in a doubled haploid population derived from the cross between a synthetic hexaploid wheat and hard red spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative trait loci (QTL) analysis allows the identification of genomic regions associated with quantitative traits, which provides an estimation of the number and chromosomal location of genes involved and leads to the identification of molecular markers suitable for marker-assisted selection (...

  1. Change in biotypic diversity of Russian wheat aphid (Hemiptera: Aphididae) populations in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A key component of Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), management has been through planting resistant wheat cultivars. A new biotype, RWA2, appeared in 2003 which caused widespread damage to wheat cultivars containing Dn4 gene. Biotypic diversity in RWA populations has not been...

  2. Cytotype distribution at a diploid–hexaploid contact zone in Aster amellus (Asteraceae)

    PubMed Central

    Castro, S.; Loureiro, J.; Procházka, T.; Münzbergová, Z.

    2012-01-01

    Background and Aims The present study aims to assess the diversity and distribution of cytotypes of Aster amellus in central and eastern Europe, contributing with data to improve understanding of the evolutionary dynamics of the contact zone between diploids and hexaploids of this polyploid complex. Methods Large-scale cytotype screening of 4720 individuals collected in 229 populations was performed using 4′,6-diamidino-2-phenylindole (DAPI) flow cytometry. Fine-scale cytotype screening was performed in the mixed-ploidy population. Reproductive variables, such as number of florets per flower head, seed set and seedling emergence, as well as ploidy level of seeds and seedlings were recorded in this population. Key Results The diploid–hexaploid contact zone is large and complex, reaching the Czech Republic in the west, Austria in the south, Poland in the north-east and Romania in the extreme east of the surveyed areas. Most populations presented only one cytotype, either diploid or hexaploid. In several areas of the contact zone both cytotypes were found to grow in parapatry. One mixed-ploidy population of diploids and hexaploids was detected for the first time, but no signs of hybridization were detected. In this population, diploids had a significantly lower reproductive success, and significantly higher production of intercytotype offspring, being in reproductive disadvantage in comparison with hexaploids. Conclusions The contact zone of diploid and hexaploid A. amellus in central and eastern Europe seems to be highly dynamic and diffuse, with both primary and secondary contacts being possible. The obtained results suggest the origin of hexaploids through diploids, overall supporting previous hypotheses that this species is autopolyploid. Data from the only mixed-ploidy population detected so far suggest that the minority cytotype exclusion is an important evolutionary mechanisms driving the prevalence of single-cytotype populations, and thus contributing to

  3. Virulence structure of the eastern U.S. wheat powdery mildew population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the population structure of wheat powdery mildew in the eastern 2 U.S., and the most recent report on virulence in this pathogen population involved isolates 3 collected in 1993-94. In the present study, wheat leaves naturally infected with powdery mildew 4 were collected from ...

  4. Change in Biotypic Diversity of Russian Wheat Aphid (Hemiptera: Aphididae) Populations in the United States.

    PubMed

    Puterka, G J; Giles, K L; Brown, M J; Nicholson, S J; Hammon, R W; Peairs, F B; Randolph, T L; Michaels, G J; Bynum, E D; Springer, T L; Armstrong, J S; Mornhinweg, D W

    2015-04-01

    A key component of Russian wheat aphid, Diuraphis noxia (Kurdjumov), management has been through planting resistant wheat cultivars. A new biotype, RWA2, appeared in 2003 which caused widespread damage to wheat cultivars containing the Dn4 gene. Biotypic diversity in Russian wheat aphid populations has not been addressed since 2005 when RWA2 dominated the biotype complex. Our objectives were to determine the biotypic diversity in the Central Great Plains and Colorado Plateau at regional (2010, 2011, 2013) and local (2012) levels and detect the presence of new Russian wheat aphid biotypes. Regional and within-field aphid collections were screened against Russian wheat aphid-resistant wheat genotypes containing genes Dn3, Dn4, Dn6, Dn7, Dn9, CI2401; and resistant barley STARS 9301B. In 2010, all aphid collections from Texas were avirulent to the Dn4 resistance gene in wheat. Regional results revealed Dn4 avirulent RWA6 was widespread (55-84%) in populations infesting wheat in both regions. Biotypes RWA1, 2, and 3/7 were equally represented with percentages<20% each while RWA8 was rarely detected. Combining percentages of RWA1, 6, and 8 across regions to estimate avirulence to Dn4 gene revealed high percentages for both 2011 (64-80%) and 2013 (69-90%). In contrast, the biotype structure at the local level differed where biotype percentages varied up to ≥2-fold between fields. No new biotypes were detected; therefore, Dn7, CI2401, and STARS9301B remained resistant to all known Russian wheat aphid biotypes. This study documents a shift to Dn4 avirulent biotypes and serves as a valuable baseline for biotypic diversity in Russian wheat aphid populations prior to the deployment of new Russian wheat aphid-resistant wheat cultivars.

  5. Change in Biotypic Diversity of Russian Wheat Aphid (Hemiptera: Aphididae) Populations in the United States.

    PubMed

    Puterka, G J; Giles, K L; Brown, M J; Nicholson, S J; Hammon, R W; Peairs, F B; Randolph, T L; Michaels, G J; Bynum, E D; Springer, T L; Armstrong, J S; Mornhinweg, D W

    2015-04-01

    A key component of Russian wheat aphid, Diuraphis noxia (Kurdjumov), management has been through planting resistant wheat cultivars. A new biotype, RWA2, appeared in 2003 which caused widespread damage to wheat cultivars containing the Dn4 gene. Biotypic diversity in Russian wheat aphid populations has not been addressed since 2005 when RWA2 dominated the biotype complex. Our objectives were to determine the biotypic diversity in the Central Great Plains and Colorado Plateau at regional (2010, 2011, 2013) and local (2012) levels and detect the presence of new Russian wheat aphid biotypes. Regional and within-field aphid collections were screened against Russian wheat aphid-resistant wheat genotypes containing genes Dn3, Dn4, Dn6, Dn7, Dn9, CI2401; and resistant barley STARS 9301B. In 2010, all aphid collections from Texas were avirulent to the Dn4 resistance gene in wheat. Regional results revealed Dn4 avirulent RWA6 was widespread (55-84%) in populations infesting wheat in both regions. Biotypes RWA1, 2, and 3/7 were equally represented with percentages<20% each while RWA8 was rarely detected. Combining percentages of RWA1, 6, and 8 across regions to estimate avirulence to Dn4 gene revealed high percentages for both 2011 (64-80%) and 2013 (69-90%). In contrast, the biotype structure at the local level differed where biotype percentages varied up to ≥2-fold between fields. No new biotypes were detected; therefore, Dn7, CI2401, and STARS9301B remained resistant to all known Russian wheat aphid biotypes. This study documents a shift to Dn4 avirulent biotypes and serves as a valuable baseline for biotypic diversity in Russian wheat aphid populations prior to the deployment of new Russian wheat aphid-resistant wheat cultivars. PMID:26470192

  6. Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species.

    PubMed

    Yu, Q; Ahmad-Hamdani, M S; Han, H; Christoffers, M J; Powles, S B

    2013-03-01

    Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance. We studied plastidic acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicide resistance in hexaploid wild oat and revealed that resistant individuals can express one, two or three different plastidic ACCase gene resistance mutations (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg). Using ACCase resistance mutations as molecular markers, combined with genetic, molecular and biochemical approaches, we found in individual resistant wild-oat plants that (1) up to three unlinked ACCase gene loci assort independently following Mendelian laws for disomic inheritance, (2) all three of these homoeologous ACCase genes were transcribed, with each able to carry its own mutation and (3) in a hexaploid background, each individual ACCase resistance mutation confers relatively low-level herbicide resistance, in contrast to high-level resistance conferred by the same mutations in unrelated diploid weed species of the Poaceae (grass) family. Low resistance conferred by individual ACCase resistance mutations is likely due to a dilution effect by susceptible ACCase expressed by homoeologs in hexaploid wild oat and/or differential expression of homoeologous ACCase gene copies. Thus, polyploidy in hexaploid wild oat may slow resistance evolution. Evidence of coexisting non-target-site resistance mechanisms among wild-oat populations was also revealed. In all, these results demonstrate that herbicide resistance and its evolution can be more complex in hexaploid wild oat than in unrelated diploid grass weeds. Our data provide a starting point for the daunting task of understanding resistance evolution in polyploids.

  7. Exceptionally High Levels of Genetic Diversity in Wheat Curl Mite (Acari: Eriophyidae) Populations from Turkey.

    PubMed

    Szydło, W; Hein, G; Denizhan, E; Skoracka, A

    2015-08-01

    Recent research on the wheat curl mite species complex has revealed extensive genetic diversity that has distinguished several genetic lineages infesting bread wheat (Triticum aestivum L.) and other cereals worldwide. Turkey is the historical region of wheat and barley (Hordeum vulgare L.) domestication and diversification. The close relationship between these grasses and the wheat curl mite provoked the question of the genetic diversity of the wheat curl mite in this region. The scope of the study was to investigate genetic differentiation within the wheat curl mite species complex on grasses in Turkey. Twenty-one wheat curl mite populations from 16 grass species from nine genera (Agropyron sp., Aegilops sp., Bromus sp., Elymus sp., Eremopyrum sp., Hordeum sp., Poa sp., Secale sp., and Triticum sp.) were sampled in eastern and southeastern Turkey for genetic analyses. Two molecular markers were amplified: the cytochrome oxidase subunit I coding region of mtDNA (COI) and the D2 region of 28S rDNA. Phylogenetic analyses revealed high genetic variation of the wheat curl mite in Turkey, primarily on Bromus and Hordeum spp., and exceptionally high diversity of populations associated with bread wheat. Three wheat-infesting wheat curl mite lineages known to occur on other continents of the world, including North and South America, Australia and Europe, were found in Turkey, and at least two new genetic lineages were discovered. These regions of Turkey exhibit rich wheat curl mite diversity on native grass species. The possible implications for further studies on the wheat curl mite are discussed. PMID:26470350

  8. Exceptionally High Levels of Genetic Diversity in Wheat Curl Mite (Acari: Eriophyidae) Populations from Turkey.

    PubMed

    Szydło, W; Hein, G; Denizhan, E; Skoracka, A

    2015-08-01

    Recent research on the wheat curl mite species complex has revealed extensive genetic diversity that has distinguished several genetic lineages infesting bread wheat (Triticum aestivum L.) and other cereals worldwide. Turkey is the historical region of wheat and barley (Hordeum vulgare L.) domestication and diversification. The close relationship between these grasses and the wheat curl mite provoked the question of the genetic diversity of the wheat curl mite in this region. The scope of the study was to investigate genetic differentiation within the wheat curl mite species complex on grasses in Turkey. Twenty-one wheat curl mite populations from 16 grass species from nine genera (Agropyron sp., Aegilops sp., Bromus sp., Elymus sp., Eremopyrum sp., Hordeum sp., Poa sp., Secale sp., and Triticum sp.) were sampled in eastern and southeastern Turkey for genetic analyses. Two molecular markers were amplified: the cytochrome oxidase subunit I coding region of mtDNA (COI) and the D2 region of 28S rDNA. Phylogenetic analyses revealed high genetic variation of the wheat curl mite in Turkey, primarily on Bromus and Hordeum spp., and exceptionally high diversity of populations associated with bread wheat. Three wheat-infesting wheat curl mite lineages known to occur on other continents of the world, including North and South America, Australia and Europe, were found in Turkey, and at least two new genetic lineages were discovered. These regions of Turkey exhibit rich wheat curl mite diversity on native grass species. The possible implications for further studies on the wheat curl mite are discussed.

  9. Diets of differentially processed wheat alter ruminal fermentation parameters and microbial populations in beef cattle.

    PubMed

    Jiang, S Z; Yang, Z B; Yang, W R; Li, Z; Zhang, C Y; Liu, X M; Wan, F C

    2015-11-01

    The influences of differently processed wheat products on rumen fermentation, microbial populations, and serum biochemistry profiles in beef cattle were studied. Four ruminally cannulated Limousin × Luxi beef cattle (400 ± 10 kg) were used in the experiment with a 4 × 4 Latin square design. The experimental diets contained (on a DM basis) 60% corn silage as a forage source and 40% concentrate with 4 differently processed wheat products (extruded, pulverized, crushed, and rolled wheat). Concentrations of ruminal NH-N and microbial protein (MCP) in cattle fed crushed and rolled wheat were greater ( < 0.05) than the corresponding values in cattle fed pulverized and extruded wheat. Ruminal concentrations of total VFA and acetate and the ratio of acetate to propionate decreased ( < 0.05) with increased geometric mean particle size (geometric mean diameter) of processed wheat, except for extruded wheat; cattle fed extruded wheat had the lowest concentrations of total VFA and acetate among all treatments. The relative abundance of , , ciliated protozoa, and was lower in cattle fed the pulverized wheat diet than in the other 3 diets ( < 0.05), whereas the relative abundance of was decreased in cattle fed extruded wheat compared with cattle fed crushed and rolled wheat ( < 0.05). No treatment effect was obtained for serum enzyme activity and protein concentration ( > 0.05). Our findings suggest that the method of wheat processing could have a significant effect on ruminal fermentation parameters and microbial populations in beef cattle and that crushed and rolled processing is better in terms of ruminal NH-N and MCP content, acetate-to-propionate ratio, and relative abundance of rumen microorganisms.

  10. Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat

    PubMed Central

    Pearce, Stephen; Zhu, Jie; Boldizsár, Ákos; Vágújfalvi, Attila; Burke, Adrienne; Garland-Campbell, Kimberley; Galiba, Gábor; Dubcovsky, Jorge

    2016-01-01

    Wheat plants which are exposed to periods of low temperatures (cold acclimation) exhibit increased survival rates when they are subsequently exposed to freezing temperatures. This process is associated with large-scale changes in the transcriptome which are modulated by a set of tandemly duplicated CBF (C-repeat Binding Factor) transcription factors located at the Fr-2 (Frost Resistance-2) locus. While Arabidopsis has three tandemly duplicated CBF genes, the CBF family in wheat has undergone an expansion and at least 15 CBF genes have been identified, eleven of which are present at the Fr-2 loci on homoeologous group 5 chromosomes. We report here the discovery of three large deletions which eliminate six, nine, and all eleven CBF genes from the Fr-B2 locus in tetraploid and hexaploid wheat. In wild emmer wheat, the Fr-B2 deletions were found only among the accessions from the southern sub-populations. Among cultivated wheats, the Fr-B2 deletions were more common among varieties with a spring growth habit than among those with a winter growth habit. Replicated freezing tolerance experiments showed that both the deletion of nine CBF genes in tetraploid wheat and the complete Fr-B2 deletion in hexaploid wheat are associated with significant reductions in survival after exposure to freezing temperatures. Our results suggest that selection for the wild type Fr-B2 allele may be beneficial for breeders selecting for varieties with improved frost tolerance. PMID:23884601

  11. [Population dynamics of ground carabid beetles and spiders in a wheat field along the wheat-alfalfa interface and their response to alfalfa mowing].

    PubMed

    Liu, Wen-Hui; Hu, Yi-Jun; Hu, Wen-Chao; Hong, Bo; Guan, Xiao-Qing; Ma, Shi-Yu; He, Da-Han

    2014-09-01

    Taking the wheat-alfalfa and wheat-wheat interfaces as model systems, sampling points were set by the method of pitfall trapping in the wheat field at the distances of 3 m, 6 m, 9 m, 12 m, 15 m, 18 m, 21 m, 24 m, and 27 m from the interface. The species composition and abundance of ground carabid beetles and spiders captured in pitfalls were investigated. The results showed that, to some extent there was an edge effect on species diversity and abundance of ground carabid beetles and spiders along the two interfaces. A marked edge effect was observed between 15 m and 18 m along the alfalfa-wheat interface, while no edge effect was found at a distance over 20 m. The edge effect along the wheat-wheat interface was weaker in comparison to the alfalfa-wheat interface. Alfalfa mowing resulted in the migration of a large number of ground carabid beetles and spiders to the adjacent wheat filed. During ten days since mowing, both species and abundance of ground carabid beetles and spiders increased in wheat filed within the distance of 20 m along the alfalfa-wheat interface. The spatial distribution of species diversity of ground beetles and spiders, together with the population abundance of the dominant Chlaenius pallipes and Pardosa astrigera, were depicted, which could directly indicate the migrating process of natural enemy from alfalfa to wheat field. PMID:25757322

  12. Genetically divergent types of the wheat leaf fungus Puccinia triticina in Ethiopia, a center of tetraploid wheat diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Collections of Puccinia triticina, the wheat leaf rust fungus, were obtained from tetraploid and hexaploid wheat in the central highlands of Ethiopia, and a smaller number from Kenya from 2011 to 2013, in order to determine the genetic diversity of this wheat pathogen in a center of host diversity. ...

  13. Mapping stripe rust resistance genes in a Brundage x Coda winter wheat recombinant inbred line population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recombinant inbred line (RIL) mapping population developed from a cross between winter wheat (Triticum aestivum L.) cultivars Coda and Brundage was evaluated for reaction to stripe rust (caused by Puccinia striiformis f. sp. tritici). Two hundred and sixty eight RIL from the population were evalua...

  14. Identification of genome-specific transcripts in wheat-rye translocation lines.

    PubMed

    Lee, Tong Geon; Seo, Yong Weon

    2015-09-01

    Studying gene expression in wheat-rye translocation lines is complicated due to the presence of homeologs in hexaploid wheat and high levels of synteny between wheat and rye genomes (Naranjo and Fernandez-Rueda, 1991 [1]; Devos et al., 1995 [2]; Lee et al., 2010 [3]; Lee et al., 2013 [4]). To overcome limitations of current gene expression studies on wheat-rye translocation lines and identify genome-specific transcripts, we developed a custom Roche NimbleGen Gene Expression microarray that contains probes derived from the sequence of hexaploid wheat, diploid rye and diploid progenitors of hexaploid wheat genome (Lee et al., 2014). Using the array developed, we identified genome-specific transcripts in a wheat-rye translocation line (Lee et al., 2014). Expression data are deposited in the NCBI Gene Expression Omnibus (GEO) under accession number GSE58678. Here we report the details of the methods used in the array workflow and data analysis.

  15. Identification of genome-specific transcripts in wheat-rye translocation lines.

    PubMed

    Lee, Tong Geon; Seo, Yong Weon

    2015-09-01

    Studying gene expression in wheat-rye translocation lines is complicated due to the presence of homeologs in hexaploid wheat and high levels of synteny between wheat and rye genomes (Naranjo and Fernandez-Rueda, 1991 [1]; Devos et al., 1995 [2]; Lee et al., 2010 [3]; Lee et al., 2013 [4]). To overcome limitations of current gene expression studies on wheat-rye translocation lines and identify genome-specific transcripts, we developed a custom Roche NimbleGen Gene Expression microarray that contains probes derived from the sequence of hexaploid wheat, diploid rye and diploid progenitors of hexaploid wheat genome (Lee et al., 2014). Using the array developed, we identified genome-specific transcripts in a wheat-rye translocation line (Lee et al., 2014). Expression data are deposited in the NCBI Gene Expression Omnibus (GEO) under accession number GSE58678. Here we report the details of the methods used in the array workflow and data analysis. PMID:26484243

  16. Reproduction and Population Dynamics as Biotypic Markers of Russian Wheat Aphid Diuraphis noxia (Kurdjumov)

    PubMed Central

    Ngenya, Watson; Malinga, Joyce; Tabu, Isaiah; Masinde, Emily

    2016-01-01

    Russian wheat aphid Diuraphis noxia (Kurdjumov) is widely established in wheat-growing countries where it causes significant economic losses. The development and use of Russian wheat aphid (RWA)-resistant wheat varieties has been constrained by the variation in resident RWA populations and the evolution of virulent biotypes. An experiment was set up at the Kenya Agricultural and Livestock Research Organization (KALRO), Njoro, to characterize RWA populations based on phenotypic characteristics of reproduction, development and population dynamics. RWA populations from the regions of Eldoret, Mau Narok and Njoro were used in the study. A factorial experiment was set up in randomized complete block design replicated eleven times. A single day-old nymph was placed on a new, fully-open leaf in a 0.5 cm-diameter clear plastic straw leaf cage and observed daily for its entire lifetime. The results showed that there were variations in aphid lifespan, reproductive longevity and aphid fecundity between populations, indicating that the phenotypic markers used to determine biotypes were good enough to show distinct biotypes among populations of the RWA in Kenya. Further, the study concluded that the use of phenotypic life and reproductive markers was a valid way of characterizing biotypes of RWA worldwide. PMID:27049398

  17. Registration of the LouAu (Louise/IWA8608077) wheat recombinant inbred line mapping population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    LouAu (Louise/IWA8608077) is a wheat (Triticum aestivum L.) recombinant inbred line population developed by the United States Department of Agriculture-Agriculture Research Service, with Oregon State and Washington State Universities, from a cross between the soft white spring cultivar 'Louise' and ...

  18. Irrigation differentially impacts populations of indigenous antibiotic-producing Pseudomonas spp. in the rhizosphere of wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work determined the impact of irrigation on the seasonal dynamics of populations of Pseudomonas spp. producing the antibiotics phenazine-1-carboxylic acid (Phz+) and 2,4-diacetylphloroglucinol (Phl+) in the rhizosphere of wheat grown in the low precipitation zone (150 to 300 mm annually) of the...

  19. Utilization of deletion bins to anchor and order sequences along the wheat 7B chromosome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bread wheat (Triticum aestivum L.) has a large, complex and highly repetitive genome which is challenging to assemble into high quality pseudo-chromosomes. As part of the international effort to sequence the hexaploid bread wheat genome by the international wheat genome sequencing consortium (IWGSC)...

  20. De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticum monococcum (2n), a close ancestor of the A-genome progenitor of cultivated hexaploid wheat, was used as a model to study components regulating photomorphogenesis in diploid wheat. Constructed were genome-wide transcriptomes of two Triticum monococcum subspecies, the wild winter wheat T. mo...

  1. Evaluation of seedling resistance to tan spot and Stagonospora nodorum blotch in tetraploid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tetraploid durum wheat (Triticum turgidum L. ssp. durum, 2n = 4x = 28, AABB) is an important cereal specifically used for making pasta products but its production is more vulnerable to various wheat diseases than hexaploid bread wheat (T. aestivum L., 2n = 6x = 42, AABBDD). In order to identify res...

  2. Aneuploidy among androgenic progeny of hexaploid triticale (XTriticosecale Wittmack).

    PubMed

    Oleszczuk, Sylwia; Rabiza-Swider, Julita; Zimny, Janusz; Lukaszewski, Adam J

    2011-04-01

    Doubled haploids are an established tool in plant breeding and research. Of several methods for their production, androgenesis is technically simple and can efficiently produce substantial numbers of lines. It is well suited to such crops as hexaploid triticale. Owing to meiotic irregularities of triticale hybrids, aneuploidy may affect the efficiency of androgenesis more severely than in meiotically stable crops. This study addresses the issue of aneuploidy among androgenic regenerants of triticale. Plant morphology, seed set and seed quality were better predictors of aneuploidy, as determined cytologically, than flow cytometry. Most aneuploids were hypoploids and these included nullisomics, telosomics, and translocation lines; among 42 chromosome plants were nulli-tetrasomics. Rye chromosomes involved in aneuploidy greatly outnumbered wheat chromosomes; in C(0) rye chromosomes 2R and 5R were most frequently involved. While the frequency of nullisomy 2R was fairly constant in most cross combinations, nullisomy 5R was more frequent in the most recalcitrant combination, and its frequency increased with time spent in culture with up to 70% of green plants recovered late being nullisomic 5R. Given that 5R was not involved in meiotic aberrations with an above-average frequency, it is possible that its absence promotes androgenesis or green plant regeneration. Overall, aneuploidy among tested combinations reduced the average efficiency of double haploid production by 35% and by 69% in one recalcitrant combination, seriously reducing the yield of useful lines. PMID:21170716

  3. Low crop plant population densities promote pollen-mediated gene flow in spring wheat (Triticum aestivum L.).

    PubMed

    Willenborg, Christian J; Brûlé-Babel, Anita L; Van Acker, Rene C

    2009-12-01

    Transgenic wheat is currently being field tested with the intent of eventual commercialization. The development of wheat genotypes with novel traits has raised concerns regarding the presence of volunteer wheat populations and the role they may play in facilitating transgene movement. Here, we report the results of a field experiment that investigated the potential of spring wheat plant population density and crop height to minimize gene flow from a herbicide-resistant (HR) volunteer population to a non-HR crop. Pollen-mediated gene flow (PMGF) between the HR volunteer wheat population and four conventional spring wheat genotypes varying in height was assessed over a range of plant population densities. Natural hybridization events between the two cultivars were detected by phenotypically scoring plants in F(1) populations followed by verification with Mendelian segregation ratios in the F(1:2) families. PMGF was strongly associated with crop yield components, but showed no association with flowering synchrony. Maximum observed PMGF was always less than 0.6%, regardless of crop height and density. The frequency of PMGF in spring wheat decreased exponentially with increasing plant population density, but showed no dependence on either crop genotype or height. However, increasing plant densities beyond the recommended planting rate of 300 cropped wheat plants m(-2) provided no obvious benefit to reducing PMGF. Nevertheless, our results demonstrate a critical plant density of 175-200 cropped wheat plants m(-2) below which PMGF frequencies rise exponentially with decreasing plant density. These results will be useful in the development of mechanistic models and best management practices that collectively facilitate the coexistence of transgenic and nontransgenic wheat crops. PMID:19387859

  4. Absence of gene flow between diploids and hexaploids of Aster amellus at multiple spatial scales.

    PubMed

    Münzbergová, Z; Surinová, M; Castro, S

    2013-02-01

    The potential for gene exchange across ploidy levels has long been recognized, but only a few studies have explored the rate of gene flow among different cytotypes. In addition, most of the existing knowledge comes from contact zones between diploids and tetraploids. The purpose of this paper was to investigate relationships between diploid and hexaploid individuals within the Aster amellus aggregate. A. amellus is known to occur in diploid and hexaploid cytotypes in Europe, with a complex contact zone in central Europe. Patterns of genetic diversity were investigated using seven microsatellite loci at three different spatial scales: (1) in the single known mixed-ploidy population; (2) in populations at the contact zone and (3) in a wider range of populations across Europe. The results show clear separation of the cytotypes at all three spatial scales. In addition, analysis of molecular variance strongly supported a model predicting a single origin of the hexaploids, with no or very limited gene flow between the cytotypes. Some hexaploid individuals found in the mixed-ploidy population, however, fell into the diploid cluster. This could suggest recurrent polyploid formation or occasional cross-pollination between cytotypes; however, there are strong post-zygotic breeding barriers between the two cytotypes, making the latter less plausible. Overall, the results suggest that the cytotypes could represent two cryptic species. Nevertheless, their formal separation is difficult as they cannot be distinguished morphologically, occupy very similar habitat conditions and have largely overlapping distribution ranges. These results show that polyploid complexes must be treated with caution as they can hide biological diversity and can have different adaptation potentials, evolving independently.

  5. A multiparent advanced generation inter-cross population for genetic analysis in wheat.

    PubMed

    Huang, Bevan E; George, Andrew W; Forrest, Kerrie L; Kilian, Andrzej; Hayden, Matthew J; Morell, Matthew K; Cavanagh, Colin R

    2012-09-01

    We present the first results from a novel multiparent advanced generation inter-cross (MAGIC) population derived from four elite wheat cultivars. The large size of this MAGIC population (1579 progeny), its diverse genetic composition and high levels of recombination all contribute to its value as a genetic resource. Applications of this resource include interrogation of the wheat genome and the analysis of gene-trait association in agronomically important wheat phenotypes. Here, we report the utilization of a MAGIC population for the first time for linkage map construction. We have constructed a linkage map with 1162 DArT, single nucleotide polymorphism and simple sequence repeat markers distributed across all 21 chromosomes. We benchmark this map against a high-density DArT consensus map created by integrating more than 100 biparental populations. The linkage map forms the basis for further exploration of the genetic architecture within the population, including characterization of linkage disequilibrium, founder contribution and inclusion of an alien introgression into the genetic map. Finally, we demonstrate the application of the resource for quantitative trait loci mapping using the complex traits plant height and hectolitre weight as a proof of principle.

  6. Population genetic analysis and trichothecene profiling of Fusarium graminearum from wheat in Uruguay.

    PubMed

    Pan, D; Mionetto, A; Calero, N; Reynoso, M M; Torres, A; Bettucci, L

    2016-01-01

    Fusarium graminearum sensu stricto (F. graminearum s.s.) is the major causal agent of Fusarium head blight of wheat worldwide, and contaminates grains with trichothecene mycotoxins that cause serious threats to food safety and animal health. An important aspect of managing this pathogen and reducing mycotoxin contamination of wheat is knowledge regarding its population genetics. Therefore, isolates of F. graminearum s.s. from the major wheat-growing region of Uruguay were analyzed by amplified fragment length polymorphism assays, PCR genotyping, and chemical analysis of trichothecene production. Of the 102 isolates identified as having the 15-ADON genotype via PCR genotyping, all were DON producers, but only 41 strains were also 15-ADON producers, as determined by chemical analysis. The populations were genotypically diverse but genetically similar, with significant genetic exchange occurring between them. Analysis of molecular variance indicated that most of the genetic variability resulted from differences between isolates within populations. Multilocus linkage disequilibrium analysis suggested that the isolates had a panmictic population genetic structure and that there is significant recombination occurs in F. graminearum s.s. In conclusion, tour findings provide the first detailed description of the genetic structure and trichothecene production of populations of F. graminearum s.s. from Uruguay, and expands our understanding of the agroecology of F. graminearum and of the correlation between genotypes and trichothecene chemotypes. PMID:26985955

  7. Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil.

    PubMed

    Maciel, João L Nunes; Ceresini, Paulo C; Castroagudin, Vanina L; Zala, Marcelo; Kema, Gerrit H J; McDonald, Bruce A

    2014-01-01

    Since its first report in Brazil in 1985, wheat blast, caused by Magnaporthe oryzae (anamorph: Pyricularia oryzae), has become increasingly important in South America, where the disease is still spreading. We used 11 microsatellite loci to elucidate the population structure of the wheat blast pathogen in wheat fields in central-western, southeastern, and southern Brazil. No subdivision was found among the wheat-infecting populations, consistent with high levels of gene flow across a large spatial scale. Although the clonal fraction was relatively high and the two mating type idiomorphs (MAT1-1 and MAT1-2) were not at similar frequencies, the clone-corrected populations from Distrito Federal and Goiás, Minas Triangle, and São Paulo were in gametic equilibrium. Based on these findings, we propose that populations of the wheat blast pathogen exhibit a mixed reproductive system in which sexual reproduction is followed by the local dispersal of clones. Seedling virulence assays with local wheat cultivars differentiated 14 pathotypes in the current population. Detached head virulence assays differentiated eight virulence groups on the same wheat cultivars. There was no correlation between seedling and head reactions. PMID:23901831

  8. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    PubMed

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-01

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population.

  9. Population Genetic Analysis of an Eastern U.S. Wheat Powdery Mildew Population Reveals Geographic and Recent Common Ancestry with U.K. and Israeli Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The structure of the U.S. wheat powdery mildew population (Blumeria graminis f. sp. tritici) has not been investigated, and the global evolutionary history of B. g. tritici is largely unknown. After gathering 141 single-ascoporic B. g. tritici isolates from 10 eastern U.S. locations, 34 isolates fr...

  10. Rapid Elimination of Low-Copy DNA Sequences in Polyploid Wheat: A Possible Mechanism for Differentiation of Homoeologous Chromosomes

    PubMed Central

    Feldman, M.; Liu, B.; Segal, G.; Abbo, S.; Levy, A. A.; Vega, J. M.

    1997-01-01

    To study genome evolution in allopolyploid plants, we analyzed polyploid wheats and their diploid progenitors for the occurrence of 16 low-copy chromosome- or genome-specific sequences isolated from hexaploid wheat. Based on their occurrence in the diploid species, we classified the sequences into two groups: group I, found in only one of the three diploid progenitors of hexaploid wheat, and group II, found in all three diploid progenitors. The absence of group II sequences from one genome of tetraploid wheat and from two genomes of hexaploid wheat indicates their specific elimination from these genomes at the polyploid level. Analysis of a newly synthesized amphiploid, having a genomic constitution analogous to that of hexaploid wheat, revealed a pattern of sequence elimination similar to the one found in hexaploid wheat. Apparently, speciation through allopolyploidy is accompanied by a rapid, nonrandom elimination of specific, low-copy, probably noncoding DNA sequences at the early stages of allopolyploidization, resulting in further divergence of homoeologous chromosomes (partially homologous chromosomes of different genomes carrying the same order of gene loci). We suggest that such genomic changes may provide the physical basis for the diploid-like meiotic behavior of polyploid wheat. PMID:9383078

  11. Inferring recent outcrossing rates using multilocus individual heterozygosity: application to evolving wheat populations.

    PubMed Central

    Enjalbert, J; David, J L

    2000-01-01

    Using multilocus individual heterozygosity, a method is developed to estimate the outcrossing rates of a population over a few previous generations. Considering that individuals originate either from outcrossing or from n successive selfing generations from an outbred ancestor, a maximum-likelihood (ML) estimator is described that gives estimates of past outcrossing rates in terms of proportions of individuals with different n values. Heterozygosities at several unlinked codominant loci are used to assign n values to each individual. This method also allows a test of whether populations are in inbreeding equilibrium. The estimator's reliability was checked using simulations for different mating histories. We show that this ML estimator can provide estimates of outcrossing rates for the final generation outcrossing rate (t(0)) and a mean of the preceding rates (t(p)) and can detect major temporal variation in the mating system. The method is most efficient for low to intermediate outcrossing levels. Applied to nine populations of wheat, this method gave estimates of t(0) and t(p). These estimates confirmed the absence of outcrossing t(0) = 0 in the two populations subjected to manual selfing. For free-mating wheat populations, it detected lower final generation outcrossing rates t(0) = 0-0.06 than those expected from global heterozygosity t = 0.02-0.09. This estimator appears to be a new and efficient way to describe the multilocus heterozygosity of a population, complementary to Fis and progeny analysis approaches. PMID:11102388

  12. Efficiently Tracking Selection in a Multiparental Population: The Case of Earliness in Wheat

    PubMed Central

    Thépot, Stéphanie; Restoux, Gwendal; Goldringer, Isabelle; Hospital, Frédéric; Gouache, David; Mackay, Ian; Enjalbert, Jérôme

    2015-01-01

    Multiparental populations are innovative tools for fine mapping large numbers of loci. Here we explored the application of a wheat Multiparent Advanced Generation Inter-Cross (MAGIC) population for QTL mapping. This population was created by 12 generations of free recombination among 60 founder lines, following modification of the mating system from strict selfing to strict outcrossing using the ms1b nuclear male sterility gene. Available parents and a subset of 380 SSD lines of the resulting MAGIC population were phenotyped for earliness and genotyped with the 9K i-Select SNP array and additional markers in candidate genes controlling heading date. We demonstrated that 12 generations of strict outcrossing rapidly and drastically reduced linkage disequilibrium to very low levels even at short map distances and also greatly reduced the population structure exhibited among the parents. We developed a Bayesian method, based on allelic frequency, to estimate the contribution of each parent in the evolved population. To detect loci under selection and estimate selective pressure, we also developed a new method comparing shifts in allelic frequency between the initial and the evolved populations due to both selection and genetic drift with expectations under drift only. This evolutionary approach allowed us to identify 26 genomic areas under selection. Using association tests between flowering time and polymorphisms, 6 of these genomic areas appeared to carry flowering time QTL, 1 of which corresponds to Ppd-D1, a major gene involved in the photoperiod sensitivity. Frequency shifts at 4 of 6 areas were consistent with earlier flowering of the evolved population relative to the initial population. The use of this new outcrossing wheat population, mixing numerous initial parental lines through multiple generations of panmixia, is discussed in terms of power to detect genes under selection and association mapping. Furthermore we provide new statistical methods for use in

  13. Effect of bacterial population density on germination wheat seeds and dynamics of simple artificial ecosystems

    NASA Astrophysics Data System (ADS)

    Somova, L. A.; Pechurkin, N. S.; Sarangova, A. B.; Pisman, T. I.

    Effect of the size of rhizospheric bacterial populations on germination of seeds and development of simple terrestrial "wheat plants - rhizospheric microorganisms - artificial soil" and "wheat plants - artificial soil" systems has been studied. Experiments demonstrated that within specify ranges in the inoculate, the rhizospheric bacteria are capable of increasing the yield of germinated seeds and stimulate the growth of plantlets. Germination of seeds inoculated with bacteria was either stimulated, or inhibited or remained at control levels depending on the amount of bacteria. Plant biomass growth and total photoassimilation has been found to depend on the amount of bacteria on the plant roots: the higher the amount of bacteria on plant roots, the smaller is the biomass of plants but the total photoassimilation is, higher. Thus, depending on the amount of bacteria on the roots of plants the system either increases the biomass of plants or increases the total photoassimilation, i.e. "pumps" carbon through itself involving bacteria.

  14. Ancient DNA from 8400 Year-Old Çatalhöyük Wheat: Implications for the Origin of Neolithic Agriculture.

    PubMed

    Bilgic, Hatice; Hakki, Erdogan E; Pandey, Anamika; Khan, Mohd Kamran; Akkaya, Mahinur S

    2016-01-01

    Human history was transformed with the advent of agriculture in the Fertile Crescent with wheat as one of the founding crops. Although the Fertile Crescent is renowned as the center of wheat domestication, archaeological studies have shown the crucial involvement of Çatalhöyük in this process. This site first gained attention during the 1961-65 excavations due to the recovery of primitive hexaploid wheat. However, despite the seeds being well preserved, a detailed archaeobotanical description of the samples is missing. In this article, we report on the DNA isolation, amplification and sequencing of ancient DNA of charred wheat grains from Çatalhöyük and other Turkish archaeological sites and the comparison of these wheat grains with contemporary wheat species including T. monococcum, T. dicoccum, T. dicoccoides, T. durum and T. aestivum at HMW glutenin protein loci. These ancient samples represent the oldest wheat sample sequenced to date and the first ancient wheat sample from the Middle East. Remarkably, the sequence analysis of the short DNA fragments preserved in seeds that are approximately 8400 years old showed that the Çatalhöyük wheat stock contained hexaploid wheat, which is similar to contemporary hexaploid wheat species including both naked (T. aestivum) and hulled (T. spelta) wheat. This suggests an early transitory state of hexaploid wheat agriculture from the Fertile Crescent towards Europe spanning present-day Turkey.

  15. Ancient DNA from 8400 Year-Old Çatalhöyük Wheat: Implications for the Origin of Neolithic Agriculture

    PubMed Central

    Bilgic, Hatice; Hakki, Erdogan E.; Akkaya, Mahinur S.

    2016-01-01

    Human history was transformed with the advent of agriculture in the Fertile Crescent with wheat as one of the founding crops. Although the Fertile Crescent is renowned as the center of wheat domestication, archaeological studies have shown the crucial involvement of Çatalhöyük in this process. This site first gained attention during the 1961–65 excavations due to the recovery of primitive hexaploid wheat. However, despite the seeds being well preserved, a detailed archaeobotanical description of the samples is missing. In this article, we report on the DNA isolation, amplification and sequencing of ancient DNA of charred wheat grains from Çatalhöyük and other Turkish archaeological sites and the comparison of these wheat grains with contemporary wheat species including T. monococcum, T. dicoccum, T. dicoccoides, T. durum and T. aestivum at HMW glutenin protein loci. These ancient samples represent the oldest wheat sample sequenced to date and the first ancient wheat sample from the Middle East. Remarkably, the sequence analysis of the short DNA fragments preserved in seeds that are approximately 8400 years old showed that the Çatalhöyük wheat stock contained hexaploid wheat, which is similar to contemporary hexaploid wheat species including both naked (T. aestivum) and hulled (T. spelta) wheat. This suggests an early transitory state of hexaploid wheat agriculture from the Fertile Crescent towards Europe spanning present-day Turkey. PMID:26998604

  16. The genetics of rhizosheath size in a multiparent mapping population of wheat

    PubMed Central

    Delhaize, Emmanuel; Rathjen, Tina M.; Cavanagh, Colin R.

    2015-01-01

    Rhizosheaths comprise soil that adheres to plant roots and, in some species, are indicative of root hair length. In this study, the genetics of rhizosheath size in wheat was investigated by screening the progeny of multiparent advanced generation intercrosses (MAGIC). Two MAGIC populations were screened for rhizosheath size using a high throughput method. One MAGIC population was developed from intercrosses between four parents (4-way) and the other from intercrosses between eight parents (8-way). Transgressive segregation for rhizosheath size was observed in both the 4-way and 8-way MAGIC populations. A quantitative trait loci (QTL) analysis of the 4-way population identified six major loci located on chromosomes 2B, 4D, 5A, 5B, 6A, and 7A together accounting for 42% of the variation in rhizosheath size. Rhizosheath size was strongly correlated with root hair length and was robust across different soil types in the absence of chemical constraints. Rhizosheath size in the MAGIC populations was a reliable surrogate for root hair length and, therefore, the QTL identified probably control root hair elongation. Members of the basic helix-loop-helix family of transcription factors have previously been identified to regulate root hair length in Arabidopsis and rice. Since several wheat members of the basic helix-loop-helix family of genes are located within or near the QTL, these genes are candidates for controlling the long root hair trait. The QTL for rhizosheath size identified in this study provides the opportunity to implement marker-assisted selection to increase root hair length for improved phosphate acquisition in wheat. PMID:25969556

  17. Evolution of New Disease Specificity at a Single Resistance Locus in a Crop-Weed Complex: Reconstitution of the Lr21 Gene in Wheat.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf-rust resistance gene Lr21, present in modern varieties of hexaploid wheat, originated in goatgrass Aegilops tauschii Coss., the D genome donor of wheat. The goatgrass donor was collected in Iran where it grows as a weed in wheat fields as part of the native agricultural ecosystem. In order to ...

  18. Evidence for stable transformation of wheat by floraldip in Agrobacterium tumefaciens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hexaploid wheat is one of the world’s most important staple crops but genetic transformation is still challenging. We have developed a floral transformation protocol that does not utilize tissue culture. Three T-DNA wheat transformants have been produced in the germplasm line, Crocus, using this p...

  19. Transcriptome profiling and expression analyses of genes critical to wheat adaptation to low temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: To identify the genes involved in the development of low temperature (LT) tolerance in hexaploid wheat, we examined the global changes in expression in response to cold of the 55,052 potentially unique genes represented in the Affymetrix Wheat Genome microarray. We compared the expressi...

  20. Rewiring the wheat reproductive system to harness heterosis for the next wave of yield improvements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bread wheat (hexaploid Triticum aestivum) provides an extraordinary ten-thousand-year story of a new species, established by early farmers, selecting for simple agronomical traits to facilitate efficient and plentiful grain harvest. The genetic changes underlying wheat domestication over thousands ...

  1. Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In hexaploid wheat (Triticum aestivum L.) (AABBDD, C=17,000Mb), repeat DNA accounts for ~ 90% of the genome of which transposable elements (TEs) constitute 60-80 %. Despite the dynamic evolution of TEs, our previous study indicated that the majority of TEs between the homologous wheat genomes are co...

  2. Quantitative trait loci for yield and related traits in the wheat population Ning7840 x Clark.

    PubMed

    Marza, F; Bai, G-H; Carver, B F; Zhou, W-C

    2006-02-01

    Grain yield and associated agronomic traits are important factors in wheat (Triticum aestivum L.) improvement. Knowledge regarding the number, genomic location, and effect of quantitative trait loci (QTL) would facilitate marker-assisted selection and the development of cultivars with desirable characteristics. Our objectives were to identify QTLs directly and indirectly affecting grain yield expression. A population of 132 F12 recombinant inbred lines (RILs) was derived by single-seed descent from a cross between the Chinese facultative wheat Ning7840 and the US soft red winter wheat Clark. Phenotypic data were collected for 15 yield and other agronomic traits in the RILs and parental lines from three locations in Oklahoma from 2001 to 2003. Twenty-nine linkage groups, consisting of 363 AFLP and 47 SSR markers, were identified. Using composite interval mapping (CIM) analysis, 10, 16, 30, and 14 QTLs were detected for yield, yield components, plant adaptation (shattering and lodging resistance, heading date, and plant height), and spike morphology traits, respectively. The QTL effects ranged from 7 to 23%. Marker alleles from Clark were associated with a positive effect for the majority of QTLs for yield and yield components, but gene dispersion was the rule rather than the exception for this RIL population. Often, QTLs were detected in proximal positions for different traits. Consistent, co-localized QTLs were identified in linkage groups 1AL, 1B, 4B, 5A, 6A, and 7A, and less consistent but unique QTLs were identified on 2BL, 2BS, 2DL, and 6B. Results of this study provide a benchmark for future efforts on QTL identification for yield traits. PMID:16369760

  3. AB-QTL analysis in winter wheat: II. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population.

    PubMed

    Naz, Ali Ahmad; Kunert, Antje; Lind, Volker; Pillen, Klaus; Léon, Jens

    2008-05-01

    The present study aimed to localize exotic quantitative trait locus (QTL) alleles for the improvement of leaf rust (P. triticina) resistance in an advanced backcross (AB) population, B22, which is derived from a cross between the winter wheat cultivar Batis (Triticum aestivum) and the synthetic wheat accession Syn022L. The latter was developed from hybridization of T. turgidum ssp. dicoccoides and T. tauschii. Altogether, 250 BC2F3 lines of B22 were assessed for seedling resistance against the leaf rust isolate 77WxR under controlled conditions. In addition, field resistance against leaf rust was evaluated by assessing symptom severity under natural infestation across multiple environments. Simultaneously, population B22 was genotyped with a total of 97 SSR markers, distributed over the wheat A, B and D genomes. The phenotype and genotype data were subjected to QTL analysis by applying a 3-factorial mixed model analysis of variance including the marker genotype as a fixed effect and the environments, the lines and the marker by environment interactions as random effects. The QTL analysis revealed six putative QTLs for seedling resistance and seven for field resistance. For seedling resistance, the effects of exotic QTL alleles improved resistance at all detected loci. The maximum decrease of disease symptoms (-46.3%) was associated with marker locus Xbarc149 on chromosome 1D. For field resistance, two loci had stable main effects across environments and five loci exhibited marker by environment interaction effects. The strongest effects were detected at marker locus Xbarc149 on chromosome 1D, at which the exotic allele decreased seedling symptoms by 46.3% and field symptoms by 43.6%, respectively. Some of the detected QTLs co-localized with known resistance genes, while others appear to be as novel resistance loci. Our findings indicate, that the exotic wheat accession Syn022L may be useful for the improvement of leaf rust resistance in cultivated wheat.

  4. Characterization of Ferredoxin-Dependent Glutamine-Oxoglutarate Amidotransferase (Fd-GOGAT) Genes and Their Relationship with Grain Protein Content QTL in Wheat

    PubMed Central

    2014-01-01

    Background In higher plants, inorganic nitrogen is assimilated via the glutamate synthase cycle or GS-GOGAT pathway. GOGAT enzyme occurs in two distinct forms that use NADH (NADH-GOGAT) or Fd (Fd-GOGAT) as electron carriers. The goal of the present study was to characterize wheat Fd-GOGAT genes and to assess the linkage with grain protein content (GPC), an important quantitative trait controlled by multiple genes. Results We report the complete genomic sequences of the three homoeologous A, B and D Fd-GOGAT genes from hexaploid wheat (Triticum aestivum) and their localization and characterization. The gene is comprised of 33 exons and 32 introns for all the three homoeologues genes. The three genes show the same exon/intron number and size, with the only exception of a series of indels in intronic regions. The partial sequence of the Fd-GOGAT gene located on A genome was determined in two durum wheat (Triticum turgidum ssp. durum) cvs Ciccio and Svevo, characterized by different grain protein content. Genomic differences allowed the gene mapping in the centromeric region of chromosome 2A. QTL analysis was conducted in the Svevo×Ciccio RIL mapping population, previously evaluated in 5 different environments. The study co-localized the Fd-GOGAT-A gene with the marker GWM-339, identifying a significant major QTL for GPC. Conclusions The wheat Fd-GOGAT genes are highly conserved; both among the three homoeologous hexaploid wheat genes and in comparison with other plants. In durum wheat, an association was shown between the Fd-GOGAT allele of cv Svevo with increasing GPC - potentially useful in breeding programs. PMID:25099972

  5. [Comparative cytogenetic analysis of hexaploid Avena L. species].

    PubMed

    Badaeva, E D; Shelukhina, O Iu; Dedkova, O S; Loskutov, I G; Pukhal'skiĭ, V A

    2011-06-01

    Using C-banding method and in situ hybridization with the 45S and 5S rRNA gene probes, six hexaploid species of the genus Avena L. with the ACD genome constitution were studied to reveal evolutionary karyotypic changes. Similarity in the C-banding patterns of chromosomal and in the patterns of distribution of the rRNA gene families suggests a common origin of all hexaploid species. Avena fatua is characterized by the broadest intraspecific variation of the karyotype; this species displays chromosomal variants typical of other hexaploid species of Avena. For instance, a translocation with the involvement of chromosome 5C marking A. occidentalis was discovered in many A. fatua accessions, whereas in other representatives of this species this chromosome is highly similar to the chromosome of A. sterilis. Only A. fatua and A. sativa show slight changes in the morphology and in the C-banding pattern of chromosome 2C. These results can be explained either by a hybrid origin of A. fatua or by the fact that this species is an intermediate evolutionary form of hexaploid oats. The 7C-17 translocation was identified in all studied accessions of wild and weedy species (A. sterilis, A. fatua, A. ludoviciana, and A. occidentalis) and in most A. sativa cultivars, but it was absent in A. byzantina and in two accessions of A. sativa. The origin and evolution of the Avena hexaploid species are discussed in context of the results.

  6. Genetic relationships, carbendazim sensitivity and mycotoxin production of the Fusarium graminearum populations from maize, wheat and rice in eastern China.

    PubMed

    Qiu, Jianbo; Shi, Jianrong

    2014-08-01

    Members of the Fusarium graminearum species complex (FGSC) are important pathogens on wheat, maize, barley, and rice in China. Harvested grains are often contaminated by mycotoxins, such as the trichothecene nivalenol (NIV) and deoxynivalenol (DON) and the estrogenic mycotoxin zearalenone (ZEN), which is a big threat to humans and animals. In this study, 97 isolates were collected from maize, wheat, and rice in Jiangsu and Anhui provinces in 2013 and characterized by species- and chemotype-specific PCR. F. graminearum sensu stricto (s. str.) was predominant on maize, while most of the isolates collected from rice and wheat were identified as F. asiaticum. Fusarium isolates from three hosts varied in trichothecene chemotypes. The 3-acetyldeoxynivalenol (3ADON) chemotype predominated on wheat and rice population, while 15ADON was prevailing in the remaining isolates. Sequence analysis of the translation elongation factor 1α and trichodiene synthase indicated the accuracy of the above conclusion. Additionally, phylogenetic analysis suggested four groups with strong correlation with species, chemotype, and host. These isolates were also evaluated for their sensitivity to carbendazim and mycotoxins production. The maize population was less sensitive than the other two. The DON levels were similar in three populations, while those isolates on maize produced more ZEN. More DON was produced in carbendazim resistant strains than sensitive ones, but it seemed that carbendazim resistance had no effect on ZEN production in wheat culture. PMID:25093387

  7. Genetic Relationships, Carbendazim Sensitivity and Mycotoxin Production of the Fusarium Graminearum Populations from Maize, Wheat and Rice in Eastern China

    PubMed Central

    Qiu, Jianbo; Shi, Jianrong

    2014-01-01

    Members of the Fusarium graminearum species complex (FGSC) are important pathogens on wheat, maize, barley, and rice in China. Harvested grains are often contaminated by mycotoxins, such as the trichothecene nivalenol (NIV) and deoxynivalenol (DON) and the estrogenic mycotoxin zearalenone (ZEN), which is a big threat to humans and animals. In this study, 97 isolates were collected from maize, wheat, and rice in Jiangsu and Anhui provinces in 2013 and characterized by species- and chemotype-specific PCR. F. graminearum sensu stricto (s. str.) was predominant on maize, while most of the isolates collected from rice and wheat were identified as F. asiaticum. Fusarium isolates from three hosts varied in trichothecene chemotypes. The 3-acetyldeoxynivalenol (3ADON) chemotype predominated on wheat and rice population, while 15ADON was prevailing in the remaining isolates. Sequence analysis of the translation elongation factor 1α and trichodiene synthase indicated the accuracy of the above conclusion. Additionally, phylogenetic analysis suggested four groups with strong correlation with species, chemotype, and host. These isolates were also evaluated for their sensitivity to carbendazim and mycotoxins production. The maize population was less sensitive than the other two. The DON levels were similar in three populations, while those isolates on maize produced more ZEN. More DON was produced in carbendazim resistant strains than sensitive ones, but it seemed that carbendazim resistance had no effect on ZEN production in wheat culture. PMID:25093387

  8. Population subdivision of Fusarium graminearum from barley and wheat in the upper Midwestern United States at the turn of the century

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminearum, the causal agent of Fusarium head blight (FHB) in wheat and barley, is one of the most economically destructive pathogens of these grains worldwide. Recent population genetic studies of the pathogen obtained from wheat in North America supported population subdivision in part c...

  9. Natural Lactic Acid Bacteria Population and Silage Fermentation of Whole-crop Wheat

    PubMed Central

    Ni, Kuikui; Wang, Yanping; Cai, Yimin; Pang, Huili

    2015-01-01

    Winter wheat is a suitable crop to be ensiled for animal feed and China has the largest planting area of this crop in the world. During the ensiling process, lactic acid bacteria (LAB) play the most important role in the fermentation. We investigated the natural population of LAB in whole-crop wheat (WCW) and examined the quality of whole-crop wheat silage (WCWS) with and without LAB inoculants. Two Lactobacillus plantarum subsp. plantarum strains, Zhengzhou University 1 (ZZU 1) selected from corn and forage and grass 1 (FG 1) from a commercial inoculant, were used as additives. The silages inoculated with LAB strains (ZZU 1 and FG 1) were better preserved than the control, with lower pH values (3.5 and 3.6, respectively) (p<0.05) and higher contents of lactic acid (37.5 and 34.0 g/kg of fresh matter (FM), respectively) (p<0.05) than the control. Sixty LAB strains were isolated from fresh material and WCWS without any LAB inoculation. These LAB strains were divided into the following four genera and six species based on their phenotypic, biochemical and phylogenetic characteristics: Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, Lactococcus lactis subsp. lactis, Lactobacillus buchneri, and Lactobacillus plantarum subsp. plantarum. However, the prevalent LAB, which was predominantly heterofermentative (66.7%), consisted of Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, and Lactobacillus buchneri. This study revealed that most of isolated LAB strains from control WCWS were heterofermentative and could not grow well at low pH condition; the selective inoculants of Lactobacillus strains, especially ZZU 1, could improve WCWS quality significantly. PMID:26104520

  10. Genome-Wide QTL Mapping for Wheat Processing Quality Parameters in a Gaocheng 8901/Zhoumai 16 Recombinant Inbred Line Population

    PubMed Central

    Jin, Hui; Wen, Weie; Liu, Jindong; Zhai, Shengnan; Zhang, Yan; Yan, Jun; Liu, Zhiyong; Xia, Xianchun; He, Zhonghu

    2016-01-01

    Dough rheological and starch pasting properties play an important role in determining processing quality in bread wheat (Triticum aestivum L.). In the present study, a recombinant inbred line (RIL) population derived from a Gaocheng 8901/Zhoumai 16 cross grown in three environments was used to identify quantitative trait loci (QTLs) for dough rheological and starch pasting properties evaluated by Mixograph, Rapid Visco-Analyzer (RVA), and Mixolab parameters using the wheat 90 and 660 K single nucleotide polymorphism (SNP) chip assays. A high-density linkage map constructed with 46,961 polymorphic SNP markers from the wheat 90 and 660 K SNP assays spanned a total length of 4121 cM, with an average chromosome length of 196.2 cM and marker density of 0.09 cM/marker; 6596 new SNP markers were anchored to the bread wheat linkage map, with 1046 and 5550 markers from the 90 and 660 K SNP assays, respectively. Composite interval mapping identified 119 additive QTLs on 20 chromosomes except 4D; among them, 15 accounted for more than 10% of the phenotypic variation across two or three environments. Twelve QTLs for Mixograph parameters, 17 for RVA parameters and 55 for Mixolab parameters were new. Eleven QTL clusters were identified. The closely linked SNP markers can be used in marker-assisted wheat breeding in combination with the Kompetitive Allele Specific PCR (KASP) technique for improvement of processing quality in bread wheat. PMID:27486464

  11. Genome-Wide QTL Mapping for Wheat Processing Quality Parameters in a Gaocheng 8901/Zhoumai 16 Recombinant Inbred Line Population.

