Petit, T; Blázquez, M A; Gancedo, C
1996-01-08
Two hexokinases were characterized in Schizosaccharomyces pombe: hexokinase 1, with a low phosphorylation coefficient on glucose (Km 8.5 mM) and hexokinase 2, a kinetically conventional hexokinase. Genes hxk1+ and hxk2+ encoding these enzymes were cloned and sequenced. Disruption of hxk1+ had no effect on growth but disruption of hxk2+ doubled the generation time in glucose. Spores carrying the double disruption hxk1+ hxk2+ did not grow on glucose or fructose after one week. Expression of hxk1+ increased strongly during growth in fructose or glycerol. Expression of hxk2+ was highest during growth in glycerol. A NADP-dependent glucose dehydrogenase was detected, but not a glucokinase.
Liu, Yulin; Xiang, Fan; Huang, Yongming; Shi, Liang; Hu, Chaojie; Yang, Yiming; Wang, Di; He, Nan; Tao, Kaixiong; Wu, Ke; Wang, Guobin
2017-04-11
Interleukin-22 has been explored extensively in human cancer, but its functions and underlying mechanisms are incompletely understood. Here, we show that aberrant interleukin-22 expression facilitates aerobic glycolysis in colon cancer cells. Elevated interleukin-22 mRNA expression was observed and positively correlated with hexokinase-2 in colon cancer tissues. In vitro, interleukin-22 enhanced glucose consumption and lactate production via targeting hexokinase-2 in colon cancer cells. Moreover, the transcriptional factor c-Myc and signal transducer and activator of transcription 3 were involved in interleukin-22-induced up-regulation of hexokinase-2. We further demonstrated that hexokinase-2 partly accounted for interleukin-22-mediated cellular proliferation in DLD-1 cells. In vivo, our data demonstrated that interleukin-22 significantly promoted tumor growth along with elevated expression of c-Myc and hexokinase-2 in mice. In summary, our findings provide a new perspective on the pro-inflammatory cytokine interleukin-22 in promoting aerobic glycolysis associated with tumor progression in human colon cancer cells.
Kavanagh Williamson, Maia; Coombes, Naomi; Juszczak, Florian; Athanasopoulos, Marios; Khan, Mariam B.; Eykyn, Thomas R.; Srenathan, Ushani; Dias Zeidler, Julianna; Huthoff, Hendrik
2018-01-01
Infection of primary CD4+ T cells with HIV-1 coincides with an increase in glycolysis. We investigated the expression of glucose transporters (GLUT) and glycolytic enzymes in human CD4+ T cells in response to infection with HIV-1. We demonstrate the co-expression of GLUT1, GLUT3, GLUT4, and GLUT6 in human CD4+ T cells after activation, and their concerted overexpression in HIV-1 infected cells. The investigation of glycolytic enzymes demonstrated activation-dependent expression of hexokinases HK1 and HK2 in human CD4+ T cells, and a highly significant increase in cellular hexokinase enzyme activity in response to infection with HIV-1. HIV-1 infected CD4+ T cells showed a marked increase in expression of HK1, as well as the functionally related voltage-dependent anion channel (VDAC) protein, but not HK2. The elevation of GLUT, HK1, and VDAC expression in HIV-1 infected cells mirrored replication kinetics and was dependent on virus replication, as evidenced by the use of reverse transcription inhibitors. Finally, we demonstrated that the upregulation of HK1 in HIV-1 infected CD4+ T cells is independent of the viral accessory proteins Vpu, Vif, Nef, and Vpr. Though these data are consistent with HIV-1 dependency on CD4+ T cell glucose metabolism, a cellular response mechanism to infection cannot be ruled out. PMID:29518929
Kim, Hye Min
2017-01-01
Purpose Although currently classified as variants of follicular neoplasms (FNs), Hürthle cell neoplasms (HCNs) exhibit distinct biological characteristics. Hence, the metabolism of both neoplasms may also be different. The aims of this study were to investigate and compare the expression of glycolysis-related proteins in HCNs and FNs and to determine the clinical implications of such expression. Methods Tissue microarrays were constructed with 265 samples of FNs (112 follicular carcinomas (FCs) and 153 follicular adenomas (FAs)) as well as 108 samples of HCNs (27 Hürthle cell carcinomas (HCCs) and 81 Hürthle cell adenomas (HCAs)). Immunohistochemical staining for the glycolysis-related molecules Glut-1, hexokinase II, CAIX, and MCT4 was performed. Results The expression levels of Glut-1, hexokinase II, CAIX, and MCT4 were significantly higher in HCNs than in FNs (p < 0.001). Glut-1, hexokinase II, CAIX, and MCT4 expression levels were highest in HCC, followed by HCA, FC, and FA (all p < 0.001). In HCC, hexokinase II positivity was associated with large tumor size (>4 cm) (p = 0.046), CAIX positivity with vascular invasion (p = 0.005), and MCT4 positivity with extrathyroidal extension (p = 0.030). Conclusion The expression levels of the glycolysis-related proteins Glut-1, hexokinase II, CAIX, and MCT4 were higher in HCNs than in FNs and in HCCs than in HCAs. PMID:28790533
Troncoso-Ponce, M A; Rivoal, J; Dorion, S; Moisan, M-C; Garcés, R; Martínez-Force, E
2011-03-01
A full-length hexokinase cDNA, HaHXK1, was cloned and characterized from Helianthus annuus L. developing seeds. Based on its sequence and phylogenetic relationships, HaHXK1 is a membrane-associated (type-B) hexokinase. The predicted structural model resembles known hexokinase structures, folding into two domains of unequal size: a large and a small one separated by a deep cleft containing the residues involved in the enzyme active site. A truncated version, without the 24 N-terminal residues, was heterologously expressed in Escherichia coli, purified to electrophoretic homogeneity using immobilized metal ion affinity chromatography and biochemically characterized. The purified enzyme behaved as a monomer on size exclusion chromatography and had a specific activity of 19.3 μmol/min/mg protein, the highest specific activity ever reported for a plant hexokinase. The enzyme had higher affinity for glucose and mannose relative to fructose, but the enzymatic efficiency was higher with glucose. Recombinant HaHXK1 was inhibited by ADP and was insensitive either to glucose-6-phosphate or to trehalose-6-phosphate. Its expression profile showed higher levels in heterotrophic tissues, developing seeds and roots, than in photosynthetic ones. A time course of HXK activity and expression in seeds showed that the highest HXK levels are found at the early stages of reserve compounds, lipids and proteins accumulation. Copyright © 2010 Elsevier GmbH. All rights reserved.
Petit, T; Herrero, P; Gancedo, C
1998-10-29
Alignment of amino acids of the region implicated in glucose binding from a series of hexokinases showed that Schizosaccharomyces pombe hexokinase 1 had a Ser residue in a place where all other kinases had an Asn. We changed an AGT codon to AAT to place an Asn in the Ser213 position. This mutation decreased Km for glucose from 9.4 mM to 1.6 mM and the ratio Vmax (Fructose)/Vmax (Glucose) from 5 to 2.5. Also the Km for 2-deoxyglucose decreased from 2.7 mM to 0.8 mM. A mutation in the similar position of S. pombe hexokinase 2 (Asn196/Ser) increased the Km for glucose from 0.16 mM to 0.56 mM. Fermentation of glucose is not detectable in a S. pombe mutant with only hexokinase 1 activity but expression of the hxk1(S213/N) gene conferred ability to ferment the sugar. While the mutated hexokinase 1 partially mimicked S. cerevisiae hexokinase II in catabolite repression of invertase, the wild type one could not substitute for it. Copyright 1998 Academic Press.
Hexokinase 2 drives glycogen accumulation in equine endometrium at day 12 of diestrus and pregnancy.
Bramer, Sarah A; Macedo, Alysson; Klein, Claudia
2017-01-05
Secretion of histotroph during the prolonged pre-implantation phase in mares is crucial to pregnancy maintenance, manifested as increased embryonic loss in mares with age-related endometrial degeneration. Glycogen content of uterine histotroph is higher during the progesterone-dominated phase of the estrous cycle in mares, but regulatory mechanisms are not well understood. mRNA expression of glycogen-metabolizing enzymes (HK1, HK2, GSK3B, GYS1, PEPCK, PKM, PYGM) in endometrial samples were compared among mares in anestrus, estrus, and at Day 12 of diestrus and pregnancy. In addition, hexokinase 2 (HK2) activity was assessed using a colorimetric assay. HK2 was the key regulator of glycogen accumulation during diestrus and pregnancy; hexokinase transcript abundance and enzyme activity were significantly higher during diestrus and pregnancy than estrus and anestrus. In addition, despite similar relative transcript abundance, hexokinase activity was significantly greater in the pregnant versus diestrous endometrium. Therefore, we inferred there was regulation of hexokinase activity through phosphorylation, in addition to its regulation at the transcriptional level during early pregnancy. Based on immunohistochemistry, HK2 was localized primarily in luminal and glandular epithelial cells, with weaker staining in stromal cells. Among glycogen metabolizing enzymes identified, expression of HK2 was significantly greater during the progesterone-dominated phase of the cycle.
Wang, X Q; Li, L M; Yang, P P; Gong, C L
2014-02-01
In plants, hexokinase (HXK, EC 2.7.1.1) involved in hexose phosphorylation, plays an important role in sugar sensing and signaling. In this study, we found that at Phase I of grape berry development, lower hexose (glucose or fructose) levels were concomitant with higher HXK activities and protein levels. After the onset of ripening, we demonstrated a drastic reduction in HXK activity and protein levels accompanied by a rising hexose level. Therefore, our results revealed that HXK activity and protein levels had an inverse relationship with the endogenous glucose or fructose levels during grape berry development. A 51 kDa HXK protein band was detected throughout grape berry development. In addition, HXK located in the vacuoles, cytoplasm, nucleus, proplastid, chloroplast, and mitochondrion of the berry flesh cells. During grape berry development, HXK transcriptional level changed slightly, while cell wall invertase (CWINV) and sucrose synthase (SuSy) expression was enhanced after véraison stage. Intriguingly, when sliced grape berries were incubated in different glucose solutions, CWINV and SuSy expression was repressed by glucose, and the intensity of repression depended on glucose concentration and incubation time. After sliced, grape berries were treated with different glucose analogs, CWINV and SuSy expression analyses revealed that phosphorylation of hexoses by hexokinase was an essential component in the glucose-dependent CWINV and SuSy expression. In the meantime, mannoheptulose, a specific inhibitor of hexokinase, blocked the repression induced by glucose on CWINV and SuSy expression. It suggested that HXK played a major role in regulating CWINV and SuSy expression during grape berry development.
The hexokinase 2-dependent glucose signal transduction pathway of Saccharomyces cerevisiae.
Moreno, Fernando; Herrero, Pilar
2002-03-01
Sugars, predominantly glucose, evoke a variety of responses in Saccharomyces cerevisiae. These responses are elicited through a complex network of regulatory mechanisms that transduce the signal of presence of external glucose to their final intracellular targets. The HXK2 gene, encoding hexokinase 2 (Hxk2), the enzyme that initiates glucose metabolism, is highly expressed during growth in glucose and plays a pivotal role in the control of the expression of numerous genes, including itself. The mechanism of this autocontrol of expression is not completely understood. Hxk2 is found both in the nucleus and in the cytoplasm of S. cerevisiae; the nuclear localization is dependent on the presence of a stretch of amino acids located from lysine-6 to methionine-15. Although serine-14, within this stretch, can be phosphorylated in the absence of glucose, it is still unsettled whether this phosphorylation plays a role in the cellular localization of Hxk2. The elucidation of the mechanism of transport of Hxk2 to and from the nucleus, the influence of the oligomeric state of the protein on the nuclear transport and the fine mechanism of regulation of transcription of HXK2 are among the important unanswered questions in relation with the regulatory role of Hxk2.
Wang, Xiu-Qin; Zheng, Li-Li; Lin, Hao; Yu, Fei; Sun, Li-Hui; Li, Li-Mei
2017-05-01
Hexokinase (HXK, EC 2.7.1.1) is a multifunctional protein that both is involved in catalyzing the first step of glycolysis and plays an important role in sugar signaling. However, the supporting genetic evidence on hexokinases (CsHXKs) from grape (Vitis vinifera L. cv. Cabernet Sauvignon) berries has been lacking. Here, to investigate the role of CsHXK isoforms as glucose (Glc) and abscisic acid (ABA) sensors, we cloned two hexokinase isozymes, CsHXK1 and CsHXK2 with highly conserved genomic structure of nine exons and eight introns. We also found adenosine phosphate binding, substrate recognition and connection sites in their putative proteins. During grape berry development, the expression profiles of two CsHXK isoforms, sucrose synthases (SuSys) and cell wall invertase (CWINV) genes increased concomitantly with high levels of endogenous Glc and ABA. Furthermore, we showed that in wild type grape berry calli (WT), glucose repressed the expression levels of sucrose synthase (SuSy) and cell wall invertase (CWINV) genes, while ABA increased their expression levels. ABA could not only effectively improve the expression levels of SuSy and CWINV, but also block the repression induced by glucose on the expression of both genes. However, after silencing CsHXK1 or CsHXK2 in grape calli, SuSy and CWINV expression were enhanced, and the expressions of the two genes are insensitive in response to Glc treatment. Interestingly, exogenous ABA alone could not or less increase SuSy and CWINV expression in silencing CsHXK1 or CsHXK2 grape calli compared to WT. Meantime, ABA could not block the repression induced by glucose on the expression of SuSy and CWINV in CsHXK1 or CsHXK2 mutants. Therefore, Glc signal transduction depends on the regulation of CsHXK1 or CsHXK2. ABA signal was also disturbed by CsHXK1 or CsHXK2 silencing. The present results provide new insights into the regulatory role of Glc and ABA on the enzymes related to sugar metabolism in grape berry.
Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana
Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia
2015-01-01
Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700
de Jong, Femke; Thodey, Kate; Lejay, Laurence V.; Bevan, Michael W.
2014-01-01
Mineral nutrient uptake and assimilation is closely coordinated with the production of photosynthate to supply nutrients for growth. In Arabidopsis (Arabidopsis thaliana), nitrate uptake from the soil is mediated by genes encoding high- and low-affinity transporters that are transcriptionally regulated by both nitrate and photosynthate availability. In this study, we have studied the interactions of nitrate and glucose (Glc) on gene expression, nitrate transport, and growth using glucose-insensitive2-1 (gin2-1), which is defective in sugar responses. We confirm and extend previous work by showing that HEXOKINASE1-mediated oxidative pentose phosphate pathway (OPPP) metabolism is required for Glc-mediated NITRATE TRANSPORTER2.1 (NRT2.1) expression. Treatment with pyruvate and shikimate, two products derived from intermediates of the OPPP that are destined for amino acid production, restores wild-type levels of NRT2.1 expression, suggesting that metabolites derived from OPPP metabolism can, together with Glc, directly stimulate high levels of NRT2.1 expression. Nitrate-mediated NRT2.1 expression is not influenced by gin2-1, showing that Glc does not influence NRT2.1 expression through nitrate-mediated mechanisms. We also show that Glc stimulates NRT2.1 protein levels and transport activity independently of its HEXOKINASE1-mediated stimulation of NRT2.1 expression, demonstrating another possible posttranscriptional mechanism influencing nitrate uptake. In gin2-1 plants, nitrate-responsive biomass growth was strongly reduced, showing that the supply of OPPP metabolites is essential for assimilating nitrate for growth. PMID:24272701
Lim, Mi-na; Lee, Sung-eun; Yim, Hui-kyeong; Kim, Jeong Hoe; Yoon, In Sun; Hwang, Yong-sic
2013-01-01
The interaction between the dual roles of sugar as a metabolic fuel and a regulatory molecule was unveiled by examining the changes in sugar signaling upon oxygen deprivation, which causes the drastic alteration in the cellular energy status. In our study, the expression of anaerobically induced genes is commonly responsive to sugar, either under the control of hexokinase or non-hexokinase mediated signaling cascades. Only sugar regulation via the hexokinase pathway was susceptible for O2 deficiency or energy deficit conditions evoked by uncoupler. Examination of sugar regulation of those genes under anaerobic conditions revealed the presence of multiple paths underlying anaerobic induction of gene expression in rice, subgrouped into three distinct types. The first of these, which was found in type-1 genes, involved neither sugar regulation nor additional anaerobic induction under anoxia, indicating that anoxic induction is a simple result from the release of sugar repression by O2-deficient conditions. In contrast, type-2 genes also showed no sugar regulation, albeit with enhanced expression under anoxia. Lastly, expression of type-3 genes is highly enhanced with sugar regulation sustained under anoxia. Intriguingly, the inhibition of the mitochondrial ATP synthesis can reproduce expression pattern of a specific set of anaerobically induced genes, implying that rice cells may sense O2 deprivation, partly via perception of the perturbed cellular energy status. Our study of interaction between sugar signaling and anaerobic conditions has revealed that sugar signaling and the cellular energy status are likely to communicate with each other and influence anaerobic induction of gene expression in rice. PMID:23852132
Metabolism of Mannose in Cultured Primary Rat Neurons.
Rastedt, Wiebke; Blumrich, Eva-Maria; Dringen, Ralf
2017-08-01
Glucose is the main peripheral substrate for energy production in the brain. However, as other hexoses are present in blood and cerebrospinal fluid, we have investigated whether neurons have the potential to metabolize, in addition to glucose, also the hexoses mannose, fructose or galactose. Incubation of primary cerebellar granule neurons in the absence of glucose caused severe cell toxicity within 24 h, which could not be prevented by application of galactose or fructose, while the cells remained viable during incubation in the presence of either mannose or glucose. In addition, cultured neurons produced substantial and almost identical amounts of lactate after exposure to either glucose or mannose, while lactate production was low in the presence of fructose and hardly detectable during incubations without hexoses or with galactose as carbon source. Determination of the K M values of hexokinase in lysates of cultured neurons for the hexoses revealed values in the micromolar range for mannose (32 ± 2 µM) and glucose (59 ± 10 µM) and in the millimolar range for fructose (4.4 ± 2.3 mM), demonstrating that mannose is efficiently phosphorylated by neuronal hexokinase. Finally, cultured neurons contained reasonable specific activity of the enzyme phosphomannose isomerase, which is required for isomerization of the hexokinase product mannose-6-phosphate into the glycolysis intermediate fructose-6-phosphate. These data demonstrate that cultured cerebellar granule neurons have the potential and express the required enzymes to efficiently metabolize mannose, while galactose and fructose serve at best poorly as extracellular carbon sources for neurons.
Mukundwa, Andrew; Langa, Silvana O; Mukaratirwa, Samson; Masola, Bubuya
2016-03-04
The skin is the largest organ in the body and diabetes induces pathologic changes on the skin that affect glucose homeostasis. Changes in skin glycogen and glucose levels can mirror serum glucose levels and thus the skin might contribute to whole body glucose metabolism. This study investigated the in vivo effects of diabetes, insulin and oleanolic acid (OA) on enzymes of glycogen metabolism in skin of type 1 diabetic rats. Diabetic and non-diabetic adult male Sprague-Dawley rats were treated with a single daily dose of insulin (4 IU/kg body weight), OA (80 mg/kg body weight) and a combination of OA + insulin for 14 days. Glycogen phosphorylase (GP) expression; and GP, glycogen synthase (GS) and hexokinase activities as well glycogen levels were evaluated. The results suggest that diabetes lowers hexokinase activity, GP activity and GP expression with no change in GS activity whilst the treatments increased GP expression and the activities of hexokinase, GP and GS except for the GS activity in OA treated rats. Glycogen levels were increased slightly by diabetes as well as OA treatment. In conclusion diabetes, OA and insulin can lead to changes in GS and GP activities in skin without significantly altering the glycogen content. We suggest that the skin may contribute to whole body glucose homeostasis particularly in disease states. Copyright © 2016 Elsevier Inc. All rights reserved.
Hassel, Bjørnar; Elsais, Ahmed; Frøland, Anne-Sofie; Taubøll, Erik; Gjerstad, Leif; Quan, Yi; Dingledine, Raymond; Rise, Frode
2015-05-01
Fructose reacts spontaneously with proteins in the brain to form advanced glycation end products (AGE) that may elicit neuroinflammation and cause brain pathology, including Alzheimer's disease. We investigated whether fructose is eliminated by oxidative metabolism in neocortex. Injection of [(14) C]fructose or its AGE-prone metabolite [(14) C]glyceraldehyde into rat neocortex in vivo led to formation of (14) C-labeled alanine, glutamate, aspartate, GABA, and glutamine. In isolated neocortical nerve terminals, [(14) C]fructose-labeled glutamate, GABA, and aspartate, indicating uptake of fructose into nerve terminals and oxidative fructose metabolism in these structures. This was supported by high expression of hexokinase 1, which channels fructose into glycolysis, and whose activity was similar with fructose or glucose as substrates. By contrast, the fructose-specific ketohexokinase was weakly expressed. The fructose transporter Glut5 was expressed at only 4% of the level of neuronal glucose transporter Glut3, suggesting transport across plasma membranes of brain cells as the limiting factor in removal of extracellular fructose. The genes encoding aldose reductase and sorbitol dehydrogenase, enzymes of the polyol pathway that forms glucose from fructose, were expressed in rat neocortex. These results point to fructose being transported into neocortical cells, including nerve terminals, and that it is metabolized and thereby detoxified primarily through hexokinase activity. We asked how the brain handles fructose, which may react spontaneously with proteins to form 'advanced glycation end products' and trigger inflammation. Neocortical cells took up and metabolized extracellular fructose oxidatively in vivo, and isolated nerve terminals did so in vitro. The low expression of fructose transporter Glut5 limited uptake of extracellular fructose. Hexokinase was a main pathway for fructose metabolism, but ketohexokinase (which leads to glyceraldehyde formation) was expressed too. Neocortical cells also took up and metabolized glyceraldehyde oxidatively. © 2015 International Society for Neurochemistry.
Effect of hypo- and hyperthyroidism on hexokinase in the developing cerebellum of the rat.
Gutekunst, D I; Wilson, J E
1981-05-01
Total hexokinase levels (units/g tissue) have been measured during postnatal development of the cerebellum in control, hypothyroid, and hyperthyroid rats. In addition. distribution of hexokinase in the developing cerebellum has been observed with an immunofluorescence method. Hypothyroidism delays the normally observed postnatal increase in total hexokinase activity, whereas hyperthyroidism accelerates the increase. In normal animals, hexokinase levels in maturing Purkinje cells pass through a transient increase, with maximal levels at approximately 8 days postnatally followed by rapid decline to relatively low levels by 12 days; hypothyroidism delays this transient increase and subsequent decline, but hyperthyroidism does not appear to affect markedly the timing of this phenomenon. Cerebellar glomeruli are relatively enriched in hexokinase content, as judged by their intense fluorescence. Hypothyroidism delays the development of intensely stained glomeruli. Hyperthyroidism did not appear to cause precocious increase in numbers of glomeruli but may have increased the rate at which the hexokinase was assimilated by newly formed glomeruli. The effects of hypo- and hyperthyroidism on total cerebellar hexokinase levels are interpreted in terms of the effect of thyroid hormone on the biochemical maturation of synaptic structures rich in hexokinase.
Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-Bromopyruvate
Chen, Zhao; Zhang, Hui; Lu, Weiqin; Huang, Peng
2009-01-01
Summary It has long been observed that cancer cells rely more on glycolysis to generate ATP and actively use certain glycolytic metabolic intermediates for biosynthesis. Hexokinase II (HKII) is a key glycolytic enzyme that plays a role in the regulation of the mitochondria-initiated apoptotic cell death. As a potent inhibitor of hexokinase, 3-bromopyruvate (3-BrPA) is known to inhibit cancer cell energy metabolism and trigger cell death, supposedly through depletion of cellular ATP. The current study showed that 3-BrPA caused a covalent modification of HKII protein and directly triggered its dissociation from mitochondria, leading to a specific release of apoptosis-inducing factor (AIF) from the mitochondria to cytosol and eventual cell death. Co-immunoprecipitation revealed a physical interaction between HKII and AIF. Using a competitive peptide of HKII, we showed that the dissociation of hexokinase II from mitochondria alone could cause apoptotic cell death, especially in the mitochondria-deficient ρ0 cells that highly express HKII. Interestingly, the dissociation of HKII itself did no directly affect the mitochondrial membrane potential, ROS generation, and oxidative phosphorylation. Our study suggests that the physical association between HKII and AIF is important for the normal localization of AIF in the mitochondria, and disruption of this protein complex by 3-BrPA leads to their release from the mitochondria and eventual cell death. PMID:19285479
Deng, Yingjun; Li, Xin; Feng, Jinxin; Zhang, Xiangliang
2018-01-01
Chronic myeloid leukemia (CML) is a myeloproliferative disease which uniquely expresses a constitutively active tyrosine kinase, BCR/ABL. As a specific inhibitor of the BCR-ABL tyrosine kinase, imatinib becomes the first choice for the treatment of CML due to its high efficacy and low toxicity. However, the development of imatinib resistance limits the long-term treatment benefits of it in CML patients. In the present study, we aimed to investigate the roles of miR-202 in the regulation of imatinib sensitivity in CML cell lines and the possible mechanisms involved in this process. We found miR-202 was down-regulated in seven CML cell lines by quantitative reverse-transcription PCR (qRT-PCR) analysis. Overexpression of miR-202 significantly suppressed proliferation rates of CML cells. By establishing imatinib resistant cell lines originating from K562 and KU812 cells, we observed expressions of miR-202 were down-regulated by imatinib treatments and imatinib resistant CML cell lines exhibited lower level of miR-202. On the contrary, imatinib resistant CML cell lines displayed up-regulated glycolysis rate than sensitive cells with the evidence that glucose uptake, lactate production, and key glycolysis enzymes were elevated in imatinib resistant cells. Importantly, the imatinib resistant CML cell lines were more sensitive to glucose starvation and glycolysis inhibitors. In addition, we identified Hexokinase 2 (HK2) as a direct target of miR-202 in CML cell lines. Overexpression of miR-202 sensitized imatinib resistant CML through the miR-202-mediated glycolysis inhibition by targetting HK2. Finally, we provided the clinical relevance that miR-202 was down-regulated in CML patients and patients with lower miR-202 expression displayed higher HK2 expression. The present study will provide new aspects on the miRNA-modulated tyrosine kinase inhibitor (TKI) sensitivity in CML, contributing to the development of new therapeutic anticancer drugs. PMID:29559564
Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David
2015-01-01
Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.
Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David
2015-01-01
Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species. PMID:26734024
Ho, Nelson; Morrison, Jodi; Silva, Andreza; Coomber, Brenda L.
2016-01-01
Cancer cells heavily rely on the glycolytic pathway regardless of oxygen tension. Hexokinase II (HKII) catalyses the first irreversible step of glycolysis and is often overexpressed in cancer cells. 3-Bromopyruvate (3BP) has been shown to primarily target HKII, and is a promising anti-cancer compound capable of altering critical metabolic pathways in cancer cells. Abnormal vasculature within tumours leads to heterogeneous microenvironments, including glucose availability, which may affect drug sensitivity. The aim of the present study was to elucidate the mechanisms by which 3BP acts on colorectal cancer (CRC) cells with focus on the HKII/Akt signalling axis. High HKII-expressing cell lines were more sensitive to 3BP than low HKII-expressing cells. 3BP-induced rapid Akt phosphorylation at site Thr-308 and cell death via both apoptotic and necrotic mechanisms. Cells grown under lower glucose concentrations showed greater resistance towards 3BP. Cells with HKII knockdown showed no changes in 3BP sensitivity, suggesting the effects of 3BP are independent of HKII expression. These results emphasize the importance of the tumour microenvironment and glucose availability when considering therapeutic approaches involving metabolic modulation. PMID:26740252
Ho, Nelson; Morrison, Jodi; Silva, Andreza; Coomber, Brenda L
2016-01-06
Cancer cells heavily rely on the glycolytic pathway regardless of oxygen tension. Hexokinase II (HKII) catalyses the first irreversible step of glycolysis and is often overexpressed in cancer cells. 3-Bromopyruvate (3BP) has been shown to primarily target HKII, and is a promising anti-cancer compound capable of altering critical metabolic pathways in cancer cells. Abnormal vasculature within tumours leads to heterogeneous microenvironments, including glucose availability, which may affect drug sensitivity. The aim of the present study was to elucidate the mechanisms by which 3BP acts on colorectal cancer (CRC) cells with focus on the HKII/Akt signalling axis. High HKII-expressing cell lines were more sensitive to 3BP than low HKII-expressing cells. 3BP-induced rapid Akt phosphorylation at site Thr-308 and cell death via both apoptotic and necrotic mechanisms. Cells grown under lower glucose concentrations showed greater resistance towards 3BP. Cells with HKII knockdown showed no changes in 3BP sensitivity, suggesting the effects of 3BP are independent of HKII expression. These results emphasize the importance of the tumour microenvironment and glucose availability when considering therapeutic approaches involving metabolic modulation. © 2016 Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuo, Baobiao; Li, Yuan; Li, Zhengwei
2015-08-21
Accumulating evidence has shown that PI3K/Akt pathway is frequently hyperactivated in osteosarcoma (OS) and contributes to tumor initiation and progression. Altered phenotype of glucose metabolism is a key hallmark of cancer cells including OS. However, the relationship between PI3K/Akt pathway and glucose metabolism in OS remains largely unexplored. In this study, we showed that elevated Hexokinase-2 (HK2) expression, which catalyzes the first essential step of glucose metabolism by conversion of glucose into glucose-6-phosphate, was induced by activated PI3K/Akt signaling. Immunohistochemical analysis showed that HK2 was overexpressed in 83.3% (25/30) specimens detected and was closely correlated with Ki67, a cell proliferationmore » index. Silencing of endogenous HK2 resulted in decreased aerobic glycolysis as demonstrated by reduced glucose consumption and lactate production. Inhibition of PI3K/Akt signaling also suppressed aerobic glycolysis and this effect can be reversed by reintroduction of HK2. Furthermore, knockdown of HK2 led to increased cell apoptosis and reduced ability of colony formation; meanwhile, these effects were blocked by 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor through its actions on hexokinase, indicating that HK2 functions in cell apoptosis and growth were mediated by altered aerobic glycolysis. Taken together, our study reveals a novel relationship between PI3K/Akt signaling and aerobic glycolysis and indicates that PI3K/Akt/HK2 might be potential therapeutic approaches for OS. - Highlights: • PI3K/Akt signaling contributes to elevated expression of HK2 in osteosarcoma. • HK2 inhibits cell apoptosis and promotes tumor growth through enhanced Warburg effect. • Inhibition of glycolysis blocks the oncogenic activity of HK2.« less
Nucleocytoplasmic shuttling of hexokinase II in a cancer cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neary, Catherine L., E-mail: nearycl@umdnj.edu; Pastorino, John G.
2010-04-16
In yeast, the hexokinase type II enzyme (HXKII) translocates to the nucleus in the presence of excess glucose, and participates in glucose repression. However, no evidence has suggested a nuclear function for HXKII in mammalian cells. Herein, we present data showing nuclear localization of HXKII in HeLa cells, both by immunocytochemistry and subcellular fractionation. HXKII is extruded from the nucleus, at least in part, by the activity of the exportin 1/CrmA system, as demonstrated by increased nuclear expression and decreased cytoplasmic expression after incubation with leptomycin B, a bacterially-derived exportin inhibitor. Furthermore, cytoplasmic localization of HXKII is dependent on itsmore » enzymatic activity, as inhibiting HXKII activity using 2-deoxy-D-glucose (2DG) increased nuclear localization. This effect was more significant in cells incubated in the absence of glucose for 24 h prior to addition of 2DG. Regulated translocation of HXKII to the nucleus of mammalian cells could represent a previously unknown glucose-sensing mechanism.« less
Kelly, Gilor; Sade, Nir; Attia, Ziv; Secchi, Francesca; Zwieniecki, Maciej; Holbrook, N. Michele; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Granot, David
2014-01-01
Increased expression of the aquaporin NtAQP1, which is known to function as a plasmalemma channel for CO2 and water, increases the rate of both photosynthesis and transpiration. In contrast, increased expression of Arabidopsis hexokinase1 (AtHXK1), a dual-function enzyme that mediates sugar sensing, decreases the expression of photosynthetic genes and the rate of transpiration and inhibits growth. Here, we show that AtHXK1 also decreases root and stem hydraulic conductivity and leaf mesophyll CO2 conductance (g m). Due to their opposite effects on plant development and physiology, we examined the relationship between NtAQP1 and AtHXK1 at the whole-plant level using transgenic tomato plants expressing both genes simultaneously. NtAQP1 significantly improved growth and increased the transpiration rates of AtHXK1-expressing plants. Reciprocal grafting experiments indicated that this complementation occurs when both genes are expressed simultaneously in the shoot. Yet, NtAQP1 had only a marginal effect on the hydraulic conductivity of the double-transgenic plants, suggesting that the complementary effect of NtAQP1 is unrelated to shoot water transport. Rather, NtAQP1 significantly increased leaf mesophyll CO2 conductance and enhanced the rate of photosynthesis, suggesting that NtAQP1 facilitated the growth of the double-transgenic plants by enhancing mesophyll conductance of CO2. PMID:24498392
Zhang, Zhongbao; Zhang, Jiewei; Chen, Yajuan; Li, Ruifen; Wang, Hongzhi; Ding, Liping; Wei, Jianhua
2014-09-01
Hexokinases (HXKs, EC 2.7.1.1) play important roles in metabolism, glucose (Glc) signaling, and phosphorylation of Glc and fructose and are ubiquitous in all organisms. Despite their physiological importance, the maize HXK (ZmHXK) genes have not been analyzed systematically. We isolated and characterized nine members of the ZmHXK gene family which were distributed on 3 of the 10 maize chromosomes. A multiple sequence alignment and motif analysis revealed that the maize ZmHXK proteins share three conserved domains. Phylogenetic analysis revealed that the ZmHXK family can be divided into four subfamilies. We identified putative cis-elements in the ZmHXK promoter sequences potentially involved in phytohormone and abiotic stress responses, sugar repression, light and circadian rhythm regulation, Ca(2+) responses, seed development and germination, and CO2-responsive transcriptional activation. To study the functions of maize HXK isoforms, we characterized the expression of the ZmHXK5 and ZmHXK6 genes, which are evolutionarily related to the OsHXK5 and OsHXK6 genes from rice. Analysis of tissue-specific expression patterns using quantitative real time-PCR showed that ZmHXK5 was highly expressed in tassels, while ZmHXK6 was expressed in both tassels and leaves. ZmHXK5 and ZmHXK6 expression levels were upregulated by phytohormones and by abiotic stress.
Fukumoto, Takeshi; Kano, Akihito; Ohtani, Kouhei; Yamasaki-Kokudo, Yumiko; Kim, Bong-Gyu; Hosotani, Kouji; Saito, Miu; Shirakawa, Chikage; Tajima, Shigeyuki; Izumori, Ken; Ohara, Toshiaki; Shigematsu, Yoshio; Tanaka, Keiji; Ishida, Yutaka; Nishizawa, Yoko; Tada, Yasuomi; Ichimura, Kazuya; Gomi, Kenji; Akimitsu, Kazuya
2011-12-01
One of the rare sugars, D-allose, which is the epimer of D-glucose at C3, has an inhibitory effect on rice growth, but the molecular mechanisms of the growth inhibition by D-allose were unknown. The growth inhibition caused by D-allose was prevented by treatment with hexokinase inhibitors, D-mannoheptulose and N-acetyl-D-glucosamine. Furthermore, the Arabidopsis glucose-insensitive2 (gin2) mutant, which is a loss-of-function mutant of the glucose sensor AtHXK1, showed a D-allose-insensitive phenotype. D-Allose strongly inhibited the gibberellin-dependent responses such as elongation of the second leaf sheath and induction of α-amylase in embryo-less half rice seeds. The growth of the slender rice1 (slr1) mutant, which exhibits a constitutive gibberellin-responsive phenotype, was also inhibited by D-allose, and the growth inhibition of the slr1 mutant by D-allose was also prevented by D-mannoheptulose treatment. The expressions of gibberellin-responsive genes were down-regulated by D-allose treatment, and the down-regulations of gibberellin-responsive genes were also prevented by D-mannoheptulose treatment. These findings reveal that D-allose inhibits the gibberellin-signaling through a hexokinase-dependent pathway.
An, Ming-Xin; Li, Si; Yao, Han-Bing; Li, Chao; Wang, Jia-Mei; Sun, Jia; Li, Xin-Yu; Meng, Xiao-Na; Wang, Hua-Qin
2017-12-04
Aerobic glycolysis, a phenomenon known historically as the Warburg effect, is one of the hallmarks of cancer cells. In this study, we characterized the role of BAG3 in aerobic glycolysis of pancreatic ductal adenocarcinoma (PDAC) and its molecular mechanisms. Our data show that aberrant expression of BAG3 significantly contributes to the reprogramming of glucose metabolism in PDAC cells. Mechanistically, BAG3 increased Hexokinase 2 (HK2) expression, the first key enzyme involved in glycolysis, at the posttranscriptional level. BAG3 interacted with HK2 mRNA, and the degree of BAG3 expression altered recruitment of the RNA-binding proteins Roquin and IMP3 to the HK2 mRNA. BAG3 knockdown destabilized HK2 mRNA via promotion of Roquin recruitment, whereas BAG3 overexpression stabilized HK2 mRNA via promotion of IMP3 recruitment. Collectively, our results show that BAG3 promotes reprogramming of glucose metabolism via interaction with HK2 mRNA in PDAC cells, suggesting that BAG3 may be a potential target in the aerobic glycolysis pathway for developing novel anticancer agents. © 2017 An et al.
Sharlow, Elizabeth R.; Lyda, Todd A.; Dodson, Heidi C.; Mustata, Gabriela; Morris, Meredith T.; Leimgruber, Stephanie S.; Lee, Kuo-Hsiung; Kashiwada, Yoshiki; Close, David; Lazo, John S.; Morris, James C.