    PubMed

    Jin, Hui; Wen, Weie; Liu, Jindong; Zhai, Shengnan; Zhang, Yan; Yan, Jun; Liu, Zhiyong; Xia, Xianchun; He, Zhonghu

    2016-01-01

    Dough rheological and starch pasting properties play an important role in determining processing quality in bread wheat (Triticum aestivum L.). In the present study, a recombinant inbred line (RIL) population derived from a Gaocheng 8901/Zhoumai 16 cross grown in three environments was used to identify quantitative trait loci (QTLs) for dough rheological and starch pasting properties evaluated by Mixograph, Rapid Visco-Analyzer (RVA), and Mixolab parameters using the wheat 90 and 660 K single nucleotide polymorphism (SNP) chip assays. A high-density linkage map constructed with 46,961 polymorphic SNP markers from the wheat 90 and 660 K SNP assays spanned a total length of 4121 cM, with an average chromosome length of 196.2 cM and marker density of 0.09 cM/marker; 6596 new SNP markers were anchored to the bread wheat linkage map, with 1046 and 5550 markers from the 90 and 660 K SNP assays, respectively. Composite interval mapping identified 119 additive QTLs on 20 chromosomes except 4D; among them, 15 accounted for more than 10% of the phenotypic variation across two or three environments. Twelve QTLs for Mixograph parameters, 17 for RVA parameters and 55 for Mixolab parameters were new. Eleven QTL clusters were identified. The closely linked SNP markers can be used in marker-assisted wheat breeding in combination with the Kompetitive Allele Specific PCR (KASP) technique for improvement of processing quality in bread wheat. PMID:27486464

  12. Identifying Rare FHB-Resistant Segregants in Intransigent Backcross and F2 Winter Wheat Populations

    PubMed Central

    Clark, Anthony J.; Sarti-Dvorjak, Daniela; Brown-Guedira, Gina; Dong, Yanhong; Baik, Byung-Kee; Van Sanford, David A.

    2016-01-01

    Fusarium head blight (FHB), caused mainly by Fusarium graminearum Schwabe [telomorph: Gibberella zeae Schwein.(Petch)] in the US, is one of the most destructive diseases of wheat (Triticum aestivum L. and T. durum L.). Infected grain is usually contaminated with deoxynivalenol (DON), a serious mycotoxin. The challenge in FHB resistance breeding is combining resistance with superior agronomic and quality characteristics. Exotic QTL are widely used to improve FHB resistance. Success depends on the genetic background into which the QTL are introgressed, whether through backcrossing or forward crossing; QTL expression is impossible to predict. In this study four high-yielding soft red winter wheat breeding lines with little or no scab resistance were each crossed to a donor parent (VA01W-476) with resistance alleles at two QTL: Fhb1 (chromosome 3BS) and QFhs.nau-2DL (chromosome 2DL) to generate backcross and F2 progeny. F2 individuals were genotyped and assigned to 4 groups according to presence/ absence of resistance alleles at one or both QTL. The effectiveness of these QTL in reducing FHB rating, incidence, index, severity, Fusarium-damaged kernels (FDK) and DON, in F2-derived lines was assessed over 2 years. Fhb1 showed an average reduction in DON of 17.5%, and conferred significant resistance in 3 of 4 populations. QFhs.nau-2DL reduced DON 6.7% on average and conferred significant resistance in 2 of 4 populations. The combination of Fhb1 and QFhs.nau-2DL resistance reduced DON 25.5% across all populations. Double resistant lines had significantly reduced DON compared to double susceptible lines in 3 populations. Backcross derived progeny were planted in replicated yield trials (2011 and 2012) and in a scab nursery in 2012. Several top yielding lines performed well in the scab nursery, with acceptable DON concentrations, even though the average effect of either QTL in this population was not significant. Population selection is often viewed as an “all or nothing

  13. Breeding Value of Primary Synthetic Wheat Genotypes for Grain Yield

    PubMed Central

    Jafarzadeh, Jafar; Bonnett, David; Jannink, Jean-Luc; Akdemir, Deniz; Dreisigacker, Susanne; Sorrells, Mark E.

    2016-01-01

    To introduce new genetic diversity into the bread wheat gene pool from its progenitor, Aegilops tauschii (Coss.) Schmalh, 33 primary synthetic hexaploid wheat genotypes (SYN) were crossed to 20 spring bread wheat (BW) cultivars at the International Wheat and Maize Improvement Center. Modified single seed descent was used to develop 97 populations with 50 individuals per population using first back-cross, biparental, and three-way crosses. Individuals from each cross were selected for short stature, early heading, flowering and maturity, minimal lodging, and free threshing. Yield trials were conducted under irrigated, drought, and heat-stress conditions from 2011 to 2014 in Ciudad Obregon, Mexico. Genomic estimated breeding values (GEBVs) of parents and synthetic derived lines (SDLs) were estimated using a genomic best linear unbiased prediction (GBLUP) model with markers in each trial. In each environment, there were SDLs that had higher GEBVs than their recurrent BW parent for yield. The GEBVs of BW parents for yield ranged from -0.32 in heat to 1.40 in irrigated trials. The range of the SYN parent GEBVs for yield was from -2.69 in the irrigated to 0.26 in the heat trials and were mostly negative across environments. The contribution of the SYN parents to improved grain yield of the SDLs was highest under heat stress, with an average GEBV for the top 10% of the SDLs of 0.55 while the weighted average GEBV of their corresponding recurrent BW parents was 0.26. Using the pedigree-based model, the accuracy of genomic prediction for yield was 0.42, 0.43, and 0.49 in the drought, heat and irrigated trials, respectively, while for the marker-based model these values were 0.43, 0.44, and 0.55. The SYN parents introduced novel diversity into the wheat gene pool. Higher GEBVs of progenies were due to introgression and retention of some positive alleles from SYN parents. PMID:27656893

  14. Induction and characterization of Ph1 wheat mutants.

    PubMed Central

    Roberts, M A; Reader, S M; Dalgliesh, C; Miller, T E; Foote, T N; Fish, L J; Snape, J W; Moore, G

    1999-01-01

    The cloning of genes for complex traits in polyploid plants that possess large genomes, such as hexaploid wheat, requires an efficient strategy. We present here one such strategy focusing on the homologous pairing suppressor (Ph1) locus of wheat. This locus has been shown to affect both premeiotic and meiotic processes, possibly suggesting a complex control. The strategy combined the identification of lines carrying specific deletions using multiplex PCR screening of fast-neutron irradiated wheat populations with the approach of physically mapping the region in the rice genome equivalent to the deletion to reveal its gene content. As a result, we have located the Ph1 factor controlling the euploid-like level of homologous chromosome pairing to the region between two loci (Xrgc846 and Xpsr150A). These loci are located within 400 kb of each other in the rice genome. By sequencing this region of the rice genome, it should now be possible to define the nature of this factor. PMID:10581295

  15. Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.

    PubMed

    Leroux, Pierre; Gredt, Michel; Remuson, Florent; Micoud, Annie; Walker, Anne-Sophie

    2013-01-01

    Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.

  16. Triticum mosaic virus exhibits limited population variation yet shows evidence of parallel evolution after replicated serial passage in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An infectious cDNA clone of Triticum mosaic virus (TriMV) (genus Poacevirus; family Potyviridae) was used to establish three independent lineages in wheat to examine intra-host population diversity levels within protein 1 (P1) and coat protein (CP) cistrons over time. Genetic variation was assessed ...

  17. Mapping stripe rust resistance in a BrundageXCoda winter wheat recombinant inbred line population.

    PubMed

    Case, Austin J; Naruoka, Yukiko; Chen, Xianming; Garland-Campbell, Kimberly A; Zemetra, Robert S; Carter, Arron H

    2014-01-01

    A recombinant inbred line (RIL) mapping population developed from a cross between winter wheat (Triticum aestivum L.) cultivars Coda and Brundage was evaluated for reaction to stripe rust (caused by Puccinia striiformis f. sp. tritici). Two hundred and sixty eight RIL from the population were evaluated in replicated field trials in a total of nine site-year locations in the U.S. Pacific Northwest. Seedling reaction to stripe rust races PST-100, PST-114 and PST-127 was also examined. A linkage map consisting of 2,391 polymorphic DNA markers was developed covering all chromosomes of wheat with the exception of 1D. Two QTL on chromosome 1B were associated with adult plant and seedling reaction and were the most significant QTL detected. Together these QTL reduced adult plant infection type from a score of seven to a score of two reduced disease severity by an average of 25% and provided protection against race PST-100, PST-114 and PST-127 in the seedling stage. The location of these QTL and the race specificity provided by them suggest that observed effects at this locus are due to a complementation of the previously known but defeated resistances of the cultivar Tres combining with that of Madsen (the two parent cultivars of Coda). Two additional QTL on chromosome 3B and one on 5B were associated with adult plant reaction only, and a single QTL on chromosome 5D was associated with seedling reaction to PST-114. Coda has been resistant to stripe rust since its release in 2000, indicating that combining multiple resistance genes for stripe rust provides durable resistance, especially when all-stage resistance genes are combined in a fashion to maximize the number of races they protect against. Identified molecular markers will allow for an efficient transfer of these genes into other cultivars, thereby continuing to provide excellent resistance to stripe rust.

  18. Chromosome-anchored QTL conferring aluminum tolerance in hexaploid oat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract Aluminum (Al) toxicity is a major constraint on crop production in acid soils around the world. Hexaploid oat (Avena sativa L.) possesses signi'cant Al tolerance making it a good candidate for production in these environments. Genetic improvement for Al tolerance in oat has traditionally be...

  19. Comparative growth and development of hexaploid and tetraploid reed canarygrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reed canarygrass (Phalaris arundinacea L.) is a globally distributed forage species, a potential biofuel, and an important invasive weed. At more northern latitudes in exists as a tetraploid and at equatorial to mid-latitudes as a hexaploid, especially in Mediterranean climates. Growth and developme...

  20. Chromosomal Behavior during Meiosis in the Progeny of Triticum timopheevii × Hexaploid Wild Oat

    PubMed Central

    An, Hongzhou; Hu, Mei; Li, Pengfei; Geng, Guangdong; Zhang, Qingqin; Zhang, Suqin

    2015-01-01

    The meiotic behavior of pollen mother cells (PMCs) of the F2 and F3 progeny from Triticum timopheevii × hexaploid wild oat was investigated by cytological analysis and sequential C-banding-genomic in situ hybridization (GISH) in the present study. A cytological analysis showed that the chromosome numbers of the F2 and F3 progeny ranged from 28 to 41. A large number of univalents, lagging chromosomes, chromosome bridges and micronuclei were found at the metaphase I, anaphase I, anaphase II and tetrad stages in the F2 and F3 progeny. The averages of univalents were 3.50 and 2.73 per cell, and those of lagging chromosomes were 3.37 and 1.87 in the F2 and F3 progeny, respectively. The PMC meiotic indices of the F2 and F3 progeny were 12.22 and 20.34, respectively, indicating considerable genetic instability. A sequential C-banding-GISH analysis revealed that some chromosomes and fragments from the hexaploid wild oat were detected at metaphase I and anaphase I in the progeny, showing that the progeny were of true intergeneric hybrid origin. The alien chromosomes 6A, 7A, 3C and 2D were lost during transmission from F2 to F3. In addition, partial T. timopheevii chromosomes appeared in the form of univalents or lagging chromosomes, which might result from large genome differences between the parents, and the wild oat chromosome introgression interfered with the wheat homologues’ normally pairing. PMID:25950431

  1. Experimental Estimation of Mutation Rates in a Wheat Population With a Gene Genealogy Approach

    PubMed Central

    Raquin, Anne-Laure; Depaulis, Frantz; Lambert, Amaury; Galic, Nathalie; Brabant, Philippe; Goldringer, Isabelle

    2008-01-01

    Microsatellite markers are extensively used to evaluate genetic diversity in natural or experimental evolving populations. Their high degree of polymorphism reflects their high mutation rates. Estimates of the mutation rates are therefore necessary when characterizing diversity in populations. As a complement to the classical experimental designs, we propose to use experimental populations, where the initial state is entirely known and some intermediate states have been thoroughly surveyed, thus providing a short timescale estimation together with a large number of cumulated meioses. In this article, we derived four original gene genealogy-based methods to assess mutation rates with limited bias due to relevant model assumptions incorporating the initial state, the number of new alleles, and the genetic effective population size. We studied the evolution of genetic diversity at 21 microsatellite markers, after 15 generations in an experimental wheat population. Compared to the parents, 23 new alleles were found in generation 15 at 9 of the 21 loci studied. We provide evidence that they arose by mutation. Corresponding estimates of the mutation rates ranged from 0 to 4.97 × 10−3 per generation (i.e., year). Sequences of several alleles revealed that length polymorphism was only due to variation in the core of the microsatellite. Among different microsatellite characteristics, both the motif repeat number and an independent estimation of the Nei diversity were correlated with the novel diversity. Despite a reduced genetic effective size, global diversity at microsatellite markers increased in this population, suggesting that microsatellite diversity should be used with caution as an indicator in biodiversity conservation issues. PMID:18689900

  2. Genetic Diversity and Population Structure of Tetraploid Wheats (Triticum turgidum L.) Estimated by SSR, DArT and Pedigree Data

    PubMed Central

    Laidò, Giovanni; Mangini, Giacomo; Taranto, Francesca; Gadaleta, Agata; Blanco, Antonio; Cattivelli, Luigi; Marone, Daniela; Mastrangelo, Anna M.; Papa, Roberto; De Vita, Pasquale

    2013-01-01

    Levels of genetic diversity and population genetic structure of a collection of 230 accessions of seven tetraploid Triticum turgidum L. subspecies were investigated using six morphological, nine seed storage protein loci, 26 SSRs and 970 DArT markers. The genetic diversity of the morphological traits and seed storage proteins was always lower in the durum wheat compared to the wild and domesticated emmer. Using Bayesian clustering (K = 2), both of the sets of molecular markers distinguished the durum wheat cultivars from the other tetraploid subspecies, and two distinct subgroups were detected within the durum wheat subspecies, which is in agreement with their origin and year of release. The genetic diversity of morphological traits and seed storage proteins was always lower in the improved durum cultivars registered after 1990, than in the intermediate and older ones. This marked effect on diversity was not observed for molecular markers, where there was only a weak reduction. At K >2, the SSR markers showed a greater degree of resolution than for DArT, with their identification of a greater number of groups within each subspecies. Analysis of DArT marker differentiation between the wheat subspecies indicated outlier loci that are potentially linked to genes controlling some important agronomic traits. Among the 211 loci identified under selection, 109 markers were recently mapped, and some of these markers were clustered into specific regions on chromosome arms 2BL, 3BS and 4AL, where several genes/quantitative trait loci (QTLs) are involved in the domestication of tetraploid wheats, such as the tenacious glumes (Tg) and brittle rachis (Br) characteristics. On the basis of these results, it can be assumed that the population structure of the tetraploid wheat collection partially reflects the evolutionary history of Triticum turgidum L. subspecies and the genetic potential of landraces and wild accessions for the detection of unexplored alleles. PMID:23826256

  3. RESISTANCE TO ALS-INHIBITING HERBICIDES IN WEED POPULATIONS FROM BELGIAN WHEAT FIELDS.

    PubMed

    S, Claerhout; B, De Cauwer

    2015-01-01

    In modern agriculture, most farmers rely on herbicides for weed control. The intensive use of herbicides in crops has led to the development of herbicide resistance in numerous weeds worldwide. In Belgium, farmers have encountered problems with controlling populations of Alopecurus myosuroides, Matricaria recutita, Stellaria media and Popover rhoeas in some wheat fields with the conventionally used acetolactate synthase (ALS)-inhibiting herbicides. Dose response assays were conducted in the greenhouse to test the sensitivity of these populations to the key ALS-inhibiting herbicides mesosulfuron-methyl + iodosulfuron-methyl for A. myosuroides and metsulfuron-methyl and florasulam for M. recutita, S. media and P. rhoeas. The ED₉₀- and ED₅₀-values (effective dose for resp. 90% and 50% biomass reduction) were compared with those of sensitive reference populations and the resistance index (RI) was calculated. High levels of resistance were detected forA. myosuroides (RI: 24.3) after treatment with mesosulfuron-methyl and for M. recutita (RI: 36.4 to 49.5), S. media (RI > 20) and P. rhoeas (RI: 23.6) after treatment with metsulfuron-methyl. However, the metsulfuron-methyl resistant populations of M. recutita and S. media were sufficiently controlled with florasulam at the maximum authorised field dose. This was not the case for P. rhoeas. The metsulfuron-methyl resistant P. rhoeas population were also high-level resistant against florasulam (RI: 29.5). Integrated weed management practices (crop rotation, herbicide mixing, ...) should be applied to reduce the selection pressure for resistant weeds. PMID:27145589

  4. RESISTANCE TO ALS-INHIBITING HERBICIDES IN WEED POPULATIONS FROM BELGIAN WHEAT FIELDS.

    PubMed

    S, Claerhout; B, De Cauwer

    2015-01-01

    In modern agriculture, most farmers rely on herbicides for weed control. The intensive use of herbicides in crops has led to the development of herbicide resistance in numerous weeds worldwide. In Belgium, farmers have encountered problems with controlling populations of Alopecurus myosuroides, Matricaria recutita, Stellaria media and Popover rhoeas in some wheat fields with the conventionally used acetolactate synthase (ALS)-inhibiting herbicides. Dose response assays were conducted in the greenhouse to test the sensitivity of these populations to the key ALS-inhibiting herbicides mesosulfuron-methyl + iodosulfuron-methyl for A. myosuroides and metsulfuron-methyl and florasulam for M. recutita, S. media and P. rhoeas. The ED₉₀- and ED₅₀-values (effective dose for resp. 90% and 50% biomass reduction) were compared with those of sensitive reference populations and the resistance index (RI) was calculated. High levels of resistance were detected forA. myosuroides (RI: 24.3) after treatment with mesosulfuron-methyl and for M. recutita (RI: 36.4 to 49.5), S. media (RI > 20) and P. rhoeas (RI: 23.6) after treatment with metsulfuron-methyl. However, the metsulfuron-methyl resistant populations of M. recutita and S. media were sufficiently controlled with florasulam at the maximum authorised field dose. This was not the case for P. rhoeas. The metsulfuron-methyl resistant P. rhoeas population were also high-level resistant against florasulam (RI: 29.5). Integrated weed management practices (crop rotation, herbicide mixing, ...) should be applied to reduce the selection pressure for resistant weeds.

  5. Identification of QTLs associated with tissue culture response of mature wheat embryos.

    PubMed

    Ma, Jian; Deng, Mei; Lv, Si-Yu; Yang, Qiang; Jiang, Qian-Tao; Qi, Peng-Fei; Li, Wei; Chen, Guo-Yue; Lan, Xiu-Jin; Wei, Yu-Ming

    2016-01-01

    Mature embryo is an excellent explant for tissue culture as it is convenient to be obtained without limitation of growing seasons and development stages. However, regeneration ability of the calli from wheat mature embryos is limited, thus hindering its application. To identify genes associated with the tissue culture response (TCR) of wheat, QTLs for callus induction from mature embryos and callus regeneration were detected using a recombinant inbred lines (RILs) population derived from the cross between a synthetic hexaploid wheat genotype, SHW-L1 and a commercial cultivar Chuanmai 32. Three QTLs for callus rate were identified and they were located on chromosomes 1D, 5A, and 6D, respectively, with explained phenotypic variation ranging from 10.16 to 11.82 %. One QTL for differentiation rate was detected only with 10.96 % of the phenotypic variation explained. Two QTLs for emergence rate were identified and they were located on 3B and 4A, respectively, with 9.88 and 10.30 % of phenotypic variation. The results presented in this study with those reported previously indicated that group 1, 3, and 5 chromosomes are likely to play important roles in TCR of wheat. PMID:27652125

  6. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary x non-supernumerary spikelet genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identifying new quantitative trait loci (QTLs) and alleles in exotic germplasm is paramount for further improvement of quality traits in wheat. In the present study, a population of recombinant inbred lines (RILs) developed from a cross between an elite wheat line (WCB414) and an exotic genotype wi...

  7. Genome-wide mapping of spike-related and agronomic traits in a common wheat population derived from a supernumerary parent and an elite parent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wheat (Triticum aestivum L), exotic genotypes express a broad range of spike-related traits and could be used as a source of new genes to enrich the germplasm for wheat breeding programs. In the present study, a population of 163 recombinant inbred lines derived from a cross between an elite line...

  8. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary x non-supernumerary spikelet genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identifying new QTLs and alleles in exotic germplasm is paramount for further improvement of quality traits in wheat. In the present study, a RIL population developed from a cross of an elite wheat line (WCB414) and an exotic genotype with supernumerary spikelets (SS) was used to identify QTLs and n...

  9. Simultaneous transfer, introgression, and genomic localization of genes for resistance to stem rust race TTKSK (Ug99) from Aegilops tauschii to wheat.

    PubMed

    Olson, Eric L; Rouse, Matthew N; Pumphrey, Michael O; Bowden, Robert L; Gill, Bikram S; Poland, Jesse A

    2013-05-01

    Wheat production is currently threatened by widely virulent races of the wheat stem rust fungus, Puccinia graminis f. sp. tritici, that are part of the TTKSK (also known as 'Ug99') race group. The diploid D genome donor species Aegilops tauschii (2n = 2x = 14, DD) is a readily accessible source of resistance to TTKSK and its derivatives that can be transferred to hexaploid wheat, Triticum aestivum (2n = 6x = 42, AABBDD). To expedite transfer of TTKSK resistance from Ae. tauschii, a direct hybridization approach was undertaken that integrates gene transfer, mapping, and introgression into one process. Direct crossing of Ae. tauschii accessions with an elite wheat breeding line combines the steps of gene transfer and introgression while development of mapping populations during gene transfer enables the identification of closely linked markers. Direct crosses were made using TTKSK-resistant Ae. tauschii accessions TA1662 and PI 603225 as males and a stem rust-susceptible T. aestivum breeding line, KS05HW14, as a female. Embryo rescue enabled recovery of F1 (ABDD) plants that were backcrossed as females to the hexaploid recurrent parent. Stem rust-resistant BC1F1 plants from each Ae. tauschii donor source were used as males to generate BC2F1 mapping populations. Bulked segregant analysis of BC2F1 genotypes was performed using 70 SSR loci distributed across the D genome. Using this approach, stem rust resistance genes from both accessions were located on chromosome arm 1DS and mapped using SSR and EST-STS markers. An allelism test indicated the stem rust resistance gene transferred from PI 603225 is Sr33. Race specificity suggests the stem rust resistance gene transferred from TA1662 is unique and this gene has been temporarily designated SrTA1662. Stem rust resistance genes derived from TA1662 and PI 603225 have been made available with selectable molecular markers in genetic backgrounds suitable for stem rust resistance breeding.

  10. Population Growth and Damage Caused by Rhopalosiphum padi (L.) (Hemiptera, Aphididae) on Different Cultivars and Phenological Stages of Wheat.

    PubMed

    Savaris, M; Lampert, S; Salvadori, J R; Lau, D; Pereira, P R V S; Smaniotto, M A

    2013-10-01

    Among the aphids associated with wheat and other winter cereals, Rhopalosiphum padi (L.) is currently the predominant species in the wheat growing region of southern Brazil. The damage caused by this aphid occurs by direct feeding and/or by the transmission of pathogenic viruses, such as the Barley/Cereal yellow dwarf virus. In order to estimate the direct damage caused by R. padi on wheat, we evaluated the population growth of this aphid during the tillering and elongation stages and its effects on grain yield components. The experiment was conducted in a screenhouse with three wheat cultivars (BRS Guabiju, BRS Timbaúva, and Embrapa 16). The effect of a period of 16 days, starting from an infestation of 40 aviruliferous aphids/plant, was evaluated and compared to non-infested plants. In both stages, the population growth of R. padi was lower on the BRS Timbaúva. Although infestation caused a reduction in the grain yield of the three cultivars, this effect was lower for BRS Timbaúva. The cultivar Embrapa 16 supported higher infestations and was more tolerant to damage than the BRS Guabiju. PMID:27023210

  11. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.

    PubMed

    Min, B R; Pinchak, W E; Anderson, R C; Hume, M E

    2006-10-01

    on d 50 for bloated than for nonbloated steers when grazing wheat forage. The molecular analysis of the 16S rDNA showed that 2 different ruminal microbiota populations developed between bloated and nonbloated animals grazing wheat forage. Bloat in cattle grazing wheat pastures may be caused by increased production of biofilm, resulting from a diet-influenced switch in the rumen bacterial population. PMID:16971591

  12. Population genetics of wolf spiders of fragmented habitat in the wheat belt of New South Wales.

    PubMed

    Colgan, D J; Brown, S; Major, R E; Christie, F; Gray, M R; Cassis, G

    2002-11-01

    Possible effects of habitat fragmentation on the population genetics of a species of wolf spider (Lycosidae) from remnant Callitris woodland in the wheat belt of central western New South Wales in Australia are examined. Single-strand conformational analysis of mitochondrial cytochrome oxidase (subunit 1) was used to characterize the haplotypes of 295 spiders in six blocks each of four woodland sites. DNA sequences were collected from 119 of these spiders to confirm haplotype scoring, allow phylogeny estimation and permit calculation of sequence-based statistics. Intra-block tests do not suggest widespread effects of fragmentation. Genetic diversity is high in all blocks, with 25 haplotypes being identified. Nucleotide diversity is relatively low, as all of the haplotypes are closely related. One block had a significantly low value for the Ewens/Watterson test of neutrality and one block's value was nearly significantly high. Two blocks had nearly significant values of the Harpending Raggedness Index testing for recent population bottlenecks. No other intrablock tests approach significance. Interpopulation comparisons show significant nonhomogeneity of haplotype frequencies globally and in all pairwise comparisons. Relationships between woodland blocks based on haplotype frequencies are discordant with geographical proximity. Haplotype distribution patterns suggest that population structuring existed prior to fragmentation. We develop two measures of genetic distinctiveness to identify subpopulations of interest for conserving evolutionary processes in a species' regional population. One is based on the sum of pairwise FST values and one on the spatial distribution of genetic variation. High values of the measure suggest a subpopulation might have been recently perturbed and low values that it is relatively undisturbed. The two measures identify different blocks as being of particular interest.

  13. Impact of the D genome and quantitative trait loci on quantitative traits in a spring durum by spring bread wheat cross

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desirable agronomic traits are similar for common hexaploid (6X) bread wheat (Triticum aestivum, 2n = 6x = 42, genome, AABBDD) and tetraploid (4X) durum wheat (Triticum turgidum durum, 2n = 4x = 28, genome, AABB). However, they are genetically isolated from each other due to an unequal number of ge...

  14. Identification of milling and baking quality QTL in multiple soft wheat mapping populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat derived food products require a range of characteristics. Identification and understanding of the genetic components controlling end-use quality of wheat is important for crop improvement. We assessed the underlying genetics controlling specific milling and baking quality parameters of soft wh...

  15. Fusarium head blight resistance loci in a stratified population of wheat landraces and varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine if Chinese and Japanese wheat landraces and varieties have unique sources of Fusarium head blight (FHB) resistance, an association mapping panel of 195 wheat accessions including both commercial varieties and landraces was genotyped with 364 genome-wide simple sequence repeat (SSR) and ...

  16. Isolation and identification of Triticeae chromosome 1 receptor-like kinase genes (Lrk10) from diploid, tetraploid, and hexaploid species of the genus Avena.

    PubMed

    Cheng, D W; Armstrong, K C; Drouin, G; McElroy, A; Fedak, G; Molnar, S D

    2003-02-01

    The DNA sequence of an extracellular (EXC) domain of an oat (Avena sativa L.) receptor-like kinase (ALrk10) gene was amplified from 23 accessions of 15 Avena species (6 diploid, 6 tetraploid, and 3 hexaploid). Primers were designed from one partial oat ALrk10 clone that had been used to map the gene in hexaploid oat to linkage groups syntenic to Triticeae chromosome 1 and 3. Cluster (phylogenetic) analyses showed that all of the oat DNA sequences amplified with these primers are orthologous to the wheat and barley sequences that are located on chromosome 1 of the Triticeae species. Triticeae chromosome 3 Lrk10 sequences were not amplified using these primers. Cluster analyses provided evidence for multiple copies at a locus. The analysis divided the ALrk EXC sequences into two groups, one of which included AA and AABB genome species and the other CC, AACC, and CCCC genome species. Both groups of sequences were found in hexaploid AACCDD genome species, but not in all accessions. The C genome group was divided into 3 subgroups: (i) the CC diploids and the perennial autotetraploid, Avena macrostachya (this supports other evidence for the presence of the C in this autotetraploid species); (ii) a sequence from Avena maroccana and Avena murphyi and several sequences from different accessions of A. sativa; and (iii) A. murphyi and sequences from A. sativa and Avena sterilis. This suggests a possible polyphyletic origin for A. sativa from the AACC progenitor tetraploids or an origin from a progenitor of the AACC tetraploids. The sequences of the A genome group were not as clearly divided into subgroups. Although a group of sequences from the accession 'SunII' and a sequence from line Pg3, are clearly different from the others, the A genome diploid sequences were interspersed with tetraploid and hexaploid sequences.

  17. Genomic relationships among diploid and hexaploid species of Andropogon (Poaceae).

    PubMed

    Norrmann, G; Hanson, L; Renvoize, S; Leitch, I J

    2004-12-01

    Andropogon is a pantropical grass genus comprising 100-120 species and found mainly in the grasslands of Africa and the Americas. While the genomic relationships between many Andropogon species have been resolved by studying chromosome behavior in interspecific hybrids, relationships between the North and South American diploids have remained elusive. Further, the genome composition of two hexaploid species (including the important forage grass Andropogon lateralis Nees) has been unclear because of the strong hybridization barriers that exist between species. Consequently, genomic in situ hybridization was applied to shed light on these issues. The results confirmed that (i) both the South American (Andropogon selloanus (Hack.) Hack., Andropogon macrothrix Trin.) and North American (Andropogon gyrans Michx.) diploid species shared a common S genome and (ii) the S genome comprises just one of the three genomes in the hexaploids A. lateralis Nees and Andropogon bicornis L. The evolutionary and taxonomic implications of these findings are discussed.

  18. Expression analysis of individual homoeologous wheat genome- and rye genome-specific transcripts in a 2BS.2RL wheat-rye translocation.

    PubMed

    Lee, Tong Geon; Lee, Yong Jin; Seo, Yong Weon

    2014-01-01

    Wheat-rye translocations are widely used in wheat breeding to confer resistance against abiotic and biotic stress. Studying gene expression in wheat-rye translocations is complicated due to the presence of homoeologous genes in hexaploid wheat and high levels of synteny between wheat and rye chromatin. To distinguish transcripts expressed from each of the three wheat genomes and those from rye chromatin, genomic probes generated from diploid progenitors of wheat and rye were synthesized on a custom array. A total of 407 transcripts showed homoeologous genome ('A', 'B' or 'D' genome)- or rye genome ('R')-specific differential expression, based on unequal values of probe hybridization. In a 2BS.2RL wheat-rye translocation, thirteen of the 407 transcripts showed preferential expressions from rye chromatin. As well as quantifying variation in homoeologous transcript in wheat-rye translocations, this study also provides a potential aid to examine the contribution of the subgenomes to complex allohexapolyploids.

  19. Simultaneous identification of A, B, D and R genomes by genomic in situ hybridization in wheat-rye derivatives.

    PubMed

    Sánchez-Morán, E; Benavente, E; Orellana, J

    1999-09-01

    Multicolour genomic in situ hybridization was carried out in wheat-rye hybrids and in a wheat-rye translocation line. Different hybridization conditions and mixture compositions were used, and A, B and D genomes of hexaploid wheat as well as the R genome of rye were distinguished simultaneously in somatic cells. Combination of genomic and rDNA probes in multicolour in situ hybridization was also performed to identify chromosomes within a specific genome.

  20. Triticum mosaic virus exhibits limited population variation yet shows evidence of parallel evolution after replicated serial passage in wheat.

    PubMed

    Bartels, Melissa; French, Roy; Graybosch, Robert A; Tatineni, Satyanarayana

    2016-05-01

    An infectious cDNA clone of Triticum mosaic virus (TriMV) (genus Poacevirus; family Potyviridae) was used to establish three independent lineages in wheat to examine intra-host population diversity levels within protein 1 (P1) and coat protein (CP) cistrons over time. Genetic variation was assessed at passages 9, 18 and 24 by single-strand conformation polymorphism, followed by nucleotide sequencing. The founding P1 region genotype was retained at high frequencies in most lineage/passage populations, while the founding CP genotype disappeared after passage 18 in two lineages. We found that rare TriMV genotypes were present only transiently and lineages followed independent evolutionary trajectories, suggesting that genetic drift dominates TriMV evolution. These results further suggest that experimental populations of TriMV exhibit lower mutant frequencies than that of Wheat streak mosaic virus (genus Tritimovirus; family Potyviridae) in wheat. Nevertheless, there was evidence for parallel evolution at a synonymous site in the TriMV CP cistron.

  1. [Population structure and niche of main scale insects in jujube orchards intercropped with wheat].

    PubMed

    Shi, Guanglu; Wang, Younian; Liu, Suqi; Miao, Zhenwang; Cao, Hui; Li, Dengke; Zhang, Teiqiang; Yu, Tongquan

    2006-07-01

    To effectively control the scale insects in jujube orchards, a field study was made on the population structure and niche of Pseudococcus comstock Kuwane, Ceroplastes japonicus Green and Quadraspidiotus perniciosus Comstock in the jujube orchards intercropped with wheat in Taigu area of Shanxi Province. The results showed that at the early development stage of jujube trees, these three kinds of scale insects mainly distributed on the southeast direction of the lower and central parts of the tree crown, and P. comstock was the dominant species, with a wider breadth of two-dimensional temporal-spatial niche than the other two scale insects. At the mid-stage of jujube trees development, these scale insects mainly distributed on the northwest direction of the upper part of the tree crown, C. japonicus had a wider breadth of two-dimensional temporal-spatial niche than the other two scale insects, and the niche proportional similarity and interspecific competition of the three kinds of scale insects were not obvious. At the later stage of jujube trees development, there was no significant difference (P > 0.05) in the population structure of the three kinds of scale insects on the different parts and directions of tree crown, but the density of Q. perniciosus was bigger, and C. japonicus had a wider breadth of two-dimensional temporal-spatial niche. The average values of niche proportional similarity and interspecific competition of the three kinds of scale insects were smaller (P < 0.05) at the later development stage of jujube trees. Therefore, P. comstock should be controlled at the early development stage of jujube trees, all the three kinds of scale insects should be controlled selectively at the mid-stage of jujube trees development, and their overwinterings should be decreased by all means at the later development stage of jujube trees.

  2. Population Subdivision of Fusarium graminearum from Barley and Wheat in the Upper Midwestern United States at the Turn of the Century.

    PubMed

    Liang, Junmin; Lofgren, Lotus; Ma, Zhanhong; Ward, Todd J; Kistler, H Corby

    2015-11-01

    Fusarium graminearum, the causal agent of Fusarium head blight (FHB) in wheat and barley, is one of the most economically destructive pathogens of these grains worldwide. Recent population genetic studies of the pathogen obtained from wheat in North America supported population subdivision in part correlated with the spectrum of trichothecene mycotoxins (chemotype) produced by individuals within each population. In contrast, a recent study of F. graminearum obtained from diseased barley in the upper Midwestern United States concluded that only a single population was present, consisting of individuals with various chemotypes. To test whether strains derived from different hosts potentially have different population dynamics, we obtained the barley strains used in the previous study and compared them with wheat strains isolated at a similar time and geographic origin. A total of 247 F. graminearum isolates from barley were assigned firmly into two clusters using a Bayesian clustering method. Subdivision within the barley population corresponded to the previously described NA1 (correlated with the 15ADON chemotype) and NA2 (correlated with the 3ADON chemotype) populations from wheat. However, in both sampling periods the barley population exhibited a higher level of genetic differentiation between NA1 and NA2 populations, fewer admixed individuals and evidence of unidirectional gene introgression (15ADON strains with NA2 genetic backgrounds). These results suggest less recombination between NA1 and NA2 populations on barley compared with wheat. The frequency of 3ADON chemotype strains in the most recently surveyed barley population suggests a latitudinal cline from the northern (49%), central (40%) to the southern (29%) sampling area. The potential to produce a novel trichothecene, 3α-acetoxy,7α,15-dihydroxy-12,13-epoxytrichothe-9-ene (NX-2), was not detected in the barley population but occurred at a low rate (2.4%) in the wheat population. PMID:26107972

  3. The effect of wheat prebiotics on the gut bacterial population and iron status of iron deficient broiler chickens

    PubMed Central

    2014-01-01

    Background Currently, there is a lot of interest in improving gut health, and consequently increasing Fe absorption, by managing the colonic microbial population. This is traditionally done by the consumption of probiotics, live microbial food supplements. However, an alternative, and often very effective approach, is the consumption of food ingredients known as prebiotics. Fructans and arabinoxylans are naturally occurring non-digestible oligosaccharides in wheat that exhibit prebiotic properties and may enhance intestinal iron (Fe) absorption. The aim of this study was to assess the effect of prebiotics from wheat on Fe bioavailability in vitro (Caco-2 cells) and in vivo (broiler chickens, Gallus gallus). Methods In the current study, the effect of intra-amniotic administration of wheat samples extracts at 17 d of embryonic incubation on the Fe status and possible changes in the bacterial population in intestinal content of broiler hatchlings were investigated. A group of 144 eggs were injected with the specified solution (1 ml per egg) into the amniotic fluid. Immediately after hatch (21 d) and from each treatment group, 10 chicks were euthanized and their small intestine, liver and cecum were removed for relative mRNA abundance of intestinal Fe related transporters, relative liver ferritin amounts and bacterial analysis of cecal content, respectively. Results The in vivo results are in agreement with the in vitro observations, showing no differences in the hatchling Fe status between the treatment groups, as Fe bioavailability was not increased in vitro and no significant differences were measured in the intestinal expression of DMT1, Ferroportin and DcytB in vivo. However, there was significant variation in relative amounts of bifidobacteria and lactobacilli in the intestinal content between the treatments groups, with generally more bifidobacteria being produced with increased prebiotic content. Conclusions In this study we showed that prebiotics naturally

  4. The control of recombination in wheat by Ph1 and its use in breeding.

    PubMed

    Moore, Graham

    2014-01-01

    Two meiotic processes have a major influence on the plant breeding, namely, the independent assortment of chromosomes, and recombination. The major chromosome pairing locus in hexaploid and tetraploid wheat, Ph1, has a significant effect on both these processes. This chapter reviews our current understanding of this locus and how mutants of it can be exploited for breeding purposes. PMID:24816666

  5. Optimizing Training Population Data and Validation of Genomic Selection for Economic Traits in Soft Winter Wheat

    PubMed Central

    Hoffstetter, Amber; Cabrera, Antonio; Huang, Mao; Sneller, Clay

    2016-01-01

    Genomic selection (GS) is a breeding tool that estimates breeding values (GEBVs) of individuals based solely on marker data by using a model built using phenotypic and marker data from a training population (TP). The effectiveness of GS increases as the correlation of GEBVs and phenotypes (accuracy) increases. Using phenotypic and genotypic data from a TP of 470 soft winter wheat lines, we assessed the accuracy of GS for grain yield, Fusarium Head Blight (FHB) resistance, softness equivalence (SE), and flour yield (FY). Four TP data sampling schemes were tested: (1) use all TP data, (2) use subsets of TP lines with low genotype-by-environment interaction, (3) use subsets of markers significantly associated with quantitative trait loci (QTL), and (4) a combination of 2 and 3. We also correlated the phenotypes of relatives of the TP to their GEBVs calculated from TP data. The GS accuracy within the TP using all TP data ranged from 0.35 (FHB) to 0.62 (FY). On average, the accuracy of GS from using subsets of data increased by 54% relative to using all TP data. Using subsets of markers selected for significant association with the target trait had the greatest impact on GS accuracy. Between-environment prediction accuracy was also increased by using data subsets. The accuracy of GS when predicting the phenotypes of TP relatives ranged from 0.00 to 0.85. These results suggest that GS could be useful for these traits and GS accuracy can be greatly improved by using subsets of TP data. PMID:27440921

  6. Optimizing Training Population Data and Validation of Genomic Selection for Economic Traits in Soft Winter Wheat.

    PubMed

    Hoffstetter, Amber; Cabrera, Antonio; Huang, Mao; Sneller, Clay

    2016-01-01

    Genomic selection (GS) is a breeding tool that estimates breeding values (GEBVs) of individuals based solely on marker data by using a model built using phenotypic and marker data from a training population (TP). The effectiveness of GS increases as the correlation of GEBVs and phenotypes (accuracy) increases. Using phenotypic and genotypic data from a TP of 470 soft winter wheat lines, we assessed the accuracy of GS for grain yield, Fusarium Head Blight (FHB) resistance, softness equivalence (SE), and flour yield (FY). Four TP data sampling schemes were tested: (1) use all TP data, (2) use subsets of TP lines with low genotype-by-environment interaction, (3) use subsets of markers significantly associated with quantitative trait loci (QTL), and (4) a combination of 2 and 3. We also correlated the phenotypes of relatives of the TP to their GEBVs calculated from TP data. The GS accuracy within the TP using all TP data ranged from 0.35 (FHB) to 0.62 (FY). On average, the accuracy of GS from using subsets of data increased by 54% relative to using all TP data. Using subsets of markers selected for significant association with the target trait had the greatest impact on GS accuracy. Between-environment prediction accuracy was also increased by using data subsets. The accuracy of GS when predicting the phenotypes of TP relatives ranged from 0.00 to 0.85. These results suggest that GS could be useful for these traits and GS accuracy can be greatly improved by using subsets of TP data. PMID:27440921

  7. Optimizing Training Population Data and Validation of Genomic Selection for Economic Traits in Soft Winter Wheat.

    PubMed

    Hoffstetter, Amber; Cabrera, Antonio; Huang, Mao; Sneller, Clay

    2016-09-08

    Genomic selection (GS) is a breeding tool that estimates breeding values (GEBVs) of individuals based solely on marker data by using a model built using phenotypic and marker data from a training population (TP). The effectiveness of GS increases as the correlation of GEBVs and phenotypes (accuracy) increases. Using phenotypic and genotypic data from a TP of 470 soft winter wheat lines, we assessed the accuracy of GS for grain yield, Fusarium Head Blight (FHB) resistance, softness equivalence (SE), and flour yield (FY). Four TP data sampling schemes were tested: (1) use all TP data, (2) use subsets of TP lines with low genotype-by-environment interaction, (3) use subsets of markers significantly associated with quantitative trait loci (QTL), and (4) a combination of 2 and 3. We also correlated the phenotypes of relatives of the TP to their GEBVs calculated from TP data. The GS accuracy within the TP using all TP data ranged from 0.35 (FHB) to 0.62 (FY). On average, the accuracy of GS from using subsets of data increased by 54% relative to using all TP data. Using subsets of markers selected for significant association with the target trait had the greatest impact on GS accuracy. Between-environment prediction accuracy was also increased by using data subsets. The accuracy of GS when predicting the phenotypes of TP relatives ranged from 0.00 to 0.85. These results suggest that GS could be useful for these traits and GS accuracy can be greatly improved by using subsets of TP data.

  8. Wheat domestication: lessons for the future.

    PubMed

    Charmet, Gilles

    2011-03-01

    Wheat was one of the first crops to be domesticated more than 10,000 years ago in the Middle East. Molecular genetics and archaeological data have allowed the reconstruction of plausible domestication scenarios leading to modern cultivars. For diploid einkorn and tetraploid durum wheat, a single domestication event has likely occurred in the Karacadag Mountains, Turkey. Following a cross between tetraploid durum and diploid T. tauschii, the resultant hexaploid bread wheat was domesticated and disseminated around the Caucasian region. These polyploidisation events facilitated wheat domestication and created genetic bottlenecks, which excluded potentially adaptive alleles. With the urgent need to accelerate genetic progress to confront the challenges of climate change and sustainable agriculture, wild ancestors and old landraces represent a reservoir of underexploited genetic diversity that may be utilized through modern breeding methods. Understanding domestication processes may thus help identifying new strategies.

  9. Diversity of Fusarium species isolated from UK forage maize and the population structure of F. graminearum from maize and wheat

    PubMed Central

    2016-01-01

    Pre-harvest contamination of forage maize by mycotoxin producing Fusarium species was investigated in the UK in 2011 and 2012. A total of 15 Fusarium species were identified from a collection of 1,761 Fusarium isolates recovered from maize stalks and kernels. This study characterized the diversity of Fusarium species present in forage maize in the UK. The predominant species detected were F. graminearum (32.9%) and F. culmorum (34.1%). Along with those species; F. avenacem, F. cerealis, F. equiseti, F. langsethiae, F. napiforme, F. oxysporum, F. poae, F. proliferatum, F. scripi, F. solani, F. subglutinans, F. tricinctum and, F. verticillioides were occasionally isolated. The trichothecene genotypes for F. graminearum were determined to be 84.9% deoxynivalenol (DON) and 15.0% nivalenol (NIV) while F. culmorum isolates were determined to have 24.9% DON and 75.1% NIV genotypes. A Bayesian model-based clustering method with nine variable number of tandem repeat markers was used to evaluate the population genetic structure of 277 F. graminearum isolates from the maize and wheat in the UK. There were three genetic clusters detected which were DON in maize, NIV in maize and DON in wheat. There were high admixture probabilities for 14.1% of the isolates in the populations. In conclusion, increased maize production in the UK and the high admixture rates in a significant portion of F. graminearum populations in maize and wheat will contribute to a new pathogen population which will further complicate breeding strategies for tolerance or resistance to this pathogen in both crops. PMID:27366645

  10. Diversity of Fusarium species isolated from UK forage maize and the population structure of F. graminearum from maize and wheat.

    PubMed

    Basler, Ryan

    2016-01-01

    Pre-harvest contamination of forage maize by mycotoxin producing Fusarium species was investigated in the UK in 2011 and 2012. A total of 15 Fusarium species were identified from a collection of 1,761 Fusarium isolates recovered from maize stalks and kernels. This study characterized the diversity of Fusarium species present in forage maize in the UK. The predominant species detected were F. graminearum (32.9%) and F. culmorum (34.1%). Along with those species; F. avenacem, F. cerealis, F. equiseti, F. langsethiae, F. napiforme, F. oxysporum, F. poae, F. proliferatum, F. scripi, F. solani, F. subglutinans, F. tricinctum and, F. verticillioides were occasionally isolated. The trichothecene genotypes for F. graminearum were determined to be 84.9% deoxynivalenol (DON) and 15.0% nivalenol (NIV) while F. culmorum isolates were determined to have 24.9% DON and 75.1% NIV genotypes. A Bayesian model-based clustering method with nine variable number of tandem repeat markers was used to evaluate the population genetic structure of 277 F. graminearum isolates from the maize and wheat in the UK. There were three genetic clusters detected which were DON in maize, NIV in maize and DON in wheat. There were high admixture probabilities for 14.1% of the isolates in the populations. In conclusion, increased maize production in the UK and the high admixture rates in a significant portion of F. graminearum populations in maize and wheat will contribute to a new pathogen population which will further complicate breeding strategies for tolerance or resistance to this pathogen in both crops.

  11. Exploring the diploid wheat ancestral A genome through sequence comparison at the high-molecular-weight glutenin locus region.

    PubMed

    Dong, Lingli; Huo, Naxin; Wang, Yi; Deal, Karin; Luo, Ming-Cheng; Wang, Daowen; Anderson, Olin D; Gu, Yong Qiang

    2012-12-01

    The polyploid nature of hexaploid wheat (T. aestivum, AABBDD) often represents a great challenge in various aspects of research including genetic mapping, map-based cloning of important genes, and sequencing and accurately assembly of its genome. To explore the utility of ancestral diploid species of polyploid wheat, sequence variation of T. urartu (A(u)A(u)) was analyzed by comparing its 277-kb large genomic region carrying the important Glu-1 locus with the homologous regions from the A genomes of the diploid T. monococcum (A(m)A(m)), tetraploid T. turgidum (AABB), and hexaploid T. aestivum (AABBDD). Our results revealed that in addition to a high degree of the gene collinearity, nested retroelement structures were also considerably conserved among the A(u) genome and the A genomes in polyploid wheats, suggesting that the majority of the repetitive sequences in the A genomes of polyploid wheats originated from the diploid A(u) genome. The difference in the compared region between A(u) and A is mainly caused by four differential TE insertion and two deletion events between these genomes. The estimated divergence time of A genomes calculated on nucleotide substitution rate in both shared TEs and collinear genes further supports the closer evolutionary relationship of A to A(u) than to A(m). The structure conservation in the repetitive regions promoted us to develop repeat junction markers based on the A(u) sequence for mapping the A genome in hexaploid wheat. Eighty percent of these repeat junction markers were successfully mapped to the corresponding region in hexaploid wheat, suggesting that T. urartu could serve as a useful resource for developing molecular markers for genetic and breeding studies in hexaploid wheat.

  12. Aeration management for stored hard red winter wheat: simulated impact on rusty grain beetle (Coleoptera: Cucujidae) populations.

    PubMed

    Arthur, F H; Flinn, P W

    2000-08-01

    Simulation studies were conducted to determine temperature accumulations below defined thresholds and to show the impact of controlled aeration on populations of the rusty grain beetle, Cryptolestes ferrigineus (Stephens), a major secondary pest of stored wheat, Triticum aestivum (L.). Recorded data from weather stations in Texas, Oklahoma, Kansas, eastern New Mexico, and eastern Colorado (356 total) were used to determine hours of temperature accumulation below 23.9 degrees C in June and July, 15.6 degrees C in September and October, and 7.2 degrees C in December. At an airflow rate of 0.0013 m3/s/m3 (0.1 cubic ft3/min/bu), which requires 120 h of temperatures below the specified threshold to complete an aeration cycle, summer cooling at 23.9 degrees C in bulk-stored wheat could be completed throughout the hard red winter wheat zone except for extreme southern Texas. An early-autumn cooling cycle at 15.6 degrees C could not be completed throughout most of Texas and Oklahoma before the end of September. The late-autumn cooling cycle could be completed in all states except Texas by the end of November. Five geographic regions were delineated and the times required for completion of the summer, early-autumn, and late-autumn cooling cycles within each region were estimated. Population growth of the rusty grain beetle was modeled for San Antonio, TX; Abilene, TX; Tulsa, OK; Topeka KS; and Goodland, KS, by predicting the numbers of adults in the top, outer middle, outer periphery, and the center of the bin during a 1-yr storage season. Populations of C. ferrugineus in San Antonio and Austin were predicted to exceed the Federal Grain Inspection Service (FGIS) threshold of two beetles per kilogram of wheat in all four levels of the bin during late autumn, decline during the winter, and increase the following spring. In Midland, TX, and Oklahoma City, OK, populations were predicted to exceed the threshold only in the top and outer middle of the bin, whereas populations in

  13. Assessment of Allergy to Milk, Egg, Cod, and Wheat in Swedish Schoolchildren: A Population Based Cohort Study

    PubMed Central

    Winberg, Anna; West, Christina E; Strinnholm, Åsa; Nordström, Lisbeth; Hedman, Linnea; Rönmark, Eva

    2015-01-01

    Objectives Knowledge about the prevalence of allergies to foods in childhood and adolescence is incomplete. The purpose of this study was to investigate the prevalence of allergies to milk, egg, cod, and wheat using reported data, clinical examinations, and double-blind placebo-controlled food challenges, and to describe the phenotypes of reported food hypersensitivity in a cohort of Swedish schoolchildren. Methods In a population-based cohort of 12-year-old children, the parents of 2612 (96% of invited) completed a questionnaire. Specific IgE antibodies to foods were analyzed in a random sample (n=695). Children reporting complete avoidance of milk, egg, cod, or wheat due to perceived hypersensitivity and without physician-diagnosed celiac disease were invited to undergo clinical examination that included specific IgE testing, a celiac screening test, and categorization into phenotypes of food hypersensitivity according to preset criteria. Children with possible food allergy were further evaluated with double-blind challenges. Results In this cohort, the prevalence of reported food allergy to milk, egg, cod, or wheat was 4.8%. Food allergy was diagnosed in 1.4% of the children after clinical evaluation and in 0.6% following double-blind placebo-controlled food challenge. After clinical examination, children who completely avoided one or more essential foods due to perceived food hypersensitivity were categorized with the following phenotypes: allergy (29%), outgrown allergy (19%), lactose intolerance (40%), and unclear (12%). Conclusions There was a high discrepancy in the prevalence of allergy to milk, egg, cod and wheat as assessed by reported data, clinical evaluation, and double-blind food challenges. Food hypersensitivity phenotyping according to preset criteria was helpful for identifying children with food allergy. PMID:26134827

  14. Establishing an efficient way to utilize the drought resistance germplasm population in wheat.

    PubMed

    Wang, Jiancheng; Guan, Yajing; Wang, Yang; Zhu, Liwei; Wang, Qitian; Hu, Qijuan; Hu, Jin

    2013-01-01

    Drought resistance breeding provides a hopeful way to improve yield and quality of wheat in arid and semiarid regions. Constructing core collection is an efficient way to evaluate and utilize drought-resistant germplasm resources in wheat. In the present research, 1,683 wheat varieties were divided into five germplasm groups (high resistant, HR; resistant, R; moderate resistant, MR; susceptible, S; and high susceptible, HS). The least distance stepwise sampling (LDSS) method was adopted to select core accessions. Six commonly used genetic distances (Euclidean distance, Euclid; Standardized Euclidean distance, Seuclid; Mahalanobis distance, Mahal; Manhattan distance, Manhat; Cosine distance, Cosine; and Correlation distance, Correlation) were used to assess genetic distances among accessions. Unweighted pair-group average (UPGMA) method was used to perform hierarchical cluster analysis. Coincidence rate of range (CR) and variable rate of coefficient of variation (VR) were adopted to evaluate the representativeness of the core collection. A method for selecting the ideal constructing strategy was suggested in the present research. A wheat core collection for the drought resistance breeding programs was constructed by the strategy selected in the present research. The principal component analysis showed that the genetic diversity was well preserved in that core collection.

  15. Identifying rare FHB-resistant transgressive segregants in intransigent backcross and F2 winter wheat populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB), caused mainly by Fusarium graminearum Schwabe [telomorph: Gibberella zeae Schwein.(Petch)] in the US, is one of the most destructive diseases of wheat (Triticum aestivum L. and T. durum L.). FHB-infected grain is usually contaminated with deoxynivalenol (DON) a mycotoxin ...

  16. Effect of Microbial Inoculants on the Indigenous Actinobacterial Endophyte Population in the Roots of Wheat as Determined by Terminal Restriction Fragment Length Polymorphism

    PubMed Central

    Conn, Vanessa M.; Franco, Christopher M. M.

    2004-01-01

    The effect of single actinobacterial endophyte seed inoculants and a mixed microbial soil inoculant on the indigenous endophytic actinobacterial population in wheat roots was investigated by using the molecular technique terminal restriction fragment length polymorphism (T-RFLP). Wheat was cultivated either from seeds coated with the spores of single pure actinobacterial endophytes of Microbispora sp. strain EN2, Streptomyces sp. strain EN27, and Nocardioides albus EN46 or from untreated seeds sown in soil with and without a commercial mixed microbial soil inoculant. The endophytic actinobacterial population within the roots of 6-week-old wheat plants was assessed by T-RFLP. Colonization of the wheat roots by the inoculated actinobacterial endophytes was detected by T-RFLP, as were 28 to 42 indigenous actinobacterial genera present in the inoculated and uninoculated plants. The presence of the commercial mixed inoculant in the soil reduced the endophytic actinobacterial diversity from 40 genera to 21 genera and reduced the detectable root colonization by approximately half. The results indicate that the addition of a nonadapted microbial inoculum to the soil disrupted the natural actinobacterial endophyte population, reducing diversity and colonization levels. This was in contrast to the addition of a single actinobacterial endophyte to the wheat plant, where the increase in colonization level could be confirmed even though the indigenous endophyte population was not adversely affected. PMID:15528499

  17. Characterization and expression patterns of small RNAs in synthesized Brassica hexaploids.

    PubMed

    Shen, Yanyue; Zhao, Qin; Zou, Jun; Wang, Wenliang; Gao, Yi; Meng, Jinling; Wang, Jianbo

    2014-06-01

    Polyploidy has played an important role in promoting plant evolution through genomic merging and doubling. We used high-throughput sequencing to compare miRNA expression profiles between Brassica hexaploid and its parents. A total of 613, 784 and 742 known miRNAs were identified in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. We detected 618 miRNAs were differentially expressed (log(2)Ratio ≥ 1, P ≤ 0.05) between Brassica hexaploid and its parents, and 425 miRNAs were non-additively expressed in Brassica hexaploid, which suggest a trend of non-additive miRNA regulation following hybridization and polyploidization. Remarkably, majority of the non-additively expressed miRNAs in the Brassica hexaploid are repressed, and there was a bias toward repression of B. rapa miRNAs, which is consistent with the progenitor-biased gene repression in the synthetic allopolyploids. In addition, we identified 653 novel mature miRNAs in Brassica hexaploid and its parents. Finally, we found that almost all the non-additive accumulation of siRNA clusters exhibited a low-parent pattern in Brassica hexaploid. Non-additive small RNA regulation is involved in a range of biological pathways, probably providing a driving force for variation and adaptation in allopolyploids.

  18. Identification and Phylogenetic Analysis of a CC-NBS-LRR Encoding Gene Assigned on Chromosome 7B of Wheat

    PubMed Central

    Gong, Caiyan; Cao, Shuanghe; Fan, Renchun; Wei, Bo; Chen, Guiping; Wang, Xianping; Li, Yiwen; Zhang, Xiangqi

    2013-01-01

    Hexaploid wheat displays limited genetic variation. As a direct A and B genome donor of hexaploid wheat, tetraploid wheat represents an important gene pool for cultivated bread wheat. Many disease resistant genes express conserved domains of the nucleotide-binding site and leucine-rich repeats (NBS-LRR). In this study, we isolated a CC-NBS-LRR gene locating on chromosome 7B from durum wheat variety Italy 363, and designated it TdRGA-7Ba. Its open reading frame was 4014 bp, encoding a 1337 amino acid protein with a complete NBS domain and 18 LRR repeats, sharing 44.7% identity with the PM3B protein. TdRGA-7Ba expression was continuously seen at low levels and was highest in leaves. TdRGA-7Ba has another allele TdRGA-7Bb with a 4 bp deletion at position +1892 in other cultivars of tetraploid wheat. In Ae. speltoides, as a B genome progenitor, both TdRGA-7Ba and TdRGA-7Bb were detected. In all six species of hexaploid wheats (AABBDD), only TdRGA-7Bb existed. Phylogenic analysis showed that all TdRGA-7Bb type genes were grouped in one sub-branch. We speculate that TdRGA-7Bb was derived from a TdRGA-7Ba mutation, and it happened in Ae. speltoides. Both types of TdRGA-7B participated in tetraploid wheat formation. However, only the TdRGA-7Bb was retained in hexaploid wheat. PMID:23887654

  19. Evolution of polyploid triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification.

    PubMed

    Matsuoka, Yoshihiro

    2011-05-01

    The evolution of the polyploid Triticum wheats is distinctive in that domestication, natural hybridization and allopolyploid speciation have all had significant impacts on their diversification. In this review, I outline the phylogenetic relationships of cultivated wheats and their wild relatives and provide an overview of the recent progress and remaining issues in understanding the genetic and ecological factors that favored their evolution. An attempt is made to view the evolution of the polyploid Triticum wheats as a continuous process of diversification that was initiated by domestication of tetraploid emmer wheat and driven by various natural events ranging from interploidy introgression via hybridization to allopolyploid speciation of hexaploid common wheat, instead of viewing it as a group of discrete evolutionary processes that separately proceeded at the tetraploid and hexaploid levels. This standpoint underscores the important role of natural hybridization in the reticulate diversification of the tetraploid-hexaploid Triticum wheat complex and highlights critical, but underappreciated, issues that concern the allopolyploid speciation of common wheat.

  20. The Genetic Control of Grain Protein Content under Variable Nitrogen Supply in an Australian Wheat Mapping Population

    PubMed Central

    Mahjourimajd, Saba; Taylor, Julian; Rengel, Zed; Khabaz-Saberi, Hossein; Kuchel, Haydn; Okamoto, Mamoru

    2016-01-01

    Genetic variation has been observed in both protein concentration in wheat grain and total protein content (protein yield). Here we describe the genetic analysis of variation for grain protein in response to nitrogen (N) supply and locate significant genomic regions controlling grain protein components in a spring wheat population. In total, six N use efficiency (NUE) field trials were carried out for the target traits in a sub-population of doubled haploid lines derived from a cross between two Australian varieties, RAC875 and Kukri, in Southern and Western Australia from 2011 to 2013. Twenty-four putative Quantitative Trait Loci (QTL) for protein-related traits were identified at high and low N supply and ten QTL were identified for the response to N for the traits studied. These loci accounted for a significant proportion of the overall effect of N supply. Several of the regions were co-localised with grain yield QTL and are promising targets for further investigation and selection in breeding programs. PMID:27438012

  1. The Genetic Control of Grain Protein Content under Variable Nitrogen Supply in an Australian Wheat Mapping Population.

    PubMed

    Mahjourimajd, Saba; Taylor, Julian; Rengel, Zed; Khabaz-Saberi, Hossein; Kuchel, Haydn; Okamoto, Mamoru; Langridge, Peter

    2016-01-01

    Genetic variation has been observed in both protein concentration in wheat grain and total protein content (protein yield). Here we describe the genetic analysis of variation for grain protein in response to nitrogen (N) supply and locate significant genomic regions controlling grain protein components in a spring wheat population. In total, six N use efficiency (NUE) field trials were carried out for the target traits in a sub-population of doubled haploid lines derived from a cross between two Australian varieties, RAC875 and Kukri, in Southern and Western Australia from 2011 to 2013. Twenty-four putative Quantitative Trait Loci (QTL) for protein-related traits were identified at high and low N supply and ten QTL were identified for the response to N for the traits studied. These loci accounted for a significant proportion of the overall effect of N supply. Several of the regions were co-localised with grain yield QTL and are promising targets for further investigation and selection in breeding programs. PMID:27438012

  2. Exploring the diploid wheat ancestral A genome through sequence comparison at the High-Molecular-Weight glutenin locus region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The polyploid nature of hexaploid wheat (T. aestivum, AABBDD) often represents a great challenge in various aspects of research including genetic mapping, map-based cloning of important genes, and sequencing and accurate assembly of its genome. To explore the utility of ancestral diploid species o...

  3. Effects of Planting Date and Barley Variety on Russian Wheat Aphid (Hemiptera: Aphididae) Populations in Colorado, Kansas, and Nebraska.

    PubMed

    Sotelo, P A; Hein, G L; Peairs, F B; Smith, C M

    2014-10-01

    The Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae), is an important pest in the western Great Plains of the United States, where it causes hundreds of millions of dollars of losses to barley and wheat production through reduced yields. Experiments to evaluate the effect of early planting and resistance in barley (Hordeum vulgare L.) on D. noxia were conducted at Fort Collins, CO; Tribune, KS; and Sidney, NE, in 2007, 2008, and 2009. Treatments included two planting dates and four cultivars, the D. noxia-resistant barley cultivars 'Stoneham' (Otis*4/STARS 9577B) and 'Sidney' (Otis*4/STARS 9301B), the susceptible cultivar 'Otis', and Otis treated with thiamethoxam. In tiller samples collected from May through early July, consistently lower D. noxia populations were found in plots planted ≍30 d earlier than normal at Fort Collins in all three years, and at Tribune in 2007. With one location-year exception, lower D. noxia populations occurred on plants of resistant varieties or the susceptible variety Otis treated with thiamethoxam than on untreated Otis plants. There were no significant differences in D. noxia populations produced on plants of either resistant variety and susceptible Otis plants treated with thiamethoxam. Interactions between resistant varieties and early planting resulted in reduced D. noxia populations at Fort Collins in 2007 and 2009, and at Tribune and Sidney in 2007. Planting D. noxia-resistant barley varieties, planting varieties earlier than normal, and the synergistic effect of resistant variety and early planting can significantly reduce D. noxia infestations on barley in the western High Plains. PMID:26309288

  4. A genetic map constructed using a doubled haploid population derived from two elite Chinese common wheat varieties.

    PubMed

    Zhang, Kun-Pu; Zhao, Liang; Tian, Ji-Chun; Chen, Guang-Feng; Jiang, Xiao-Ling; Liu, Bin

    2008-08-01

    Genetic mapping provides a powerful tool for the analysis of quantitative trait loci (QTLs) at the genomic level. Herein, we report a new genetic linkage map developed from an F(1)-derived doubled haploid (DH) population of 168 lines, which was generated from the cross between two elite Chinese common wheat (Triticum aestivum L.) varieties, Huapei 3 and Yumai 57. The map contained 305 loci, represented by 283 simple sequence repeat (SSR) and 22 expressed sequence tag (EST)-SSR markers, which covered a total length of 2141.7 cM with an average distance of 7.02 cM between adjacent markers on the map. The chromosomal locations and map positions of 22 new SSR markers were determined, and were found to distribute on 14 linkage groups. Twenty SSR loci showed different chromosomal locations from those reported in other maps. Therefore, this map offers new information on the SSR markers of wheat. This genetic map provides new opportunities to detect and map QTLs controlling agronomically important traits. The unique features of this map are discussed.

  5. Genetic structure and local adaptation of European wheat yellow rust populations: the role of temperature-specific adaptation

    PubMed Central

    Mboup, Mamadou; Bahri, Bochra; Leconte, Marc; De Vallavieille-Pope, Claude; Kaltz, Oliver; Enjalbert, Jérôme

    2012-01-01

    Environmental heterogeneity influences coevolution and local adaptation in host–parasite systems. This also concerns applied issues, because the geographic range of parasites may depend on their capacity to adapt to abiotic conditions. We studied temperature-specific adaptation in the wheat yellow/stripe rust pathogen, Puccinia striiformis f.sp. tritici (PST). Using laboratory experiments, PST isolates from northern and southern France were studied for their ability to germinate and to infect bread and durum wheat cultivars over a temperature gradient. Pathogen origin × temperature interactions for infectivity and germination rate suggest local adaptation to high- versus low-temperature regimes in south and north. Competition experiments in southern and northern field sites showed a general competitive advantage of southern over northern isolates. This advantage was particularly pronounced in the southern ‘home’ site, consistent with a model integrating laboratory infectivity and field temperature variation. The stable PST population structure in France likely reflects adaptation to ecological and genetic factors: persistence of southern PST may be due to adaptation to the warmer Mediterranean climate; and persistence of northern PST can be explained by adaptation to commonly used cultivars, for which southern isolates are lacking the relevant virulence genes. Thus, understanding the role of temperature-specific adaptations may help to improve forecast models or breeding programmes. PMID:25568055

  6. QTLs Associated with Agronomic Traits in the Cutler × AC Barrie Spring Wheat Mapping Population Using Single Nucleotide Polymorphic Markers

    PubMed Central

    Perez-Lara, Enid; Semagn, Kassa; Chen, Hua; Iqbal, Muhammad; N’Diaye, Amidou; Kamran, Atif; Navabi, Alireza; Pozniak, Curtis; Spaner, Dean

    2016-01-01

    We recently reported three earliness per se quantitative trait loci (QTL) associated with flowering and maturity in a recombinant inbred lines (RILs) population derived from a cross between the spring wheat (Triticum aestivum L.) cultivars ‘Cutler’ and ‘AC Barrie’ using 488 microsatellite and diversity arrays technology (DArT) markers. Here, we present QTLs associated with flowering time, maturity, plant height, and grain yield using high density single nucleotide polymorphic (SNP) markers in the same population. A mapping population of 158 RILs and the two parents were evaluated at five environments for flowering, maturity, plant height and grain yield under field conditions, at two greenhouse environments for flowering, and genotyped with a subset of 1809 SNPs out of the 90K SNP array and 2 functional markers (Ppd-D1 and Rht-D1). Using composite interval mapping on the combined phenotype data across all environments, we identified a total of 19 QTLs associated with flowering time in greenhouse (5), and field (6) conditions, maturity (5), grain yield (2) and plant height (1). We mapped these QTLs on 8 chromosomes and they individually explained between 6.3 and 37.8% of the phenotypic variation. Four of the 19 QTLs were associated with multiple traits, including a QTL on 2D associated with flowering, maturity and grain yield; two QTLs on 4A and 7A associated with flowering and maturity, and another QTL on 4D associated with maturity and plant height. However, only the QTLs on both 2D and 4D had major effects, and they mapped adjacent to well-known photoperiod response Ppd-D1 and height reducing Rht-D1 genes, respectively. The QTL on 2D reduced flowering and maturity time up to 5 days with a yield penalty of 436 kg ha-1, while the QTL on 4D reduced plant height by 13 cm, but increased maturity by 2 days. The high density SNPs allowed us to map eight moderate effect, two major effect, and nine minor effect QTLs that were not identified in our previous study

  7. QTLs Associated with Agronomic Traits in the Cutler × AC Barrie Spring Wheat Mapping Population Using Single Nucleotide Polymorphic Markers.

    PubMed

    Perez-Lara, Enid; Semagn, Kassa; Chen, Hua; Iqbal, Muhammad; N'Diaye, Amidou; Kamran, Atif; Navabi, Alireza; Pozniak, Curtis; Spaner, Dean

    2016-01-01

    We recently reported three earliness per se quantitative trait loci (QTL) associated with flowering and maturity in a recombinant inbred lines (RILs) population derived from a cross between the spring wheat (Triticum aestivum L.) cultivars 'Cutler' and 'AC Barrie' using 488 microsatellite and diversity arrays technology (DArT) markers. Here, we present QTLs associated with flowering time, maturity, plant height, and grain yield using high density single nucleotide polymorphic (SNP) markers in the same population. A mapping population of 158 RILs and the two parents were evaluated at five environments for flowering, maturity, plant height and grain yield under field conditions, at two greenhouse environments for flowering, and genotyped with a subset of 1809 SNPs out of the 90K SNP array and 2 functional markers (Ppd-D1 and Rht-D1). Using composite interval mapping on the combined phenotype data across all environments, we identified a total of 19 QTLs associated with flowering time in greenhouse (5), and field (6) conditions, maturity (5), grain yield (2) and plant height (1). We mapped these QTLs on 8 chromosomes and they individually explained between 6.3 and 37.8% of the phenotypic variation. Four of the 19 QTLs were associated with multiple traits, including a QTL on 2D associated with flowering, maturity and grain yield; two QTLs on 4A and 7A associated with flowering and maturity, and another QTL on 4D associated with maturity and plant height. However, only the QTLs on both 2D and 4D had major effects, and they mapped adjacent to well-known photoperiod response Ppd-D1 and height reducing Rht-D1 genes, respectively. The QTL on 2D reduced flowering and maturity time up to 5 days with a yield penalty of 436 kg ha-1, while the QTL on 4D reduced plant height by 13 cm, but increased maturity by 2 days. The high density SNPs allowed us to map eight moderate effect, two major effect, and nine minor effect QTLs that were not identified in our previous study using

  8. Variation between Ethiopian and North American barley varieties (Hordeum vulgare) in response to Russian wheat aphid (Diuraphis noxia) populations.

    PubMed

    Araya, Alemu; Belay, Tesfay; Hussein, Temam

    2014-03-15

    The Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae), causes severe damage to barley, Hordeum vulgare L. (Poales: Poaceae), in the highlands of Ethiopia. Little information is available on the control of this pest in Ethiopia. An experiment aimed at evaluating the resistance of barley varieties from the USA to D. noxia populations and determining biotypic variation between Ethiopian and North American D. noxia populations was conducted. The D. noxia-resistant barley varieties Burton and RWA-1758 from the USA, the resistant barley line 3296-15 from Ethiopia, and a local Ethiopian susceptible variety were included in a randomized design in a greenhouse under natural light conditions. There were highly significant differences (P < 0.001) in the mean D. noxia population, leaf chlorosis, leaf rolling, plant stunting, number of tillers per plant, and the percentage of infested tillers per plant between the resistant and susceptible varieties. The aphid population per tiller was lower on the resistant barley plants than on the susceptible plants. Severe plant damage was observed on the local barley variety, while the least damage was observed on Burton, followed by RWA-1758. Burton and RWA-1758 were therefore highly resistant and moderately resistant, respectively, to the northern Ethiopian D. noxia populations, indicating similarities in biotypes between the United States and northern Ethiopian D. noxia populations. The damage to variety 3296-15 was greater than to Burton and RWA-1758. Leaf chlorosis scores and leaf rolling scores for variety 3296-15 upon treatment with the north Ethiopian D. noxia population indicate likely biotypic variation between D. noxia populations of northern and central Ethiopia.

  9. Genetic characterization of North American populations of the wheat curl mite (Aceria tosichella) and dry bulb mite (Aceria tulipae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wheat curl mite, Aceria tosichella Keifer, transmits at least three harmful viruses, wheat streak mosaic virus (WSMV), high plains virus (HPV), and Triticum mosaic virus (TriMV) to wheat (Triticum aestivum L.) throughout the Great Plains. This virus complex is considered to be the most serious d...

  10. Analysis of Triticum boeoticum and Triticum urartu seed defensins: To the problem of the origin of polyploid wheat genomes.

    PubMed

    Odintsova, Tatyana I; Korostyleva, Tatyana V; Odintsova, Margarita S; Pukhalsky, Vitaliy A; Grishin, Eugene V; Egorov, Tsezi A

    2008-06-01

    The origin of polyploid wheat genomes has been the subject of numerous studies and is the key problem in wheat phylogeny. Different diploid species have been supposed to donate genomes to tetraploid and hexaploid wheat species. To shed light on phylogenetic relationships between the presumable A genome donors and hexaploid wheat species we have applied a new approach: the comparison of defensins from diploid Triticum species, Triticum boeoticum Boiss. and Triticum urartu Thum. ex Gandil., with previously characterized Triticum kiharae defensins [T.I. Odintsova et al., Biochimie 89 (2007) 605-612]. Defensins were isolated by acidic extraction of seeds followed by three-step chromatographic separation. Isolated defensins were identified by molecular masses using MALDI-TOF mass spectrometry and N-terminal sequencing. For the first time, we have shown that T. urartu defensins are more similar to those of the hexaploid wheat than T. boeoticum defensins, although variation among samples collected in different regions of the world was revealed. Our results clearly demonstrate that T. urartu of the Asian origin contributed the A genome to polyploid wheat species.

  11. Chromosomes 3B and 4D are associated with several milling and baking quality traits in a soft white spring wheat (Triticum aestivum L.) population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat is marketed based on end-use quality characteristics and better knowledge of the underlying genetics of specific quality parameters is essential to enhance the breeding process. A set of 188 recombinant inbred lines from a ‘Louise’ by ‘Penawawa’ mapping population was grown in two crop years a...

  12. Genetic Diversity, Population Structure, and Linkage Disequilibrium in Bread Wheat (Triticum aestivum L.).

    PubMed

    Tascioglu, Tulin; Metin, Ozge Karakas; Aydin, Yildiz; Sakiroglu, Muhammet; Akan, Kadir; Uncuoglu, Ahu Altinkut

    2016-08-01

    Bread wheat (Triticum aestivum L.) gene pool was analyzed with 117 microsatellite markers scattered throughout A, B, and D genomes. Ninety microsatellite markers were giving 1620 polymorphic alleles in 55 different bread wheat genotypes. These genotypes were found to be divided into three subgroups based on Bayesian model and Principal component analysis. The highest polymorphism information content value for the markers resides on A genome was estimated for wmc262 marker located on 4A chromosome with the polymorphism information content value of 0.960. The highest polymorphism information content value (0.954) among the markers known to be located on B genome was realized for wmc44 marker located on 1B chromosome. The highest polymorphism information content value for the markers specific to D genome was found in gwm174 marker located on 5D chromosome with the polymorphism information content value of 0.948. The presence of linkage disequilibrium between 81 pairwise SSR markers reside on the same chromosome was tested and very limited linkage disequilibrium was observed. The results confirmed that the most distant genotype pairs were as follows Ceyhan-99-Behoth 6, Gerek 79-Douma 40989, and Karahan-99-Douma 48114.

  13. Molecular and comparative mapping of genes governing spike compactness from wild emmer wheat.

    PubMed

    Faris, Justin D; Zhang, Zengcui; Garvin, David F; Xu, Steven S

    2014-08-01

    The development and morphology of the wheat spike is important because the spike is where reproduction occurs and it holds the grains until harvest. Therefore, genes that influence spike morphology are of interest from both theoretical and practical stand points. When substituted for the native chromosome 2A in the tetraploid Langdon (LDN) durum wheat background, the Triticum turgidum ssp. dicoccoides chromosome 2A from accession IsraelA confers a short, compact spike with fewer spikelets per spike compared to LDN. Molecular mapping and quantitative trait loci (QTL) analysis of these traits in a homozygous recombinant population derived from LDN × the chromosome 2A substitution line (LDNIsA-2A) indicated that the number of spikelets per spike and spike length were controlled by linked, but different, loci on the long arm of 2A. A QTL explaining most of the variation for spike compactness coincided with the QTL for spike length. Comparative mapping indicated that the QTL for number of spikelets per spike overlapped with a previously mapped QTL for Fusarium head blight susceptibility. The genes governing spike length and compactness were not orthologous to either sog or C, genes known to confer compact spikes in diploid and hexaploid wheat, respectively. Mapping and sequence analysis indicated that the gene governing spike length and compactness derived from wild emmer could be an ortholog of the barley Cly1/Zeo gene, which research indicates is an AP2-like gene pleiotropically affecting cleistogamy, flowering time, and rachis internode length. This work provides researchers with knowledge of new genetic loci and associated markers that may be useful for manipulating spike morphology in durum wheat.

  14. Fast and Efficient Screening for Wheat Loss-of-Gene Mutants Using Multiplexed Melt Curve Analyses.

    PubMed

    Mieog, Jos C; Ral, Jean-Philippe F

    2016-01-01

    This study describes a new approach in the screening for loss-of-gene mutants in Heavy Ion Bombardment (HIB) mutant populations of genetically complex organisms such as hexaploid bread wheat using multiplexed single-color (SYBR Green) melt curve analyses. The assay was set up for three target genes to test its validity and applicability. For each gene, three genome-specific primer pairs (one for each genome) with distinct melt curves were developed and multiplexed. This allowed screening for "single null mutants" (plants with the target gene deleted in one of the three genomes) for all three genomes in a single reaction. The first two genes (α-Amylase 3 and Epsilon Cyclase) were used to test the approach as HIB null lines for all three genomes were already available for these. The third assay was successfully applied to identify new single null lines of the target gene α-Amylase 2 in an in-house HIB wheat collection. The use of SYBR Green greatly reduced the time and/or cost investment compared to other techniques and the approach proved highly suitable for high-throughput applications. PMID:27459606

  15. Fast and Efficient Screening for Wheat Loss-of-Gene Mutants Using Multiplexed Melt Curve Analyses

    PubMed Central

    Mieog, Jos C.; Ral, Jean-Philippe F.

    2016-01-01

    This study describes a new approach in the screening for loss-of-gene mutants in Heavy Ion Bombardment (HIB) mutant populations of genetically complex organisms such as hexaploid bread wheat using multiplexed single-color (SYBR Green) melt curve analyses. The assay was set up for three target genes to test its validity and applicability. For each gene, three genome-specific primer pairs (one for each genome) with distinct melt curves were developed and multiplexed. This allowed screening for “single null mutants” (plants with the target gene deleted in one of the three genomes) for all three genomes in a single reaction. The first two genes (α-Amylase 3 and Epsilon Cyclase) were used to test the approach as HIB null lines for all three genomes were already available for these. The third assay was successfully applied to identify new single null lines of the target gene α-Amylase 2 in an in-house HIB wheat collection. The use of SYBR Green greatly reduced the time and/or cost investment compared to other techniques and the approach proved highly suitable for high-throughput applications. PMID:27459606

  16. Diversity of Long Terminal Repeat Retrotransposon Genome Distribution in Natural Populations of the Wild Diploid Wheat Aegilops speltoides

    PubMed Central

    Hosid, Elena; Brodsky, Leonid; Kalendar, Ruslan; Raskina, Olga; Belyayev, Alexander

    2012-01-01

    The environment can have a decisive influence on the structure of the genome, changing it in a certain direction. Therefore, the genomic distribution of environmentally sensitive transposable elements may vary measurably across a species area. In the present research, we aimed to detect and evaluate the level of LTR retrotransposon intraspecific variability in Aegilops speltoides (2n = 2x = 14), a wild cross-pollinated relative of cultivated wheat. The interretrotransposon amplified polymorphism (IRAP) protocol was applied to detect and evaluate the level of retrotransposon intraspecific variability in Ae. speltoides and closely related species. IRAP analysis revealed significant diversity in TE distribution. Various genotypes from the 13 explored populations significantly differ with respect to the patterns of the four explored LTR retrotransposons (WIS2, Wilma, Daniela, and Fatima). This diversity points to a constant ongoing process of LTR retrotransposon fraction restructuring in populations of Ae. speltoides throughout the species’ range and within single populations in time. Maximum changes were recorded in genotypes from small stressed populations. Principal component analysis showed that the dynamics of the Fatima element significantly differ from those of WIS2, Wilma, and Daniela. In terms of relationships between Sitopsis species, IRAP analysis revealed a grouping with Ae. sharonensis and Ae. longissima forming a separate unit, Ae. speltoides appearing as a dispersed group, and Ae. bicornis being in an intermediate position. IRAP display data revealed dynamic changes in LTR retrotransposon fractions in the genome of Ae. speltoides. The process is permanent and population specific, ultimately leading to the separation of small stressed populations from the main group. PMID:22042572

  17. Population Dynamics of Meloidogyne incognita, M. arenaria,and Other Nematodes and Crop Yields in Rotations of Cotton, Peanut, and Wheat Under Minimum Tillage.

    PubMed

    Johnson, A W; Dowler, C C; Handoo, Z A

    2000-03-01

    Wheat, cotton, and peanut were arranged in three cropping sequences to determine the effects of fenamiphos (6.7 kg a.i./ha) and cropping sequence on nematode population densities and crop yields under conservation tillage and irrigation for 6 years. The cropping sequences included a wheat winter cover crop each year and summer crops of cotton every year, peanut every year, or cotton rotated every other year with peanut. The population densities of Meloidogyne spp. and Helicotylenchus dihystera were determined monthly during the experiment. Numbers of M. incognita increased on cotton and decreased on peanut, whereas M. arenaria increased on peanut, and decreased on cotton; both nematode species remained in moderate to high numbers in plots of wheat. Root damage was more severe on cotton than peanut and was not affected by fenamiphos treatment. The H. dihystera population densities were highest in plots with cotton every summer, intermediate in the cotton-peanut rotation, and lowest in plots with peanut every summer. Over all years and cropping sequences, yield increases in fenamiphos treatment over untreated control were 9% for wheat, 8% for cotton, and 0% for peanut. Peanut yields following cotton were generally higher than yields following peanut. These results show that nematode problems may be manageable in cotton and peanut production under conservation tillage and irrigation in the southeastern United States.

  18. Population Dynamics of Meloidogyne incognita, M. arenaria,and Other Nematodes and Crop Yields in Rotations of Cotton, Peanut, and Wheat Under Minimum Tillage

    PubMed Central

    Johnson, A. W.; Dowler, C. C.; Handoo, Z. A.

    2000-01-01

    Wheat, cotton, and peanut were arranged in three cropping sequences to determine the effects of fenamiphos (6.7 kg a.i./ha) and cropping sequence on nematode population densities and crop yields under conservation tillage and irrigation for 6 years. The cropping sequences included a wheat winter cover crop each year and summer crops of cotton every year, peanut every year, or cotton rotated every other year with peanut. The population densities of Meloidogyne spp. and Helicotylenchus dihystera were determined monthly during the experiment. Numbers of M. incognita increased on cotton and decreased on peanut, whereas M. arenaria increased on peanut, and decreased on cotton; both nematode species remained in moderate to high numbers in plots of wheat. Root damage was more severe on cotton than peanut and was not affected by fenamiphos treatment. The H. dihystera population densities were highest in plots with cotton every summer, intermediate in the cotton-peanut rotation, and lowest in plots with peanut every summer. Over all years and cropping sequences, yield increases in fenamiphos treatment over untreated control were 9% for wheat, 8% for cotton, and 0% for peanut. Peanut yields following cotton were generally higher than yields following peanut. These results show that nematode problems may be manageable in cotton and peanut production under conservation tillage and irrigation in the southeastern United States. PMID:19270949

  19. Population Dynamics of Bacillus sp. L324-92R(12) and Pseudomonas fluorescens 2-79RN(10) in the Rhizosphere of Wheat.

    PubMed

    Kim, D S; Weller, D M; Cook, R J

    1997-05-01

    ABSTRACT Bacillus sp. L324-92 is suppressive to three root diseases of wheat, namely take-all caused by Gaeumannomyces graminis var. tritici, Rhizoctonia root rot caused by Rhizoctonia solani AG8, and Pythium root rot caused by several Pythium species. Populations of strain L324-92R(12), a rifampicin-resistant mutant of L324-92 applied as a seed treatment, were monitored in the rhizosphere and spermosphere of wheat and compared with populations of Pseudomonas fluorescens 2-79RN(10), a known, rhizosphere-competent, biocontrol agent. In growth chamber studies, the population sizes of L324-92R(12) on roots of wheat were approximately 1,000-fold smaller than those of 2-79RN(10) at 5 days after planting, but, thereafter, they increased while those of 2-79RN(10) decreased until the two were equal in size at 45 days after planting. In the field with winter wheat, the population sizes of L324-92R(12) on roots were at least 10-fold smaller than those of 2-79RN(10) during the fall (November 1993) and early spring (March 1994). Thereafter, the population of L324-92R(12) remained constant or increased slightly, while the population of 2-79RN(10) decreased until the two were roughly the same at 10(4) to 10(5) CFU/plant over the period of 150 days (April 1994) until 285 days (harvest) after planting. In growth chamber studies, strain L324-92R(12) remained confined to root sections within 3.5 cm below the seed, whereas 2-79RN(10) was recovered from all root sections ranging from 0.5 to 6.5 cm below the seed. In the field on winter wheat, both strains were recovered from root sections down to 5.0 to 6.5 cm below the seed at 75 days after planting (mid December), but only 2-79RN(10) was recovered at this depth at 90 days after planting. Both strains were recovered from the seed remnants 6 months after planting in the field. Both strains also were recovered from inside the roots and shoots, but population sizes of strain 279RN(10) were greater than those of L324 92R(12).

  20. Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps

    PubMed Central

    Sonnleitner, Michaela; Flatscher, Ruth; Escobar García, Pedro; Rauchová, Jana; Suda, Jan; Schneeweiss, Gerald M.; Hülber, Karl; Schönswetter, Peter

    2010-01-01

    Background and Aims The spatial distribution of cytotypes can provide valuable insights into evolutionary patterns of polyploid complexes. In a previous study the macro-scale distribution of the three main cytotypes in Senecio carniolicus (Asteraceae) within the Eastern Alps was characterized. Employing a roughly 12-fold extended sampling, the present study focuses on unravelling patterns of cytotype distribution on the meso- and microscale and on correlating those with ecological properties of the growing sites. Methods DAPI flow cytometry of dried samples was used to determine DNA ploidy level in 5033 individuals from 100 populations spread over the entire Eastern Alpine distribution area of S. carniolicus. Descriptors of microhabitats as well as spatial data were recorded in the field, and analysed with a mixed-effects ANOVA. Key Results Extensive variation in DNA ploidy levels (2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x) was detected. Of the main cytotypes, diploids and hexaploids were widespread and had strongly overlapping distributions resulting in the frequent occurrence of cytotype mixtures (half of the investigated populations), whereas tetraploids were disjunctly distributed and occurred in the south-west and the east of the species' distribution area. In spite of the frequent co-occurrence of cytotypes, only 1 % of the samples belonged to secondary cytotypes (3x, 5x, 7x, 8x, 9x). Diploids, tetraploids and hexaploids were altitudinally segregated, but with broad overlap. Similarly, highly significant differences in vegetation and rock cover as well as microhabitat exposure were found between the main cytotypes. Conclusions Senecio carniolicus shows a remarkable diversity of cytotypes. The distribution of the three main cytotypes (2x, 4x, 6x) has been shaped by Pleistocene glaciations to different extents. Whereas tetraploids are nearly entirely restricted to refugia, hexaploids colonized areas that were extensively glaciated. Diploid and hexaploid individuals often

  1. A polyphasic approach to study the dynamics of microbial population of an organic wheat sourdough during its conversion to gluten-free sourdough.

    PubMed

    Lhomme, Emilie; Mezaize, Sandra; Ducasse, Maren Bonnand; Chiron, Hubert; Champomier-Vergès, Marie-Christine; Chaillou, Stéphane; Zagorec, Monique; Dousset, Xavier; Onno, Bernard

    2014-03-01

    To develop a method for organic gluten-free (GF) sourdough bread production, a long-term and original wheat sourdough was refreshed with GF flours. The dynamics of the sourdough microbiota during five months of back-slopping were analyzed by classical enumeration and molecular methods, including PCR-temporal temperature gel electrophoresis (PCR-TTGE), multiplex PCR, and pulsed field gel electrophoresis (PFGE). The results showed that the yeast counts remained constant, although Saccharomyces cerevisiae, present in the initial wheat sourdough, was no longer detected in the GF sourdough, while lactic acid bacteria (LAB) counts increased consistently. In the first phase, which was aimed at obtaining a GF sourdough from wheat sourdough, Lactobacillus sanfranciscensis, L. plantarum, and L. spicheri were the main LAB species detected. During the second phase, aimed at maintaining the GF sourdough, the L. plantarum and L. spicheri populations decreased whereas L. sanfranciscensis persisted and L. sakei became the predominant species. Multiplex PCRs also revealed the presence of several L. sakei strains in the GF sourdough. In a search for the origin of the LAB species, PCR-TTGE was performed on the flour samples but only L. sanfranciscensis was detected, suggesting a flour origin for this typical sourdough species. Thus, while replacement of the wheat flour by GF flour influenced the sourdough microbiota, some of the original sourdough LAB and yeast species remained in the GF sourdough.

  2. A polyphasic approach to study the dynamics of microbial population of an organic wheat sourdough during its conversion to gluten-free sourdough.

    PubMed

    Lhomme, Emilie; Mezaize, Sandra; Ducasse, Maren Bonnand; Chiron, Hubert; Champomier-Vergès, Marie-Christine; Chaillou, Stéphane; Zagorec, Monique; Dousset, Xavier; Onno, Bernard

    2014-03-01

    To develop a method for organic gluten-free (GF) sourdough bread production, a long-term and original wheat sourdough was refreshed with GF flours. The dynamics of the sourdough microbiota during five months of back-slopping were analyzed by classical enumeration and molecular methods, including PCR-temporal temperature gel electrophoresis (PCR-TTGE), multiplex PCR, and pulsed field gel electrophoresis (PFGE). The results showed that the yeast counts remained constant, although Saccharomyces cerevisiae, present in the initial wheat sourdough, was no longer detected in the GF sourdough, while lactic acid bacteria (LAB) counts increased consistently. In the first phase, which was aimed at obtaining a GF sourdough from wheat sourdough, Lactobacillus sanfranciscensis, L. plantarum, and L. spicheri were the main LAB species detected. During the second phase, aimed at maintaining the GF sourdough, the L. plantarum and L. spicheri populations decreased whereas L. sanfranciscensis persisted and L. sakei became the predominant species. Multiplex PCRs also revealed the presence of several L. sakei strains in the GF sourdough. In a search for the origin of the LAB species, PCR-TTGE was performed on the flour samples but only L. sanfranciscensis was detected, suggesting a flour origin for this typical sourdough species. Thus, while replacement of the wheat flour by GF flour influenced the sourdough microbiota, some of the original sourdough LAB and yeast species remained in the GF sourdough. PMID:25296441

  3. Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat

    PubMed Central

    2010-01-01

    Background How new forms arise in nature has engaged evolutionary biologists since Darwin's seminal treatise on the origin of species. Transposable elements (TEs) may be among the most important internal sources for intraspecific variability. Thus, we aimed to explore the temporal dynamics of several TEs in individual genotypes from a small, marginal population of Aegilops speltoides. A diploid cross-pollinated grass species, it is a wild relative of the various wheat species known for their large genome sizes contributed by an extraordinary number of TEs, particularly long terminal repeat (LTR) retrotransposons. The population is characterized by high heteromorphy and possesses a wide spectrum of chromosomal abnormalities including supernumerary chromosomes, heterozygosity for translocations, and variability in the chromosomal position or number of 45S and 5S ribosomal DNA (rDNA) sites. We propose that variability on the morphological and chromosomal levels may be linked to variability at the molecular level and particularly in TE proliferation. Results Significant temporal fluctuation in the copy number of TEs was detected when processes that take place in small, marginal populations were simulated. It is known that under critical external conditions, outcrossing plants very often transit to self-pollination. Thus, three morphologically different genotypes with chromosomal aberrations were taken from a wild population of Ae. speltoides, and the dynamics of the TE complex traced through three rounds of selfing. It was discovered that: (i) various families of TEs vary tremendously in copy number between individuals from the same population and the selfed progenies; (ii) the fluctuations in copy number are TE-family specific; (iii) there is a great difference in TE copy number expansion or contraction between gametophytes and sporophytes; and (iv) a small percentage of TEs that increase in copy number can actually insert at novel locations and could serve as a bona

  4. SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species

    PubMed Central

    Chao, Shiaoman; Jellen, Eric N.; Carson, Martin L.; Rines, Howard W.; Obert, Donald E.; Lutz, Joseph D.; Shackelford, Irene; Korol, Abraham B.; Wight, Charlene P.; Gardner, Kyle M.; Hattori, Jiro; Beattie, Aaron D.; Bjørnstad, Åsmund; Bonman, J. Michael; Jannink, Jean-Luc; Sorrells, Mark E.; Brown-Guedira, Gina L.; Mitchell Fetch, Jennifer W.; Harrison, Stephen A.; Howarth, Catherine J.; Ibrahim, Amir; Kolb, Frederic L.; McMullen, Michael S.; Murphy, J. Paul; Ohm, Herbert W.; Rossnagel, Brian G.; Yan, Weikai; Miclaus, Kelci J.; Hiller, Jordan; Maughan, Peter J.; Redman Hulse, Rachel R.; Anderson, Joseph M.; Islamovic, Emir

    2013-01-01

    A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources. PMID:23533580

  5. SNP discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species.

    PubMed

    Oliver, Rebekah E; Tinker, Nicholas A; Lazo, Gerard R; Chao, Shiaoman; Jellen, Eric N; Carson, Martin L; Rines, Howard W; Obert, Donald E; Lutz, Joseph D; Shackelford, Irene; Korol, Abraham B; Wight, Charlene P; Gardner, Kyle M; Hattori, Jiro; Beattie, Aaron D; Bjørnstad, Åsmund; Bonman, J Michael; Jannink, Jean-Luc; Sorrells, Mark E; Brown-Guedira, Gina L; Mitchell Fetch, Jennifer W; Harrison, Stephen A; Howarth, Catherine J; Ibrahim, Amir; Kolb, Frederic L; McMullen, Michael S; Murphy, J Paul; Ohm, Herbert W; Rossnagel, Brian G; Yan, Weikai; Miclaus, Kelci J; Hiller, Jordan; Maughan, Peter J; Redman Hulse, Rachel R; Anderson, Joseph M; Islamovic, Emir; Jackson, Eric W

    2013-01-01

    A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources. PMID:23533580

  6. Development of a D genome specific marker resource for diploid and hexaploid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mapping and map-based cloning of genes that control agriculturally and economically important traits remain great challenges for plants with complex highly repetitive genomes such as those of the grass tribe, Triticeae. Mapping limitations in the Triticeae are primarily due to low frequencies of po...

  7. Starch waxiness in hexaploid wheat (Triticum aestivum L.) by NIR reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch, the primary energy storage component of plants, consists of two large macromolecules, amylose and amylopectin. Each molecule is composed of long chains of alpha-D-glucopyranosyl units, with branching present in amylopectin and absent in amylose. The relative abundance of these two molecules ...

  8. Genetics of pre-harvest sprouting resistance in a cross of Canadian adapted durum wheat genotypes.

    PubMed

    Singh, A K; Knox, R E; Clarke, J M; Clarke, F R; Singh, A; Depauw, R M; Cuthbert, R D

    2014-01-01

    Severe losses attributable to pre-harvest sprouting (PHS) have been reported in Canada in recent years. The genetics of PHS resistance have been more extensively studied in hexaploid wheat and generally not using combinations of elite agronomic parents. The objective of our research was to understand the genetic nature of PHS resistance in an elite durum cross. A doubled haploid (DH) population and checks were phenotyped in replicated trials for grain yield and PHS traits over 3 years in western Canada. The response of intact spikes to sprouting conditions, sampled over two development time points, was measured in a rain simulation chamber. The DH population was genotyped with simple sequence repeat and Diversity Arrays Technology markers. Genotypes were a significant source of variation for grain yield and PHS resistance traits in each tested environment. Transgressive segregant DH genotypes were identified for grain yield and PHS resistance measurements. Low or no correlation was detected between grain yield and PHS, while correlation between PHS resistance measurements was moderate. The heritability of PHS resistance was moderate and higher than grain yield. Significant quantitative trait loci with small effect were detected on chromosomes 1A, 1B, 5B, 7A and 7B. Both parents contributed to the PHS resistance. Promising DH genotypes with high and stable grain yield as well as PHS resistance were identified, suggesting that grain yield and PHS can be improved simultaneously in elite genetic materials, and that these DH genotypes will be useful parental material for durum breeding programs. PMID:24659906

  9. Identification and mapping in spring wheat of genetic factors controlling stem rust resistance and the study of their epistatic interactions across multiple environments.

    PubMed

    Singh, A; Knox, R E; DePauw, R M; Singh, A K; Cuthbert, R D; Campbell, H L; Singh, D; Bhavani, S; Fetch, T; Clarke, F

    2013-08-01

    Stem rust (Puccinia graminis f. sp. tritici) is responsible for major production losses in hexaploid wheat (Triticum aestivum L.) around the world. The spread of stem rust race Ug99 and variants is a threat to worldwide wheat production and efforts are ongoing to identify and incorporate resistance. The objectives of this research were to identify quantitative trait loci (QTL) and to study their epistatic interactions for stem rust resistance in a population derived from the Canadian wheat cultivars AC Cadillac and Carberry. A doubled haploid (DH) population was developed and genotyped with DArT(®) and SSR markers. The parents and DH lines were phenotyped for stem rust severity and infection response to Ug99 and variant races in 2009, 2010 and 2011 in field rust nurseries near Njoro, Kenya, and to North American races in 2011 and 2012 near Swift Current, SK, Canada. Seedling infection type to race TTKSK was assessed in a bio-containment facility in 2009 and 2012 near Morden, MB. Eight QTL for stem rust resistance and three QTL for pseudo-black chaff on nine wheat chromosomes were identified. The phenotypic variance (PV) explained by the stem rust resistance QTL ranged from 2.4 to 48.8 %. AC Cadillac contributed stem rust resistance QTL on chromosomes 2B, 3B, 5B, 6D, 7B and 7D. Carberry contributed resistance QTL on 4B and 5A. Epistatic interactions were observed between loci on 4B and 5B, 4B and 7B, 6D and 3B, 6D and 5B, and 6D and 7B. The stem rust resistance locus on 6D interacted synergistically with 5B to improve the disease resistance through both crossover and non-crossover interactions depending on the environment. Results from this study will assist in planning breeding for stem rust resistance by maximizing QTL main effects and epistatic interactions.

  10. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects

    PubMed Central

    Pinto, R. Suzuky; Mathews, Ky L.; McIntyre, C. Lynne; Olivares-Villegas, Juan-Jose; Chapman, Scott C.

    2010-01-01

    A restricted range in height and phenology of the elite Seri/Babax recombinant inbred line (RIL) population makes it ideal for physiological and genetic studies. Previous research has shown differential expression for yield under water deficit associated with canopy temperature (CT). In the current study, 167 RILs plus parents were phenotyped under drought (DRT), hot irrigated (HOT), and temperate irrigated (IRR) environments to identify the genomic regions associated with stress-adaptive traits. In total, 104 QTL were identified across a combination of 115 traits × 3 environments × 2 years, of which 14, 16, and 10 QTL were associated exclusively with DRT, HOT, and IRR, respectively. Six genomic regions were related to a large number of traits, namely 1B-a, 2B-a, 3B-b, 4A-a, 4A-b, and 5A-a. A yield QTL located on 4A-a explained 27 and 17% of variation under drought and heat stress, respectively. At the same location, a QTL explained 28% of the variation in CT under heat, while 14% of CT variation under drought was explained by a QTL on 3B-b. The T1BL.1RS (rye) translocation donated by the Seri parent was associated with decreased yield in this population. There was no co-location of consistent yield and phenology or height-related QTL, highlighting the utility of using a population with a restricted range in anthesis to facilitate QTL studies. Common QTL for drought and heat stress traits were identified on 1B-a, 2B-a, 3B-b, 4A-a, 4B-b, and 7A-a confirming their generic value across stresses. Yield QTL were shown to be associated with components of other traits, supporting the prospects for dissecting crop performance into its physiological and genetic components in order to facilitate a more strategic approach to breeding. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1351-4) contains supplementary material, which is available to authorized users. PMID:20523964

  11. Identification of a hidden resistance gene in tetraploid wheat using laboratory strains of Pyricularia oryzae produced by backcrossing.

    PubMed

    Cumagun, Christian Joseph R; Anh, Vu Lan; Vy, Trinh Thi Phuong; Inoue, Yoshihiro; Asano, Hokuto; Hyon, Gang-Su; Chuma, Izumi; Tosa, Yukio

    2014-06-01

    In the process (BC3F1 generation) of backcrossing an Avena isolate of Pyricularia oryzae with a Triticum isolate, color mutants with white mycelia were obtained. These white mutants lacked virulence on all (31/31) hexaploid and most (28/32) tetraploid wheat lines tested. In a BC4F1 population, white and black cultures segregated in a 1:1 ratio, suggesting that the mutant phenotype is controlled by a single gene. Furthermore, the mycelial color was perfectly linked with avirulence in the BC4F1 population; white cultures were all avirulent on common wheat (Triticum aestivum) 'Norin 4' (N4) whereas black cultures were all virulent. White cultures in the BC3F1 and BC4F1 generations were also avirulent on tetraploid wheat (T. dicoccoides) accession 'KU109' (Tat4), which was susceptible to all cultures derived from the parental wild isolates through the BC2F1 generation. A cross between Tat4 and a susceptible tetraploid (T. paleocolchicum) accession 'KU196' (Tat14) produced resistant and susceptible F2 seedlings in a 3:1 ratio against the white cultures. In the F3 generation homozygous resistant/segregating/homozygous susceptible lines segregated in a 1:2:1 ratio. These results suggest that the resistance of Tat4 to the white cultures is controlled by a single major gene. This gene, tentatively designated as RmgTd(t), is considered to be a hidden resistance gene because it was not detected with the Br58, F1, BC1F1, or BC2F1 cultures. Cytological analysis revealed that the moderate resistance controlled by RmgTd(t) was associated with a hypersensitive reaction of mesophyll cells. PMID:24824421

  12. Population structure within lineages of Wheat streak mosaic virus derived from a common founding event exhibits stochastic variation inconsistent with the deterministic quasi-species model.

    PubMed

    French, Roy; Stenger, Drake C

    2005-12-20

    Structure of Wheat streak mosaic virus (WSMV) populations derived from a common founding event and subjected to serial passage at high multiplicity of infection (MOI) was evaluated. The founding population was generated by limiting dilution inoculation. Lineages of known pedigree were sampled at passage 9 (two populations) and at passage 15, with (three populations) or without mixing (four populations) of lineages at passage 10. Polymorphism within each population was assessed by sequencing 17-21 clones containing a 1371 nt region (WSMV-Sidney 81 nts 8001-9371) encompassing the entire coat protein cistron and flanking regions. Mutation frequency averaged approximately 5.0 x 10(-4)/nt across all populations and ranged from 2.4 to 11.6 x 10(-4)/nt within populations, but did not consistently increase or decrease with the number of passages removed from the founding population. Shared substitutions (19 nonsynonymous, 10 synonymous, and 3 noncoding) occurred at 32 sites among 44 haplotypes. Only four substitutions became fixed (frequency = 100%) within a population and nearly one third (10/32) never achieved a frequency of 10% or greater in any sampled population. Shared substitutions were randomly distributed with respect to genome position, with transitions outnumbering transversions 5.4:1 and a clear bias for A to G and U to C substitutions. Haplotype composition of each population was unique with complexity of each population varying unpredictably, in that the number and frequency of haplotypes within a lineage were not correlated with number of passages removed from the founding population or whether the population was derived from a single or mixed lineage. The simplest explanation is that plant virus lineages, even those propagated at high MOI, are subject to frequent, narrow genetic bottlenecks during systemic movement that result in low effective population size and stochastic changes in population structure upon serial passage.

  13. Population structure within lineages of Wheat streak mosaic virus derived from a common founding event exhibits stochastic variation inconsistent with the deterministic quasi-species model

    SciTech Connect

    French, Roy; Stenger, Drake C. . E-mail: dstenger@unlnotes.unl.edu

    2005-12-20

    Structure of Wheat streak mosaic virus (WSMV) populations derived from a common founding event and subjected to serial passage at high multiplicity of infection (MOI) was evaluated. The founding population was generated by limiting dilution inoculation. Lineages of known pedigree were sampled at passage 9 (two populations) and at passage 15, with (three populations) or without mixing (four populations) of lineages at passage 10. Polymorphism within each population was assessed by sequencing 17-21 clones containing a 1371 nt region (WSMV-Sidney 81 nts 8001-9371) encompassing the entire coat protein cistron and flanking regions. Mutation frequency averaged {approx}5.0 x 10{sup -4}/nt across all populations and ranged from 2.4 to 11.6 x 10{sup -4}/nt within populations, but did not consistently increase or decrease with the number of passages removed from the founding population. Shared substitutions (19 nonsynonymous, 10 synonymous, and 3 noncoding) occurred at 32 sites among 44 haplotypes. Only four substitutions became fixed (frequency = 100%) within a population and nearly one third (10/32) never achieved a frequency of 10% or greater in any sampled population. Shared substitutions were randomly distributed with respect to genome position, with transitions outnumbering transversions 5.4:1 and a clear bias for A to G and U to C substitutions. Haplotype composition of each population was unique with complexity of each population varying unpredictably, in that the number and frequency of haplotypes within a lineage were not correlated with number of passages removed from the founding population or whether the population was derived from a single or mixed lineage. The simplest explanation is that plant virus lineages, even those propagated at high MOI, are subject to frequent, narrow genetic bottlenecks during systemic movement that result in low effective population size and stochastic changes in population structure upon serial passage.

  14. Delineating the role of polyphenol oxidase in the darkening of alkaline wheat noodles.

    PubMed

    Fuerst, E Patrick; Anderson, James V; Morris, Craig F

    2006-03-22

    This study evaluated the effects of inhibitors on polyphenol oxidase (PPO) activity, the effect of the PPO inhibitor tropolone on noodle darkening, and the correlation of PPO activity with darkening of alkaline noodles. The PPO inhibitors tropolone and salicylhydroxamic acid (each at 1 microM) reduced kernel PPO activity by approximately 50% in three hexaploid wheat cultivars but did not inhibit PPO activity in the two very low PPO cultivars, durum Langdon, and the synthetic hexaploid-derived ID580. Tropolone (100 microg/g flour) inhibited alkaline noodle darkening (deltaL*) by 13-25% in the low PPO wheat cultivar, ID377s, and by 39-54% in the high PPO wheat cultivar, Klasic. Alkaline noodle darkening among 502 wheat samples was correlated with kernel PPO activity (r = 0.64). Results substantiate the hypothesis that PPO plays a major role in darkening of alkaline noodles. However, results also indicate that substantial darkening would occur even at zero PPO activity, as measured in the kernel PPO assay. Therefore, darkening of alkaline noodles is probably due to the cultivar-specific level of PPO activity and the presence of at least one additional darkening mechanism. Further investigation is required to identify the phenolic discoloration agent(s) and to determine the potential roles of non-PPO discoloration mechanisms, both enzymatic and nonenzymatic, in wheat products.

  15. [Identification of the 1RS-7DS.7DL wheat-rye small segment translocation lines].

    PubMed

    Jun, Li; Xinguo, Zhu; Hongshen, Wan; Qin, Wang; Zongxiang, Tang; Shulan, Fu; Zujun, Yang; Manyu, Yang; Wuyun, Yang

    2015-06-01

    Rye (Secale cereale L., RR) is a valuable genetic resource for the improvement of common wheat (Triticum aestivum L., AABBDD). Transferring alien rye genes into wheat by distant hybridization and automatic chromosome doubling is an important and efficient method to boost agronomic traits, disease resistance and widening the gene pool in wheat. In this study, an octoploid triticale CD-13 (AABBDDRR) was obtained via automatic chromosome doubling by crossing landrace Penganbaimaizi (T. aestivum L., AABBDD) and rye "Qinling rye" (S. cereale cv. Qinling, RR). GISH and FISH analyses indicated that CD-13 contained a 1RS-7DS.7DL wheat-rye small segment translocation chromosome. In order to transfer the 1RS-7DS small segment translocation into hexaploid wheat, 58 lines of the F5 inbred population from the cross CD-13 x Chuanmai 42 were screened for rye chromosome segments by GISH and FISH analyses. The results showed that 13 lines contained the 1RS-7DS.7DL small segment translocation chromosome by reciprocal translocation between 1RS and 7DS. These translocation lines carrying 1RS small rye alien segment were tested for the translocation breakpoints and the presence of a storage protein locus Sec-1. The Sec-1 locus was absent in the line 811, a stable 1RS-7DS.7DL small segment translocation line. The translocation breakpoint of 1RS-7DS.7DL of this line was located in the interval of IB267-IAG95 around the telomere of 1RS chromosome. Thousand-kernel weight of the line 811 was much higher than the parent CD-13, but not significantly different from Chuanmai 42. This indicated that 1RS-7DS.7DL small segment translocation had no negative effect on thousand-kernel weight in the genetic background of Chuanmai 42. The line with 1RS-7DS.7DL translocation chromosomes can be used as a new genetic material for further studies of valuable genes and their genetic effect on 1RS small segment.