2010-01-01
Background The parasitic protozoan Trypanosoma brucei utilizes glycolysis exclusively for ATP production during infection of the mammalian host. The first step in this metabolic pathway is mediated by hexokinase (TbHK), an enzyme essential to the parasite that transfers the γ-phospho of ATP to a hexose. Here we describe the identification and confirmation of novel small molecule inhibitors of bacterially expressed TbHK1, one of two TbHKs expressed by T. brucei, using a high throughput screening assay. Methodology/Principal Findings Exploiting optimized high throughput screening assay procedures, we interrogated 220,233 unique compounds and identified 239 active compounds from which ten small molecules were further characterized. Computation chemical cluster analyses indicated that six compounds were structurally related while the remaining four compounds were classified as unrelated or singletons. All ten compounds were ∼20-17,000-fold more potent than lonidamine, a previously identified TbHK1 inhibitor. Seven compounds inhibited T. brucei blood stage form parasite growth (0.03≤EC50<3 µM) with parasite specificity of the compounds being demonstrated using insect stage T. brucei parasites, Leishmania promastigotes, and mammalian cell lines. Analysis of two structurally related compounds, ebselen and SID 17387000, revealed that both were mixed inhibitors of TbHK1 with respect to ATP. Additionally, both compounds inhibited parasite lysate-derived HK activity. None of the compounds displayed structural similarity to known hexokinase inhibitors or human African trypanosomiasis therapeutics. Conclusions/Significance The novel chemotypes identified here could represent leads for future therapeutic development against the African trypanosome. PMID:20405000
A Dominant Mutation in Hexokinase 1 (HK1) Causes Retinitis Pigmentosa
Sullivan, Lori S.; Koboldt, Daniel C.; Bowne, Sara J.; Lang, Steven; Blanton, Susan H.; Cadena, Elizabeth; Avery, Cheryl E.; Lewis, Richard A.; Webb-Jones, Kaylie; Wheaton, Dianna H.; Birch, David G.; Coussa, Razck; Ren, Huanan; Lopez, Irma; Chakarova, Christina; Koenekoop, Robert K.; Garcia, Charles A.; Fulton, Robert S.; Wilson, Richard K.; Weinstock, George M.; Daiger, Stephen P.
2014-01-01
Purpose. To identify the cause of retinitis pigmentosa (RP) in UTAD003, a large, six-generation Louisiana family with autosomal dominant retinitis pigmentosa (adRP). Methods. A series of strategies, including candidate gene screening, linkage exclusion, genome-wide linkage mapping, and whole-exome next-generation sequencing, was used to identify a mutation in a novel disease gene on chromosome 10q22.1. Probands from an additional 404 retinal degeneration families were subsequently screened for mutations in this gene. Results. Exome sequencing in UTAD003 led to identification of a single, novel coding variant (c.2539G>A, p.Glu847Lys) in hexokinase 1 (HK1) present in all affected individuals and absent from normal controls. One affected family member carries two copies of the mutation and has an unusually severe form of disease, consistent with homozygosity for this mutation. Screening of additional adRP probands identified four other families (American, Canadian, and Sicilian) with the same mutation and a similar range of phenotypes. The families share a rare 450-kilobase haplotype containing the mutation, suggesting a founder mutation among otherwise unrelated families. Conclusions. We identified an HK1 mutation in five adRP families. Hexokinase 1 catalyzes phosphorylation of glucose to glucose-6-phosphate. HK1 is expressed in retina, with two abundant isoforms expressed at similar levels. The Glu847Lys mutation is located at a highly conserved position in the protein, outside the catalytic domains. We hypothesize that the effect of this mutation is limited to the retina, as no systemic abnormalities in glycolysis were detected. Prevalence of the HK1 mutation in our cohort of RP families is 1%. PMID:25190649
Kelly, Gilor; Sade, Nir; Doron-Faigenboim, Adi; Lerner, Stephen; Shatil-Cohen, Arava; Yeselson, Yelena; Egbaria, Aiman; Kottapalli, Jayaram; Schaffer, Arthur A; Moshelion, Menachem; Granot, David
2017-07-01
Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Behlke, J; Heidrich, K; Naumann, M; Müller, E C; Otto, A; Reuter, R; Kriegel, T
1998-08-25
Homodimeric hexokinase 2 from Saccharomyces cerevisiae is known to have two sites of phosphorylation: for serine-14 the modification in vivo increases with glucose exhaustion [Kriegel et al. (1994) Biochemistry 33, 148-152], while for serine-157 it occurs in vitro with ATP in the presence of nonphosphorylateable five-carbon analogues of glucose [Heidrich et al. (1997) Biochemistry 36, 1960-1964]. We show now by site-directed mutagenesis and sedimentation analysis that serine-14 phosphorylation affects the oligomeric state of hexokinase, its substitution by glutamate causing complete dissociation; glutamate exchange for serine-157 does not. Phosphorylation of wild-type hexokinase at serine-14 likewise causes dissociation in vitro. In view of the higher glucose affinity of monomeric hexokinase and the high hexokinase concentration in yeast [Womack, F., and Colowick, S. P. (1978) Arch. Biochem. Biophys. 191, 742-747; Mayes, E. L., Hoggett, J. G., and Kellett, G. L. (1983) Eur. J. Biochem. 133, 127-134], we speculate that the in vivo phosphorylation at serine-14 as transiently occurring in glucose derepression might provide a mechanism to improve glucose utilization from low level and/or that nuclear localization of the monomer might be involved in the signal transduction whereby glucose causes catabolite repression.
Wang, Xin; Zhu, Wei; Hashiguchi, Akiko; Nishimura, Minoru; Tian, Jingkui; Komatsu, Setsuko
2017-08-01
Metabolomic analysis of flooding-tolerant mutant and abscisic acid-treated soybeans suggests that accumulated fructose might play a role in initial flooding tolerance through regulation of hexokinase and phosphofructokinase. Soybean is sensitive to flooding stress, which markedly reduces plant growth. To explore the mechanism underlying initial-flooding tolerance in soybean, mass spectrometry-based metabolomic analysis was performed using flooding-tolerant mutant and abscisic-acid treated soybeans. Among the commonly-identified metabolites in both flooding-tolerant materials, metabolites involved in carbohydrate and organic acid displayed same profile at initial-flooding stress. Sugar metabolism was highlighted in both flooding-tolerant materials with the decreased and increased accumulation of sucrose and fructose, respectively, compared to flooded soybeans. Gene expression of hexokinase 1 was upregulated in flooded soybean; however, it was downregulated in both flooding-tolerant materials. Metabolites involved in carbohydrate/organic acid and proteins related to glycolysis/tricarboxylic acid cycle were integrated. Increased protein abundance of phosphofructokinase was identified in both flooding-tolerant materials, which was in agreement with its enzyme activity. Furthermore, sugar metabolism was pointed out as the tolerant-responsive process at initial-flooding stress with the integration of metabolomics, proteomics, and transcriptomics. Moreover, application of fructose declined the increased fresh weight of plant induced by flooding stress. These results suggest that fructose might be the critical metabolite through regulation of hexokinase and phosphofructokinase to confer initial-flooding stress in soybean.
Involvement of hexokinase1 in plant growth promotion as mediated by Burkholderia phytofirmans.
Park, Jae Min; Lazarovits, George
2014-06-01
Potato plantlets inoculated with strain PsJN of the bacterium Burkholderia phytofirmans exhibit consistent and significant increases in plant growth under in vitro conditions, when compared with uninoculated plants. The greatest influence on the degree and type of growth enhancement that develops has been shown to be mediated by the sugar concentration in the agar media. Bacterial growth promotion has been suggested in other studies to be regulated by the sugar sensor enzyme hexokinase1, the role of which is activation of glucose phosphorylation. In this present study, we examined the co-relationship between root and stem development in potato plants treated with PsJN and the activity of hexokinase1. Plants grown in the presence of 1.5% and 3% sucrose showed increased levels of hexokinase1 activity only in the roots of inoculated plants, suggesting that the increased enzyme levels may be associated with root growth. Analysis for mRNA using reverse transcriptase did not reveal any significant differences in transcription levels of the gene between inoculated and uninoculated plants. When PsJN-inoculated plants were grown in 1.5% and 3% concentrations of glucose and fructose, stem height and mass, leaf number, root mass, and overall biomass increased. No growth promotion occurred when PsJN-inoculated plants were grown in 3% maltose. Subsequently, a hexokinase1 activity assay showed that PsJN-induced growth of potato plants was found to only occur when plants were grown in the presence of sugars that are recognized by the plant hexokinase1. The results suggest that PsJN may enhance sugar uptake in plants by direct or indirect stimulation of hexokinase1 activity in roots and this results in enhanced overall plant growth.
The binding of glucose to yeast hexokinase monomers is independent of ionic strength.
Mayes, E L; Hoggett, J G; Kellett, G L
1982-05-01
Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer.
The binding of glucose to yeast hexokinase monomers is independent of ionic strength.
Mayes, E L; Hoggett, J G; Kellett, G L
1982-01-01
Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer. PMID:7052060
The rare sugar d-allose acts as a triggering molecule of rice defence via ROS generation
Akimitsu, Kazuya
2013-01-01
Only d-allose, among various rare monosaccharides tested, induced resistance to Xanthomonas oryzae pv. oryzae in susceptible rice leaves with defence responses: reactive oxygen species, lesion mimic formation, and PR-protein gene expression. These responses were suppressed by ascorbic acid or diphenylene iodonium. Transgenic rice plants overexpressing OsrbohC, encoding NADPH oxidase, were enhanced in sensitivity to d-allose. d-Allose-mediated defence responses were suppressed by the presence of a hexokinase inhibitor. 6-Deoxy-d-allose, a structural derivative of d-allose unable to be phosphorylated, did not confer resistance. Transgenic rice plants expressing Escherichia coli AlsK encoding d-allose kinase to increase d-allose 6-phosphate synthesis were more sensitive to d-allose, but E. coli AlsI encoding d-allose 6-phosphate isomerase expression to decrease d-allose 6-phosphate reduced sensitivity. A d-glucose 6-phosphate dehydrogenase-defective mutant was also less sensitive, and OsG6PDH1 complementation restored full sensitivity. These results reveal that a monosaccharide, d-allose, induces rice resistance to X. oryzae pv. oryzae by activating NADPH oxidase through the activity of d-glucose 6-phosphate dehydrogenase, initiated by hexokinase-mediated conversion of d-allose to d-allose 6-phosphate, and treatment with d-allose might prove to be useful for reducing disease development in rice. PMID:24014866
The rare sugar D-allose acts as a triggering molecule of rice defence via ROS generation.
Kano, Akihito; Fukumoto, Takeshi; Ohtani, Kouhei; Yoshihara, Akihide; Ohara, Toshiaki; Tajima, Shigeyuki; Izumori, Ken; Tanaka, Keiji; Ohkouchi, Takeo; Ishida, Yutaka; Nishizawa, Yoko; Ichimura, Kazuya; Tada, Yasuomi; Gomi, Kenji; Akimitsu, Kazuya
2013-11-01
Only D-allose, among various rare monosaccharides tested, induced resistance to Xanthomonas oryzae pv. oryzae in susceptible rice leaves with defence responses: reactive oxygen species, lesion mimic formation, and PR-protein gene expression. These responses were suppressed by ascorbic acid or diphenylene iodonium. Transgenic rice plants overexpressing OsrbohC, encoding NADPH oxidase, were enhanced in sensitivity to D-allose. D-Allose-mediated defence responses were suppressed by the presence of a hexokinase inhibitor. 6-Deoxy-D-allose, a structural derivative of D-allose unable to be phosphorylated, did not confer resistance. Transgenic rice plants expressing Escherichia coli AlsK encoding D-allose kinase to increase D-allose 6-phosphate synthesis were more sensitive to D-allose, but E. coli AlsI encoding D-allose 6-phosphate isomerase expression to decrease D-allose 6-phosphate reduced sensitivity. A D-glucose 6-phosphate dehydrogenase-defective mutant was also less sensitive, and OsG6PDH1 complementation restored full sensitivity. These results reveal that a monosaccharide, D-allose, induces rice resistance to X. oryzae pv. oryzae by activating NADPH oxidase through the activity of D-glucose 6-phosphate dehydrogenase, initiated by hexokinase-mediated conversion of D-allose to D-allose 6-phosphate, and treatment with D-allose might prove to be useful for reducing disease development in rice.
Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis.
Andrabi, Shaida A; Umanah, George K E; Chang, Calvin; Stevens, Daniel A; Karuppagounder, Senthilkumar S; Gagné, Jean-Philippe; Poirier, Guy G; Dawson, Valina L; Dawson, Ted M
2014-07-15
Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated "parthanatos" in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD(+) and energetic collapse, which have been thought to be caused by the consumption of cellular NAD(+) by PARP-1. Here we show that the bioenergetic collapse following PARP-1 activation is not dependent on NAD(+) depletion. Instead PARP-1 activation initiates glycolytic defects via PAR-dependent inhibition of hexokinase, which precedes the NAD(+) depletion in N-methyl-N-nitroso-N-nitroguanidine (MNNG)-treated cortical neurons. Mitochondrial defects are observed shortly after PARP-1 activation and are mediated largely through defective glycolysis, because supplementation of the mitochondrial substrates pyruvate and glutamine reverse the PARP-1-mediated mitochondrial dysfunction. Depleting neurons of NAD(+) with FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, does not alter glycolysis or mitochondrial function. Hexokinase, the first regulatory enzyme to initiate glycolysis by converting glucose to glucose-6-phosphate, contains a strong PAR-binding motif. PAR binds to hexokinase and inhibits hexokinase activity in MNNG-treated cortical neurons. Preventing PAR formation with PAR glycohydrolase prevents the PAR-dependent inhibition of hexokinase. These results indicate that bioenergetic collapse induced by overactivation of PARP-1 is caused by PAR-dependent inhibition of glycolysis through inhibition of hexokinase.
Proteomics Unveils Fibroblast-Cardiomyocyte Lactate Shuttle and Hexokinase Paradox in Mouse Muscles.
Rakus, Dariusz; Gizak, Agnieszka; Wiśniewski, Jacek R
2016-08-05
Quantitative mapping, given in biochemically interpretable units such as mol per mg of total protein, of tissue-specific proteomes is prerequisite for the analysis of any process in cells. We applied label- and standard-free proteomics to characterize three types of striated muscles: white, red, and cardiac muscle. The analysis presented here uncovers several unexpected and novel features of striated muscles. In addition to differences in protein expression levels, the three muscle types substantially differ in their patterns of basic metabolic pathways and isoforms of regulatory proteins. Importantly, some of the conclusions drawn on the basis of our results, such as the potential existence of a "fibroblast-cardiomyocyte lactate shuttle" and the "hexokinase paradox" point to the necessity of reinterpretation of some basic aspects of striated muscle metabolism. The data presented here constitute a powerful database and a resource for future studies of muscle physiology and for the design of pharmaceutics for the treatment of muscular disorders.
Up-regulation of hexokinaseII in myeloma cells: targeting myeloma cells with 3-bromopyruvate.
Nakano, Ayako; Miki, Hirokazu; Nakamura, Shingen; Harada, Takeshi; Oda, Asuka; Amou, Hiroe; Fujii, Shiro; Kagawa, Kumiko; Takeuchi, Kyoko; Ozaki, Shuji; Matsumoto, Toshio; Abe, Masahiro
2012-02-01
Hexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. However, HKII levels and its roles in ATP production and ATP-dependent cellular process have not been well studied in hematopoietic malignant cells including multiple myeloma (MM) cells.We demonstrate herein that HKII is constitutively over-expressed in MM cells. 3-bromopyruvate (3BrPA), an inhibitor of HKII, promptly and substantially suppresses ATP production and induces cell death in MM cells. Interestingly, cocultures with osteoclasts (OCs) but not bone marrow stromal cells (BMSCs) enhanced the phosphorylation of Akt along with an increase in HKII levels and lactate production in MM cells. The enhancement of HKII levels and lactate production in MM cells by OCs were mostly abrogated by the PI3K inhibitor LY294002, suggesting activation of glycolysis in MM cells by OCs via the PI3K-Akt-HKII pathway. Although BMSCs and OCs stimulate MM cell growth and survival, 3BrPA induces cell death in MM cells even in cocultures with OCs as well as BMSCs. Furthermore, 3BrPA was able to diminish ATP-dependent ABC transporter activity to restore drug retention in MM cells in the presence of OCs. These results may underpin possible clinical application of 3BrPA in patients with MM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zijian; Huang, Shanzhou; Wang, Huanyu
Rapid progress and metastasis remain the major treatment failure modes of hepatocarcinoma (HCC). Unfortunately, the underlying molecular mechanisms of hepatoma cell proliferation and migration are poorly understood. Metabolic abnormalities play critical roles in tumorigenesis and progression. Hexokinase domain containing 1 (HKDC1) catalyzes the phosphorylation of glucose. However, the functions and mechanisms of HKDC1 in cancer remain unknown. In this study, real-time RT-PCR and Western blotting assays were used to detect the HKDC1 expression levels in HCC tissues and cell lines. The Oncomine™ Cancer Microarray Database was applied to analysis the correlations between HKDC1 expression and HCC clinical characteristics. MTT andmore » Transwell migration assays were performed to determine the functions of HKDC1 in HCC cells. The effect of HKDC1 on Wnt/β-catenin signaling pathway was assessed using Western blotting assay. In this study, we found that HKDC1 expression levels were elevated in HCC tissues compared with the adjacent tissues. HCC patients with high expression levels of HKDC1 had poor overall survival (OS). Furthermore, higher HKDC1 levels also predicted a worse OS of patients within solitary, elevated pre-operated serum alpha fetoprotein (AFP) level and higher tumor diameter. Moreover, silencing HKDC1 suppressed HCC cells proliferation and migration in vitro. Downregulated HKDC1 expression repressed β-Catenin and c-Myc expression, which indicates that silencing HKDC1 may reduce proliferation and migration via inhibiting the Wnt/β-catenin signaling pathway in HCC. In summary, HKDC1 provides further insight into HCC tumor progression and may provide a novel prognostic biomarker and therapeutic target for HCC treatment. -- Highlights: •HKDC1 is upregulated in HCC. •Patients with high HKDC1 expressions perform worse OS. •Silencing HKDC1 suppresses proliferation and migration. •Silencing HKDC1 represses Wnt/β-catenin signaling pathway.« less
Acclimation to hypoxia increases carbohydrate use during exercise in high-altitude deer mice
Lau, Daphne S.; Connaty, Alex D.; Mahalingam, Sajeni; Wall, Nastashya; Cheviron, Zachary A.; Storz, Jay F.; Scott, Graham R.
2017-01-01
The low O2 experienced at high altitude is a significant challenge to effective aerobic locomotion, as it requires sustained tissue O2 delivery in addition to the appropriate allocation of metabolic substrates. Here, we tested whether high- and low-altitude deer mice (Peromyscus maniculatus) have evolved different acclimation responses to hypoxia with respect to muscle metabolism and fuel use during submaximal exercise. Using F1 generation high- and low-altitude deer mice that were born and raised in common conditions, we assessed 1) fuel use during exercise, 2) metabolic enzyme activities, and 3) gene expression for key transporters and enzymes in the gastrocnemius. After hypoxia acclimation, highland mice showed a significant increase in carbohydrate oxidation and higher relative reliance on this fuel during exercise at 75% maximal O2 consumption. Compared with lowland mice, highland mice had consistently higher activities of oxidative and fatty acid oxidation enzymes in the gastrocnemius. In contrast, only after hypoxia acclimation did activities of hexokinase increase significantly in the muscle of highland mice to levels greater than lowland mice. Highland mice also responded to acclimation with increases in muscle gene expression for hexokinase 1 and 2 genes, whereas both populations increased mRNA expression for glucose transporters. Changes in skeletal muscle with acclimation suggest that highland mice had an increased capacity for the uptake and oxidation of circulatory glucose. Our results demonstrate that highland mice have evolved a distinct mode of hypoxia acclimation that involves an increase in carbohydrate use during exercise. PMID:28077391
Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ming V.; Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; Chen, Weiqin
2010-05-07
Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressedmore » GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.« less
Mathupala, Saroj P.; Ko, Young H.; Pedersen, Peter L.
2009-01-01
The most common metabolic hallmark of malignant tumors, i.e., the “Warburg effect” is their propensity to metabolize glucose to lactic acid at a high rate even in the presence of oxygen. The pivotal player in this frequent cancer phenotype is mitochondrial-bound hexokinase [Bustamante E, Pedersen PL. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA 1977;74(9):3735−9; Bustamante E, Morris HP, Pedersen PL. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem 1981;256(16):8699−704]. Now, in clinics worldwide this prominent phenotype forms the basis of one of the most common detection systems for cancer, i.e., positron emission tomography (PET). Significantly, HK-2 is the major bound hexokinase isoform expressed in cancers that exhibit a “Warburg effect”. This includes most cancers that metastasize and kill their human host. By stationing itself on the outer mitochondrial membrane, HK-2 also helps immortalize cancer cells, escapes product inhibition and gains preferential access to newly synthesized ATP for phosphorylating glucose. The latter event traps this essential nutrient inside the tumor cells as glucose-6-P, some of which is funneled off to serve as carbon precursors to help promote the production of new cancer cells while much is converted to lactic acid that exits the cells. The resultant acidity likely wards off an immune response while preparing surrounding tissues for invasion. With the re-emergence and acceptance of both the “Warburg effect” as a prominent phenotype of most clinical cancers, and “metabolic targeting” as a rational therapeutic strategy, a number of laboratories are focusing on metabolite entry or exit steps. One remarkable success story [Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, et al. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 2004;324(1):269−75] is the use of the small molecule 3-bromopyruvate (3-BP) that selectively enters and destroys the cells of large tumors in animals by targeting both HK-2 and the mitochondrial ATP synthasome. This leads to very rapid ATP depletion and tumor destruction without harm to the animals. This review focuses on the multiple roles played by HK-2 in cancer and its potential as a metabolic target for complete cancer destruction. PMID:19101634
Gonzalez-Gronow, Mario; Cuchacovich, Miguel; Francos, Rina; Cuchacovich, Stephanie; Fernandez, Maria del Pilar; Blanco, Angel; Bowers, Edith V.; Kaczowka, Steven; Pizzo, Salvatore V.
2010-01-01
Autistic children show elevated serum levels of autoantibodies to several proteins essential for the function of normal brains. The voltage-dependent anion channel, VDAC, and hexokinase-I, a VDAC protective ligand, were identified as targets of this autoimmunity in autistic children. These autoantibodies were purified using immunoaffinity chromatographic techniques. Both antibodies induce apoptosis of cultured human neuroblastoma cells. Because VDAC and hexokinase-I are essential for brain protection from ischemic damage, the presence of these autoantibodies suggests a possible causal role in the neurologic pathogenesis of autism. PMID:20576296
SU-F-T-678: Clotrimazole Sensitizes MCF-7 Breast Cancer Cell Line to Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, L; Tambasco, M
2016-06-15
Purpose: To study the effects of Clotrimazole (CLT) on radiosensitivity of MCF-7 Cells in correlation to detachment of Hexokinase II from the Voltage Dependent Anion Channel on the outer membrane of the mitochondria. Apoptotic fractions were also analyzed in relation to the detachment of Hexokinase. Methods: This study focused on the mammary adenocarcinoma cell line, MCF-7. Colony forming assays were used to analyze radiosensitization by CLT. Flow cytometry methods were used to analyze apoptotic vs necrotic fractions after treatment with CLT. Spectrophotometery was used to analyze the mitochondrial bound and soluble fraction of Hexokinase by means of relative enzymatic activity.more » Results: Our preliminary data have shown that CLT sensitizes MCF-7 cells to radiation in a dose and incubation time dependent manner up. We have also demonstrated that there are two radiosensitizing periods in MCF-7 cells with the first corresponding to the cycle arrest after 24 hours observed in other cell lines. The second radiosensitizing period occurs with incubation in CLT after irradiation which reaches maximum effect around 24 hours of incubation time. Preliminary data from our Hexokinase detachment assay show a factor of two increase in the ratio of unbound to bound Hexokinase when comparing incubation for 24 hours in media containing 0 and 20 µM CLT. Conclusion: This study and others indicate CLT as a possible radiosensitizing agent in cancer therapies. While CLT itself shows toxicity to the liver in high doses, this study further demonstrates that disruption of the Warburg Effect and unbinding of mitochondrial bound Hexokinase as a possible pathway for cancer treatment.« less
Min, Jia; Wei, Cui
2017-03-01
Hydroxysafflor yellow A (HSYA) is the main active component of Carthamus tinctorius L which has been used for hundreds of years in Chinese folk medicine in the treatment cardiovascular disease. This study was designed to investigate whether HSYA exerts cardioprotection in ischemia-reperfusion (I/R) injury heart and the mechanisms involved. The protective effect and mechanisms in myocardial ischemia reperfusion injury of HSYA was evaluated by hypoxia-recover (H/R) injury cell model which induced by hypoxia and recovered with oxygen in H9c2 cells. PI3K/Akt and ERK as the reperfusion injury salvage kinase (RISK) pathway and Hexokinase II (HKII) were both examined. In H/R cell model, HSYA significantly reduced dehydrogenase (LDH), Caspase 3 level, alleviated oxidative stress injury and apoptosis, meanwhile restored mitochondrial energy metabolism. Pretreatment with PI3K inhibitor (LY294002) or hexokinase II inhibitor (3-BrPA), the protective effect of HSYA was significantly attenuated. On the contrary, pretreatment with ERK inhibitor (PD98059), the protective effect of HSYA on myocardial cells was decreased slightly, not as significant as PI3K inhibitor or hexokinase II inhibitor. ERK play a protective role in myocardial protection by phosphorylation of GSK3-β, but the effect of HSYA on phosphorylation of GSK3-β is weakly, however the effect of HSYA on Akt and hexokinase II were significantly up-regulated. Meanwhile, the phosphorylation of GSK3-β by HSYA was significantly reduced after gave the ERK inhibitor and had no significant difference between the model group. The cardioprotection effect of HSYA appears to be mainly mediated via the PI3K/Akt/hexokinase II. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Nawaz, Mir Hussain; Ferreira, Juliana C.; Nedyalkova, Lyudmila; Zhu, Haizhong; Carrasco-López, César; Kirmizialtin, Serdal
2018-01-01
The high proliferation rate of tumor cells demands high energy and metabolites that are sustained by a high glycolytic flux known as the ‘Warburg effect’. The activation and further metabolism of glucose is initiated by hexokinase, a focal point of metabolic regulation. The human hexokinase 2 (HK2) is overexpressed in all aggressive tumors and predominantly found on the outer mitochondrial membrane, where interactions through its N-terminus initiates and maintains tumorigenesis. Here, we report the structure of HK2 in complex with glucose and glucose-6-phosphate (G6P). Structural and biochemical characterization of the mitochondrial conformation reveals higher conformational stability and slow protein unfolding rate (ku) compared with the cytosolic conformation. Despite the active site similarity of all human hexokinases, the N-domain of HK2 is catalytically active but not in hexokinase 1 and 3. Helix-α13 that protrudes out of the N-domain to link it to the C-domain of HK2 is found to be important in maintaining the catalytic activity of the N-half. In addition, the N-domain of HK2 regulates the stability of the whole enzyme in contrast with the C-domain. Glucose binding enhanced the stability of the wild-type (WT) enzyme and the single mutant D657A of the C-domain, but it did not increase the stability of the D209A mutant of the N-domain. The interaction of HK2 with the mitochondria through its N-half is proposed to facilitate higher stability on the mitochondria. The identification of structural and biochemical differences between HK2 and other human hexokinase isozymes could potentially be used in the development of new anticancer therapies. PMID:29298880
Chukwuma, Chika Ifeanyi; Mopuri, Ramgopal; Nagiah, Savania; Chuturgoon, Anil Amichund; Islam, Md Shahidul
2017-08-02
Studies have reported that erythritol, a low or non-glycemic sugar alcohol possesses anti-hyperglycemic and anti-diabetic potentials but the underlying mode of actions is not clear. This study investigated the underlying mode of actions behind the anti-hyperglycemic and anti-diabetic potentials of erythritol using different experimental models (experiment 1, 2 and 3). Experiment 1 examined the effects of increasing concentrations (2.5-20%) of erythritol on glucose absorption and uptake in isolated rat jejunum and psoas muscle, respectively. Experiments 2 and 3 examined the effects of a single oral dose of erythritol (1 g/kg bw) on intestinal glucose absorption, gastric emptying and postprandial blood glucose increase, glucose tolerance, serum insulin level, muscle/liver hexokinase and liver glucose-6 phosphatase activities, liver and muscle glycogen contents and mRNA and protein expression of muscle Glut-4 and IRS-1 in normal and type 2 diabetic animals. Experiment 1 revealed that erythritol dose dependently enhanced muscle glucose ex vivo. Experiment 2 demonstrated that erythritol feeding delayed gastric emptying and reduced small intestinal glucose absorption as well as postprandial blood glucose rise, especially in diabetic animals. Experiment 3 showed that erythritol feeding improved glucose tolerance, muscle/liver hexokinase and liver glucose-6 phosphatase activities, glycogen storage and also modulated expression of muscle Glut-4 and IRS-1 in diabetic animals. Data suggest that erythritol may exert anti-hyperglycemic effects not only via reducing small intestinal glucose absorption, but also by increasing muscle glucose uptake, improving glucose metabolic enzymes activity and modulating muscle Glut-4 and IRS-1 mRNA and protein expression. Hence, erythritol may be a useful dietary supplement for managing hyperglycemia, particularly for T2D.
Synergistic binding of glucose and aluminium ATP to hexokinase from Saccharomyces cerevisiae.
Woolfitt, A R; Kellett, G L; Hoggett, J G
1988-08-10
The binding of glucose, AlATP and AlADP to the monomeric and dimeric forms of the native yeast hexokinase PII isoenzyme and to the proteolytically modified SII monomeric form was monitored at pH 6.7 by the concomitant quenching of intrinsic protein fluorescence. No fluorescence changes were observed when free enzyme was mixed with AlATP at concentrations up to 7500 microM. In the presence of saturating concentrations of glucose, the maximal quenching of fluorescence induced by AlATP was between 1.5 and 3.5% depending on species, and the average value of [L]0.5, the concentration of ligand at half-saturation, over all monomeric species was 0.9 +/- 0.4 microM. The presence of saturating concentrations of AlATP diminished [L]0.5 for glucose binding by between 260- and 670-fold for hexokinase PII and SII monomers, respectively (dependent on the ionic strength), and by almost 4000-fold for PII dimer. The data demonstrate extremely strong synergistic interactions in the binding of glucose and AlATP to yeast hexokinase, arising as a consequence of conformational changes in the free enzyme induced by glucose and in enzyme-glucose complex induced by AlATP. The synergistic interactions of glucose and AlATP are related to their kinetic synergism and to the ability of AlATP to act as a powerful inhibitor of the hexokinase reaction.
Fraga, Amanda; Moraes, Jorge; da Silva, José Roberto; Costa, Evenilton P.; Menezes, Jackson; da Silva Vaz Jr, Itabajara; Logullo, Carlos; da Fonseca, Rodrigo Nunes; Campos, Eldo
2013-01-01
The physiological roles of polyphosphates (poly P) recently found in arthropod mitochondria remain obscure. Here, the possible involvement of poly P with reactive oxygen species generation in mitochondria of Rhipicephalus microplus embryos was investigated. Mitochondrial hexokinase and scavenger antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione reductase were assayed during embryogenesis of R. microplus. The influence of poly P3 and poly P15 were analyzed during the period of higher enzymatic activity during embryogenesis. Both poly Ps inhibited hexokinase activity by up to 90% and, interestingly, the mitochondrial membrane exopolyphosphatase activity was stimulated by the hexokinase reaction product, glucose-6-phosphate. Poly P increased hydrogen peroxide generation in mitochondria in a situation where mitochondrial hexokinase is also active. The superoxide dismutase, catalase and glutathione reductase activities were higher during embryo cellularization, at the end of embryogenesis and during embryo segmentation, respectively. All of the enzymes were stimulated by poly P3. However, superoxide dismutase was not affected by poly P15, catalase activity was stimulated only at high concentrations and glutathione reductase was the only enzyme that was stimulated in the same way by both poly Ps. Altogether, our results indicate that inorganic polyphosphate and mitochondrial membrane exopolyphosphatase regulation can be correlated with the generation of reactive oxygen species in the mitochondria of R. microplus embryos. PMID:23983617
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Meredith B., E-mail: mbauman7@jhu.edu; Tomiya, Noboru, E-mail: ntomiya1@jhu.edu; Betenbaugh, Michael J., E-mail: beten@jhu.edu
2010-04-23
Glycosylation-deficient Chinese Hamster Ovary (CHO) cell lines can be used to expand our understanding of N-glycosylation pathways and to study Congenital Disorders of Glycosylation, diseases caused by defects in the synthesis of N-glycans. The mammalian N-glycosylation pathway involves the step-wise assembly of sugars onto a dolichol phosphate (P-Dol) carrier, forming a lipid-linked oligosaccharide (LLO), followed by the transfer of the completed oligosaccharide onto the protein of interest. In order to better understand how deficiencies in this pathway affect the availability of the completed LLO donor for use in N-glycosylation, we used a non-radioactive, HPLC-based assay to examine the intermediates inmore » the LLO synthesis pathway for CHO-K1 cells and for three different glycosylation-deficient CHO cell lines. B4-2-1 cells, which have a mutation in the dolichol phosphate-mannose synthase (DPM2) gene, accumulated LLO with the structure Man{sub 5}GlcNAc{sub 2}-P-P-Dol, while MI8-5 cells, which lack glucosyltransferase I (ALG6) activity, accumulated Man{sub 9}GlcNAc{sub 2}-P-P-Dol. CHO-K1 and MI5-4 cells both produced primarily the complete LLO, Glc{sub 3}Man{sub 9}GlcNAc{sub 2}-P-P-Dol, though the relative quantity was lower in MI5-4. MI5-4 cells have reduced hexokinase activity which could affect the availability of many of the substrates required for LLO synthesis and, consequently, impair production of the final LLO donor. Increasing hexokinase activity by overexpressing hexokinase II in MI5-4 caused a decrease in the relative quantities of the incomplete LLO intermediates from Man{sub 5}GlcNAc{sub 2}-PP-Dol through Glc{sub 1}Man{sub 9}GlcNAc{sub 2}-PP-Dol, and an increase in the relative quantity of the final LLO donor, Glc{sub 3}Man{sub 9}GlcNAc{sub 2}-P-P-Dol. This study suggests that metabolic engineering may be a useful strategy for improving LLO availability for use in N-glycosylation.« less
PHLPP regulates hexokinase 2-dependent glucose metabolism in colon cancer cells.
Xiong, Xiaopeng; Wen, Yang-An; Mitov, Mihail I; C Oaks, Mary; Miyamoto, Shigeki; Gao, Tianyan
2017-01-01
Increased glucose metabolism is considered as one of the most important metabolic alterations adapted by cancer cells in order to generate energy as well as high levels of glycolytic intermediates to support rapid proliferation. PH domain leucine-rich repeat protein phosphatase (PHLPP) belongs to a novel family of Ser/Thr protein phosphatases that function as tumor suppressors in various types of human cancer. Here we determined the role of PHLPP in regulating glucose metabolism in colon cancer cells. Knockdown of PHLPP increased the rate of glucose consumption and lactate production, whereas overexpression of PHLPP had the opposite effect. Bioenergetic analysis using Seahorse Extracelluar Flux Analyzer revealed that silencing PHLPP expression induced a glycolytic shift in colon cancer cells. Mechanistically, we found that PHLPP formed a complex with Akt and hexokinase 2 (HK2) in the mitochondrial fraction of colon cancer cells and knockdown of PHLPP enhanced Akt-mediated phosphorylation and mitochondrial localization of HK2. Depletion of HK2 expression or treating cells with Akt and HK2 inhibitors reversed PHLPP loss-induced increase in glycolysis. Furthermore, PHLPP knockdown cells became addicted to glucose as a major energy source in that glucose starvation significantly decreased cancer cell survival. As HK2 is the key enzyme that determines the direction and magnitude of glucose flux, our study identified PHLPP as a novel regulator of glucose metabolism by controlling HK2 activity in colon cancer cells.
PHLPP regulates hexokinase 2-dependent glucose metabolism in colon cancer cells
Xiong, Xiaopeng; Wen, Yang-An; Mitov, Mihail I; C Oaks, Mary; Miyamoto, Shigeki; Gao, Tianyan
2017-01-01
Increased glucose metabolism is considered as one of the most important metabolic alterations adapted by cancer cells in order to generate energy as well as high levels of glycolytic intermediates to support rapid proliferation. PH domain leucine-rich repeat protein phosphatase (PHLPP) belongs to a novel family of Ser/Thr protein phosphatases that function as tumor suppressors in various types of human cancer. Here we determined the role of PHLPP in regulating glucose metabolism in colon cancer cells. Knockdown of PHLPP increased the rate of glucose consumption and lactate production, whereas overexpression of PHLPP had the opposite effect. Bioenergetic analysis using Seahorse Extracelluar Flux Analyzer revealed that silencing PHLPP expression induced a glycolytic shift in colon cancer cells. Mechanistically, we found that PHLPP formed a complex with Akt and hexokinase 2 (HK2) in the mitochondrial fraction of colon cancer cells and knockdown of PHLPP enhanced Akt-mediated phosphorylation and mitochondrial localization of HK2. Depletion of HK2 expression or treating cells with Akt and HK2 inhibitors reversed PHLPP loss-induced increase in glycolysis. Furthermore, PHLPP knockdown cells became addicted to glucose as a major energy source in that glucose starvation significantly decreased cancer cell survival. As HK2 is the key enzyme that determines the direction and magnitude of glucose flux, our study identified PHLPP as a novel regulator of glucose metabolism by controlling HK2 activity in colon cancer cells. PMID:28179998
Hantke, Janina; Chandler, David; King, Rosalind; Wanders, Ronald J A; Angelicheva, Dora; Tournev, Ivailo; McNamara, Elyshia; Kwa, Marcel; Guergueltcheva, Velina; Kaneva, Radka; Baas, Frank; Kalaydjieva, Luba
2009-12-01
Hereditary Motor and Sensory Neuropathy -- Russe (HMSNR) is a severe autosomal recessive disorder, identified in the Gypsy population. Our previous studies mapped the gene to 10q22-q23 and refined the gene region to approximately 70 kb. Here we report the comprehensive sequencing analysis and fine mapping of this region, reducing it to approximately 26 kb of fully characterised sequence spanning the upstream exons of Hexokinase 1 (HK1). We identified two sequence variants in complete linkage disequilibrium, a G>C in a novel alternative untranslated exon (AltT2) and a G>A in the adjacent intron, segregating with the disease in affected families and present in the heterozygote state in only 5/790 population controls. Sequence conservation of the AltT2 exon in 16 species with invariable preservation of the G allele at the mutated site, strongly favour the exonic change as the pathogenic mutation. Analysis of the Hk1 upstream region in mouse mRNA from testis and neural tissues showed an abundance of AltT2-containing transcripts generated by extensive, developmentally regulated alternative splicing. Expression is very low compared with ubiquitous Hk1 and all transcripts skip exon1, which encodes the protein domain responsible for binding to the outer mitochondrial membrane, and regulation of energy production and apoptosis. Hexokinase activity measurement and immunohistochemistry of the peripheral nerve showed no difference between patients and controls. The mutational mechanism and functional effects remain unknown and could involve disrupted translational regulation leading to increased anti-apoptotic activity (suggested by the profuse regenerative activity in affected nerves), or impairment of an unknown HK1 function in the peripheral nervous system (PNS).