  16. [Identification of the 1RS-7DS.7DL wheat-rye small segment translocation lines].

    PubMed

    Jun, Li; Xinguo, Zhu; Hongshen, Wan; Qin, Wang; Zongxiang, Tang; Shulan, Fu; Zujun, Yang; Manyu, Yang; Wuyun, Yang

    2015-06-01

    Rye (Secale cereale L., RR) is a valuable genetic resource for the improvement of common wheat (Triticum aestivum L., AABBDD). Transferring alien rye genes into wheat by distant hybridization and automatic chromosome doubling is an important and efficient method to boost agronomic traits, disease resistance and widening the gene pool in wheat. In this study, an octoploid triticale CD-13 (AABBDDRR) was obtained via automatic chromosome doubling by crossing landrace Penganbaimaizi (T. aestivum L., AABBDD) and rye "Qinling rye" (S. cereale cv. Qinling, RR). GISH and FISH analyses indicated that CD-13 contained a 1RS-7DS.7DL wheat-rye small segment translocation chromosome. In order to transfer the 1RS-7DS small segment translocation into hexaploid wheat, 58 lines of the F5 inbred population from the cross CD-13 x Chuanmai 42 were screened for rye chromosome segments by GISH and FISH analyses. The results showed that 13 lines contained the 1RS-7DS.7DL small segment translocation chromosome by reciprocal translocation between 1RS and 7DS. These translocation lines carrying 1RS small rye alien segment were tested for the translocation breakpoints and the presence of a storage protein locus Sec-1. The Sec-1 locus was absent in the line 811, a stable 1RS-7DS.7DL small segment translocation line. The translocation breakpoint of 1RS-7DS.7DL of this line was located in the interval of IB267-IAG95 around the telomere of 1RS chromosome. Thousand-kernel weight of the line 811 was much higher than the parent CD-13, but not significantly different from Chuanmai 42. This indicated that 1RS-7DS.7DL small segment translocation had no negative effect on thousand-kernel weight in the genetic background of Chuanmai 42. The line with 1RS-7DS.7DL translocation chromosomes can be used as a new genetic material for further studies of valuable genes and their genetic effect on 1RS small segment. PMID:26351056

  17. Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs.

    PubMed

    Bogard, Matthieu; Jourdan, Matthieu; Allard, Vincent; Martre, Pierre; Perretant, Marie Reine; Ravel, Catherine; Heumez, Emmanuel; Orford, Simon; Snape, John; Griffiths, Simon; Gaju, Oorbessy; Foulkes, John; Le Gouis, Jacques

    2011-06-01

    The genetic variability of the duration of leaf senescence during grain filling has been shown to affect both carbon and nitrogen acquisition. In particular, maintaining green leaves during grain filling possibly leads to increased grain yield, but its associated effect on grain protein concentration has not been studied. The aim of this study was to dissect the genetic factors contributing to correlations observed at the phenotypic level between leaf senescence during grain filling, grain protein concentration, and grain yield in winter wheat. With this aim in view, an analysis of quantitative trait locus (QTL) co-locations for these traits was carried out on a doubled haploid mapping population grown in a large multienvironment trial network. Pleiotropic QTLs affecting leaf senescence and grain yield and/or grain protein concentration were identified on chromosomes 2D, 2A, and 7D. These were associated with QTLs for anthesis date, showing that the phenotypic correlations with leaf senescence were mainly explained by flowering time in this wheat population. Study of the allelic effects of these pleiotropic QTLs showed that delaying leaf senescence was associated with increased grain yield or grain protein concentration depending on the environments considered. It is proposed that this differential effect of delaying leaf senescence on grain yield and grain protein concentration might be related to the nitrogen availability during the post-anthesis period. It is concluded that the benefit of using leaf senescence as a selection criterion to improve grain protein concentration in wheat cultivars may be limited and would largely depend on the targeted environments, particularly on their nitrogen availability during the post-anthesis period.

  18. The making of a new pathogen: Insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species

    PubMed Central

    Stukenbrock, Eva H.; Bataillon, Thomas; Dutheil, Julien Y.; Hansen, Troels T.; Li, Ruiqiang; Zala, Marcello; McDonald, Bruce A.; Wang, Jun; Schierup, Mikkel H.

    2011-01-01

    The fungus Mycosphaerella graminicola emerged as a new pathogen of cultivated wheat during its domestication ∼11,000 yr ago. We assembled 12 high-quality full genome sequences to investigate the genetic footprints of selection in this wheat pathogen and closely related sister species that infect wild grasses. We demonstrate a strong effect of natural selection in shaping the pathogen genomes with only ∼3% of nonsynonymous mutations being effectively neutral. Forty percent of all fixed nonsynonymous substitutions, on the other hand, are driven by positive selection. Adaptive evolution has affected M. graminicola to the highest extent, consistent with recent host specialization. Positive selection has prominently altered genes encoding secreted proteins and putative pathogen effectors supporting the premise that molecular host–pathogen interaction is a strong driver of pathogen evolution. Recent divergence between pathogen sister species is attested by the high degree of incomplete lineage sorting (ILS) in their genomes. We exploit ILS to generate a genetic map of the species without any crossing data, document recent times of species divergence relative to genome divergence, and show that gene-rich regions or regions with low recombination experience stronger effects of natural selection on neutral diversity. Emergence of a new agricultural host selected a highly specialized and fast-evolving pathogen with unique evolutionary patterns compared with its wild relatives. The strong impact of natural selection, we document, is at odds with the small effective population sizes estimated and suggest that population sizes were historically large but likely unstable. PMID:21994252

  19. Genome-wide quantitative trait locus mapping identifies multiple major loci for brittle rachis and threshability in Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao).

    PubMed

    Jiang, Yun-Feng; Lan, Xiu-Jin; Luo, Wei; Kong, Xing-Chen; Qi, Peng-Fei; Wang, Ji-Rui; Wei, Yu-Ming; Jiang, Qian-Tao; Liu, Ya-Xi; Peng, Yuan-Ying; Chen, Guo-Yue; Dai, Shou-Fen; Zheng, You-Liang

    2014-01-01

    Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao) is a semi-wild hexaploid wheat resource that is only naturally distributed in the Qinghai-Tibet Plateau. Brittle rachis and hard threshing are two important characters of Tibetan semi-wild wheat. A whole-genome linkage map of T. aestivum ssp. tibetanum was constructed using a recombinant inbred line population (Q1028×ZM9023) with 186 lines, 564 diversity array technology markers, and 117 simple sequence repeat markers. Phenotypic data on brittle rachis and threshability, as two quantitative traits, were evaluated on the basis of the number of average spike rachis fragments per spike and percent threshability in 2012 and 2013, respectively. Quantitative trait locus (QTL) mapping performed using inclusive composite interval mapping analysis clearly identified four QTLs for brittle rachis and three QTLs for threshability. However, three loci on 2DS, 2DL, and 5AL showed pleiotropism for brittle rachis and threshability; they respectively explained 5.3%, 18.6%, and 18.6% of phenotypic variation for brittle rachis and 17.4%, 13.2%, and 35.2% of phenotypic variation for threshability. A locus on 3DS showed an independent effect on brittle rachis, which explained 38.7% of the phenotypic variation. The loci on 2DS and 3DS probably represented the effect of Tg and Br1, respectively. The locus on 5AL was in very close proximity to the Q gene, but was different from the predicted q in Tibetan semi-wild wheat. To our knowledge, the locus on 2DL has never been reported in common wheat but was prominent in T. aestivum ssp. tibetanum accession Q1028. It remarkably interacted with the locus on 5AL to affect brittle rachis. Several major loci for brittle rachis and threshability were identified in Tibetan semi-wild wheat, improving the understanding of these two characters and suggesting the occurrence of special evolution in Tibetan semi-wild wheat.

  20. In search of tetraploid wheat accessions reduced in celiac disease-related gluten epitopes.

    PubMed

    van den Broeck, Hetty; Hongbing, Chen; Lacaze, Xavier; Dusautoir, Jean-Claude; Gilissen, Ludovicus; Smulders, Marinus; van der Meer, Ingrid

    2010-11-01

    Tetraploid wheat (durum wheat) is mainly used for the preparation of pasta. As a result of breeding, thousands of tetraploid wheat varieties exist, but also tetraploid landraces are still maintained and used for local food preparations. Gluten proteins present in wheat can induce celiac disease, a T-cell mediated auto-immune disorder, in genetically predisposed individuals after ingestion. Compared to hexaploid wheat, tetraploid wheat might be reduced in T-cell stimulatory epitopes that cause celiac disease because of the absence of the D-genome. We tested gluten protein extracts from 103 tetraploid wheat accessions (obtained from the Dutch CGN genebank and from the French INRA collection) including landraces, old, modern, and domesticated accessions of various tetraploid species and subspecies from many geographic origins. Those accessions were typed for their level of T-cell stimulatory epitopes by immunoblotting with monoclonal antibodies against the α-gliadin epitopes Glia-α9 and Glia-α20. In the first selection, we found 8 CGN and 6 INRA accessions with reduced epitope staining. Fourteen of the 57 CGN accessions turned out to be mixed with hexaploid wheat, and 5 out of the 8 selected CGN accessions were mixtures of two or more different gluten protein chemotypes. Based on single seed analysis, lines from two CGN accessions and one INRA accession were obtained with significantly reduced levels of Glia-α9 and Glia-α20 epitopes. These lines will be further tested for industrial quality and may contribute to the development of safer foods for celiac patients.

  1. Effect of hosts on competition among clones and evidence of differential selection between pathogenic and saprophytic phases in experimental populations of the wheat pathogen Phaeosphaeria nodorum

    PubMed Central

    2011-01-01

    Background Monoculture, multi-cropping and wider use of highly resistant cultivars have been proposed as mechanisms to explain the elevated rate of evolution of plant pathogens in agricultural ecosystems. We used a mark-release-recapture experiment with the wheat pathogen Phaeosphaeria nodorum to evaluate the impact of two of these mechanisms on the evolution of a pathogen population. Nine P. nodorum isolates marked with ten microsatellite markers and one minisatellite were released onto five replicated host populations to initiate epidemics of Stagonospora nodorum leaf blotch. The experiment was carried out over two consecutive host growing seasons and two pathogen collections were made during each season. Results A total of 637 pathogen isolates matching the marked inoculants were recovered from inoculated plots over two years. Genetic diversity in the host populations affected the evolution of the corresponding P. nodorum populations. In the cultivar mixture the relative frequencies of inoculants did not change over the course of the experiment and the pathogen exhibited a low variation in selection coefficients. Conclusions Our results support the hypothesis that increasing genetic heterogeneity in host populations may retard the rate of evolution in associated pathogen populations. Our experiment also provides indirect evidence of fitness costs associated with host specialization in P. nodorum as indicated by differential selection during the pathogenic and saprophytic phases. PMID:21718545

  2. On-farm dynamic management of genetic diversity: the impact of seed diffusions and seed saving practices on a population-variety of bread wheat

    PubMed Central

    Thomas, Mathieu; Demeulenaere, Elise; Dawson, Julie C; Khan, Abdul Rehman; Galic, Nathalie; Jouanne-Pin, Sophie; Remoue, Carine; Bonneuil, Christophe; Goldringer, Isabelle

    2012-01-01

    Since the domestication of crop species, humans have derived specific varieties for particular uses and shaped the genetic diversity of these varieties. Here, using an interdisciplinary approach combining ethnobotany and population genetics, we document the within-variety genetic structure of a population-variety of bread wheat (Triticum aestivum L.) in relation to farmers’ practices to decipher their contribution to crop species evolution. Using 19 microsatellites markers, we conducted two complementary graph theory-based methods to analyze population structure and gene flow among 19 sub-populations of a single population-variety [Rouge de Bordeaux (RDB)]. The ethnobotany approach allowed us to determine the RDB history including diffusion and reproduction events. We found that the complex genetic structure among the RDB sub-populations is highly consistent with the structure of the seed diffusion and reproduction network drawn based on the ethnobotanical study. This structure highlighted the key role of the farmer-led seed diffusion through founder effects, selection and genetic drift because of human practices. An important result is that the genetic diversity conserved on farm is complementary to that found in the genebank indicating that both systems are required for a more efficient crop diversity conservation. PMID:23346224

  3. An efficient and reproducible protocol for the production of salt tolerant transgenic wheat plants expressing the Arabidopsis AtNHX1 gene

    PubMed Central

    Moghaieb, Reda EA; Sharaf, Ahmed N; Soliman, Mohamed H; El-Arabi, Nagwa I; Momtaz, Osama A

    2014-01-01

    We present an efficient method for the production of transgenic salt tolerant hexaploid wheat plants expressing the Arabidopsis AtNHX1 gene. Wheat mature zygotic embryos were isolated from two hexaploid bread wheat (Triticum aestivum) cultivars (namely: Gemmeiza 9 and Gemmeiza 10) and were transformed with the A. tumefaciens LBA4404 harboring the pBI-121 vector containing the AtNHX1 gene. Transgenic wheat lines that express the gus intron was obtained and used as control. The results confirmed that npt-II gene could be transmitted and expressed in the T2 following 3:1 Mendelian segregation while the control plant couldn't. The data indicate that, the AtNHX1 gene was integrated in a stable manner into the wheat genome and the corresponding transcripts were expressed. The transformation efficiency was 5.7 and 7.5% for cultivars Gemmeiza 10 and Gemmeiza 9, respectively. A greenhouse experiment was conducted to investigate the effect of AtNHX1 gene in wheat salt tolerance. The transgenic wheat lines could maintain high growth rate under salt stress condition (350 mM NaCl) while the control plant couldn’t. The results confirmed that Na+/H+ antiporter gene AtNHX1 increased salt tolerance by increasing Na+ accumulation and keeping K+/Na+ balance. Thus, transgenic plants showed high tolerance to salt stress and can be considered as a new genetic resource in breeding programs. PMID:25007249

  4. QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird.

    PubMed

    Ren, Yan; He, Zhonghu; Li, Jia; Lillemo, Morten; Wu, Ling; Bai, Bin; Lu, Qiongxian; Zhu, Huazhong; Zhou, Gang; Du, Jiuyuan; Lu, Qinglin; Xia, Xianchun

    2012-10-01

    Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss., is a severe foliar disease of common wheat (Triticum aestivum L.) worldwide. Use of adult-plant resistance (APR) is an efficient approach to provide long-term protection of crops from the disease. The German spring wheat cultivar Naxos showed a high level of APR to stripe rust in the field. To identify the APR genes in this cultivar, a mapping population of 166 recombinant inbred lines (RILs) was developed from a cross between Naxos and Shanghai 3/Catbird (SHA3/CBRD), a moderately susceptible line developed by CIMMYT. The RILs were evaluated for maximum disease severity (MDS) in Sichuan and Gansu in the 2009-2010 and 2010-2011 cropping seasons. Composite interval mapping (CIM) identified four QTL, QYr.caas-1BL.1RS, QYr.caas-1DS, QYr.caas-5BL.3 and QYr.caas-7BL.1, conferring stable resistance to stripe rust across all environments, each explaining 1.9-27.6, 2.1-5.8, 2.5-7.8 and 3.7-9.1 % of the phenotypic variance, respectively. QYr.caas-1DS flanked by molecular markers XUgwm353-Xgdm33b was likely a new QTL for APR to stripe rust. Because the interval between flanking markers for each QTL was less than 6.5 cM, these QTL and their closely linked markers are potentially useful for improving resistance to stripe rust in wheat breeding.

  5. Identification of three wheat globulin genes by screening a Triticum aestivum BAC genomic library with cDNA from a diabetes-associated globulin

    PubMed Central

    Loit, Evelin; Melnyk, Charles W; MacFarlane, Amanda J; Scott, Fraser W; Altosaar, Illimar

    2009-01-01

    Background Exposure to dietary wheat proteins in genetically susceptible individuals has been associated with increased risk for the development of Type 1 diabetes (T1D). Recently, a wheat protein encoded by cDNA WP5212 has been shown to be antigenic in mice, rats and humans with autoimmune T1D. To investigate the genomic origin of the identified wheat protein cDNA, a hexaploid wheat genomic library from Glenlea cultivar was screened. Results Three unique wheat globulin genes, Glo-3A, Glo3-B and Glo-3C, were identified. We describe the genomic structure of these genes and their expression pattern in wheat seeds. The Glo-3A gene shared 99% identity with the cDNA of WP5212 at the nucleotide and deduced amino acid level, indicating that we have identified the gene(s) encoding wheat protein WP5212. Southern analysis revealed the presence of multiple copies of Glo-3-like sequences in all wheat samples, including hexaploid, tetraploid and diploid species wheat seed. Aleurone and embryo tissue specificity of WP5212 gene expression, suggested by promoter region analysis, which demonstrated an absence of endosperm specific cis elements, was confirmed by immunofluorescence microscopy using anti-WP5212 antibodies. Conclusion Taken together, the results indicate that a diverse group of globulins exists in wheat, some of which could be associated with the pathogenesis of T1D in some susceptible individuals. These data expand our knowledge of specific wheat globulins and will enable further elucidation of their role in wheat biology and human health. PMID:19615078

  6. Structural and functional partitioning of bread wheat chromosome 3B.

    PubMed

    Choulet, Frédéric; Alberti, Adriana; Theil, Sébastien; Glover, Natasha; Barbe, Valérie; Daron, Josquin; Pingault, Lise; Sourdille, Pierre; Couloux, Arnaud; Paux, Etienne; Leroy, Philippe; Mangenot, Sophie; Guilhot, Nicolas; Le Gouis, Jacques; Balfourier, Francois; Alaux, Michael; Jamilloux, Véronique; Poulain, Julie; Durand, Céline; Bellec, Arnaud; Gaspin, Christine; Safar, Jan; Dolezel, Jaroslav; Rogers, Jane; Vandepoele, Klaas; Aury, Jean-Marc; Mayer, Klaus; Berges, Hélène; Quesneville, Hadi; Wincker, Patrick; Feuillet, Catherine

    2014-07-18

    We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits. PMID:25035497

  7. Registration of Common Wheat Germplasm with Mutations in SBEII Genes Conferring Increased Grain Amylose and Resistant Starch Content

    PubMed Central

    Schönhofen, André; Hazard, Brittany; Zhang, Xiaoqin; Dubcovsky, Jorge

    2016-01-01

    Starch present in the endosperm of common wheat (Triticum aestivum L.) grains is an important source of carbohydrates worldwide. Starches with a greater proportion of amylose have increased levels of resistant starch, a dietary fiber that can provide human health benefits. Induced mutations in STARCH BRANCHING ENZYME II (SBEII) genes in wheat are associated with increased amylose and resistant starch. Ethyl methane sulfonate mutations in SBEIIa and SBEIIb paralogs were combined in the hexaploid wheat cultivar Lassik. Four mutant combinations were generated: SBEIIa/b-AB (Reg. No. GP-997, PI 675644); SBEIIa/b-A, SBEIIa-D (Reg. No. GP-998, PI 675645); SBEIIa/b-B, SBEIIa-D (Reg. No. GP-999, PI 675646); and SBEIIa/b-AB, SBEIIa-D (Reg. No. GP-1000, PI 675647). The SBEII mutant lines were compared with a wild-type control in a greenhouse and field experiment. The quintuple mutant line (SBEIIa/b-AB, SBEIIa-D) presented significant increases in both amylose (51% greenhouse; 63% field) and resistant starch (947% greenhouse; 1057% field) relative to the control. A decrease in total starch content (7.8%) was observed in the field experiment. The quintuple mutant also differed in starch viscosity parameters. Registration of the hexaploid wheat SBEII-mutant lines by University of California, Davis can help expedite the development of common wheat cultivars with increased amylose and resistant starch content.

  8. Simultaneous selection for yield-related traits and susceptibility to Fusarium head blight in spring wheat RIL population

    PubMed Central

    Wiśniewska, Halina; Surma, Maria; Krystkowiak, Karolina; Adamski, Tadeusz; Kuczyńska, Anetta; Ogrodowicz, Piotr; Mikołajczak, Krzysztof; Belter, Jolanta; Majka, Maciej; Kaczmarek, Zygmunt; Krajewski, Paweł; Sawikowska, Aneta; Lenc, Leszek; Baturo-Cieśniewska, Anna; Łukanowski, Aleksander; Góral, Tomasz; Sadowski, Czesław

    2016-01-01

    Fusarium head blight (FHB), caused by the fungal plant pathogen Fusarium, is a fungal disease that occurs in wheat and can cause significant yield and grain quality losses. The present paper examines variation in the resistance of spring wheat lines derived from a cross between Zebra and Saar cultivars. Experiments covering 198 lines and parental cultivars were conducted in three years, in which inoculation with Fusarium culmorum was applied. Resistance levels were estimated by scoring disease symptoms on kernels. In spite of a similar reaction of parents to F. culmorum infection, significant differentiation between lines was found in all the analyzed traits. Seven molecular markers selected as linked to FHB resistance QTLs gave polymorphic products for Zebra and Saar: Xgwm566, Xgwm46, Xgwm389, Xgwm533, Xgwm156, Xwmc238, and Xgwm341. Markers Xgwm389 and Xgwm533 were associated with the rate of Fusarium-damaged kernels (FDK) as well as with kernel weight per spike and thousand kernel weight in control plants. Zebra allele of marker Xwmc238 increased kernel weight per spike and thousand kernel weight both in control and infected plants, whereas Zebra allele of marker Xgwm566 reduced the percentage of FDK and simultaneously reduced the thousand kernel weight in control and infected plants. PMID:27162499

  9. Relationship between Russian wheat aphid abundance and edaphic and topographic characteristics of wheat fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study explores the spatial relationship between Russian wheat aphid population density and variation in edaphic or topographic factors within wheat fields. Multiple regression analysis was applied to data collected from six wheat fields located in three States, Colorado, Wyoming, and Nebraska....

  10. Genomics as the key to unlocking the polyploid potential of wheat.

    PubMed

    Borrill, Philippa; Adamski, Nikolai; Uauy, Cristobal

    2015-12-01

    Polyploidy has played a central role in plant genome evolution and in the formation of new species such as tetraploid pasta wheat and hexaploid bread wheat. Until recently, the high sequence conservation between homoeologous genes, together with the large genome size of polyploid wheat, had hindered genomic analyses in this important crop species. In the past 5 yr, however, the advent of next-generation sequencing has radically changed the wheat genomics landscape. Here, we review a series of advances in genomic resources and tools for functional genomics that are shifting the paradigm of what is possible in wheat molecular genetics and breeding. We discuss how understanding the relationship between homoeologues can inform approaches to modulate the response of quantitative traits in polyploid wheat; we also argue that functional redundancy has 'locked up' a wide range of phenotypic variation in wheat. We explore how genomics provides key tools to inform targeted manipulation of multiple homoeologues, thereby allowing researchers and plant breeders to unlock the full polyploid potential of wheat.

  11. Registration of Warhorse wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Warhorse' (Reg. No. CV-1096, PI 670157) hard red winter (HRW) wheat (Triticum aestivum L.) was developed and released by the Montana Agricultural Experiment Station in September 2013. Warhorse is of unknown pedigree, derived from a composite of three topcrosses made to the same F1 population in 200...

  12. Population dynamics and metabolite target analysis of lactic acid bacteria during laboratory fermentations of wheat and spelt sourdoughs.

    PubMed

    Van der Meulen, Roel; Scheirlinck, Ilse; Van Schoor, Ann; Huys, Geert; Vancanneyt, Marc; Vandamme, Peter; De Vuyst, Luc

    2007-08-01

    Four laboratory sourdough fermentations, initiated with wheat or spelt flour and without the addition of a starter culture, were prepared over a period of 10 days with daily back-slopping. Samples taken at all refreshment steps were used for determination of the present microbiota. Furthermore, an extensive metabolite target analysis of more than 100 different compounds was performed through a combination of various chromatographic methods including liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. The establishment of a stable microbial ecosystem occurred through a three-phase evolution within a week, as revealed by both microbiological and metabolite analyses. Strains of Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus rossiae, Lactobacillus brevis, and Lactobacillus paraplantarum were dominating some of the sourdough ecosystems. Although the heterofermentative L. fermentum was dominating one of the wheat sourdoughs, all other sourdoughs were dominated by a combination of obligate and facultative heterofermentative taxa. Strains of homofermentative species were not retrieved in the stable sourdough ecosystems. Concentrations of sugar and amino acid metabolites hardly changed during the last days of fermentation. Besides lactic acid, ethanol, and mannitol, the production of succinic acid, erythritol, and various amino acid metabolites, such as phenyllactic acid, hydroxyphenyllactic acid, and indolelactic acid, was shown during fermentation. Physiologically, they contributed to the equilibration of the redox balance. The biphasic approach of the present study allowed us to map some of the interactions taking place during sourdough fermentation and helped us to understand the fine-tuned metabolism of lactic acid bacteria, which allows them to dominate a food ecosystem.

  13. Wheat Newsletter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review was written for readers of the Annual Wheat Newsletter, Volume 53. It summarizes activities on wheat research during 2006 at the U.S. Grain Marketing Research Laboratory (USGMRL). The article includes technical abstracts of research accomplishments from the Grain Quality and Structure ...

  14. Eat Wheat!

    ERIC Educational Resources Information Center

    Idaho Wheat Commission, Boise.

    This pamphlet contains puzzles, games, and a recipe designed to teach elementary school pupils about wheat. It includes word games based on the U.S. Department of Agriculture Food Guide Pyramid and on foods made from wheat. The Food Guide Pyramid can be cut out of the pamphlet and assembled as a three-dimensional information source and food guide.…

  15. Transcriptome de novo assembly from next-generation sequencing and comparative analyses in the hexaploid salt marsh species Spartina maritima and Spartina alterniflora (Poaceae)

    PubMed Central

    Ferreira de Carvalho, J; Poulain, J; Da Silva, C; Wincker, P; Michon-Coudouel, S; Dheilly, A; Naquin, D; Boutte, J; Salmon, A; Ainouche, M

    2013-01-01

    Spartina species have a critical ecological role in salt marshes and represent an excellent system to investigate recurrent polyploid speciation. Using the 454 GS-FLX pyrosequencer, we assembled and annotated the first reference transcriptome (from roots and leaves) for two related hexaploid Spartina species that hybridize in Western Europe, the East American invasive Spartina alterniflora and the Euro-African S. maritima. The de novo read assembly generated 38 478 consensus sequences and 99% found an annotation using Poaceae databases, representing a total of 16 753 non-redundant genes. Spartina expressed sequence tags were mapped onto the Sorghum bicolor genome, where they were distributed among the subtelomeric arms of the 10 S. bicolor chromosomes, with high gene density correlation. Normalization of the complementary DNA library improved the number of annotated genes. Ecologically relevant genes were identified among GO biological function categories in salt and heavy metal stress response, C4 photosynthesis and in lignin and cellulose metabolism. Expression of some of these genes had been found to be altered by hybridization and genome duplication in a previous microarray-based study in Spartina. As these species are hexaploid, up to three duplicated homoeologs may be expected per locus. When analyzing sequence polymorphism at four different loci in S. maritima and S. alterniflora, we found up to four haplotypes per locus, suggesting the presence of two expressed homoeologous sequences with one or two allelic variants each. This reference transcriptome will allow analysis of specific Spartina genes of ecological or evolutionary interest, estimation of homoeologous gene expression variation using RNA-seq and further gene expression evolution analyses in natural populations. PMID:23149455

  16. Additive-dominance genetic model analyses for late-maturity alpha-amylase activity in a bread wheat factorial crossing population.

    PubMed

    Rasul, Golam; Glover, Karl D; Krishnan, Padmanaban G; Wu, Jixiang; Berzonsky, William A; Ibrahim, Amir M H

    2015-12-01

    Elevated level of late maturity α-amylase activity (LMAA) can result in low falling number scores, reduced grain quality, and downgrade of wheat (Triticum aestivum L.) class. A mating population was developed by crossing parents with different levels of LMAA. The F2 and F3 hybrids and their parents were evaluated for LMAA, and data were analyzed using the R software package 'qgtools' integrated with an additive-dominance genetic model and a mixed linear model approach. Simulated results showed high testing powers for additive and additive × environment variances, and comparatively low powers for dominance and dominance × environment variances. All variance components and their proportions to the phenotypic variance for the parents and hybrids were significant except for the dominance × environment variance. The estimated narrow-sense heritability and broad-sense heritability for LMAA were 14 and 54%, respectively. High significant negative additive effects for parents suggest that spring wheat cultivars 'Lancer' and 'Chester' can serve as good general combiners, and that 'Kinsman' and 'Seri-82' had negative specific combining ability in some hybrids despite of their own significant positive additive effects, suggesting they can be used as parents to reduce LMAA levels. Seri-82 showed very good general combining ability effect when used as a male parent, indicating the importance of reciprocal effects. High significant negative dominance effects and high-parent heterosis for hybrids demonstrated that the specific hybrid combinations; Chester × Kinsman, 'Lerma52' × Lancer, Lerma52 × 'LoSprout' and 'Janz' × Seri-82 could be generated to produce cultivars with significantly reduced LMAA level.

  17. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici.

    PubMed

    Ali, Sajid; Gladieux, Pierre; Leconte, Marc; Gautier, Angélique; Justesen, Annemarie F; Hovmøller, Mogens S; Enjalbert, Jérôme; de Vallavieille-Pope, Claude

    2014-01-01

    Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of

  18. The gene space in wheat: the complete γ-gliadin gene family from the wheat cultivar Chinese Spring.

    PubMed

    Anderson, Olin D; Huo, Naxin; Gu, Yong Q

    2013-06-01

    The complete set of unique γ-gliadin genes is described for the wheat cultivar Chinese Spring using a combination of expressed sequence tag (EST) and Roche 454 DNA sequences. Assemblies of Chinese Spring ESTs yielded 11 different γ-gliadin gene sequences. Two of the sequences encode identical polypeptides and are assumed to be the result of a recent gene duplication. One gene has a 3' coding mutation that changes the reading frame in the final eight codons. A second assembly of Chinese Spring γ-gliadin sequences was generated using Roche 454 total genomic DNA sequences. The 454 assembly confirmed the same 11 active genes as the EST assembly plus two pseudogenes not represented by ESTs. These 13 γ-gliadin sequences represent the complete unique set of γ-gliadin genes for cv Chinese Spring, although not ruled out are additional genes that are exact duplications of these 13 genes. A comparison with the ESTs of two other hexaploid cultivars (Butte 86 and Recital) finds that the most active genes are present in all three cultivars, with exceptions likely due to too few ESTs for detection in Butte 86 and Recital. A comparison of the numbers of ESTs per gene indicates differential levels of expression within the γ-gliadin gene family. Genome assignments were made for 6 of the 13 Chinese Spring γ-gliadin genes, i.e., one assignment from a match to two γ-gliadin genes found within a tetraploid wheat A genome BAC and four genes that match four distinct γ-gliadin sequences assembled from Roche 454 sequences from Aegilops tauschii, the hexaploid wheat D-genome ancestor.

  19. Homoeolog-specific transcriptional bias in allopolyploid wheat

    PubMed Central

    2010-01-01

    Background Interaction between parental genomes is accompanied by global changes in gene expression which, eventually, contributes to growth vigor and the broader phenotypic diversity of allopolyploid species. In order to gain a better understanding of the effects of allopolyploidization on the regulation of diverged gene networks, we performed a genome-wide analysis of homoeolog-specific gene expression in re-synthesized allohexaploid wheat created by the hybridization of a tetraploid derivative of hexaploid wheat with the diploid ancestor of the wheat D genome Ae. tauschii. Results Affymetrix wheat genome arrays were used for both the discovery of divergent homoeolog-specific mutations and analysis of homoeolog-specific gene expression in re-synthesized allohexaploid wheat. More than 34,000 detectable parent-specific features (PSF) distributed across the wheat genome were used to assess AB genome (could not differentiate A and B genome contributions) and D genome parental expression in the allopolyploid transcriptome. In re-synthesized polyploid 81% of PSFs detected mid-parent levels of gene expression, and only 19% of PSFs showed the evidence of non-additive expression. Non-additive expression in both AB and D genomes was strongly biased toward up-regulation of parental type of gene expression with only 6% and 11% of genes, respectively, being down-regulated. Of all the non-additive gene expression, 84% can be explained by differences in the parental genotypes used to make the allopolyploid. Homoeolog-specific co-regulation of several functional gene categories was found, particularly genes involved in photosynthesis and protein biosynthesis in wheat. Conclusions Here, we have demonstrated that the establishment of interactions between the diverged regulatory networks in allopolyploids is accompanied by massive homoeolog-specific up- and down-regulation of gene expression. This study provides insights into interactions between homoeologous genomes and their role

  20. A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial sub-genome rearrangement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hexaploid oat (Avena sativa, 2n = 6x = 42) is a member of the Poaceae family with a very large genome (~13 Gb) containing 21 chromosome pairs: seven from each of two similar ancestral diploids (A and D) and seven from a more diverged ancestral diploid (C). Physical rearrangements among ancestral oat...

  1. Fine mapping of Hch1, the causal D-genome gene for hybrid chlorosis in interspecific crosses between tetraploid wheat and Aegilops tauschii.

    PubMed

    Hirao, Kana; Nishijima, Ryo; Sakaguchi, Kohei; Takumi, Shigeo

    2015-01-01

    Hybrid chlorosis, one of the reproductive barriers between tetraploid wheat and its D-genome progenitor, Aegilops tauschii, inhibits normal growth of synthetic wheat hexaploids. Hybrid chlorosis appears to be due to an epistatic interaction of two loci from the AB and D wheat genomes. Our previous study assigned the causal D-genome gene for hybrid chlorosis, Hch1, to the short arm of chromosome 7D. Here, we constructed a fine map of 7DS near Hch1 using 280 F2 individuals from a cross of two wheat synthetic lines, one showing normal growth and the other showing hybrid chlorosis. The hybrid chlorosis phenotype was controlled by a single dominant allele of the Hch1 locus in the synthetic hexaploids. Hch1 was closely linked to four new markers within 0.2 cM, and may be localized near or within the two Ae. tauschii scaffolds containing the linked markers on 7DS. Comparative analysis of the Hch1 chromosomal region for Ae. tauschii, barley and Brachypodium showed that a local inversion occurred in the region proximal to Hch1 during the divergence between barley and Ae. tauschii, and that the Hch1 region on wheat 7DS is syntenic to Brachypodium chromosome 1. These observations provide useful information for further studies toward map-based cloning of Hch1. PMID:26687862

  2. Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats

    PubMed Central

    Molnár, István; Cifuentes, Marta; Schneider, Annamária; Benavente, Elena; Molnár-Láng, Márta

    2011-01-01

    Background and Aims Repetitive DNA sequences are thought to be involved in the formation of chromosomal rearrangements. The aim of this study was to analyse the distribution of microsatellite clusters in Aegilops biuncialis and Aegilops geniculata, and its relationship with the intergenomic translocations in these allotetraploid species, wild genetic resources for wheat improvement. Methods The chromosomal localization of (ACG)n and (GAA)n microsatellite sequences in Ae. biuncialis and Ae. geniculata and in their diploid progenitors Aegilops comosa and Aegilops umbellulata was investigated by sequential in situ hybridization with simple sequence repeat (SSR) probes and repeated DNA probes (pSc119·2, Afa family and pTa71) and by dual-colour genomic in situ hybridization (GISH). Thirty-two Ae. biuncialis and 19 Ae. geniculata accessions were screened by GISH for intergenomic translocations, which were further characterized by fluorescence in situ hybridization and GISH. Key Results Single pericentromeric (ACG)n signals were localized on most U and on some M genome chromosomes, whereas strong pericentromeric and several intercalary and telomeric (GAA)n sites were observed on the Aegilops chromosomes. Three Ae. biuncialis accessions carried 7Ub–7Mb reciprocal translocations and one had a 7Ub–1Mb rearrangement, while two Ae. geniculata accessions carried 7Ug–1Mg or 5Ug–5Mg translocations. Conspicuous (ACG)n and/or (GAA)n clusters were located near the translocation breakpoints in eight of the ten translocated chromosomes analysed, SSR bands and breakpoints being statistically located at the same chromosomal site in six of them. Conclusions Intergenomic translocation breakpoints are frequently mapped to SSR-rich chromosomal regions in the allopolyploid species examined, suggesting that microsatellite repeated DNA sequences might facilitate the formation of those chromosomal rearrangements. The (ACG)n and (GAA)n SSR motifs serve as additional chromosome markers

  3. Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population.

    PubMed

    Rosewarne, G M; Singh, R P; Huerta-Espino, J; Herrera-Foessel, S A; Forrest, K L; Hayden, M J; Rebetzke, G J

    2012-05-01

    Leaf rust and stripe rust are important diseases of wheat world-wide and deployment of cultivars with genetic resistance is an effective and environmentally sound control method. The use of minor, additive genes conferring adult plant resistance (APR) has been shown to provide resistance that is durable. The wheat cultivar 'Pastor' originated from the CIMMYT breeding program that focuses on minor gene-based APR to both diseases by selecting and advancing generations alternately under leaf rust and stripe rust pressures. As a consequence, Pastor has good resistance to both rusts and was used as the resistant parent to develop a mapping population by crossing with the susceptible 'Avocet'. All 148 F(5) recombinant inbred lines were evaluated under artificially inoculated epidemic environments for leaf rust (3 environments) and stripe rust (4 environments, 2 of which represent two evaluation dates in final year due to the late build-up of a new race virulent to Yr31) in Mexico. Map construction and QTL analysis were completed with 223 polymorphic markers on 84 randomly selected lines in the population. Pastor contributed Yr31, a moderately effective race-specific gene for stripe rust resistance, which was overcome during this study, and this was clearly shown in the statistical analysis. Linked or pleiotropic chromosomal regions contributing to resistance against both pathogens included Lr46/Yr29 on 1BL, the Yr31 region on 2BS, and additional minor genes on 5A, 6B and 7BL. Other minor genes for leaf rust resistance were located on 1B, 2A and 2D and for stripe rust on 1AL, 1B, 3A, 3B, 4D, 6A, 7AS and 7AL. The 1AL, 1BS and 7AL QTLs are in regions that were not identified previously as having QTLs for stripe rust resistance. The development of uniform and severe epidemics facilitated excellent phenotyping, and when combined with multi-environment analysis, resulted in the relatively large number of QTLs identified in this study.

  4. Wheat: The Whole Story.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  5. Introgression of a 4D chromosomal fragment into durum wheat confers aluminium tolerance

    PubMed Central

    Han, Chang; Ryan, Peter R.; Yan, ZeHong; Delhaize, Emmanuel

    2014-01-01

    Background and Aim Aluminium (Al3+) inhibits root growth of sensitive plant species and is a key factor that limits durum wheat (Triticum turgidum) production on acid soils. The aim of this study was to enhance the Al3+ tolerance of an elite durum cultivar by introgression of a chromosomal fragment from hexaploid wheat (Triticum aestivum) that possesses an Al3+ tolerance gene. Methods A 4D(4B) substitution line of durum wheat ‘Langdon’ was backcrossed to ‘Jandaroi’, a current semi-dwarf Australian durum. In the second backcross, using ‘Jandaroi’ as the recurrent parent, a seedling was identified where TaALMT1 on chromosome 4D was recombined with the Rht-B1b locus on chromosome 4B to yield an Al3+-tolerant seedling with a semi-dwarf habit. This seedling was used in a third backcross to generate homozygous sister lines with contrasting Al3+ tolerances. The backcrossed lines were characterized and compared with selected cultivars of hexaploid wheat for their Al3+ and Na+ tolerances in hydroponic culture as well as in short-term experiments to assess their growth on acid soil. Key Results Analysis of sister lines derived from the third backcross showed that the 4D chromosomal fragment substantially enhanced Al3+ tolerance. The ability to exclude Na+ from leaves was also enhanced, indicating that the chromosomal fragment possessed the Kna1 salt tolerance locus. Although Al3+ tolerance of seminal roots was enhanced in acid soil, the development of fine roots was not as robust as found in Al3+-tolerant lines of hexaploid wheat. Analysis of plant characteristics in the absence of Al3+ toxicity showed that the introgressed fragment did not affect total grain yield but reduced the weight of individual grains. Conclusions The results show that it is possible to increase substantially the Al3+ tolerance of an elite durum wheat cultivar by introgression of a 4D chromosomal fragment. Further improvements are possible, such as introducing additional genes to enhance

  6. Accelerated Senescence and Enhanced Disease Resistance in Hybrid Chlorosis Lines Derived from Interspecific Crosses between Tetraploid Wheat and Aegilops tauschii

    PubMed Central

    Tosa, Yukio; Yoshida, Kentaro; Park, Pyoyun; Takumi, Shigeo

    2015-01-01

    Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions. PMID:25806790

  7. A Catalog of Regulatory Sequences for Trait Gene for the Genome Editing of Wheat

    PubMed Central

    Makai, Szabolcs; Tamás, László; Juhász, Angéla

    2016-01-01

    Wheat has been cultivated for 10000 years and ever since the origin of hexaploid wheat it has been exempt from natural selection. Instead, it was under the constant selective pressure of human agriculture from harvest to sowing during every year, producing a vast array of varieties. Wheat has been adopted globally, accumulating variation for genes involved in yield traits, environmental adaptation and resistance. However, one small but important part of the wheat genome has hardly changed: the regulatory regions of both the x- and y-type high molecular weight glutenin subunit (HMW-GS) genes, which are alone responsible for approximately 12% of the grain protein content. The phylogeny of the HMW-GS regulatory regions of the Triticeae demonstrates that a genetic bottleneck may have led to its decreased diversity during domestication and the subsequent cultivation. It has also highlighted the fact that the wild relatives of wheat may offer an unexploited genetic resource for the regulatory region of these genes. Significant research efforts have been made in the public sector and by international agencies, using wild crosses to exploit the available genetic variation, and as a result synthetic hexaploids are now being utilized by a number of breeding companies. However, a newly emerging tool of genome editing provides significantly improved efficiency in exploiting the natural variation in HMW-GS genes and incorporating this into elite cultivars and breeding lines. Recent advancement in the understanding of the regulation of these genes underlines the needs for an overview of the regulatory elements for genome editing purposes. PMID:27766102

  8. The usefulness of fungicide mixtures and alternation for delaying the selection for resistance in populations of Mycosphaerella graminicola on winter wheat: a modeling analysis.

    PubMed

    Hobbelen, P H F; Paveley, N D; Oliver, R P; van den Bosch, F

    2013-07-01

    A fungicide resistance model (reported and tested previously) was amended to describe the development of resistance in Mycosphaerella graminicola populations in winter wheat (Triticum aestivum) crops in two sets of fields, connected by spore dispersal. The model was used to evaluate the usefulness of concurrent, alternating, or mixture use of two high-resistance-risk fungicides as resistance management strategies. We determined the effect on the usefulness of each strategy of (i) fitness costs of resistance, (ii) partial resistance to fungicides, (iii) differences in the dose-response curves and decay rates between fungicides, and (iv) different frequencies of the double-resistant strain at the start of a treatment strategy. Parameter values for the quinine outside inhibitor pyraclostrobin were used to represent two fungicides with differing modes of action. The effectiveness of each strategy was quantified as the maximum number of growing seasons that disease was effectively controlled in both sets of fields. For all scenarios, the maximum effective lives achieved by the use of the strategies were in the order mixtures ≥ alternation ≥ concurrent use. Mixtures were of particular benefit where the pathogen strain resistant to both modes of action incurred a fitness penalty or was present at a low initial frequency.

  9. The effect of wheat prebiotics on the gut bacterial population and iron status of iron deficient broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, there is a lot of interest in improving the intestinal health, and consequently increasing minerals as iron absorption, by managing the intestinal microbial population. This is traditionally done by the consumption of probiotics, which are live microbial food supplements. However, a...

  10. Mitotic and meiotic behavior of rye chromosomes in wheat - Psathyrostachys huashanica amphiploid x triticale progeny.

    PubMed

    Xie, Q; Kang, H; Sparkes, D L; Tao, S; Fan, X M; Xu, L; Fan, X; Sha, L; Zhang, H; Wang, Y; Zeng, J; Zhou, Y

    2013-07-24

    The dynamics of rye chromosomes during mitosis and meiosis was analyzed in a subset comprising 33 F3 lines from the cross of wheat, Psathyrostachys huashanica amphiploid (AABBDDNsNs) and hexaploid triticale (AABBRR), as visualized by genomic in situ hybridization. The results indicated that 31 of the total lines contained 4-14 rye chromosomes. Twenty-eight combinations had more rye chromosomes than the F1 hybrids, suggesting the occurrence of spontaneous quantitative increment. No P. huashanica chromosomes were detected in all of the combinations tested. Mitotic analysis showed that rye chromosomes progressed normally with the wheat counterparts without loss. However, abnormal meiosis was found in almost all lines. Similar progression between wheat and rye genomes appeared from interphase to metaphase I. It was at anaphase I that many rye univalents lagged behind those of wheat, followed by equational division. This resulted in the formation of chromosomal segments and micronuclei at telophase I or II. Micronuclei could also be generated from the immobilized univalents in the periphery of cells. Synapsis and translocations between wheat and rye genomes, chromosome bridges, and unreduced gametes were detected. Therefore, it is proposed that rye chromosome elimination may involve chromatid lagging, fragmentation and micronucleation, or the immobilization of certain univalents during meiosis instead of mitosis in the relatively advanced generations. This mechanism, together with spontaneous incremental increase of rye chromosome number, permitted the generation of various germplasms for wheat improvement.

  11. Polyphenol oxidase (PPO) in wheat and wild relatives: molecular evidence for a multigene family.

    PubMed

    Massa, Alicia N; Beecher, Brian; Morris, Craig F

    2007-05-01

    Wheat polyphenol oxidase (PPO) is the major cause of browning reactions that discolor Asian noodles and other wheat products. It has been hypothesized that genes encoding wheat PPOs may have evolved by gene duplication into a multigene family. Here we characterized PPO genomic sequences from diploid (Triticum monococcum, T. urartu, Aegilops tauschii, and Ae. speltoides), tetraploid (T. turgidum, subspecies dicoccoides and durum) and hexaploid (T. aestivum cultivars Klasic and ID377s) wheat species to gain a better understanding of the structure and organization of PPO genes. DNA fragments were amplified from a highly polymorphic and phylogenetic informative region of the gene. As a result, we obtained highly discriminative sequences. Three distinct PPOs, obtained from the A genome of T. monococcum, provided evidence for gene duplication events (paralogous loci). Furthermore, the number of sequences obtained for bread and durum wheat was higher than the expected number of orthologous loci. Sequence comparison revealed nucleotide and structural diversity, and detected five sequence intron types, all with a common insertion position. This was hypothesized to be homologous to that of intron 2 of previously reported wheat PPOs. A MITE of the Stowaway family accounted for the major difference between the five intervening sequences, and was unique to T. aestivum cv. Klasic. Nucleotide and structural diversity, together with well-resolved phylogenetic trees, provided molecular evidence to support the hypothesis of a PPO multigene family structure and organization. PMID:17468807

  12. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA

    PubMed Central

    Zhang, Yi; Liang, Zhen; Zong, Yuan; Wang, Yanpeng; Liu, Jinxing; Chen, Kunling; Qiu, Jin-Long; Gao, Caixia

    2016-01-01

    Editing plant genomes is technically challenging in hard-to-transform plants and usually involves transgenic intermediates, which causes regulatory concerns. Here we report two simple and efficient genome-editing methods in which plants are regenerated from callus cells transiently expressing CRISPR/Cas9 introduced as DNA or RNA. This transient expression-based genome-editing system is highly efficient and specific for producing transgene-free and homozygous wheat mutants in the T0 generation. We demonstrate our protocol to edit genes in hexaploid bread wheat and tetraploid durum wheat, and show that we are able to generate mutants with no detectable transgenes. Our methods may be applicable to other plant species, thus offering the potential to accelerate basic and applied plant genome-engineering research. PMID:27558837

  13. Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat.

    PubMed

    Zhang, Zengcui; Belcram, Harry; Gornicki, Piotr; Charles, Mathieu; Just, Jérémy; Huneau, Cécile; Magdelenat, Ghislaine; Couloux, Arnaud; Samain, Sylvie; Gill, Bikram S; Rasmussen, Jack B; Barbe, Valérie; Faris, Justin D; Chalhoub, Boulos

    2011-11-15

    The Q gene encodes an AP2-like transcription factor that played an important role in domestication of polyploid wheat. The chromosome 5A Q alleles (5AQ and 5Aq) have been well studied, but much less is known about the q alleles on wheat homoeologous chromosomes 5B (5Bq) and 5D (5Dq). We investigated the organization, evolution, and function of the Q/q homoeoalleles in hexaploid wheat (Triticum aestivum L.). Q/q gene sequences are highly conserved within and among the A, B, and D genomes of hexaploid wheat, the A and B genomes of tetraploid wheat, and the A, S, and D genomes of the diploid progenitors, but the intergenic regions of the Q/q locus are highly divergent among homoeologous genomes. Duplication of the q gene 5.8 Mya was likely followed by selective loss of one of the copies from the A genome progenitor and the other copy from the B, D, and S genomes. A recent V(329)-to-I mutation in the A lineage is correlated with the Q phenotype. The 5Bq homoeoalleles became a pseudogene after allotetraploidization. Expression analysis indicated that the homoeoalleles are coregulated in a complex manner. Combined phenotypic and expression analysis indicated that, whereas 5AQ plays a major role in conferring domestication-related traits, 5Dq contributes directly and 5Bq indirectly to suppression of the speltoid phenotype. The evolution of the Q/q loci in polyploid wheat resulted in the hyperfunctionalization of 5AQ, pseudogenization of 5Bq, and subfunctionalization of 5Dq, all contributing to the domestication traits. PMID:22042872

  14. Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat

    PubMed Central

    Zhang, Zengcui; Belcram, Harry; Gornicki, Piotr; Charles, Mathieu; Just, Jérémy; Huneau, Cécile; Magdelenat, Ghislaine; Couloux, Arnaud; Samain, Sylvie; Gill, Bikram S.; Rasmussen, Jack B.; Barbe, Valérie; Faris, Justin D.; Chalhoub, Boulos

    2011-01-01

    The Q gene encodes an AP2-like transcription factor that played an important role in domestication of polyploid wheat. The chromosome 5A Q alleles (5AQ and 5Aq) have been well studied, but much less is known about the q alleles on wheat homoeologous chromosomes 5B (5Bq) and 5D (5Dq). We investigated the organization, evolution, and function of the Q/q homoeoalleles in hexaploid wheat (Triticum aestivum L.). Q/q gene sequences are highly conserved within and among the A, B, and D genomes of hexaploid wheat, the A and B genomes of tetraploid wheat, and the A, S, and D genomes of the diploid progenitors, but the intergenic regions of the Q/q locus are highly divergent among homoeologous genomes. Duplication of the q gene 5.8 Mya was likely followed by selective loss of one of the copies from the A genome progenitor and the other copy from the B, D, and S genomes. A recent V329-to-I mutation in the A lineage is correlated with the Q phenotype. The 5Bq homoeoalleles became a pseudogene after allotetraploidization. Expression analysis indicated that the homoeoalleles are coregulated in a complex manner. Combined phenotypic and expression analysis indicated that, whereas 5AQ plays a major role in conferring domestication-related traits, 5Dq contributes directly and 5Bq indirectly to suppression of the speltoid phenotype. The evolution of the Q/q loci in polyploid wheat resulted in the hyperfunctionalization of 5AQ, pseudogenization of 5Bq, and subfunctionalization of 5Dq, all contributing to the domestication traits. PMID:22042872

  15. The tae-miR408-Mediated Control of TaTOC1 Genes Transcription Is Required for the Regulation of Heading Time in Wheat1[OPEN

    PubMed Central

    Zhao, Xiang Yu; Hong, Po; Chen, Xiang Bin; Ye, Xing Guo; Pan, Yan You; Wang, Jian

    2016-01-01

    Timing of flowering is not only an interesting topic in developmental biology, but it also plays a significant role in agriculture for its effects on the maturation time of seed. The hexaploid wheat (Triticum aestivum) is one of the most important crop species whose flowering time, i.e. heading time, greatly influences yield. However, it remains unclear whether and how microRNAs regulate heading time in it. In our current study, we identified the tae-miR408 in wheat and its targets in vivo, including Triticum aestivum TIMING OF CAB EXPRESSION-A1 (TaTOC-A1), TaTOC-B1, and TaTOC-D1. The tae-miR408 levels were reciprocal to those of TaTOC1s under long-day and short-day conditions. Wheat plants with a knockdown of TaTOC1s via RNA interference and overexpression of tae-miR408 showed early-heading phenotype. Furthermore, TaTOC1s expression was down-regulated by the tae-miR408 in the hexaploid wheat. In addition, other important agronomic traits in wheat, such as plant height and flag leaf angle, were regulated by both tae-miR408 and TaTOC1s. Thus, our results suggested that the tae-miR408 functions in the wheat heading time by mediating TaTOC1s expression, and the study provides important new information on the mechanism underlying heading time regulation in wheat. PMID:26768600

  16. Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe.

    PubMed

    Middleton, Christopher P; Senerchia, Natacha; Stein, Nils; Akhunov, Eduard D; Keller, Beat; Wicker, Thomas; Kilian, Benjamin

    2014-01-01

    Using Roche/454 technology, we sequenced the chloroplast genomes of 12 Triticeae species, including bread wheat, barley and rye, as well as the diploid progenitors and relatives of bread wheat Triticum urartu, Aegilops speltoides and Ae. tauschii. Two wild tetraploid taxa, Ae. cylindrica and Ae. geniculata, were also included. Additionally, we incorporated wild Einkorn wheat Triticum boeoticum and its domesticated form T. monococcum and two Hordeum spontaneum (wild barley) genotypes. Chloroplast genomes were used for overall sequence comparison, phylogenetic analysis and dating of divergence times. We estimate that barley diverged from rye and wheat approximately 8-9 million years ago (MYA). The genome donors of hexaploid wheat diverged between 2.1-2.9 MYA, while rye diverged from Triticum aestivum approximately 3-4 MYA, more recently than previously estimated. Interestingly, the A genome taxa T. boeoticum and T. urartu were estimated to have diverged approximately 570,000 years ago. As these two have a reproductive barrier, the divergence time estimate also provides an upper limit for the time required for the formation of a species boundary between the two. Furthermore, we conclusively show that the chloroplast genome of hexaploid wheat was contributed by the B genome donor and that this unknown species diverged from Ae. speltoides about 980,000 years ago. Additionally, sequence alignments identified a translocation of a chloroplast segment to the nuclear genome which is specific to the rye/wheat lineage. We propose the presented phylogeny and divergence time estimates as a reference framework for future studies on Triticeae. PMID:24614886

  17. Development of an Expressed Sequence Tag (EST) Resource for Wheat (Triticum aestivum L.)

    PubMed Central

    Lazo, G. R.; Chao, S.; Hummel, D. D.; Edwards, H.; Crossman, C. C.; Lui, N.; Matthews, D. E.; Carollo, V. L.; Hane, D. L.; You, F. M.; Butler, G. E.; Miller, R. E.; Close, T. J.; Peng, J. H.; Lapitan, N. L. V.; Gustafson, J. P.; Qi, L. L.; Echalier, B.; Gill, B. S.; Dilbirligi, M.; Randhawa, H. S.; Gill, K. S.; Greene, R. A.; Sorrells, M. E.; Akhunov, E. D.; Dvořák, J.; Linkiewicz, A. M.; Dubcovsky, J.; Hossain, K. G.; Kalavacharla, V.; Kianian, S. F.; Mahmoud, A. A.; Miftahudin; Ma, X.-F.; Conley, E. J.; Anderson, J. A.; Pathan, M. S.; Nguyen, H. T.; McGuire, P. E.; Qualset, C. O.; Anderson, O. D.

    2004-01-01

    This report describes the rationale, approaches, organization, and resource development leading to a large-scale deletion bin map of the hexaploid (2n = 6x = 42) wheat genome (Triticum aestivum L.). Accompanying reports in this issue detail results from chromosome bin-mapping of expressed sequence tags (ESTs) representing genes onto the seven homoeologous chromosome groups and a global analysis of the entire mapped wheat EST data set. Among the resources developed were the first extensive public wheat EST collection (113,220 ESTs). Described are protocols for sequencing, sequence processing, EST nomenclature, and the assembly of ESTs into contigs. These contigs plus singletons (unassembled ESTs) were used for selection of distinct sequence motif unigenes. Selected ESTs were rearrayed, validated by 5′ and 3′ sequencing, and amplified for probing a series of wheat aneuploid and deletion stocks. Images and data for all Southern hybridizations were deposited in databases and were used by the coordinators for each of the seven homoeologous chromosome groups to validate the mapping results. Results from this project have established the foundation for future developments in wheat genomics. PMID:15514037

  18. Functional characterisation of wheat Pgip genes reveals their involvement in the local response to wounding.

    PubMed

    Janni, M; Bozzini, T; Moscetti, I; Volpi, C; D'Ovidio, R

    2013-11-01

    Polygalacturonase-inhibiting proteins (PGIPs) are cell wall leucine-rich repeat (LRR) proteins involved in plant defence. The hexaploid wheat (Triticum aestivum, genome AABBDD) genome contains one Pgip gene per genome. Tapgip1 (B genome) and Tapgip2 (D genome) are expressed in all tissues, whereas Tapgip3 (A genome) is inactive because of a long terminal repeat, Copia retrotransposon insertion within the coding region. To verify whether Tapgip1 and Tapgip2 encode active PGIPs and are involved in the wheat defence response, we expressed them transiently and analysed their expression under stress conditions. Neither TaPGIP1 nor TaPGIP2 showed inhibition activity in vitro against fungal polygalacturonases. Moreover, a wheat genotype (T. turgidum ssp. dicoccoides) lacking active homologues of Tapgip1 or Tapgip2 possesses PGIP activity. At transcript level, Tapgip1 and Tapgip2 were both up-regulated after fungal infection and strongly induced following wounding. This latter result has been confirmed in transgenic wheat plants expressing the β-glucuronidase (GUS) gene under control of the 5'-flanking region of Tdpgip1, a homologue of Tapgip1 with an identical sequence. Strong and transient GUS staining was mainly restricted to the damaged tissues and was not observed in adjacent tissues. Taken together, these results suggest that Tapgips and their homologues are involved in the wheat defence response by acting at the site of the lesion caused by pathogen infection.

  19. The chloroplast genome of the hexaploid Spartina maritima (Poaceae, Chloridoideae): Comparative analyses and molecular dating.

    PubMed

    Rousseau-Gueutin, M; Bellot, S; Martin, G E; Boutte, J; Chelaifa, H; Lima, O; Michon-Coudouel, S; Naquin, D; Salmon, A; Ainouche, K; Ainouche, M

    2015-12-01

    The history of many plant lineages is complicated by reticulate evolution with cases of hybridization often followed by genome duplication (allopolyploidy). In such a context, the inference of phylogenetic relationships and biogeographic scenarios based on molecular data is easier using haploid markers like chloroplast genome sequences. Hybridization and polyploidization occurred recurrently in the genus Spartina (Poaceae, Chloridoideae), as illustrated by the recent formation of the invasive allododecaploid S. anglica during the 19th century in Europe. Until now, only a few plastid markers were available to explore the history of this genus and their low variability limited the resolution of species relationships. We sequenced the complete chloroplast genome (plastome) of S. maritima, the native European parent of S. anglica, and compared it to the plastomes of other Poaceae. Our analysis revealed the presence of fast-evolving regions of potential taxonomic, phylogeographic and phylogenetic utility at various levels within the Poaceae family. Using secondary calibrations, we show that the tetraploid and hexaploid lineages of Spartina diverged 6-10 my ago, and that the two parents of the invasive allopolyploid S. anglica separated 2-4 my ago via long distance dispersal of the ancestor of S. maritima over the Atlantic Ocean. Finally, we discuss the meaning of divergence times between chloroplast genomes in the context of reticulate evolution.

  20. CE determination of secaloindoline allelic forms in hexaploid triticale (x Triticosecale Wittmack).

    PubMed

    Salmanowicz, Bolesław P

    2010-03-01

    Differences in kernel texture are mainly caused by specific secaloindoline (SIN) proteins occurring in friabilin fraction of hexaploid triticale (x Triticosecale Wittmack) grain. SINs were isolated using Triton X-114 partitioning from either kernels/flour or starch of five triticale cultivars with wide range of different hardness. Crude SIN fraction was obtained by size-exclusion HPLC. SINs were separated on an uncoated fused-silica capillary using the iminodiacetic (IDA) buffer in conjunction with lower-concentrated poly(ethylene oxide) and ACN. A low-concentrate mixture of hydrophilic polymers, PVP and hydroxypropylmethylcellulose in IDA buffer was employed for dynamic coating of capillary inner wall. In total, on the basis of CZE profiles, two SIN-a proteins and two SIN-b proteins were identified. Allelic forms SIN-a1 and SIN-b1 have both two soft and one medium hard genotypes, however other allelic forms, designed as SIN-a2 and SIN-b2, were identified in hard and other medium hard cultivars. The CZE profiles showed that the ratio of the peak areas of SIN-b proteins isolated from triticale starch can be preliminarily used to distinguish cultivars with soft and hard grain.

  1. Analysis of agronomic and domestication traits in a durum x cultivated emmer wheat population using a high-density single nucleotide polymorphism-based linkage map

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated emmer wheat (Triticum turgidum ssp. dicoccum) is tetraploid and considered one of the eight founder crops that spawned the Agricultural Revolution about 10,000 years ago. Cultivated emmer has non-free-threshing seed and a somewhat fragile rachis, but mutations in genes governing these an...

  2. Systematic Investigation of FLOWERING LOCUS T-Like Poaceae Gene Families Identifies the Short-Day Expressed Flowering Pathway Gene, TaFT3 in Wheat (Triticum aestivum L.)

    PubMed Central

    Halliwell, Joanna; Borrill, Philippa; Gordon, Anna; Kowalczyk, Radoslaw; Pagano, Marina L.; Saccomanno, Benedetta; Bentley, Alison R.; Uauy, Cristobal; Cockram, James

    2016-01-01

    To date, a small number of major flowering time loci have been identified in the related Triticeae crops, bread wheat (Triticum aestivum), durum wheat (T. durum), and barley (Hordeum vulgare). Natural genetic variants at these loci result in major phenotypic changes which have adapted crops to the novel environments encountered during the spread of agriculture. The polyploid nature of bread and durum wheat means that major flowering time loci in which recessive alleles confer adaptive advantage in related diploid species have not been readily identified. One such example is the PPD-H2 flowering time locus encoded by FLOWERING LOCUS T 3 (HvFT3) in the diploid crop barley, for which recessive mutant alleles confer delayed flowering under short day (SD) photoperiods. In autumn-sown barley, such alleles aid the repression of flowering over the winter, which help prevent the development of cold-sensitive floral organs until the onset of inductive long day (LD) photoperiods the following spring. While the identification of orthologous loci in wheat could provide breeders with alternative mechanisms to fine tune flowering time, systematic identification of wheat orthologs of HvFT3 has not been reported. Here, we characterize the FT gene families in six Poaceae species, identifying novel members in all taxa investigated, as well as FT3 homoeologs from the A, B and D genomes of hexaploid (TaFT3) and tetraploid wheat. Sequence analysis shows TaFT3 homoeologs display high similarity to the HvFT3 coding region (95–96%) and predicted protein (96–97%), with conservation of intron/exon structure across the five cereal species investigated. Genetic mapping and comparative analyses in hexaploid and tetraploid wheat find TaFT3 homoeologs map to the long arms of the group 1 chromosomes, collinear to HvFT3 in barley and FT3 orthologs in rice, foxtail millet and brachypodium. Genome-specific expression analyses show FT3 homoeologs in tetraploid and hexaploid wheat are upregulated

  3. Systematic Investigation of FLOWERING LOCUS T-Like Poaceae Gene Families Identifies the Short-Day Expressed Flowering Pathway Gene, TaFT3 in Wheat (Triticum aestivum L.).

    PubMed

    Halliwell, Joanna; Borrill, Philippa; Gordon, Anna; Kowalczyk, Radoslaw; Pagano, Marina L; Saccomanno, Benedetta; Bentley, Alison R; Uauy, Cristobal; Cockram, James

    2016-01-01

    To date, a small number of major flowering time loci have been identified in the related Triticeae crops, bread wheat (Triticum aestivum), durum wheat (T. durum), and barley (Hordeum vulgare). Natural genetic variants at these loci result in major phenotypic changes which have adapted crops to the novel environments encountered during the spread of agriculture. The polyploid nature of bread and durum wheat means that major flowering time loci in which recessive alleles confer adaptive advantage in related diploid species have not been readily identified. One such example is the PPD-H2 flowering time locus encoded by FLOWERING LOCUS T 3 (HvFT3) in the diploid crop barley, for which recessive mutant alleles confer delayed flowering under short day (SD) photoperiods. In autumn-sown barley, such alleles aid the repression of flowering over the winter, which help prevent the development of cold-sensitive floral organs until the onset of inductive long day (LD) photoperiods the following spring. While the identification of orthologous loci in wheat could provide breeders with alternative mechanisms to fine tune flowering time, systematic identification of wheat orthologs of HvFT3 has not been reported. Here, we characterize the FT gene families in six Poaceae species, identifying novel members in all taxa investigated, as well as FT3 homoeologs from the A, B and D genomes of hexaploid (TaFT3) and tetraploid wheat. Sequence analysis shows TaFT3 homoeologs display high similarity to the HvFT3 coding region (95-96%) and predicted protein (96-97%), with conservation of intron/exon structure across the five cereal species investigated. Genetic mapping and comparative analyses in hexaploid and tetraploid wheat find TaFT3 homoeologs map to the long arms of the group 1 chromosomes, collinear to HvFT3 in barley and FT3 orthologs in rice, foxtail millet and brachypodium. Genome-specific expression analyses show FT3 homoeologs in tetraploid and hexaploid wheat are upregulated under

  4. Identification of genes bordering breakpoints of the pericentric inversions on 2B, 4B, and 5A in bread wheat (Triticum aestivum L.).

    PubMed

    Ma, Jian; Gao, Shang; Stiller, Jiri; Jiang, Qian-Tao; Lan, Xiu-Jin; Liu, Ya-Xi; Pu, Zhi-En; Wang, Jirui; Wei, Yuming; Zheng, You-Liang

    2015-08-01

    Chromosome translocation is an important driving force in shaping genomes during evolution. Detailed knowledge of chromosome translocations in a given species and its close relatives should increase the efficiency and precision of chromosome engineering in crop improvement. To identify genes flanking the breakpoints of translocations and inversions as a step toward identifying breakpoints in bread wheat, we systematically analysed genes in the Brachypodium genome against wheat survey sequences and bin-mapped ESTs (expressed sequence tags) derived from the hexaploid wheat genotype 'Chinese Spring'. In addition to those well-known translocations between group 4, 5, and 7 chromosomes, this analysis identified genes flanking the three pericentric inversions on chromosomes 2B, 4B, and 5A. However, numerous chromosomal rearrangements reported in early studies could not be confirmed. The genes flanking the breakpoints reported in this study are valuable for isolating these breakpoints.

  5. Genome-Wide Linkage Mapping of QTL for Adult-Plant Resistance to Stripe Rust in a Chinese Wheat Population Linmai 2 × Zhong 892.

    PubMed

    Liu, Jindong; He, Zhonghu; Wu, Ling; Bai, Bin; Wen, Weie; Xie, Chaojie; Xia, Xianchun

    2015-01-01

    Stripe rust is one of the most devastating diseases of wheat (Triticum aestivum) worldwide. Adult-plant resistance (APR) is an efficient approach to provide long-term protection of wheat from the disease. The Chinese winter wheat cultivar Zhong 892 has a moderate level of APR to stripe rust in the field. To determine the inheritance of the APR resistance in this cultivar, 273 F6 recombinant inbred lines (RILs) were developed from a cross between Linmai 2 and Zhong 892. The RILs were evaluated for maximum disease severity (MDS) in two sites during the 2011-2012, 2012-2013 and 2013-2014 cropping seasons, providing data for five environments. Illumina 90k SNP (single nucleotide polymorphism) chips were used to genotype the RILs and their parents. Composite interval mapping (CIM) detected eight QTL, namely QYr.caas-2AL, QYr.caas-2BL.3, QYr.caas-3AS, QYr.caas-3BS, QYr.caas-5DL, QYr.caas-6AL, QYr.caas-7AL and QYr.caas-7DS.1, respectively. All except QYr.caas-2BL.3 resistance alleles were contributed by Zhong 892. QYr.caas-3AS and QYr.caas-3BS conferred stable resistance to stripe rust in all environments, explaining 6.2-17.4% and 5.0-11.5% of the phenotypic variances, respectively. The genome scan of SNP sequences tightly linked to QTL for APR against annotated proteins in wheat and related cereals genomes identified two candidate genes (autophagy-related gene and disease resistance gene RGA1), significantly associated with stripe rust resistance. These QTL and their closely linked SNP markers, in combination with kompetitive allele specific PCR (KASP) technology, are potentially useful for improving stripe rust resistances in wheat breeding.

  6. Genome-Wide Linkage Mapping of QTL for Adult-Plant Resistance to Stripe Rust in a Chinese Wheat Population Linmai 2 × Zhong 892.

    PubMed

    Liu, Jindong; He, Zhonghu; Wu, Ling; Bai, Bin; Wen, Weie; Xie, Chaojie; Xia, Xianchun

    2015-01-01

    Stripe rust is one of the most devastating diseases of wheat (Triticum aestivum) worldwide. Adult-plant resistance (APR) is an efficient approach to provide long-term protection of wheat from the disease. The Chinese winter wheat cultivar Zhong 892 has a moderate level of APR to stripe rust in the field. To determine the inheritance of the APR resistance in this cultivar, 273 F6 recombinant inbred lines (RILs) were developed from a cross between Linmai 2 and Zhong 892. The RILs were evaluated for maximum disease severity (MDS) in two sites during the 2011-2012, 2012-2013 and 2013-2014 cropping seasons, providing data for five environments. Illumina 90k SNP (single nucleotide polymorphism) chips were used to genotype the RILs and their parents. Composite interval mapping (CIM) detected eight QTL, namely QYr.caas-2AL, QYr.caas-2BL.3, QYr.caas-3AS, QYr.caas-3BS, QYr.caas-5DL, QYr.caas-6AL, QYr.caas-7AL and QYr.caas-7DS.1, respectively. All except QYr.caas-2BL.3 resistance alleles were contributed by Zhong 892. QYr.caas-3AS and QYr.caas-3BS conferred stable resistance to stripe rust in all environments, explaining 6.2-17.4% and 5.0-11.5% of the phenotypic variances, respectively. The genome scan of SNP sequences tightly linked to QTL for APR against annotated proteins in wheat and related cereals genomes identified two candidate genes (autophagy-related gene and disease resistance gene RGA1), significantly associated with stripe rust resistance. These QTL and their closely linked SNP markers, in combination with kompetitive allele specific PCR (KASP) technology, are potentially useful for improving stripe rust resistances in wheat breeding. PMID:26714310

  7. Improved wheat for baking.

    PubMed

    Faridi, H; Finley, J W

    1989-01-01

    To bakers, wheat quality means the performance characteristics of the flour milled from the wheat when used in specific wheat products. The tremendous increase in the number of wheat cultivars grown in the U.S. in recent years, along with the unusual climate, new advances in milling technology, and increased automation of baking lines, have resulted in bakery production problems partly attributed to wheat flour quality. In this review various factors affecting wheat quality are explained. Concerns of bread and cookie/cracker manufacturers on deterioration of the wheat quality are discussed, and, finally, some solutions are proposed.

  8. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data

    PubMed Central

    2012-01-01

    Background Rapid advances in next-generation sequencing methods have provided new opportunities for transcriptome sequencing (RNA-Seq). The unprecedented sequencing depth provided by RNA-Seq makes it a powerful and cost-efficient method for transcriptome study, and it has been widely used in model organisms and non-model organisms to identify and quantify RNA. For non-model organisms lacking well-defined genomes, de novo assembly is typically required for downstream RNA-Seq analyses, including SNP discovery and identification of genes differentially expressed by phenotypes. Although RNA-Seq has been successfully used to sequence many non-model organisms, the results of de novo assembly from short reads can still be improved by using recent bioinformatic developments. Results In this study, we used 212.6 million pair-end reads, which accounted for 16.2 Gb, to assemble the hexaploid wheat transcriptome. Two state-of-the-art assemblers, Trinity and Trans-ABySS, which use the single and multiple k-mer methods, respectively, were used, and the whole de novo assembly process was divided into the following four steps: pre-assembly, merging different samples, removal of redundancy and scaffolding. We documented every detail of these steps and how these steps influenced assembly performance to gain insight into transcriptome assembly from short reads. After optimization, the assembled transcripts were comparable to Sanger-derived ESTs in terms of both continuity and accuracy. We also provided considerable new wheat transcript data to the community. Conclusions It is feasible to assemble the hexaploid wheat transcriptome from short reads. Special attention should be paid to dealing with multiple samples to balance the spectrum of expression levels and redundancy. To obtain an accurate overview of RNA profiling, removal of redundancy may be crucial in de novo assembly. PMID:22891638

  9. Exploring and Mobilizing the Gene Bank Biodiversity for Wheat Improvement.

    PubMed

    Sehgal, Deepmala; Vikram, Prashant; Sansaloni, Carolina Paola; Ortiz, Cynthia; Pierre, Carolina Saint; Payne, Thomas; Ellis, Marc; Amri, Ahmed; Petroli, César Daniel; Wenzl, Peter; Singh, Sukhwinder

    2015-01-01

    Identifying and mobilizing useful genetic variation from germplasm banks to breeding programs is an important strategy for sustaining crop genetic improvement. The molecular diversity of 1,423 spring bread wheat accessions representing major global production environments was investigated using high quality genotyping-by-sequencing (GBS) loci, and gene-based markers for various adaptive and quality traits. Mean diversity index (DI) estimates revealed synthetic hexaploids to be genetically more diverse (DI= 0.284) than elites (DI = 0.267) and landraces (DI = 0.245). GBS markers discovered thousands of new SNP variations in the landraces which were well known to be adapted to drought (1273 novel GBS SNPs) and heat (4473 novel GBS SNPs) stress environments. This may open new avenues for pre-breeding by enriching the elite germplasm with novel alleles for drought and heat tolerance. Furthermore, new allelic variation for vernalization and glutenin genes was also identified from 47 landraces originating from Iraq, Iran, India, Afghanistan, Pakistan, Uzbekistan and Turkmenistan. The information generated in the study has been utilized to select 200 diverse gene bank accessions to harness their potential in pre-breeding and for allele mining of candidate genes for drought and heat stress tolerance, thus channeling novel variation into breeding pipelines. This research is part of CIMMYT's ongoing 'Seeds of Discovery' project visioning towards the development of high yielding wheat varieties that address future challenges from climate change.

  10. Exploring and Mobilizing the Gene Bank Biodiversity for Wheat Improvement

    PubMed Central

    Sehgal, Deepmala; Vikram, Prashant; Sansaloni, Carolina Paola; Ortiz, Cynthia; Pierre, Carolina Saint; Payne, Thomas; Ellis, Marc; Amri, Ahmed; Petroli, César Daniel; Wenzl, Peter; Singh, Sukhwinder

    2015-01-01

    Identifying and mobilizing useful genetic variation from germplasm banks to breeding programs is an important strategy for sustaining crop genetic improvement. The molecular diversity of 1,423 spring bread wheat accessions representing major global production environments was investigated using high quality genotyping-by-sequencing (GBS) loci, and gene-based markers for various adaptive and quality traits. Mean diversity index (DI) estimates revealed synthetic hexaploids to be genetically more diverse (DI= 0.284) than elites (DI = 0.267) and landraces (DI = 0.245). GBS markers discovered thousands of new SNP variations in the landraces which were well known to be adapted to drought (1273 novel GBS SNPs) and heat (4473 novel GBS SNPs) stress environments. This may open new avenues for pre-breeding by enriching the elite germplasm with novel alleles for drought and heat tolerance. Furthermore, new allelic variation for vernalization and glutenin genes was also identified from 47 landraces originating from Iraq, Iran, India, Afghanistan, Pakistan, Uzbekistan and Turkmenistan. The information generated in the study has been utilized to select 200 diverse gene bank accessions to harness their potential in pre-breeding and for allele mining of candidate genes for drought and heat stress tolerance, thus channeling novel variation into breeding pipelines. This research is part of CIMMYT’s ongoing ‘Seeds of Discovery’ project visioning towards the development of high yielding wheat varieties that address future challenges from climate change. PMID:26176697

  11. [Alleles at storage protein loci in Triticum spelta L. accessions and their occurrence in related wheats].

    PubMed

    Kozub, N A; Boguslavskiĭ, R L; Sozinov, I A; Tverdokhleb, E V; Ksinias, I N; Blium, Ia B; Sozinov, A A

    2014-01-01

    Variation at eight storage protein loci was analyzed in the collection of T. spelta accessions from the National Centre of Plant Genetic Resources of Ukraine, most of which are European spelts. The analysis allowed identification of seven alleles at the Gli-B1 locus, five alleles at the Gli-A1 and Glu-B1 loci, three alleles at the Gli-A3 locus, two at the Gli-D1, Gli-B5, Glu-A1, and Glu-D1 loci. The majority of alleles are encountered among common wheat cultivars, only five alleles were specific for spelts. The high frequency of the alleles Gli-B1hs* and h encoding the 45-type gamma-gliadin in European spelts and durum wheat cultivars, as well as the occurrence of these alleles in T. dicoccum, in particular, in accessions from Switzerland and Germany, supports von Büren's hypothesis that European spelt resulted from hybridization between a tetraploid wheat with the 45-type y-gliadin and a hexaploid wheat. Analysis of genetic distances based on the genotypes at eight storage protein loci permitted differentiation of the Asian spelt accession from European spelts.

  12. Cytogenetic Behavior of Trigeneric Hybrid Progeny Involving Wheat, Rye and Psathyrostachys huashanica.

    PubMed

    Kang, Hou-Yang; Huang, Juan; Zhu, Wei; Li, Dai-Yan; Diao, Cheng-Dou; Tang, Lin; Wang, Yi; Xu, Li-Li; Zeng, Jian; Fan, Xing; Sha, Li-Na; Zhang, Hai-Qin; Zheng, You-Liang; Zhou, Yong-Hong

    2016-01-01

    Trigeneric hybrids are commonly used as bridges to transfer genes from some wild species to cultivated wheat and to measure the genomic interaction between donor species. We previously reported that trigeneric germplasms were produced by crossing wheat-Psathyrostachys huashanica amphiploids (PHW-SA, 2n = 8x = 56, AABBDDNsNs) with hexaploid triticale (Zhongsi 828, 2n = 6x = 42, AABBRR). In the present study, chromosome pairing behavior and the genome constitution of the F4 progenies of wheat-rye-P. huashanica trigeneric hybrids were studied. Cytological analysis showed that the chromosome number of F4 progenies ranged from 39 to 46, and 57.5% of them had 42 chromosomes. The mean meiotic configuration of F4 lines was 1.71 univalents, 20.26 bivalents, 0.04 trivalents, and 0.001 quadrivalents per pollen mother cell. Among the lines with 2n = 42, the average pairing configuration was 1.21 univalents, 16.22 ring bivalents, 4.16 rod bivalents, and 0.01 trivalents. This result indicated that these lines were cytologically stable. Other lines with 2n = 39, 40, 41, 43, 44, 45, and 46, bearing a high number of univalents or multivalents, showed abnormal meiotic behavior. Genomic in situ hybridization (GISH) revealed that all F4 lines had 11-14 rye chromosomes, but no P. huashanica chromosomes. The complete set of 14 rye chromosomes was found in 19 lines. At meiosis, GISH detected 1-6 univalents with hybridization signals of rye in 13 lines. Bivalents with fluorescence signals were identified in each line, ranging from 3 to 7. A quadrivalent with hybridization signals was observed in only 1 line, K13-714-8. Lagging chromosomes, chromosome bridges, micronuclei, and chromosome fragments hybridizing with the probe were not discovered in any of the lines. These results inferred that the behavior of rye chromosomes was normal during meiosis. In addition, 21 lines of 2n = 42 (91.3%) with 12 or 14 rye chromosomes, always contained 6 or 7 bivalents bearing fluorescence signals. This

  13. Cytogenetic Behavior of Trigeneric Hybrid Progeny Involving Wheat, Rye and Psathyrostachys huashanica.

    PubMed

    Kang, Hou-Yang; Huang, Juan; Zhu, Wei; Li, Dai-Yan; Diao, Cheng-Dou; Tang, Lin; Wang, Yi; Xu, Li-Li; Zeng, Jian; Fan, Xing; Sha, Li-Na; Zhang, Hai-Qin; Zheng, You-Liang; Zhou, Yong-Hong

    2016-01-01

    Trigeneric hybrids are commonly used as bridges to transfer genes from some wild species to cultivated wheat and to measure the genomic interaction between donor species. We previously reported that trigeneric germplasms were produced by crossing wheat-Psathyrostachys huashanica amphiploids (PHW-SA, 2n = 8x = 56, AABBDDNsNs) with hexaploid triticale (Zhongsi 828, 2n = 6x = 42, AABBRR). In the present study, chromosome pairing behavior and the genome constitution of the F4 progenies of wheat-rye-P. huashanica trigeneric hybrids were studied. Cytological analysis showed that the chromosome number of F4 progenies ranged from 39 to 46, and 57.5% of them had 42 chromosomes. The mean meiotic configuration of F4 lines was 1.71 univalents, 20.26 bivalents, 0.04 trivalents, and 0.001 quadrivalents per pollen mother cell. Among the lines with 2n = 42, the average pairing configuration was 1.21 univalents, 16.22 ring bivalents, 4.16 rod bivalents, and 0.01 trivalents. This result indicated that these lines were cytologically stable. Other lines with 2n = 39, 40, 41, 43, 44, 45, and 46, bearing a high number of univalents or multivalents, showed abnormal meiotic behavior. Genomic in situ hybridization (GISH) revealed that all F4 lines had 11-14 rye chromosomes, but no P. huashanica chromosomes. The complete set of 14 rye chromosomes was found in 19 lines. At meiosis, GISH detected 1-6 univalents with hybridization signals of rye in 13 lines. Bivalents with fluorescence signals were identified in each line, ranging from 3 to 7. A quadrivalent with hybridization signals was observed in only 1 line, K13-714-8. Lagging chromosomes, chromosome bridges, micronuclei, and chromosome fragments hybridizing with the probe were not discovered in any of the lines. These results inferred that the behavior of rye chromosomes was normal during meiosis. In addition, 21 lines of 2n = 42 (91.3%) with 12 or 14 rye chromosomes, always contained 6 or 7 bivalents bearing fluorescence signals. This

  14. Dwarfing Genes Rht-B1b and Rht-D1b Are Associated with Both Type I FHB Susceptibility and Low Anther Extrusion in Two Bread Wheat Populations

    PubMed Central

    He, Xinyao; Singh, Pawan K.; Dreisigacker, Susanne; Singh, Sukhwinder; Lillemo, Morten; Duveiller, Etienne

    2016-01-01

    It has been well documented that dwarfing genes Rht-B1b and Rht-D1b are associated with Type I susceptibility to Fusarium head blight (FHB) in wheat; but the underlying mechanism has not been well delineated. Anther extrusion (AE) has also been related to Type I resistance for initial FHB infection, where high AE renders FHB resistance. In this study, two doubled haploid populations were used to investigate the impact of the two dwarfing genes on FHB resistance and AE, and to elucidate the role of AE in Rht-mediated FHB susceptibility. Both populations were derived by crossing the FHB susceptible cultivar ‘Ocoroni F86’ (Rht-B1a/Rht-D1b) with an FHB resistant variety (Rht-B1b/Rht-D1a), which was ‘TRAP#1/BOW//Taigu derivative’ in one population (the TO population) and ‘Ivan/Soru#2’ in the other (the IO population). Field experiments were carried out from 2010 to 2012 in El Batán, Mexico, where spray inoculation was adopted and FHB index, plant height (PH), and AE were evaluated, with the latter two traits showing always significantly negative correlations with FHB severity. The populations were genotyped with the DArTseq GBS platform, the two dwarfing genes and a few SSRs for QTL analysis, and the results indicated that Rht-B1b and Rht-D1b collectively accounted for 0–41% of FHB susceptibility and 13–23% of reduced AE. It was also observed that three out of the four AE QTL in the TO population and four out of the five AE QTL in the IO population were associated with FHB resistance. Collectively, our results demonstrated the effects of Rht-B1b and Rht-D1b on Type I FHB susceptibility and reducing AE, and proposed that their impacts on Type I FHB susceptibility may partly be explained by their effects on reducing AE. The implication of the relationship between the two dwarfing genes and AE for hybrid wheat breeding was also discussed. PMID:27606928

  15. Dwarfing Genes Rht-B1b and Rht-D1b Are Associated with Both Type I FHB Susceptibility and Low Anther Extrusion in Two Bread Wheat Populations.

    PubMed

    He, Xinyao; Singh, Pawan K; Dreisigacker, Susanne; Singh, Sukhwinder; Lillemo, Morten; Duveiller, Etienne

    2016-01-01

    It has been well documented that dwarfing genes Rht-B1b and Rht-D1b are associated with Type I susceptibility to Fusarium head blight (FHB) in wheat; but the underlying mechanism has not been well delineated. Anther extrusion (AE) has also been related to Type I resistance for initial FHB infection, where high AE renders FHB resistance. In this study, two doubled haploid populations were used to investigate the impact of the two dwarfing genes on FHB resistance and AE, and to elucidate the role of AE in Rht-mediated FHB susceptibility. Both populations were derived by crossing the FHB susceptible cultivar 'Ocoroni F86' (Rht-B1a/Rht-D1b) with an FHB resistant variety (Rht-B1b/Rht-D1a), which was 'TRAP#1/BOW//Taigu derivative' in one population (the TO population) and 'Ivan/Soru#2' in the other (the IO population). Field experiments were carried out from 2010 to 2012 in El Batán, Mexico, where spray inoculation was adopted and FHB index, plant height (PH), and AE were evaluated, with the latter two traits showing always significantly negative correlations with FHB severity. The populations were genotyped with the DArTseq GBS platform, the two dwarfing genes and a few SSRs for QTL analysis, and the results indicated that Rht-B1b and Rht-D1b collectively accounted for 0-41% of FHB susceptibility and 13-23% of reduced AE. It was also observed that three out of the four AE QTL in the TO population and four out of the five AE QTL in the IO population were associated with FHB resistance. Collectively, our results demonstrated the effects of Rht-B1b and Rht-D1b on Type I FHB susceptibility and reducing AE, and proposed that their impacts on Type I FHB susceptibility may partly be explained by their effects on reducing AE. The implication of the relationship between the two dwarfing genes and AE for hybrid wheat breeding was also discussed. PMID:27606928

  16. Adverse Effects of Wheat Gluten.

    PubMed

    Koning, Frits

    2015-01-01

    Man began to consume cereals approximately 10,000 years ago when hunter-gatherers settled in the fertile golden crescent in the Middle East. Gluten has been an integral part of the Western type of diet ever since, and wheat consumption is also common in the Middle East, parts of India and China as well as Australia and Africa. In fact, the food supply in the world heavily depends on the availability of cereal-based food products, with wheat being one of the largest crops in the world. Part of this is due to the unique properties of wheat gluten, which has a high nutritional value and is crucial for the preparation of high-quality dough. In the last 10 years, however, wheat and gluten have received much negative attention. Many believe that it is inherently bad for our health and try to avoid consumption of gluten-containing cereals; a gluten-low lifestyle so to speak. This is fueled by a series of popular publications like Wheat Belly; Lose the Wheat, Lose the Weight, and Find Your Path Back to Health. However, in reality, there is only one condition where gluten is definitively the culprit: celiac disease (CD), affecting approximately 1% of the population in the Western world. Here, I describe the complexity of the cereals from which gluten is derived, the special properties of gluten which make it so widely used in the food industry, the basis for its toxicity in CD patients and the potential for the development of safe gluten and alternatives to the gluten-free diet.

  17. Adverse Effects of Wheat Gluten.

    PubMed

    Koning, Frits

    2015-01-01

    Man began to consume cereals approximately 10,000 years ago when hunter-gatherers settled in the fertile golden crescent in the Middle East. Gluten has been an integral part of the Western type of diet ever since, and wheat consumption is also common in the Middle East, parts of India and China as well as Australia and Africa. In fact, the food supply in the world heavily depends on the availability of cereal-based food products, with wheat being one of the largest crops in the world. Part of this is due to the unique properties of wheat gluten, which has a high nutritional value and is crucial for the preparation of high-quality dough. In the last 10 years, however, wheat and gluten have received much negative attention. Many believe that it is inherently bad for our health and try to avoid consumption of gluten-containing cereals; a gluten-low lifestyle so to speak. This is fueled by a series of popular publications like Wheat Belly; Lose the Wheat, Lose the Weight, and Find Your Path Back to Health. However, in reality, there is only one condition where gluten is definitively the culprit: celiac disease (CD), affecting approximately 1% of the population in the Western world. Here, I describe the complexity of the cereals from which gluten is derived, the special properties of gluten which make it so widely used in the food industry, the basis for its toxicity in CD patients and the potential for the development of safe gluten and alternatives to the gluten-free diet. PMID:26606684

  18. Extensive pericentric rearrangements in the bread wheat (Triticum aestivum L.) genotype "Chinese Spring" revealed from chromosome shotgun sequence data.

    PubMed

    Ma, Jian; Stiller, Jiri; Wei, Yuming; Zheng, You-Liang; Devos, Katrien M; Doležel, Jaroslav; Liu, Chunji

    2014-10-27

    The bread wheat (Triticum aestivum L.) genotype "Chinese Spring" ("CS") is the reference base in wheat genetics and genomics. Pericentric rearrangements in this genotype were systematically assessed by analyzing homoeoloci for a set of nonredundant genes from Brachypodium distachyon, Triticum urartu, and Aegilops tauschii in the CS chromosome shotgun sequence obtained from individual chromosome arms flow-sorted from CS aneuploid lines. Based on patterns of their homoeologous arm locations, 551 genes indicated the presence of pericentric inversions in at least 10 of the 21 chromosomes. Available data from deletion bin-mapped expressed sequence tags and genetic mapping in wheat indicated that all inversions had breakpoints in the low-recombinant gene-poor pericentromeric regions. The large number of putative intrachromosomal rearrangements suggests the presence of extensive structural differences among the three subgenomes, at least some of which likely occurred during the production of the aneuploid lines of this hexaploid wheat genotype. These differences could have significant implications in wheat genome research where comparative approaches are used such as in ordering and orientating sequence contigs and in gene cloning.

  19. Reproduction and development of Russian wheat aphid biotype 2 on crested wheatgrass, intermediate wheatgrass, and susceptible and resistant wheat.

    PubMed

    Merrill, Scott C; Peairs, Frank B; Miller, Hayley R; Randolph, Terri L; Rudolph, Jeff B; Talmich, Emili E

    2008-04-01

    The Russian wheat aphid, Diuraphis noxia (Kurdjumov), is an economically important pest of small grains. Since its introduction into North America in 2003, Russian wheat aphid Biotype 2 has been found to be virulent to all commercially available winter wheat, Triticum aestivum L., cultivars. Our goal was to examine differences in Russian wheat aphid reproduction and development on a variety of plant hosts to gain information about 1) potential alternate host refuges, 2) selective host pressures on Russian wheat aphid genetic variation, and 3) general population dynamics of Russian wheat aphid Biotype 2. We studied host quality of two wheatgrasses (crested wheatgrass, Agropyron cristatum [L.] Gaertn., and intermediate wheatgrass, Agropyron intermedium [Host] Beauvoir) and two types of winter wheat (T. aestivum, one Biotype 2 susceptible wheat, 'Custer' and one biotype 2 resistant wheat, STARS02RWA2414-11). The susceptible wheat had the highest intrinsic rate of increase, greatest longevity and greatest fecundity of the four host studied. Crested wheatgrass and the resistant wheat showed similar growth rates. Intermediate wheatgrass had the lowest intrinsic rate of increase and lowest fecundity of all tested hosts.

  20. Changes in the Russian Wheat Aphid (Hemiptera: Aphididae) Biotype Complex in South Africa.

    PubMed

    Jankielsohn, Astrid

    2016-04-01

    Russian wheat aphid Diuraphis noxia (Kurdjumov) has spread from its native area in central Asia to all the major wheat-producing countries in the world to become an international wheat pest. Because the Russian wheat aphid is a serious threat to the wheat industry in South Africa, it is important to investigate the key factors involved in the distribution of Russian wheat aphid biotypes and in the changes of the Russian wheat aphid biotype complex in South Africa. There are currently four known Russian wheat aphid biotypes occurring in South Africa. Russian wheat aphid samples were collected from 2011 to 2014 during the wheat-growing season in spring and summer and these samples were screened to determine the biotype status. RWASA1 occurred predominantly in the Western Cape, while RWASA2 and RWASA3 occurred predominantly in the Eastern Free State. Following the first record of RWASA4 in 2011, this biotype was restricted to the Eastern Free State. The surveys suggest that the Russian wheat aphid bioype complex was more diverse in the Eastern Free State than in the other wheat production areas. There was also a shift in Russian wheat aphid biotype composition over time. The Russian wheat aphid biotype complex is dynamic, influenced by environmental factors such as host plants, altitude, and climate, and it can change and diversify over time causing fluctuation in populations over sites and years. This dynamic nature of the Russian wheat aphid will continue to challenge the development of Russian wheat aphid-resistant wheat cultivars in South Africa, and the continued monitoring of the biotypic and genetic structure, to determine genetic relatedness and variation in different biotypes, of Russian wheat aphid populations is important for protecting wheat. PMID:26803815

  1. Changes in the Russian Wheat Aphid (Hemiptera: Aphididae) Biotype Complex in South Africa.

    PubMed

    Jankielsohn, Astrid

    2016-04-01

    Russian wheat aphid Diuraphis noxia (Kurdjumov) has spread from its native area in central Asia to all the major wheat-producing countries in the world to become an international wheat pest. Because the Russian wheat aphid is a serious threat to the wheat industry in South Africa, it is important to investigate the key factors involved in the distribution of Russian wheat aphid biotypes and in the changes of the Russian wheat aphid biotype complex in South Africa. There are currently four known Russian wheat aphid biotypes occurring in South Africa. Russian wheat aphid samples were collected from 2011 to 2014 during the wheat-growing season in spring and summer and these samples were screened to determine the biotype status. RWASA1 occurred predominantly in the Western Cape, while RWASA2 and RWASA3 occurred predominantly in the Eastern Free State. Following the first record of RWASA4 in 2011, this biotype was restricted to the Eastern Free State. The surveys suggest that the Russian wheat aphid bioype complex was more diverse in the Eastern Free State than in the other wheat production areas. There was also a shift in Russian wheat aphid biotype composition over time. The Russian wheat aphid biotype complex is dynamic, influenced by environmental factors such as host plants, altitude, and climate, and it can change and diversify over time causing fluctuation in populations over sites and years. This dynamic nature of the Russian wheat aphid will continue to challenge the development of Russian wheat aphid-resistant wheat cultivars in South Africa, and the continued monitoring of the biotypic and genetic structure, to determine genetic relatedness and variation in different biotypes, of Russian wheat aphid populations is important for protecting wheat.

  2. Molecular, physicochemical and rheological characteristics of introgressive Triticale/Triticum monococcum ssp. monococcum lines with wheat 1D/1A chromosome substitution.

    PubMed

    Salmanowicz, Bolesław P; Langner, Monika; Wiśniewska, Halina; Apolinarska, Barbara; Kwiatek, Michał; Błaszczyk, Lidia

    2013-01-01

    Three sets of hexaploid introgressive triticale lines, with Triticum monococcum ssp. monococcum (cultivated einkorn wheat) genes and a bread wheat chromosome 1D substituted for chromosome 1A, and one set of secondary triticale lines were evaluated for grain and flour physicochemical and dough rheological characteristics in two generations (F7 and F8). Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) confirmed the 1D/1A chromosome substitution. The presence or absence of einkorn high-molecular-weight (HMW) glutenin subunits and the wheat Glu-D1d locus encoding the 5 + 10 subunits was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), capillary zone electrophoresis, and allele-specific molecular markers. Significant differences were found among physicochemical properties (with the exception of the Hagberg falling number) of all introgressive Triticale/T. monococcum lines and the secondary triticale lines. The wheat 1D/1A chromosome substitution also affected these properties. The results showed that in all introgressive triticale lines, the protein and gluten content, Zeleny sedimentation value, and water absorption capacity, were increased. The rheological parameters estimated using micro-farinograph, reomixer, and Kieffer dough extensibility systems also showed an appreciable increase in dough-mixing properties, maximum resistance to extension (Rmax), and dough extensibility. Introgressive Triticale/T. monococcum lines with 5 + 10 subunits have particularly favorable rheological parameters. The results obtained in this study suggest that the cultivated einkorn genome Am, in the context of hexaploid secondary triticale lines and with a wheat 1D/1A substitution, has the potential to improve gluten polymer interactions and be a valuable genetic resource for triticale quality improvement. PMID:23896593

  3. Molecular, physicochemical and rheological characteristics of introgressive Triticale/Triticum monococcum ssp. monococcum lines with wheat 1D/1A chromosome substitution.

    PubMed

    Salmanowicz, Bolesław P; Langner, Monika; Wiśniewska, Halina; Apolinarska, Barbara; Kwiatek, Michał; Błaszczyk, Lidia

    2013-07-26

    Three sets of hexaploid introgressive triticale lines, with Triticum monococcum ssp. monococcum (cultivated einkorn wheat) genes and a bread wheat chromosome 1D substituted for chromosome 1A, and one set of secondary triticale lines were evaluated for grain and flour physicochemical and dough rheological characteristics in two generations (F7 and F8). Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) confirmed the 1D/1A chromosome substitution. The presence or absence of einkorn high-molecular-weight (HMW) glutenin subunits and the wheat Glu-D1d locus encoding the 5 + 10 subunits was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), capillary zone electrophoresis, and allele-specific molecular markers. Significant differences were found among physicochemical properties (with the exception of the Hagberg falling number) of all introgressive Triticale/T. monococcum lines and the secondary triticale lines. The wheat 1D/1A chromosome substitution also affected these properties. The results showed that in all introgressive triticale lines, the protein and gluten content, Zeleny sedimentation value, and water absorption capacity, were increased. The rheological parameters estimated using micro-farinograph, reomixer, and Kieffer dough extensibility systems also showed an appreciable increase in dough-mixing properties, maximum resistance to extension (Rmax), and dough extensibility. Introgressive Triticale/T. monococcum lines with 5 + 10 subunits have particularly favorable rheological parameters. The results obtained in this study suggest that the cultivated einkorn genome Am, in the context of hexaploid secondary triticale lines and with a wheat 1D/1A substitution, has the potential to improve gluten polymer interactions and be a valuable genetic resource for triticale quality improvement.

  4. Molecular, Physicochemical and Rheological Characteristics of Introgressive Triticale/Triticum monococcum ssp. monococcum Lines with Wheat 1D/1A Chromosome Substitution

    PubMed Central

    Salmanowicz, Bolesław P.; Langner, Monika; Wiśniewska, Halina; Apolinarska, Barbara; Kwiatek, Michał; Błaszczyk, Lidia

    2013-01-01

    Three sets of hexaploid introgressive triticale lines, with Triticum monococcum ssp. monococcum (cultivated einkorn wheat) genes and a bread wheat chromosome 1D substituted for chromosome 1A, and one set of secondary triticale lines were evaluated for grain and flour physicochemical and dough rheological characteristics in two generations (F7 and F8). Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) confirmed the 1D/1A chromosome substitution. The presence or absence of einkorn high-molecular-weight (HMW) glutenin subunits and the wheat Glu-D1d locus encoding the 5 + 10 subunits was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), capillary zone electrophoresis, and allele-specific molecular markers. Significant differences were found among physicochemical properties (with the exception of the Hagberg falling number) of all introgressive Triticale/T. monococcum lines and the secondary triticale lines. The wheat 1D/1A chromosome substitution also affected these properties. The results showed that in all introgressive triticale lines, the protein and gluten content, Zeleny sedimentation value, and water absorption capacity, were increased. The rheological parameters estimated using micro-farinograph, reomixer, and Kieffer dough extensibility systems also showed an appreciable increase in dough-mixing properties, maximum resistance to extension (Rmax), and dough extensibility. Introgressive Triticale/T. monococcum lines with 5 + 10 subunits have particularly favorable rheological parameters. The results obtained in this study suggest that the cultivated einkorn genome Am, in the context of hexaploid secondary triticale lines and with a wheat 1D/1A substitution, has the potential to improve gluten polymer interactions and be a valuable genetic resource for triticale quality improvement. PMID:23896593

  5. [Population].

    PubMed

    1979-01-01

    Data on the population of Venezuela between 1975 and 1977 are presented in descriptive tables and graphs. Information is included on the employed population according to category, sex, and type of economic activity, and by sex, age, and area on the employment rate and the total, the economically active, and the unemployed population.

  6. Proteomics of Wheat Flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat is a major food crop grown on more than 215 million hectares of land throughout the world. Wheat flour provides an important source of protein for human nutrition and is used as a principal ingredient in a wide range of food products, largely because wheat flour, when mixed with water, has un...

  7. High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda1817 × Beinong6.

    PubMed

    Wu, Qiu-Hong; Chen, Yong-Xing; Zhou, Sheng-Hui; Fu, Lin; Chen, Jiao-Jiao; Xiao, Yao; Zhang, Dong; Ouyang, Shu-Hong; Zhao, Xiao-Jie; Cui, Yu; Zhang, De-Yun; Liang, Yong; Wang, Zhen-Zhong; Xie, Jing-Zhong; Qin, Jin-Xia; Wang, Guo-Xin; Li, De-Lin; Huang, Yin-Lian; Yu, Mei-Hua; Lu, Ping; Wang, Li-Li; Wang, Ling; Wang, Hao; Dang, Chen; Li, Jie; Zhang, Yan; Peng, Hui-Ru; Yuan, Cheng-Guo; You, Ming-Shan; Sun, Qi-Xin; Wang, Ji-Rui; Wang, Li-Xin; Luo, Ming-Cheng; Han, Jun; Liu, Zhi-Yong

    2015-01-01

    High-density genetic linkage maps are necessary for precisely mapping quantitative trait loci (QTLs) controlling grain shape and size in wheat. By applying the Infinium iSelect 9K SNP assay, we have constructed a high-density genetic linkage map with 269 F 8 recombinant inbred lines (RILs) developed between a Chinese cornerstone wheat breeding parental line Yanda1817 and a high-yielding line Beinong6. The map contains 2431 SNPs and 128 SSR & EST-SSR markers in a total coverage of 3213.2 cM with an average interval of 1.26 cM per marker. Eighty-eight QTLs for thousand-grain weight (TGW), grain length (GL), grain width (GW) and grain thickness (GT) were detected in nine ecological environments (Beijing, Shijiazhuang and Kaifeng) during five years between 2010-2014 by inclusive composite interval mapping (ICIM) (LOD ≥ 2.5). Among which, 17 QTLs for TGW were mapped on chromosomes 1A, 1B, 2A, 2B, 3A, 3B, 3D, 4A, 4D, 5A, 5B and 6B with phenotypic variations ranging from 2.62% to 12.08%. Four stable QTLs for TGW could be detected in five and seven environments, respectively. Thirty-two QTLs for GL were mapped on chromosomes 1B, 1D, 2A, 2B, 2D, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 6B, 7A and 7B, with phenotypic variations ranging from 2.62% to 44.39%. QGl.cau-2A.2 can be detected in all the environments with the largest phenotypic variations, indicating that it is a major and stable QTL. For GW, 12 QTLs were identified with phenotypic variations range from 3.69% to 12.30%. We found 27 QTLs for GT with phenotypic variations ranged from 2.55% to 36.42%. In particular, QTL QGt.cau-5A.1 with phenotypic variations of 6.82-23.59% was detected in all the nine environments. Moreover, pleiotropic effects were detected for several QTL loci responsible for grain shape and size that could serve as target regions for fine mapping and marker assisted selection in wheat breeding programs.

  8. Population.

    ERIC Educational Resources Information Center

    International Planned Parenthood Federation, London (England).

    In an effort to help meet the growing interest and concern about the problems created by the rapid growth of population, The International Planned Parenthood Federation has prepared this booklet with the aim of assisting the study of the history and future trends of population growth and its impact on individual and family welfare, national,…

  9. Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm.

    PubMed Central

    Morell, M K; Blennow, A; Kosar-Hashemi, B; Samuel, M S

    1997-01-01

    Three forms of starch branching enzyme (BE) from developing hexaploid wheat (Triticum aestivum) endosperm have been partially purified and characterized. Immunological cross-reactivities indicate that two forms (WBE-IAD, 88 kD, and WBE-IB, 87 kD) are related to the maize BE I class and that WBE-II (88 kD) is related to maize BE II. Comparison of the N-terminal sequences from WBE-IAD and WBE-II with maize and rice BEs confirms these relationships. Evidence is presented from the analysis of nullisomic-tetrasomic wheat lines demonstrating that WBE-IB is located on chromosome 7B and that the WBE-IAD fraction contains polypeptides that are encoded on chromosomes 7A and 7D. The wheat endosperm BE classes are differentially expressed during endosperm development. WBE-II is expressed at a constant level throughout mid and late endosperm development. In contrast, WBE-IAD and WBE-IB are preferentially expressed in late endosperm development. Differences are also observed in the kinetic characteristics of the enzymes. The WBE-I isoforms have a 2- to 5-fold higher affinity for amylose than does WBE-II, and the WBE-I isoforms are activated up to 5-fold by phosphorylated intermediates and inorganic phosphate, whereas WBE-II is activated only 50%. The potential implications of this activation of BE I for starch biosynthesis are discussed. PMID:9008395

  10. Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (x Triticosecale Wittmack) cv. Bogo.

    PubMed

    Oleszczuk, S; Sowa, S; Zimny, J

    2004-07-01

    The use of doubled haploids improves the efficiency of cultivar development in many crops and can be helpful in genetic and molecular studies. The major problem with this approach is the low efficiency of green plant regeneration. We describe here an efficient method for inducing embryos and regenerating green plants directly from isolated microspores of hexaploid triticale (x Triticosecale Wittmack) cv. Bogo. The absence of growth regulators in the induction medium was the most effective condition for the formation of embryo-like structures. The highest induction rates were observed at microspore densities of 1.5x10(5) microspores and 2x10(5) microspores per milliliter. Such cultures produced an average of 54.9 green plants per single donor spike. The frequency of albino plants ranged from 9.3% to 22.9%. Among the green progeny tested, 30.8% were spontaneously doubled haploids. PMID:15108018

  11. Inferring the contribution of sexual reproduction, migration and off-season survival to the temporal maintenance of microbial populations: a case study on the wheat fungal pathogen Puccinia striiformis f.sp. tritici.

    PubMed

    Ali, Sajid; Gladieux, Pierre; Rahman, Hidayatur; Saqib, Muhammad S; Fiaz, Muhammad; Ahmad, Habib; Leconte, Marc; Gautier, Angélique; Justesen, Annemarie F; Hovmøller, Mogens S; Enjalbert, Jérôme; de Vallavieille-Pope, Claude

    2014-02-01

    Understanding the mode of temporal maintenance of plant pathogens is an important domain of microbial ecology research. Due to the inconspicuous nature of microbes, their temporal maintenance cannot be studied directly through tracking individuals and their progeny. Here, we suggest a series of population genetic analyses on molecular marker variation in temporally spaced samples to infer about the relative contribution of sexual reproduction, off-season survival and migration to the temporal maintenance of pathogen populations. We used the proposed approach to investigate the temporal maintenance of wheat yellow rust pathogen, Puccinia striiformis f.sp. tritici (PST), in the Himalayan region of Pakistan. Multilocus microsatellite genotyping of PST isolates revealed high genotypic diversity and recombinant population structure across all locations, confirming the existence of sexual reproduction in this region. The genotypes were assigned to four genetic groups, revealing a clear differentiation between zones with and without Berberis spp., the alternate host of PST, with an additional subdivision within the Berberis zone. The lack of any differentiation between samples across two sampling years, and the very infrequent resampling of multilocus genotypes over years at a given location was consistent with limited over-year clonal survival, and a limited genetic drift. The off-season oversummering population in the Berberis zone, likely to be maintained locally, served as a source of migrants contributing to the temporal maintenance in the non-Berberis zone. Our study hence demonstrated the contribution of both sexual recombination and off-season oversummering survival to the temporal maintenance of the pathogen. These new insights into the population biology of PST highlight the general usefulness of the analytical approach proposed. PMID:24354737

  12. A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat

    PubMed Central

    2013-01-01

    Background As for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning. Results Using a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome. Conclusions Here, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing. PMID:23800011

  13. Induced mutations in the starch branching enzyme II (SBEII) genes increase amylose and resistant starch content in durum wheat

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Colasuonno, Pasqualina; Uauy, Cristobal; Beckles, Diane M.; Dubcovsky, Jorge

    2016-01-01

    Starch is the largest component of the wheat (Triticum aestivum L.) grain and consists of approximately 70-80% amylopectin and 20-30% amylose. Amylopectin is a highly-branched, readily digested polysaccharide, whereas amylose has few branches and forms complexes that resist digestion and mimic dietary fiber (resistant starch). Down-regulation of the starch branching enzyme II (SBEII) gene by RNA interference (RNAi) was previously shown to increase amylose content in both hexaploid and tetraploid wheat. We generated ethyl methane sulphonate (EMS) mutants for the SBEIIa-A and SBEIIa-B homoeologs in the tetraploid durum wheat variety Kronos (T. turgidum ssp. durum L.). Single-gene mutants showed non-significant increases in amylose and resistant starch content, but a double mutant combining a SBEIIa-A knock-out mutation with a SBEIIa-B splice-site mutation showed a 22% increase in amylose content (P<0.0001) and a 115% increase in resistant starch content (P<0.0001). In addition, we obtained mutants for the A and B genome copies of the paralogous SBEIIb gene, mapped them 1-2 cM from SBEIIa, and generated double SBEIIa-SBEIIb mutants to study the effect of the SBEIIb gene in the absence of SBEIIa. These mutants are available to those interested in increasing amylose content and resistant starch in durum wheat. PMID:26924849

  14. De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum

    PubMed Central

    Naithani, Sushma; Sullivan, Chris; Preece, Justin; Tiwari, Vijay K.; Elser, Justin; Leonard, Jeffrey M.; Sage, Abigail; Gresham, Cathy; Kerhornou, Arnaud; Bolser, Dan; McCarthy, Fiona; Kersey, Paul; Lazo, Gerard R.; Jaiswal, Pankaj

    2014-01-01

    Background Triticum monococcum (2n) is a close ancestor of T. urartu, the A-genome progenitor of cultivated hexaploid wheat, and is therefore a useful model for the study of components regulating photomorphogenesis in diploid wheat. In order to develop genetic and genomic resources for such a study, we constructed genome-wide transcriptomes of two Triticum monococcum subspecies, the wild winter wheat T. monococcum ssp. aegilopoides (accession G3116) and the domesticated spring wheat T. monococcum ssp. monococcum (accession DV92) by generating de novo assemblies of RNA-Seq data derived from both etiolated and green seedlings. Principal Findings The de novo transcriptome assemblies of DV92 and G3116 represent 120,911 and 117,969 transcripts, respectively. We successfully mapped ∼90% of these transcripts from each accession to barley and ∼95% of the transcripts to T. urartu genomes. However, only ∼77% transcripts mapped to the annotated barley genes and ∼85% transcripts mapped to the annotated T. urartu genes. Differential gene expression analyses revealed 22% more light up-regulated and 35% more light down-regulated transcripts in the G3116 transcriptome compared to DV92. The DV92 and G3116 mRNA sequence reads aligned against the reference barley genome led to the identification of ∼500,000 single nucleotide polymorphism (SNP) and ∼22,000 simple sequence repeat (SSR) sites. Conclusions De novo transcriptome assemblies of two accessions of the diploid wheat T. monococcum provide new empirical transcriptome references for improving Triticeae genome annotations, and insights into transcriptional programming during photomorphogenesis. The SNP and SSR sites identified in our analysis provide additional resources for the development of molecular markers. PMID:24821410

  15. Molecular cytogenetic analysis of wheat - Elymus repens introgression lines with resistance to Fusarium head blight.

    PubMed

    Zeng, J; Cao, W; Hucl, P; Yang, Y; Xue, A; Chi, D; Fedak, G

    2013-01-01

    Elymus repens (L.) Gould (2n = 6x = 42, StStStStHH) is a hexaploid perennial wheatgrass species from the tribe Triticeae, distantly related to bread wheat Triticum aestivum L. (2n = 6x = 42, AABBDD). As a potential source of resistance to Fusarium head blight (FHB), E. repens was crossed to common wheat to transfer resistance genes. The progeny were advanced to homozygosity by single seed descent. A total of eight BC(1)F(9) progeny lines were selected and characterized in this study. The chromosome numbers of these derived lines ranged from 42 to 56, including lines with 44, 52, and 54 chromosomes. All of the lines were cytologically stable in terms of meiotic chromosome behavior. The univalent frequency in the lines varied between 0.34 and 2.36 per cell. Similarly, the multivalent frequency did not exceed 1% in any of the lines. GISH analysis revealed that the number of intact wheat chromosomes in the various lines varied between 40 and 44. Numerous translocated chromosomes were detected in all lines. The translocations involved chromosomal segments from wheat, and the St and H genomes of E. repens. Furthermore, trigenomic translocated chromosomes were detected in some of the lines. The introgression into wheat chromosomes included not only terminal types but also interstitial segments. The Fusarium head blight resistance of the eight lines, following point inoculation, varied from 5.65% infected florets to 11.46% compared with the check cultivars T. aestivum 'Roblin' and T. aestivum 'Crocus' at 100% and 85%, respectively.