Hantke, Janina; Chandler, David; King, Rosalind; Wanders, Ronald JA; Angelicheva, Dora; Tournev, Ivailo; McNamara, Elyshia; Kwa, Marcel; Guergueltcheva, Velina; Kaneva, Radka; Baas, Frank; Kalaydjieva, Luba
2009-01-01
Hereditary Motor and Sensory Neuropathy – Russe (HMSNR) is a severe autosomal recessive disorder, identified in the Gypsy population. Our previous studies mapped the gene to 10q22-q23 and refined the gene region to ∼70 kb. Here we report the comprehensive sequencing analysis and fine mapping of this region, reducing it to ∼26 kb of fully characterised sequence spanning the upstream exons of Hexokinase 1 (HK1). We identified two sequence variants in complete linkage disequilibrium, a G>C in a novel alternative untranslated exon (AltT2) and a G>A in the adjacent intron, segregating with the disease in affected families and present in the heterozygote state in only 5/790 population controls. Sequence conservation of the AltT2 exon in 16 species with invariable preservation of the G allele at the mutated site, strongly favour the exonic change as the pathogenic mutation. Analysis of the Hk1 upstream region in mouse mRNA from testis and neural tissues showed an abundance of AltT2-containing transcripts generated by extensive, developmentally regulated alternative splicing. Expression is very low compared with ubiquitous Hk1 and all transcripts skip exon1, which encodes the protein domain responsible for binding to the outer mitochondrial membrane, and regulation of energy production and apoptosis. Hexokinase activity measurement and immunohistochemistry of the peripheral nerve showed no difference between patients and controls. The mutational mechanism and functional effects remain unknown and could involve disrupted translational regulation leading to increased anti-apoptotic activity (suggested by the profuse regenerative activity in affected nerves), or impairment of an unknown HK1 function in the peripheral nervous system (PNS). PMID:19536174
Storm, Petter; Puthia, Manoj Kumar; Aits, Sonja; Urbano, Alexander; Northen, Trent; Powers, Scott; Bowen, Ben; Chao, Yinxia; Reindl, Wolfgang; Lee, Do Yup; Sullivan, Nancy Liu; Zhang, Jianping; Trulsson, Maria; Yang, Henry; Watson, James; Svanborg, Catharina
2014-01-01
HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small hairpin RNA inhibition, proteomic and metabolomic technology we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted the sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, the HAMLET sensitivity was modified by the glycolytic state of the tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen Hexokinase 1, PFKFB1 and HIF1α modified HAMLET sensitivity. Hexokinase 1 was shown to bind HAMLET in a protein array containing approximately 8000 targets and Hexokinase activity decreased within 15 minutes of HAMLET treatment, prior to morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. The glycolytic machinery was modified and glycolysis was shifted towards the pentose phosphate pathway. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 minutes. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene-addiction or the Warburg effect. PMID:21643007
The binding of glucose and nucleotides to hexokinase from Saccharomyces cerevisiae.
Woolfitt, A R; Kellett, G L; Hoggett, J G
1988-01-29
The binding of glucose, ADP and AdoPP[NH]P, to the native PII dimer and PII monomer and the proteolytically-modified SII monomer of hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) from Saccharomyces cerevisiae was monitored at pH 6.7 by the concomitant quenching of protein fluorescence. The data were analysed in terms of Qmax, the maximal quenching of fluorescence at saturating concentrations of ligand, and [L]0.5, the concentration of ligand at half-maximal quenching. No changes in fluorescence were observed with free enzyme and nucleotide alone. In the presence of saturating levels of glucose, Qmax induced by nucleotide was between 2 and 7%, and [L]0.5 was between 0.12 and 0.56 mM, depending on the nucleotide and enzyme species. Qmax induced by glucose alone was between 22 and 25%, while [L]0.5 was approx. 0.4 mM for either of the monomeric hexokinase forms and 3.4 for PII dimer. In the presence of 6 mM ADP or 2 mM AdoPP[NH]P, Qmax for glucose was increased by up to 4% and [L]0.5 was diminished 3-fold for hexokinase PII monomer, 6-fold for SII monomer, and 15-fold for PII dimer. The results are interpreted in terms of nucleotide-induced conformational change of hexokinase in the presence of glucose and synergistic binding interactions between glucose and nucleotide.
Westwood, A; Bullock, D G; Whitehead, T P
1986-01-01
Hexokinase methods for serum glucose assay appeared to give slightly but consistently higher inter-laboratory coefficients of variation than all methods combined in the UK External Quality Assessment Scheme; their performance over a two-year period was therefore compared with that for three groups of glucose oxidase methods. This assessment showed no intrinsic inferiority in the hexokinase method. The greater variation may be due to the more heterogeneous group of instruments, particularly discrete analysers, on which the method is used. The Beckman Glucose Analyzer and Astra group (using a glucose oxidase method) showed the least inter-laboratory variability but also the lowest mean value. No comment is offered on the absolute accuracy of any of the methods.
Hu, Da-Gang; Zhang, Quan-Yan; An, Jian-Ping; You, Chun-Xiang; Hao, Yu-Jin
2016-01-01
Glucose induces anthocyanin accumulation in many plant species; however, the molecular mechanism involved in this process remains largely unknown. Here, we found that apple hexokinase MdHXK1, a glucose sensor, was involved in sensing exogenous glucose and regulating anthocyanin biosynthesis. In vitro and in vivo assays suggested that MdHXK1 interacted directly with and phosphorylated an anthocyanin-associated bHLH transcription factor (TF) MdbHLH3 at its Ser361 site in response to glucose. Furthermore, both the hexokinase_2 domain and signal peptide are crucial for the MdHXK1-mediated phosphorylation of MdbHLH3. Moreover, phosphorylation modification stabilized MdbHLH3 protein and enhanced its transcription of the anthocyanin biosynthesis genes, thereby increasing anthocyanin biosynthesis. Finally, a series of transgenic analyses in apple calli and fruits demonstrated that MdHXK1 controlled glucose-induced anthocyanin accumulation at least partially, if not completely, via regulating MdbHLH3. Overall, our findings provide new insights into the mechanism of the glucose sensor HXK1 modulation of anthocyanin accumulation, which occur by directly regulating the anthocyanin-related bHLH TFs in response to a glucose signal in plants. PMID:27560976
Nakamura, Noriko; Miranda-Vizuete, Antonio; Miki, Kiyoshi; Mori, Chisato; Eddy, Edward M.
2008-01-01
During epididymal transit, sperm acquire the ability to initiate rapid forward progressive motility on release into the female reproductive tract or physiological media. Glycolysis is the primary source of the ATP necessary for this motility in the mouse, and several novel glycolytic enzymes have been identified that are localized to the principal piece region of the flagellum. One of these is the spermatogenic cell-specific type 1 hexokinase isozyme (HK1S), the only member of the hexokinase enzyme family detected in sperm. Hexokinase activity was found to be lower in immotile sperm immediately after removal from the cauda epididymis (quiescent) than in sperm incubated in physiological medium for 5 min and showing rapid forward progressive motility (activated). However, incubating sperm in medium containing diamide, an inhibitor of disulfide bond reduction, resulted in lower motility and HK activity than in controls. HK1S was present in dimer and monomer forms in extracts of quiescent sperm but mainly as a monomer in motile sperm. A dimer-size band detected in quiescent sperm with phosphotyrosine antibody was not detected in activated sperm, and the monomer-size band was enhanced. In addition, the general protein oxido-reductase thioredoxin-1 was able to catalyze the in vitro conversion of HK1S dimers to the monomeric form. These results strongly suggest that cleavage of disulfide bonds in HK1S dimers contributes to the increases in HK activity and motility that occur when mouse sperm become activated. PMID:18509164
Hexokinase 1 is required for glucose-induced repression of bZIP63, At5g22920, and BT2 in Arabidopsis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunz, Sabine; Gardestrom, Per; Pesquet, Edouard
Simple sugars, like glucose (Glc) and sucrose (Suc), act as signals to modulate the expression of hundreds of genes in plants. Frequently, however, it remains unclear whether this regulation is induced by the sugars themselves or by their derivatives generated in the course of carbohydrate (CH) metabolism. In the present study, we tested the relevance of different CH metabolism and allocation pathways affecting expression patterns of five selected sugar-responsive genes ( bZIP63, At5g22920, BT2, MGD2, and TPS9) in Arabidopsis thaliana. In general, the expression followed diurnal changes in the overall sugar availability. However, under steady growth conditions, this response wasmore » hardly impaired in the mutants for CH metabolizing/ transporting proteins ( adg1, sex1, sus1-4, sus5/6, and tpt2), including also hexokinase1 (HXK1) loss- and gain-of-function plants— gin2.1 and oe3.2, respectively. In addition, transgenic plants carrying pbZIP63::GUS showed no changes in reporter-gene-expression when grown on sugar under steady-state conditions. In contrast, short-term treatments of agar-grown seedlings with 1% Glc or Suc induced pbZIP63::GUS repression, which became even more apparent in seedlings grown in liquid media. Subsequent analyses of liquid-grown gin2.1 and oe3.2 seedlings revealed that Glc -dependent regulation of the five selected genes was not affected in gin2.1, whereas it was enhanced in oe3.2 plants for bZIP63, At5g22920, and BT. The sugar treatments had no effect on ATP/ADP ratio, suggesting that changes in gene expression were not linked to cellular energy status. Altogether, the data suggest that HXK1 does not act as Glc sensor controlling bZIP63, At5g22920, and BT2 expression, but it is nevertheless required for the production of a downstream metabolic signal regulating their expression« less
Hexokinase 1 is required for glucose-induced repression of bZIP63, At5g22920, and BT2 in Arabidopsis
Kunz, Sabine; Gardestrom, Per; Pesquet, Edouard; ...
2015-07-14
Simple sugars, like glucose (Glc) and sucrose (Suc), act as signals to modulate the expression of hundreds of genes in plants. Frequently, however, it remains unclear whether this regulation is induced by the sugars themselves or by their derivatives generated in the course of carbohydrate (CH) metabolism. In the present study, we tested the relevance of different CH metabolism and allocation pathways affecting expression patterns of five selected sugar-responsive genes ( bZIP63, At5g22920, BT2, MGD2, and TPS9) in Arabidopsis thaliana. In general, the expression followed diurnal changes in the overall sugar availability. However, under steady growth conditions, this response wasmore » hardly impaired in the mutants for CH metabolizing/ transporting proteins ( adg1, sex1, sus1-4, sus5/6, and tpt2), including also hexokinase1 (HXK1) loss- and gain-of-function plants— gin2.1 and oe3.2, respectively. In addition, transgenic plants carrying pbZIP63::GUS showed no changes in reporter-gene-expression when grown on sugar under steady-state conditions. In contrast, short-term treatments of agar-grown seedlings with 1% Glc or Suc induced pbZIP63::GUS repression, which became even more apparent in seedlings grown in liquid media. Subsequent analyses of liquid-grown gin2.1 and oe3.2 seedlings revealed that Glc -dependent regulation of the five selected genes was not affected in gin2.1, whereas it was enhanced in oe3.2 plants for bZIP63, At5g22920, and BT. The sugar treatments had no effect on ATP/ADP ratio, suggesting that changes in gene expression were not linked to cellular energy status. Altogether, the data suggest that HXK1 does not act as Glc sensor controlling bZIP63, At5g22920, and BT2 expression, but it is nevertheless required for the production of a downstream metabolic signal regulating their expression« less
OGAWA, HISATAKA; NAGANO, HIROAKI; KONNO, MASAMITSU; EGUCHI, HIDETOSHI; KOSEKI, JUN; KAWAMOTO, KOICHI; NISHIDA, NAOHIRO; COLVIN, HUGH; TOMOKUNI, AKIRA; TOMIMARU, YOSHITO; HAMA, NAOKI; WADA, HIROSHI; MARUBASHI, SHIGERU; KOBAYASHI, SHOGO; MORI, MASAKI; DOKI, YUICHIRO; ISHII, HIDESHI
2015-01-01
Metabolism may determine the biologically malignant behavior of pancreatic cancer. To investigate the significance and prognostic value of cancer metabolism in cancer patients, we investigated the expression of two key enzymes in anaerobic glycolysis, hexokinase 2 (HK2) and pyruvate kinase isoenzyme type M2 (PKM2), in surgical specimens obtained from 36 patients who underwent curative resection of pancreatic ductal carcinoma. The hk2-glycolysis axis is a key system in the clinical imaging of tumors via positron emission tomography. Immunohistochemical staining for hk2 and pkm2 was performed and the data were statistically analyzed to evaluate their prognostic power. The expression of hk2 and pkm2 was associated with clinicopathological variables and patient prognosis, including overall survival, local recurrence-free survival and distant metastasis-free survival. Staining for hk2 was negative and positive in 42 and 58% of the patients, respectively, whereas staining for pkm2 was negative and positive in 56 and 44%, respectively; hk2-positive staining was correlated with progressive pathological tumor stage (pT3 vs. pT1 and pT2; P=0.017). In the univariate analysis, the positive expression of hk2 and pkm2, pathological stage (pT3 vs. pT1 and pT2) and nodal metastasis were significantly correlated with poor prognosis (P<0.03). In the multivariate analysis, pathological nodal metastasis was an independent prognostic factor for overall survival, whereas the positive expression of hk2 and pkm2 exhibited borderline significance (P=0.08 and 0.12, hazard ratio = 2.57 and 2.16, respectively). In addition, the combination of high expression of hk2 as well as pkm2 was found to be significant (P<0.05). These results suggested that the expression of hk2 and pkm2, particularly their combination, in surgical specimens obtained during curative resection, may predict an unfavorable clinical outcome in patients with pancreatic cancer. PMID:26137268
Lee, Minjong; Jo, Ara; Lee, Seulki; Kim, Jong Bin; Chang, Young; Nam, Joon Yeul; Cho, Hyeki; Cho, Young Youn; Cho, Eun Ju; Lee, Jeong-Hoon; Yu, Su Jong; Yoon, Jung-Hwan
2017-01-01
Background & aims Acquisition of anoikis resistance is a prerequisite for metastasis in hepatocellular carcinoma (HCC). However, little is known about how energy metabolism and antioxidant systems are altered in anoikis-resistant (AR) HCC cells. We evaluated anti-tumor effects of a combination treatment of 3-bromopyruvate (3-BP) and buthionine sulfoximine (BSO) in AR HCC cells. Methods We compared glycolysis, reactive oxygen species (ROS) production, and chemoresistance among Huh-BAT, HepG2 HCC cells, and the corresponding AR cells. Expression of hexokinase II, gamma-glutamylcysteine synthetase (rGCS), and epithelial–mesenchymal transition (EMT) markers in AR cells was assessed. Anti-tumor effects of a combination treatment of 3-BP and BSO were evaluated in AR cells and an HCC xenograft mouse model. Results AR HCC cells showed significantly higher chemoresistance, glycolysis and lower ROS production than attached cells. Expression of hexokinase II, rGCS, and EMT markers was higher in AR HCC cells than attached cells. A combination treatment of 3-BP/BSO effectively suppressed proliferation of AR HCC cells through apoptosis by blocking glycolysis and enhancing ROS levels. In xenograft mouse models, tumor growth derived from AR HCC cells was significantly suppressed in the group treated with 3-BP/BSO compared to the group treated with 3-BP or sorafenib. Conclusions These results demonstrated that a combination treatment of 3-BP/BSO had a synergistic anti-tumor effect in an AR HCC model. This strategy may be an effective adjuvant therapy for patients with sorafenib-resistant HCC. PMID:28362858
Lee, Minjong; Jo, Ara; Lee, Seulki; Kim, Jong Bin; Chang, Young; Nam, Joon Yeul; Cho, Hyeki; Cho, Young Youn; Cho, Eun Ju; Lee, Jeong-Hoon; Yu, Su Jong; Yoon, Jung-Hwan; Kim, Yoon Jun
2017-01-01
Acquisition of anoikis resistance is a prerequisite for metastasis in hepatocellular carcinoma (HCC). However, little is known about how energy metabolism and antioxidant systems are altered in anoikis-resistant (AR) HCC cells. We evaluated anti-tumor effects of a combination treatment of 3-bromopyruvate (3-BP) and buthionine sulfoximine (BSO) in AR HCC cells. We compared glycolysis, reactive oxygen species (ROS) production, and chemoresistance among Huh-BAT, HepG2 HCC cells, and the corresponding AR cells. Expression of hexokinase II, gamma-glutamylcysteine synthetase (rGCS), and epithelial-mesenchymal transition (EMT) markers in AR cells was assessed. Anti-tumor effects of a combination treatment of 3-BP and BSO were evaluated in AR cells and an HCC xenograft mouse model. AR HCC cells showed significantly higher chemoresistance, glycolysis and lower ROS production than attached cells. Expression of hexokinase II, rGCS, and EMT markers was higher in AR HCC cells than attached cells. A combination treatment of 3-BP/BSO effectively suppressed proliferation of AR HCC cells through apoptosis by blocking glycolysis and enhancing ROS levels. In xenograft mouse models, tumor growth derived from AR HCC cells was significantly suppressed in the group treated with 3-BP/BSO compared to the group treated with 3-BP or sorafenib. These results demonstrated that a combination treatment of 3-BP/BSO had a synergistic anti-tumor effect in an AR HCC model. This strategy may be an effective adjuvant therapy for patients with sorafenib-resistant HCC.
p63 supports aerobic respiration through hexokinase II
Viticchiè, Guiditta; Agostini, Massimiliano; Lena, Anna Maria; Mancini, Mara; Zhou, Huiqing; Zolla, Lello; Dinsdale, David; Saintigny, Gaelle; Melino, Gerry; Candi, Eleonora
2015-01-01
Short p63 isoform, ΔNp63, is crucial for epidermis formation, and it plays a pivotal role in controlling the turnover of basal keratinocytes by regulating the expression of a subset of genes involved in cell cycle and cell adhesion programs. The glycolytic enzyme hexokinase 2 (HK2) represents the first step of glucose utilization in cells. The family of HKs has four isoforms that differ mainly in their tissue and subcellular distribution. The preferential mitochondrial localization of HK2 at voltage-dependent anion channels provides access to ATP generated by oxidative phosphorylation and generates an ADP/ATP recycling mechanism to maintain high respiration rates and low electron leak. Here, we report that ΔNp63 depletion in human keratinocytes impairs mitochondrial basal respiration and increases mitochondrial membrane polarization and intracellular reactive oxygen species. We show ΔNp63-dependent regulation of HK2 expression, and we use ChIP, validated by p63-Chip sequencing genomewide profiling analysis, and luciferase assays to demonstrate the presence of one p63-specific responsive element within the 15th intronic region of the HK2 gene, providing evidence of a direct interaction. Our data support the notion of ΔNp63 as a master regulator in epithelial cells of a combined subset of molecular mechanisms, including cellular energy metabolism and respiration. The ΔNp63–HK2 axis is also present in epithelial cancer cells, suggesting that ΔNp63 could participate in cancer metabolic reprogramming. PMID:26324887
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khripchenko, I.P.; Kukulyanskaya, M.F.; Markina, V.L.
1977-01-01
Data are submitted on activity of hexokinase and isozymes thereof, and cholinesterase in subcellular fractions of the brain in the case of inhibition and stimulation of M-cholinoreactive structures under the influence of a relatively small dose, 40 R, of ionizing radiation.
Novello, F.; Gumaa, J. A.; McLean, Patricia
1969-01-01
1. Measurements were made of the non-oxidative reactions of the pentose phosphate cycle in liver (transketolase, transaldolase, ribulose 5-phosphate epimerase and ribose 5-phosphate isomerase activities) in a variety of hormonal and nutritional conditions. In addition, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were measured for comparison with the oxidative reactions of the cycle; hexokinase, glucokinase and phosphoglucose isomerase activities were also included. Starvation for 2 days caused significant lowering of activity of all the enzymes of the pentose phosphate cycle based on activity in the whole liver. Re-feeding with a high-carbohydrate diet restored all the enzyme activities to the range of the control values with the exception of that of glucose 6-phosphate dehydrogenase, which showed the well-known `overshoot' effect. Re-feeding with a high-fat diet also restored the activities of all the enzymes of the pentose phosphate cycle and of hexokinase; glucokinase activity alone remained unchanged. Expressed as units/g. of liver or units/mg. of protein hexokinase, glucose 6-phosphate dehydrogenase, transketolase and pentose phosphate isomerase activities were unchanged by starvation; both 6-phosphogluconate dehydrogenase and ribulose 5-phosphate epimerase activities decreased faster than the liver weight or protein content. 2. Alloxan-diabetes resulted in a decrease of approx. 30–40% in the activities of 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase and transketolase; in contrast with this glucose 6-phosphate dehydrogenase, transaldolase and phosphoglucose isomerase activities were unchanged. Treatment of alloxan-diabetic rats with protamine–zinc–insulin for 3 days caused a very marked increase to above normal levels of activity in all the enzymes of the pentose phosphate pathway except ribulose 5-phosphate epimerase, which was restored to the control value. Hexokinase activity was also raised by this treatment. After 7 days treatment of alloxan-diabetic rats with protamine–zinc–insulin the enzyme activities returned towards the control values. 3. In adrenalectomized rats the two most important changes were the rise in hexokinase activity and the fall in transketolase activity; in addition, ribulose 5-phosphate epimerase activity was also decreased. These effects were reversed by cortisone treatment. In addition, in cortisone-treated adrenalectomized rats glucokinase activity was significantly lower than the control value. 4. In thyroidectomized rats both ribose 5-phosphate isomerase and transketolase activities were decreased; in contrast with this transaldolase activity did not change significantly. Hypophysectomy caused a 50% fall in transketolase activity that was partially reversed by treatment with thyroxine and almost fully reversed by treatment with growth hormone for 8 days. 5. The results are discussed in relation to the hormonal control of the non-oxidative reactions of the pentose phosphate cycle, the marked changes in transketolase activity being particularly outstanding. PMID:5791534
Wolde, Mistire; Tarekegn, Getahun; Kebede, Tedla
2018-05-01
Point-of-care glucometer (PoCG) devices play a significant role in self-monitoring of the blood sugar level, particularly in the follow-up of high blood sugar therapeutic response. The aim of this study was to evaluate blood glucose test results performed with four randomly selected glucometers on diabetes and control subjects versus standard wet chemistry (hexokinase) methods in Addis Ababa, Ethiopia. A prospective cross-sectional study was conducted on randomly selected 200 study participants (100 participants with diabetes and 100 healthy controls). Four randomly selected PoCG devices (CareSens N, DIAVUE Prudential, On Call Extra, i-QARE DS-W) were evaluated against hexokinase method and ISO 15197:2003 and ISO 15197:2013 standards. The minimum and maximum blood sugar values were recorded by CareSens N (21 mg/dl) and hexokinase method (498.8 mg/dl), respectively. The mean sugar values of all PoCG devices except On Call Extra showed significant differences compared with the reference hexokinase method. Meanwhile, all four PoCG devices had strong positive relationship (>80%) with the reference method (hexokinase). On the other hand, none of the four PoCG devices fulfilled the minimum accuracy measurement set by ISO 15197:2003 and ISO 15197:2013 standards. In addition, the linear regression analysis revealed that all four selected PoCG overestimated the glucose concentrations. The overall evaluation of the selected four PoCG measurements were poorly correlated with standard reference method. Therefore, before introducing PoCG devices to the market, there should be a standardized evaluation platform for validation. Further similar large-scale studies on other PoCG devices also need to be undertaken.
Xu, Dong; Jin, Junzhe; Yu, Hao; Zhao, Zheming; Ma, Dongyan; Zhang, Chundong; Jiang, Honglei
2017-03-20
Hexokinase-2(HK-2) plays dual roles in glucose metabolism and mediation of cell apoptosis, making it an attractive target for cancer therapy. Chrysin is a natural flavone found in plant extracts which are widely used as herb medicine in China. In the present study, we investigated the antitumor activity of chrysin against hepatocellular carcinoma (HCC) and the role of HK-2 played for chrysin to exert its function. The expression of HK-2 in HCC cell line and tumor tissue was examined by western blotting and immunohistochemistry staining. The activities of chrysin against HCC cell proliferation and tumor glycolysis were investigated. Chrysin-induced apoptosis was analyzed by flow cytometry. The effect of chrysin on HK-2 expression and the underlying mechanisms by which induced HCC cell apoptosis were studied. In HK-2 exogenous overexpression cell, the changes of chrysin-induced cell apoptosis and glycolysis suppression were investigated. HCC cell xenograft model was used to confirm the antitumor activity of chrysin in vivo and the effect on HK-2 was tested in chrysin-treated tumor tissue. In contrast with normal cell lines and tissue, HK-2 expression was substantially elevated in the majority of tested HCC cell lines and tumor tissue. Owing to the decrease of HK-2 expression, glucose uptake and lactate production in HCC cells were substantially inhibited after exposure to chrysin. After chrysin treatment, HK-2 which combined with VDAC-1 on mitochondria was significantly declined, resulting in the transfer of Bax from cytoplasm to mitochondria and induction of cell apoptosis. Chrysin-mediated cell apoptosis and glycolysis suppression were dramatically impaired in HK-2 exogenous overexpression cells. Tumor growth in HCC xenograft models was significantly restrained after chrysin treatment and significant decrease of HK-2 expression was observed in chrysin-treated tumor tissue. Through suppressing glycolysis and inducing apoptosis in HCC, chrysin, or its derivative has a promising potential to be a novel therapeutic for HCC management, especially for those patients with high HK-2 expression.
Adaptive responses of GLUT-4 and citrate synthase in fast-twitch muscle of voluntary running rats
NASA Technical Reports Server (NTRS)
Henriksen, E. J.; Halseth, A. E.
1995-01-01
Glucose transporter (GLUT-4) protein, hexokinase, and citrate synthase (proteins involved in oxidative energy production from blood glucose catabolism) increase in response to chronically elevated neuromuscular activity. It is currently unclear whether these proteins increase in a coordinated manner in response to this stimulus. Therefore, voluntary wheel running (WR) was used to chronically overload the fast-twitch rat plantaris muscle and the myocardium, and the early time courses of adaptative responses of GLUT-4 protein and the activities of hexokinase and citrate synthase were characterized and compared. Plantaris hexokinase activity increased 51% after just 1 wk of WR, whereas GLUT-4 and citrate synthase were increased by 51 and 40%, respectively, only after 2 wk of WR. All three variables remained comparably elevated (+50-64%) through 4 wk of WR. Despite the overload of the myocardium with this protocol, no substantial elevations in these variables were observed. These findings are consistent with a coordinated upregulation of GLUT-4 and citrate synthase in the fast-twitch plantaris, but not in the myocardium, in response to this increased neuromuscular activity. Regulation of hexokinase in fast-twitch muscle appears to be uncoupled from regulation of GLUT-4 and citrate synthase, as increases in the former are detectable well before increases in the latter.
Standard Gibbs energy of metabolic reactions: II. Glucose-6-phosphatase reaction and ATP hydrolysis.
Meurer, Florian; Do, Hoang Tam; Sadowski, Gabriele; Held, Christoph
2017-04-01
ATP (adenosine triphosphate) is a key reaction for metabolism. Tools from systems biology require standard reaction data in order to predict metabolic pathways accurately. However, literature values for standard Gibbs energy of ATP hydrolysis are highly uncertain and differ strongly from each other. Further, such data usually neglect the activity coefficients of reacting agents, and published data like this is apparent (condition-dependent) data instead of activity-based standard data. In this work a consistent value for the standard Gibbs energy of ATP hydrolysis was determined. The activity coefficients of reacting agents were modeled with electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT). The Gibbs energy of ATP hydrolysis was calculated by combining the standard Gibbs energies of hexokinase reaction and of glucose-6-phosphate hydrolysis. While the standard Gibbs energy of hexokinase reaction was taken from previous work, standard Gibbs energy of glucose-6-phosphate hydrolysis reaction was determined in this work. For this purpose, reaction equilibrium molalities of reacting agents were measured at pH7 and pH8 at 298.15K at varying initial reacting agent molalities. The corresponding activity coefficients at experimental equilibrium molalities were predicted with ePC-SAFT yielding the Gibbs energy of glucose-6-phosphate hydrolysis of -13.72±0.75kJ·mol -1 . Combined with the value for hexokinase, the standard Gibbs energy of ATP hydrolysis was finally found to be -31.55±1.27kJ·mol -1 . For both, ATP hydrolysis and glucose-6-phosphate hydrolysis, a good agreement with own and literature values were obtained when influences of pH, temperature, and activity coefficients were explicitly taken into account in order to calculate standard Gibbs energy at pH7, 298.15K and standard state. Copyright © 2017 Elsevier B.V. All rights reserved.
Tao, Lei; Wei, Libing; Liu, Yishi; Ding, Yang; Liu, Xiuting; Zhang, Xin; Wang, Xiaoping; Yao, Yuyuan; Lu, Jinrong; Wang, Qing; Hu, Rong
2017-02-01
We have previously reported that Gen-27, a newly synthesized flavonoid, exhibits anticancer effects against human colorectal cancer cells. In this study, we investigated the anticancer effects in human breast cancer cell lines and its underlying mechanisms. We demonstrated that Gen-27 inhibited the growth and proliferation of human breast cancer cells in concentration and time-dependent manners. It was found that Gen-27 induced mitochondrial-mediated apoptosis, characterized by the dissipation of mitochondrial membrane potential (ΔΨm), cytochrome c (Cyt c) release from mitochondria to cytosol, activation of caspases and induction of poly (ADP-ribose) polymerase (PARP). In addition, Gen-27 inhibited the glycolysis in human breast cancer cells. After treatment with Gen-27, the expression of HKII was down-regulated, accompanied by weakened interaction of HKII and VDAC. Further research revealed that the induction of mitochondrial apoptosis was associated with the decrease of HKII expression by Gen-27. Finally, in vivo studies demonstrated that Gen-27 significantly suppressed the growth and promoted apoptosis of MDA-MB-231 breast cancer orthotopic tumors with low systemic toxicity. In conclusion, the results showed that Gen-27 had significant anticancer effects against human breast cancer and it may potentially be used as a novel anticancer agent for the treatment of breast cancer. Copyright © 2016. Published by Elsevier Inc.
Chen, Tingjin; Yu, Jinyun; Tang, Zeli; Xie, Zhizhi; Lin, Zhipeng; Sun, Hengchang; Wan, Shuo; Li, Xuerong; Huang, Yan; Yu, Xinbing; Xu, Jin
2015-03-01
Approximately 35 million people are infected with Clonorchis sinensis (C. sinensis) globally, of whom 15 million are in China. Glycolytic enzymes are recognized as crucial molecules for trematode survival and have been targeted for vaccine and drug development. Hexokinase of C. sinensis (CsHK), as the first key regulatory enzyme of the glycolytic pathway, was investigated in the current study. There were differences in spatial structure and affinities for hexoses and phosphate donors between CsHK and HKs from humans or rats, the definitive hosts of C. sinensis. Effectors (AMP, PEP, and citrate) and a small molecular inhibitor regulated the enzymatic activity of rCsHK, and various allosteric systems were detected. CsHK was distributed in the worm extensively as well as in liver tissue and serum from C. sinensis infected rats. Furthermore, high-level specific IgG1 and IgG2a were induced in rats by immunization with rCsHK. The enzymatic activity of CsHK was suppressed by the antibody in vitro. Additionally, the survival of C. sinensis was inhibited by the antibody in vivo and in vitro. Due to differences in putative spatial structure and enzymology between CsHK and HK from the host, its extensive distribution in adult worms, and its expression profile as a component of excretory/secretory products, together with its good immunogenicity and immunoreactivity, as a key glycolytic enzyme, CsHK shows potential as a vaccine and as a promising drug target for Clonorchiasis.
Tang, Zeli; Xie, Zhizhi; Lin, Zhipeng; Sun, Hengchang; Wan, Shuo; Li, Xuerong; Huang, Yan; Yu, Xinbing; Xu, Jin
2015-01-01
Background Approximately 35 million people are infected with Clonorchis sinensis (C. sinensis) globally, of whom 15 million are in China. Glycolytic enzymes are recognized as crucial molecules for trematode survival and have been targeted for vaccine and drug development. Hexokinase of C. sinensis (CsHK), as the first key regulatory enzyme of the glycolytic pathway, was investigated in the current study. Principal Findings There were differences in spatial structure and affinities for hexoses and phosphate donors between CsHK and HKs from humans or rats, the definitive hosts of C. sinensis. Effectors (AMP, PEP, and citrate) and a small molecular inhibitor regulated the enzymatic activity of rCsHK, and various allosteric systems were detected. CsHK was distributed in the worm extensively as well as in liver tissue and serum from C. sinensis infected rats. Furthermore, high-level specific IgG1 and IgG2a were induced in rats by immunization with rCsHK. The enzymatic activity of CsHK was suppressed by the antibody in vitro. Additionally, the survival of C. sinensis was inhibited by the antibody in vivo and in vitro. Conclusions/Significance Due to differences in putative spatial structure and enzymology between CsHK and HK from the host, its extensive distribution in adult worms, and its expression profile as a component of excretory/secretory products, together with its good immunogenicity and immunoreactivity, as a key glycolytic enzyme, CsHK shows potential as a vaccine and as a promising drug target for Clonorchiasis. PMID:25799453
Ponnala, Shivani; Chetty, Chandramu; Veeravalli, Krishna Kumar; Dinh, Dzung H.; Klopfenstein, Jeffrey D.; Rao, Jasti S.
2011-01-01
Glioma cancer cells adapt to changing microenvironment and shift from mitochondrial oxidative phosphorylation to aerobic glycolysis for their metabolic needs irrespective of oxygen availability. In the present study, we show that silencing MMP-9 in combination with uPAR/cathepsin B switch glioma cells glycolytic metabolism to oxidative phosphorylation (OXPHOS) and generate reactive oxygen species (ROS) to predispose glioma cells to mitochondrial outer membrane permeabilization. shRNA for MMP-9 and uPAR (pMU) as well as shRNA for MMP-9 and cathepsin B (pMC) activated complexes of mitochondria involved in OXPHOS and inhibited glycolytic hexokinase expression. The decreased interaction of hexokinase 2 with mitochondria in the treated cells indicated the inhibition of glycolysis activation. Overexpression of Akt reversed the pMU- and pMC-mediated glycolysis to OXPHOS switch. OXPHOS un-coupler oligomycin A altered the expression levels of the Bcl-2 family of proteins; treatment with pMU or pMC reversed this effect and induced mitochondrial outer membrane permeabilization. In addition, our results show changes in mitochondrial pore transition to release cytochrome c due to change in the VDAC-Bcl-XL and BAX-BAK interaction with pMU and pMC treatments. Taken together, our results suggest that pMU and pMC treatments switch glioma cells from glycolytic to OXPHOS pathway through an inhibitory effect on Akt, ROS induction, and an increase of cytosolic cytochrome c accumulation. These results demonstrate the potential of pMU and pMC as therapeutic candidates for treatment of glioma. PMID:22076676
Ponnala, Shivani; Chetty, Chandramu; Veeravalli, Krishna Kumar; Dinh, Dzung H; Klopfenstein, Jeffrey D; Rao, Jasti S
2012-02-01
Glioma cancer cells adapt to changing microenvironment and shift from mitochondrial oxidative phosphorylation to aerobic glycolysis for their metabolic needs irrespective of oxygen availability. In the present study, we show that silencing MMP-9 in combination with uPAR/cathepsin B switch the glycolytic metabolism of glioma cells to oxidative phosphorylation (OXPHOS) and generate reactive oxygen species (ROS) to predispose glioma cells to mitochondrial outer membrane permeabilization. shRNA for MMP-9 and uPAR (pMU) as well as shRNA for MMP-9 and cathepsin B (pMC) activated complexes of mitochondria involved in OXPHOS and inhibited glycolytic hexokinase expression. The decreased interaction of hexokinase 2 with mitochondria in the treated cells indicated the inhibition of glycolysis activation. Overexpression of Akt reversed the pMU- and pMC-mediated OXPHOS to glycolysis switch. The OXPHOS un-coupler oligomycin A altered the expression levels of the Bcl-2 family of proteins; treatment with pMU or pMC reversed this effect and induced mitochondrial outer membrane permeabilization. In addition, our results show changes in mitochondrial pore transition to release cytochrome c due to changes in the VDAC-Bcl-XL and BAX-BAK interaction with pMU and pMC treatments. Taken together, our results suggest that pMU and pMC treatments switch glioma cells from the glycolytic to the OXPHOS pathway through an inhibitory effect on Akt, ROS induction and an increase of cytosolic cytochrome c accumulation. These results demonstrate the potential of pMU and pMC as therapeutic candidates for the treatment of glioma.
Comparison and correlation of binding mode of ATP in the kinase domains of Hexokinase family
Kumar, Yellapu Nanda; Kumar, Pasupuleti Santhosh; Sowjenya, Gopal; Rao, Valasani Koteswara; Yeswanth, Sthanikam; Prasad, Uppu Venkateswara; Pradeepkiran, Jangampalli Adi; Sarma, PVGK; Bhaskar, Matcha
2012-01-01
Hexokinases (HKs) are the enzymes that catalyses the ATP dependent phosphorylation of Hexose sugars to Hexose-6-Phosphate (Hex-6-P). There exist four different forms of HKs namely HK-I, HK-II, HK-III and HK-IV and all of them share a common ATP binding site core surrounded by more variable sequence that determine substrate affinities. Although they share a common binding site but they differ in their kinetic functions, hence the present study is aimed to analyze the binding mode of ATP. The analysis revealed that the four ATP binding domains are showing 13 identical, 7 similar and 6 dissimilar residues with similar structural conformation. Molecular docking of ATP into the kinase domains using Molecular Operating Environment (MOE) soft ware tool clearly showed the variation in the binding mode of ATP with variable docking scores. This probably explains the variable phosphorylation rates among hexokinases family. PMID:22829728
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Joong Won; Kim, Kwang Il; Kim, Hyun-Ah
2013-10-11
Highlights: •HIF-1α-regulated INPP4B enhances glycolysis. •INPP4B regulates aerobic glycolysis by inducing HK2 via Akt-mTOR pathway. •Blockage of INPP4B and HK2 sensitizes radioresistant laryngeal cancer cells to radiation and anticancer drug. •INPP4B is associated with HK2 in human laryngeal cancer tissues. -- Abstract: Inositol polyphosphate 4-phosphatase type II (INPP4B) was recently identified as a tumor resistance factor in laryngeal cancer cells. Herein, we show that INPP4B-mediated resistance is associated with increased glycolytic phenotype. INPP4B expression was induced by hypoxia and irradiation. Intriguingly, overexpression of INPP4B enhanced aerobic glycolysis. Of the glycolysis-regulatory genes, hexokinase 2 (HK2) was mainly regulated by INPP4B andmore » this regulation was mediated through the Akt-mTOR pathway. Notably, codepletion of INPP4B and HK2 markedly sensitized radioresistant laryngeal cancer cells to irradiation or anticancer drug. Moreover, INPP4B was significantly associated with HK2 in human laryngeal cancer tissues. Therefore, these results suggest that INPP4B modulates aerobic glycolysis via HK2 regulation in radioresistant laryngeal cancer cells.« less
Bernier, Michel; Catazaro, Jonathan; Singh, Nagendra S; Wnorowski, Artur; Boguszewska-Czubara, Anna; Jozwiak, Krzysztof; Powers, Robert; Wainer, Irving W
2017-11-15
The Warburg effect is a predominant metabolic pathway in cancer cells characterized by enhanced glucose uptake and its conversion to l-lactate and is associated with upregulated expression of HIF-1α and activation of the EGFR-MEK-ERK, Wnt-β-catenin, and PI3K-AKT signaling pathways. (R,R')-4'-methoxy-1-naphthylfenoterol ((R,R')-MNF) significantly reduces proliferation, survival, and motility of PANC-1 pancreatic cancer cells through inhibition of the GPR55 receptor. We examined (R,R')-MNF's effect on glycolysis in PANC-1 cells and tumors. Global NMR metabolomics was used to elucidate differences in the metabolome between untreated and (R,R')-MNF-treated cells. LC/MS analysis was used to quantify intracellular concentrations of β-hydroxybutyrate, carnitine, and l-lactate. Changes in target protein expression were determined by Western blot analysis. Data was also obtained from mouse PANC-1 tumor xenografts after administration of (R,R')-MNF. Metabolomics data indicate that (R,R')-MNF altered fatty acid metabolism, energy metabolism, and amino acid metabolism and increased intracellular concentrations of β-hydroxybutyrate and carnitine while reducing l-lactate content. The cellular content of phosphoinositide-dependent kinase-1 and hexokinase 2 was reduced consistent with diminished PI3K-AKT signaling and glucose metabolism. The presence of the GLUT8 transporter was established and found to be attenuated by (R,R')-MNF. Mice treated with (R,R')-MNF had significant accumulation of l-lactate in tumor tissue relative to vehicle-treated mice, together with reduced levels of the selective l-lactate transporter MCT4. Lower intratumoral levels of EGFR, pyruvate kinase M2, β-catenin, hexokinase 2, and p-glycoprotein were also observed. The data suggest that (R,R')-MNF reduces glycolysis in PANC-1 cells and tumors through reduced expression and function at multiple controlling sites in the glycolytic pathway. © 2017 UICC.
Kinetics of the monomer-dimer reaction of yeast hexokinase PI.
Hoggett, J G; Kellett, G L
1992-10-15
Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity.
Kinetics of the monomer-dimer reaction of yeast hexokinase PI.
Hoggett, J G; Kellett, G L
1992-01-01
Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity. Images Fig. 1. PMID:1445216
Poor prognosis of hexokinase 2 overexpression in solid tumors of digestive system: a meta-analysis
Hu, Fenping; Zou, Lei; He, Taiping
2017-01-01
Several previous studies have reported the prognostic value of hexokinase 2 (HK2) in digestive system tumors. However, these studies were limited by the small sample sizes and the results were inconsistent among them. Therefore, we conducted a meta-analysis based on 15 studies with 1932 patients to assess the relationship between HK2 overexpression and overall survival (OS) of digestive system malignancies. The relationship of HK2 and clinicopathological features was also evaluated. Hazard ratio (HR) or odds ratio (OR) with its 95% confidence intervals (CI) were calculated to estimate the effect size. Positive HK2 expression showed poor OS in all tumor types (HR = 1.75 [1.41-2.18], P < 0.001). When stratified by tumor type, the impact of HK2 overexpression on poor prognosis was observed in gastric cancer (HR = 1.77 [1.25-2.50], P < 0.001), hepatocellular carcinoma (HR = 1.87 [1.58-2.21], P < 0.001), and colorectal cancer (HR = 2.89 [1.62-5.15], P < 0.001), but not in pancreatic ductal adencarcinoma (HR = 1.11 [0.58-2.11], P = 0.763). Furthermore, high HK2 expression was significantly associated with some phenotypes of tumor aggressiveness, such as large tumor size (OR = 2.03 [1.10-3.74], P = 0.024), positive lymph node metastasis (OR = 2.05 [1.39-3.02], P < 0.001), advanced clinical stage (OR = 2.17 [1.21-3.89], P = 0.009) and high alpha fetoprotein level (OR = 1.47 [1.09-2.02] P = 0.013). In summary, HK2 might act as a prognostic indicator and a potential therapeutic target of these digestive system cancers. PMID:28415659
Poor prognosis of hexokinase 2 overexpression in solid tumors of digestive system: a meta-analysis.
Wu, Jiayuan; Hu, Liren; Wu, Fenping; Zou, Lei; He, Taiping
2017-05-09
Several previous studies have reported the prognostic value of hexokinase 2 (HK2) in digestive system tumors. However, these studies were limited by the small sample sizes and the results were inconsistent among them. Therefore, we conducted a meta-analysis based on 15 studies with 1932 patients to assess the relationship between HK2 overexpression and overall survival (OS) of digestive system malignancies. The relationship of HK2 and clinicopathological features was also evaluated. Hazard ratio (HR) or odds ratio (OR) with its 95% confidence intervals (CI) were calculated to estimate the effect size. Positive HK2 expression showed poor OS in all tumor types (HR = 1.75 [1.41-2.18], P < 0.001). When stratified by tumor type, the impact of HK2 overexpression on poor prognosis was observed in gastric cancer (HR = 1.77 [1.25-2.50], P < 0.001), hepatocellular carcinoma (HR = 1.87 [1.58-2.21], P < 0.001), and colorectal cancer (HR = 2.89 [1.62-5.15], P < 0.001), but not in pancreatic ductal adencarcinoma (HR = 1.11 [0.58-2.11], P = 0.763). Furthermore, high HK2 expression was significantly associated with some phenotypes of tumor aggressiveness, such as large tumor size (OR = 2.03 [1.10-3.74], P = 0.024), positive lymph node metastasis (OR = 2.05 [1.39-3.02], P < 0.001), advanced clinical stage (OR = 2.17 [1.21-3.89], P = 0.009) and high alpha fetoprotein level (OR = 1.47 [1.09-2.02] P = 0.013). In summary, HK2 might act as a prognostic indicator and a potential therapeutic target of these digestive system cancers.
Nederlof, Rianne; Denis, Simone; Lauzier, Benjamin; Rosiers, Christine Des; Laakso, Markku; Hagen, Jacob; Argmann, Carmen; Wanders, Ronald; Houtkooper, Riekelt H; Hollmann, Markus W; Houten, Sander M; Zuurbier, Coert J
2017-07-01
Cardiac hexokinase II (HKII) can translocate between cytosol and mitochondria and change its cellular expression with pathologies such as ischemia-reperfusion, diabetes and heart failure. The cardiac metabolic consequences of these changes are unknown. Here we measured energy substrate utilization in cytosol and mitochondria using stabile isotopes and oxygen consumption of the intact perfused heart for 1) an acute decrease in mitochondrial HKII (mtHKII), and 2) a chronic decrease in total cellular HKII. We first examined effects of 200nM TAT (Trans-Activator of Transcription)-HKII peptide treatment, which was previously shown to acutely decrease mtHKII by ~30%. In Langendorff-perfused hearts TAT-HKII resulted in a modest, but significant, increased oxygen consumption, while cardiac performance was unchanged. At the metabolic level, there was a nonsignificant (p=0.076) ~40% decrease in glucose contribution to pyruvate and lactate formation through glycolysis and to mitochondrial citrate synthase flux (6.6±1.1 vs. 11.2±2.2%), and an 35% increase in tissue pyruvate (27±2 vs. 20±2pmol/mg; p=0.033). Secondly, we compared WT and HKII +/- hearts (50% chronic decrease in total HKII). RNA sequencing revealed no differential gene expression between WT and HKII +/- hearts indicating an absence of metabolic reprogramming at the transcriptional level. Langendorff-perfused hearts showed no significant differences in glycolysis (0.34±0.03μmol/min), glucose contribution to citrate synthase flux (35±2.3%), palmitate contribution to citrate synthase flux (20±1.1%), oxygen consumption or mechanical performance between WT and HKII +/- hearts. These results indicate that acute albeit not chronic changes in mitochondrial HKII modestly affect cardiac oxygen consumption and energy substrate metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.
WANG, TING-AN; ZHANG, XIAO-DONG; GUO, XING-YU; XIAN, SHU-LIN; LU, YUN-FEI
2016-01-01
Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken together, these results suggest that 3-BrPA and SCT selectively suppress glycolytic enzymes, decrease ATP production, induce mitochondrial-mediated apoptosis, downregulate survivin, and inhibit tumor growth. Moreover, an intraperitoneal injection is an effective form of administration of 3-BrPA and SCT. PMID:26708213
Wang, Ting-An; Zhang, Xiao-Dong; Guo, Xing-Yu; Xian, Shu-Lin; Lu, Yun-Fei
2016-03-01
Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken together, these results suggest that 3-BrPA and SCT selectively suppress glycolytic enzymes, decrease ATP production, induce mitochondrial-mediated apoptosis, downregulate survivin, and inhibit tumor growth. Moreover, an intraperitoneal injection is an effective form of administration of 3-BrPA and SCT.
Gutiérrez, Rosa Martha Pérez
2017-05-01
One new oleanolic acid derivative, 2α,3β,23α,29α tetrahydroxyolean-12(13)-en-28-oic acid (1) was isolated from the aerial parts of Malva parviflora. Their structure was characterized by spectroscopic methods. The hypolipidemic and hypoglycemic activities of 1 was analyzed in in streptozotocin (STZ)-nicotinamide-induced type 2 diabetes in mice (MD) and type 1 diabetes in streptozotocin-induced diabetic mice (SD). Triterpene was administered orally at doses of 20 mg/kg for 4 weeks. Organ weight, body weight, glucose, fasting insulin, cholesterol-related lipid profile parameters, glutamate oxaloacetate transaminase (SGOT), glutamate pyruvate transaminase (SGPT), serum alkaline phosphatase (SALP), glucokinase, hexokinase, glucose-6-phosphatase activities and glycogen in liver were measured after 4 weeks of treatment. The results indicated that 1 regulate glucose metabolism, lipid profile, lipid peroxidation, increased body weight, glucokinase and hexokinase activities inhibited triglycerides, total cholesterol, low density lipoproteins level, SGOT, SGPT, SALP, glycogen in liver and glucose-6-phosphatase. In addition, improvement of insulin resistance and protective effect for pancreatic β-cells, also 1 may changes the expression of pro-inflammatory cytokine (IL-6 and TNF-α levels) and enzymes (PAL2, COX-2, and LOX). The results suggest that 1 has hypolipidemic and hypoglycemic, anti-inflammatory, activities, improve insulin resistance and hepatic enzymes in streptozotocin-induced diabetic mice.
Lauer, Mariana Machado; de Oliveira, Camila Bento; Yano, Natalia Lie Inocencio; Bianchini, Adalto
2012-11-01
The estuarine crab Neohelice granulata was exposed (96 h) to a sublethal copper concentration under two different physiological conditions (hyperosmoregulating crabs: 2 ppt salinity, 1 mg Cu/L; isosmotic crabs: 30 ppt salinity, 5 mg Cu/L). After exposure, gills (anterior and posterior) were dissected and activities of enzymes involved in glycolysis (hexokinase, phosphofructokinase, pyruvate kinase, lactate dehydrogenase), Krebs cycle (citrate synthase), and mitochondrial electron transport chain (cytochrome c oxidase) were analyzed. Membrane potential of mitochondria isolated from anterior and posterior gill cells was also evaluated. In anterior gills of crabs acclimated to 2 ppt salinity, copper exposure inhibited hexokinase, phosphofructokinase, pyruvate kinase, and citrate synthase activity, increased lactate dehydrogenase activity, and reduced the mitochondrial membrane potential. In posterior gills, copper inhibited hexokinase and pyruvate kinase activity, and increased citrate synthase activity. In anterior gills of crabs acclimated to 30 ppt salinity, copper exposure inhibited phosphofructokinase and citrate synthase activity, and increased hexokinase activity. In posterior gills, copper inhibited phosphofructokinase and pyruvate kinase activity, and increased hexokinase and lactate dehydrogenase activity. Copper did not affect cytochrome c oxidase activity in either anterior or posterior gills of crabs acclimated to 2 and 30 ppt salinity. These findings indicate that exposure to a sublethal copper concentration affects the activity of enzymes involved in glycolysis and Krebs cycle, especially in anterior (respiratory) gills of hyperosmoregulating crabs. Changes observed indicate a switch from aerobic to anaerobic metabolism, characterizing a situation of functional hypoxia. In this case, reduced mitochondrial membrane potential would suggest a decrease in ATP production. Although gills of isosmotic crabs were also affected by copper exposure, changes observed suggest no impact in the overall tissue ATP production. Also, findings suggest that copper exposure would stimulate the pentose phosphate pathway to support the antioxidant system requirements. Although N. granulata is very tolerant to copper, acute exposure to this metal can disrupt the energy balance by affecting biochemical systems involved in carbohydrate metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.
Hoggett, J G; Kellett, G L
1976-06-15
A method is described for the purification of native hexokinases P-I and P-II from yeast using preparative isoelectric focussing to separate the isozymes. The binding of glucose to hexokinase P-II, and the effect of this on the monomer--dimer association--dissociation reaction have been investigated quantitatively by a combination of titrations of intrinsic protein fluorescence and equilibrium ultracentrifugation. Association constants for the monomer-dimer reaction decreased with increasing pH, ionic strength and concentration of glucose. Saturating concentrations of glucose did not bring about complete dissociation of the enzyme showing that both sites were occupired in the dimer. At pH 8.0 and high ionic strength, where the enzyme existed as monomer, the dissociation constant of the enzyme-glucose complex was 3 X 10(-4) mol 1(-1) and was independent of the concentration of enzyme. Binding to the dimeric form at low pH and ionic strength (I=0.02 mol 1(-1), pH less than 7.5) was also independent of enzyme concentration (in the range 10-1000 mug ml-1) but was much weaker. The process could be described by a single dissociation constant, showing that the two available sites on the dimer were equivalent and non-cooperative; values of the intrinsic dissociation constant varied from 2.5 X 10(-3) mol 1(-1) at pH 7.0 to 6 X 10(-3) at pH 6.5. Under intermediate conditions (pH 7.0, ionic strength=0.15 mol 1(-1)), where monomer and dimer coexisted, the binding of glucose showed weak positive cooperatively (Hill coefficient 1.2); in addition, the binding was dependent upon the concentration of enzyme in the direction of stronger binding at lower concentrations. The results show that the phenomenon of half-sites reactivity observed in the binding of glucose to crystalline hexokinase P-II does not occur in solution; the simplest explanation of our finding the two sites to be equivalent is that the dimer results from the homologous association of two identical subunits.
A novel conductometric biosensor based on hexokinase for determination of adenosine triphosphate.
Kucherenko, I S; Kucherenko, D Yu; Soldatkin, O O; Lagarde, F; Dzyadevych, S V; Soldatkin, A P
2016-04-01
The paper presents a simple and inexpensive reusable biosensor for determination of the concentration of adenosine-5'-triphosphate (ATP) in aqueous samples. The biosensor is based on a conductometric transducer which contains two pairs of gold interdigitated electrodes. An enzyme hexokinase was immobilized onto one pair of electrodes, and bovine serum albumin-onto another pair (thus, a differential mode of measurement was used). Conditions of hexokinase immobilization on the transducer by cross-linking via glutaraldehyde were optimized. Influence of experimental conditions (concentration of magnesium ions, ionic strength and concentration of the working buffer) on the biosensor work was studied. The reproducibility of biosensor responses and operational stability of the biosensor were checked during one week. Dry storage at -18 °C was shown to be the best conditions to store the biosensor. The biosensor was successfully applied for measurements of ATP concentration in pharmaceutical samples. The proposed biosensor may be used in future for determination of ATP and/or glucose in water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Geier, T; Glende, M; Reich, J G
1978-01-01
In a theoretical study the influence of hemoglobin and Mg-ions as binding partners of red cell 2,3-diphosphoglycerate and ATP was investigated. Free hemoglobin may be an efficient competitor of Mg2+ for the ligand ATP. At conditions which favour hemoglobin as binding partner (i.e. desoxygenation, low medium pH and incubation temperature, as in blood preservation) up to 95% of the whole cellular ATP (ca. 2mM in cell water) may be bound to hemoglobin (ca. 7 mM). This binding is largely prevented in the presence of physiological amounts of diphosphoglycerate (ca. 7 mM) which is in excess and has a higher binding affinity to hemoglobin. Therefore, diphosphoglycerate keeps ATP (MgATP) in cell water solution at conditions in which Hb would trop it in the presence of Mg2+ (ca. 3mM). It can be calculated that, by lack of free MgATP, the activity of hexokinase within the cell drops by a factor of greater than 10 when diphosphoglycerate is metabolized. This indirect activation by diphosphoglycerate of hexokinase is operative at free concentrations of DPG far below those which exert the well known excess inhibitory effect on hexokinase and phosphofructokinase. In a model study, the activation by diphosphoglycerate of the initial two-kinase stage was introduced into a simplified kinetic model of glycolysis. A pronounced hysteresis loop of the stationary concentrations of ATP and diphosphoglycerate was produced indicating the existence of several stationary states, one with high ATP and high diphosphoglycerate, the other one with low values. It is demonstrated that diphosphoglycerate, being a protector of glycolysis at physiological concentrations, triggers an autocatalytic breakdown of the energy state when permitted to drop to low values.
Andreis, Elisabeth; Küllmer, Kai
2014-01-01
Self-monitoring of blood glucose (BG) by means of handheld BG systems is a cornerstone in diabetes therapy. The aim of this article is to describe a procedure with proven traceability for calibration and evaluation of BG systems to guarantee reliable BG measurements. Isotope dilution gas chromatography mass spectrometry (ID/GC/MS) is a method that fulfills all requirements to be used in a higher-order reference measurement procedure. However, this method is not applicable for routine measurements because of the time-consuming sample preparation. A hexokinase method with perchloric acid (PCA) sample pretreatment is used in a measurement procedure for such purposes. This method is directly linked to the ID/GC/MS method by calibration with a glucose solution that has an ID/GC/MS-determined target value. BG systems are calibrated with whole blood samples. The glucose levels in such samples are analyzed by this ID/GC/MS-linked hexokinase method to establish traceability to higher-order reference material. For method comparison, the glucose concentrations in 577 whole blood samples were measured using the PCA-hexokinase method and the ID/GC/MS method; this resulted in a mean deviation of 0.1%. The mean deviation between BG levels measured in >500 valid whole blood samples with BG systems and the ID/GC/MS was 1.1%. BG systems allow a reliable glucose measurement if a true reference measurement procedure, with a noninterrupted traceability chain using ID/GC/MS linked hexokinase method for calibration of BG systems, is implemented. Systems should be calibrated by means of a traceable and defined measurement procedure to avoid bias. PMID:24876614
Wintzell, My; Löfstedt, Lina; Johansson, Joel; Pedersen, Anne B; Fuxe, Jonas; Shoshan, Maria
2012-12-01
Cisplatin is used in treatment of several types of cancer, including epithelial ovarian carcinoma (EOC). In order to mimic clinical treatment and to investigate longterm effects of cisplatin in surviving cancer cells, two EOC cell lines were repeatedly treated with low doses. In the SKOV-3 cell line originating from malignant ascites, but not in A2780 cells from a primary tumor, this led to emergence of a stable population (SKOV-3-R) which in the absence of cisplatin showed increased motility, epithelial-mesenchymal transition (EMT) and expression of cancer stem cell markers CD117, CD44 and ALDH1. Accordingly, the cells formed self-renewing spheres in serum-free stem cell medium. Despite upregulation of mitochondrial mass and cytochrome c, and no upregulation of Bcl-2/Bcl-xL, SKOV-3-R were multiresistant to antineoplastic drugs. Cancer stem cells, or tumor-initiating cells (TICs) are highly chemoresistant and are believed to cause relapse into disseminated and resistant EOC. Our second aim was therefore to target resistance in these TIC-like cells. Resistance could be correlated with upregulation of hexokinase-II and VDAC, which are known to form a survival-promoting mitochondrial complex. The cells were thus sensitive to 3-bromopyruvate, which dissociates hexokinase-II from this complex, and were particularly sensitive to combination treatment with cisplatin at doses down to 0.1 x IC 50. 3-bromopyruvate might thus be of use in targeting the especially aggressive TIC populations.
Wintzell, My; Löfstedt, Lina; Johansson, Joel; Pedersen, Anne B.; Fuxe, Jonas; Shoshan, Maria
2012-01-01
Cisplatin is used in treatment of several types of cancer, including epithelial ovarian carcinoma (EOC). In order to mimic clinical treatment and to investigate longterm effects of cisplatin in surviving cancer cells, two EOC cell lines were repeatedly treated with low doses. In the SKOV-3 cell line originating from malignant ascites, but not in A2780 cells from a primary tumor, this led to emergence of a stable population (SKOV-3-R) which in the absence of cisplatin showed increased motility, epithelial-mesenchymal transition (EMT) and expression of cancer stem cell markers CD117, CD44 and ALDH1. Accordingly, the cells formed self-renewing spheres in serum-free stem cell medium. Despite upregulation of mitochondrial mass and cytochrome c, and no upregulation of Bcl-2/Bcl-xL, SKOV-3-R were multiresistant to antineoplastic drugs. Cancer stem cells, or tumor-initiating cells (TICs) are highly chemoresistant and are believed to cause relapse into disseminated and resistant EOC. Our second aim was therefore to target resistance in these TIC-like cells. Resistance could be correlated with upregulation of hexokinase-II and VDAC, which are known to form a survival-promoting mitochondrial complex. The cells were thus sensitive to 3-bromopyruvate, which dissociates hexokinase-II from this complex, and were particularly sensitive to combination treatment with cisplatin at doses down to 0.1 x IC50. 3-bromopyruvate might thus be of use in targeting the especially aggressive TIC populations. PMID:22954696
Vasu, Srividya; McClenaghan, Neville H; Flatt, Peter R
2016-10-01
Mechanisms of toxicity and cell damage were investigated in novel clonal human pancreatic beta cell line, 1.1B4, after exposure to streptozotocin, alloxan, ninhydrin, and hydrogen peroxide. Viability, DNA damage, insulin secretion/content, [Ca]i, and glucokinase/hexokinase, mRNA expression were measured by MTT assay, comet assay, radioimmunoassay, fluorometric imaging plate reader, enzyme-coupled photometry, and real-time polymerase chain reaction, respectively. Chemicals significantly reduced 1.1B4 cell viability in a time/concentration-dependent manner. Chronic 18-hour exposure decreased cellular insulin, glucokinase, and hexokinase activities. Chemicals decreased transcription of INS, GCK, PCSK1, PCSK2, and GJA1 (involved in secretory function). Insulin release and [Ca]i responses to nutrients and membrane-depolarizing agents were impaired. Streptozotocin and alloxan up-regulated transcription of genes, SOD1 and SOD2 (antioxidant enzymes). Ninhydrin and hydrogen peroxide up-regulated SOD2 transcription, whereas alloxan and hydrogen peroxide increased CAT transcription. Chemicals induced DNA damage, apoptosis, and increased caspase 3/7 activity. Streptozotocin and alloxan decreased transcription of BCL2 while increasing transcription of BAX. Chemicals did not affect transcription of HSPA4 and HSPA5 and nitrite production. 1.1B4 cells represent a useful model of human beta cells. Chemicals impaired 1.1B4 cell secretory function and activated antioxidant defense and apoptotic pathways without activating endoplasmic reticulum stress response/nitrosative stress.
Muñoz, S; Franckhauser, S; Elias, I; Ferré, T; Hidalgo, A; Monteys, A M; Molas, M; Cerdán, S; Pujol, A; Ruberte, J; Bosch, F
2010-11-01
In adipocytes, triacylglycerol synthesis depends on the formation of glycerol 3-phosphate, which originates either from glucose, through glycolysis, or from lactate, through glyceroneogenesis. However, glucose is traditionally viewed as the main precursor of the glycerol backbone and thus, enhanced glucose uptake would be expected to result in increased triacylglycerol synthesis and contribute to obesity. To further explore this issue, we generated a mouse model with chronically increased glucose uptake in adipose tissue by expressing Gck, which encodes the glucokinase enzyme. Here we show that the production of high levels of glucokinase led to increased adipose tissue glucose uptake and lactate production, improved glucose tolerance and higher whole-body and skeletal muscle insulin sensitivity. There was no parallel increase in glycerol 3-phosphate synthesis in vivo, fat accumulation or obesity. Moreover, at high glucose concentrations, in cultured fat cells overproducing glucokinase, glycerol 3-phosphate synthesis from pyruvate decreased, while glyceroneogenesis increased in fat cells overproducing hexokinase II. These findings indicate that the absence of glucokinase inhibition by glucose 6-phosphate probably led to increased glycolysis and blocked glyceroneogenesis in the mouse model. Furthermore, this study suggests that under physiological conditions, when blood glucose increases, glyceroneogenesis may prevail over glycolysis for triacylglycerol formation because of the inhibition of hexokinase II by glucose 6-phosphate. Together these results point to the indirect pathway (glucose to lactate to glycerol 3-phosphate) being key for fat deposition in adipose tissue.
Effects of Cadmium and Mercury on the Upper Part of Skeletal Muscle Glycolysis in Mice
Ortega, Fernando; Westerhoff, Hans V.; Gelpí, Josep Lluis; Centelles, Josep J.; Cascante, Marta
2014-01-01
The effects of pre-incubation with mercury (Hg2+) and cadmium (Cd2+) on the activities of individual glycolytic enzymes, on the flux and on internal metabolite concentrations of the upper part of glycolysis were investigated in mouse muscle extracts. In the range of metal concentrations analysed we found that only hexokinase and phosphofructokinase, the enzymes that shared the control of the flux, were inhibited by Hg2+ and Cd2+. The concentrations of the internal metabolites glucose-6-phosphate and fructose-6-phosphate did not change significantly when Hg2+ and Cd2+ were added. A mathematical model was constructed to explore the mechanisms of inhibition of Hg2+ and Cd2+ on hexokinase and phosphofructokinase. Equations derived from detailed mechanistic models for each inhibition were fitted to the experimental data. In a concentration-dependent manner these equations describe the observed inhibition of enzyme activity. Under the conditions analysed, the integral model showed that the simultaneous inhibition of hexokinase and phosphofructokinase explains the observation that the concentrations of glucose-6-phosphate and fructose-6-phosphate did not change as the heavy metals decreased the glycolytic flux. PMID:24489641
NASA Technical Reports Server (NTRS)
Chi, Maggie M.-Y.; Choski, Rati; Nemeth, Patti; Krasnov, Igor'; Il'ina-Kakueva, E. I.; Manchester, Jill K.; Lowry, Oliver H.
1992-01-01
Selected enzymes of energy metabolism were measured in random individual fibers of soleus and tibialis anterior (TA) muscles from rats exposed for 2 wk to spaceflight (F) aboard Cosmos 2044 or tail suspension (T) and from synchronous controls. Average size of soleus fibers (dry weight per unit length) was reduced 37 percent in F and T fibers; there was little change in Ta fibers. Enzyme changes were more pronounced in soleus than in TA fibers. Three enzymes characteristic of fast-twitch muscles, pyruvate kinase, glycerol-3-phosphate dehydrogenase, and 1-phosphofructokinase, were elevated in F and T soleus fibers, but changes in phosphofructokinase were not statistically significant. In TA fibers analyzed for hexokinase, malate dehydrogenase, phosphohexoisomerase, and pyruvate kinase, only hexokinase and malate dehydrogenase showed significant changes. Hexokinase incresed 83 percent in one of two T muscles. Enzyme data for TA fibers typed by myosin adenosinetriphosphatase were more informative: phosphofructokinase, phosphorylase, and glycerol-3-phosphate dehydrogenase were increased in type IIn fibers of either F or T muscles or both. Malate dehydrogenase was not changed in fibers of any type in either F or T muscle.
Gaxiola, Gabriela; Cuzon, Gerard; García, Tomás; Taboada, Gabriel; Brito, Roberto; Chimal, María Eugenia; Paredes, Adriana; Soto, Luis; Rosas, Carlos; van Wormhoudt, Alain
2005-01-01
Litopenaeus vannamei were reared in close cycle over seven generations and tested for their capacity to digest starch and to metabolise glucose at different stages of the moulting cycle. After acclimation with 42.3% of carbohydrates (HCBH) or 2.3% carbohydrates (LCBH) diets and at high salinity (40 g kg(-1)) or low salinity (15 g kg(-1)), shrimp were sampled and hepatopancreas (HP) were stored. Total soluble protein in HP was affected by the interaction between salinity and moult stages (p<0.05). Specific activity of alpha-amylase ranged from 44 to 241 U mg protein(-1) and a significant interaction between salinity and moult stages was observed (p<0.05), resulting in highest values at stage C for low salinity (mean value 196.4 U mg protein(-1)), and at D0 in high salinity (mean value 175.7 U mg protein(-1)). Specific activity of alpha-glucosidase ranged between 0.09 and 0.63 U mg protein(-1), an interaction between dietary CBH and salinity was observed for the alpha-glucosidase (p<0.05) and highest mean value was found in low salinity-LCBH diet treatment (0.329 U mg protein(-1)). Hexokinase specific activity (range 9-113 mU mg protein(-1)) showed no significant differences when measured at 5 mM glucose (p>0.05). Total hexokinase specific activity (range 17-215 mU mg protein(-1)) showed a significant interaction between dietary CBH and salinity (p<0.05) with highest value (mean value 78.5 mU mg protein(-1)) found in HCBH-high salinity treatment, whereas in the other treatments the activity was not significantly different (mean value 35.93 mU mg protein(-1)). A synergistic effect of dietary CBH, salinity and moult stages over hexokinase IV-like specific activity was also observed (p<0.05). As result of this interaction, the highest value (135.5+/-81 mU mg protein(-1)) was observed in HCBH, high salinity at D0 moult stage. Digestive enzymes activity is enhanced in the presence of high starch diet (HCBH) and hexokinase can be induced at certain moulting stages under the influence of blood glucose level. Perspectives are opened to add more carbohydrates in a growing diet, exemplifying the potential approach for less-polluting feed.
Gao, Xiang; Han, Han
2018-06-01
Jolkinolide B (JB), a bioactive compound isolated from herbal medicine, has been found to inhibit tumor growth by altering glycolysis. However, whether glycolysis is influenced by JB in non-small cell lung cancer (NSCLC) cells and the mechanism remain unknown. The aim of the present study was to evaluate the effect of JB on the glycolysis in NSCLC cells and the underlying molecular mechanism. The results showed that JB treatment inhibited cell viability of A549 and H1299 cells in a concentration-dependent manner. JB reduced the glucose consumption, lactate production, and HK2 expression. The expressions of p-Akt and p-mTOR were also decreased by JB treatment. Knockdown of HK2 reduced glucose consumption and lactate production. Inhibition of the Akt/mTOR pathway decreased HK2 expression and inhibited glycolysis. In conclusion, the results indicated that JB inhibits glycolysis by down-regulating HK2 expression through inactivating the Akt/mTOR pathway in NSCLC cells, suggesting that JB might be a potential therapeutic agent for the treatment of NSCLC. © 2018 Wiley Periodicals, Inc.
Hoggett, J G; Kellett, G L
1976-09-15
The binding of glucose to the monomeric forms of hexokinases P-I and P-II in Tris and phosphate buffers at pH 8.0 in the presence of 1 mol l-1 KCl has been studied using the fluorescence temperature-jump technique. For both isozymes only one relaxation time was observed; values of tau-1 increased linearly with increasing concentration of free reacting partners. The apparent second-order rate constant for association was about 2 X 10(6) 1 mol-1 s-1 for both isozymes; the differences in the stabilities of the complexes with P-I and P-II are entirely attributable to the fact that glucose dissociates more slowly from its complex with P-I than P-II (approximately 300 s-1 and 1100 s-1 respectively). Although the kinetic data are compatible with a single-step mechanism for glucose binding the association rate constant was much lower than that expected for a diffusion-limited rate of encounter. Other mechanisms for describing an induced-fit are discussed. It is shown that the data are incompatible with a slow 'prior-isomerization' pathway of substrate binding, but are consistent with a 'substrate-guided' pathway involving isomerization of the enzyme-substrate complex.
Kuo, Yung-Ting; Jheng, Jhong-Huei; Lo, Mei-Chen; Chen, Wei-Lu; Wang, Shyang-Guang; Lee, Horng-Mo
2018-06-04
Iron or oxygen regulates the stability of hypoxia inducible factor-1α (HIF-1α). We investigated whether ferrous glycinate would affect HIF-1α accumulation, aerobic glycolysis and mitochondrial energy metabolism in human A549 lung cancer cells. Incubation of A549 cells with ferrous glycinate decreased the protein levels of HIF-1α, which was abrogated by proteosome inhibitor, or prolyl hydroxylase inhibitor. The addition of ferrous glycinate decreased protein levels of glucose transporter-1, hexokinase-2, and lactate dehydrogenase A, and decreased pyruvate dehydrogenase kinase-1 (PDK-1) and pyruvate dehydrogenase (PDH) phosphorylation in A549 cells. Ferrous glycinate also increased the expression of the mitochondrial transcription factor A (TFAM), and the mitochondrial protein, cytochrome c oxidase (COX-IV). Silencing of HIF-1α expression mimicked the effects of ferrous glycinate on PDK-1, PDH, TFAM and COX-IV in A549 cells. Ferrous glycinate increased mitochondrial membrane potential and ATP production in A549 cells. These results suggest that ferrous glycinate may reverse Warburg effect through down regulating HIF-1α in A549 cells.
ATP mediates flow-induced NO production in thick ascending limbs
Hong, Nancy J.; Garvin, Jeffrey L.
2012-01-01
Mechanical stimulation caused by increasing flow induces nucleotide release from many cells. Luminal flow and extracellular ATP stimulate production of nitric oxide (NO) in thick ascending limbs. However, the factors that mediate flow-induced NO production are unknown. We hypothesized that luminal flow stimulates thick ascending limb NO production via ATP. We measured NO in isolated, perfused rat thick ascending limbs using the fluorescent dye DAF FM. The rate of increase in dye fluorescence reflects NO accumulation. Increasing luminal flow from 0 to 20 nl/min stimulated NO production from 17 ± 16 to 130 ± 37 arbitrary units (AU)/min (P < 0.02). Increasing flow from 0 to 20 nl/min raised ATP release from 4 ± 1 to 21 ± 6 AU/min (P < 0.04). Hexokinase (10 U/ml) plus glucose, which consumes ATP, completely prevented the measured increase in ATP. Luminal flow did not increase NO production in the presence of luminal and basolateral hexokinase (10 U/ml). When flow was increased with the ATPase apyrase in both luminal and basolateral solutions (5 U/ml), NO levels did not change significantly. The P2 receptor antagonist suramin (300 μmol/l) reduced flow-induced NO production by 83 ± 25% (P < 0.03) when added to both and basolateral sides. Luminal hexokinase decreased flow-induced NO production from 205.6 ± 85.6 to 36.6 ± 118.6 AU/min (P < 0.02). Basolateral hexokinase also reduced flow-induced NO production. The P2X receptor-selective antagonist NF023 (200 μmol/l) prevented flow-induced NO production when added to the basolateral side but not the luminal side. We conclude that ATP mediates flow-induced NO production in the thick ascending limb likely via activation of P2Y receptors in the luminal and P2X receptors in the basolateral membrane. PMID:22496412
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Yaguang; Cheng, Chuanyao; Lu, Hong, E-mail: honglu6512@163.com
miR-4458, a new tumor-suppressor, was reported to down-regulated in human hepatocellular carcinoma. The expression status, roles and inhibitory mechanisms of miR-4458 in other tumors still need to be clarified. The aim of this study is to investigate the effects of miR-4458 and to elucidate the potential mechanism in colon cancer cells. Using bioinformatic databases, we predicted that hexokinase2 (HK2), a rate-limiting enzyme in the glycolytic pathway, was a target of miR-4458, so the effects of miR-4458 on glycolysis and lactate production was assessed in colon cancer cells. We found that miR-4458 was down-regulated and HK2 was up-regulated in colon cancermore » cells. Overexpression of miR-4458 inhibited proliferation, glycolysis, and lactate production under both normoxic and hypoxic conditions. Luciferase activity assays showed that HK2 was a direct target of miR-4458. Moreover, knockdown of HK2 by specific RNAi also suppressed proliferation, glycolysis, and lactate production under both normoxic and hypoxic conditions. In conclusion, our findings suggested that miR-4458 inhibited the progression of colon cancer cells by inhibition of glycolysis and lactate production via directly targeting HK2 mRNA. - Highlights: • miR-4458 is down-regulated in colon cancer cells. • miR-4458 suppresses proliferation, glycolysis, and lactate production. • HK2 is a target of miR-4458. • HK2 knockdown inhibits proliferation, glycolysis, and lactate production.« less
Zhou, Fang; Du, Jin; Wang, Jianjun
2017-04-01
Albendazole (ABZ) has an anti-tumor ability and inhibits HIF-1α activity. HIF-1α is associated with glycolysis and vascular endothelial cell growth factor (VEGF) expression, which plays an important role in cancer progression. These clues indicate that ABZ exerts an anti-cancer effect by regulating glycolysis and VEGF expression. The aim of this study is to clarify the effects of ABZ on non-small cell lung cancer (NSCLC) cells and explore the underlying molecular mechanisms. The expression levels of HIF-1α and VEGF were detected using western blot analysis, and the effect of ABZ on glycolysis was evaluated by measuring the relative activities of hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) and detecting the production of lactate in A549 and H1299 cells. The results showed that ABZ decreased the expression levels of HIF-1α and VEGF and suppressed glycolysis in under hypoxia, but not normoxic condition. Inhibiting HIF-1α also suppressed glycolysis and VEGF expression. Additionally, ABZ inhibited the volume and weight, decreased the relative activities of HK, PK, and LDH, and reduced the levels of HIF-1α and VEGF of A549 xenografts in mouse models. In conclusion, ABZ inhibited growth of NSCLC cells by suppressing HIF-1α-dependent glycolysis and VEGF expression.