  16. Molecular cytogenetic analysis of wheat - Elymus repens introgression lines with resistance to Fusarium head blight.

    PubMed

    Zeng, J; Cao, W; Hucl, P; Yang, Y; Xue, A; Chi, D; Fedak, G

    2013-01-01

    Elymus repens (L.) Gould (2n = 6x = 42, StStStStHH) is a hexaploid perennial wheatgrass species from the tribe Triticeae, distantly related to bread wheat Triticum aestivum L. (2n = 6x = 42, AABBDD). As a potential source of resistance to Fusarium head blight (FHB), E. repens was crossed to common wheat to transfer resistance genes. The progeny were advanced to homozygosity by single seed descent. A total of eight BC(1)F(9) progeny lines were selected and characterized in this study. The chromosome numbers of these derived lines ranged from 42 to 56, including lines with 44, 52, and 54 chromosomes. All of the lines were cytologically stable in terms of meiotic chromosome behavior. The univalent frequency in the lines varied between 0.34 and 2.36 per cell. Similarly, the multivalent frequency did not exceed 1% in any of the lines. GISH analysis revealed that the number of intact wheat chromosomes in the various lines varied between 40 and 44. Numerous translocated chromosomes were detected in all lines. The translocations involved chromosomal segments from wheat, and the St and H genomes of E. repens. Furthermore, trigenomic translocated chromosomes were detected in some of the lines. The introgression into wheat chromosomes included not only terminal types but also interstitial segments. The Fusarium head blight resistance of the eight lines, following point inoculation, varied from 5.65% infected florets to 11.46% compared with the check cultivars T. aestivum 'Roblin' and T. aestivum 'Crocus' at 100% and 85%, respectively. PMID:23379340

  17. A New Map Location of Gene Stb3 for Resistance to Septoria Tritici Blotch in Wheat

    PubMed Central

    Goodwin, Stephen B.; Cavaletto, Jessica R.; Hale, Iago L.; Thompson, Ian; Xu, Steven X.; Adhikari, Tika B.; Dubcovsky, Jorge

    2016-01-01

    Septoria tritici blotch (STB), caused by Mycosphaerella graminicola (synonym: Zymoseptoria tritici; asexual stage: Septoria tritici), is an important disease of wheat worldwide. Management of the disease usually is by host resistance or fungicides. However, M. graminicola has developed insensitivity to most commonly applied fungicides so there is a continuing need for well-characterized sources of host resistance to accelerate the development of improved wheat cultivars. Gene Stb3 has been a useful source of major resistance, but its mapping location has not been well characterized. Based on linkage to a single marker, a previous study assigned Stb3 to a location on the short arm of chromosome 6D. However, the results from the present study show that this reported location is incorrect. Instead, linkage analysis revealed that Stb3 is located on the short arm of wheat chromosome 7A, completely linked to microsatellite (SSR) locus Xwmc83 and flanked by loci Xcfa2028 (12.4 cM distal) and Xbarc222 (2.1 cM proximal). Linkage between Stb3 and Xwmc83 was validated in BC1F3 progeny of other crosses, and analyses of the flanking markers with deletion stocks showed that the gene is located on 7AS between fraction lengths 0.73 and 0.83. This revised location of Stb3 is different from those for other STB resistance genes previously mapped in hexaploid wheat but is approximately 20 cM proximal to an STB resistance gene mapped on the short arm of chromosome 7Am in Triticum monococcum. The markers described in this study are useful for accelerating the deployment of Stb3 in wheat breeding programs.

  18. The homoeologous genes encoding chalcone-flavanone isomerase in Triticum aestivum L.: structural characterization and expression in different parts of wheat plant.

    PubMed

    Shoeva, Olesya Y; Khlestkina, Elena K; Berges, Helene; Salina, Elena A

    2014-04-01

    Chalcone-flavanone isomerase (CHI; EC 5.5.1.6.) participates in the early step of flavonoid biosynthesis, related to plant adaptive and protective responses to environmental stress. The bread wheat genomic sequences encoding CHI were isolated, sequenced and mapped to the terminal segment of the long arms of chromosomes 5A, 5B and 5D. The loss of the final Chi intron and junction of the two last exons was found in the wheat A, B and D genomes compared to the Chi sequences of most other plant species. Each of the three diploid genomes of hexaploid wheat encodes functional CHI; however, transcription of the three homoeologous genes is not always co-regulated. In particular, the three genes demonstrated different response to salinity in roots: Chi-D1 was up-regulated, Chi-A1 responds medially, whereas Chi-B1 was not activated at all. The observed variation in transcriptional activity between the Chi homoeologs is in a good agreement with structural diversification of their promoter sequences. In addition, the correlation between Chi transcription and anthocyanin pigmentation in different parts of wheat plant has been studied. The regulatory genes controlling anthocyanin pigmentation of culm and pericarp modulated transcription of the Chi genes. However, in other organs, there was no strong relation between tissue pigmentation and the transcription of the Chi genes, suggesting complex regulation of the Chi expression in most parts of wheat plant.

  19. Evolution of new disease specificity at a simple resistance locus in a crop-weed complex: reconstitution of the Lr21 gene in wheat.

    PubMed

    Huang, Li; Brooks, Steven; Li, Wanlong; Fellers, John; Nelson, James C; Gill, Bikram

    2009-06-01

    The wheat leaf-rust resistance gene Lr21 was first identified in an Iranian accession of goatgrass, Aegilops tauschii Coss., the D-genome donor of hexaploid bread wheat, and was introgressed into modern wheat cultivars by breeding. To elucidate the origin of the gene, we analyzed sequences of Lr21 and lr21 alleles from 24 wheat cultivars and 25 accessions of Ae. tauschii collected along the Caspian Sea in Iran and Azerbaijan. Three basic nonfunctional lr21 haplotypes, H1, H2, and H3, were identified. Lr21 was found to be a chimera of H1 and H2, which were found only in wheat. We attempted to reconstitute a functional Lr21 allele by crossing the cultivars Fielder (H1) and Wichita (H2). Rust inoculation of 5876 F(2) progeny revealed a single resistant plant that proved to carry the H1H2 haplotype, a result attributed to intragenic recombination. These findings reflect how plants balance the penalty and the necessity of a resistance gene and suggest that plants can reuse "dead" alleles to generate new disease-resistance specificity, leading to a "death-recycle" model of plant-resistance gene evolution at simple loci. We suggest that selection pressure in crop-weed complexes contributes to this process.

  20. Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat, dehydration, and ABA(1).

    PubMed

    Campbell, J L; Klueva, N Y; Zheng, H G; Nieto-Sotelo, J; Ho, T D; Nguyen, H T

    2001-01-26

    We have cloned two cDNAs, TaHSP101B and TaHSP101C, encoding two heat stress-inducible members of HSP101/ClpB family in bread wheat (Triticum aestivum (L.) Moench.). Proteins encoded by these cDNAs are highly similar at the primary sequence level and diverged from the previously reported TaHSP101 (designated TaHSP101A) both in the consensus ATP/GTP-binding region II and in the carboxy terminal region. The HSP101 gene was determined to be a single copy gene or a member of a small gene family in hexaploid wheat. Messages encoding HSP101 proteins were inducible by heat stress treatments in both wheat leaves and roots. Accumulation of the TaHSP101C mRNA was less abundant than that of TaHSP101B mRNA. We are showing for the first time that in addition to heat stress, expression of HSP101 mRNAs in wheat leaves was induced by a 2-h dehydration and a treatment with 5x10(-5)M ABA, but not affected by chilling or wounding, indicating that HSP101 proteins may be involved in both heat and drought responses in wheat. PMID:11342108

  1. Genome-Wide Analysis of Stowaway-Like MITEs in Wheat Reveals High Sequence Conservation, Gene Association, and Genomic Diversification1[C][W

    PubMed Central

    Yaakov, Beery; Ben-David, Smadar; Kashkush, Khalil

    2013-01-01

    The diversity and evolution of wheat (Triticum-Aegilops group) genomes is determined, in part, by the activity of transposable elements that constitute a large fraction of the genome (up to 90%). In this study, we retrieved sequences from publicly available wheat databases, including a 454-pyrosequencing database, and analyzed 18,217 insertions of 18 Stowaway-like miniature inverted-repeat transposable element (MITE) families previously characterized in wheat that together account for approximately 1.3 Mb of sequence. All 18 families showed high conservation in length, sequence, and target site preference. Furthermore, approximately 55% of the elements were inserted in transcribed regions, into or near known wheat genes. Notably, we observed significant correlation between the mean length of the MITEs and their copy number. In addition, the genomic composition of nine MITE families was studied by real-time quantitative polymerase chain reaction analysis in 40 accessions of Triticum spp. and Aegilops spp., including diploids, tetraploids, and hexaploids. The quantitative polymerase chain reaction data showed massive and significant intraspecific and interspecific variation as well as genome-specific proliferation and nonadditive quantities in the polyploids. We also observed significant differences in the methylation status of the insertion sites among MITE families. Our data thus suggest a possible role for MITEs in generating genome diversification and in the establishment of nascent polyploid species in wheat. PMID:23104862

  2. The homoeologous genes encoding chalcone-flavanone isomerase in Triticum aestivum L.: structural characterization and expression in different parts of wheat plant.

    PubMed

    Shoeva, Olesya Y; Khlestkina, Elena K; Berges, Helene; Salina, Elena A

    2014-04-01

    Chalcone-flavanone isomerase (CHI; EC 5.5.1.6.) participates in the early step of flavonoid biosynthesis, related to plant adaptive and protective responses to environmental stress. The bread wheat genomic sequences encoding CHI were isolated, sequenced and mapped to the terminal segment of the long arms of chromosomes 5A, 5B and 5D. The loss of the final Chi intron and junction of the two last exons was found in the wheat A, B and D genomes compared to the Chi sequences of most other plant species. Each of the three diploid genomes of hexaploid wheat encodes functional CHI; however, transcription of the three homoeologous genes is not always co-regulated. In particular, the three genes demonstrated different response to salinity in roots: Chi-D1 was up-regulated, Chi-A1 responds medially, whereas Chi-B1 was not activated at all. The observed variation in transcriptional activity between the Chi homoeologs is in a good agreement with structural diversification of their promoter sequences. In addition, the correlation between Chi transcription and anthocyanin pigmentation in different parts of wheat plant has been studied. The regulatory genes controlling anthocyanin pigmentation of culm and pericarp modulated transcription of the Chi genes. However, in other organs, there was no strong relation between tissue pigmentation and the transcription of the Chi genes, suggesting complex regulation of the Chi expression in most parts of wheat plant. PMID:24480448

  3. Non-celiac wheat sensitivity: differential diagnosis, triggers and implications.

    PubMed

    Schuppan, Detlef; Pickert, Geethanjali; Ashfaq-Khan, Muhammad; Zevallos, Victor

    2015-06-01

    Non allergy-non-celiac wheat sensitivity (NCWS) has become a common and often overrated diagnosis. Skepticism mainly relates to patients with prominent intestinal symptoms in the absence of general or intestinal signs of inflammation. There is consensus that the major wheat sensitivities, celiac disease and wheat allergy, have to be ruled out which may be difficult for wheat allergy. The non-inflammatory intolerances to carbohydrates, mainly lactose and FODMAPs (fermentable oligi-, di-, monosaccharides and polyols), which cause bloating or diarrhoea, can usually be excluded clinically or by simple tests. Recent studies and experimental data strongly indicate that NCWS exists in a substantial proportion of the population, that it is an innate immune reaction to wheat and that patients often present with extraintestinal symptoms, such as worsening of an underlying inflammatory disease in clear association with wheat consumption. Wheat amylase-trypsin inhibitors (ATIs) have been identified as the most likely triggers of NCWS. They are highly protease resistant and activate the toll-like receptor 4 (TLR4) complex in monocytes, macrophages and dendritic cells of the intestinal mucosa. Non-gluten containing cereals or staples display no or little TLR4 stimulating activity. Wheat ATIs are a family of up to 17 similar proteins of molecular weights around 15 kD and represent 2-4% of the wheat protein. With oral ingestion they costimulate antigen presenting cells and promote T cell activation in celiac disease, but also in other immune-mediated diseases within and outside the GI tract.

  4. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ .

  5. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ . PMID:26519407

  6. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits.

    PubMed

    Hongbo, Shao; Zongsuo, Liang; Mingan, Shao

    2006-02-01

    Drought is a worldwide problem, seriously influencing plant (crop) productivity. Wheat is a stable food for 35% of the world population, moreover about 60% of land area on the globe belongs to arid and semi-arid zone. Wheat drought resistance is a multi-gene-controlling quantitative character and wheat final production in field is realized mainly by physiological regulation under the condition of multi-environmental factor interaction. Exploring drought resistance physiological mechanisms for different wheat genotypes is of importance to finding new drought resistance gene resources and conventional breeding and the basis for wheat drought resistance biotechnological breeding and platform. Osmotic adjustment regulation is the main component for physiological machinery of wheat drought resistance. By pot-cultivating experiments, investigation of osmotic adjustment comparison for 10 wheat genotypes at soil water deficits (75% FC, 55% FC, 45% FC, respectively), was conducted. The main results were as followed: (1) K(+) content in 10 wheat genotypes at three levels of soil water stress and at the same soil water deficit was very different. Five of these 10 wheat genotypes had higher K K(+) content under the condition of 75% FC. (2) Five of these 10 wheat genotypes possessed greater soluble sugar content at 55% FC soil water level. (3) Proline (Pro) content in five wheat genotypes was higher at 75% FC. (4) Five of these 10 wheat genotypes had lower malondialdehyde (MDA) content at 45% FC at seedling stage. Osmotic adjustment of wheat different genotypes was discussed in terms of different content of osmotic solutes.

  7. Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat.

    PubMed

    Schnurbusch, Thorsten; Collins, Nicholas C; Eastwood, Russell F; Sutton, Tim; Jefferies, Steven P; Langridge, Peter

    2007-08-01

    Toxicity due to high levels of soil boron (B) represents a significant limitation to cereal production in some regions, and the Bo1 gene provides a major source of B toxicity tolerance in bread wheat (Triticum aestivum L.). A novel approach was used to develop primers to amplify and sequence gene fragments specifically from the Bo1 region of the hexaploid wheat genome. Single-nucleotide polymorphisms (SNPs) identified were then used to generate markers close to Bo1 on the distal end of chromosome 7BL. In the 16 gene fragments totaling 19.6 kb, SNPs were observed between the two cultivars Cranbrook and Halberd at a low frequency (one every 613 bp). Furthermore, SNPs were distributed unevenly, being limited to only two genes. In contrast, RFLP provided a much greater number of genetic markers, with every tested gene identifying polymorphism. Bo1 previously known only as a QTL was located as a discrete Mendelian locus. In total, 28 new RFLP, PCR and SSR markers were added to the existing map. The 1.8 cM Bo1 interval of wheat corresponds to a 227 kb section of rice chromosome 6L encoding 21 predicted proteins with no homology to any known B transporters. The co-dominant PCR marker AWW5L7 co-segregated with Bo1 and was highly predictive of B tolerance status within a set of 94 Australian bread wheat cultivars and breeding lines. The markers and rice colinearity described here represent tools that will assist B tolerance breeding and the positional cloning of Bo1. PMID:17571251

  8. Genotyping-by-sequencing to re-map QTL for type II Fusarium head blight and leaf rust resistance in a wheat-tall wheatgrass introgression recombinant inbred population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminaerum (Fusarium head blight; FHB) and Puccinia recondita Roberge ex Desmaz. f. sp. tritici Eriks. & E. Henn (leaf rust; LR) are two major fungal pathogens threatening the wheat crop; consequently identifying resistance genes from various sources is always of importance to wheat breede...

  9. A large-scale introgression of genomic components of Brassica rapa into B. napus by the bridge of hexaploid derived from hybridization between B. napus and B. oleracea.

    PubMed

    Li, Qinfei; Mei, Jiaqin; Zhang, Yongjing; Li, Jiana; Ge, Xianhong; Li, Zaiyun; Qian, Wei

    2013-08-01

    Brassica rapa (AA) has been used to widen the genetic basis of B. napus (AACC), which is a new but important oilseed crop worldwide. In the present study, we have proposed a strategy to develop new type B. napus carrying genomic components of B. rapa by crossing B. rapa with hexaploid (AACCCC) derived from B. napus and B. oleracea (CC). The hexaploid exhibited large flowers and high frequency of normal chromosome segregation, resulting in good seed set (average of 4.48 and 12.53 seeds per pod by self and open pollination, respectively) and high pollen fertility (average of 87.05 %). It was easy to develop new type B. napus by crossing the hexaploid with 142 lines of B. rapa from three ecotype groups, with the average crossability of 9.24 seeds per pod. The genetic variation of new type B. napus was diverse from that of current B. napus, especially in the A subgenome, revealed by genome-specific simple sequence repeat markers. Our data suggest that the strategy proposed here is a large-scale and highly efficient method to introgress genomic components of B. rapa into B. napus. PMID:23699961

  10. A large-scale introgression of genomic components of Brassica rapa into B. napus by the bridge of hexaploid derived from hybridization between B. napus and B. oleracea.

    PubMed

    Li, Qinfei; Mei, Jiaqin; Zhang, Yongjing; Li, Jiana; Ge, Xianhong; Li, Zaiyun; Qian, Wei

    2013-08-01

    Brassica rapa (AA) has been used to widen the genetic basis of B. napus (AACC), which is a new but important oilseed crop worldwide. In the present study, we have proposed a strategy to develop new type B. napus carrying genomic components of B. rapa by crossing B. rapa with hexaploid (AACCCC) derived from B. napus and B. oleracea (CC). The hexaploid exhibited large flowers and high frequency of normal chromosome segregation, resulting in good seed set (average of 4.48 and 12.53 seeds per pod by self and open pollination, respectively) and high pollen fertility (average of 87.05 %). It was easy to develop new type B. napus by crossing the hexaploid with 142 lines of B. rapa from three ecotype groups, with the average crossability of 9.24 seeds per pod. The genetic variation of new type B. napus was diverse from that of current B. napus, especially in the A subgenome, revealed by genome-specific simple sequence repeat markers. Our data suggest that the strategy proposed here is a large-scale and highly efficient method to introgress genomic components of B. rapa into B. napus.

  11. Investigating the role of respiration in plant salinity tolerance by analyzing mitochondrial proteomes from wheat and a salinity-tolerant Amphiploid (wheat × Lophopyrum elongatum).

    PubMed

    Jacoby, Richard P; Millar, A Harvey; Taylor, Nicolas L

    2013-11-01

    The effect of salinity on mitochondrial properties was investigated by comparing the reference wheat variety Chinese Spring (CS) to a salt-tolerant amphiploid (AMP). The octoploid AMP genotype was previously generated by combining hexaploid bread wheat (CS) with the diploid wild wheatgrass adapted to salt marshes, Lophopyrum elongatum. Here we used a combination of physiological, biochemical, and proteomic analyses to explore the mitochondrial and respiratory response to salinity in these two genotypes. The AMP showed greater growth tolerance to salinity treatments and altered respiration rate in both roots and shoots. A proteomic workflow of 2D-DIGE and MALDI TOF/TOF mass spectrometry was used to compare the protein composition of isolated mitochondrial samples from roots and shoots of both genotypes, following control or salt treatment. A large set of mitochondrial proteins were identified as responsive to salinity in both genotypes, notably enzymes involved in detoxification of reactive oxygen species. Genotypic differences in mitochondrial composition were also identified, with AMP exhibiting a higher abundance of manganese superoxide dismutase, serine hydroxymethyltransferase, aconitase, malate dehydrogenase, and β-cyanoalanine synthase compared to CS. We present peptide fragmentation spectra derived from some of these AMP-specific protein spots, which could serve as biomarkers to track superior protein variants. PMID:23895732

  12. 21 CFR 137.195 - Crushed wheat.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Crushed wheat. 137.195 Section 137.195 Food and... Related Products § 137.195 Crushed wheat. Crushed wheat, coarse ground wheat, is the food prepared by so crushing cleaned wheat other than durum wheat and red durum wheat that, when tested by the...

  13. 21 CFR 137.195 - Crushed wheat.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Crushed wheat. 137.195 Section 137.195 Food and... Related Products § 137.195 Crushed wheat. Crushed wheat, coarse ground wheat, is the food prepared by so crushing cleaned wheat other than durum wheat and red durum wheat that, when tested by the...

  14. 21 CFR 137.195 - Crushed wheat.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Crushed wheat. 137.195 Section 137.195 Food and... Related Products § 137.195 Crushed wheat. Crushed wheat, coarse ground wheat, is the food prepared by so crushing cleaned wheat other than durum wheat and red durum wheat that, when tested by the...

  15. 21 CFR 137.195 - Crushed wheat.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Crushed wheat. 137.195 Section 137.195 Food and... Related Products § 137.195 Crushed wheat. Crushed wheat, coarse ground wheat, is the food prepared by so crushing cleaned wheat other than durum wheat and red durum wheat that, when tested by the...

  16. 21 CFR 137.195 - Crushed wheat.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Crushed wheat. 137.195 Section 137.195 Food and... Related Products § 137.195 Crushed wheat. Crushed wheat, coarse ground wheat, is the food prepared by so crushing cleaned wheat other than durum wheat and red durum wheat that, when tested by the...

  17. Effects of herbicide applications in wheat fields

    PubMed Central

    Varshney, Sugandha; Hayat, Shamshul; Alyemeni, Mohammed Nasser; Ahmad, Aqil

    2012-01-01

    The present review encompasses the physiological and yield constraints of herbicide applications with special reference to wheat productivity. Post-independence lagging of Indian agriculture to feed its population led to haphazard use of chemical pesticides and weedicides which deteriorated the productivity pay-off particularly of wheat and rice. Past some decades witnessed the potential use of certain phytohormones in augmenting abiotic stress to get rid of yield gap and productivity constraints. We summed up with reviewing the potential role of these natural regulators in overcoming above mentioned drawbacks to substitute or to integrate these chemicals with the use of plant hormones. PMID:22516826

  18. Registration of 'Antero' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ’Antero’ (Reg. No. CV-XXXX, PI 667743) hard white winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2012 through a marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado State Univ...

  19. Agrometeorology and Wheat Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter wheat phenology varies among shoots on the plant to main stems on plants within a plot to locations across a landscape. Most often phenological measurements have focused on small treatment plots under presumably similar soils and topography. Many models exist to predict wheat phenology for sm...

  20. Wheat: Science and Trade

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Up-to-date textbooks are needed to educate the agricultural scientists of tomorrow. This manuscript comprises one chapter in such a textbook, “Wheat: Science and Trade”, and covers the subject of wheat genetic engineering. The chapter begins with a summary of key discussion elements and ends with a...

  1. Fine-Mapping the Wheat Snn1 Locus Conferring Sensitivity to the Parastagonospora nodorum Necrotrophic Effector SnTox1 Using an Eight Founder Multiparent Advanced Generation Inter-Cross Population

    PubMed Central

    Cockram, James; Scuderi, Alice; Barber, Toby; Furuki, Eiko; Gardner, Keith A.; Gosman, Nick; Kowalczyk, Radoslaw; Phan, Huyen P.; Rose, Gemma A.; Tan, Kar-Chun; Oliver, Richard P.; Mackay, Ian J.

    2015-01-01

    The necrotrophic fungus Parastagonospora nodorum is an important pathogen of one of the world’s most economically important cereal crops, wheat (Triticum aestivum L.). P. nodorum produces necrotrophic protein effectors that mediate host cell death, providing nutrients for continuation of the infection process. The recent discovery of pathogen effectors has revolutionized disease resistance breeding for necrotrophic diseases in crop species, allowing often complex genetic resistance mechanisms to be broken down into constituent parts. To date, three effectors have been identified in P. nodorum. Here we use the effector, SnTox1, to screen 642 progeny from an eight-parent multiparent advanced generation inter-cross (i.e., MAGIC) population, genotyped with a 90,000-feature single-nucleotide polymorphism array. The MAGIC founders showed a range of sensitivity to SnTox1, with transgressive segregation evident in the progeny. SnTox1 sensitivity showed high heritability, with quantitative trait locus analyses fine-mapping the Snn1 locus to the short arm of chromosome 1B. In addition, a previously undescribed SnTox1 sensitivity locus was identified on the long arm of chromosome 5A, termed here QSnn.niab-5A.1. The peak single-nucleotide polymorphism for the Snn1 locus was converted to the KASP genotyping platform, providing breeders and researchers a simple and cheap diagnostic marker for allelic state at Snn1. PMID:26416667

  2. Effects of combined thiamethoxam and diatomaceous earth on mortality and progeny production of four Pakistani populations of Rhyzopertha dominica (Coleoptera: Bostrychidae) on wheat, rice and maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioassays were conducted to evaluate the effects of combining thiamethoxam at 0.25, 0.5 and 0.75 mg/kg with the diatomaceous earth (DE) formulation, SilicoSec, at the rate of 100 mg/kg against four diverse populations of the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) th...

  3. Transmission of the Aegilops ovata chromosomes carrying gametocidal factors in hexaploid triticale (×Triticosecale Wittm.) hybrids.

    PubMed

    Kwiatek, M; Majka, M; Ślusarkiewicz-Jarzina, A; Ponitka, A; Pudelska, H; Belter, J; Wiśniewska, H

    2016-08-01

    The main aim of this work was to induce the chromosome rearrangements between Aegilops ovata (UUMM) and hexaploid triticale (AABBRR) by expression of the gametocidal factor located on the chromosome 4M. The Aegilops ovata × Secale cereale (UUMMRR) amphiploids and triticale 'Moreno' were used to produce hybrids by reciprocal crosses. Chromosome dynamics was observed in subsequent generations of hybrids during mitotic metaphase of root meristems and first metaphase of meiosis of pollen mother cells. Chromosomes were identified by genomic in situ hybridisation (GISH) and fluorescence in situ hybridisation (FISH) using pTa71, pTa791, pSc119.2 and pAs1 DNA probes. It has been shown that the origin of the genetic background had an influence on Aegilops chromosome transmission. Moreover, it has been reported that the preferential transmission of chromosome 4M appeared during both androgenesis and gynogenesis. It is also hypothesised that the expression of the triticale Gc gene suppressor had an influence on the semi-fertility of hybrids but did not inhibit the chromosome rearrangements. This paper also describes the double haploid production, which enabled to obtain plants with two identical copies of triticale chromosomes with translocations of Aegilops chromatin segments.

  4. Transmission of the Aegilops ovata chromosomes carrying gametocidal factors in hexaploid triticale (×Triticosecale Wittm.) hybrids.

    PubMed

    Kwiatek, M; Majka, M; Ślusarkiewicz-Jarzina, A; Ponitka, A; Pudelska, H; Belter, J; Wiśniewska, H

    2016-08-01

    The main aim of this work was to induce the chromosome rearrangements between Aegilops ovata (UUMM) and hexaploid triticale (AABBRR) by expression of the gametocidal factor located on the chromosome 4M. The Aegilops ovata × Secale cereale (UUMMRR) amphiploids and triticale 'Moreno' were used to produce hybrids by reciprocal crosses. Chromosome dynamics was observed in subsequent generations of hybrids during mitotic metaphase of root meristems and first metaphase of meiosis of pollen mother cells. Chromosomes were identified by genomic in situ hybridisation (GISH) and fluorescence in situ hybridisation (FISH) using pTa71, pTa791, pSc119.2 and pAs1 DNA probes. It has been shown that the origin of the genetic background had an influence on Aegilops chromosome transmission. Moreover, it has been reported that the preferential transmission of chromosome 4M appeared during both androgenesis and gynogenesis. It is also hypothesised that the expression of the triticale Gc gene suppressor had an influence on the semi-fertility of hybrids but did not inhibit the chromosome rearrangements. This paper also describes the double haploid production, which enabled to obtain plants with two identical copies of triticale chromosomes with translocations of Aegilops chromatin segments. PMID:26825077

  5. Construction and evaluation of cDNA libraries for large-scale expressed sequence tag sequencing in wheat (Triticum aestivum L.).

    PubMed

    Zhang, D; Choi, D W; Wanamaker, S; Fenton, R D; Chin, A; Malatrasi, M; Turuspekov, Y; Walia, H; Akhunov, E D; Kianian, P; Otto, C; Simons, K; Deal, K R; Echenique, V; Stamova, B; Ross, K; Butler, G E; Strader, L; Verhey, S D; Johnson, R; Altenbach, S; Kothari, K; Tanaka, C; Shah, M M; Laudencia-Chingcuanco, D; Han, P; Miller, R E; Crossman, C C; Chao, S; Lazo, G R; Klueva, N; Gustafson, J P; Kianian, S F; Dubcovsky, J; Walker-Simmons, M K; Gill, K S; Dvorák, J; Anderson, O D; Sorrells, M E; McGuire, P E; Qualset, C O; Nguyen, H T; Close, T J

    2004-10-01

    A total of 37 original cDNA libraries and 9 derivative libraries enriched for rare sequences were produced from Chinese Spring wheat (Triticum aestivum L.), five other hexaploid wheat genotypes (Cheyenne, Brevor, TAM W101, BH1146, Butte 86), tetraploid durum wheat (T. turgidum L.), diploid wheat (T. monococcum L.), and two other diploid members of the grass tribe Triticeae (Aegilops speltoides Tausch and Secale cereale L.). The emphasis in the choice of plant materials for library construction was reproductive development subjected to environmental factors that ultimately affect grain quality and yield, but roots and other tissues were also included. Partial cDNA expressed sequence tags (ESTs) were examined by various measures to assess the quality of these libraries. All ESTs were processed to remove cloning system sequences and contaminants and then assembled using CAP3. Following these processing steps, this assembly yielded 101,107 sequences derived from 89,043 clones, which defined 16,740 contigs and 33,213 singletons, a total of 49,953 "unigenes." Analysis of the distribution of these unigenes among the libraries led to the conclusion that the enrichment methods were effective in reducing the most abundant unigenes and to the observation that the most diverse libraries were from tissues exposed to environmental stresses including heat, drought, salinity, or low temperature. PMID:15514038

  6. Construction and Evaluation of cDNA Libraries for Large-Scale Expressed Sequence Tag Sequencing in Wheat (Triticum aestivum L.)

    PubMed Central

    Zhang, D.; Choi, D. W.; Wanamaker, S.; Fenton, R. D.; Chin, A.; Malatrasi, M.; Turuspekov, Y.; Walia, H.; Akhunov, E. D.; Kianian, P.; Otto, C.; Simons, K.; Deal, K. R.; Echenique, V.; Stamova, B.; Ross, K.; Butler, G. E.; Strader, L.; Verhey, S. D.; Johnson, R.; Altenbach, S.; Kothari, K.; Tanaka, C.; Shah, M. M.; Laudencia-Chingcuanco, D.; Han, P.; Miller, R. E.; Crossman, C. C.; Chao, S.; Lazo, G. R.; Klueva, N.; Gustafson, J. P.; Kianian, S. F.; Dubcovsky, J.; Walker-Simmons, M. K.; Gill, K. S.; Dvořák, J.; Anderson, O. D.; Sorrells, M. E.; McGuire, P. E.; Qualset, C. O.; Nguyen, H. T.; Close, T. J.

    2004-01-01

    A total of 37 original cDNA libraries and 9 derivative libraries enriched for rare sequences were produced from Chinese Spring wheat (Triticum aestivum L.), five other hexaploid wheat genotypes (Cheyenne, Brevor, TAM W101, BH1146, Butte 86), tetraploid durum wheat (T. turgidum L.), diploid wheat (T. monococcum L.), and two other diploid members of the grass tribe Triticeae (Aegilops speltoides Tausch and Secale cereale L.). The emphasis in the choice of plant materials for library construction was reproductive development subjected to environmental factors that ultimately affect grain quality and yield, but roots and other tissues were also included. Partial cDNA expressed sequence tags (ESTs) were examined by various measures to assess the quality of these libraries. All ESTs were processed to remove cloning system sequences and contaminants and then assembled using CAP3. Following these processing steps, this assembly yielded 101,107 sequences derived from 89,043 clones, which defined 16,740 contigs and 33,213 singletons, a total of 49,953 “unigenes.” Analysis of the distribution of these unigenes among the libraries led to the conclusion that the enrichment methods were effective in reducing the most abundant unigenes and to the observation that the most diverse libraries were from tissues exposed to environmental stresses including heat, drought, salinity, or low temperature. PMID:15514038

  7. Metabolite Profiling of a Diverse Collection of Wheat Lines Using Ultraperformance Liquid Chromatography Coupled with Time-of-Flight Mass Spectrometry

    PubMed Central

    Wolfe, Pamela; Byrne, Patrick F.; Thompson, Henry J.

    2012-01-01

    Genetic differences among major types of wheat are well characterized; however, little is known about how these distinctions affect the small molecule profile of the wheat seed. Ethanol/water (65% v/v) extracts of seed from 45 wheat lines representing 3 genetically distinct classes, tetraploid durum (Triticum turgidum subspecies durum) (DW) and hexaploid hard and soft bread wheat (T. aestivum subspecies aestivum) (BW) were subjected to ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-TOF-MS). Discriminant analyses distinguished DW from BW with 100% accuracy due to differences in expression of nonpolar and polar ions, with differences attributed to sterol lipids/fatty acids and phospholipids/glycerolipids, respectively. Hard versus soft BW was distinguished with 100% accuracy by polar ions, with differences attributed to heterocyclic amines and polyketides versus phospholipid ions, respectively. This work provides a foundation for identification of metabolite profiles associated with desirable agronomic and human health traits and for assessing how environmental factors impact these characteristics. PMID:22957002

  8. The Wheat GT Factor TaGT2L1D Negatively Regulates Drought Tolerance and Plant Development

    PubMed Central

    Zheng, Xin; Liu, Haipei; Ji, Hongtao; Wang, Youning; Dong, Baodi; Qiao, Yunzhou; Liu, Mengyu; Li, Xia

    2016-01-01

    GT factors are trihelix transcription factors that specifically regulate plant development and stress responses. Recently, several GT factors have been characterized in different plant species; however, little is known about the role of GT factors in wheat. Here, we show that TaGT2L1A, TaGT2L1B, and TaGT2L1D are highly homologous in hexaploid wheat, and are localized to wheat chromosomes 2A, 2B, and 2D, respectively. These TaGT2L1 genes encode proteins containing two SANT domains and one central helix. All three homologs were ubiquitously expressed during wheat development and were responsive to osmotic stress. Functional analyses demonstrated that TaGT2L1D acts as a transcriptional repressor; it was able to suppress the expression of AtSDD1 in Arabidopsis by binding directly to the GT3 box in its promoter that negatively regulates drought tolerance. TaGT2L1D overexpression markedly increased the number of stomata and reduced drought tolerance in gtl1-3 plants. Notably, ectopic expression of TaGT2L1D also affected floral organ development and overall plant growth. These results demonstrate that TaGT2L1 is an ortholog of AtGTL1, and that it plays an evolutionarily conserved role in drought resistance by fine tuning stomatal density in wheat. Our data also highlight the role of TaGT2L1 in plant growth and development. PMID:27245096

  9. The Wheat GT Factor TaGT2L1D Negatively Regulates Drought Tolerance and Plant Development.

    PubMed

    Zheng, Xin; Liu, Haipei; Ji, Hongtao; Wang, Youning; Dong, Baodi; Qiao, Yunzhou; Liu, Mengyu; Li, Xia

    2016-01-01

    GT factors are trihelix transcription factors that specifically regulate plant development and stress responses. Recently, several GT factors have been characterized in different plant species; however, little is known about the role of GT factors in wheat. Here, we show that TaGT2L1A, TaGT2L1B, and TaGT2L1D are highly homologous in hexaploid wheat, and are localized to wheat chromosomes 2A, 2B, and 2D, respectively. These TaGT2L1 genes encode proteins containing two SANT domains and one central helix. All three homologs were ubiquitously expressed during wheat development and were responsive to osmotic stress. Functional analyses demonstrated that TaGT2L1D acts as a transcriptional repressor; it was able to suppress the expression of AtSDD1 in Arabidopsis by binding directly to the GT3 box in its promoter that negatively regulates drought tolerance. TaGT2L1D overexpression markedly increased the number of stomata and reduced drought tolerance in gtl1-3 plants. Notably, ectopic expression of TaGT2L1D also affected floral organ development and overall plant growth. These results demonstrate that TaGT2L1 is an ortholog of AtGTL1, and that it plays an evolutionarily conserved role in drought resistance by fine tuning stomatal density in wheat. Our data also highlight the role of TaGT2L1 in plant growth and development. PMID:27245096

  10. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and....1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is obtained by hydrating wheat flour...

  11. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  12. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  13. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  14. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  15. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  16. Wheat for Kids! [and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Idaho Wheat Commission, Boise.

    "Wheat for Kids" contains information at the elementary school level about: the structure of the wheat kernel; varieties of wheat and their uses; growing wheat; making wheat dough; the U.S. Department of Agriculture Food Guide Pyramid and nutrition; Idaho's part of the international wheat market; recipes; and word games based on the information…

  17. A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consensus linkage maps are important tools in crop genomics. We have assembled a high-density tetraploid wheat consensus map by integrating 13 datasets from independent biparental populations involving durum wheat cultivars (Triticum turgidum ssp. durum), cultivated emmer (T. turgidum ssp. dicoccum...

  18. New Uses for Wheat and Modified Wheat Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hard wheat from the Great Plains historically has been used as a source of flour for the production of leavened bakery products. However, potentially applications of wheat in both new markets and new products has necessitated the need to develop wheats with novel processing attributes. The most lo...

  19. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2014 Crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eleven experimental lines of hard spring wheat were grown at up to five locations in 2014 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spr...

  20. Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different photoperiod-1 (Ppd-1) alleles.

    PubMed

    Bentley, A R; Horsnell, R; Werner, C P; Turner, A S; Rose, G A; Bedard, C; Howell, P; Wilhelm, E P; Mackay, I J; Howells, R M; Greenland, A; Laurie, D A; Gosman, N

    2013-04-01

    Flowering is a critical period in the life cycle of flowering plant species, resulting in an irreversible commitment of significant resources. Wheat is photoperiod sensitive, flowering only when daylength surpasses a critical length; however, photoperiod insensitivity (PI) has been selected by plant breeders for >40 years to enhance yield in certain environments. Control of flowering time has been greatly facilitated by the development of molecular markers for the Photoperiod-1 (Ppd-1) homeoloci, on the group 2 chromosomes. In the current study, an allelic series of BC2F4 lines in the winter wheat cultivars 'Robigus' and 'Alchemy' was developed to elucidate the influence on flowering of eight gene variants from the B- and D-genomes of bread wheat and the A-genome of durum wheat. Allele effects were tested in short, natural, and extended photoperiods in the field and controlled environments. Across genetic background and treatment, the D-genome PI allele, Ppd-D1a, had a more potent effect on reducing flowering time than Ppd-B1a. However, there was significant donor allele effect for both Ppd-D1a and Ppd-B1a, suggesting the presence of linked modifier genes and/or additional sources of latent sensitivity. Development of Ppd-A1a BC2F4 lines derived from synthetic hexaploid wheat provided an opportunity to compare directly the flowering time effect of the A-genome allele from durum with the B- and D-genome variants from bread wheat for the first time. Analyses indicated that the reducing effect of Ppd-A1a is comparable with that of Ppd-D1a, confirming it as a useful alternative source of PI. PMID:23420880

  1. Wheat-based foods and non celiac gluten/wheat sensitivity: Is drastic processing the main key issue?

    PubMed

    Fardet, Anthony

    2015-12-01

    While gluten and wheat must be absolutely avoided in coeliac disease and allergy, respectively, nutritional recommendations are largely more confused about non-coeliac wheat/gluten sensitivity (NCWGS). Today, some even recommend avoiding all cereal-based foods. In this paper, the increased NCWGS prevalence is hypothesized to parallel the use of more and more drastic processes applied to the original wheat grain. First, a parallel between gluten-related disorders and wheat processing and consumption evolution is briefly proposed. Notably, increased use of exogenous vital gluten is considered. Drastic processing in wheat technology are mainly grain fractionation and refining followed by recombination and salt, sugars and fats addition, being able to render ultra-processed cereal-based foods more prone to trigger chronic low-grade inflammation. Concerning bread, intensive kneading and the choice of wheat varieties with high baking quality may have rendered gluten less digestible, moving digestion from pancreatic to intestinal proteases. The hypothesis of a gluten resistant fraction reaching colon and interacting with microflora is also considered in relation with increased inflammation. Besides, wheat flour refining removes fiber co-passenger which have potential anti-inflammatory property able to protect digestive epithelium. Finally, some research tracks are proposed, notably the comparison of NCWGS prevalence in populations consuming ultra-versus minimally-processed cereal-based foods.

  2. Uniquely identifying wheat plant structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uniquely naming wheat (Triticum aestivum L. em Thell) plant parts is useful for communicating plant development research and the effects of environmental stresses on normal wheat development. Over the past 30+ years, several naming systems have been proposed for wheat shoot, leaf, spike, spikelet, ...

  3. Thermoformed wheat gluten biopolymers.

    PubMed

    Pallos, Ferenc M; Robertson, George H; Pavlath, Attila E; Orts, William J

    2006-01-25

    The quantity of available wheat gluten exceeds the current food use markets. Thermoforming is an alternative technical means for transforming wheat gluten. Thermoforming was applied here to wheat gluten under chemically reductive conditions to form pliable, translucent sheets. A wide variety of conditions, i.e., temperature, reducing agents, plasticizers and additives were tested to obtain a range of elastic properties in the thermoformed sheets. These properties were compared to those of commercially available polymers, such as polypropylene. Elasticity of the gluten formulations were indexed by Young's modulus and were in the range measured for commercial products when tested in the 30-70% relative humidity range. Removal of the gliadin subfraction of gluten yielded polymers with higher Young's modulus since this component acts as a polymer-chain terminator. At relative humidity less than 30% all whole gluten-based sheets were brittle, while above 70% they were highly elastic.

  4. Tolerance as a potential control method for Hessian fly (Diptera:Cecidomyiidae) in winter wheat.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tolerance in wheat may hold the key to reducing damage caused by the Hessian fly, Mayetiola destructor, while enabling the plant to grow normally and reducing the selection pressures leading to increased virulence in fly populations. The susceptible lines Pioneer 25R75, susceptible wheat cultivar ‘N...

  5. Consensus mapping and identification of markers for marker-assisted selection of Wsm2 in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recently identified Wheat streak mosaic virus (WSMV) resistance gene Wsm2 confers a high level of resistance. Objective of this study was to identify closely linked DNA markers for Wsm2 for use in marker-assisted selection (MAS) in wheat. Two segregating populations (CO960293-2/’TAM 111’ and CO96...

  6. Resistance to Ug99 stem rust in six bread wheat cultivars maps to chromosome 6DS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over 80% of wheat area worldwide is currently grown to varieties that are susceptible to the Ug99 race group of the stem rust fungus. Wheat lines Niini, Tinkio, Coni, Pfunye, Blouk and Ripper were resistant to Ug99 at the seedling and adult plant stages. We mapped stem rust resistance in populations...

  7. Biolistics Transformation of Wheat

    NASA Astrophysics Data System (ADS)

    Sparks, Caroline A.; Jones, Huw D.

    We present a complete, step-by-step guide to the production of transformed wheat plants using a particle bombardment device to deliver plasmid DNA into immature embryos and the regeneration of transgenic plants via somatic embryogenesis. Currently, this is the most commonly used method for transforming wheat and it offers some advantages. However, it will be interesting to see whether this position is challenged as facile methods are developed for delivering DNA by Agrobacterium tumefaciens or by the production of transformants via a germ-line process (see other chapters in this book).

  8. Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat.

    PubMed

    Tomar, Ram Sewak Singh; Tiwari, Sushma; Vinod; Naik, Bhojaraja K; Chand, Suresh; Deshmukh, Rupesh; Mallick, Niharika; Singh, Sanjay; Singh, Nagendra Kumar; Tomar, S M S

    2016-01-01

    Water availability is a major limiting factor for wheat (Triticum aestivum L.) production in rain-fed agricultural systems worldwide. Root architecture is important for water and nutrition acquisition for all crops, including wheat. A set of 158 diverse wheat genotypes of Australian (72) and Indian (86) origin were studied for morpho-agronomical traits in field under irrigated and drought stress conditions during 2010-11 and 2011-12.Out of these 31 Indian wheat genotypes comprising 28 hexaploid (Triticum aestivum L.) and 3 tetraploid (T. durum) were characterized for root traits at reproductive stage in polyvinyl chloride (PVC) pipes. Roots of drought tolerant genotypes grew upto137cm (C306) as compared to sensitive one of 63cm with a mean value of 94.8cm. Root architecture traits of four drought tolerant (C306, HW2004, HD2888 and NI5439) and drought sensitive (HD2877, HD2012, HD2851 and MACS2496) genotypes were also observed at 6 and 9 days old seedling stage. The genotypes did not show any significant variation for root traits except for longer coleoptiles and shoot and higher absorptive surface area in drought tolerant genotypes. The visible evaluation of root images using WinRhizo Tron root scanner of drought tolerant genotype HW2004 indicated compact root system with longer depth while drought sensitive genotype HD2877 exhibited higher horizontal root spread and less depth at reproductive stage. Thirty SSR markers were used to study genetic variation which ranged from 0.12 to 0.77 with an average value of 0.57. The genotypes were categorized into three subgroups as highly tolerant, sensitive, moderately sensitive and tolerant as intermediate group based on UPGMA cluster, STRUCTURE and principal coordinate analyses. The genotypic clustering was positively correlated to grouping based on root and morpho-agronomical traits. The genetic variability identified in current study demonstrated these traits can be used to improve drought tolerance and association

  9. Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat

    PubMed Central

    Vinod; Naik, Bhojaraja K.; Chand, Suresh; Deshmukh, Rupesh; Mallick, Niharika; Singh, Sanjay; Singh, Nagendra Kumar; Tomar, S. M. S.

    2016-01-01

    Water availability is a major limiting factor for wheat (Triticum aestivum L.) production in rain-fed agricultural systems worldwide. Root architecture is important for water and nutrition acquisition for all crops, including wheat. A set of 158 diverse wheat genotypes of Australian (72) and Indian (86) origin were studied for morpho-agronomical traits in field under irrigated and drought stress conditions during 2010–11 and 2011-12.Out of these 31 Indian wheat genotypes comprising 28 hexaploid (Triticum aestivum L.) and 3 tetraploid (T. durum) were characterized for root traits at reproductive stage in polyvinyl chloride (PVC) pipes. Roots of drought tolerant genotypes grew upto137cm (C306) as compared to sensitive one of 63cm with a mean value of 94.8cm. Root architecture traits of four drought tolerant (C306, HW2004, HD2888 and NI5439) and drought sensitive (HD2877, HD2012, HD2851 and MACS2496) genotypes were also observed at 6 and 9 days old seedling stage. The genotypes did not show any significant variation for root traits except for longer coleoptiles and shoot and higher absorptive surface area in drought tolerant genotypes. The visible evaluation of root images using WinRhizo Tron root scanner of drought tolerant genotype HW2004 indicated compact root system with longer depth while drought sensitive genotype HD2877 exhibited higher horizontal root spread and less depth at reproductive stage. Thirty SSR markers were used to study genetic variation which ranged from 0.12 to 0.77 with an average value of 0.57. The genotypes were categorized into three subgroups as highly tolerant, sensitive, moderately sensitive and tolerant as intermediate group based on UPGMA cluster, STRUCTURE and principal coordinate analyses. The genotypic clustering was positively correlated to grouping based on root and morpho-agronomical traits. The genetic variability identified in current study demonstrated these traits can be used to improve drought tolerance and association

  10. New insights into the organization, recombination, expression and functional mechanism of low molecular weight glutenin subunit genes in bread wheat.

    PubMed

    Dong, Lingli; Zhang, Xiaofei; Liu, Dongcheng; Fan, Huajie; Sun, Jiazhu; Zhang, Zhongjuan; Qin, Huanju; Li, Bin; Hao, Shanting; Li, Zhensheng; Wang, Daowen; Zhang, Aimin; Ling, Hong-Qing

    2010-01-01

    The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding. PMID:20975830

  11. New Insights into the Organization, Recombination, Expression and Functional Mechanism of Low Molecular Weight Glutenin Subunit Genes in Bread Wheat

    PubMed Central

    Fan, Huajie; Sun, Jiazhu; Zhang, Zhongjuan; Qin, Huanju; Li, Bin; Hao, Shanting; Li, Zhensheng; Wang, Daowen; Zhang, Aimin; Ling, Hong-Qing

    2010-01-01

    The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding. PMID:20975830

  12. [The effectiveness of molecular markers for the identification of Lr28, Lr35, and Lr47 genes in common wheat].

    PubMed

    Gul'tiaeva, E I; Orina, A S; Gannibal, F B; Mitrofanova, O P; Odintsova, I G; Laĭkova, L I

    2014-02-01

    The effectiveness of molecular markers for the identification of leaf rust resistance genes Lr28, Lr35, Lr47 transferred to common wheat was assessed the using samplesof Triticum spp. and Aegilops spp. from Ae. speltoides. Markers Sr39F2/R3, BCD260F1/35R2 of gene Lr35 and PS10 of Lr47 gene were characterized by high efficiency and were revealed in a line of common wheat containing these genes, and samples of Ae. speltoides (their donor). Marker SCS421 of Lr28gene and markers Sr39#22r, Sr39#50s, BE500705 of Lr35/Sr39 genes turned out to be less specific. Marker SCS421 was amplified in the samples of the T. timopheevii species, and markers Sr39#22r, Sr39#50s--in the Ae. speltoides, Ae. tauschii, T. timopheevii, line KS90WRC010 (Lr41), the sort of common wheat In Memory of Maistrenko, obtained using synthetic hexaploid T. timopheevii x Ae. tauschii and introgressive lines obtained using Ae. speltoides. Marker BE500705, which indicates the absence of Lr35/Sr39 genes, was not revealed in lines TcLr35 and MqSr39, in Ae. speltoides, Ae. tauschii and T. boeoticum (kk-61034, 61038). Analysis of the nucleotide sequences of amplification products obtained with the markers SCS421 and Sr39#22r indicated their low homology with TcLr28 and TcLr35. Using molecular markers, we showed a different distribution of Lr28 (77%), Lr35 (100%) and Lr47 (15%) genes in 13 studied samples ofAe. speltoides. In introgressive lines derived from Ae. speltoides, contemporary Russian sorts of common wheat and triticale variants Lr28, Lr35, Lr47 genes were not revealed. PMID:25711022

  13. Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain.

    PubMed

    Zhang, W; Dubcovsky, J

    2008-03-01

    A better understanding of the genetic factors controlling grain yellow pigment content (GYPC) is important for both pasta (high GYPC) and bread wheat (low GYPC) quality improvement. Quantitative trait loci (QTL) for GYPC have been mapped repeatedly on the distal regions of chromosome arms 7AL and 7BL in wheat, and the Phytoene synthase 1 (PSY-1) gene located in this region has been proposed as a candidate gene. We show here that PSY-E1, the tall wheatgrass orthologue, is completely linked to differences in GYPC, and that selection for white endosperm mutants in recombinant lines carrying this gene resulted in the identification of a mutation in a conserved amino acid of PSY-E1. These results, together with the association between GYPC and allelic differences in PSY-1 in hexaploid wheat, suggest that this gene plays an important role in the determination of GYPC. However, a second white endosperm mutant previously mapped to chromosome arm 7EL showed no mutations in PSY-E1 suggesting the existence of additional gene(s) affecting GYPC in this chromosome region. This hypothesis was further supported by the mapping of QTL for GYPC on 7AL proximal to PSY-1 in a cross between pasta wheat varieties UC1113 and Kofa. Interestingly, the Kofa PSY-B1 allele showed unusually high levels of polymorphisms as a result of a conversion event involving the PSY-A1 allele. In summary, our results support the hypothesis that allelic differences in PSY-1 and at least one additional gene in the distal region of the long arm of homoeologous group 7L are associated with differences in GYPC. PMID:18193186

  14. Organic Wheat Farming Improves Grain Zinc Concentration.

    PubMed

    Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer; Frossard, Emmanuel

    2016-01-01

    Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms.

  15. Organic Wheat Farming Improves Grain Zinc Concentration

    PubMed Central

    Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer; Frossard, Emmanuel

    2016-01-01

    Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms. PMID:27537548

  16. Organic Wheat Farming Improves Grain Zinc Concentration.

    PubMed

    Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer; Frossard, Emmanuel

    2016-01-01

    Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms. PMID:27537548

  17. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is...