Zheng, Xinde; Boyer, Leah; Jin, Mingji; Mertens, Jerome; Kim, Yongsung; Ma, Li; Ma, Li; Hamm, Michael; Gage, Fred H; Hunter, Tony
2016-06-10
How metabolism is reprogrammed during neuronal differentiation is unknown. We found that the loss of hexokinase (HK2) and lactate dehydrogenase (LDHA) expression, together with a switch in pyruvate kinase gene splicing from PKM2 to PKM1, marks the transition from aerobic glycolysis in neural progenitor cells (NPC) to neuronal oxidative phosphorylation. The protein levels of c-MYC and N-MYC, transcriptional activators of the HK2 and LDHA genes, decrease dramatically. Constitutive expression of HK2 and LDHA during differentiation leads to neuronal cell death, indicating that the shut-off aerobic glycolysis is essential for neuronal survival. The metabolic regulators PGC-1α and ERRγ increase significantly upon neuronal differentiation to sustain the transcription of metabolic and mitochondrial genes, whose levels are unchanged compared to NPCs, revealing distinct transcriptional regulation of metabolic genes in the proliferation and post-mitotic differentiation states. Mitochondrial mass increases proportionally with neuronal mass growth, indicating an unknown mechanism linking mitochondrial biogenesis to cell size.
Aerosolized 3-bromopyruvate inhibits lung tumorigenesis without causing liver toxicity.
Zhang, Qi; Pan, Jing; North, Paula E; Yang, Shoua; Lubet, Ronald A; Wang, Yian; You, Ming
2012-05-01
3-Bromopyruvate, an alkylating agent and a well-known inhibitor of energy metabolism, has been proposed as a specific anticancer agent. However, the chemopreventive effect of 3-bromopyruvate in lung tumorigenesis has not been tested. In this study, we investigated the chemopreventive activity of 3-bromopyruvate in a mouse lung tumor model. Benzo(a)pyrene was used to induce lung tumors, and 3-bromopyruvate was administered by oral gavage to female A/J mice. We found that 3-bromopyruvate significantly decreased tumor multiplicity and tumor load by 58% and 83%, respectively, at a dose of 20 mg/kg body weight by gavage. Due to the known liver toxicity of 3-bromopyruvate in animal models given large doses of 3-bromopyruvate, confirmed in this study, we decided to test the chemopreventive activity of aerosolized 3-bromopyruvate in the same lung tumor model. As expected, aerosolized 3-bromopyruvate similarly significantly decreased tumor multiplicity and tumor load by 49% and 80%, respectively, at a dose of 10 mg/mL by inhalation. Interestingly, the efficacy of aerosolized 3-bromopyruvate did not accompany any liver toxicity indicating that it is a safer route of administering this compound. Treatment with 3-bromopyruvate increased immunohistochemical staining for cleaved caspase-3, suggesting that the lung tumor inhibitory effects of 3-bromopyruvate were through induction of apoptosis. 3-Bromopyruvate also dissociated hexokinase II from mitochondria, reduced hexokinase activity, and blocked energy metabolism in cancer cells, finally triggered cancer cell death and induced apoptosis through caspase-3, and PARP in human lung cancer cell line. The ability of 3-bromopyruvate to inhibit mouse lung tumorigenesis, in part through induction of apoptosis, merits further investigation of this compound as a chemopreventive agent for human lung cancer.
19F NMR measurements of the rotational mobility of proteins in vivo.
Williams, S P; Haggie, P M; Brindle, K M
1997-01-01
Three glycolytic enzymes, hexokinase, phosphoglycerate kinase, and pyruvate kinase, were fluorine labeled in the yeast Saccharomyces cerevisiae by biosynthetic incorporation of 5-fluorotryptophan. 19F NMR longitudinal relaxation time measurements on the labeled enzymes were used to assess their rotational mobility in the intact cell. Comparison with the results obtained from relaxation time measurements of the purified enzymes in vitro and from theoretical calculations showed that two of the labeled enzymes, phosphoglycerate kinase and hexokinase, were tumbling in a cytoplasm that had a viscosity approximately twice that of water. There were no detectable signals from pyruvate kinase in vivo, although it could be detected in diluted cell extracts, indicating that there was some degree of motional restriction of the enzyme in the intact cell. PMID:8994636
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, Jasmin; Loranger, Anne; Gilbert, Stéphane
2013-02-15
As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cellsmore » versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.« less
Plant Hexokinases are Multifaceted Proteins.
Aguilera-Alvarado, G Paulina; Sánchez-Nieto, Sobeida
2017-07-01
Sugars are the main carbon and energy source in cells, but they can also act as signaling molecules that affect the whole plant life cycle. Certain tissues can produce sugars and supply them to others, and this plant tissue heterogeneity makes sugar signaling a highly complex process that requires elements capable of perceiving changes in sugar concentrations among different tissues, cell compartments and developmental stages. In plants, the regulatory effects of glucose (Glc) have been the most studied to date. The first Glc sensor identified in plants was hexokinase (HXK), which is currently recognized as a dual-function protein. In addition to its catalytic activity, this enzyme can also repress the expression of some photosynthetic genes in response to high internal Glc concentrations. Additionally, the catalytic activity of HXKs has a profound impact on cell metabolism and other sugar signaling pathways that depend on phosphorylated hexoses and intermediate glycolytic products. HXKs are the only proteins that are able to phosphorylate Glc in plants, since no evidence has been provided to date concerning the existence of a glucokinase. Moreover, the intracellular localization of HXKs seems to be crucial to their activity and sensor functions. Recently, two new and surprising functions have been described for HXKs. In this review, we discuss the versatility of HXKs in regard to their catalytic and glucose sensor activities, intracellular location, protein-protein and hormone interactions, as well as how these HXK characteristics influence plant growth and development, in an effort to understand this enzyme's role in improving plant productivity. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Ma, Yibao; Yu, Chunrong; Mohamed, Esraa M.; Shao, Huanjie; Wang, Li; Sundaresan, Gobalakrishnan; Zweit, Jamal; Idowu, Michael; Fang, Xianjun
2016-01-01
A high rate of aerobic glycolysis is a hallmark of malignant transformation. Accumulating evidence suggests that diverse regulatory mechanisms mediate this cancer-associated metabolic change seen in a wide spectrum of cancer. The echinoderm microtubule associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion protein is found in approximately 3-7% of non-small cell lung carcinomas (NSCLC). Molecular evidence and therapeutic effectiveness of FDA-approved ALK inhibitors indicated that EML4-ALK is a driving factor of lung tumorigenesis. A recent clinical study showed that NSCLC harboring EML4-ALK rearrangements displayed higher glucose metabolism compared to EML4-ALK-negative NSCLC. In the current work, we presented evidence that EML4-ALK is coupled to overexpression of hexokinase II (HK2), one of the rate-limiting enzymes of the glycolytic pathway. The link from EML4-ALK to HK2 upregulation is essential for a high rate of glycolysis and proliferation of EML4-ALK-rearranged NSCLC cells. We identified hypoxia-inducible factor 1α (HIF1α) as a key transcription factor to drive HK2 gene expression in normoxia in these cells. EML4-ALK induced hypoxia-independent but glucose-dependent accumulation of HIF1α protein via both transcriptional activation of HIF1α mRNA and the PI3K-AKT pathway to enhance HIF1α protein synthesis. The EML4-ALK-mediated upregulation of HIF1α, HK2 and glycolytic metabolism was also highly active in vivo as demonstrated by FDG-PET imaging of xenografts grown from EML4-ALK-positive NSCLC cells. Our data reveal a novel EML4-ALK-HIF1α-HK2 cascade to enhance glucose metabolism in EML4-ALK-positive NSCLC. PMID:27132509
Ma, Y; Yu, C; Mohamed, E M; Shao, H; Wang, L; Sundaresan, G; Zweit, J; Idowu, M; Fang, X
2016-11-24
A high rate of aerobic glycolysis is a hallmark of malignant transformation. Accumulating evidence suggests that diverse regulatory mechanisms mediate this cancer-associated metabolic change seen in a wide spectrum of cancer. The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion protein is found in approximately 3-7% of non-small cell lung carcinomas (NSCLC). Molecular evidence and therapeutic effectiveness of FDA-approved ALK inhibitors indicated that EML4-ALK is a driving factor of lung tumorigenesis. A recent clinical study showed that NSCLC harboring EML4-ALK rearrangements displayed higher glucose metabolism compared with EML4-ALK-negative NSCLC. In the current work, we presented evidence that EML4-ALK is coupled to overexpression of hexokinase II (HK2), one of the rate-limiting enzymes of the glycolytic pathway. The link from EML4-ALK to HK2 upregulation is essential for a high rate of glycolysis and proliferation of EML4-ALK-rearranged NSCLC cells. We identified hypoxia-inducible factor 1α (HIF1α) as a key transcription factor to drive HK2 gene expression in normoxia in these cells. EML4-ALK induced hypoxia-independent but glucose-dependent accumulation of HIF1α protein via both transcriptional activation of HIF1α mRNA and the phosphatidylinositol 3 kinase-AKT pathway to enhance HIF1α protein synthesis. The EML4-ALK-mediated upregulation of HIF1α, HK2 and glycolytic metabolism was also highly active in vivo as demonstrated by fluorodeoxyglucose-positron emission tomography imaging of xenografts grown from EML4-ALK-positive NSCLC cells. Our data reveal a novel EML4-ALK-HIF1α-HK2 cascade to enhance glucose metabolism in EML4-ALK-positive NSCLC.
Beckenbach, Andrew T.; Prakash, Satya
1977-01-01
Recently a number of electrophoretic techniques have been applied to reveal the presence of additional genetic variation among the electrophoretic mobility classes of the highly polymorphic xanthine dehydrogenase (XDH ) and esterase-5 (est-5) loci. We examined the hexokinase loci of Drosophila pseudoobscura and D. persimilis using a variety of techniques to determine whether further allelic variation could be revealed for these much less polymorphic loci and to analyze the nature of the known variation at the hexokinase-1 (hex-1) locus. The following studies were conducted: 135 strains of the two species from six localities were examined with buffer pH ranging from 5.5 to 10.0; 40 strains of D. pseudoobscura and 9 strains of D. persimilis from Mather were studied using starch gel concentrations ranging from 8.5 to 15.5% and were examined for differences in heat stability and reactivity to the thiol reagent pCMSA; strains were also tested for susceptibility to urea denaturation and differences in relative activities. Major findings of the work are: (1) No additional allelic variation could be detected at any of the hexokinase loci by applying these techniques. The finding of abundant hidden genetic variation in XDH and est-5 does not extend to all enzyme loci. (2) Evidence from studies using pCMSA indicates that the hex-1 alleles 0.6, 0.8, 1.0 and 1.2 of the two species form a series of unit charge steps. Since the 0.94 allele of D. persimilis has mobility intermediate between 0.8 and 1.0, it is argued that routine electrophoretic techniques are sensitive to at least some conservative amino acid substitutions. (3) Strong correlations were found at the hex-1 locus between low allelic frequency, reduced relative activity and reduced stability to heat and urea denaturation. Since the three sibling species, D. pseudoobscura, D. persimilis and D. miranda, all appear to share a common high frequency allele (1.0) at that locus, these findings are taken as evidence that the observed allelic frequencies are a result of directional selection and mutation, rather than any form of balancing selection. PMID:17248785
Enzymatic capacities of skeletal muscle - Effects of different types of training
NASA Technical Reports Server (NTRS)
Booth, F. W.; Hugman, G. R.
1981-01-01
Long-term adaptation mechanisms to maintain homeostasis at increased levels of exertion such as those caused by regular exercise are described. Mitochondrial changes have been found to be a result of endurance exercises, while mitochondrial responses to other types of exercise are small. Further discussion is devoted to long-term changes in glucose transport, hexokinase, phosphofructokinase, pyruvate kinase, and the increased sensitivity of an endurance trained muscle to insulin. Less lactate has been found to be produced by the skeletal muscles at the same work rate after adaptation to endurance exercise training, and the capacity for the flux of the two-carbon acetyl chain through the citric acid cycle increases in skeletal muscles in response to endurance training. Finally, endurance training is noted to result in glycogen sparing and an increase in the capacity to utilize fatty acids.
Gandham, Srujan Kumar; Talekar, Meghna; Singh, Amit; Amiji, Mansoor M
2015-01-01
Background The objective of this study was to evaluate the expression levels of glycolytic markers, especially hexokinase-2 (HK2), using a three-dimensional multicellular spheroid model of human ovarian adenocarcinoma (SKOV-3) cells and to develop an epidermal growth factor receptor-targeted liposomal formulation for improving inhibition of HK2 and the cytotoxicity of 3-bromopyruvate (3-BPA). Methods Multicellular SKOV-3 tumor spheroids were developed using the hanging drop method and expression levels of glycolytic markers were examined. Non-targeted and epidermal growth factor receptor-targeted liposomal formulations of 3-BPA were formulated and characterized. Permeability and cellular uptake of the liposomal formulations in three-dimensional SKOV-3 spheroids was evaluated using confocal microscopy. The cytotoxicity and HK2 inhibition potential of solution form of 3-BPA was compared to the corresponding liposomal formulation by using cell proliferation and HK2 enzymatic assays. Results SKOV-3 spheroids were reproducibly developed using the 96-well hanging drop method, with an average size of 900 µm by day 5. HK2 enzyme activity levels under hypoxic conditions were found to be higher than under normoxic conditions (P<0.0001, Student’s t-test, unpaired and two-tailed). Liposomal formulations (both non-targeted and targeted) of 3-BPA showed a more potent inhibitory effect (P<0.001, Student’s t-test, unpaired and two-tailed) at a dose of 50 µM than the aqueous solution form at 3, 6, and 24 hours post administration. Similarly, the cytotoxic activity 3-BPA at various concentrations (10 µM–100 µM) showed that the liposomal formulations had an enhanced cytotoxic effect of 2–5-fold (P<0.0001, Student’s t-test, unpaired and two-tailed) when compared to the aqueous solution form for both 10 µM and 25 µM concentrations. Conclusion SKOV-3 spheroids developed by the hanging drop method can be used as a tumor aerobic glycolysis model for evaluation of therapies targeting the glycolytic pathway in cancer cells. Encapsulation of 3-BPA in a liposomal formulation improved permeability, HK2 inhibition, and cytotoxicity in the multicellular spheroid model. PMID:26185443
Gandham, Srujan Kumar; Talekar, Meghna; Singh, Amit; Amiji, Mansoor M
2015-01-01
The objective of this study was to evaluate the expression levels of glycolytic markers, especially hexokinase-2 (HK2), using a three-dimensional multicellular spheroid model of human ovarian adenocarcinoma (SKOV-3) cells and to develop an epidermal growth factor receptor-targeted liposomal formulation for improving inhibition of HK2 and the cytotoxicity of 3-bromopyruvate (3-BPA). Multicellular SKOV-3 tumor spheroids were developed using the hanging drop method and expression levels of glycolytic markers were examined. Non-targeted and epidermal growth factor receptor-targeted liposomal formulations of 3-BPA were formulated and characterized. Permeability and cellular uptake of the liposomal formulations in three-dimensional SKOV-3 spheroids was evaluated using confocal microscopy. The cytotoxicity and HK2 inhibition potential of solution form of 3-BPA was compared to the corresponding liposomal formulation by using cell proliferation and HK2 enzymatic assays. SKOV-3 spheroids were reproducibly developed using the 96-well hanging drop method, with an average size of 900 µm by day 5. HK2 enzyme activity levels under hypoxic conditions were found to be higher than under normoxic conditions (P<0.0001, Student's t-test, unpaired and two-tailed). Liposomal formulations (both non-targeted and targeted) of 3-BPA showed a more potent inhibitory effect (P<0.001, Student's t-test, unpaired and two-tailed) at a dose of 50 µM than the aqueous solution form at 3, 6, and 24 hours post administration. Similarly, the cytotoxic activity 3-BPA at various concentrations (10 µM-100 µM) showed that the liposomal formulations had an enhanced cytotoxic effect of 2-5-fold (P<0.0001, Student's t-test, unpaired and two-tailed) when compared to the aqueous solution form for both 10 µM and 25 µM concentrations. SKOV-3 spheroids developed by the hanging drop method can be used as a tumor aerobic glycolysis model for evaluation of therapies targeting the glycolytic pathway in cancer cells. Encapsulation of 3-BPA in a liposomal formulation improved permeability, HK2 inhibition, and cytotoxicity in the multicellular spheroid model.
Soltysova, Andrea; Breza, Jan; Takacova, Martina; Feruszova, Jana; Hudecova, Sona; Novotna, Barbora; Rozborilova, Eva; Pastorekova, Silvia; Kadasi, Ludevit; Krizanova, Olga
2015-07-01
Clear cell renal cell carcinoma (ccRCC) is the most frequent type of kidney cancer. In order to better understand the biology of ccRCC, we accomplished the gene profiling of fresh tissue specimens from 11 patients with the renal tumors (9 ccRCCs, 1 oncocytoma and 1 renal B-lymphoma), in which the tumor-related data were compared to the paired healthy kidney tissues from the same patients. All ccRCCs exhibited a considerably elevated transcription of the gene coding for carbonic anhydrase IX (CAIX). Moreover, the ccRCC tumors consistently displayed increased expression of genes encoding the glycolytic pathway enzymes, e.g. hexokinase II (HK2) and lactate dehydrogenase A (LDHA) and a decreased expression of genes for the mitochondrial electron transport chain components, indicating an overall reprogramming of the energetic metabolism in this tumor type. This appears to be accompanied by altered expression of the genes of the pH regulating machinery, including ion and lactate transporters. Immunohistochemical staining of tumor tissue sections confirmed the increased expression of CAIX, HK2 and LDHA in ccRCC, validating the microarray data and supporting their potential as the energetic metabolism-related biomarkers of the ccRCC.
Effects on Energy Metabolism of Two Guanidine Molecules, (Boc)2 -Creatine and Metformin.
Garbati, Patrizia; Ravera, Silvia; Scarfì, Sonia; Salis, Annalisa; Rosano, Camillo; Poggi, Alessandro; Damonte, Gianluca; Millo, Enrico; Balestrino, Maurizio
2017-09-01
Several enzymes are involved in the energy production, becoming a possible target for new anti-cancer drugs. In this paper, we used biochemical and in silico studies to evaluate the effects of two guanidine molecules, (Boc) 2 -creatine and metformin, on creatine kinase, an enzyme involved in the regulation of intracellular energy levels. Our results show that both drugs inhibit creatine kinase activity; however, (Boc) 2 -creatine displays a competitive inhibition, while metformin acts with a non-competitive mechanism. Moreover, (Boc) 2 -creatine is able to inhibit the activity of hexokinase with a non-competitive mechanism. Considering that creatine kinase and hexokinase are involved in energy metabolism, we evaluated the effects of (Boc) 2 -creatine and metformin on the ATP/AMP ratio and on cellular proliferation in healthy fibroblasts, human breast cancer cells (MDA-MB-468), a human neuroblastoma cell line (SH-SY5Y), a human Hodgkin lymphoma cell line (KMH2). We found that healthy fibroblasts were only partially affected by (Boc) 2 -creatine, while both ATP/AMP ratio and viability of the three cancer cell lines were significantly decreased. By inhibiting both creatine kinase and hexokinase, (Boc) 2 -creatine appears as a promising new agent in anticancer treatment. Further research is needed to understand what types of cancer cells are most suitable to treatment by this new compound. J. Cell. Biochem. 118: 2700-2711, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Differential Effects of Carbohydrates on Arabidopsis Pollen Germination.
Hirsche, Jörg; García Fernández, José M; Stabentheiner, Edith; Großkinsky, Dominik K; Roitsch, Thomas
2017-04-01
Pollen germination as a crucial process in plant development strongly depends on the accessibility of carbon as energy source. Carbohydrates, however, function not only as a primary energy source, but also as important signaling components. In a comprehensive study, we analyzed various aspects of the impact of 32 different sugars on in vitro germination of Arabidopsis pollen comprising about 150 variations of individual sugars and combinations. Twenty-six structurally different mono-, di- and oligosaccharides, and sugar analogs were initially tested for their ability to support pollen germination. Whereas several di- and oligosaccharides supported pollen germination, hexoses such as glucose, fructose and mannose did not support and even considerably inhibited pollen germination when added to germination-supporting medium. Complementary experiments using glucose analogs with varying functional features, the hexokinase inhibitor mannoheptulose and the glucose-insensitive hexokinase-deficient Arabidopsis mutant gin2-1 suggested that mannose- and glucose-mediated inhibition of sucrose-supported pollen germination depends partially on hexokinase signaling. The results suggest that, in addition to their role as energy source, sugars act as signaling molecules differentially regulating the complex process of pollen germination depending on their structural properties. Thus, a sugar-dependent multilayer regulation of Arabidopsis pollen germination is supported, which makes this approach a valuable experimental system for future studies addressing sugar sensing and signaling. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Glucose metabolism in batch and continuous cultures of Gluconacetobacter diazotrophicus PAL 3.
Luna, María F; Bernardelli, Cecilia E; Galar, María L; Boiardi, José L
2006-03-01
Periplasmic glucose oxidation (by way of a pyrrolo-quinoline-quinone [PQQ]-linked glucose dehydrogenase [GDH]) was observed in continuous cultures of Gluconacetobacter diazotrophicus regardless of the carbon source (glucose or gluconate) and the nitrogen source (N(2) or NH(3)). Its synthesis was stimulated by conditions of high energetic demand (i.e., N(2)-fixation) and/or C-limitation. Under C-excess conditions, PQQ-GDH synthesis increased with the glucose concentration in the culture medium. In batch cultures, PQQ-GDH was actively expressed in very early stages with higher activities under conditions of N(2)-fixation. Hexokinase activity was almost absent under any culture condition. Cytoplasmic nicotinamide adenine dinucleotide (NAD)-linked glucose dehydrogenase (GDH) was expressed in continuous cultures under all tested conditions, and its synthesis increased with the glucose concentration. In contrast, low activities of this enzyme were detected in batch cultures. Periplasmic oxidation, by way of PQQ-GDH, seems to be the principal pathway for metabolism of glucose in G. Diazotrophicus, and NAD-GDH is an alternative route under certain environmental conditions.
Zheng, Xinde; Boyer, Leah; Jin, Mingji; Mertens, Jerome; Kim, Yongsung; Ma, Li; Ma, Li; Hamm, Michael; Gage, Fred H; Hunter, Tony
2016-01-01
How metabolism is reprogrammed during neuronal differentiation is unknown. We found that the loss of hexokinase (HK2) and lactate dehydrogenase (LDHA) expression, together with a switch in pyruvate kinase gene splicing from PKM2 to PKM1, marks the transition from aerobic glycolysis in neural progenitor cells (NPC) to neuronal oxidative phosphorylation. The protein levels of c-MYC and N-MYC, transcriptional activators of the HK2 and LDHA genes, decrease dramatically. Constitutive expression of HK2 and LDHA during differentiation leads to neuronal cell death, indicating that the shut-off aerobic glycolysis is essential for neuronal survival. The metabolic regulators PGC-1α and ERRγ increase significantly upon neuronal differentiation to sustain the transcription of metabolic and mitochondrial genes, whose levels are unchanged compared to NPCs, revealing distinct transcriptional regulation of metabolic genes in the proliferation and post-mitotic differentiation states. Mitochondrial mass increases proportionally with neuronal mass growth, indicating an unknown mechanism linking mitochondrial biogenesis to cell size. DOI: http://dx.doi.org/10.7554/eLife.13374.001 PMID:27282387
Jimeno, P; Garcia-Perez, A I; Luque, J; Pinilla, M
1991-01-01
Human and rat erythrocytes were fractionated by counter-current distribution in charge-sensitive dextran/poly(ethylene glycol) two-phase systems. The specific activities of the key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase) declined along the distribution profiles, although the relative positions of the activity profiles were reversed in the two species. These enzymes maintained their normal response to specific regulatory effectors in all cell fractions. No variations were observed for phosphoglycerate kinase and bisphosphoglycerate mutase activities. Some correlations between enzyme activities (pyruvate kinase/hexokinase, pyruvate kinase/phosphofructokinase, pyruvate kinase/pyruvate kinase plus phosphoglycerate kinase, pyruvate kinase/bisphosphoglycerate mutase and phosphoglycerate kinase/bisphosphoglycerate mutase ratios) were studied in whole erythrocyte populations as well as in cell fractions. These results strongly support the fractionation of human erythrocytes according to cell age, as occurs with rat erythrocytes. PMID:1656939
Tang, Zhenjie; Yuan, Shuqiang; Hu, Yumin; Zhang, Hui; Wu, Wenjing; Zeng, Zhaolei; Yang, Jing; Yun, Jingping; Xu, Ruihua; Huang, Peng
2012-02-01
It has long been observed that many cancer cells exhibit increased aerobic glycolysis and rely more on this pathway to generate ATP and metabolic intermediates for cell proliferation. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme in glycolysis and has been known as a housekeeping molecule. In the present study, we found that GAPDH expression was significantly up-regulated in human colorectal carcinoma tissues compared to the adjacent normal tissues, and also increased in colon cancer cell lines compared to the non-tumor colon mucosa cells in culture. The expression of GAPDH was further elevated in the liver metastatic tissues compared to the original colon cancer tissue of the same patients, suggesting that high expression of GAPDH might play an important role in colon cancer development and metastasis. Importantly, we found that 3-bromopyruvate propyl ester (3-BrOP) preferentially inhibited GAPDH and exhibited potent activity in inducing colon cancer cell death by causing severe depletion of ATP. 3-BrOP at low concentrations (1-10 μM) inhibited GAPDH and a much higher concentration (300 μM) was required to inhibit hexokinase-2. The cytotoxic effect of 3-BrOP was associated with its inhibition of GAPDH, and colon cancer cells with loss of p53 were more sensitive to this compound. Our study suggests that GAPDH may be a potential target for colon cancer therapy.
Endoplasmic Reticulum Stress Sensor IRE1α Enhances IL-23 Expression by Human Dendritic Cells.
Márquez, Saioa; Fernández, José Javier; Terán-Cabanillas, Eli; Herrero, Carmen; Alonso, Sara; Azogil, Alicia; Montero, Olimpio; Iwawaki, Takao; Cubillos-Ruiz, Juan R; Fernández, Nieves; Crespo, Mariano Sánchez
2017-01-01
Human monocyte-derived dendritic cells (DCs) exposed to pathogen-associated molecular patterns (PAMPs) undergo bioenergetic changes that influence the immune response. We found that stimulation with PAMPs enhanced glycolysis in DCs, whereas oxidative phosphorylation remained unaltered. Glucose starvation and the hexokinase inhibitor 2-deoxy-d-glucose (2-DG) modulated cytokine expression in stimulated DCs. Strikingly, IL23A was markedly induced upon 2-DG treatment, but not during glucose deprivation. Since 2-DG can also rapidly inhibit protein N-glycosylation, we postulated that this compound could induce IL-23 in DCs via activation of the endoplasmic reticulum (ER) stress response. Indeed, stimulation of DCs with PAMPs in the presence of 2-DG robustly activated inositol-requiring protein 1α (IRE1α) signaling and to a lesser extent the PERK arm of the unfolded protein response. Additional ER stressors such as tunicamycin and thapsigargin also promoted IL-23 expression by PAMP-stimulated DCs. Pharmacological, biochemical, and genetic analyses using conditional knockout mice revealed that IL-23 induction in ER stressed DCs stimulated with PAMPs was IRE1α/X-box binding protein 1-dependent upon zymosan stimulation. Interestingly, we further evidenced PERK-mediated and CAAT/enhancer-binding protein β-dependent trans -activation of IL23A upon lipopolysaccharide treatment. Our findings uncover that the ER stress response can potently modulate cytokine expression in PAMP-stimulated human DCs.
Endoplasmic Reticulum Stress Sensor IRE1α Enhances IL-23 Expression by Human Dendritic Cells
Márquez, Saioa; Fernández, José Javier; Terán-Cabanillas, Eli; Herrero, Carmen; Alonso, Sara; Azogil, Alicia; Montero, Olimpio; Iwawaki, Takao; Cubillos-Ruiz, Juan R.; Fernández, Nieves; Crespo, Mariano Sánchez
2017-01-01
Human monocyte-derived dendritic cells (DCs) exposed to pathogen-associated molecular patterns (PAMPs) undergo bioenergetic changes that influence the immune response. We found that stimulation with PAMPs enhanced glycolysis in DCs, whereas oxidative phosphorylation remained unaltered. Glucose starvation and the hexokinase inhibitor 2-deoxy-d-glucose (2-DG) modulated cytokine expression in stimulated DCs. Strikingly, IL23A was markedly induced upon 2-DG treatment, but not during glucose deprivation. Since 2-DG can also rapidly inhibit protein N-glycosylation, we postulated that this compound could induce IL-23 in DCs via activation of the endoplasmic reticulum (ER) stress response. Indeed, stimulation of DCs with PAMPs in the presence of 2-DG robustly activated inositol-requiring protein 1α (IRE1α) signaling and to a lesser extent the PERK arm of the unfolded protein response. Additional ER stressors such as tunicamycin and thapsigargin also promoted IL-23 expression by PAMP-stimulated DCs. Pharmacological, biochemical, and genetic analyses using conditional knockout mice revealed that IL-23 induction in ER stressed DCs stimulated with PAMPs was IRE1α/X-box binding protein 1-dependent upon zymosan stimulation. Interestingly, we further evidenced PERK-mediated and CAAT/enhancer-binding protein β-dependent trans-activation of IL23A upon lipopolysaccharide treatment. Our findings uncover that the ER stress response can potently modulate cytokine expression in PAMP-stimulated human DCs. PMID:28674530
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansson, Christer; Baguma, Yona; Sun, Chuanxin
Starch branching enzyme (SBE) activity in the cassava storage root exhibited a diurnal fluctuation, dictated by a transcriptional oscillation of the corresponding SBE genes. The peak of SBE activity coincided with the onset of sucrose accumulation in the storage, and we conclude that the oscillatory mechanism keeps the starch synthetic apparatus in the storage root sink in tune with the flux of sucrose from the photosynthetic source. When storage roots were uncoupled from the source, SBE expression could be effectively induced by exogenous sucrose. Turanose, a sucrose isomer that cannot be metabolized by plants, mimicked the effect of sucrose, demonstratingmore » that downstream metabolism of sucrose was not necessary for signal transmission. Also glucose and glucose-1-P induced SBE expression. Interestingly, induction by sucrose, turanose and glucose but not glucose-1-P sustained an overt semidian (12-h) oscillation in SBE expression and was sensitive to the hexokinase (HXK) inhibitor glucosamine. These results suggest a pivotal regulatory role for HXK during starch synthesis. Abscisic acid (ABA) was another potent inducer of SBE expression. Induction by ABA was similar to that of glucose-1-P in that it bypassed the semidian oscillator. Both the sugar and ABA signaling cascades were disrupted by okadaic acid, a protein phosphatase inhibitor. Based on these findings, we propose a model for sugar signaling in regulation of starch synthesis in the cassava storage root.« less
Energy Metabolism in Human Pluripotent Stem Cells and Their Differentiated Counterparts
Moura, Michelle B.; Momcilovic, Olga; Easley, Charles A.; Ramalho-Santos, João; Van Houten, Bennett; Schatten, Gerald
2011-01-01
Background Human pluripotent stem cells have the ability to generate all cell types present in the adult organism, therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly, many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines, namely when comparing embryo-derived human embryonic stem cells (hESCs) and induced pluripotent stem cells (IPSCs) reprogrammed from somatic cells. Methodology/Principal Findings We compared the energy metabolism of hESCs, IPSCs, and their somatic counterparts. Focusing on mitochondria, we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism, including glycolysis, the pentose phosphate pathway and the tricarboxylic acid (TCA) cycle. In addition we determined oxygen consumption rates (OCR) using a metabolic extracellular flux analyzer, as well as total intracellular ATP levels by high performance liquid chromatography (HPLC). Finally we explored the expression of key proteins involved in the regulation of glucose metabolism. Conclusions/Findings Our results demonstrate that, although the metabolic signature of IPSCs is not identical to that of hESCs, nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels, lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore, our work points to some of the strategies which human pluripotent stem cells may use to maintain high glycolytic rates, such as high levels of hexokinase II and inactive pyruvate dehydrogenase (PDH). PMID:21698063
Magnoni, Leonardo J.; Vraskou, Yoryia; Palstra, Arjan P.; Planas, Josep V.
2012-01-01
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP∶ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish. PMID:22359576
Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya
2015-01-01
Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells. PMID:26023239
NASA Astrophysics Data System (ADS)
Yoong, Sia Lee; Lau, Wei Liang; Liu, Ang Yu; Prendergast, D'arcy; Ho, Han Kiat; Yu, Victor Chun Kong; Lee, Chengkuo; Ang, Wee Han; Pastorin, Giorgia
2015-08-01
Type II hexokinase (HKII) has emerged as a viable therapeutic target due to its involvement in metabolic reprogramming and also apoptosis prevention. The peptide derived from the fifteen amino acid sequence in the HKII N-terminal region [HKII(pep)] can compete with endogenous proteins for binding on mitochondria and trigger apoptosis. However, this peptide is not cell-permeable. In this study, multi-walled carbon nanotubes (MWCNTs) were used to effectively deliver HKII(pep) across cellular barriers without compromising their bioactivity. The peptide was conjugated on either oxidized MWCNTs or 2,2'-(ethylenedioxy)bis(ethylamine)-functionalized MWCNTs, yielding MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep), respectively. Both conjugates were shown to be internalized by breast cancer MCF-7 cells using confocal microscopy. Moreover, these nanoconjugates seemed to have escaped from endosomes and be in the vicinity of mitochondria. The WST-1 cytotoxicity assay conducted on MCF-7 and colon carcinoma HCT116 cells revealed that MWCNT-peptide conjugates were significantly more effective in curbing cancer cell growth compared to a commercially available cell permeable HKII fusion peptide. In addition, both nanoconjugates displayed an enhanced ability in eliciting apoptosis and depleting the ATP level in HCT116 cells compared to the mere HKII peptide. Importantly, hexokinase II release from mitochondria was demonstrated in MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep) treated cells, highlighting that the structure and bioactivity of HKII(pep) were not compromised after covalent conjugation to MWCNTs.Type II hexokinase (HKII) has emerged as a viable therapeutic target due to its involvement in metabolic reprogramming and also apoptosis prevention. The peptide derived from the fifteen amino acid sequence in the HKII N-terminal region [HKII(pep)] can compete with endogenous proteins for binding on mitochondria and trigger apoptosis. However, this peptide is not cell-permeable. In this study, multi-walled carbon nanotubes (MWCNTs) were used to effectively deliver HKII(pep) across cellular barriers without compromising their bioactivity. The peptide was conjugated on either oxidized MWCNTs or 2,2'-(ethylenedioxy)bis(ethylamine)-functionalized MWCNTs, yielding MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep), respectively. Both conjugates were shown to be internalized by breast cancer MCF-7 cells using confocal microscopy. Moreover, these nanoconjugates seemed to have escaped from endosomes and be in the vicinity of mitochondria. The WST-1 cytotoxicity assay conducted on MCF-7 and colon carcinoma HCT116 cells revealed that MWCNT-peptide conjugates were significantly more effective in curbing cancer cell growth compared to a commercially available cell permeable HKII fusion peptide. In addition, both nanoconjugates displayed an enhanced ability in eliciting apoptosis and depleting the ATP level in HCT116 cells compared to the mere HKII peptide. Importantly, hexokinase II release from mitochondria was demonstrated in MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep) treated cells, highlighting that the structure and bioactivity of HKII(pep) were not compromised after covalent conjugation to MWCNTs. Electronic supplementary information (ESI) available: Additional TEM images, UV-Vis scanning characterisation, WST-1 assay results, and immunoblotting of HKII in the total cell lysate. See DOI: 10.1039/c5nr00980d
Kaps, Sonja; Kettner, Karina; Migotti, Rebekka; Kanashova, Tamara; Krause, Udo; Rödel, Gerhard; Dittmar, Gunnar; Kriegel, Thomas M
2015-03-06
The enzyme ScHxk2 of Saccharomyces cerevisiae is a dual-function hexokinase that besides its catalytic role in glycolysis is involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by the phosphorylation of the nuclear fraction of ScHxk2 at serine 15 and the translocation of the phosphoenzyme into the cytosol. Different studies suggest different serine/threonine protein kinases, Ymr291w/Tda1 or Snf1, to accomplish ScHxk2-S15 phosphorylation. The current paper provides evidence that Ymr291w/Tda1 is essential for that modification, whereas protein kinases Ydr477w/Snf1, Ynl307c/Mck1, Yfr014c/Cmk1, and Ykl126w/Ypk1, which are co-purified during Ymr291w/Tda1 tandem affinity purification, as well as protein kinase PKA and PKB homolog Sch9 are dispensable. Taking into account the detection of a significantly higher amount of the Ymr291w/Tda1 protein in cells grown in low-glucose media as compared with a high-glucose environment, Ymr291w/Tda1 is likely to contribute to glucose signaling in S. cerevisiae on the level of ScHxk2-S15 phosphorylation in a situation of limited external glucose availability. The evolutionary conservation of amino acid residue serine 15 in yeast hexokinases and its phosphorylation is illustrated by the finding that YMR291W/TDA1 of S. cerevisiae and the homologous KLLA0A09713 gene of Kluyveromyces lactis allow for cross-complementation of the respective protein kinase single-gene deletion strains. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Kucherenko, I S; Soldatkin, O O; Lagarde, F; Jaffrezic-Renault, N; Dzyadevych, S V; Soldatkin, A P
2015-11-01
Creatine kinase (CK: adenosine-5-triphosphate-creatine phosphotransferase) is an important enzyme of muscle cells; the presence of a large amount of the enzyme in blood serum is a biomarker of muscular injuries, such as acute myocardial infarction. This work describes a bi-enzyme (glucose oxidase and hexokinase based) biosensor for rapid and convenient determination of CK activity by measuring the rate of ATP production by this enzyme. Simultaneously the biosensor determines glucose concentration in the sample. Platinum disk electrodes were used as amperometric transducers. Glucose oxidase and hexokinase were co-immobilized via cross-linking with BSA by glutaraldehyde and served as a biorecognition element of the biosensor. The biosensor work at different concentrations of CK substrates (ADP and creatine phosphate) was investigated; optimal concentration of ADP was 1mM, and creatine phosphate - 10 mM. The reproducibility of the biosensor responses to glucose, ATP and CK during a day was tested (relative standard deviation of 15 responses to glucose was 2%, to ATP - 6%, to CK - 7-18% depending on concentration of the CK). Total time of CK analysis was 10 min. The measurements of creatine kinase in blood serum samples were carried out (at 20-fold sample dilution). Twentyfold dilution of serum samples was chosen as optimal for CK determination. The biosensor could distinguish healthy and ill people and evaluate the level of CK increase. Thus, the biosensor can be used as a test-system for CK analysis in blood serum or serve as a component of multibiosensors for determination of important blood substances. Determination of activity of other kinases by the developed biosensor is also possible for research purposes. Copyright © 2015 Elsevier B.V. All rights reserved.