  18. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is...

  19. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is...

  20. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is...

  1. Fate of Aegilops speltoides-derived, repetitive DNA sequences in diploid Aegilops species, wheat-Aegilops amphiploids and derived chromosome addition lines.

    PubMed

    Kumar, S; Friebe, B; Gill, B S

    2010-07-01

    The present study reports the cloning and characterization of an Aegilops speltoides-derived subtelomeric repeat, designated as pSp1B16. Clone pSp1B16 has 98% sequence homology with the previously isolated Ae. speltoides repeat Spelt1. The distribution of pSp1B16 and another Ae. speltoides repeat, pGc1R1, was analyzed in diploid Aegilops species, tetra- and hexaploid wheats, wheat-Aegilops amphiploids and derived chromosome addition lines by fluorescence in situ hybridization (FISH). Clones pSp1B16 and pGc1R1 revealed FISH sites in Ae. speltoides, Ae. sharonensis and Triticum timopheevii, whereas additional pGc1R1 FISH sites were observed in Ae. longissima and Ae. caudata. The pSp1B16 and pGc1R1 FISH patterns of the Aegilops chromosomes in the wheat-Aegilops amphiploids and chromosome addition lines are similar to those present in the Aegilops parent accession. We did not observe any evidence of pSp1B16 and pGc1R1 sequence elimination, which is in contrast to previous studies using similar hybrids and repeats. The presented data suggest that the genomic changes in synthetic amphiploids observed in previous studies might be caused by homoeologous recombination, which was suppressed in the amphiploid analyzed in this study.

  2. Development of isohomoeoallelic lines within the wheat cv. Courtot for high molecular weight glutenin subunits: transfer of the Glu-D1 locus to chromosome 1A.

    PubMed

    Dumur, J; Branlard, G; Tanguy, A-M; Dardevet, M; Coriton, O; Huteau, V; Lemoine, J; Jahier, Joseph

    2009-08-01

    Wheat quality depends on protein composition and grain protein content. High molecular weight glutenin subunits (HMW-GS) play an important role in determining the viscoelastic properties of gluten. In an attempt to improve the bread-making quality of hexaploid wheat by elaborating novel HMW-GS combinations, a fragment of wheat chromosome 1D containing the Glu-D1 locus encoding the Dx2+Dy12 subunits was translocated to the long arm of chromosome 1A using the ph1b mutation. The partially isohomoeoallelic line selected was characterized using cytogenetical and molecular approaches to assess the amount of chromatin introgressed in the translocated 1A chromosome. Triple-target genomic in situ hybridization indicated that the translocated 1A chromosome had a terminal 1D segment representing 25% of the length of the recombinant long arm. The translocation was also identified on the long arm using molecular markers, and its length was estimated with a minimum of 91 cM. Proteome analysis was performed on total endosperm proteins. Out of the 152 major spots detected, 9 spots were up-regulated and 4 spots were down-regulated. Most of these proteins were identified as alpha-, beta-, gamma-gliadins assigned to the chromosomes of homoeologous groups 1 and 6. Quantitative variations in the HMW-GS were only observed in subunit Dy12 in response to duplication of the Glu-D1 locus.

  3. [Analysis of storage proteins (prolamines, puroindolines and waxy) in common wheat lines Triticum aestivum L. x (Triticum timopheevii Zhuk. x Triticum tauschii) with complex resistance to fungal infections].

    PubMed

    Obukhova, L V; Laĭkova, L I; Shumnyĭ, V K

    2010-06-01

    Storage proteins (prolamines, puroindolines, and Waxy) were studied in common wheat introgression lines obtained with the use of the Saratovskaya 29 (S29) cultivar line and synthetic hexaploid wheat (Triticum timopheevii Zhuk. x T. tauschii) (Sintetik, Sin.) and displaying complex resistance to fungal infections. Comparative analysis of storage proteins in the introgression lines of common wheat Triticum aestivum L. and in the parental forms revealed the only line (BC5) having a substitution at the Gli-B2 locus from Sintetik. Hybrid lines subjected to nine back crosses with the recurrent parental form S29 and selections for resistance to pathogens can be considered as nearly isogenic for the selected trait and retaining the allelic composition of (1) prolamines responsible for the bread-making qualitiy, (2) puroindolines associated with grain texture, and (3) Waxy proteins responsible for nutritive qualities. These lines are valuable as donors of immunity in breeding programs without the loss of the quality of flour and grain as compared to the S29 line and are also important in searching for genes determining resistance to leaf and stem rust and to powdery mildew. The amphiploid has a number of characters (silent Glu-A 1 locus and Ha genotype) that can negatively affect the quality of flour and grain and thus should be taken into account when choosing this donor.

  4. Registration of Colter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colter’ (Reg. No. CV-1099, PI 670156) hard red winter wheat (Triticum aestivum L.) was developed and released by the Montana Agricultural Experiment Stations in September 2013. Colter was derived from the cross MT9982*2/BZ9W96-895. MT9982 is a sib selection of 'Yellowstone', and BZ9W96-895 is an unr...

  5. Registration of 'Tiger' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Tiger’ hard white winter wheat (Triticum aestivum L.) was developed at Research Center-Hays, Kansas State University and released by Kansas Agricultural Experiment Station in 2010. Tiger was selected from a three-way cross KS98H245/’Trego’//KS98HW518 made in 1999 at Hays, KS. The objective of this ...

  6. Wheat - Aegilops introgressions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aegilops is the most closely related genus to Triticum in the tribe Triticeae. Aegilops speltoides Tausch (B genome donor) and Ae. tauschii Coss. (D genome donor) contributed two of the three genomes present in common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD genomes). The Aegilops genus c...

  7. Registration of 'Chesapeake' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Chesapeake’ (Reg. No. CV-1011, PI 643935) is a soft red winter wheat (Triticum aestivum L.) that was jointly developed and released by the Maryland Agricultural Experiment Station, Department of Plant Science and Landscape Architecture, and the Virginia Agricultural Experiment Station in 2005. Ches...

  8. Registration of 'Cowboy' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Cowboy' (Reg. No. CV-1095, PI 668564) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released cooperatively by Colorado State University (CSU) and the University of Wyoming (UWYO) in August 2011. In addition to researchers at CSU and U...

  9. The alpha-tubulin gene family in wheat (Triticum aestivum L.) and differential gene expression during cold acclimation.

    PubMed

    Ridha Farajalla, Mohammed; Gulick, Patrick J

    2007-05-01

    The alpha-tubulins and beta-tubulins are the major constituents of microtubules, which have been recognized as important structural elements in cell growth and morphogenesis, and, recently, for their role in regulation and signal transduction. We have identified 15 full-length cDNAs for the members of the alpha-tubulin gene family in hexaploid bread wheat (Triticum aestivum L.). The genes were clustered into 5 homeologous groups of 3 genes. Representatives of the 5 homeologous groups were mapped to different chromosome arms, and the genome of origin was determined for each gene. Changes in mRNA levels were observed for the paralogous members of the gene family during cold acclimation. Three members of the family had initial decreases in mRNA levels in response to cold treatment, which were followed by increases, each with a different pattern of reinduction. One gene-family member showed increased mRNA for up to 14 d during cold acclimation and had decreased levels after 36 d of cold treatment; a fifth paralogous member of the gene family had slowly declining mRNA levels up to 36 d. Subtle differences in the level of gene expression among homeologs and large differences among paralogs were detected by comparing the relative abundance of wheat alpha-tubulin expressed sequence tags (ESTs) in public databases. PMID:17612619

  10. Wheat allergy: diagnosis and management

    PubMed Central

    Cianferoni, Antonella

    2016-01-01

    Triticum aestivum (bread wheat) is the most widely grown crop worldwide. In genetically predisposed individuals, wheat can cause specific immune responses. A food allergy to wheat is characterized by T helper type 2 activation which can result in immunoglobulin E (IgE) and non-IgE mediated reactions. IgE mediated reactions are immediate, are characterized by the presence of wheat-specific IgE antibodies, and can be life-threatening. Non-IgE mediated reactions are characterized by chronic eosinophilic and lymphocytic infiltration of the gastrointestinal tract. IgE mediated responses to wheat can be related to wheat ingestion (food allergy) or wheat inhalation (respiratory allergy). A food allergy to wheat is more common in children and can be associated with a severe reaction such as anaphylaxis and wheat-dependent, exercise-induced anaphylaxis. An inhalation induced IgE mediated wheat allergy can cause baker’s asthma or rhinitis, which are common occupational diseases in workers who have significant repetitive exposure to wheat flour, such as bakers. Non-IgE mediated food allergy reactions to wheat are mainly eosinophilic esophagitis (EoE) or eosinophilic gastritis (EG), which are both characterized by chronic eosinophilic inflammation. EG is a systemic disease, and is associated with severe inflammation that requires oral steroids to resolve. EoE is a less severe disease, which can lead to complications in feeding intolerance and fibrosis. In both EoE and EG, wheat allergy diagnosis is based on both an elimination diet preceded by a tissue biopsy obtained by esophagogastroduodenoscopy in order to show the effectiveness of the diet. Diagnosis of IgE mediated wheat allergy is based on the medical history, the detection of specific IgE to wheat, and oral food challenges. Currently, the main treatment of a wheat allergy is based on avoidance of wheat altogether. However, in the near future immunotherapy may represent a valid way to treat IgE mediated reactions to

  11. Genetic analysis of wheat domestication and evolution under domestication.

    PubMed

    Peleg, Zvi; Fahima, Tzion; Korol, Abraham B; Abbo, Shahal; Saranga, Yehoshua

    2011-10-01

    Wheat is undoubtedly one of the world's major food sources since the dawn of Near Eastern agriculture and up to the present day. Morphological, physiological, and genetic modifications involved in domestication and subsequent evolution under domestication were investigated in a tetraploid recombinant inbred line population, derived from a cross between durum wheat and its immediate progenitor wild emmer wheat. Experimental data were used to test previous assumptions regarding a protracted domestication process. The brittle rachis (Br) spike, thought to be a primary characteristic of domestication, was mapped to chromosome 2A as a single gene, suggesting, in light of previously reported Br loci (homoeologous group 3), a complex genetic model involved in spike brittleness. Twenty-seven quantitative trait loci (QTLs) conferring threshability and yield components (kernel size and number of kernels per spike) were mapped. The large number of QTLs detected in this and other studies suggests that following domestication, wheat evolutionary processes involved many genomic changes. The Br gene did not show either genetic (co-localization with QTLs) or phenotypic association with threshability or yield components, suggesting independence of the respective loci. It is argued here that changes in spike threshability and agronomic traits (e.g. yield and its components) are the outcome of plant evolution under domestication, rather than the result of a protracted domestication process. Revealing the genomic basis of wheat domestication and evolution under domestication, and clarifying their inter-relationships, will improve our understanding of wheat biology and contribute to further crop improvement.

  12. Cancer mortality in four northern wheat-producing states.

    PubMed Central

    Schreinemachers, D M

    2000-01-01

    Chlorophenoxy herbicides are used both in cereal grain agriculture and in nonagricultural settings such as right-of-ways, lawns, and parks. Minnesota, North Dakota, South Dakota, and Montana grow most of the spring and durum wheat produced in the United States. More than 90% of spring and durum wheat is treated with chlorophenoxy herbicides, in contrast to treatment of approximately 30% of winter wheat. In this ecologic study I used wheat acreage as a surrogate for exposure to chlorophenoxy herbicides. I investigated the association of chlorophenoxy herbicides with cancer mortality during 1980-1989 for selected counties based on level of agriculture ([greater and equal to] 20%) and rural population ([greater and equal to] 50%). Age-standardized cancer mortality rates were determined for grouped counties based on tertiles of wheat acreage per county or for individual counties for frequently occurring cancers. The cancer sites that showed positive trends of increasing cancer mortality with increasing wheat acreage were esophagus, stomach, rectum, pancreas, larynx, prostate, kidney and ureter, brain, thyroid, bone, and all cancers (men) and oral cavity and tongue, esophagus, stomach, liver and gall bladder and bile ducts, pancreas, cervix, ovary, bladder, and other urinary organs, and all cancers (women). Rare cancers in men and women and cancers in boys and girls were studied by comparing counties above and below the median of wheat acreage per county. There was increased mortality for cancer of the nose and eye in both men and women, brain and leukemia in both boys and girls, and all cancers in boys. These results suggest an association between cancer mortality and wheat acreage in counties of these four states. PMID:11017893

  13. Cancer mortality in four northern wheat-producing states.

    PubMed

    Schreinemachers, D M

    2000-09-01

    Chlorophenoxy herbicides are used both in cereal grain agriculture and in nonagricultural settings such as right-of-ways, lawns, and parks. Minnesota, North Dakota, South Dakota, and Montana grow most of the spring and durum wheat produced in the United States. More than 90% of spring and durum wheat is treated with chlorophenoxy herbicides, in contrast to treatment of approximately 30% of winter wheat. In this ecologic study I used wheat acreage as a surrogate for exposure to chlorophenoxy herbicides. I investigated the association of chlorophenoxy herbicides with cancer mortality during 1980-1989 for selected counties based on level of agriculture ([greater and equal to] 20%) and rural population ([greater and equal to] 50%). Age-standardized cancer mortality rates were determined for grouped counties based on tertiles of wheat acreage per county or for individual counties for frequently occurring cancers. The cancer sites that showed positive trends of increasing cancer mortality with increasing wheat acreage were esophagus, stomach, rectum, pancreas, larynx, prostate, kidney and ureter, brain, thyroid, bone, and all cancers (men) and oral cavity and tongue, esophagus, stomach, liver and gall bladder and bile ducts, pancreas, cervix, ovary, bladder, and other urinary organs, and all cancers (women). Rare cancers in men and women and cancers in boys and girls were studied by comparing counties above and below the median of wheat acreage per county. There was increased mortality for cancer of the nose and eye in both men and women, brain and leukemia in both boys and girls, and all cancers in boys. These results suggest an association between cancer mortality and wheat acreage in counties of these four states.

  14. Gene flow between wheat and wild relatives: empirical evidence from Aegilops geniculata, Ae. neglecta and Ae. triuncialis.

    PubMed

    Arrigo, Nils; Guadagnuolo, Roberto; Lappe, Sylvain; Pasche, Sophie; Parisod, Christian; Felber, François

    2011-09-01

    Gene flow between domesticated species and their wild relatives is receiving growing attention. This study addressed introgression between wheat and natural populations of its wild relatives (Aegilops species). The sampling included 472 individuals, collected from 32 Mediterranean populations of three widespread Aegilops species (Aegilops geniculata, Ae. neglecta and Ae. triuncialis) and compared wheat field borders to areas isolated from agriculture. Individuals were characterized with amplified fragment length polymorphism fingerprinting, analysed through two computational approaches (i.e. Bayesian estimations of admixture and fuzzy clustering), and sequences marking wheat-specific insertions of transposable elements. With this combined approach, we detected substantial gene flow between wheat and Aegilops species. Specifically, Ae. neglecta and Ae. triuncialis showed significantly more admixed individuals close to wheat fields than in locations isolated from agriculture. In contrast, little evidence of gene flow was found in Ae. geniculata. Our results indicated that reproductive barriers have been regularly bypassed during the long history of sympatry between wheat and Aegilops.

  15. Gene flow between wheat and wild relatives: empirical evidence from Aegilops geniculata, Ae. neglecta and Ae. triuncialis

    PubMed Central

    Arrigo, Nils; Guadagnuolo, Roberto; Lappe, Sylvain; Pasche, Sophie; Parisod, Christian; Felber, François

    2011-01-01

    Gene flow between domesticated species and their wild relatives is receiving growing attention. This study addressed introgression between wheat and natural populations of its wild relatives (Aegilops species). The sampling included 472 individuals, collected from 32 Mediterranean populations of three widespread Aegilops species (Aegilops geniculata, Ae. neglecta and Ae. triuncialis) and compared wheat field borders to areas isolated from agriculture. Individuals were characterized with amplified fragment length polymorphism fingerprinting, analysed through two computational approaches (i.e. Bayesian estimations of admixture and fuzzy clustering), and sequences marking wheat-specific insertions of transposable elements. With this combined approach, we detected substantial gene flow between wheat and Aegilops species. Specifically, Ae. neglecta and Ae. triuncialis showed significantly more admixed individuals close to wheat fields than in locations isolated from agriculture. In contrast, little evidence of gene flow was found in Ae. geniculata. Our results indicated that reproductive barriers have been regularly bypassed during the long history of sympatry between wheat and Aegilops. PMID:25568015

  16. Wheat yield forecasts using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Colwell, J. E.; Rice, D. P.; Nalepka, R. F.

    1977-01-01

    Several considerations of winter wheat yield prediction using LANDSAT data were discussed. In addition, a simple technique which permits direct early season forecasts of wheat production was described.

  17. [Allelic Composition in the VRN-A1, VRN-B1, and VRN-B3 Genes of Double Haploid Lines of Hexaploid Triticale].

    PubMed

    Zaitseva, O I; Lemesh, V A

    2015-07-01

    Vernalization genes are associated with the adaptation capability, heading dates, and yield potential of grain crops. The allelic composition in the Vrn-A1, Vrn-B1, and Vrn-B3 genes was defined in 42 lines of double haploids of hexaploid triticale, which were produced through in vitro anther culture. Two alleles (Vrn-A1a and vrn-A1) were found at the Vrn-A1[ital] locus and three alleles (Vrn-B1a, Vrn-B1c, and vrn-B1) were found at the Vrn-B1 locus. All double haploids carried the recessive allele at the Vrn-B3[ital] locus. Twelve lines of spring triticale were selected, and they were characterized by an allelic composition associated with early maturity and high potential of grain yield. PMID:26410930

  18. Impact of Solid and Hollow Varieties of Winter and Spring Wheat on Severity of Wheat Stem Sawfly (Hymenoptera: Cephidae) Infestations and Yield and Quality of Grain.

    PubMed

    Szczepaniec, Adrianna; Glover, Karl D; Berzonsky, William

    2015-10-01

    Wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has recently emerged as a key pest of wheat (Triticum aestivum L.) in the Great Plains and Canadian provinces. The expanding impact of WSS has caused considerable economic losses to wheat production. Solid-stem varieties of wheat remain the only effective measure of suppression of WSS, and the goal of this research was to test whether five solid- and hollow-stem varieties of winter and spring wheat reduce survival of WSS in South Dakota. We reported that solid-stem varieties had significantly lower numbers of WSS larvae, and this effect was especially evident when WSS infestation rates exceeded 15%. We also observed that the yield of solid-stem varieties was significantly lower than hollow-stem varieties when the abundance of WSS was low, but not when populations of WSS were relatively high. We did not observe consistent differences in grain quality between solid- and hollow-stem varieties, however, and in case of protein levels of grain, solid-stem wheat varieties performed better than hollow-stem wheat. We conclude that solid-stem varieties of wheat appear to effectively suppress WSS survival, and reduced yield of these varieties is less apparent when populations of C. cinctus are high enough to affect the yield of hollow-stem wheat. This is the first report to describe the effectiveness of solid-stem varieties of wheat on WSS in South Dakota. More research in the state is necessary before more robust conclusions can be drawn.

  19. Impact of Solid and Hollow Varieties of Winter and Spring Wheat on Severity of Wheat Stem Sawfly (Hymenoptera: Cephidae) Infestations and Yield and Quality of Grain.

    PubMed

    Szczepaniec, Adrianna; Glover, Karl D; Berzonsky, William

    2015-10-01

    Wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has recently emerged as a key pest of wheat (Triticum aestivum L.) in the Great Plains and Canadian provinces. The expanding impact of WSS has caused considerable economic losses to wheat production. Solid-stem varieties of wheat remain the only effective measure of suppression of WSS, and the goal of this research was to test whether five solid- and hollow-stem varieties of winter and spring wheat reduce survival of WSS in South Dakota. We reported that solid-stem varieties had significantly lower numbers of WSS larvae, and this effect was especially evident when WSS infestation rates exceeded 15%. We also observed that the yield of solid-stem varieties was significantly lower than hollow-stem varieties when the abundance of WSS was low, but not when populations of WSS were relatively high. We did not observe consistent differences in grain quality between solid- and hollow-stem varieties, however, and in case of protein levels of grain, solid-stem wheat varieties performed better than hollow-stem wheat. We conclude that solid-stem varieties of wheat appear to effectively suppress WSS survival, and reduced yield of these varieties is less apparent when populations of C. cinctus are high enough to affect the yield of hollow-stem wheat. This is the first report to describe the effectiveness of solid-stem varieties of wheat on WSS in South Dakota. More research in the state is necessary before more robust conclusions can be drawn. PMID:26453720

  20. Proteomic analysis of peripheral layers during wheat (Triticum aestivum L.) grain development.

    PubMed

    Tasleem-Tahir, Ayesha; Nadaud, Isabelle; Girousse, Christine; Martre, Pierre; Marion, Didier; Branlard, Gérard

    2011-02-01

    Grains of hexaploid wheat, Triticum aestivum (cv. Récital), were collected at 15 stages of development, from anthesis to physiological maturity, 0-700°C days (degree days after anthesis). Two hundred and seven proteins of grain peripheral layers (inner pericarp, hyaline, testa and aleurone layer) were identified by 2-DE, MALDI-TOF MS and data mining, then were classified in 16 different functional categories. Study of the protein expression over time allowed identification of five main profiles and four distinct phases of development. Composite expression curves indicated that there was a shift from metabolic processes, translation, transcription and ATP interconversion towards storage and defence processes. Protein synthesis, protein turnover, signal transduction, membrane transport and biosynthesis of secondary metabolites were the mediating functions of this shift. A picture of the dynamic processes taking place in peripheral layers during grain development was obtained in this study. It should further help in the construction of proteome reference maps for the developing peripheral layers.

  1. Haplotype Detection from Next-Generation Sequencing in High-Ploidy-Level Species: 45S rDNA Gene Copies in the Hexaploid Spartina maritima

    PubMed Central

    Boutte, Julien; Aliaga, Benoît; Lima, Oscar; Ferreira de Carvalho, Julie; Ainouche, Abdelkader; Macas, Jiri; Rousseau-Gueutin, Mathieu; Coriton, Olivier; Ainouche, Malika; Salmon, Armel

    2015-01-01

    Gene and whole-genome duplications are widespread in plant nuclear genomes, resulting in sequence heterogeneity. Identification of duplicated genes may be particularly challenging in highly redundant genomes, especially when there are no diploid parents as a reference. Here, we developed a pipeline to detect the different copies in the ribosomal RNA gene family in the hexaploid grass Spartina maritima from next-generation sequencing (Roche-454) reads. The heterogeneity of the different domains of the highly repeated 45S unit was explored by identifying single nucleotide polymorphisms (SNPs) and assembling reads based on shared polymorphisms. SNPs were validated using comparisons with Illumina sequence data sets and by cloning and Sanger (re)sequencing. Using this approach, 29 validated polymorphisms and 11 validated haplotypes were reported (out of 34 and 20, respectively, that were initially predicted by our program). The rDNA domains of S. maritima have similar lengths as those found in other Poaceae, apart from the 5′-ETS, which is approximately two-times longer in S. maritima. Sequence homogeneity was encountered in coding regions and both internal transcribed spacers (ITS), whereas high intragenomic variability was detected in the intergenic spacer (IGS) and the external transcribed spacer (ETS). Molecular cytogenetic analysis by fluorescent in situ hybridization (FISH) revealed the presence of one pair of 45S rDNA signals on the chromosomes of S. maritima instead of three expected pairs for a hexaploid genome, indicating loss of duplicated homeologous loci through the diploidization process. The procedure developed here may be used at any ploidy level and using different sequencing technologies. PMID:26530424

  2. Effect of storage and insect infestation on the mineral and vitamin contents of wheat grain and flour.

    PubMed

    Keskin, S; Ozkaya, H

    2013-04-01

    The objective of this study was to evaluate how storage and Sitophilus granarius L. infestation affects mineral and vitamin (thiamin and riboflavin) contents of wheat grain and flour obtained from the wheat. Wheat samples were infested with nonsexed S. granarius at a rate of two adults per kilogram, and stored for 6 mo at 30 +/- 1 degrees C and 70 +/- 5% relative humidity. Every 30 d, samples of wheat were collected and evaluated for insect population, mineral, thiamin, and riboflavin contents. Flour milled from these wheat samples was also evaluated for mineral, thiamin, and riboflavin contents. None of the analyses performed on the uninfested wheat and flour samples showed any noticeable change during the storage period. The insect population of the infested wheat samples increased during the storage period. The ratio of the mineral contents to dry matter significantly increased in the infested wheat and flour samples during the infestation period, whereas thiamin and riboflavin contents considerably decreased. The feeding habits of S. granarius and the distribution of minerals and vitamins in the wheat grain caused the changes observed in the levels of these compounds. The effects of infestation were greatest in the latter stages, during which the insect population increased greatly.

  3. Genome-Wide Analysis of Microsatellite Markers Based on Sequenced Database in Chinese Spring Wheat (Triticum aestivum L.).

    PubMed

    Han, Bin; Wang, Changbiao; Tang, Zhaohui; Ren, Yongkang; Li, Yali; Zhang, Dayong; Dong, Yanhui; Zhao, Xinghua

    2015-01-01

    Microsatellites or simple sequence repeats (SSRs) are distributed across both prokaryotic and eukaryotic genomes and have been widely used for genetic studies and molecular marker-assisted breeding in crops. Though an ordered draft sequence of hexaploid bread wheat have been announced, the researches about systemic analysis of SSRs for wheat still have not been reported so far. In the present study, we identified 364,347 SSRs from among 10,603,760 sequences of the Chinese spring wheat (CSW) genome, which were present at a density of 36.68 SSR/Mb. In total, we detected 488 types of motifs ranging from di- to hexanucleotides, among which dinucleotide repeats dominated, accounting for approximately 42.52% of the genome. The density of tri- to hexanucleotide repeats was 24.97%, 4.62%, 3.25% and 24.65%, respectively. AG/CT, AAG/CTT, AGAT/ATCT, AAAAG/CTTTT and AAAATT/AATTTT were the most frequent repeats among di- to hexanucleotide repeats. Among the 21 chromosomes of CSW, the density of repeats was highest on chromosome 2D and lowest on chromosome 3A. The proportions of di-, tri-, tetra-, penta- and hexanucleotide repeats on each chromosome, and even on the whole genome, were almost identical. In addition, 295,267 SSR markers were successfully developed from the 21 chromosomes of CSW, which cover the entire genome at a density of 29.73 per Mb. All of the SSR markers were validated by reverse electronic-Polymerase Chain Reaction (re-PCR); 70,564 (23.9%) were found to be monomorphic and 224,703 (76.1%) were found to be polymorphic. A total of 45 monomorphic markers were selected randomly for validation purposes; 24 (53.3%) amplified one locus, 8 (17.8%) amplified multiple identical loci, and 13 (28.9%) did not amplify any fragments from the genomic DNA of CSW. Then a dendrogram was generated based on the 24 monomorphic SSR markers among 20 wheat cultivars and three species of its diploid ancestors showing that monomorphic SSR markers represented a promising source to

  4. [Non-celiac disease non-wheat allergy wheat sensitivity].

    PubMed

    Zopf, Yurdagül; Dieterich, Walburga

    2015-11-01

    Non-celiac non-wheat allergy wheat sensitivity is regarded as discrete glutensensitivity diagnosed after the exclusion of celiac disease and wheat allergy. Due to the absence of reliable biomarkers no exact prevalence rates are known and estimations range between 0,5-6 %. Soon after ingestion of wheat, patients complain of intestinal symptoms mainly bloating, abdominal pain, diarrhea or nausea which improve fast under glutenfree diet. Often extraintestinal manifestation as tiredness, muscle or joint pain, headache and depression are reported. Actually, there are no serological markers and no intestinal mucosal damage was found in patients. The underlying mechanism of the disease is completely unknown and beside of gluten other wheat proteins as well as amylase-trypsin-inhibitor or short chain sugars are discussed as triggers. In addition, the involvement of the intestinal microbiome in pathology of glutensensitivity must be considered.

  5. [Non-celiac disease non-wheat allergy wheat sensitivity].

    PubMed

    Zopf, Yurdagül; Dieterich, Walburga

    2015-11-01

    Non-celiac non-wheat allergy wheat sensitivity is regarded as discrete glutensensitivity diagnosed after the exclusion of celiac disease and wheat allergy. Due to the absence of reliable biomarkers no exact prevalence rates are known and estimations range between 0,5-6 %. Soon after ingestion of wheat, patients complain of intestinal symptoms mainly bloating, abdominal pain, diarrhea or nausea which improve fast under glutenfree diet. Often extraintestinal manifestation as tiredness, muscle or joint pain, headache and depression are reported. Actually, there are no serological markers and no intestinal mucosal damage was found in patients. The underlying mechanism of the disease is completely unknown and beside of gluten other wheat proteins as well as amylase-trypsin-inhibitor or short chain sugars are discussed as triggers. In addition, the involvement of the intestinal microbiome in pathology of glutensensitivity must be considered. PMID:26536646

  6. Molecular markers based on LTR retrotransposons BARE-1 and Jeli uncover different strata of evolutionary relationships in diploid wheats.

    PubMed

    Konovalov, Fedor A; Goncharov, Nikolay P; Goryunova, Svetlana; Shaturova, Aleksandra; Proshlyakova, Tatyana; Kudryavtsev, Alexander

    2010-06-01

    Molecular markers based on retrotransposon insertions are widely used for various applications including phylogenetic analysis. Multiple cases were described where retrotransposon-based markers, namely sequence-specific amplification polymorphism (SSAP), were superior to other marker types in resolving the phylogenetic relationships due to their higher variability and informativeness. However, the patterns of evolutionary relationships revealed by SSAP may be dependent on the underlying retrotransposon activity in different periods of time. Hence, the proper choice of retrotransposon family is essential for obtaining significant results. We compared the phylogenetic trees for a diverse set of diploid A-genome wheat species (Triticum boeoticum, T. urartu and T. monococcum) based on two unrelated retrotransposon families, BARE-1 and Jeli. BARE-1 belongs to Copia class and has a uniform distribution between common wheat (T. aestivum) genomes of different origin (A, B and D), indicating similar activity in the respective diploid genome donors. Gypsy-class family Jeli was found by us to be an A-genome retrotransposon with >70% copies residing in A genome of hexaploid common wheat, suggesting a burst of transposition in the history of A-genome progenitors. The results indicate that a higher Jeli transpositional activity was associated with T. urartu versus T. boeoticum speciation, while BARE-1 produced more polymorphic insertions during subsequent intraspecific diversification; as an outcome, each retrotransposon provides more informative markers at the corresponding level of phylogenetic relationships. We conclude that multiple retroelement families should be analyzed for an image of evolutionary relationships to be solid and comprehensive. PMID:20407790

  7. Registration of 'Rollag' spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) (caused primarily by Fusarium graminearum Schwabe) is a disease that annually threatens wheat (Triticum aestivum L.) grown in the northern plains of the United States. Resistance to this disease is a high priority trait in the University of Minnesota’s spring wheat breedi...

  8. Registration of 'Bill Brown' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Bill Brown’ (Reg. No. CV-133, PI 653260) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2007 through an exclusive marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorad...

  9. Registration of 'Bill Brown' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Bill Brown’ (Reg. No. CV-133, PI 653260) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2007 through an exclusive marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorad...

  10. Registration of 'LCS Wizard' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to develop widely adapted hard winter wheat (Triticum aestivum L.) varieties to meet the needs of mills, bakeries, and consumers in the eastern and Great Plains regions of the United States. ‘LCS Wizard’ (Reg. No. CV-1111, PI 669574), a hard red winter (HRW) wheat,...

  11. Incidence of Wheat streak mosaic virus, Triticum mosaic virus, and Wheat mosaic virus in wheat curl mites recovered from maturing winter wheat spikes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat curl mites (WCM; Aceria tosichella) transmit Wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), and Wheat mosaic virus (WMoV) to wheat (Triticum aestivum L.) in the Great Plains region of the United States. These viruses can be detected in single, double, or triple combinations i...

  12. Virulence and biotype analyses of Hessian Fly (Mayetiola destructor) populations from Texas, Louisiana, and Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Hessian fly is a major pest of wheat, and is controlled mainly through deploying fly-resistant wheat cultivars. Changes in Hessian fly populations in the field may quickly overcome fly-resistance of wheat cultivars within a few years, thus continuous monitoring dynamics of Hessian fly populatio...

  13. Preliminary assessment of resistance among U.S. wheat cultivars to the Triticum pathotype of Magnaporthe oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Magnaporthe oryzae is the causal agent of blast disease on several graminaceous plants. The M. oryzae population causing wheat blast has not been officially reported outside South America. U.S. wheat production is at risk to this pathogen if it is introduced and established. Proactive testing of U.S...

  14. Allelic variation in developmental genes and effects on winter wheat heading date in the U.S. Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heading date in wheat (Triticum aestivum L.) and other small grain cereals is affected by the vernalization and photoperiod pathways. The reduced-height loci also have an effect on growth and development. Heading date was evaluated in a population of 299 hard winter wheat entries representative of t...

  15. How does wheat resistance mediated by H genes prevent manipulation of cell development by Hessian fly larvae?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The larva of the Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), induces a gall nutritive tissue in susceptible wheat Triticum aestivum L. The nutritive tissue acts as a resource sink within the wheat seedling and causes serious crop losses. Hessian fly populations have been succes...

  16. Alpha-amylase activity of Rhyzopertha dominica (Coleoptera: Bostrichidae) reared on several wheat varieties and its inhibition with kernel extracts.

    PubMed

    Cinco-Moroyoqui, Francisco J; Rosas-Burgos, Ema C; Borboa-Flores, Jesús; Cortez-Rocha, Mario O

    2006-12-01

    Total progeny of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) reared on 10 wheat, Triticum aestivum L., varieties was evaluated. Higher amylase activities were detected in populations with few individuals, whereas the opposite was observed in higher populations. As protein ingested increased, reproductive success increased. However, consumption of wheat protein was inversely correlated with amylase activity levels (r = -0.66). Amylase activity in homogenates of R. dominica populations showed variable inhibition by wheat extracts prepared from wheat varieties on which they were reared. Insect populations with lowest amylase activities were inhibited more by wheat extracts than those with higher amylase activity (r = -0.77). An electrophoretic analysis revealed four phenotypes showing combinations of three isoamylases (Rm 0.70, 0.79, and 0.90) in different populations of R. dominica. Some of the insect progeny that emerged from resistant wheat varieties contained the three isoamylases, whereas progeny that emerged from the most susceptible varieties showed reduced activity of isoamylases 0.70 or 0.90. These results suggest that the alpha-amylase activity levels and the composition of isoamylases in R. dominica populations are modulated by diet and that the alpha-amylase inhibitory activity of the wheat kernels influences these variations.

  17. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress.

    PubMed

    Fu, Jianming; Momcilović, Ivana; Clemente, Thomas E; Nersesian, Natalya; Trick, Harold N; Ristic, Zoran

    2008-10-01

    Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (Triticum aestivum) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein.

  18. Drought Tolerance in Wheat

    PubMed Central

    Prodhan, Zakaria Hossain; Faruq, Golam

    2013-01-01

    Drought is one of the most important phenomena which limit crops' production and yield. Crops demonstrate various morphological, physiological, biochemical, and molecular responses to tackle drought stress. Plants' vegetative and reproductive stages are intensively influenced by drought stress. Drought tolerance is a complicated trait which is controlled by polygenes and their expressions are influenced by various environmental elements. This means that breeding for this trait is so difficult and new molecular methods such as molecular markers, quantitative trait loci (QTL) mapping strategies, and expression patterns of genes should be applied to produce drought tolerant genotypes. In wheat, there are several genes which are responsible for drought stress tolerance and produce different types of enzymes and proteins for instance, late embryogenesis abundant (lea), responsive to abscisic acid (Rab), rubisco, helicase, proline, glutathione-S-transferase (GST), and carbohydrates during drought stress. This review paper has concentrated on the study of water limitation and its effects on morphological, physiological, biochemical, and molecular responses of wheat with the possible losses caused by drought stress. PMID:24319376

  19. Drought tolerance in wheat.

    PubMed

    Nezhadahmadi, Arash; Prodhan, Zakaria Hossain; Faruq, Golam

    2013-11-11

    Drought is one of the most important phenomena which limit crops' production and yield. Crops demonstrate various morphological, physiological, biochemical, and molecular responses to tackle drought stress. Plants' vegetative and reproductive stages are intensively influenced by drought stress. Drought tolerance is a complicated trait which is controlled by polygenes and their expressions are influenced by various environmental elements. This means that breeding for this trait is so difficult and new molecular methods such as molecular markers, quantitative trait loci (QTL) mapping strategies, and expression patterns of genes should be applied to produce drought tolerant genotypes. In wheat, there are several genes which are responsible for drought stress tolerance and produce different types of enzymes and proteins for instance, late embryogenesis abundant (lea), responsive to abscisic acid (Rab), rubisco, helicase, proline, glutathione-S-transferase (GST), and carbohydrates during drought stress. This review paper has concentrated on the study of water limitation and its effects on morphological, physiological, biochemical, and molecular responses of wheat with the possible losses caused by drought stress.

  20. Joint Transcriptomic and Metabolomic Analyses Reveal Changes in the Primary Metabolism and Imbalances in the Subgenome Orchestration in the Bread Wheat Molecular Response to Fusarium graminearum

    PubMed Central

    Nussbaumer, Thomas; Warth, Benedikt; Sharma, Sapna; Ametz, Christian; Bueschl, Christoph; Parich, Alexandra; Pfeifer, Matthias; Siegwart, Gerald; Steiner, Barbara; Lemmens, Marc; Schuhmacher, Rainer; Buerstmayr, Hermann; Mayer, Klaus F. X.; Kugler, Karl G.; Schweiger, Wolfgang

    2015-01-01

    Fusarium head blight is a prevalent disease of bread wheat (Triticum aestivum L.), which leads to considerable losses in yield and quality. Quantitative resistance to the causative fungus Fusarium graminearum is poorly understood. We integrated transcriptomics and metabolomics data to dissect the molecular response to the fungus and its main virulence factor, the toxin deoxynivalenol in near-isogenic lines segregating for two resistance quantitative trait loci, Fhb1 and Qfhs.ifa-5A. The data sets portrait rearrangements in the primary metabolism and the translational machinery to counter the fungus and the effects of the toxin and highlight distinct changes in the metabolism of glutamate in lines carrying Qfhs.ifa-5A. These observations are possibly due to the activity of two amino acid permeases located in the quantitative trait locus confidence interval, which may contribute to increased pathogen endurance. Mapping to the highly resolved region of Fhb1 reduced the list of candidates to few genes that are specifically expressed in presence of the quantitative trait loci and in response to the pathogen, which include a receptor-like protein kinase, a protein kinase, and an E3 ubiquitin-protein ligase. On a genome-scale level, the individual subgenomes of hexaploid wheat contribute differentially to defense. In particular, the D subgenome exhibited a pronounced response to the pathogen and contributed significantly to the overall defense response. PMID:26438291

  1. Joint Transcriptomic and Metabolomic Analyses Reveal Changes in the Primary Metabolism and Imbalances in the Subgenome Orchestration in the Bread Wheat Molecular Response to Fusarium graminearum.

    PubMed

    Nussbaumer, Thomas; Warth, Benedikt; Sharma, Sapna; Ametz, Christian; Bueschl, Christoph; Parich, Alexandra; Pfeifer, Matthias; Siegwart, Gerald; Steiner, Barbara; Lemmens, Marc; Schuhmacher, Rainer; Buerstmayr, Hermann; Mayer, Klaus F X; Kugler, Karl G; Schweiger, Wolfgang

    2015-12-01

    Fusarium head blight is a prevalent disease of bread wheat (Triticum aestivum L.), which leads to considerable losses in yield and quality. Quantitative resistance to the causative fungus Fusarium graminearum is poorly understood. We integrated transcriptomics and metabolomics data to dissect the molecular response to the fungus and its main virulence factor, the toxin deoxynivalenol in near-isogenic lines segregating for two resistance quantitative trait loci, Fhb1 and Qfhs.ifa-5A. The data sets portrait rearrangements in the primary metabolism and the translational machinery to counter the fungus and the effects of the toxin and highlight distinct changes in the metabolism of glutamate in lines carrying Qfhs.ifa-5A. These observations are possibly due to the activity of two amino acid permeases located in the quantitative trait locus confidence interval, which may contribute to increased pathogen endurance. Mapping to the highly resolved region of Fhb1 reduced the list of candidates to few genes that are specifically expressed in presence of the quantitative trait loci and in response to the pathogen, which include a receptor-like protein kinase, a protein kinase, and an E3 ubiquitin-protein ligase. On a genome-scale level, the individual subgenomes of hexaploid wheat contribute differentially to defense. In particular, the D subgenome exhibited a pronounced response to the pathogen and contributed significantly to the overall defense response. PMID:26438291

  2. Joint Transcriptomic and Metabolomic Analyses Reveal Changes in the Primary Metabolism and Imbalances in the Subgenome Orchestration in the Bread Wheat Molecular Response to Fusarium graminearum.

    PubMed

    Nussbaumer, Thomas; Warth, Benedikt; Sharma, Sapna; Ametz, Christian; Bueschl, Christoph; Parich, Alexandra; Pfeifer, Matthias; Siegwart, Gerald; Steiner, Barbara; Lemmens, Marc; Schuhmacher, Rainer; Buerstmayr, Hermann; Mayer, Klaus F X; Kugler, Karl G; Schweiger, Wolfgang

    2015-10-04

    Fusarium head blight is a prevalent disease of bread wheat (Triticum aestivum L.), which leads to considerable losses in yield and quality. Quantitative resistance to the causative fungus Fusarium graminearum is poorly understood. We integrated transcriptomics and metabolomics data to dissect the molecular response to the fungus and its main virulence factor, the toxin deoxynivalenol in near-isogenic lines segregating for two resistance quantitative trait loci, Fhb1 and Qfhs.ifa-5A. The data sets portrait rearrangements in the primary metabolism and the translational machinery to counter the fungus and the effects of the toxin and highlight distinct changes in the metabolism of glutamate in lines carrying Qfhs.ifa-5A. These observations are possibly due to the activity of two amino acid permeases located in the quantitative trait locus confidence interval, which may contribute to increased pathogen endurance. Mapping to the highly resolved region of Fhb1 reduced the list of candidates to few genes that are specifically expressed in presence of the quantitative trait loci and in response to the pathogen, which include a receptor-like protein kinase, a protein kinase, and an E3 ubiquitin-protein ligase. On a genome-scale level, the individual subgenomes of hexaploid wheat contribute differentially to defense. In particular, the D subgenome exhibited a pronounced response to the pathogen and contributed significantly to the overall defense response.

  3. The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat.

    PubMed

    Uauy, Cristobal; Brevis, Juan Carlos; Dubcovsky, Jorge

    2006-01-01

    High grain protein content (GPC) is a frequent target of wheat breeding programmes because of its positive effect on bread and pasta quality. A wild wheat allele at the Gpc-B1 locus with a significant impact on this trait was identified previously. The precise mapping of several senescence-related traits in a set of tetraploid recombinant substitution lines (RSLs) segregating for Gpc-B1 is reported here. Flag leaf chlorophyll degradation, change in peduncle colour, and spike water content were completely linked to the Gpc-B1 locus and to the differences in GPC within a 0.3 cM interval corresponding to a physical distance of only 250 kb. The effect of Gpc-B1 was also examined in different environments and genetic backgrounds using a set of tetraploid and hexaploid pairs of isogenic lines. The results were consistent with those observed in the RSLs. The high GPC allele conferred a shorter duration of grain fill due to earlier flag leaf senescence and increased GPC in all four genetic backgrounds. The effect on grain size was more variable, depending on the genotype-environment combinations. These results are consistent with a model in which the wild-type allele of Gpc-B1 accelerates senescence in flag leaves producing pleiotropic effects on nitrogen remobilization, total GPC, and grain size. PMID:16831844

  4. [Demographic pressure and extension of new cultures: difficult adaptation. The case of the wheat-growing culture of highland Byumba].

    PubMed

    Rutaganda, T

    1993-04-01

    Results of a 1990 survey are the basis for a discussion of the spread of wheat cultivation in the Byumba highlands of Rwanda. The highlands are among the most densely populated areas of Rwanda, with an estimated 370 persons per sq km compared to the national average of 272. The region offers ideal temperature and rainfall conditions for wheat cultivation. 76% of the cultivable lands of the region are considered suitable for wheat. Wheat is among crops that Rwanda would like to produce internally in greater quantity to reduce import requirements. Population pressure has led to division of plots, so that at present, 57.3% of households have less than 1 hectare of land. Dispersion of plots has also become a problem. A wide variety of crops in addition to wheat are cultivated in the Byumba highlands. The number of hectares devoted to wheat has increased from 140 in 1983 to 2902 in 1990. The increase is due to the growing number of cultivators growing a small amount of wheat rather than to increased size of production units. 68% of wheat cultivators harvested less than 200 kg in 1990. The subsistence nature of most agriculture in the Byumba highlands has limited the spread of wheat cultivation, as households seek to produce an adequate and varied food supply for their own consumption. The small size of holdings has limited the feasibility of technical advances in wheat cultivation for local growers. Many households devote space to crops such as sweet potatoes that do not produce well at their relatively high altitudes. Encouraging greater cultivation of wheat will require an improved marketing system and a sufficiently high price to allow growers to purchase the foodstuffs they forego planting. Steps should be taken to limit the division of land holdings and to improve cultivation techniques. It will be necessary as well to limit population growth through family planning in order to lessen demographic pressure on the limited cultivable lands.

  5. An Efficient Approach for the Development of Locus Specific Primers in Bread Wheat (Triticum aestivum L.) and Its Application to Re-Sequencing of Genes Involved in Frost Tolerance.

    PubMed

    Babben, Steve; Perovic, Dragan; Koch, Michael; Ordon, Frank

    2015-01-01

    Recent declines in costs accelerated sequencing of many species with large genomes, including hexaploid wheat (Triticum aestivum L.). Although the draft sequence of bread wheat is known, it is still one of the major challenges to developlocus specific primers suitable to be used in marker assisted selection procedures, due to the high homology of the three genomes. In this study we describe an efficient approach for the development of locus specific primers comprising four steps, i.e. (i) identification of genomic and coding sequences (CDS) of candidate genes, (ii) intron- and exon-structure reconstruction, (iii) identification of wheat A, B and D sub-genome sequences and primer development based on sequence differences between the three sub-genomes, and (iv); testing of primers for functionality, correct size and localisation. This approach was applied to single, low and high copy genes involved in frost tolerance in wheat. In summary for 27 of these genes for which sequences were derived from Triticum aestivum, Triticum monococcum and Hordeum vulgare, a set of 119 primer pairs was developed and after testing on Nulli-tetrasomic (NT) lines, a set of 65 primer pairs (54.6%), corresponding to 19 candidate genes, turned out to be specific. Out of these a set of 35 fragments was selected for validation via Sanger's amplicon re-sequencing. All fragments, with the exception of one, could be assigned to the original reference sequence. The approach presented here showed a much higher specificity in primer development in comparison to techniques used so far in bread wheat and can be applied to other polyploid species with a known draft sequence.

  6. An Efficient Approach for the Development of Locus Specific Primers in Bread Wheat (Triticum aestivum L.) and Its Application to Re-Sequencing of Genes Involved in Frost Tolerance

    PubMed Central

    Babben, Steve; Perovic, Dragan; Koch, Michael; Ordon, Frank

    2015-01-01

    Recent declines in costs accelerated sequencing of many species with large genomes, including hexaploid wheat (Triticum aestivum L.). Although the draft sequence of bread wheat is known, it is still one of the major challenges to developlocus specific primers suitable to be used in marker assisted selection procedures, due to the high homology of the three genomes. In this study we describe an efficient approach for the development of locus specific primers comprising four steps, i.e. (i) identification of genomic and coding sequences (CDS) of candidate genes, (ii) intron- and exon-structure reconstruction, (iii) identification of wheat A, B and D sub-genome sequences and primer development based on sequence differences between the three sub-genomes, and (iv); testing of primers for functionality, correct size and localisation. This approach was applied to single, low and high copy genes involved in frost tolerance in wheat. In summary for 27 of these genes for which sequences were derived from Triticum aestivum, Triticum monococcum and Hordeum vulgare, a set of 119 primer pairs was developed and after testing on Nulli-tetrasomic (NT) lines, a set of 65 primer pairs (54.6%), corresponding to 19 candidate genes, turned out to be specific. Out of these a set of 35 fragments was selected for validation via Sanger's amplicon re-sequencing. All fragments, with the exception of one, could be assigned to the original reference sequence. The approach presented here showed a much higher specificity in primer development in comparison to techniques used so far in bread wheat and can be applied to other polyploid species with a known draft sequence. PMID:26565976

  7. Brazil wheat yield covariance model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate wheat yields for the wheat growing states of Rio Grande do Sul, Parana, and Santa Catarina in Brazil. The meteorological data of these three states were pooled and the years 1972 to 1979 were used to develop the model since there was no technological trend in the yields during these years. Predictor variables were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature.

  8. Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran.

    PubMed

    Bannayan, M; Mansoori, H; Rezaei, E Eyshi

    2014-04-01

    Wheat is the main food for the majority of Iran's population. Precise estimation of wheat yield change in future is essential for any possible revision of management strategies. The main objective of this study was to evaluate the effects of climate change, CO2 concentration, technology development and their integrated effects on wheat production under future climate change. This study was performed under two scenarios of the IPCC Special Report on Emission Scenarios (SRES): regional economic (A2) and global environmental (B1). Crop production was projected for three future time periods (2020, 2050 and 2080) in comparison with a baseline year (2005) for Khorasan province located in the northeast of Iran. Four study locations in the study area included Mashhad, Birjand, Bojnourd and Sabzevar. The effect of technology development was calculated by fitting a regression equation between the observed wheat yields against historical years considering yield potential increase and yield gap reduction as technology development. Yield relative increase per unit change of CO2 concentration (1 ppm(-1)) was considered 0.05 % and was used to implement the effect of elevated CO2. The HadCM3 general circulation model along with the CSM-CERES-Wheat crop model were used to project climate change effects on wheat crop yield. Our results illustrate that, among all the factors considered, technology development provided the highest impact on wheat yield change. Highest wheat yield increase across all locations and time periods was obtained under the A2 scenario. Among study locations, Mashhad showed the highest change in wheat yield. Yield change compared to baseline ranged from -28 % to 56 % when the integration of all factors was considered across all locations. It seems that achieving higher yield of wheat in future may be expected in northeast Iran assuming stable improvements in production technology.

  9. Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran

    NASA Astrophysics Data System (ADS)

    Bannayan, M.; Mansoori, H.; Rezaei, E. Eyshi

    2014-04-01

    Wheat is the main food for the majority of Iran's population. Precise estimation of wheat yield change in future is essential for any possible revision of management strategies. The main objective of this study was to evaluate the effects of climate change, CO2 concentration, technology development and their integrated effects on wheat production under future climate change. This study was performed under two scenarios of the IPCC Special Report on Emission Scenarios (SRES): regional economic (A2) and global environmental (B1). Crop production was projected for three future time periods (2020, 2050 and 2080) in comparison with a baseline year (2005) for Khorasan province located in the northeast of Iran. Four study locations in the study area included Mashhad, Birjand, Bojnourd and Sabzevar. The effect of technology development was calculated by fitting a regression equation between the observed wheat yields against historical years considering yield potential increase and yield gap reduction as technology development. Yield relative increase per unit change of CO2 concentration (1 ppm-1) was considered 0.05 % and was used to implement the effect of elevated CO2. The HadCM3 general circulation model along with the CSM-CERES-Wheat crop model were used to project climate change effects on wheat crop yield. Our results illustrate that, among all the factors considered, technology development provided the highest impact on wheat yield change. Highest wheat yield increase across all locations and time periods was obtained under the A2 scenario. Among study locations, Mashhad showed the highest change in wheat yield. Yield change compared to baseline ranged from -28 % to 56 % when the integration of all factors was considered across all locations. It seems that achieving higher yield of wheat in future may be expected in northeast Iran assuming stable improvements in production technology.

  10. Genetic evidence for differential selection of grain and embryo weight during wheat evolution under domestication.

    PubMed

    Golan, Guy; Oksenberg, Adi; Peleg, Zvi

    2015-09-01

    Wheat is one of the Neolithic founder crops domesticated ~10 500 years ago. Following the domestication episode, its evolution under domestication has resulted in various genetic modifications. Grain weight, embryo weight, and the interaction between those factors were examined among domesticated durum wheat and its direct progenitor, wild emmer wheat. Experimental data show that grain weight has increased over the course of wheat evolution without any parallel change in embryo weight, resulting in a significantly reduced (30%) embryo weight/grain weight ratio in domesticated wheat. The genetic factors associated with these modifications were further investigated using a population of recombinant inbred substitution lines that segregated for chromosome 2A. A cluster of loci affecting grain weight and shape was identified on the long arm of chromosome 2AL. Interestingly, a novel locus controlling embryo weight was mapped on chromosome 2AS, on which the wild emmer allele promotes heavier embryos and greater seedling vigour. To the best of our knowledge, this is the first report of a QTL for embryo weight in wheat. The results suggest a differential selection of grain and embryo weight during the evolution of domesticated wheat. It is argued that conscious selection by early farmers favouring larger grains and smaller embryos appears to have resulted in a significant change in endosperm weight/embryo weight ratio in the domesticated wheat. Exposing the genetic factors associated with endosperm and embryo size improves our understanding of the evolutionary dynamics of wheat under domestication and is likely to be useful for future wheat-breeding efforts.

  11. Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran.

    PubMed

    Bannayan, M; Mansoori, H; Rezaei, E Eyshi

    2014-04-01

    Wheat is the main food for the majority of Iran's population. Precise estimation of wheat yield change in future is essential for any possible revision of management strategies. The main objective of this study was to evaluate the effects of climate change, CO2 concentration, technology development and their integrated effects on wheat production under future climate change. This study was performed under two scenarios of the IPCC Special Report on Emission Scenarios (SRES): regional economic (A2) and global environmental (B1). Crop production was projected for three future time periods (2020, 2050 and 2080) in comparison with a baseline year (2005) for Khorasan province located in the northeast of Iran. Four study locations in the study area included Mashhad, Birjand, Bojnourd and Sabzevar. The effect of technology development was calculated by fitting a regression equation between the observed wheat yields against historical years considering yield potential increase and yield gap reduction as technology development. Yield relative increase per unit change of CO2 concentration (1 ppm(-1)) was considered 0.05 % and was used to implement the effect of elevated CO2. The HadCM3 general circulation model along with the CSM-CERES-Wheat crop model were used to project climate change effects on wheat crop yield. Our results illustrate that, among all the factors considered, technology development provided the highest impact on wheat yield change. Highest wheat yield increase across all locations and time periods was obtained under the A2 scenario. Among study locations, Mashhad showed the highest change in wheat yield. Yield change compared to baseline ranged from -28 % to 56 % when the integration of all factors was considered across all locations. It seems that achieving higher yield of wheat in future may be expected in northeast Iran assuming stable improvements in production technology. PMID:23397072

  12. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as...

  13. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as...

  14. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as...

  15. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as...

  16. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as...

  17. Cadmium minimization in wheat: A critical review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Abbas, Tahir; Zia-Ur-Rehman, Muhammad; Hannan, Fakhir; Keller, Catherine; Al-Wabel, Mohammad I; Ok, Yong Sik

    2016-08-01

    Cadmium (Cd) accumulation in wheat (Triticum aestivum L.) and its subsequent transfer to food chain is a major environmental issue worldwide. Understanding wheat response to Cd stress and its management for aiming to reduce Cd uptake and accumulation in wheat may help to improve wheat growth and grain quality. This paper reviewed the toxic effects, tolerance mechanisms, and management of Cd stress in wheat. It was concluded that Cd decreased germination, growth, mineral nutrients, photosynthesis and grain yield of wheat and plant response to Cd toxicity varies with cultivars, growth conditions and duration of stress applied. Cadmium caused oxidative stress and genotoxicity in wheat plants. Stimulation of antioxidant defense system, osmoregulation, ion homeostasis and over production of signalling molecules are important adaptive strategies of wheat under Cd stress. Exogenous application of plant growth regulators, inorganic amendments, proper fertilization, silicon, and organic, manures and biochar, amendments are commonly used for the reduction of Cd uptake in wheat. Selection of low Cd-accumulating wheat cultivars, crop rotation, soil type, and exogenous application of microbes are among the other agronomic practices successfully employed in reducing Cd uptake by wheat. These management practices could enhance wheat tolerance to Cd stress and reduce the transfer of Cd to the food chain. However, their long-term sustainability in reducing Cd uptake by wheat needs further assessment. PMID:27062345

  18. Cadmium minimization in wheat: A critical review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Abbas, Tahir; Zia-Ur-Rehman, Muhammad; Hannan, Fakhir; Keller, Catherine; Al-Wabel, Mohammad I; Ok, Yong Sik

    2016-08-01

    Cadmium (Cd) accumulation in wheat (Triticum aestivum L.) and its subsequent transfer to food chain is a major environmental issue worldwide. Understanding wheat response to Cd stress and its management for aiming to reduce Cd uptake and accumulation in wheat may help to improve wheat growth and grain quality. This paper reviewed the toxic effects, tolerance mechanisms, and management of Cd stress in wheat. It was concluded that Cd decreased germination, growth, mineral nutrients, photosynthesis and grain yield of wheat and plant response to Cd toxicity varies with cultivars, growth conditions and duration of stress applied. Cadmium caused oxidative stress and genotoxicity in wheat plants. Stimulation of antioxidant defense system, osmoregulation, ion homeostasis and over production of signalling molecules are important adaptive strategies of wheat under Cd stress. Exogenous application of plant growth regulators, inorganic amendments, proper fertilization, silicon, and organic, manures and biochar, amendments are commonly used for the reduction of Cd uptake in wheat. Selection of low Cd-accumulating wheat cultivars, crop rotation, soil type, and exogenous application of microbes are among the other agronomic practices successfully employed in reducing Cd uptake by wheat. These management practices could enhance wheat tolerance to Cd stress and reduce the transfer of Cd to the food chain. However, their long-term sustainability in reducing Cd uptake by wheat needs further assessment.

  19. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham buns...”, “graham bread”, “entire wheat bread”, “whole wheat rolls”, “graham rolls”, “entire wheat rolls”,...

  20. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    NASA Astrophysics Data System (ADS)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  1. Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt.

    PubMed

    Mahmoud, Amer F

    2016-04-01

    Fusarium graminearum Schwabe causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and other cereal crops. Twelve isolates of F. graminearum were collected from naturally infected spikes of wheat from Assiut Egypt. These isolates were compared using SRAP. The results indicated distinct genetic groups exist within F. graminearum, and demonstrated that these groups have different biological properties, especially with respect to their pathogenicity on wheat. There were biologically significant differences between the groups; with group (B) isolates being more aggressive towards wheat than groups (A) and (C). Furthermore, Trichoderma harzianum (Rifai) and Bacillus subtilis (Ehrenberg) which isolated from wheat kernels were screened for antagonistic activity against F. graminearum. They significantly reduced the growth of F. graminearum colonies in culture. In order to gain insight into biological control effect in situ, highly antagonistic isolates of T. harzianum and B. subtilis were selected, based on their in vitro effectiveness, for greenhouse test. It was revealed that T. harzianum and B. subtilis significantly reduced FHB severity. The obtained results indicated that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in FHB and should be harnessed for further biocontrol applications. The accurate analysis of genetic variation and studies of population structures have significant implications for understanding the genetic traits and disease control programs in wheat. This is the first known report of the distribution and genetic variation of F. graminearum on wheat spikes in Assiut Egypt. PMID:27147934

  2. Molecular characterization of Fusarium globosum strains from South African maize and Japanese wheat.

    PubMed

    Moses, Lorraine M; Marasas, Walter F O; Vismer, Hester F; De Vos, Lieschen; Rheeder, John P; Proctor, Robert H; Wingfield, Brenda D

    2010-10-01

    The fungus Fusarium globosum was first isolated from maize in South Africa and subsequently from wheat in Japan. Here, multiple analyses revealed that, despite morphological similarities, South African maize and Japanese wheat isolates of the fungus exhibit multiple differences. An amplified fragment length polymorphism-based similarity index for the two groups of isolates was only 45%. Most maize isolates produced relatively high levels of fumonisins, whereas wheat isolates produced little or no fumonisins. The fumonisin biosynthetic gene FUM1 was detected in maize isolates by Southern blot analysis but not in the wheat isolates. In addition, most of the maize isolates produced sclerotia, and all of them produced large orange to dark purple sporodochia in carrot agar culture, whereas wheat isolates did not produce either structure. In contrast, individual isolates from both maize and wheat carried markers for both mating type idiomorphs, which indicates that the fungus may be homothallic. However, a sexual stage of F. globosum was not formed under standard self-fertilization conditions developed for other homothallic species of Fusarium. The inability to produce the sexual stage is consistent with the high similarity of 87-100% and G (ST) index of 1.72 for the maize isolates, which suggests that these isolates are undergoing asexual but not sexual reproduction. Together, the results suggest that the South African maize and Japanese wheat isolates of F. globosum are distinct populations and could be different species.

  3. Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt

    PubMed Central

    Mahmoud, Amer F.

    2016-01-01

    Fusarium graminearum Schwabe causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and other cereal crops. Twelve isolates of F. graminearum were collected from naturally infected spikes of wheat from Assiut Egypt. These isolates were compared using SRAP. The results indicated distinct genetic groups exist within F. graminearum, and demonstrated that these groups have different biological properties, especially with respect to their pathogenicity on wheat. There were biologically significant differences between the groups; with group (B) isolates being more aggressive towards wheat than groups (A) and (C). Furthermore, Trichoderma harzianum (Rifai) and Bacillus subtilis (Ehrenberg) which isolated from wheat kernels were screened for antagonistic activity against F. graminearum. They significantly reduced the growth of F. graminearum colonies in culture. In order to gain insight into biological control effect in situ, highly antagonistic isolates of T. harzianum and B. subtilis were selected, based on their in vitro effectiveness, for greenhouse test. It was revealed that T. harzianum and B. subtilis significantly reduced FHB severity. The obtained results indicated that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in FHB and should be harnessed for further biocontrol applications. The accurate analysis of genetic variation and studies of population structures have significant implications for understanding the genetic traits and disease control programs in wheat. This is the first known report of the distribution and genetic variation of F. graminearum on wheat spikes in Assiut Egypt. PMID:27147934

  4. Technological properties of bakers' yeasts in durum wheat semolina dough.

    PubMed

    Giannone, Virgilio; Longo, Chiara; Damigella, Arcangelo; Raspagliesi, Domenico; Spina, Alfio; Palumbo, Massimo

    2010-04-01

    Properties of 13 Saccharomyces cerevisiae strains isolated from different sources (traditional sourdoughs, industrial baking yeasts etc.) were studied in dough produced with durum wheat (Sicilian semolina, variety Mongibello). Durum wheat semolina and durum wheat flour are products prepared from grain of durum wheat (Triticum durum Desf.) by grinding or milling processes in which the bran and germ are essentially removed and the remainder is comminuted to a suitable degree of fineness. Acidification and leavening properties of the dough were evaluated. Strains isolated from traditional sourdoughs (DSM PST18864, DSM PST18865 and DSM PST18866) showed higher leavening power, valuable after the first and second hours of fermentation, than commercial baking yeasts. In particular the strain DSM PST 18865 has also been successfully tested in bakery companies for the improvement of production processes. Baking and staling tests were carried out on five yeast strains to evaluate their fermentation ability directly and their resistance to the staling process. Amplified fragment length polymorphism (fAFLP) was used to investigate genetic variations in the yeast strains. This study showed an appreciable biodiversity in the microbial populations of both wild and commercial yeast strains.

  5. Trichothecene genotypes of Fusarium graminearum from wheat in Uruguay.

    PubMed

    Pan, Dinorah; Calero, Natalia; Mionetto, Ana; Bettucci, Lina

    2013-03-01

    Gibberella zeae (Schwein.) Petch (anamorph F. graminearum Schwabe) is the primary causal agent of FHB of wheat in Uruguay. In the last decade, F. graminearum has produced destructive epidemics on wheat in Uruguay, causing yield losses and price discounts due to reduced seed quality. Strains of F. graminearum clade usually express one of three strain-specific profiles of trichothecene metabolites: nivalenol and its acetylated derivatives (NIV chemotype), deoxynivalenol and 3-acetyldeoxynivalenol (3-AcDON chemotype), or deoxynivalenol and 15-acetyldeoxynivalenol (15-AcDON chemotype). A multiplex PCR assay of Tri3, Tri5, and Tri7 was used to determine the trichothecene genotype of 111 strains of F. graminearum collected during 2003 and 2009 growing seasons from fields located in the major wheat production area of Uruguay. The result showed that all except one of the isolates were of DON genotype, with the remainder of NIV genotype in years 2003 and 2009. All strains with the DON genotype were also of the 15-AcDON genotype in 2003 and nearly all (45/50) in 2009. No DON/3-AcDON genotypes were found in either growing season. No potential shifts in the populations were found in the trichothecene genotypes between 2003 and the 2009 epidemic FHB harvest seasons. This study provides the first data on trichothecene genotypes of F. graminearum strains isolated from wheat in Uruguay and add to the current regional knowledge of trichothecene genotypes.

  6. A genetic strategy generating wheat with very high amylose content.

    PubMed

    Regina, Ahmed; Berbezy, Pierre; Kosar-Hashemi, Behjat; Li, Suzhi; Cmiel, Mark; Larroque, Oscar; Bird, Anthony R; Swain, Steve M; Cavanagh, Colin; Jobling, Stephen A; Li, Zhongyi; Morell, Matthew

    2015-12-01

    Resistant starch (RS), a type of dietary fibre, plays an important role in human health; however, the content of RS in most modern processed starchy foods is low. Cereal starch, when structurally manipulated through a modified starch biosynthetic pathway to greatly increase the amylose content, could be an important food source of RS. Transgenic studies have previously revealed the requirement of simultaneous down-regulation of two starch branching enzyme (SBE) II isoforms both located on the long arm of chromosome 2, namely SBEIIa and SBEIIb, to elevate the amylose content in wheat from ~25% to ~75%. The current study revealed close proximity of genes encoding SBEIIa and SBEIIb isoforms in wheat with a genetic distance of 0.5 cM on chromosome 2B. A series of deletion and single nucleotide polymorphism (SNP) loss of function alleles in SBEIIa, SBEIIb or both was isolated from two different wheat populations. A breeding strategy to combine deletions and SNPs generated wheat genotypes with altered expression levels of SBEIIa and SBEIIb, elevating the amylose content to an unprecedented ~85%, with a marked concomitant increase in RS content. Biochemical assays were used to confirm the complete absence in the grain of expression of SBEIIa from all three genomes in combination with the absence of SBEIIb from one of the genomes.

  7. Stress-induced changes in wheat grain composition and quality.

    PubMed

    Ashraf, M

    2014-01-01

    Abiotic stresses such as drought, salinity, waterlogging, and high temperature cause a myriad of changes in the metabolism of plants, and there is a lot of overlap in these changes in plants in response to different stresses such as drought and salinity. These stress-induced metabolic changes cause impaired crop growth thereby resulting in poor yield. The metabolic changes taking place in several plant species due to a particular abiotic stress have been revealed from the whole plant to the molecular level by researchers, but most studies have focused on organs such as leaf, stem, and root. Information on such stress-induced changes in seed or grains is infrequent in the literature. From the information that is available, it is now evident that abiotic stress can induce considerable changes in the composition and quality of cereal grains including those of wheat, the premier staple food crop in the world. Thus, the present review discusses how far different types of stresses, mainly salinity, drought, high temperature, and waterlogging, can alter the wheat grain composition and quality. By fully uncovering the stress-induced changes in the nutritional values of wheat grains it would be possible to establish whether balanced supplies of essential nutrients are available to the human population from the wheat crop grown on stress-affected areas.

  8. Associations of wheat with pea can reduce aphid infestations.

    PubMed

    Lopes, T; Bodson, B; Francis, F

    2015-06-01

    Increasing plant diversity within crops can be beneficial for pest control. In this field study, the effects of two wheat and pea associations (mixed cropping and strip cropping) on aphid populations were compared with pure stands of both crops by observations on tillers and plants. Pea was more susceptible to infestations than wheat. As expected, the density of aphid colonies was significantly higher in pure stands during the main occurrence periods, compared with associations. Additionally, flying beneficials, such as not only aphidophagous adult ladybirds but also parasitoid, hoverfly and lacewing species that feed on aphids at the larval stage, were monitored using yellow pan traps. At specific times of the sampling season, ladybirds and hoverflies were significantly more abundant in the pure stand of pea and wheat, respectively, compared with associations. Few parasitoids and lacewings were trapped. This study showed that increasing plant diversity within crops by associating cultivated species can reduce aphid infestations, since host plants are more difficult to locate. However, additional methods are needed to attract more efficiently adult beneficials into wheat and pea associations. PMID:26013274

  9. Registration of 'UI Stone' spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soft white spring wheat (Triticum aestivumL.) is an important wheat class being used in domestic and international markets, especially in Idaho and Pacific Northwest (PNW). The objective of this study was to develop a SWS wheat cultivar with high grain yield, desirable end-use quality, and resistanc...

  10. Sequence diversity of wheat mosaic virus isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High Plains disease of wheat and maize emerged in the United States in 1993 and its distribution has expanded in subsequent years. Wheat mosaic virus (WMoV), transmitted by eriophyid wheat curl mites (Aceria tosichella) is the causal agent of disease. WMoV and other members of the genus Emaravirus...

  11. Registration of ‘Babe’ wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soft white wheat (Triticum aestivum L.) is the predominant market class of wheat produced in the Pacific Northwest of the United States. Stripe rust (caused by Puccinia striiformis Westend f. sp. tritici) is a major foliar fungal disease problem for wheat cultivars grown in the region. The objective...

  12. Growing Wheat. People on the Farm.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC. Office of Governmental and Public Affairs.

    This booklet, one in a series about life on modern farms, describes the daily life of the Don Riffel family, wheat farmers in Kansas. Beginning with early morning, the booklet traces the family's activities through a typical harvesting day in July, while explaining how a wheat farm is run. The booklet also briefly describes the wheat growing…

  13. The value of wheat landraces (Editorial)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whether man was domesticated by wheat, or wheat was domesticated by man is but two faces of the same coin; both incidents marked a turning point in human history and led to the emergence of human civilization in the Fertile Crescent of the Old World. The complex history of wheat domestication from i...

  14. Floral Transformation of Wheat

    NASA Astrophysics Data System (ADS)

    Agarwal, Sujata; Loar, Star; Steber, Camille; Zale, Janice

    A method is described for the floral transformation of wheat using a protocol similar to the floral dip of Arabidopsis. This method does not employ tissue culture of dissected embryos, but instead pre-anthesis spikes with clipped florets at the early, mid to late uninucleate microspore stage are dipped in Agrobacterium infiltration media harboring a vector carrying anthocyanin reporters and the NPTII selectable marker. T1 seeds are examined for color changes induced in the embryo by the anthocyanin reporters. Putatively transformed seeds are germinated and the seedlings are screened for the presence of the NPTII gene based on resistance to paromomycin spray and assayed with NPTII ELISAs. Genomic DNA of putative transformants is digested and analyzed on Southern blots for copy number to determine whether the T-DNA has integrated into the nucleus and to show the number of insertions. The non-optimized transformation efficiencies range from 0.3 to 0.6% (number of transformants/number of florets dipped) but the efficiencies are higher in terms of the number of transformants produced/number of seeds set ranging from 0.9 to 10%. Research is underway to maximize seed set and optimize the protocol by testing different Agrobacterium strains, visual reporters, vectors, and surfactants.

  15. Isolation of a wheat (Triticum aestivum L.) mutant in ABA 8'-hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition.

    PubMed

    Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Kobayashi, Daisuke; Kawakami, Naoto

    2013-03-01

    Pre-harvest sprouting, the germination of mature seeds on the mother plant under moist condition, is a serious problem in cereals. To investigate the effect of reduced abscisic acid (ABA) catabolism on germination in hexaploid wheat (Triticum aestivum L.), we cloned the wheat ABA 8'-hydroxyase gene which was highly expressed during seed development (TaABA8'OH1) and screened for mutations that lead to reduced ABA catabolism. In a screen for natural variation, one insertion mutation in exon 5 of TaABA8'OH1 on the D genome (TaABA8'OH1-D) was identified in Japanese cultivars including 'Tamaizumi'. However, a single mutation in TaABA8'OH1-D had no clear effect on germination inhibition in double haploid lines. In a screen for a mutation, one deletion mutant lacking the entire TaABA8'OH1 on the A genome (TaABA8'OH1-A), TM1833, was identified from gamma-ray irradiation lines of 'Tamaizumi'. TM1833 (a double mutant in TaABA8'OH1-A and TaABA8'OH1-D) showed lower TaABA8'OH1 expression, higher ABA content in embryos during seed development under field condition and lower germination than those in 'Tamaizumi' (a single mutant in TaABA8'OH1-D). These results indicate that reduced ABA catabolism through mutations in TaABA8'OH1 may be effective in germination inhibition in field-grown wheat.

  16. Isolation of a wheat (Triticum aestivum L.) mutant in ABA 8′-hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition

    PubMed Central

    Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Kobayashi, Daisuke; Kawakami, Naoto

    2013-01-01

    Pre-harvest sprouting, the germination of mature seeds on the mother plant under moist condition, is a serious problem in cereals. To investigate the effect of reduced abscisic acid (ABA) catabolism on germination in hexaploid wheat (Triticum aestivum L.), we cloned the wheat ABA 8′-hydroxyase gene which was highly expressed during seed development (TaABA8′OH1) and screened for mutations that lead to reduced ABA catabolism. In a screen for natural variation, one insertion mutation in exon 5 of TaABA8′OH1 on the D genome (TaABA8′OH1-D) was identified in Japanese cultivars including ‘Tamaizumi’. However, a single mutation in TaABA8′OH1-D had no clear effect on germination inhibition in double haploid lines. In a screen for a mutation, one deletion mutant lacking the entire TaABA8′OH1 on the A genome (TaABA8′OH1-A), TM1833, was identified from gamma-ray irradiation lines of ‘Tamaizumi’. TM1833 (a double mutant in TaABA8′OH1-A and TaABA8′OH1-D) showed lower TaABA8′OH1 expression, higher ABA content in embryos during seed development under field condition and lower germination than those in ‘Tamaizumi’ (a single mutant in TaABA8′OH1-D). These results indicate that reduced ABA catabolism through mutations in TaABA8′OH1 may be effective in germination inhibition in field-grown wheat. PMID:23641187

  17. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

    PubMed Central

    Wang, Shichen; Wong, Debbie; Forrest, Kerrie; Allen, Alexandra; Chao, Shiaoman; Huang, Bevan E; Maccaferri, Marco; Salvi, Silvio; Milner, Sara G; Cattivelli, Luigi; Mastrangelo, Anna M; Whan, Alex; Stephen, Stuart; Barker, Gary; Wieseke, Ralf; Plieske, Joerg; International Wheat Genome Sequencing Consortium; Lillemo, Morten; Mather, Diane; Appels, Rudi; Dolferus, Rudy; Brown-Guedira, Gina; Korol, Abraham; Akhunova, Alina R; Feuillet, Catherine; Salse, Jerome; Morgante, Michele; Pozniak, Curtis; Luo, Ming-Cheng; Dvorak, Jan; Morell, Matthew; Dubcovsky, Jorge; Ganal, Martin; Tuberosa, Roberto; Lawley, Cindy; Mikoulitch, Ivan; Cavanagh, Colin; Edwards, Keith J; Hayden, Matthew; Akhunov, Eduard

    2014-01-01

    High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker–trait associations in mapping experiments. We developed a genotyping array including about 90 000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence–absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat. PMID:24646323

  18. [Seed bacterization and rhizosphere of wheat seedlings colonization by Bacillus Cohn].

    PubMed

    Kus'mina, L Iu; Melent'ev, A I

    2003-01-01

    The dynamics of introduced antagonistic bacteria in the spring wheat rhizosphere was studied in small-plot field experiments during several growing seasons. The population density of introduced bacteria was found to considerably depend on the inoculum dose. At sufficiently high inoculum doses, the introduced bacteria remained in the wheat rhizosphere over the entire vegetative period (88-109 days). The maximum population density of introduced bacteria was observed in the early terms of plant development. No correlation was found between the population density of introduced bacteria and the degree of suppression of root rot or the structural crop yield parameters. The beneficial effect of preplanting seed bacterization on wheat plants was, as a rule, profound only during unfavorable growing seasons.

  19. Dissection of genetic factors underlying wheat kernel shape and size in an elite x nonadapted cross using a high density SNP linkage map

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat kernel shape and size has been under selection since early domestication. Kernel morphology is a major consideration in wheat breeding, as it impacts grain yield and quality. A population of 160 recombinant inbred lines (RIL), developed using an elite (ND 705) and a nonadapted genotype (PI 414...

  20. Expression of a Thatcher wheat adult plant stem rust resistance QTL on chromosome arm 2BL is enhanced by Lr34

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An F6 recombinant inbred line (RIL) spring wheat population derived from RL6071, a stem rust susceptible line and RL6058, a backcross line of Thatcher wheat with Lr34 that is highly resistant to stem rust, was evaluated for adult plant stem rust resistance in North Dakota in 1999, and in Kenya in 20...

  1. Characterization of wheat - Psathyrostachys huashanica small segment translocation line with enhanced kernels per spike and stripe rust resistance.

    PubMed

    Kang, Hou-Yang; Zhang, Zhi-Juan; Xu, Li-Li; Qi, Wei-Liang; Tang, Yao; Wang, Hao; Zhu, Wei; Li, Dai-Yan; Zeng, Jian; Wang, Yi; Fan, Xing; Sha, Li-Na; Zhang, Hai-Qin; Zhou, Yong-Hong

    2016-04-01

    Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs), a distant wild relative of common wheat, possesses rich potentially valuable traits, such as disease resistance and more spikelets and kernels per spike, that could be useful for wheat genetic improvement. Development of wheat - P. huashanica translocation lines will facilitate its practical utilization in wheat breeding. In the present study, a wheat - P. huashanica small segmental translocation line, K-13-835-3, was isolated and characterized from the BC1F5 population of a cross between wheat - P. huashanica amphiploid PHW-SA and wheat cultivar CN16. Cytological studies showed that the mean chromosome configuration of K-13-835-3 at meiosis was 2n = 42 = 0.10 I + 19.43 II (ring) + 1.52 II (rod). GISH analyses indicated that chromosome composition of K-13-835-3 included 40 wheat chromosomes and a pair of wheat - P. huashanica translocation chromosomes. FISH results demonstrated that the small segment from an unidentified P. huashanica chromosome was translocated into wheat chromosome arm 5DS, proximal to the centromere region of 5DS. Compared with the cultivar wheat parent CN16, K-13-835-3 was highly resistant to stripe rust pathogens prevalent in China. Furthermore, spikelets and kernels per spike in K-13-835-3 were significantly higher than those of CN16 in two growing seasons. These results suggest that the desirable genes from P. huashanica were successfully transferred into CN16 background. This translocation line could be used as novel germplasm for high-yield and, eventually, resistant cultivar breeding. PMID:26961208

  2. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  3. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  4. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  5. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  6. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  7. Wheat Rusts in the United States in 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2007 90% of wheat stem rust races were QFC and 10% were RCRS Both races are relatively avirulent to wheat cultiars grown in the U.S. Wheat stem rust occurred in scattered locations on research plots of susceptible wheat cultivars in 2007, and did not cause yield loss. Wheat leaf rust was widespr...

  8. Diseases Which Challenge Global Wheat Production - The Cereal Rusts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rusts of wheat are common and widespread diseases in the US and throughout the world. Wheat rusts have been important throughout the history of wheat cultivation and are currently important diseases that are responsible for regularly occurring yield losses in wheat. The wheat rust fungi are obli...

  9. Lysine fortification of wheat flour improves selected indices of the nutritional status of predominantly cereal-eating families in Pakistan.

    PubMed

    Hussain, Tajammal; Abbas, Shaid; Khan, Mushtaq A; Scrimshaw, Nevin S

    2004-06-01

    Wheat provides more than 50% of the protein and calorie intake of the population of Pakistan. Legumes and animal protein that could complement the amino acid pattern of wheat, in which lysine is the first limiting amino acid for utilization of protein, are not affordable by members of lower socioeconomic groups in developing countries. The purpose of the study was to determine whether lysine fortification of wheat flour would have a positive impact on populations consuming a predominantly wheat-based diet. A double-blind study was carried out for three months on the outskirts of Peshawar, Pakistan. Forty families received wheat flour fortified with lysine, and 40 families received wheat flour without lysine. Wheat provided 59% of the protein for men, 65% for women, and 58% for children. The weight and height of the children in both groups increased during the study, but the increase was significantly greater in the lysine group. Hemoglobin increased significantly in the women receiving lysine-fortified flour. Transferrin levels increased significantly in men, women, and children in the lysine group as compared with those in the control group. Prealbumin increased significantly in adults receiving additional lysine but decreased in children. Men, women, and children in the lysine-supplemented families had significant increases in CD4, CD8, and complement C3 as compared with controls. These results indicate that lysine fortification of wheat flour can significantly improve sensitive indicators of nutritional status in a population consuming a diet in which 58% to 65% of the protein, depending on age and sex, is supplied by wheat.

  10. Registration of 'Red Ruby' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Red Ruby’ soft red winter wheat (Triticum aestivum L.) was developed by the Michigan Agricultural Experiment Station and released in 2007 via an exclusive licensing agreement through Michigan State University (MSU) Technologies. Red Ruby was selected from the cross Pioneer ‘2552’/Pioneer ‘2737W’ ma...

  11. Adapting wheat to uncertain future

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Stratonovitch, Pierre

    2015-04-01

    This study describes integration of climate change projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble with the LARS-WG weather generator, which delivers an attractive option for downscaling of large-scale climate projections from global climate models (GCMs) to local-scale climate scenarios for impact assessments. A subset of 18 GCMs from the CMIP5 ensemble and 2 RCPs, RCP4.5 and RCP8.5, were integrated with LARS-WG. Climate sensitivity indexes for temperature and precipitation were computed for all GCMs and for 21 regions in the world. For computationally demanding impact assessments, where it is not practical to explore all possible combinations of GCM × RCP, climate sensitivity indexes could be used to select a subset of GCMs from CMIP5 with contrasting climate sensitivity. This would allow to quantify uncertainty in impacts resulting from the CMIP5 ensemble by conducting fewer simulation experiments. As an example, an in silico design of wheat ideotype optimised for future climate scenarios in Europe was described. Two contrasting GCMs were selected for the analysis, "hot" HadGEM2-ES and "cool" GISS-E2-R-CC, along with 2 RCPs. Despite large uncertainty in climate projections, several wheat traits were identified as beneficial for the high-yielding wheat ideotypes that could be used as targets for wheat improvement by breeders.

  12. Registration of TAM401 wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'TAM 401', a hard red winter wheat (Triticum aestivum L) cultivar (PI658500) with experimental designation TX03M1096, was developed and released by Texas AgriLife Research in 2008. TAM 401 is an F4 derived line from the cross 'Mason' (PI 594044)/'Jagger' (PI593688). TAM 401 is an early maturing apic...

  13. Reinforcement Effect of Alkali-Hydrolyzed Wheat Gluten and Shear-Degraded Wheat Starch in Carboxylated Styrene-Butadiene Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  14. Sex pheromone of orange wheat blossom midge, Sitodiplosis mosellana

    NASA Astrophysics Data System (ADS)

    Gries, Regine; Gries, G.; Khaskin, Grigori; King, Skip; Olfert, Owen; Kaminski, Lori-Ann; Lamb, Robert; Bennett, Robb

    Pheromone extract of the female orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (SM) (Diptera: Cecidomyiidae), was analyzed by coupled gas chromatographic-electroantennographic detection (GC-EAD) and GC-mass spectrometry (MS), employing fused silica columns coated with DB-5, DB-210, DB-23 or SP-1000. These analyses revealed a single, EAD-active candidate pheromone which was identified as 2,7-nonanediyl dibutyrate. In experiments in wheat fields in Saskatchewan, traps baited with (2S,7S)-2,7-nonanediyl dibutyrate attracted significant numbers of male SM. The presence of other stereoisomers did not adversely affect trap captures. Facile synthesis of stereoisomeric 2,7-nonanediyl dibutyrate will facilitate the development of pheromone-based monitoring or even control of SM populations.

  15. Genetic structure of Tribolium castaneum (Coleptera: Tenebrionidae) populations in mills

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The red flour beetle, Tribolium castaneum, is primarily found associated with human structures such as wheat and rice mills, which are spatially isolated resource patches with apparently limited immigration that could produce genetically structured populations. We investigated genetic diversity and...

  16. Management of herbicide resistance in wheat cropping systems: learning from the Australian experience.

    PubMed

    Walsh, Michael J; Powles, Stephen B

    2014-09-01

    Herbicide resistance continues to escalate in weed populations infesting global wheat (Triticum aestivum L.) crops, threatening grain production and thereby food supply. Conservation wheat production systems are reliant on the use of efficient herbicides providing low-cost, selective weed control in intensive cropping systems. The resistance-driven loss of herbicide resources combined with limited potential for new herbicide molecules means greater emphasis must be placed on preserving existing herbicides. For more than two decades, since the initial recognition of the dramatic consequences of herbicide resistance, the challenge of introducing additional weed control strategies into herbicide-based weed management programmes has been formidable. Throughout this period, herbicide resistance has expanded unabated across the world's wheat production regions. However, in Australia, where herbicide resources have become desperately depleted, the adoption of harvest weed seed control is evidence, at last, of a successful approach to sustainable weed management in wheat production systems. Growers routinely including strategies to target weed seeds during crop harvest, as part of herbicide-based weed management programmes, are now realising significant weed control and crop production benefits. When combined with an attitude of zero weed tolerance, there is evidence of a sustainable weed control future for wheat production systems. The hard-learned lessons of Australian growers can now be viewed by global wheat producers as an example of how to stop the continual loss of herbicide resources in productive cropping systems.

  17. Characterizing Croatian Wheat Germplasm Diversity and Structure in a European Context by DArT Markers

    PubMed Central

    Novoselović, Dario; Bentley, Alison R.; Šimek, Ruđer; Dvojković, Krešimir; Sorrells, Mark E.; Gosman, Nicolas; Horsnell, Richard; Drezner, Georg; Šatović, Zlatko

    2016-01-01

    Narrowing the genetic base available for future genetic progress is a major concern to plant breeders. In order to avoid this, strategies to characterize and protect genetic diversity in regional breeding pools are required. In this study, 89 winter wheat cultivars released in Croatia between 1936 and 2006 were genotyped using 1,229 DArT (diversity array technology) markers to assess the diversity and population structure. In order to place Croatian breeding pool (CBP) in a European context, Croatian wheat cultivars were compared to 523 European cultivars from seven countries using a total of 166 common DArT markers. The results show higher genetic diversity in the wheat breeding pool from Central Europe (CE) as compared to that from Northern and Western European (NWE) countries. The most of the genetic diversity was attributable to the differences among cultivars within countries. When the geographical criterion (CE vs. NWE) was applied, highly significant difference between regions was obtained that accounted for 16.19% of the total variance, revealing that the CBP represents genetic variation not currently captured in elite European wheat. The current study emphasizes the important contribution made by plant breeders to maintaining wheat genetic diversity and suggests that regional breeding is essential to the maintenance of this diversity. The usefulness of open-access wheat datasets is also highlighted. PMID:26941756

  18. Remote sensing to detect the movement of wheat curl mites through the spatial spread of virus symptoms, and identification of thrips as predators of wheat curl mites

    NASA Astrophysics Data System (ADS)

    Stilwell, Abby R.

    The wheat curl mite (WCM), Aceria tosichella Keifer, transmits three viruses to winter wheat: wheat streak mosaic virus, High Plains virus, and Triticum mosaic virus. This virus complex causes yellowing of the foliage and stunting of plants. WCMs disperse by wind, and an increased understanding of mite movement and subsequent virus spread is necessary in determining the risk of serious virus infections in winter wheat. These risk parameters will help growers make better decisions regarding WCM management. The objectives of this study were to evaluate the capabilities of remote sensing to identify virus infected plants and to establish the potential of using remote sensing to track virus spread and consequently, mite movement. Although the WCM is small and very hard to track, the viruses it vectors produce symptoms that can be detected with remote sensing. Field plots of simulated volunteer wheat were established between 2006 and 2009, infested with WCMs, and spread mites and virus into adjacent winter wheat. The virus gradients created by WCM movement allowed for the measurement of mite movement potential with both proximal and aerial remote sensing instruments. The ability to detect WCM-vectored viruses with remote sensing was investigated by comparing vegetation indices calculated from proximal remote sensing data to ground truth data obtained in the field. Of the ten vegetation indices tested, the red edge position (REP) index had the best relationship with ground truth data. The spatial spread of virus from WCM source plots was modeled with cokriging. Virus symptoms predicted by cokriging occurred in an oval pattern displaced to the southeast. Data from the spatial spread in small plots of this study were used to estimate the potential sphere of influence for volunteer wheat fields. The impact of thrips on WCM populations was investigated by a series of greenhouse, field, and observational studies. WCM populations in winter wheat increased more slowly when

  19. The microgeographical patterns of morphological and molecular variation of a mixed ploidy population in the species complex Actinidia chinensis.

    PubMed

    Liu, Yifei; Li, Dawei; Yan, Ling; Huang, Hongwen

    2015-01-01

    Polyploidy and hybridization are thought to have significant impacts on both the evolution and diversification of the genus Actinidia, but the structure and patterns of morphology and molecular diversity relating to ploidy variation of wild Actinidia plants remain much less understood. Here, we examine the distribution of morphological variation and ploidy levels along geographic and environmental variables of a large mixed-ploidy population of the A. chinensis species complex. We then characterize the extent of both genetic and epigenetic diversity and differentiation exhibited between individuals of different ploidy levels. Our results showed that while there are three ploidy levels in this population, hexaploids were constituted the majority (70.3%). Individuals with different ploidy levels were microgeographically structured in relation to elevation and extent of niche disturbance. The morphological characters examined revealed clear difference between diploids and hexaploids, however tetraploids exhibited intermediate forms. Both genetic and epigenetic diversity were high but the differentiation among cytotypes was weak, suggesting extensive gene flow and/or shared ancestral variation occurred in this population even across ploidy levels. Epigenetic variation was clearly correlated with changes in altitudes, a trend of continuous genetic variation and gradual increase of epigenomic heterogeneities of individuals was also observed. Our results show that complex interactions between the locally microgeographical environment, ploidy and gene flow impact A. chinensis genetic and epigenetic variation. We posit that an increase in ploidy does not broaden the species habitat range, but rather permits A. chinensis adaptation to specific niches.

  20. No significant difference in antigenicity or tissue transglutaminase substrate specificity of Irish and US wheat gliadins.

    PubMed

    Keaveny, A P; Offner, G D; Bootle, E; Nunes, D P

    2000-04-01

    The prevalence of clinical celiac disease has been shown to vary both across time and between genetically similar populations. Differences in wheat antigenicity and transglutaminase substrate properties are a possible explanation for these differences. This study assessed the antigenicity and transglutaminase substrate specificities of gliadins from regions of high and low celiac disease prevalence. Gliadin was extracted from three commercial US wheat sources and two Irish sources. SDS-PAGE and western blotting revealed minor, but significant variations in the gliadin extracts. However, ELISA showed no difference in the antigenicity of these gliadins. Transglutaminase pretreatment of gliadin resulted in no significant change in gliadin antigenicity and kinetic studies showed that the Kms of the various gliadins were very similar. Purified IgA and IgG had no effect on transglutaminase activity. In summary, minor variations in wheat gliadins are unlikely to explain the observed differences in disease expression across genetically similar populations. PMID:10759247

  1. Study of wheat protein based materials

    NASA Astrophysics Data System (ADS)

    Ye, Peng

    Wheat gluten is a naturally occurring protein polymer. It is produced in abundance by the agricultural industry, is biodegradable and very inexpensive (less than $0.50/lb). It has unique viscoelastic properties, which makes it a promising alternative to synthetic plastics. The unplasticized wheat gluten is, however, brittle. Plasticizers such as glycerol are commonly used to give flexibility to the articles made of wheat gluten but with the penalty of greatly reduced stiffness. Former work showed that the brittleness of wheat gluten can also be improved by modifying it with a tri-thiol additive with no penalty of reduced stiffness. However, the cost of the customer designed tri-thiol additive was very high and it was unlikely to make a cost effective material from such an expensive additive. Here we designed a new, inexpensive thiol additive called SHPVA. It was synthesized from polyvinyl alcohol (PVA) through a simple esterification reaction. The mechanical data of the molded wheat gluten/SHPVA material indicated that wheat gluten was toughened by SHPVA. As a control, the wheat gluten/PVA material showed no improvement compared with wheat gluten itself. Several techniques have been used to characterize this novel protein/polymer blend. Differential scanning calorimetric (DSC) study showed two phases in both wheat gluten/PVA and wheat gluten/SHPVA material. However, scanning electron microscope (SEM) pictures indicated that PVA was macroscopically separated from wheat gluten, while wheat gluten/SHPVA had a homogeneous look. The phase image from the atomic force microscope (AFM) gave interesting contrast based on the difference in the mechanical properties of these two phases. The biodegradation behavior of these protein/polymer blends was examined in soil. SHPVA was not degraded in the time period of the experiment. Wheat gluten/SHPVA degraded slower than wheat gluten. We also developed some other interesting material systems based on wheat gluten, including the

  2. A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding.

    PubMed

    Maccaferri, Marco; Ricci, Andrea; Salvi, Silvio; Milner, Sara Giulia; Noli, Enrico; Martelli, Pier Luigi; Casadio, Rita; Akhunov, Eduard; Scalabrin, Simone; Vendramin, Vera; Ammar, Karim; Blanco, Antonio; Desiderio, Francesca; Distelfeld, Assaf; Dubcovsky, Jorge; Fahima, Tzion; Faris, Justin; Korol, Abraham; Massi, Andrea; Mastrangelo, Anna Maria; Morgante, Michele; Pozniak, Curtis; N'Diaye, Amidou; Xu, Steven; Tuberosa, Roberto

    2015-06-01

    Consensus linkage maps are important tools in crop genomics. We have assembled a high-density tetraploid wheat consensus map by integrating 13 data sets from independent biparental populations involving durum wheat cultivars (Triticum turgidum ssp. durum), cultivated emmer (T. turgidum ssp. dicoccum) and their ancestor (wild emmer, T. turgidum ssp. dicoccoides). The consensus map harboured 30 144 markers (including 26 626 SNPs and 791 SSRs) half of which were present in at least two component maps. The final map spanned 2631 cM of all 14 durum wheat chromosomes and, differently from the individual component maps, all markers fell within the 14 linkage groups. Marker density per genetic distance unit peaked at centromeric regions, likely due to a combination of low recombination rate in the centromeric regions and even gene distribution along the chromosomes. Comparisons with bread wheat indicated fewer regions with recombination suppression, making this consensus map valuable for mapping in the A and B genomes of both durum and bread wheat. Sequence similarity analysis allowed us to relate mapped gene-derived SNPs to chromosome-specific transcripts. Dense patterns of homeologous relationships have been established between the A- and B-genome maps and between nonsyntenic homeologous chromosome regions as well, the latter tracing to ancient translocation events. The gene-based homeologous relationships are valuable to infer the map location of homeologs of target loci/QTLs. Because most SNP and SSR markers were previously mapped in bread wheat, this consensus map will facilitate a more effective integration and exploitation of genes and QTL for wheat breeding purposes. PMID:25424506

  3. A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding.

    PubMed

    Maccaferri, Marco; Ricci, Andrea; Salvi, Silvio; Milner, Sara Giulia; Noli, Enrico; Martelli, Pier Luigi; Casadio, Rita; Akhunov, Eduard; Scalabrin, Simone; Vendramin, Vera; Ammar, Karim; Blanco, Antonio; Desiderio, Francesca; Distelfeld, Assaf; Dubcovsky, Jorge; Fahima, Tzion; Faris, Justin; Korol, Abraham; Massi, Andrea; Mastrangelo, Anna Maria; Morgante, Michele; Pozniak, Curtis; N'Diaye, Amidou; Xu, Steven; Tuberosa, Roberto

    2015-06-01

    Consensus linkage maps are important tools in crop genomics. We have assembled a high-density tetraploid wheat consensus map by integrating 13 data sets from independent biparental populations involving durum wheat cultivars (Triticum turgidum ssp. durum), cultivated emmer (T. turgidum ssp. dicoccum) and their ancestor (wild emmer, T. turgidum ssp. dicoccoides). The consensus map harboured 30 144 markers (including 26 626 SNPs and 791 SSRs) half of which were present in at least two component maps. The final map spanned 2631 cM of all 14 durum wheat chromosomes and, differently from the individual component maps, all markers fell within the 14 linkage groups. Marker density per genetic distance unit peaked at centromeric regions, likely due to a combination of low recombination rate in the centromeric regions and even gene distribution along the chromosomes. Comparisons with bread wheat indicated fewer regions with recombination suppression, making this consensus map valuable for mapping in the A and B genomes of both durum and bread wheat. Sequence similarity analysis allowed us to relate mapped gene-derived SNPs to chromosome-specific transcripts. Dense patterns of homeologous relationships have been established between the A- and B-genome maps and between nonsyntenic homeologous chromosome regions as well, the latter tracing to ancient translocation events. The gene-based homeologous relationships are valuable to infer the map location of homeologs of target loci/QTLs. Because most SNP and SSR markers were previously mapped in bread wheat, this consensus map will facilitate a more effective integration and exploitation of genes and QTL for wheat breeding purposes.

  4. Effects of protein in wheat flour on retrogradation of wheat starch.

    PubMed

    Xijun, Lian; Junjie, Guo; Danli, Wang; Lin, Li; Jiaran, Zhu

    2014-08-01

    Albumins, globulins, gliadins, and glutenins were isolated from wheat flour and the effects of those proteins on retrogradation of wheat starch were investigated. The results showed that only glutenins retarded retrogradation of wheat starch and other 3 proteins promoted it. The results of IR spectra proved that no S-S linkage formed during retrogradation of wheat starch blended with wheat proteins. Combination of wheat starch and globulins or gliadins through glucosidic bonds hindered the hydrolysis of wheat starch by α-amylase. The melting peak temperatures of retrograded wheat starch attached to different proteins were 128.46, 126.14, 132.03, 121.65, and 134.84 °C for the control with no protein, albumins, glutenins, globulins, gliadins groups, respectively, and there was no second melting temperature for albumins group. Interaction of wheat proteins and starch in retrograded wheat starch greatly decreased the endothermic enthalpy (△H) of retrograded wheat starch. Retrograded wheat starch bound to gliadins might be a new kind of resistant starch based on glycosidic bond between starch and protein.

  5. Resistance to Wheat streak mosaic virus identified in synthetic wheat lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) is a significant pathogen in wheat that causes economic loss each year. WSMV is typically controlled using cultural practices such as the removal of volunteer wheat. Genetic resistance is limited. Until recently, no varieties have been available with major resista...

  6. Evaluation and reselection of wheat resistance to Russian wheat aphid biotype 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Russian wheat aphid (RWA, Diuraphis noxia, Mordvilko) biotype 2 (RWA2) is virulent to most known RWA resistance genes and severely threatens wheat production in the hard winter wheat area of the US western Great Plains. We determined RWA2 reactions of 386 cultivars from China, 227 advanced breeding...

  7. Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Russian wheat aphid (RWA) Diuraphis noxia (Mordvilko) is a major pest of winter wheat and barley in the United States. RWA induces stress to the wheat crop by damaging plant foliage, lowering the greenness of plants, and affecting productivity. Multispectral remote sensing is effective at dete...

  8. Binary mixtures of waxy wheat and conventional wheat as measured by nir reflectance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waxy wheat contains very low concentration (generally <2%) of amylose in endosperm starch, in contrast to conventional wheat whose starch is typically 20% amylose, with the balance being the branched macromolecule, amylopectin. With the release of a commercial hard winter waxy wheat cultivar in the ...

  9. Common wheat determination in durum wheat samples through LC/MS analysis of gluten peptides.

    PubMed

    Prandi, Barbara; Bencivenni, Mariangela; Tedeschi, Tullia; Marchelli, Rosangela; Dossena, Arnaldo; Galaverna, Gianni; Sforza, Stefano

    2012-07-01

    A method to detect the presence of common wheat in durum wheat flour samples was developed and tested. Flour samples, or ground wheat samples, were digested by pepsin and chymotrypsin, and the peptide mixture obtained was analyzed by LC/ESI-MS and LC/ESI-MS/MS, which led to the identification of two marker peptides. One peptide was coded only in the DD genome, and thus present only in common wheat; the second was present in all wheat samples (both common and durum), so it was used as marker of the total wheat content. The ratio of the chromatographic areas of these two peptides, as determined by LC/ESI-MS, was related to the proportion of common wheat in the sample using a calibration curve that was constructed with standards of known composition. The proportions of common wheat in samples obtained by mixing different common and durum wheat varieties were accurately determined by this method. Finally, the method was applied in a survey of several durum wheat flour brands present on the Italian market. The results of the survey revealed that contamination of durum wheat flour with common wheat is commonplace.

  10. Physiological responses of hard red winter wheat to infection by wheat streak mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) causes significant yield loss in hard red winter wheat in the U.S. Southern High Plains. Despite the prevalence of this pathogen, little is known about the physiological response of wheat to WSMV infection. A 2-year study was initiated to (i) investigate the effect o...

  11. Weather, disease, and wheat breeding effects on Kansas wheat varietal yields, 1985 to 2011

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum aestivum L.) yields in Kansas have increased due to wheat breeding and improved agronomic practices, but are subject to climate and disease challenges. The objective of this research is to quantify the impact of weather, disease, and genetic improvement on wheat yields of varieties g...

  12. Genetic analysis and molecular mapping of crown rust resistance in common wheat.

    PubMed

    Niu, Zhixia; Puri, Krishna D; Chao, Shiaoman; Jin, Yue; Sun, Yongliang; Steffenson, Brian J; Maan, Shivcharan S; Xu, Steven S; Zhong, Shaobin

    2014-03-01

    This is the first report on genetic analysis and genome mapping of major dominant genes for near non-host resistance to barley crown rust ( Puccinia coronata var. hordei ) in common wheat. Barley crown rust, caused by Puccinia coronata var. hordei, primarily occurs on barley (Hordeum vulgare L.) in the Great Plain regions of the United States. However, a few genotypes of common wheat (Triticum aestivum L.) were susceptible to this pathogen among 750 wheat accessions evaluated. To investigate the genetics of crown rust resistance in wheat, a susceptible winter wheat accession PI 350005 was used in crosses with two resistant wheat varieties, Chinese Spring and Chris. Analysis of F1 plants and F2 populations from these two crosses indicated that crown rust resistance is controlled by one and two dominant genes in Chris and Chinese Spring, respectively. To determine the chromosome location of the resistance gene Cr1 in Chris, a set of 21 monosomic lines derived from Chris was used as female parents to cross with a susceptible spring type selection (SSTS35) derived from the PI 350005/Chris cross. Monosomic analysis indicated that Cr1 is located on chromosome 5D in Chris and one of the crown rust resistance genes is located on chromosome 2D in Chinese Spring. The other gene in Chinese Spring is not on 5D and thus is different from Cr1. Molecular linkage analysis and QTL mapping using a population of 136 doubled haploid lines derived from Chris/PI 350005 further positioned Cr1 between SSR markers Xwmc41-2 and Xgdm63 located on the long arm of chromosome 5D. Our study suggests that near non-host resistance to crown rust in these different common wheat genotypes is simply inherited.

  13. LACIE: Wheat yield models for the USSR

    NASA Technical Reports Server (NTRS)

    Sakamoto, C. M.; Leduc, S. K.

    1977-01-01

    A quantitative model determining the relationship between weather conditions and wheat yield in the U.S.S.R. was studied to provide early reliable forecasts on the size of the U.S.S.R. wheat harvest. Separate models are developed for spring wheat and for winter. Differences in yield potential and responses to stress conditions and cultural improvements necessitate models for each class.

  14. Description of durum wheat linkage map and comparative sequence analysis of wheat mapped DArT markers with rice and Brachypodium genomes

    PubMed Central

    2013-01-01

    Background The importance of wheat to the world economy, together with progresses in high-throughput next-generation DNA sequencing, have accelerated initiatives of genetic research for wheat improvement. The availability of high density linkage maps is crucial to identify genotype-phenotype associations, but also for anchoring BAC contigs to genetic maps, a strategy followed for sequencing the wheat genome. Results Here we report a genetic linkage map in a durum wheat segregating population and the study of mapped DArT markers. The linkage map consists of 126 gSSR, 31 EST-SSR and 351 DArT markers distributed in 24 linkage groups for a total length of 1,272 cM. Through bioinformatic approaches we have analysed 327 DArT clones to reveal their redundancy, syntenic and functional aspects. The DNA sequences of 174 DArT markers were assembled into a non-redundant set of 60 marker clusters. This explained the generation of clusters in very small chromosome regions across genomes. Of these DArT markers, 61 showed highly significant (Expectation < E-10) BLAST similarity to gene sequences in public databases of model species such as Brachypodium and rice. Based on sequence alignments, the analysis revealed a mosaic gene conservation, with 54 and 72 genes present in rice and Brachypodium species, respectively. Conclusions In the present manuscript we provide a detailed DArT markers characterization and the basis for future efforts in durum wheat map comparing. PMID:24304553

  15. Recent trends and perspectives of molecular markers against fungal diseases in wheat.

    PubMed

    Goutam, Umesh; Kukreja, Sarvjeet; Yadav, Rakesh; Salaria, Neha; Thakur, Kajal; Goyal, Aakash K

    2015-01-01

    Wheat accounts for 19% of the total production of major cereal crops in the world. In view of ever increasing population and demand for global food production, there is an imperative need of 40-60% increase in wheat production to meet the requirement of developing world in coming 40 years. However, both biotic and abiotic stresses are major hurdles for attaining the goal. Among the most important diseases in wheat, fungal diseases pose serious threat for widening the gap between actual and attainable yield. Fungal disease management, mainly, depends on the pathogen detection, genetic and pathological variability in population, development of resistant cultivars and deployment of effective resistant genes in different epidemiological regions. Wheat protection and breeding of resistant cultivars using conventional methods are time-consuming, intricate and slow processes. Molecular markers offer an excellent alternative in development of improved disease resistant cultivars that would lead to increase in crop yield. They are employed for tagging the important disease resistance genes and provide valuable assistance in increasing selection efficiency for valuable traits via marker assisted selection (MAS). Plant breeding strategies with known molecular markers for resistance and functional genomics enable a breeder for developing resistant cultivars of wheat against different fungal diseases. PMID:26379639

  16. Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat.

    PubMed

    Riar, Amandeep Kaur; Kaur, Satinder; Dhaliwal, H S; Singh, Kuldeep; Chhuneja, Parveen

    2012-08-01

    Rusts are the most important biotic constraints limiting wheat productivity worldwide. Deployment of cultivars with broad spectrum rust resistance is the only environmentally viable option to combat these diseases. Identification and introgression of novel sources of resistance is a continuous process to combat the ever evolving pathogens. The germplasm of nonprogenitor Aegilops species with substantial amount of variability has been exploited to a limited extent. In the present investigation introgression, inheritance and molecular mapping of a leaf rust resistance gene of Ae. caudata (CC) acc. pau3556 in cultivated wheat were undertaken. An F(2) population derived from the cross of Triticum aestivum cv. WL711 - Ae. caudata introgression line T291-2 with wheat cultivar PBW343 segregated for a single dominant leaf rust resistance gene at the seedling and adult plant stages. Progeny testing in F(3) confirmed the introgression of a single gene for leaf rust resistance. Bulked segregant analysis using polymorphic D-genome-specific SSR markers and the cosegregation of the 5DS anchored markers (Xcfd18, Xcfd78, Xfd81 and Xcfd189) with the rust resistance in the F(2) population mapped the leaf rust resistance gene (LrAC) on the short arm of wheat chromosome 5D. Genetic complementation and the linked molecular markers revealed that LrAC is a novel homoeoallele of an orthologue Lr57 already introgressed from the 5M chromosome of Ae. geniculata on 5DS of wheat.

  17. Recent trends and perspectives of molecular markers against fungal diseases in wheat

    PubMed Central

    Goutam, Umesh; Kukreja, Sarvjeet; Yadav, Rakesh; Salaria, Neha; Thakur, Kajal; Goyal, Aakash K.

    2015-01-01

    Wheat accounts for 19% of the total production of major cereal crops in the world. In view of ever increasing population and demand for global food production, there is an imperative need of 40–60% increase in wheat production to meet the requirement of developing world in coming 40 years. However, both biotic and abiotic stresses are major hurdles for attaining the goal. Among the most important diseases in wheat, fungal diseases pose serious threat for widening the gap between actual and attainable yield. Fungal disease management, mainly, depends on the pathogen detection, genetic and pathological variability in population, development of resistant cultivars and deployment of effective resistant genes in different epidemiological regions. Wheat protection and breeding of resistant cultivars using conventional methods are time-consuming, intricate and slow processes. Molecular markers offer an excellent alternative in development of improved disease resistant cultivars that would lead to increase in crop yield. They are employed for tagging the important disease resistance genes and provide valuable assistance in increasing selection efficiency for valuable traits via marker assisted selection (MAS). Plant breeding strategies with known molecular markers for resistance and functional genomics enable a breeder for developing resistant cultivars of wheat against different fungal diseases. PMID:26379639

  18. Aspergillus section Flavi and aflatoxins in Algerian wheat and derived products.

    PubMed

    Riba, Amar; Bouras, Noureddine; Mokrane, Salim; Mathieu, Florence; Lebrihi, Ahmed; Sabaou, Nasserdine

    2010-10-01

    Wheat and its derivatives are a very important staple food for North African populations. The aim of this study was to analyze populations of Aspergillus section Flavi from local wheat based on aflatoxins (AFs), cyclopiazonic acid (CPA) and sclerotia production, and also to evaluate AFs-contaminated wheat collected from two different climatic regions in Algeria. A total of 108 samples of wheat were collected during the following phases: pre-harvest, storage in silos and after processing. The results revealed that among the Aspergillus species isolated, those belonging to section Flavi were predominant. Of the 150 strains of Aspergillus section Flavi isolated, 144 were identified as Aspergillus flavus and 6 as Aspergillus tamarii. We showed that 72% and 10% of the A. flavus strains produced AFs and CPA, respectively. Among the 150 strains tested, 60 produced amounts of AFB1 ranging from 12.1 to 234.6 microg/g of CYA medium. Also, we showed that most strains produced large sclerotia. AFB1was detected by HPLC in 56.6% of the wheat samples and derived products (flour, semolina and bran) with contamination levels ranging from 0.13 to 37.42 microg/kg.

  19. The case of the missing wheat

    NASA Astrophysics Data System (ADS)

    Lobell, David B.

    2012-06-01

    In Lewis Carroll's Through the Looking Glass, Alice finds herself running