Granot, David; Kelly, Gilor; Stein, Ofer; David-Schwartz, Rakefet
2014-03-01
The basic requirements for plant growth are light, CO2, water, and minerals. However, the absorption and utilization of each of these requires investment on the part of the plant. The primary products of plants are sugars, and the hexose sugars glucose and fructose are the raw material for most of the metabolic pathways and organic matter in plants. To be metabolized, hexose sugars must first be phosphorylated. Only two families of enzymes capable of catalysing the essential irreversible phosphorylation of glucose and fructose have been identified in plants, hexokinases (HXKs) and fructokinases (FRKs). These hexose-phosphorylating enzymes appear to coordinate sugar production with the abilities to absorb light, CO2, water, and minerals. This review describes the long- and short-term effects mediated by HXK and FRK in various tissues, as well as the role of these enzymes in the coordination of sugar production with the absorption of light, CO2, water, and minerals.
Song, Junna; Li, Yi; Song, Junmei; Hou, Fangjie; Liu, Baolin; Li, Aiying
2017-07-01
Hexokinase-II (HK-II) confers protection against cell death and this study was designed to investigate the effect of mangiferin on the regulation of mitochondrial HK-II. In vessel endothelial cells, saturated fatty acid palmitate (PA) stimulation induced HK-II detachment from mitochondria due to cellular acidification. Mangiferin reduced lactate accumulation by improving pyruvate dehydrogenase activity, promoted Akt translocation to HK-II and prevented HK-II detachment from mitochondria. Knockdown of Akt2 diminished the protective effect of mangiferin on mitochondrial HK-II, confirming the role of Akt in the regulation of HK-II. Mangiferin prevented mitochondrial permeability transition pore opening, restored mitochondrial membrane potential and thereby protected cell from apoptosis. In high-fat diet fed mice, oral administration of mangiferin induced Akt phosphorylation, increased HK-II binding to mitochondria and resultantly protected vessel endothelial function, demonstrating its protective effect on endothelial integrity in vivo. This finding provided a novel strategy for the protection of mitochondrial function in the endothelium. Copyright © 2017 Elsevier B.V. All rights reserved.
FGF-dependent metabolic control of vascular development
Yu, Pengchun; Alves, Tiago C.; Fang, Jennifer S.; Xie, Yi; Zhu, Jie; Chen, Zehua; De Smet, Frederik; Zhang, Jiasheng; Jin, Suk-Won; Sun, Lele; Sun, Hongye; Kibbey, Richard G.; Hirschi, Karen K.; Hay, Nissim; Carmeliet, Peter; Chittenden, Thomas W.; Eichmann, Anne; Potente, Michael; Simons, Michael
2017-01-01
Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are of importance to these processes1. While much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism2,3, little is understood about the role of fibroblast growth factors (FGFs) in this context4. Here we identify FGF receptor (FGFR) signaling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signaling inputs results in decreased glycolysis leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1/r3 double mutant mice while HK2 overexpression partially rescues the defects caused by suppression of FGF signaling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development. PMID:28467822
FGF-dependent metabolic control of vascular development.
Yu, Pengchun; Wilhelm, Kerstin; Dubrac, Alexandre; Tung, Joe K; Alves, Tiago C; Fang, Jennifer S; Xie, Yi; Zhu, Jie; Chen, Zehua; De Smet, Frederik; Zhang, Jiasheng; Jin, Suk-Won; Sun, Lele; Sun, Hongye; Kibbey, Richard G; Hirschi, Karen K; Hay, Nissim; Carmeliet, Peter; Chittenden, Thomas W; Eichmann, Anne; Potente, Michael; Simons, Michael
2017-05-11
Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are important to these processes. Although much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism, little is understood about the role of fibroblast growth factors (FGFs) in this context. Here we identify FGF receptor (FGFR) signalling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signalling inputs results in decreased glycolysis, leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1/Fgfr3 double mutant mice, while HK2 overexpression partly rescues the defects caused by suppression of FGF signalling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development.
Patel, Chirag; Douard, Veronique; Yu, Shiyan; Tharabenjasin, Phuntila; Gao, Nan
2015-01-01
Marked increases in fructose consumption have been tightly linked to metabolic diseases. One-third of ingested fructose is metabolized in the small intestine, but the underlying mechanisms regulating expression of fructose-metabolizing enzymes are not known. We used genetic mouse models to test the hypothesis that fructose absorption via glucose transporter protein, member 5 (GLUT5), metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein in brain 11a (Rab11a)-dependent endosomes are required for the regulation of intestinal fructolytic and gluconeogenic enzymes. Fructose feeding increased the intestinal mRNA and protein expression of these enzymes in the small intestine of adult wild-type (WT) mice compared with those gavage fed with lysine or glucose. Fructose did not increase expression of these enzymes in the GLUT5 knockout (KO) mice. Blocking intracellular fructose metabolism by KHK ablation also prevented fructose-induced upregulation. Glycolytic hexokinase I expression was similar between WT and GLUT5- or KHK-KO mice and did not vary with feeding solution. Gavage feeding with the fructose-specific metabolite glyceraldehyde did not increase enzyme expression, suggesting that signaling occurs before the hydrolysis of fructose to three-carbon compounds. Impeding GLUT5 trafficking to the apical membrane using intestinal epithelial cell-specific Rab11a-KO mice impaired fructose-induced upregulation. KHK expression was uniformly distributed along the villus but was localized mainly in the basal region of the cytosol of enterocytes. The feedforward upregulation of fructolytic and gluconeogenic enzymes specifically requires GLUT5 and KHK and may proactively enhance the intestine's ability to process anticipated increases in dietary fructose concentrations. PMID:26084694
Role of PTEN in the Tumor Microenvironment
2009-06-01
OS, Boers M, Molthoff CF, van Diest PJ. (2008). Hexokinase III, cyclin A and galectin - 3 are overexpressed in malignant follicular thyroid nodules...2009 2. REPORT TYPE Annual 3 . DATES COVERED (From - To) 4. TITLE AND SUBTITLE Role of PTEN in the Tumor Microenvironment 5a. CONTRACT NUMBER...
Chevrollier, Arnaud; Loiseau, Dominique; Gautier, Fabien; Malthièry, Yves; Stepien, Georges
2005-01-01
Under hypoxic conditions, mitochondrial ATP production ceases, leaving cells entirely dependent on their glycolytic metabolism. The cytoplasmic and intramitochondrial ATP/ADP ratios, partly controlled by the adenine nucleotide translocator (ANT), are drastically modified. In dividing and growing cells that have a predominantly glycolytic metabolism, the ANT isoform 2, which has kinetic properties allowing ATP import into mitochondria, is over-expressed in comparison to control cells. We studied the cellular metabolic and proliferative response to hypoxia in two transformed human cell lines with different metabolic backgrounds: HepG2 and 143B, and in their rho(o) derivatives, i.e., cells with no mitochondrial DNA. Transformed 143B and rho(o) cells continued their proliferation whereas HepG2 cells, with a more differentiated phenotype, arrested their cell-cycle at the G(1)/S checkpoint. Hypoxia induced an increase in glycolytic activity, correlated to an induction of VEGF and hexokinase II (HK II) expression. Thus, according to their tumorigenicity, transformed cells may adopt one of two distinct behaviors to support hypoxic stress, i.e., proliferation or quiescence. Our study links the constitutive glycolytic activity and ANT2 expression levels of transformed cells with the loss of cell-cycle control after oxygen deprivation. ATP import by ANT2 allows cells to maintain their mitochondrial integrity while acquiring insensitivity to any alterations in the proteins involved in oxidative phosphorylation. This loss of cell dependence on oxidative metabolism is an important factor in the development of tumors.
Tang, Zhenjie; Yuan, Shuqiang; Hu, Yumin; Zhang, Hui; Wu, Wenjing; Zeng, Zhaolei; Yang, Jing; Yun, Jingping
2012-01-01
It has long been observed that many cancer cells exhibit increased aerobic glycolysis and rely more on this pathway to generate ATP and metabolic intermediates for cell proliferation. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme in glycolysis and has been known as a housekeeping molecule. In the present study, we found that GAPDH expression was significantly up-regulated in human colorectal carcinoma tissues compared to the adjacent normal tissues, and also increased in colon cancer cell lines compared to the non-tumor colon mucosa cells in culture. The expression of GAPDH was further elevated in the liver meta-static tissues compared to the original colon cancer tissue of the same patients, suggesting that high expression of GAPDH might play an important role in colon cancer development and metastasis. Importantly, we found that 3-bromopyruvate propyl ester (3-BrOP) preferentially inhibited GAPDH and exhibited potent activity in inducing colon cancer cell death by causing severe depletion of ATP. 3-BrOP at low concentrations (1–10 μM) inhibited GAPDH and a much higher concentration (300 μM) was required to inhibit hexokinase-2. The cytotoxic effect of 3-BrOP was associated with its inhibition of GAPDH, and colon cancer cells with loss of p53 were more sensitive to this compound. Our study suggests that GAPDH may be a potential target for colon cancer therapy. PMID:22350014
Chen, Q W; Jin, S; Zhang, L; Shen, Q D; Wei, P; Wei, Z M; Wang, S G; Tang, B
2018-06-01
RNA interference (RNAi) is a very effective technique for studying gene function and may be an efficient method for controlling pests. Trehalose-6-phosphate synthase (TPS), which plays a key role in the synthesis of trehalose and insect development, was cloned in Tribolium castaneum (Herbst) (TcTPS) and the putative functions were studied using RNAi via the injection of double-stranded RNA (dsRNA) corresponding to conserved TPS and trehalose-6-phosphate phosphatase domains. Expression analyses show that TcTPS is expressed higher in the fat body, while quantitative real-time polymerase chain reaction results show that the expression of four trehalase isoforms was significantly suppressed by dsTPS injection. Additionally, the expression of six chitin synthesis-related genes, such as hexokinase 2 and glutamine-fructose-6-phosphate aminotransferase, was suppressed at 48 and 72 h post-dsTPS-1 and dsTPS-2 RNA injection, which were two dsTPS fragments that had been designed for two different locations in TcTPS open reading frame, and that trehalose content and trehalase 1 activity decreased significantly at 72 h post-dsRNA injection. Furthermore, T. castaneum injected with dsTPS-1 and dsTPS-2 RNA displayed significantly lower levels of chitin and could not complete the molting process from larvae to pupae, revealing abnormal molting phenotypes. These results demonstrate that silencing TPS gene leads to molting deformities and high mortality rates via regulation of gene expression in the chitin biosynthetic pathway, and may be a promising approach for pest control in the future.
Jamsheer K, Muhammed; Laxmi, Ashverya
2015-01-01
Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1) signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ) gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response toward energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response.
Flores, Carmen-Lisset; Gancedo, Carlos
2015-01-01
The non-conventional yeast Yarrowia lipolytica possesses an ORF, YALI0E20207g, which encodes a protein with an amino acid sequence similar to hexokinases from different organisms. We have cloned that gene and determined several enzymatic properties of its encoded protein showing that it is an N-acetylglucosamine (NAGA) kinase. This conclusion was supported by the lack of growth in NAGA of a strain carrying a YALI0E20207g deletion. We named this gene YlNAG5. Expression of YlNAG5 as well as that of the genes encoding the enzymes of the NAGA catabolic pathway—identified by a BLAST search—was induced by this sugar. Deletion of YlNAG5 rendered that expression independent of the presence of NAGA in the medium and reintroduction of the gene restored the inducibility, indicating that YlNag5 participates in the transcriptional regulation of the NAGA assimilatory pathway genes. Expression of YlNAG5 was increased during sporulation and homozygous Ylnag5/Ylnag5 diploid strains sporulated very poorly as compared with a wild type isogenic control strain pointing to a participation of the protein in the process. Overexpression of YlNAG5 allowed growth in glucose of an Ylhxk1glk1 double mutant and produced, in a wild type background, aberrant morphologies in different media. Expression of the gene in a Saccharomyces cerevisiae hxk1 hxk2 glk1 triple mutant restored ability to grow in glucose. PMID:25816199
MicroRNA-98 Suppress Warburg Effect by Targeting HK2 in Colon Cancer Cells.
Zhu, Weimin; Huang, Yijiao; Pan, Qi; Xiang, Pei; Xie, Nanlan; Yu, Hao
2017-03-01
Warburg effect is a hallmark of cancer cells. Accumulating evidence suggests that microRNAs (miRs) could regulate such metabolic reprograming. Aberrant expression of miR-98 has been observed in many types of cancers. However, its functions and significance in colon cancer remain largely elusive. To investigate miR-98 expression and the biological functions in colon cancer progression. miR-98 expression levels were determined by quantitative RT-PCR in 215 cases of colon cancer samples. miR-98 mimic or inhibitor was used to test the biological functions in SW480 and HCT116 cells, followed by cell proliferation assay, lactate production, glucose uptake, and cellular ATP levels assay and extracellular acidification rates measurement. Western blot and luciferase assay were used to identify the target of miR-98. miR-98 was significantly down-regulated in colon cancer tissues compared to adjacent colon tissues and acted as a suppressor for Warburg effect in cancer cells. miR-98 inhibited glycolysis by directly targeting hexokinase 2, or HK2, illustrating a novel pathway to mediate Warburg effect of cancer cells. In vitro experiments further indicated that HK2 was involved in miR-98-mediated suppression of glucose uptake, lactate production, and cell proliferation. In addition, we detected HK2 expression in colon cancer tissues and found that the expressions of miR-98 and HK2 were negatively correlated. miR-98 acts as tumor suppressor gene and inhibits Warburg effect in colon cancer cells, which provided potential targets for clinical treatments.
Smilansky, Angela; Dangoor, Liron; Nakdimon, Itay; Ben-Hail, Danya; Mizrachi, Dario; Shoshan-Barmatz, Varda
2015-12-25
The voltage-dependent anion channel 1 (VDAC1), found in the mitochondrial outer membrane, forms the main interface between mitochondrial and cellular metabolisms, mediates the passage of a variety of molecules across the mitochondrial outer membrane, and is central to mitochondria-mediated apoptosis. VDAC1 is overexpressed in post-mortem brains of Alzheimer disease (AD) patients. The development and progress of AD are associated with mitochondrial dysfunction resulting from the cytotoxic effects of accumulated amyloid β (Aβ). In this study we demonstrate the involvement of VDAC1 and a VDAC1 N-terminal peptide (VDAC1-N-Ter) in Aβ cell penetration and cell death induction. Aβ directly interacted with VDAC1 and VDAC1-N-Ter, as monitored by VDAC1 channel conductance, surface plasmon resonance, and microscale thermophoresis. Preincubated Aβ interacted with bilayer-reconstituted VDAC1 and increased its conductance ∼ 2-fold. Incubation of cells with Aβ resulted in mitochondria-mediated apoptotic cell death. However, the presence of non-cell-penetrating VDAC1-N-Ter peptide prevented Aβ cellular entry and Aβ-induced mitochondria-mediated apoptosis. Likewise, silencing VDAC1 expression by specific siRNA prevented Aβ entry into the cytosol as well as Aβ-induced toxicity. Finally, the mode of Aβ-mediated action involves detachment of mitochondria-bound hexokinase, induction of VDAC1 oligomerization, and cytochrome c release, a sequence of events leading to apoptosis. As such, we suggest that Aβ-mediated toxicity involves mitochondrial and plasma membrane VDAC1, leading to mitochondrial dysfunction and apoptosis induction. The VDAC1-N-Ter peptide targeting Aβ cytotoxicity is thus a potential new therapeutic strategy for AD treatment. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Morash, Andrea J; Yu, Wilson; Le Moine, Christophe M R; Hills, Jayme A; Farrell, Anthony P; Patterson, David A; McClelland, Grant B
2013-01-01
Prolonged endurance exercise and fasting are two major metabolic challenges facing Pacific salmon during spawning migrations that often occur over 1,000 km. Because both prolonged exercise and fasting stimulate the oxidation of lipids, particularly in heavily recruited tissues such as muscle, we sought to investigate the regulatory mechanisms that establish and maintain the capacity for substrate oxidation at four separate locations during the final 750 km of nonfeeding migration in sockeye salmon Oncorhynchus nerka. Transcript levels of multiple genes encoding for important regulators of lipid, carbohydrate, and protein oxidation as well as the activity of several important enzymes involved in lipid and carbohydrate oxidation were examined in red and white muscle. We found in both muscle types that the messenger RNA (mRNA) expression of carnitine palmitoyltransferase I isoforms, peroxisome proliferator-activated receptors α and β, and adenosine monophosphate-activated protein kinase β1 were all significantly higher at the onset compared to later stages of nonfeeding migration. However, the activities of β-hydroxyacyl-CoA dehydrogenase and citrate synthase were higher only early in migration and only in red muscle. Later in the migration and as muscle lipid stores were greatly depleted, the mRNA levels of hexokinase I and aspartate aminotransferase increased in white muscle. Overall, at the onset of migration, high transcript and metabolic enzyme activity levels in skeletal muscle of sockeye salmon may help support the high rates of lipid oxidation needed for endurance swimming. Furthermore, we suggest that the muscle capacity to use carbohydrates and proteins may be adjusted throughout migration on an as-needed basis to fuel burst exercise through very difficult hydraulic passages in the river and perhaps during mating activities.
Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya
2015-07-10
Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
La Rocca, Claudia; Carbone, Fortunata; De Rosa, Veronica; Colamatteo, Alessandra; Galgani, Mario; Perna, Francesco; Lanzillo, Roberta; Brescia Morra, Vincenzo; Orefice, Giuseppe; Cerillo, Ilaria; Florio, Ciro; Maniscalco, Giorgia Teresa; Salvetti, Marco; Centonze, Diego; Uccelli, Antonio; Longobardi, Salvatore; Visconti, Andrea; Matarese, Giuseppe
2017-12-01
Metabolic reprogramming is shaped to support specific cell functions since cellular metabolism controls the final outcome of immune response. Multiple sclerosis (MS) is an autoimmune disease resulting from loss of immune tolerance against central nervous system (CNS) myelin. Metabolic alterations of T cells occurring during MS are not yet well understood and their studies could have relevance in the comprehension of the pathogenetic events leading to loss of immune tolerance to self and to develop novel therapeutic strategies aimed at limiting MS progression. In this report, we observed that extracellular acidification rate (ECAR) and oxygen consumption rate (OCR), indicators of glycolysis and oxidative phosphorylation, respectively, were impaired during T cell activation in naïve-to-treatment relapsing remitting (RR)MS patients when compared with healthy controls. These results were also corroborated at biochemical level by a reduced expression of the glycolitic enzymes aldolase, enolase 1, hexokinase I, and by reduction of Krebs cycle enzymes dihydrolipoamide-S-acetyl transferase (DLAT) and dihydrolipoamide-S-succinyl transferase (DLST). Treatment of RRMS patients with interferon beta-1a (IFN beta-1a) was able to restore T cell glycolysis and mitochondrial respiration as well as the amount of the metabolic enzymes to a level comparable to that of healthy controls. These changes associated with an up-regulation of the glucose transporter-1 (GLUT-1), a key element in intracellular transport of glucose. Our data suggest that T cells from RRMS patients display a reduced engagement of glycolysis and mitochondrial respiration, reversible upon IFN beta-1a treatment, thus suggesting an involvement of an altered metabolism in the pathogenesis of MS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Dini, Luciana; Citti, Cinzia; Cannazza, Giuseppe
2018-01-01
Glucose consumption in many types of cancer cells, in particular hepatocellular carcinoma (HCC), was followed completely by over-expression of type II hexokinase (HKII). This evidence has been used in modern pharmacotherapy to discover therapeutic target against glycolysis in cancer cells. Bromopyruvate (BrPA) exhibits antagonist property against HKII and can be used to inhibit glycolysis. However, the clinical application of BrPA is mostly combined with inhibition effect for healthy cells particularly erythrocytes. Our strategy is to encapsulate BrPA in a selected vehicle, without any leakage of BrPA out of vehicle in blood stream. This structure has been constructed from chitosan embedded into oleic acid layer and then coated by dual combination of folic acid (FA) and bovine serum albumin (BSA). With FA as specific ligand for cancer folate receptor and BSA that can be an easy binding for hepatocytes, they can raise the potential selection of carrier system. PMID:29320411
Wu, Canrong; Zheng, Mengzhu; Gao, Suyu; Luan, Shanshan; Cheng, Li; Wang, Liqing; Li, Jiachen; Chen, Lixia; Li, Hua
2017-01-01
Kidney-type glutaminase (KGA), a mitochondrial enzyme converting glutamine to glutamate for energy supply, was over-expressed in many cancers and had been regarded as a promising therapeutic target in recent years. Structure-based virtual ligand screening predicted physapubescin K, a new withanolide from Physalis pubescens, to be potential KGA inhibitor. Enzyme activity inhibition assays and microscale thermophoresis experiments had demonstrated the efficiency and specificity of physapubescin K targeting KGA. Additionally, physapubescin K exhibited potent proliferation inhibitory effects on a panel of human cancer cell lines, such as SW1990 and HCC827-ER. It blocked glutamine metabolism in SW1990 with increasing intracellular level of glutamine and decreasing glutamate and its downstream metabolites. Physapubescin K also significantly inhibited the tumor growth in a SW1990 xenograft mouse model. Interestingly, physapubescin K could reverse the resistance of HCC827-ER cells to erlotinib and synergize with the hexokinase 2 inhibitor to markedly enhance the inhibition of SW1990 cell proliferation. PMID:29371926
Ohayon, Delphine; De Chiara, Alessia; Chapuis, Nicolas; Candalh, Céline; Mocek, Julie; Ribeil, Jean-Antoine; Haddaoui, Lamya; Ifrah, Norbert; Hermine, Olivier; Bouillaud, Frédéric; Frachet, Philippe; Bouscary, Didier; Witko-Sarsat, Véronique
2016-10-19
Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNA replication, has been described as a key element in survival of mature neutrophil granulocytes, which are non-proliferating cells. Herein, we demonstrated an active export of PCNA involved in cell survival and chemotherapy resistance. Notably, daunorubicin-resistant HL-60 cells (HL-60R) have a prominent cytosolic PCNA localization due to increased nuclear export compared to daunorubicin-sensitive HL-60 cells (HL-60S). By interacting with nicotinamide phosphoribosyltransferase (NAMPT), a protein involved in NAD biosynthesis, PCNA coordinates glycolysis and survival, especially in HL-60R cells. These cells showed a dramatic increase in intracellular NAD+ concentration as well as glycolysis including increased expression and activity of hexokinase 1 and increased lactate production. Furthermore, this functional activity of cytoplasmic PCNA was also demonstrated in patients with acute myeloid leukemia (AML). Our data uncover a novel pathway of nuclear export of PCNA that drives cell survival by increasing metabolism flux.
Ohayon, Delphine; De Chiara, Alessia; Chapuis, Nicolas; Candalh, Céline; Mocek, Julie; Ribeil, Jean-Antoine; Haddaoui, Lamya; Ifrah, Norbert; Hermine, Olivier; Bouillaud, Frédéric; Frachet, Philippe; Bouscary, Didier; Witko-Sarsat, Véronique
2016-01-01
Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNA replication, has been described as a key element in survival of mature neutrophil granulocytes, which are non-proliferating cells. Herein, we demonstrated an active export of PCNA involved in cell survival and chemotherapy resistance. Notably, daunorubicin-resistant HL-60 cells (HL-60R) have a prominent cytosolic PCNA localization due to increased nuclear export compared to daunorubicin-sensitive HL-60 cells (HL-60S). By interacting with nicotinamide phosphoribosyltransferase (NAMPT), a protein involved in NAD biosynthesis, PCNA coordinates glycolysis and survival, especially in HL-60R cells. These cells showed a dramatic increase in intracellular NAD+ concentration as well as glycolysis including increased expression and activity of hexokinase 1 and increased lactate production. Furthermore, this functional activity of cytoplasmic PCNA was also demonstrated in patients with acute myeloid leukemia (AML). Our data uncover a novel pathway of nuclear export of PCNA that drives cell survival by increasing metabolism flux. PMID:27759041
Haidar, Malak; Lombès, Anne; Bouillaud, Frédéric; Kennedy, Eileen J; Langsley, Gordon
2017-03-10
Theileria annulata infects bovine leukocytes, transforming them into invasive, cancer-like cells that cause the widespread disease called tropical theileriosis. We report that in Theileria-transformed leukocytes hexokinase-2 (HK2) binds to B cell lymphoma-2-associated death promoter (BAD) only when serine (S) 155 in BAD is phosphorylated. We show that HK2 recruitment to BAD is abolished by a cell-penetrating peptide that acts as a nonphosphorylatable BAD substrate that inhibits endogenous S155 phosphorylation, leading to complex dissociation and ubiquitination and degradation of HK2 by the proteasome. As HK2 is a critical enzyme involved in Warburg glycolysis, its loss forces Theileria-transformed macrophages to switch back to HK1-dependent oxidative glycolysis that down-regulates macrophage proliferation only when they are growing on glucose. When growing on galactose, degradation of HK2 has no effect on Theileria-infected leukocyte proliferation, because metabolism of this sugar is independent of hexokinases. Thus, targeted disruption of the phosphorylation-dependent HK2/BAD complex may represent a novel approach to control Theileria-transformed leukocyte proliferation.
Krumova, Ekaterina Ts; Stoitsova, Stoyanka R; Paunova-Krasteva, Tsvetelina S; Pashova, Svetlana B; Angelova, Maria B
2012-12-01
Humicola lutea 103 is a copper-tolerant fungal strain able to grow in the presence of 300 μg·mL(-1) Cu(2+) under submerged cultivation. To prevent the consequences of copper overload, microorganisms have evolved molecular mechanisms that regulate its uptake, intracellular traffic, storage, and efflux. In spite of this avoidance strategy, high heavy-metal concentrations caused distinct and widespread ultrastructural alterations in H. lutea. The mitochondria were the first and main target of the toxic action. The effect of copper on activities of the key enzymes (hexokinase, glucose-6-phosphate dehydrogenase, malate dehydrogenase, and isocitrate dehydrogenase) included in the 3 main metabolic pathways, glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle, was investigated. High metal concentrations exhibited a dramatic negative effect on hexokinase, while the other 3 enzymes showed a significant and dose-dependent stimulation. On the basis of the present and previous results we concluded that the copper-induced oxidative stress plays an important role in the fungal tolerance to high Cu (2+) concentrations.
ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion
Fouquerel, Elise; Goellner, Eva M.; Yu, Zhongxun; Gagné, Jean-Philippe; de Moura, Michelle Barbi; Feinstein, Tim; Wheeler, David; Redpath, Philip; Li, Jianfeng; Romero, Guillermo; Migaud, Marie; Van Houten, Bennett; Poirier, Guy G.; Sobol, Robert W.
2014-01-01
Summary ARTD1 (PARP1) is a key enzyme involved in DNA repair by synthesizing poly(ADP-ribose) (PAR) in response to strand breaks and plays an important role in cell death following excessive DNA damage. ARTD1-induced cell death is associated with NAD+ depletion and ATP loss, however the molecular mechanism of ARTD1-mediated energy collapse remains elusive. Using real-time metabolic measurements, we directly compared the effects of ARTD1 activation and direct NAD+ depletion. We found that ARTD1-mediated PAR synthesis, but not direct NAD+ depletion, resulted in a block to glycolysis and ATP loss. We then established a proteomics based PAR-interactome after DNA damage and identified hexokinase 1 (HK1) as a PAR binding protein. HK1 activity is suppressed following nuclear ARTD1 activation and binding by PAR. These findings help explain how prolonged activation of ARTD1 triggers energy collapse and cell death, revealing new insight on the importance of nucleus to mitochondria communication via ARTD1 activation. PMID:25220464
Strauss, Ludwig G; Koczan, Dirk; Klippel, Sven; Pan, Leyun; Cheng, Caixia; Willis, Stefan; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia
2008-08-01
18F-FDG kinetics are primarily dependent on the expression of genes associated with glucose transporters and hexokinases but may be modulated by other genes. The dependency of 18F-FDG kinetics on angiogenesis-related gene expression was evaluated in this study. Patients with primary colorectal tumors (n = 25) were examined with PET and 18F-FDG within 2 days before surgery. Tissue specimens were obtained from the tumor and the normal colon during surgery, and gene expression was assessed using gene arrays. Overall, 23 angiogenesis-related genes were identified with a tumor-to-normal ratio exceeding 1.50. Analysis revealed a significant correlation between k1 and vascular endothelial growth factor (VEGF-A, r = 0.51) and between fractal dimension and angiopoietin-2 (r = 0.48). k3 was negatively correlated with VEGF-B (r = -0.46), and a positive correlation was noted for angiopoietin-like 4 gene (r = 0.42). A multiple linear regression analysis was used for the PET parameters to predict the gene expression, and a correlation coefficient of r = 0.75 was obtained for VEGF-A and of r = 0.76 for the angiopoietin-2 expression. Thus, on the basis of these multiple correlation coefficients, angiogenesis-related gene expression contributes to about 50% of the variance of the 18F-FDG kinetic data. The global 18F-FDG uptake, as measured by the standardized uptake value and influx, was not significantly correlated with angiogenesis-associated genes. 18F-FDG kinetics are modulated by angiogenesis-related genes. The transport rate for 18F-FDG (k1) is higher in tumors with a higher expression of VEGF-A and angiopoietin-2. The regression functions for the PET parameters provide the possibility to predict the gene expression of VEGF-A and angiopoietin-2.
Tegnebratt, Tetyana; Ruge, Elisabeth; Bader, Sabine; Ishii, Nobuya; Aida, Satoshi; Yoshimura, Yasushi; Ooi, Chia-Huey; Lu, Li; Mitsios, Nicholas; Meresse, Valerie; Mulder, Jan; Pawlak, Michael; Venturi, Miro; Tessier, Jean; Stone-Elander, Sharon
2014-12-01
Inhibition of mitogen-activated protein kinase (MEK, also known as MAPK2, MAPKK), a key molecule of the Ras/MAPK (mitogen-activated protein kinase) pathway, has shown promising effects on B-raf-mutated and some RAS (rat sarcoma)-activated tumors in clinical trials. The objective of this study is to examine the efficacy of a novel allosteric MEK inhibitor RO4987655 in K-ras-mutated human tumor xenograft models using [(18)F] FDG-PET imaging and proteomics technology. [(18)F] FDG uptake was studied in human lung carcinoma xenografts from day 0 to day 9 of RO4987655 therapy using microPET Focus 120 (CTI Concorde Microsystems, Knoxville, TN, USA). The expression levels of GLUT1 and hexokinase 1 were examined using semi-quantitative fluorescent immunohistochemistry (fIHC). The in vivo effects of RO4987655 on MAPK/PI3K pathway components were assessed by reverse phase protein arrays (RPPA). We have observed modest metabolic decreases in tumor [(18)F] FDG uptake after MEK inhibition by RO4987655 as early as 2 h post-treatment. The greatest [(18)F] FDG decreases were found on day 1, followed by a rebound in [(18)F] FDG uptake on day 3 in parallel with decreasing tumor volumes. Molecular analysis of the tumors by fIHC did not reveal statistically significant correlations of GLUT1 and hexokinase 1 expressions with the [(18)F] FDG changes. RPPA signaling response profiling revealed not only down-regulation of pERK1/2, pMKK4, and pmTOR on day 1 after RO4987655 treatment but also significant up-regulation of pMEK1/2, pMEK2, pC-RAF, and pAKT on day 3. The up-regulation of these markers is interpreted to be indicative of a reactivation of the MAPK and activation of the compensatory PI3K pathway, which can also explain the rebound in [(18)F] FDG uptake following MEK inhibition with RO4987655 in the K-ras-mutated human tumor xenografts. We have performed the first preclinical evaluation of a new MEK inhibitor, RO4987655, using a combination of [(18)F] FDG-PET imaging and molecular proteomics. These results provide support for using preclinical [(18)F] FDG-PET imaging in early, non-invasive monitoring of the effects of MEK and perhaps other Ras/MAPK signaling pathway inhibitors, which should facilitate a wider implementation of clinical [(18)F] FDG-PET to optimize their clinical use.
Voltage-Dependent Anion Channel 1 As an Emerging Drug Target for Novel Anti-Cancer Therapeutics
Shoshan-Barmatz, Varda; Krelin, Yakov; Shteinfer-Kuzmine, Anna; Arif, Tasleem
2017-01-01
Cancer cells share several properties, high proliferation potential, reprogramed metabolism, and resistance to apoptotic cues. Acquiring these hallmarks involves changes in key oncogenes and non-oncogenes essential for cancer cell survival and prosperity, and is accompanied by the increased energy requirements of proliferating cells. Mitochondria occupy a central position in cell life and death with mitochondrial bioenergetics, biosynthesis, and signaling are critical for tumorigenesis. Voltage-dependent anion channel 1 (VDAC1) is situated in the outer mitochondrial membrane (OMM) and serving as a mitochondrial gatekeeper. VDAC1 allowing the transfer of metabolites, fatty acid ions, Ca2+, reactive oxygen species, and cholesterol across the OMM and is a key player in mitochondrial-mediate apoptosis. Moreover, VDAC1 serves as a hub protein, interacting with diverse sets of proteins from the cytosol, endoplasmic reticulum, and mitochondria that together regulate metabolic and signaling pathways. The observation that VDAC1 is over-expressed in many cancers suggests that the protein may play a pivotal role in cancer cell survival. However, VDAC1 is also important in mitochondria-mediated apoptosis, mediating release of apoptotic proteins and interacting with anti-apoptotic proteins, such as B-cell lymphoma 2 (Bcl-2), Bcl-xL, and hexokinase (HK), which are also highly expressed in many cancers. Strategically located in a “bottleneck” position, controlling metabolic homeostasis and apoptosis, VDAC1 thus represents an emerging target for anti-cancer drugs. This review presents an overview on the multi-functional mitochondrial protein VDAC1 performing several functions and interacting with distinct sets of partners to regulate both cell life and death, and highlights the importance of the protein for cancer cell survival. We address recent results related to the mechanisms of VDAC1-mediated apoptosis and the potential of associated proteins to modulate of VDAC1 activity, with the aim of developing VDAC1-based approaches. The first strategy involves modification of cell metabolism using VDAC1-specific small interfering RNA leading to inhibition of cancer cell and tumor growth and reversed oncogenic properties. The second strategy involves activation of cancer cell death using VDAC1-based peptides that prevent cell death induction by anti-apoptotic proteins. Finally, we discuss the potential therapeutic benefits of treatments and drugs leading to enhanced VDAC1 expression or targeting VDAC1 to induce apoptosis. PMID:28824871
Xian, Shu-Lin; Cao, Wei; Zhang, Xiao-Dong; Lu, Yun-Fei
2015-02-01
Tumor cells primarily depend upon glycolysis in order to gain energy. Therefore, the inhibition of glycolysis may inhibit tumor growth. Our previous study demonstrated that 3-bromopyruvate (3-BrPA) inhibited gastric cancer cell proliferation in vitro . However, the ability of 3-BrPA to suppress tumor growth in vivo, and its underlying mechanism, have yet to be elucidated. The aim of the present study was to investigate the inhibitory effect of 3-BrPA in an animal model of gastric cancer. It was identified that 3-BrPA exhibited strong inhibitory effects upon xenograft tumor growth in nude mice. In addition, the antitumor function of 3-BrPA exhibited a dose-effect association, which was similar to that of the chemotherapeutic agent, 5-fluorouracil. Furthermore, 3-BrPA exhibited low toxicity in the blood, liver and kidneys of the nude mice. The present study hypothesized that the inhibitory effect of 3-BrPA is achieved through the inhibition of hexokinase activity, which leads to the downregulation of B-cell lymphoma 2 (Bcl-2) expression, the upregulation of Bcl-2-associated X protein expression and the subsequent activation of caspase-3. These data suggest that 3-BrPA may be a novel therapy for the treatment of gastric cancer.
Jamsheer K, Muhammed; Laxmi, Ashverya
2015-01-01
Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1) signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ) gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response toward energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response. PMID:26442059
Annapoorna, K; Anbalagan, J; Neelamohan, R; Vengatesh, G; Stanley, J; Amudha, G; Aruldhas, M M
2013-03-01
The present study aims to identify the association between androgen status and metabolic activity in skeletal and cardiac muscles of adult rats with transient gestational/neonatal-onset hypothyroidism. Pregnant and lactating rats were made hypothyroid by exposing to 0.05% methimazole in drinking water; gestational exposure was from embryonic day 9-14 (group II) or 21 (group III), lactational exposure was from postnatal day 1-14 (group IV) or 29 (group V). Serum was collected for hormone assay. Androgen receptor status, Glu-4 expression, and enzyme activities were assessed in the skeletal and cardiac muscles. Serum testosterone and estradiol levels decreased in adult rats of groups II and III, whereas testosterone remained normal but estradiol increased in group IV and V, when compared to coeval control. Androgen receptor ligand binding activity increased in both muscle phenotypes with a consistent increase in the expression level of its mRNA and protein expressions except in the forelimb of adult rats with transient hypothyroidism (group II-V). Glut-4 expression remained normal in skeletal and cardiac muscle of experimental rats. Specific activity of hexokinase and lactate dehydrogenase increased in both muscle phenotypes whereas, creatine kinase activity increased in skeletal muscles alone. It is concluded that transient gestational/lactational exposure to methimazole results in hypothyroidism during prepuberal life whereas it increases AR status and glycolytic activity in skeletal and cardiac muscles even at adulthood. Thus, the present study suggests that euthyroid status during prenatal and early postnatal life is essential to have optimal AR status and metabolic activity at adulthood. © Georg Thieme Verlag KG Stuttgart · New York.
Can, Zhou; Lele, Song; Zhirui, Zhang; Qiong, Pan; Yuzhong, Chen; Lingling, Liu; Surong, Zhao; Yiming, Sun; Pei, Zhang; Chenchen, Jiang; Liu, Hao
2017-08-01
Past reports have shown that the sensitivity of cancer cells to TRAIL-induced apoptosis is related to their expression of TRAIL-death receptors on the cell surface. However, the level of TRAIL-death receptors expression on cancer cells is always low. Our previous research showed that nasopharyngeal carcinoma (NPC) cells have a poor sensitivity to low doses of TRAIL. Here, we evaluated combined treatment with the energy inhibitor 3-bromopyruvate (3BP) and TRAIL as a method to produce an increased apoptotic response in NPC cells. The results showed that 3BP and TRAIL together produced higher cytotoxicity and increased TRAIL-R2 expression in NPC cells compared with the effects of either 3BP or TRAIL alone. These findings led us to hypothesize that 3BP may sensitize NPC cells to TRAIL. 3BP is a metabolic blocker that inhibits hexokinase II activity, suppresses ATP production, and induces endoplasmic reticulum (ER) stress. Our results showed that 3BP also activated AMP-activated protein kinase, which we found to play an important role in the induction of ER stress by 3BP. Furthermore, the induction of TRAIL-R2 expression and the sensitization of the NPC cells to TRAIL by 3BP were reduced when we inhibited the expression of CHOP. Taken together, our results showed that a low dose of 3BP sensitized NPC cells to TRAIL-induced apoptosis by the upregulation of CHOP, which was mediated by the activation of AMP-activated protein kinase and ER stress. The results showed that 3BP is a promising candidate agent for enhancing the therapeutic response to TRAIL in NPC.
Glucokinase expression is regulated by glucose through O-GlcNAc glycosylation.
Baldini, Steffi F; Steenackers, Agata; Olivier-Van Stichelen, Stéphanie; Mir, Anne-Marie; Mortuaire, Marlène; Lefebvre, Tony; Guinez, Céline
2016-09-16
Blood glucose fluctuates with the fasting-feeding cycle. One of the liver's functions is to maintain blood glucose concentrations within a physiological range. Glucokinase (GCK) or hexokinase IV, is the main enzyme that regulates the flux and the use of glucose in the liver leading to a compensation of hyperglycemia. In hepatocytes, GCK catalyzes the phosphorylation of glucose into glucose-6-phosphate. This critical enzymatic reaction is determinant for the metabolism of glucose in the liver which includes glycogen synthesis, glycolysis, lipogenesis and gluconeogenesis. In liver, simultaneous increase of glucose and insulin enhances GCK activity and gene expression, changes its subcellular location and interaction with regulatory proteins. The post-translational O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) acts as a glucose-sensitive modification and is believed to take part in hepatic glucose sensing by modifying key regulatory proteins. Therefore, we aimed to determine whether GCK is modified by O-GlcNAcylation in the liver of mice and investigated the role that this modification plays in regulating GCK protein expression. We demonstrated that endogenous GCK expression correlated with O-GlcNAc levels in the pathophysiological model ob/ob mice. More specifically, in response to the pharmacological inhibition of O-GlcNAcase (OGA) contents of GCK increased. Using the GlcNAc specific lectin succinylated-WGA and click chemistry labeling approaches, we demonstrated that GCK is modified by O-GlcNAcylation. Further, we demonstrated that siRNA-mediated Ogt knock-down not only decreases O-GlcNAc content but also GCK protein level. Altogether, our in vivo and in vitro results demonstrate that GCK expression is regulated by nutrient-sensing O-GlcNAc cycling in liver. Copyright © 2016 Elsevier Inc. All rights reserved.
Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer.
Singh, Davinder; Arora, Rohit; Kaur, Pardeep; Singh, Balbir; Mannan, Rahul; Arora, Saroj
2017-01-01
Cancer, the main cause of human deaths in the modern world is a group of diseases. Anticancer drug discovery is a challenge for scientists because of involvement of multiple survival pathways of cancer cells. An extensive study on the regulation of each step of these pathways may help find a potential cancer target. Up-regulated HIF-1 expression and altered metabolic pathways are two classical characteristics of cancer. Oxygen-dependent (through pVHL, PHDs, calcium-mediated) and independent (through growth factor signaling pathway, mdm2 pathway, HSP90) regulation of HIF-1α leads to angiogenesis, metastasis, and cell survival. The two subunits of HIF-1 regulates in the same fashion through different mechanisms. HIF-1α translation upregulates via mammalian target of rapamycin and mitogen-activated protein kinase signaling pathways, whereas HIF-1β through calmodulin kinase. Further, the stabilized interactions of these two subunits are important for proper functioning. Also, metabolic pathways crucial for the formation of building blocks (pentose phosphate pathway) and energy generation (glycolysis, TCA cycle and catabolism of glutamine) are altered in cancer cells to protect them from oxidative stress and to meet the reduced oxygen and nutrient supply. Up-regulated anaerobic metabolism occurs through enhanced expression of hexokinase, phosphofructokinase, triosephosphate isomerase, glucose 6-phosphate dehydrogenase and down-regulation of aerobic metabolism via pyruvate dehydrogenase kinase and lactate dehydrogenase which compensate energy requirements along with high glucose intake. Controlled expression of these two pathways through their common intermediate may serve as potent cancer target in future.
Richter, Susan; Morrison, Shona; Connor, Tim; Su, Jiechuang; Print, Cristin G.; Ronimus, Ron S.; McGee, Sean L.; Wilson, William R.
2013-01-01
Zinc finger nucleases (ZFN) are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK), in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116). All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002) and 4.3±0.8% (p = 0.001) for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser) under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines. PMID:23799003
Effects of Trypanocidal Drugs on the Function of Trypanosomes.
1982-02-01
hyaluronidase, inhibited at l0- 5 -10- 6 M, fumarase, inhibited at _a. I0-7M, urease at pH 5 (ca. 10-4 1 M), hexokinase (o-4-I0-51i), and RNA polymerase...trypanosomes, particularly the I. rhodesiense in the absence of the fedder layers , or tissue culture cell. Parabiotic chambers have been designed which
Effects of Trypanocidal Drugs on the Function of Trypanosomes.
1980-09-01
fumarase, inhibited at ca. 10- 7 M, urease at pH 5 (ca. 10- 4 M), hexokinase (10- 4-10- 5 M), and R-NA polymerase (10- 5 M) (11). Recent studies by our...vigorously until the quinone has been reduced to the colorless quinol. The aqueous layer is discarded and the ether layer is washed twice with saturated
Kinetics of the cooperative binding of glucose to dimeric yeast hexokinase P-I.
Hoggett, J G; Kellett, G L
1995-01-15
Kinetic studies of the cooperative binding of glucose to yeast hexokinase P-I at pH 6.5 have been carried out using the fluorescence temperature-jump technique. Three relaxation effects were observed: a fast low-amplitude effect which could only be resolved at low glucose concentrations (tau 1(-1) = 500-800 s-1), an intermediate effect (tau 2) which showed a linear dependence of reciprocal relaxation time on concentration, and a slow effect (tau 3) which showed a curved dependence on glucose concentration, increasing from approximately 28 s-1 at low concentrations to 250 s-1 at high levels. The findings are interpreted in terms of the concerted Monod-Wyman-Changeux mechanism, the two faster relaxations being assigned to binding to the R and T states, and the slow relaxation to isomerization between the states. Quantitative fitting of the kinetic data to the mechanism has been carried out using independent estimates of the equilibrium parameters of the model; these have been derived from equilibrium dialysis data and by determining the enhancement of the intrinsic ATPase activity of the enzyme by the non-phosphorylatable sugar lyxose, which switches the conformation of the enzyme to the active R state.
Prediction of protein orientation upon immobilization on biological and nonbiological surfaces
NASA Astrophysics Data System (ADS)
Talasaz, Amirali H.; Nemat-Gorgani, Mohsen; Liu, Yang; Ståhl, Patrik; Dutton, Robert W.; Ronaghi, Mostafa; Davis, Ronald W.
2006-10-01
We report on a rapid simulation method for predicting protein orientation on a surface based on electrostatic interactions. New methods for predicting protein immobilization are needed because of the increasing use of biosensors and protein microarrays, two technologies that use protein immobilization onto a solid support, and because the orientation of an immobilized protein is important for its function. The proposed simulation model is based on the premise that the protein interacts with the electric field generated by the surface, and this interaction defines the orientation of attachment. Results of this model are in agreement with experimental observations of immobilization of mitochondrial creatine kinase and type I hexokinase on biological membranes. The advantages of our method are that it can be applied to any protein with a known structure; it does not require modeling of the surface at atomic resolution and can be run relatively quickly on readily available computing resources. Finally, we also propose an orientation of membrane-bound cytochrome c, a protein for which the membrane orientation has not been unequivocally determined. electric double layer | electrostatic simulations | orientation flexibility
Cho, Jun-Ho; Kim, Goo-Young; Mansfield, Brian C; Chou, Janice Y
2018-04-15
Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC), a key enzyme in endogenous glucose production. This autosomal recessive disorder is characterized by impaired glucose homeostasis and long-term complications of hepatocellular adenoma/carcinoma (HCA/HCC). We have shown that hepatic G6Pase-α deficiency-mediated steatosis leads to defective autophagy that is frequently associated with carcinogenesis. We now show that hepatic G6Pase-α deficiency also leads to enhancement of hepatic glycolysis and hexose monophosphate shunt (HMS) that can contribute to hepatocarcinogenesis. The enhanced hepatic glycolysis is reflected by increased lactate accumulation, increased expression of many glycolytic enzymes, and elevated expression of c-Myc that stimulates glycolysis. The increased HMS is reflected by increased glucose-6-phosphate dehydrogenase activity and elevated production of NADPH and the reduced glutathione. We have previously shown that restoration of hepatic G6Pase-α expression in G6Pase-α-deficient liver corrects metabolic abnormalities, normalizes autophagy, and prevents HCA/HCC development in GSD-Ia. We now show that restoration of hepatic G6Pase-α expression normalizes both glycolysis and HMS in GSD-Ia. Moreover, the HCA/HCC lesions in L-G6pc-/- mice exhibit elevated levels of hexokinase 2 (HK2) and the M2 isoform of pyruvate kinase (PKM2) which play an important role in aerobic glycolysis and cancer cell proliferation. Taken together, hepatic G6Pase-α deficiency causes metabolic reprogramming, leading to enhanced glycolysis and elevated HMS that along with impaired autophagy can contribute to HCA/HCC development in GSD-Ia. Published by Elsevier Inc.
Oncogene pathway activation in mammary tumors dictates [18F]-FDG-PET uptake
Alvarez, James V.; Belka, George K.; Pan, Tien-chi; Chen, Chien-Chung; Blankemeyer, Eric; Alavi, Abass; Karp, Joel; Chodosh, Lewis A.
2015-01-01
Increased glucose utilization is a hallmark of human cancer that is used to image tumors clinically. In this widely used application, glucose uptake by tumors is monitored by positron emission tomography (PET) of the labeled glucose analog F-18-2-fluoro-2-deoxyglucose (18F-FDG). Despite its widespread clinical use, the cellular and molecular mechanisms that determine FDG uptake - a tool that can monitor tumor heterogeneity - remain poorly understood. In this study, we compared FDG uptake in mammary tumors driven by the Akt1, c-MYC, HER2/neu, Wnt1 or H-Ras oncogenes in genetically engineered mice, correlating it to tumor growth, cell proliferation and levels of gene expression involved in key steps of glycolytic metabolism. We found that FDG uptake by tumors was dictated principally by the driver oncogene and was not independently associated with tumor growth or cellular proliferation. Oncogene downregulation resulted in a rapid decrease in FDG uptake, preceding effects on tumor regression, irrespective of the baseline level of uptake. FDG uptake correlated positively with expression of hexokinase-2 (HK2) and HIF-1α and associated negatively with PFK-2b expression and p-AMPK. The correlation of HK2 and FDG uptake was independent of all variables tested, including the initiating oncogene, suggesting that HK2 is an independent predictor of FDG uptake. In contrast, expression of Glut1 was correlated with FDG uptake only in tumors driven by Akt or HER2/neu. Together, these results showed that the oncogenic pathway activated within a tumor is a primary determinant of its FDG uptake, mediated by key glycolytic enzymes that provide a framework to interpret effects on this key parameter in clinical imaging. PMID:25239452
Wang, Yuting; Lin, Dingbo; Wang, Xiaoli; Zhu, Wei; Ye, Junli; Li, Guohuai; Ma, Zhaocheng; Deng, Xiuxin
2017-05-01
Peach [Prunus persica (L.)] gum exudates are produced by the trunks and fruits in peach gummosis. Clinically, these exudates have been used to treat diabetes in China, though the molecular mechanism underlying remains unclear. In the current study, a novel peach gum-derived polysaccharide was isolated, designated as PGPSD, and its anti-diabetic effect was assessed in mice. This polysaccharide was composed of arabinose, xylose and galactose in the molar ratio of 5.98:1:3.55, with the average molecular weight at 1.00×10 6 Da. The animal study demonstrated that the PGPSD polysaccharide significantly lowered the postprandial blood glucose in streptozotocin-induced diabetic mice. Histology and immunohistochemistry results further confirmed that the application of PGPSD polysaccharide partially restored the pancreatic islets in diabetic mice, and enhanced the expression of pancreatic duodenal homeobox-1, insulin and hexokinase1. Collectively, the data suggested that the peach gum-derived polysaccharide had a meaningful potential as a non-insulin therapeutic compound in the treatment of diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Xiaofei; Li, Jiaolong; Cong, Jiahui; Chen, Xiangxing; Zhu, Xudong; Zhang, Lin; Gao, Feng; Zhou, Guanghong
2017-11-29
Preslaughter transport has been reported to decrease the quality of breast meat but not thigh meat of broilers. However, tissue-specific difference in glycogen metabolism between breast and thigh muscles of transported broilers has not been well studied. We thus investigated the differences in meat quality, adenosine phosphates, glycolysis, and bound key enzymes associated with glycolysis metabolism in skeletal muscles with different fiber types of preslaughter transported broilers during summer. Compared to a 0.5 h transport, a 3 h transport during summer decreased ATP content, increased AMP content and AMP/ATP ratio, and accelerated glycolysis metabolism via the upregulation of glycogen phosphorylase expression accompanied by increased activities of bound glycolytic enzymes (hexokinase, pyruvate kinase, and lactate dehydrogenase) in pectoralis major muscle, which subsequently increased the likelihood of pale, soft, and exudative-like breast meat. On the other hand, a 3 h transport induced only a moderate glycolysis metabolism in tibialis anterior muscle, which did not cause any noticeable changes in the quality traits of the thigh meat.
Rocha, Filipa; Dias, Jorge; Engrola, Sofia; Gavaia, Paulo; Geurden, Inge; Dinis, Maria Teresa; Panserat, Stephane
2015-02-14
Knowledge on the role of early nutritional stimuli as triggers of metabolic pathways in fish is extremely scarce. The objective of the present study was to assess the long-term effects of glucose injection in the yolk (early stimulus) on carbohydrate metabolism and gene regulation in zebrafish juveniles challenged with a high-carbohydrate low-protein (HC) diet. Eggs were microinjected at 1 d post-fertilisation (dpf) with either glucose (2 M) or saline solutions. Up to 25 dpf, fish were fed a low-carbohydrate high-protein (LC) control diet, which was followed by a challenge with the HC diet. Survival and growth of 35 dpf juveniles were not affected by injection or the HC diet. Glucose stimulus induced some long-term metabolic changes in the juveniles, as shown by the altered expression of genes involved in glucose metabolism. On glycolysis, the expression levels of hexokinase 1 (HK1) and phosphofructokinase-6 (6PFK) were up-regulated in the visceral and muscle tissues, respectively, of juveniles exposed to the glucose stimulus, indicating a possible improvement in glucose oxidation. On gluconeogenesis, the inhibition of the expression levels of PEPCK in fish injected with glucose suggested lower production of hepatic glucose. Unexpectedly, fructose-1,6-bisphosphatase (FBP) expression was induced and 6PFK expression reduced by glucose stimulus, leaving the possibility of a specific regulation of the FBP-6PFK metabolic cycle. Glucose metabolism in juveniles was estimated using a [¹⁴C]glucose tracer; fish previously exposed to the stimulus showed lower retention of [¹⁴C]glucose in visceral tissue (but not in muscle tissue) and, accordingly, higher glucose catabolism, in comparison with the saline group. Globally, our data suggest that glucose stimulus at embryo stage has the potential to alter particular steps of glucose metabolism in zebrafish juveniles.
Bioenergetics of Stromal Cells as a Predictor of Aggressive Prostate Cancer
2016-11-01
complex tissue preparations (human prostate and prostatic adenoma) and rat ventral prostate cells it was reported to exhibit high aerobic glycolysis [19...pyruvate dehydrogenase kinase), 2DG (inhibitor of hexokinase), or metformin (inhibitor of mitochondrial complex I) [41] as a therapeutic approach to... cyanide 4-(trifluoromethoxy) phenylhydrazone; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; GlyST, Glycolytic stress test; HPV, human papilloma virus
Wang, Shiqiang; Wang, Bin; Hua, Wenping; Niu, Junfeng; Dang, Kaikai; Qiang, Yi; Wang, Zhezhi
2017-09-12
Polygonatum sibiricum polysaccharides (PSPs) are used to improve immunity, alleviate dryness, promote the secretion of fluids, and quench thirst. However, the PSP biosynthetic pathway is largely unknown. Understanding the genetic background will help delineate that pathway at the molecular level so that researchers can develop better conservation strategies. After comparing the PSP contents among several different P. sibiricum germplasms, we selected two groups with the largest contrasts in contents and subjected them to HiSeq2500 transcriptome sequencing to identify the candidate genes involved in PSP biosynthesis. In all, 20 kinds of enzyme-encoding genes were related to PSP biosynthesis. The polysaccharide content was positively correlated with the expression patterns of β-fructofuranosidase ( sacA ), fructokinase ( scrK ), UDP-glucose 4-epimerase ( GALE ), Mannose-1-phosphate guanylyltransferase ( GMPP ), and UDP-glucose 6-dehydrogenase ( UGDH ), but negatively correlated with the expression of Hexokinase ( HK ). Through qRT-PCR validation and comprehensive analysis, we determined that sacA , HK , and GMPP are key genes for enzymes within the PSP metabolic pathway in P. sibiricum. Our results provide a public transcriptome dataset for this species and an outline of pathways for the production of polysaccharides in medicinal plants. They also present more information about the PSP biosynthesis pathway at the molecular level in P. sibiricum and lay the foundation for subsequent research of gene functions.
Li, Wen-Ru; Shi, Qing-Shan; Dai, Huan-Qin; Liang, Qing; Xie, Xiao-Bao; Huang, Xiao-Mo; Zhao, Guang-Ze; Zhang, Li-Xin
2016-01-01
The antifungal activity, kinetics, and molecular mechanism of action of garlic oil against Candida albicans were investigated in this study using multiple methods. Using the poisoned food technique, we determined that the minimum inhibitory concentration of garlic oil was 0.35 μg/mL. Observation by transmission electron microscopy indicated that garlic oil could penetrate the cellular membrane of C. albicans as well as the membranes of organelles such as the mitochondria, resulting in organelle destruction and ultimately cell death. RNA sequencing analysis showed that garlic oil induced differential expression of critical genes including those involved in oxidation-reduction processes, pathogenesis, and cellular response to drugs and starvation. Moreover, the differentially expressed genes were mainly clustered in 19 KEGG pathways, representing vital cellular processes such as oxidative phosphorylation, the spliceosome, the cell cycle, and protein processing in the endoplasmic reticulum. In addition, four upregulated proteins selected after two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) analysis were identified with high probability by mass spectrometry as putative cytoplasmic adenylate kinase, pyruvate decarboxylase, hexokinase, and heat shock proteins. This is suggestive of a C. albicans stress responses to garlic oil treatment. On the other hand, a large number of proteins were downregulated, leading to significant disruption of the normal metabolism and physical functions of C. albicans. PMID:26948845
Wang, Shiqiang; Wang, Bin; Hua, Wenping; Niu, Junfeng; Dang, Kaikai; Qiang, Yi; Wang, Zhezhi
2017-01-01
Polygonatum sibiricum polysaccharides (PSPs) are used to improve immunity, alleviate dryness, promote the secretion of fluids, and quench thirst. However, the PSP biosynthetic pathway is largely unknown. Understanding the genetic background will help delineate that pathway at the molecular level so that researchers can develop better conservation strategies. After comparing the PSP contents among several different P. sibiricum germplasms, we selected two groups with the largest contrasts in contents and subjected them to HiSeq2500 transcriptome sequencing to identify the candidate genes involved in PSP biosynthesis. In all, 20 kinds of enzyme-encoding genes were related to PSP biosynthesis. The polysaccharide content was positively correlated with the expression patterns of β-fructofuranosidase (sacA), fructokinase (scrK), UDP-glucose 4-epimerase (GALE), Mannose-1-phosphate guanylyltransferase (GMPP), and UDP-glucose 6-dehydrogenase (UGDH), but negatively correlated with the expression of Hexokinase (HK). Through qRT-PCR validation and comprehensive analysis, we determined that sacA, HK, and GMPP are key genes for enzymes within the PSP metabolic pathway in P. sibiricum. Our results provide a public transcriptome dataset for this species and an outline of pathways for the production of polysaccharides in medicinal plants. They also present more information about the PSP biosynthesis pathway at the molecular level in P. sibiricum and lay the foundation for subsequent research of gene functions. PMID:28895881
Yang, Feng-Yi; Chang, Wen-Yuan; Chen, Jyh-Cheng; Lee, Lin-Chien; Hung, Yi-Shun
2014-04-15
The goal of this study was to evaluate the pharmacokinetics of (18)F-2-fluoro-2-deoxy-d-glucose ((18)F-FDG) and the expression of glucose transporter 1 (GLUT1) protein after blood-brain barrier (BBB) disruption of normal rat brains by focused ultrasound (FUS). After delivery of an intravenous bolus of ~37 MBq (1 mCi) (18)F-FDG, dynamic positron emission tomography scans were performed on rats with normal brains and those whose BBBs had been disrupted by FUS. Arterial blood sampling was collected throughout the scanning procedure. A 2-tissue compartmental model was used to estimate (18)F-FDG kinetic parameters in brain tissues. The rate constants Ki, K1, and k3 were assumed to characterize the uptake, transport, and hexokinase activity, respectively, of (18)F-FDG. The uptake of (18)F-FDG in brains significantly decreased immediately after the blood-brain barrier was disrupted. At the same time, the derived values of Ki, K1, and k3 for the sonicated brains were significantly lower than those for the control brains. In agreement with the reduction in glucose, Western blot analyses confirmed that focused ultrasound exposure significantly reduced the expression of GLUT1 protein in the brains. Furthermore, the effect of focused ultrasound on glucose uptake was transient and reversible 24h after sonication. Our results indicate that focused ultrasound may inhibit GLUT1 expression to decrease the glucose uptake in brain tissue during the period of BBB disruption. Copyright © 2013 Elsevier Inc. All rights reserved.
Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan
2016-02-01
Herein, we investigated the hypoglycemic effect of plant gallic acid (GA) on glucose uptake in an insulin-resistant cell culture model and on hepatic carbohydrate metabolism in rats with a high-fructose diet (HFD)-induced diabetes. Our hypothesis is that GA ameliorates hyperglycemia via alleviating hepatic insulin resistance by suppressing hepatic inflammation and improves abnormal hepatic carbohydrate metabolism by suppressing hepatic gluconeogenesis and enhancing the hepatic glycogenesis and glycolysis pathways in HFD-induced diabetic rats. Gallic acid increased glucose uptake activity by 19.2% at a concentration of 6.25 μg/mL in insulin-resistant FL83B mouse hepatocytes. In HFD-induced diabetic rats, GA significantly alleviated hyperglycemia, reduced the values of the area under the curve for glucose in an oral glucose tolerance test, and reduced the scores of the homeostasis model assessment of insulin resistance index. The levels of serum C-peptide and fructosamine and cardiovascular risk index scores were also significantly decreased in HFD rats treated with GA. Moreover, GA up-regulated the expression of hepatic insulin signal transduction-related proteins, including insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3 kinase, Akt/protein kinase B, and glucose transporter 2, in HFD rats. Gallic acid also down-regulated the expression of hepatic gluconeogenesis-related proteins, such as fructose-1,6-bisphosphatase, and up-regulated expression of hepatic glycogen synthase and glycolysis-related proteins, including hexokinase, phosphofructokinase, and aldolase, in HFD rats. Our findings indicate that GA has potential as a health food ingredient to prevent diabetes mellitus. Copyright © 2016 Elsevier Inc. All rights reserved.
Wan, X P; Xie, P; Bu, Z; Zou, X T
2018-04-01
This study aimed to evaluate the hepatic glucose and lipid metabolism-related parameters of adult male and female White King pigeons (Columba livia) during incubation and chick rearing. At day 4 (I4), 10 (I10) and 17 (I17) of incubation and day 1 (R1), 7 (R7), 15 (R15) and 25 (R25) of chick rearing, livers were sampled from six pigeons for each sex. Glycogen and fat contents, activities of glycolytic enzymes (hexokinase, HK; 6-phosphofructokinase, 6-PFK), and genes expressions of key enzymes involved in glycolysis (pyruvate kinase, PK; glucokinase, GK), gluconeogenesis (phosphoenolpyruvate carboxykinase cytosolic, PCK1; fructose-1,6-bisphosphatase, FBP1; glucose-6-phosphatase, G6Pase), fatty acid synthesis (fatty acid synthase, FAS; acetyl-CoA carboxylase, ACC) and fatty acid β-oxidation (carnitine palmitoyltransferase 1, CPT1; acyl-CoA 1, ACO) were measured. In male and female pigeon livers, glycogen content and HK activity dramatically increased after I17 and after R1, respectively; expressions of FBP1 and G6Pase genes were maximized at R15; activity of 6-PFK and expressions of PK and CPT1 genes were highest at R7; fat content and expressions of FAS and ACC genes steeply increased from I10 to R1. In females, hepatic expressions of GK and PCK1 genes were greatest at R7 and I17, respectively; however, in males, both of them were maximized at R15. Hepatic expression of ACO gene was significantly enhanced at R1 compared to I17 and R7 in males, whereas it was notably up-regulated at I17 and R7 in females. Furthermore, expressions of PCK1, GK, FAS and ACC genes were in significant relation to fat content in the livers of female pigeons, while fat content in male pigeons was highly correlated with expression of PCK1, ACC, CPT1 and ACO genes. In conclusion, regulations of glucose and lipid metabolic processes were enhanced in parent pigeon livers from terminal phases of incubation to mid phase of chick rearing with sexual effects. © 2017 Blackwell Verlag GmbH.
Zuchowska, Magdalena; Jaenicke, Elmar; König, Helmut; Claus, Harald
2015-11-01
The transport of sugars across the plasma membrane is a critical step in the utilization of glucose and fructose by Saccharomyces cerevisiae during must fermentations. Variations in the molecular structure of hexose transporters and kinases may affect the ability of wine yeast strains to finish sugar fermentation, even under stressful wine conditions. In this context, we sequenced and compared genes encoding the hexose transporter Hxt3p and the kinases Hxk1p/Hxk2p of Saccharomyces strains and interspecies hybrids with different industrial usages and regional backgrounds. The Hxt3p primary structure varied in a small set of amino acids, which characterized robust yeast strains used for the production of sparkling wine or to restart stuck fermentations. In addition, interspecies hybrid strains, previously isolated at the end of spontaneous fermentations, revealed a common amino acid signature. The location and potential influence of the amino acids exchanges is discussed by means of a first modelled Hxt3p structure. In comparison, hexokinase genes were more conserved in different Saccharomyces strains and hybrids. Thus, molecular variants of the hexose carrier Hxt3p, but not of kinases, correlate with different fermentation performances of yeast. Copyright © 2015 John Wiley & Sons, Ltd.
Garfinkel, L; Cohen, D M; Soo, V W; Garfinkel, D; Kulikowski, C A
1989-01-01
We have developed a computer method based on artificial-intelligence techniques for qualitatively analysing steady-state initial-velocity enzyme kinetic data. We have applied our system to experiments on hexokinase from a variety of sources: yeast, ascites and muscle. Our system accepts qualitative stylized descriptions of experimental data, infers constraints from the observed data behaviour and then compares the experimentally inferred constraints with corresponding theoretical model-based constraints. It is desirable to have large data sets which include the results of a variety of experiments. Human intervention is needed to interpret non-kinetic information, differences in conditions, etc. Different strategies were used by the several experimenters whose data was studied to formulate mechanisms for their enzyme preparations, including different methods (product inhibitors or alternate substrates), different experimental protocols (monitoring enzyme activity differently), or different experimental conditions (temperature, pH or ionic strength). The different ordered and rapid-equilibrium mechanisms proposed by these experimenters were generally consistent with their data. On comparing the constraints derived from the several experimental data sets, they are found to be in much less disagreement than the mechanisms published, and some of the disagreement can be ascribed to different experimental conditions (especially ionic strength). PMID:2690819
Antihyperglycemic activity of Piper betle leaf on streptozotocin-induced diabetic rats.
Santhakumari, P; Prakasam, A; Pugalendi, K V
2006-01-01
Piper betle, an indigenous medicinal plant, has a folk (Siddha and Ayurvedha) reputation in the rural southern India. The present study was carried out to evaluate the effect of P. betle on glucose metabolism since it is consumed as betel-quid after meals. Plasma levels of glucose and glycosylated hemoglobin and activities of liver hexokinase and gluconeogenic enzymes such as glucose-6-phosphatase and fructose-1,6-bisphosphatase in control and streptozotocin (STZ) diabetic rats were assayed. Oral administration of leaf suspension of P. betle (75 and 150 mg/kg of body weight) for 30 days resulted in significant reduction in blood glucose (from 205.00 +/- 10.80 mg/dL to 151.30 +/- 6.53 mg/dL) and glycosylated hemoglobin and decreased activities of liver glucose-6-phosphatase and fructose-1,6-bisphosphatase, while liver hexokinase increased (P < .05), in STZ diabetic rats when compared with untreated diabetic rats. P. betle at a dose of 75 mg/kg of body weight exhibited better sugar reduction than 150 mg/kg of body weight. In addition, protection against body weight loss of diabetic animals was also observed. The effects produced by P. betle were compared with the standard drug glibenclamide. Thus, the present study clearly shows that P. betle intake influences glucose metabolism beneficially.
Kinetics of the cooperative binding of glucose to dimeric yeast hexokinase P-I.
Hoggett, J G; Kellett, G L
1995-01-01
Kinetic studies of the cooperative binding of glucose to yeast hexokinase P-I at pH 6.5 have been carried out using the fluorescence temperature-jump technique. Three relaxation effects were observed: a fast low-amplitude effect which could only be resolved at low glucose concentrations (tau 1(-1) = 500-800 s-1), an intermediate effect (tau 2) which showed a linear dependence of reciprocal relaxation time on concentration, and a slow effect (tau 3) which showed a curved dependence on glucose concentration, increasing from approximately 28 s-1 at low concentrations to 250 s-1 at high levels. The findings are interpreted in terms of the concerted Monod-Wyman-Changeux mechanism, the two faster relaxations being assigned to binding to the R and T states, and the slow relaxation to isomerization between the states. Quantitative fitting of the kinetic data to the mechanism has been carried out using independent estimates of the equilibrium parameters of the model; these have been derived from equilibrium dialysis data and by determining the enhancement of the intrinsic ATPase activity of the enzyme by the non-phosphorylatable sugar lyxose, which switches the conformation of the enzyme to the active R state. Images Figure 1 PMID:7832753
Effect of HK2, PKM2 and LDHA on Cetuximab efficacy in metastatic colorectal cancer.
Wang, Haohua; Peng, Roujun; Chen, Xiuxing; Jia, Rui; Huang, Chunyue; Huang, Yuanyuan; Xia, Liangping; Guo, Guifang
2018-04-01
Although hexokinase (HK) 2, pyruvate kinase muscle (PKM) isozyme 2 and lactate dehydrogenase (LDH) A predict the efficacy of medicines in various solid tumors, their ability to predict the efficacy of cetuximab in metastatic colorectal cancer (mCRC) remains unclear. mCRC patients with pathological specimens who received cetuximab and chemotherapy from 2005 to 2015 in the present institution were enrolled. Immunohistochemistry was used to detect HK2, PKM2 and LDHA expression. SPSS20 was used for statistical analysis. A total of 68 patients were included; 33 received cetuximab plus chemotherapy as first-line therapy, and the rest, as second- or later-line therapy. HK2 expression levels were increased in cancer compared with normal tissue (75.4% vs. 40%; P<0.001), however PKM2 (P=0.243) and LDHA (P=0.067) expression levels were not. For progression-free survival (PFS) with first-line cetuximab plus chemotherapy, patients with high HK2 expression exhibited longer PFS compared with those with low HK2 expression (23.9 months vs. 6.9 months; P=0.021). However, this positive association was absent in 35 cases administered first-line chemotherapy alone (13.4 months vs. 13.5 months; P=0.539). LDHA expression was associated with the PFS of patients receiving first-line chemotherapy (18.3 and 10.1 months for high and low expression, respectively; P=0.005), whereas this association was absent in cetuximab plus chemotherapy cases (19.9 months vs. 12 months; P=0.522). Furthermore, high LDHA expression correlated with high overall response rate (ORR) (72.2% vs. 15.4%, P=0.006) for chemotherapy, however not disease control rate (DCR) (P=0.074). Neither DCR nor ORR were associated with HK2 expression. PKM2 expression did not affect PFS, DCR or ORR. LDHA expression (P=0.005), pathological differentiation (P=0.019) and synchronous/metachronous metastasis (P=0.014) were independent predictive factors of PFS for all first-line patients, and tumor differentiation (P=0.002) was associated with overall survival (OS) in multivariate analysis. HK2, PKM2 and LDHA did not impact OS. It was concluded that HK2 expression was increased in colorectal cancer tissue and may predict cetuximab efficacy and LDHA for chemotherapy treatment of mCRC.
NASA Astrophysics Data System (ADS)
Wang, Qian; Vaupel, Peter; Ziegler, Sibylle I.; Shi, Kuangyu
2015-03-01
Molecular imaging using PET or hyperpolarized MRI can characterize tumor phenotypes by assessing the related metabolism of certain substrates. However, the interpretation of the substrate turnover in terms of a pathophysiological understanding is not straightforward and only semiquantitative. The metabolism of imaging probes is influenced by a number of factors, such as the microvascular structure or the expression of key enzymes. This study aims to use computational simulation to investigate the relationship between the metabolism behind molecular imaging and the underlying tumor phenotype. The study focused on the pathways of glucose metabolism and lactate oxidation in order to establish the quantitative relationship between the expression of several transporters (GLUT, MCT1 and MCT4), expression of the enzyme hexokinase (HK), microvasculature and the metabolism of glucose or lactate and the extracellular pH distribution. A computational model for a 2D tumor tissue phantom was constructed and the spatio-temporal evolution of related species (e.g. oxygen, glucose, lactate, protons, bicarbonate ions) was estimated by solving reaction-diffusion equations. The proposed model was tested by the verification of the simulation results using in vivo and in vitro literature data. The influences of different expression levels of GLUT, MCT1, MCT4, HK and microvessel distribution on substrate concentrations were analyzed. The major results are consistent with experimental data (e.g. GLUT is more influential to glycolytic flux than HK; extracellular pH is not correlated with MCT expressions) and provide theoretical interpretation of the co-influence of multiple factors of the tumor microenvironment. This computational simulation may assist the generation of hypotheses to bridge the discrepancy between tumor metabolism and the functions of transporters and enzymes. It has the potential to accelerate the development of multi-modal imaging strategies for assessment of tumor phenotypes.
Role of PTEN in the Tumor Microenvironment
2008-06-01
van Diest PJ. (2008). Hexokinase III, cyclin A and galectin - 3 are overexpressed in malignant follicular thyroid nodules. Clin Endocrinol (Oxf) 2...Annual 3 . DATES COVERED (From - To) 15 May 2007 – 14 May 2008 4. TITLE AND SUBTITLE Role of PTEN in the Tumor Microenvironment 5a. CONTRACT NUMBER...1998) that impacts several signaling pathways, including phosphoinositide 3 -kinase (PI3K), and Ras-MAPK-Erk1/2 signaling pathways. Pten inactivation
1997-04-18
DNA polymerase Alcohol dehydrogenase Hexokinase Glucose-6- phosphatase Arginase Pyruvate kinase (also requires Mg2•) Urease Nitrate...cyclohexane. The layers are separated by centrifugation (5 min at 1000 x g), the top organic layer is removed and dried with anhydrous sodium sulfate...An aliquot of the dried organic layer is transferred to a clean tube and evaporated under a gentle stream of nitrogen at room temperature
Involvement of COX-2 in nickel elution from a wire implanted subcutaneously in mice.
Sato, Taiki; Kishimoto, Yu; Asakawa, Sanki; Mizuno, Natsumi; Hiratsuka, Masahiro; Hirasawa, Noriyasu
2016-07-01
Many types of medical alloys include nickel (Ni), and the elution of Ni ions from these materials causes toxicities and inflammation. We have previously reported that inflammation enhances Ni elution, although the molecular mechanisms underlying this effect remain unclear. In this study, we investigated how inflammatory responses enhanced Ni elution in a wire-implantation mouse model. Subcutaneous implantation of Ni wire induced the expression of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) mRNA in the surrounding tissues. Immunostaining analysis showed that cells expressing COX-2 were mainly fibroblast-like cells 8h after implantation of a Ni wire, but were mainly infiltrated leukocytes at 24h. NiCl2 induced the expression of COX-2 mRNA in primary fibroblasts, neutrophils, RAW 264 cells, and THP-1 cells, indicating that Ni ions can induce COX-2 expression in various types of cells. The elution of Ni ions from the implanted Ni wire at 8h was reduced by dexamethasone (Dex), indomethacin (Ind), or celecoxib (Cel) treatment. Ni wire implantation induced an increase in mRNA levels for anaerobic glycolytic pathway components glucose transporter 1 (GLUT1), hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), and monocarboxylate transporter 4 (MCT4); the expression of these genes was also inhibited by Dex, Ind, and Cel. In primary fibroblasts, the expression of these mRNAs and the production of lactate were induced by NiCl2 and further potentiated by PGE2. Furthermore, Ni wire-induced infiltration of inflammatory leukocytes was significantly reduced by Dex, Ind, or Cel. Depletion of neutrophils with a specific antibody caused reduction of both leukocyte infiltration and Ni elution. These results indicate that Ni ions eluted from wire induced COX-2 expression, which further promoted elution of Ni ions by increasing lactate production and leukocyte infiltration. Since COX inhibitors and Dex reduced the elution of Ni ions, these drugs may be useful for prevention of metal-related inflammation and allergy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Brix, Britta; Mesters, Jeroen R; Pellerin, Luc; Jöhren, Olaf
2012-07-11
Astrocytes exhibit a prominent glycolytic activity, but whether such a metabolic profile is influenced by intercellular communication is unknown. Treatment of primary cultures of mouse cortical astrocytes with the nitric oxide (NO) donor DetaNONOate induced a time-dependent enhancement in the expression of genes encoding various glycolytic enzymes as well as transporters for glucose and lactate. Such an effect was shown to be dependent on the hypoxia-inducible factor HIF-1α, which is stabilized and translocated to the nucleus to exert its transcriptional regulation. NO action was dependent on both the PI3K/Akt/mTOR and MEK signaling pathways and required the activation of COX, but was independent of the soluble guanylate cyclase pathway. Furthermore, as a consequence of NO treatment, an enhanced lactate production and release by astrocytes was evidenced, which was prevented by downregulating HIF-1α. Several brain cell types represent possible sources of NO. It was found that endothelial cells, which express the endothelial NO synthase (eNOS) isoform, constitutively produced the largest amount of NO in culture. When astrocytes were cocultured with primary cultures of brain vascular endothelial cells, stabilization of HIF-1α and an enhancement in glucose transporter-1, hexokinase-2, and monocarboxylate transporter-4 expression as well as increased lactate production was found in astrocytes. This effect was inhibited by the NOS inhibitor l-NAME and was not seen when astrocytes were cocultured with primary cultures of cortical neurons. Our findings suggest that endothelial cell-derived NO participates to the maintenance of a high glycolytic activity in astrocytes mediated by astrocytic HIF-1α activation.
In ovo feeding of L-arginine alters energy metabolism in post-hatch broilers.
Yu, L L; Gao, T; Zhao, M M; Lv, P A; Zhang, L; Li, J L; Jiang, Y; Gao, F; Zhou, G H
2018-01-01
This study aimed to investigate the effects of in ovo feeding (IOF) of L-arginine (Arg) on energy metabolism in post-hatch broilers. A total of 720 eggs was randomly assigned to 3 treatments: 1) non-injected control group, 2) 0.75% NaCl diluent-injected control group, and 3) 1.0% Arg solution-injected group. At 17.5 d of incubation, 0.6 mL of each solution was injected into the amniotic fluid of each egg of injected groups. After hatching, 80 male chicks were randomly assigned to each treatment group with 8 replicates per group. The results showed that IOF of Arg increased glycogen and glucose concentrations in the liver and pectoral muscle of broilers at hatch (P < 0.05). The plasma glucose and insulin levels were higher in the Arg group than in the non-injected and diluent-injected control groups (P < 0.05). Meanwhile, IOF of Arg enhanced the hepatic glucose-6-phosphatase (G6P) activity at hatch (P < 0.05). There was no difference in hexokinase (HK) or phosphofructokinase (PFK) enzyme activities in the pectoral muscle in all groups. Further, IOF of Arg increased the phosphoenolpyruvate carboxykinase (PEPCK) and fructose-1,6-bisphosphatase (FBP) mRNA expressions at hatch (P < 0.05). In addition, broilers in the Arg group had a higher mRNA expression of glycogen synthase and a lower expression of glycogen phosphorylase in the liver and pectoral muscles than in the non-injected controls at hatch (P < 0.05). In conclusion, IOF of Arg solution enhanced liver and pectoral muscle energy reserves at hatch, which might be considered as an effective strategy for regulating early energy metabolism in broilers. © 2017 Poultry Science Association Inc.
N-acetylglucosamine, the building block of chitin, inhibits growth of Neurospora crassa.
Gaderer, Romana; Seidl-Seiboth, Verena; de Vries, Ronald P; Seiboth, Bernhard; Kappel, Lisa
2017-10-01
N-acetylglucosamine (GlcNAc) is the monomer of the polysaccharide chitin, an essential structural component of the fungal cell wall and the arthropod exoskeleton. We recently showed that the genes encoding the enzymes for GlcNAc catabolism are clustered in several ascomycetes. In the present study we tested these fungi for growth on GlcNAc and chitin. All fungi, containing the GlcNAc gene cluster, could grow on GlcNAc with the exception of four independent Neurospora crassa wild-type isolates, which were however able to grow on chitin. GlcNAc even inhibited their growth in the presence of other carbon sources. Genes involved in GlcNAc catabolism were strongly upregulated in the presence of GlcNAc, but during growth on chitin their expression was not increased. Deletion of hxk-3 (encoding the first catabolic enzyme, GlcNAc-hexokinase) and ngt-1 (encoding the GlcNAc transporter) improved growth of N. crassa on GlcNAc in the presence of glycerol. A crucial step in GlcNAc catabolism is enzymatic conversion from glucosamine-6-phosphate to fructose-6-phosphate, catalyzed by the glucosamine-6-phosphate deaminase, DAM-1. To assess, if DAM-1 is compromised in N. crassa, the orthologue from Trichoderma reesei, Trdam1, was expressed in N. crassa. Trdam1 expression partially alleviated the negative effects of GlcNAc in the presence of a second carbon source, but did not fully restore growth on GlcNAc. Our results indicate that the GlcNAc-catabolism pathway is bypassed during growth of N. crassa on chitin by use of an alternative pathway, emphasizing the different strategies that have evolved in the fungal kingdom for chitin utilization. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Verification of protein sparing by feeding carbohydrate to common carp Cyprinus carpio
NASA Astrophysics Data System (ADS)
Cheng, Zhenyan; Li, Jinghui; Zhang, Baolong; Fang, Zhenzhen; Sun, Jinhui; Bai, Dongqing; Sun, Jinsheng; Qiao, Xiuting
2017-03-01
A 9-week feeding trial in floating freshwater cages (1.0 m×1.0 m×2.0 m) was conducted to study the effects of different dietary levels of protein and starch on growth, body composition, and gene expression of enzymes in common carp, Cyprinus carpio (mean body weight, 36.12±1.18 g) to evaluate the protein-sparing effect of dietary carbohydrate. Four diets were formulated with corn starch as the carbohydrate source to obtain corn starch levels of 6.5%, 13%, 19.5%, or 26% and protein levels of 30.5%, 28.2%, 26.4%, and 24.2%. The results showed no differences in growth performance of fish fed the diets with different protein and corn starch levels, but body composition and glucose metabolic enzyme activity of carp were significantly affected by the different diets ( P< 0.05). Weight gain, specific growth rate, and the feed conversion ratio were not different in fish fed the different dietary treatments. Protein efficiency ratio increased significantly as corn starch level increased ( P< 0.05). Whole-body crude lipid composition increased with increasing dietary corn starch level ( P< 0.05). Glucokinase (GK), hexokinase, and pyruvate kinase (PK) activities increased significantly with increasing dietary corn starch level ( P< 0.05), whereas glucose-6-phosphate (G6Pase) activity decreased with increasing dietary corn starch level ( P< 0.05). GK gene expression was significantly higher in fish fed the high-corn starch diet than those fed the low-corn starch diet ( P< 0.05). G6pase gene expression tended to decrease with increasing starch level ( P> 0.05). In summary, the results indicate a protein-sparing effect by substituting carbohydrate in the diet of common carp.
Cheng, Lailiang
2012-01-01
Both sorbitol and sucrose are imported into apple fruit from leaves. The metabolism of sorbitol and sucrose fuels fruit growth and development, and accumulation of sugars in fruit is central to the edible quality of apple. However, our understanding of the mechanisms controlling sugar metabolism and accumulation in apple remains quite limited. We identified members of various gene families encoding key enzymes or transporters involved in sugar metabolism and accumulation in apple fruit using homology searches and comparison of their expression patterns in different tissues, and analyzed the relationship of their transcripts with enzyme activities and sugar accumulation during fruit development. At the early stage of fruit development, the transcript levels of sorbitol dehydrogenase, cell wall invertase, neutral invertase, sucrose synthase, fructokinase and hexokinase are high, and the resulting high enzyme activities are responsible for the rapid utilization of the imported sorbitol and sucrose for fruit growth, with low levels of sugar accumulation. As the fruit continues to grow due to cell expansion, the transcript levels and activities of these enzymes are down-regulated, with concomitant accumulation of fructose and elevated transcript levels of tonoplast monosaccharide transporters (TMTs), MdTMT1 and MdTMT2; the excess carbon is converted into starch. At the late stage of fruit development, sucrose accumulation is enhanced, consistent with the elevated expression of sucrose-phosphate synthase (SPS), MdSPS5 and MdSPS6, and an increase in its total activity. Our data indicate that sugar metabolism and accumulation in apple fruit is developmentally regulated. This represents a comprehensive analysis of the genes involved in sugar metabolism and accumulation in apple, which will serve as a platform for further studies on the functions of these genes and subsequent manipulation of sugar metabolism and fruit quality traits related to carbohydrates. PMID:22412983
Mechanisms of aldehyde-induced adenosinetriphosphatase activities of kinases.
Rendina, A R; Cleland, W W
1984-10-23
Aldehyde analogues of the normal alcohol substrates induce ATPase activities by glycerokinase (D-glyceraldehyde), fructose-6-phosphate kinase (2,5-anhydromannose 6-phosphate), fructokinase (2,5-anhydromannose or 2,5-anhydrotalose), hexokinase (D-gluco-hexodialdose), choline kinase (betaine aldehyde), and pyruvate kinase (glyoxylate). Since purified deuterated aldehydes give V and V/K isotope effects near 1.0 for glycerokinase, fructokinase with 2,5-anhydro[1-2H]talose, hexokinase, choline kinase, and pyruvate kinase, the hydrates of these almost fully hydrated aldehydes are the activators of the ATPase reactions. Fructose-6-phosphate kinase and fructokinase with 2,5-anhydro[1-2H]mannose show V/K deuterium isotope effects of 1.10 and 1.22, respectively, suggesting either that both hydrate and free aldehyde may be activators (predicted values are 1.37 if only the free aldehyde activates the ATPase) or, more likely, that the phosphorylated hydrate breaks down in a rate-limiting step on the enzyme while MgADP is still present and the back-reaction to yield free hydrate in solution is still possible. 18O was transferred from the aldehyde hydrate to phosphate during the ATPase reactions of glycerokinase, fructose-6-phosphate kinase, fructokinase, and hexokinase but not with choline kinase or pyruvate kinase. Thus, direct phosphorylation of the hydrates by the first four enzymes gives the phosphate adduct of the aldehyde, which decomposes nonenzymatically, while with choline kinase and pyruvate kinase the hydrates induce transfer to water (metal-bound hydroxide or water with pyruvate kinase on the basis of pH profiles). Observation of a lag in the release of phosphate from the glycerokinase ATPase reaction at 15 degrees C supports the existence of a phosphorylated hydrate intermediate with a rate constant for breakdown of 0.035-0.043 s-1 at this temperature. Kinases that phosphorylate creatine, 3-phosphoglycerate, and acetate did not exhibit ATPase activities in the presence of keto or aldehyde analogues (N-methylhydantoic acid, D-glyceraldehyde 3-phosphate, and acetaldehyde, respectively), possibly because of the absence of an acid-base catalytic group in the latter two cases. These analogues were competitive inhibitors vs. the normal substrates, and in the latter case, the hydrate of acetaldehyde was shown to be the inhibitory species on the basis of the deuterium isotope effect on the inhibition constant.
Myostatin induces mitochondrial metabolic alteration and typical apoptosis in cancer cells
Liu, Y; Cheng, H; Zhou, Y; Zhu, Y; Bian, R; Chen, Y; Li, C; Ma, Q; Zheng, Q; Zhang, Y; Jin, H; Wang, X; Chen, Q; Zhu, D
2013-01-01
Myostatin, a member of the transforming growth factor-β superfamily, regulates the glucose metabolism of muscle cells, while dysregulated myostatin activity is associated with a number of metabolic disorders, including muscle cachexia, obesity and type II diabetes. We observed that myostatin induced significant mitochondrial metabolic alterations and prolonged exposure of myostatin induced mitochondria-dependent apoptosis in cancer cells addicted to glycolysis. To address the underlying mechanism, we found that the protein levels of Hexokinase II (HKII) and voltage-dependent anion channel 1 (VDAC1), two key regulators of glucose metabolisms as well as metabolic stress-induced apoptosis, were negatively correlated. In particular, VDAC1 was dramatically upregulated in cells that are sensitive to myostatin treatment whereas HKII was downregulated and dissociated from mitochondria. Myostatin promoted the translocation of Bax from cytosol to mitochondria, and knockdown of VDAC1 inhibited myostatin-induced Bax translocation and apoptosis. These apoptotic changes can be partially rescued by repletion of ATP, or by ectopic expression of HKII, suggesting that perturbation of mitochondrial metabolism is causally linked with subsequent apoptosis. Our findings reveal novel function of myostatin in regulating mitochondrial metabolism and apoptosis in cancer cells. PMID:23412387
Saccharomyces cerevisiae KNU5377 stress response during high-temperature ethanol fermentation.
Kim, Il-Sup; Kim, Young-Saeng; Kim, Hyun; Jin, Ingnyol; Yoon, Ho-Sung
2013-03-01
Fuel ethanol production is far more costly to produce than fossil fuels. There are a number of approaches to cost-effective fuel ethanol production from biomass. We characterized stress response of thermotolerant Saccharomyces cerevisiae KNU5377 during glucose-based batch fermentation at high temperature (40°C). S. cerevisiae KNU5377 (KNU5377) transcription factors (Hsf1, Msn2/4, and Yap1), metabolic enzymes (hexokinase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, and alcohol dehydrogenase), antioxidant enzymes (thioredoxin 3, thioredoxin reductase, and porin), and molecular chaperones and its cofactors (Hsp104, Hsp82, Hsp60, Hsp42, Hsp30, Hsp26, Cpr1, Sti1, and Zpr1) are upregulated during fermentation, in comparison to S. cerevisiae S288C (S288C). Expression of glyceraldehyde-3-phosphate dehydrogenase increased significantly in KNU5377 cells. In addition, cellular hydroperoxide and protein oxidation, particularly lipid peroxidation of triosephosphate isomerase, was lower in KNU5377 than in S288C. Thus, KNU5377 activates various cell rescue proteins through transcription activators, improving tolerance and increasing alcohol yield by rapidly responding to fermentation stress through redox homeostasis and proteostasis.
Schriner, Samuel E; Coskun, Volkan; Hogan, Sean P; Nguyen, Cindy T; Lopez, Terry E; Jafari, Mahtab
2016-03-01
The root and rhizome extract of Rhodiola rosea has been extensively used in traditional medicine to improve physical and mental performance and to protect against stress. We, and others, have reported that R. rosea can extend lifespan in flies, worms, and yeast. We also previously found that the extract can act independently of dietary restriction (DR), a treatment that can extend lifespan in a range of model organisms. In flies, DR is implemented through a reduction in dietary yeast content. Here, we report that the ability of R. rosea extract to extend lifespan in flies is dependent on the carbohydrate and caloric content when supplemented with a simplified diet composed of yeast and sucrose. R. rosea extract elevated the sugar content in flies and down-regulated hexokinase expression, suggesting that it perturbs carbohydrate metabolism in flies. In our previous studies, bananas, barley malt, and corn syrup provided dietary carbohydrates, and R. rosea extract could extend lifespan with a range of caloric levels. We conclude that the lifespan-extending effect of R. rosea extract in flies is dependent on dietary carbohydrate and caloric contents coupled with an interaction with complex dietary components present in bananas, barley, or corn.
NASA Astrophysics Data System (ADS)
Guo, Biao; Wang, Fang; Dong, Shuanglin; Hou, Chunqiang
2010-09-01
Activities of hexokinase (HK), pyruvate kinase (PK) and levels of HSP70 were measured to evaluate the response of Litopenaeus vannamei to rapid temperature changes under controlled laboratory conditions. Shrimps were subjected to a quick temperature change from 27°C to 17°C for the summer case (Cold temperature treatment), or from 17°C to 27°C for the winter case (Warm temperature treatment). After 0.5, 1, 3, 6, 12, 24, 48, and 72 h of exposure time, shrimps were sampled and prepared for further analysis. The results showed that the effect of acute temperature changes on activities of HK was significant. Patterns of variations of the two glycolytic enzymes suggested that enzymes in the glycolysis cycle could adjust their activities to meet the acute temperature change. The HSP70 level increased in both cold and warm temperature treatments, suggesting that the rapid temperature changes activated the process of body’s self-protection. But the difference in expression peak of HSP70 might be related to the different body size and the higher thermal sensitivity to temperature increase than to temperature decrease of L. vannamei.
2013-11-01
overexpression of glucose transporters ( Gluts ) and the increased activity of mitochondria- bound hexokinases in tumors (5, 6). Since 1976, 2-(fluorine-18...glucose transport through the cell membrane via Gluts has been reported as an important factor in the increase of FDG uptake in malignant tumors (5). In...capabilities of bronchoscopy without substantially increasing cost. Although there has been no work evaluating the use of 2-NBDG for lung cancer
Mailloux, Ryan J; Dumouchel, Tyler; Aguer, Céline; deKemp, Rob; Beanlands, Rob; Harper, Mary-Ellen
2011-07-15
UCP3 (uncoupling protein-3) mitigates mitochondrial ROS (reactive oxygen species) production, but the mechanisms are poorly understood. Previous studies have also examined UCP3 effects, including decreased ROS production, during metabolic states when fatty acid oxidation is high (e.g. a fasting state). However, the role of UCP3 when carbohydrate oxidation is high (e.g. fed state) has remained largely unexplored. In the present study, we show that mitochondrial-bound HK (hexokinase) II curtails oxidative stress and enhances aerobic metabolism of glucose in the fed state in a UCP3-dependent manner. Genetic knockout or inhibition of UCP3 significantly decreased mitochondrial-bound HKII. Furthermore, UCP3 was required for the HKII-mediated decrease in mitochondrial ROS emission. Intriguingly, the UCP3-mediated modulation of mitochondria-associated HKII was only observed in cells cultured under high-glucose conditions. UCP3 was required to maintain high rates of aerobic metabolism in high-glucose-treated cells and in muscle of fed mice. Deficiency in UCP3 resulted in a metabolic shift that favoured anaerobic glycolytic metabolism, increased glucose uptake and increased sensitivity to oxidative challenge. PET (positron emission tomography) of [18F]fluoro-deoxyglucose uptake confirmed these findings in UCP3-knockout and wild-type mice. Collectively, our findings link the anti-oxidative and metabolic functions of UCP3 through a surprising molecular connection with mitochondrial-bound HKII.
Physiologic and Metabolic Benefits of Formulated Diets and Mangifera indica in Fluoride Toxicity.
Karn, Sanjay S; Narasimhacharya, A V R L
2015-06-01
Fluorosis is a major health problem affecting normal physiological and metabolic functions in people living in endemic fluoride areas. The present work was aimed at investigating the role of basal, high carbohydrate low protein (HCLP) and high protein low carbohydrate (HPLC) diets and Mangifera indica fruit powder as a food supplement in fluoride-induced metabolic toxicity. Exposure to fluoride resulted in elevation of plasma glucose levels, ACP, ALP, SGPT, SGOT, and hepatic G-6-Pase activities, plasma and hepatic lipid profiles with decreased plasma protein, HDL-C, hepatic glycogen content and hexokinase activity in basal, HCLP and HPLC diet fed albino rats. However among the three diets tested, HPLC diet was found to be relatively, a better metabolic regulator. All the three formulated diets (basal, HCLP and HPLC) supplemented with mango fruit powder (5 and 10 g), decreased plasma glucose content, ACP, ALP, SGPT, SGOT and hepatic G-6-Pase activities and plasma as well as hepatic lipid profiles. These diets also elevated the hepatic glycogen content and hexokinase activities. These effects however, were prominent with the HPLC diet supplemented with mango fruit powder and, among the two doses of mango fruit powder, the higher dose (10 g) yielded more promising results. It is surmised that the micronutrients and phytochemicals present in the diets and the mango fruit could be responsible for attenuation of fluoride-induced metabolic toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohio, Hinissan P.; Adamson, Amy L., E-mail: aladamso@uncg.edu
As new influenza virus strains emerge, finding new mechanisms to control infection is imperative. In this study, we found that we could control influenza infection of mammalian cells by altering the level of glucose given to cells. Higher glucose concentrations induced a dose-specific increase in influenza infection. Linking influenza virus infection with glycolysis, we found that viral replication was significantly reduced after cells were treated with glycolytic inhibitors. Addition of extracellular ATP after glycolytic inhibition restored influenza infection. We also determined that higher levels of glucose promoted the assembly of the vacuolar-type ATPase within cells, and increased vacuolar-type ATPase proton-transportmore » activity. The increase of viral infection via high glucose levels could be reversed by inhibition of the proton pump, linking glucose metabolism, vacuolar-type ATPase activity, and influenza viral infection. Taken together, we propose that altering glucose metabolism may be a potential new approach to inhibit influenza viral infection. - Highlights: • Increased glucose levels increase Influenza A viral infection of MDCK cells. • Inhibition of the glycolytic enzyme hexokinase inhibited Influenza A viral infection. • Inhibition of hexokinase induced disassembly the V-ATPase. • Disassembly of the V-ATPase and Influenza A infection was bypassed with ATP. • The state of V-ATPase assembly correlated with Influenza A infection of cells.« less
Shen, Szu-Chuan; Cheng, Fang-Chi; Wu, Ning-Jung
2008-11-01
This study investigated the effect of aqueous and ethanol soluble solid extracts of guava (Psidium guajava Linn.) leaves on hypoglycemia and glucose metabolism in type 2 diabetic rats. Low-dose streptozotocin (STZ) and nicotinamide were injected into Sprague-Dawley (SD) rats to induce type 2 diabetes. Acute and long-term feeding tests were carried out, and an oral glucose tolerance test (OGTT) to follow the changes in plasma glucose and insulin levels was performed to evaluate the antihyperglycemic effect of guava leaf extracts in diabetic rats.The results of acute and long-term feeding tests showed a significant reduction in the blood sugar level in diabetic rats fed with either the aqueous or ethanol extract of guava leaves (p < 0.05). Long-term administration of guava leaf extracts increased the plasma insulin level and glucose utilization in diabetic rats. The results also indicated that the activities of hepatic hexokinase, phosphofructokinase and glucose-6-phosphate dehydrogenase in diabetic rats fed with aqueous extracts were higher than in the normal diabetic group (p < 0.05). On the other hand, diabetic rats treated with the ethanol extract raised the activities of hepatic hexokinase and glucose-6-phosphate dehydrogenase (p < 0.05) only. The experiments provided evidence to support the antihyperglycemic effect of guava leaf extract and the health function of guava leaves against type 2 diabetes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Shin Yee; Hagen, Thilo, E-mail: bchth@nus.edu.sg
2015-10-02
The high proliferation rate of cancer cells and the microenvironment in the tumor tissue require the reprogramming of tumor cell metabolism. The major mechanism of metabolic reprogramming in cancer cells is the Warburg effect, defined as the preferential utilization of glucose via glycolysis even in the presence of oxygen. Targeting the Warburg effect is considered as a promising therapeutic strategy in cancer therapy. In this regard, the glycolytic inhibitor 2-deoxyglucose (2DG) has been evaluated clinically. 2DG exerts its effect by directly inhibiting glycolysis at the level of hexokinase and phosphoglucoisomerase. In addition, 2DG is also known to induce the expressionmore » of thioredoxin interacting protein (TXNIP), a tumor suppressor protein and an important negative regulator of cellular glucose uptake. Hence, characterization of the mechanism through which 2DG regulates TXNIP expression may reveal novel approaches to target the Warburg effect in cancer cells. Therefore, in this study we sought to test various hypotheses for the mechanistic basis of the 2DG dependent TXNIP regulation. We have shown that 2DG induced TXNIP expression is independent of carbohydrate response element mediated transcription. Furthermore, the induction of TXNIP is neither dependent on the ability of 2DG to deplete cellular ATP nor to cause endoplasmic reticulum stress. We found that the 2DG induced TXNIP expression is at least in part dependent on the inhibition of the O-GlcNAcase enzyme and the accumulation of O-GlcNAc modified proteins. These results have implications for the identification of therapeutic targets to increase TXNIP expression in cancer. - Highlights: • 2DG increases TXNIP expression at the mRNA and protein level. • The effect of 2DG on TXNIP is independent of ChoRE mediated transcription. • 2DG induces TXNIP independent of ER stress induction and ATP depletion. • 2DG inhibits OGA and leads to accumulation of O-GlcNAcylated proteins. • The upregulation of TXNIP by 2DG is partially due to an increase in O-GlcNAcylation.« less
Ding, Fan; Yao, Jia; Zhao, Liqin; Mao, Zisu; Chen, Shuhua; Brinton, Roberta Diaz
2013-01-01
Previously, we demonstrated that reproductive senescence in female triple transgenic Alzheimer's (3×TgAD) mice was paralleled by a shift towards a ketogenic profile with a concomitant decline in mitochondrial activity in brain, suggesting a potential association between ovarian hormone loss and alteration in the bioenergetic profile of the brain. In the present study, we investigated the impact of ovariectomy and 17β-estradiol replacement on brain energy substrate availability and metabolism in a mouse model of familial Alzheimer's (3×TgAD). Results of these analyses indicated that ovarian hormones deprivation by ovariectomy (OVX) induced a significant decrease in brain glucose uptake indicated by decline in 2-[(18)F]fluoro-2-deoxy-D-glucose uptake measured by microPET-imaging. Mechanistically, OVX induced a significant decline in blood-brain-barrier specific glucose transporter expression, hexokinase expression and activity. The decline in glucose availability was accompanied by a significant rise in glial LDH5 expression and LDH5/LDH1 ratio indicative of lactate generation and utilization. In parallel, a significant rise in ketone body concentration in serum occurred which was coupled to an increase in neuronal MCT2 expression and 3-oxoacid-CoA transferase (SCOT) required for conversion of ketone bodies to acetyl-CoA. In addition, OVX-induced decline in glucose metabolism was paralleled by a significant increase in Aβ oligomer levels. 17β-estradiol preserved brain glucose-driven metabolic capacity and partially prevented the OVX-induced shift in bioenergetic substrate as evidenced by glucose uptake, glucose transporter expression and gene expression associated with aerobic glycolysis. 17β-estradiol also partially prevented the OVX-induced increase in Aβ oligomer levels. Collectively, these data indicate that ovarian hormone loss in a preclinical model of Alzheimer's was paralleled by a shift towards the metabolic pathway required for metabolism of alternative fuels in brain with a concomitant decline in brain glucose transport and metabolism. These findings also indicate that estrogen plays a critical role in sustaining brain bioenergetic capacity through preservation of glucose metabolism.
The mitochondrial voltage-dependent anion channel 1 in tumor cells.
Shoshan-Barmatz, Varda; Ben-Hail, Danya; Admoni, Lee; Krelin, Yakov; Tripathi, Shambhoo Sharan
2015-10-01
VDAC1 is found at the crossroads of metabolic and survival pathways. VDAC1 controls metabolic cross-talk between mitochondria and the rest of the cell by allowing the influx and efflux of metabolites, ions, nucleotides, Ca2+ and more. The location of VDAC1 at the outer mitochondrial membrane also enables its interaction with proteins that mediate and regulate the integration of mitochondrial functions with cellular activities. As a transporter of metabolites, VDAC1 contributes to the metabolic phenotype of cancer cells. Indeed, this protein is over-expressed in many cancer types, and silencing of VDAC1 expression induces an inhibition of tumor development. At the same time, along with regulating cellular energy production and metabolism, VDAC1 is involved in the process of mitochondria-mediated apoptosis by mediating the release of apoptotic proteins and interacting with anti-apoptotic proteins. The engagement of VDAC1 in the release of apoptotic proteins located in the inter-membranal space involves VDAC1 oligomerization that mediates the release of cytochrome c and AIF to the cytosol, subsequently leading to apoptotic cell death. Apoptosis can also be regulated by VDAC1, serving as an anchor point for mitochondria-interacting proteins, such as hexokinase (HK), Bcl2 and Bcl-xL, some of which are also highly expressed in many cancers. By binding to VDAC1, HK provides both a metabolic benefit and apoptosis-suppressive capacity that offer the cell a proliferative advantage and increase its resistance to chemotherapy. Thus, these and other functions point to VDAC1 as an excellent target for impairing the re-programed metabolism of cancer cells and their ability to evade apoptosis. Here, we review current evidence pointing to the function of VDAC1 in cell life and death, and highlight these functions in relation to both cancer development and therapy. In addressing the recently solved 3D structures of VDAC1, this review will point to structure-function relationships of VDAC as critical for deciphering how this channel can perform such a variety of roles, all of which are important for cell life and death. Finally, this review will also provide insight into VDAC function in Ca2+ homeostasis, protection against oxidative stress, regulation of apoptosis and involvement in several diseases, as well as its role in the action of different drugs. We will discuss the use of VDAC1-based strategies to attack the altered metabolism and apoptosis of cancer cells. These strategies include specific siRNA able to impair energy and metabolic homeostasis, leading to arrested cancer cell growth and tumor development, as well VDAC1-based peptides that interact with anti-apoptotic proteins to induce apoptosis, thereby overcoming the resistance of cancer cell to chemotherapy. Finally, small molecules targeting VDAC1 can induce apoptosis. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. Copyright © 2014 Elsevier B.V. All rights reserved.
McNamara, P J; Sharief, N
2001-09-01
Near-patient blood glucose monitoring is an essential component of neonatal intensive care but the analysers currently used are unreliable and inaccurate. The aim of this study was to compare a new glucose electrode-based analyser (EML 105) and a non-wipe reflectance photometry method (Advantage) as opposed to a recognized laboratory reference method (Hexokinase). We also investigated the effect of sample route and haematocrit on the accuracy of the glucose readings obtained by each method of analysis. Whole blood glucose concentrations ranging from 0 to 3.5 mmol/l were carefully prepared in a laboratory setting and blood samples from each respective solution were then measured by EML 105 and Advantage analysers. The results obtained were then compared with the corresponding plasma glucose reading obtained by the Hexokinase method, using linear regression analysis. An in vivo study was subsequently performed on 103 neonates, over a 1-y period, using capillary and venous whole blood samples. Whole blood glucose concentration was estimated from each sample using both analysers and compared with the corresponding plasma glucose concentration estimated by the Hexokinase method. Venous blood was centrifuged and haematocrit was estimated using standardized curves. The effect of haematocrit on the agreement between whole blood and plasma glucose was investigated, estimating the degree of correlation on a scatterplot of the results and linear regression analysis. Both the EML 105 and Hexokinase methods were highly accurate, in vitro, with small proportional biases of 2% and 5%, respectively. However, in vivo, both study analysers overestimated neonatal plasma glucose, ranging from at best 0.45 mmol/l (EML 105 venous) to 0.69 mmol/l (EML capillary). There was no significant difference in the agreement of capillary (GD = 0.12, 95% CI, [-0.32,0.08], p = 0.2) or venous samples (GD = 0.05, 95% CI. [0.09, 0.19], p = 0.49) with plasma glucose when analysed by either study method (GD = glucose difference between study analyser and reference method) However, the venous samples analysed by EML 105 estimated plasma glucose significantly better than capillary samples using the same method of analysis (GD = 0.24, 95% CI. [0.09,0.38], p < 0.01). The relationship between haematocrit and the resultant glucose differences was non-linear with correlation coefficients of r = -0.057 (EML 105 capillary), r = 0.145 (EML 105 venous), r = -0.127 (Advantage capillary) and r = -0.275 (Advantage venous). There was no significant difference in the effect of haematocrit on the performance of EML 105 versus Advantage, regardless of the sample route. Both EML 105 and Advantage overestimated plasma glucose, with no significant difference in the performance of either analyser, regardless of the route of analysis. Agreement with plasma glucose was better for venous samples but this was only statistically significant when EML 105 capillary and venous results were compared. Haematocrit is not a significant confounding factor towards the performance of either EML 105 or Advantage in neonates, regardless of the route of sampling. The margin of overestimation of blood glucose prohibits the recommendation of both EML 105 and Advantage for routine neonatal glucose screening. The consequences include failure accurately to diagnose hypoglycaemia and delays in the instigation of therapeutic measures, both of which may potentially result in an adverse, long-term, neurodevelopmental outcome.
Li, Busu; Song, Kai; Meng, Jie; Li, Li; Zhang, Guofan
2017-09-11
The Pacific oyster Crassostrea gigas is an important marine fishery resource, which contains high levels of glycogen that contributes to the flavor and the quality of the oyster. However, little is known about the molecular and chemical mechanisms underlying glycogen content differences in Pacific oysters. Using a homogeneous cultured Pacific oyster family, we explored these regulatory networks at the level of the metabolome and the transcriptome. Oysters with the highest and lowest natural glycogen content were selected for differential transcriptome and metabolome analysis. We identified 1888 differentially-expressed genes, seventy-five differentially-abundant metabolites, which are part of twenty-seven signaling pathways that were enriched using an integrated analysis of the interaction between the differentially-expressed genes and the differentially-abundant metabolites. Based on these results, we found that a high expression of carnitine O-palmitoyltransferase 2 (CPT2), indicative of increased fatty acid degradation, is associated with a lower glycogen content. Together, a high level of expression of phosphoenolpyruvate carboxykinase (PEPCK), and high levels of glucogenic amino acids likely underlie the increased glycogen production in high-glycogen oysters. In addition, the higher levels of the glycolytic enzymes hexokinase (HK) and pyruvate kinase (PK), as well as of the TCA cycle enzymes malate dehydrogenase (MDH) and pyruvate carboxylase (PYC), imply that there is a concomitant up-regulation of energy metabolism in high-glycogen oysters. High-glycogen oysters also appeared to have an increased ability to cope with stress, since the levels of the antioxidant glutathione peroxidase enzyme 5 (GPX5) gene were also increased. Our results suggest that amino acids and free fatty acids are closely related to glycogen content in oysters. In addition, oysters with a high glycogen content have a greater energy production capacity and a greater ability to cope with stress. These findings will not only provide insights into the molecular mechanisms underlying oyster quality, but also promote research into the molecular breeding of oysters.
Ges, Igor A.; Baudenbacher, Franz
2015-01-01
Monitoring the degree of anaerobic respiration of cells in high density microscale culture systems is an enabling key technology and essential for cell-based biosensors. We have fabricated and incorporated miniature amperometric lactate sensing electrodes with working areas from 3 to 5×10−2 mm2 into a microfluidic-based microscale cell culture system to measure the lactate production rate of fibroblasts in nanoliter volumes. Planar thin film platinum electrode arrays on glass substrates were spin coated with lactate oxidase and a protective Nafion layer. The lactate electrodes had a high enzymatic activity described by a Michaelis-Menten constant of 2.6±0.1 mM, a linear response in the range 0.01÷2.5mM and a sensitivity of 7.3×10−2mA/mM·cm2. A replica-molded polydimethylsiloxane (PDMS) microfluidic device with nanoliter sensing volumes was aligned and sealed to a glass substrate with the sensing electrodes. We trapped fibroblasts in the cell culture volume and measured the lactate production rate using a stop and flow protocol. The average lactate production rate was 0.011±0.0049mM/min. The lactate production was suppressed with the addition of 2-deoxy-D-glucose, which binds to hexokinase. The blocking of hexokinase prevents the generation of pyruvate, the intermittent substrate required for lactate production even in the presence of glucose. PMID:20566279
Characterization of cytogels using acousto-microscopy-based oscillating rod rheometry
NASA Astrophysics Data System (ADS)
Bereiter-Hahn, Juergen; Wagner, Oliver
2001-07-01
The physical properties of cytoplasm are primarily determined by the state of cytoskeletal element, i.e. their polymerisation, crosslinking and supramolecular interactions with other molecules. These interactions are involved in signal transduction processes as well as in morphogenesis. Scanning acoustic microscopy proved to be a powerful tool to determine the mechanical properties of living cells. The interpretation of the sound propagation parameters, however, has to be based on investigation of in vitro models. Therefore polymerisation of actin and tubulin have been followed using a novel oscillating rod rheometer which allows for synchronous determination of sound velocity, sound attenuation and viscosity. Sound velocity measures the elastic propterties of cytogels, attenuation the supramolecular associations. All these parameters are evaluated with minimal strain, in the range of 1- 100 nm actin with glycolytic enzymes not only modulated polymerisation in a specific, and substrate dependent manner, but also the stiffness of the fibrils was altered, e.g. by hexokinase in the presence of high ATP, this enzyme exhibited actin severing properties and reduced stiffness. Differences in polymerisation kinetics were observed comparing pyrene-labeled actin fluorimetry and oscillating rod viscosimetry. This comparison led to the detection of pseudocrystalline structures produced by g-actin and aldolase (in the absence of fructose-bisphophate, the substrate of aldolase). Elastic stiffness of actin filaments can be modulated by ATP/ADP and by actin binding proteins (e.g. the glycolytic enzyme hexokinase) as well. The in vitro observations support the interpretation of SAM data calculated for living cells.
Pastoris, O; Dossena, M; Gorini, A; Vercesi, L; Benzi, G
1985-03-01
Muscular glycolytic fuels, intermediates and end-products (glycogen, glucose, glucose-6-phosphate, pyruvate, lactate), Krebs cycle intermediates (citrate, alpha-ketoglutarate, succinate, malate), related free amino acids (glutamate, alanine), ammonia, energy store (creatine phosphate), energy mediators (ATP, ADP, AMP) and energy charge potential were evaluated. Furthermore the maximum rate (Vmax) of the following muscular enzyme activities was evaluated in the crude extract and/or mitochondrial fraction: for the anaerobic glycolytic pathway: hexokinase, phosphofructokinase, pyruvate kinase, lactate dehydrogenase; for the tricarboxylic acid cycle: citrate synthase, malate dehydrogenase; for the electron transfer chain: total NADH cytochrome c reductase, cytochrome oxidase. The rat gastrocnemius muscles were analyzed in normoxia and after repeated, alternate hypoxic and normoxic exposures (12 hours of hypoxia daily; for 5 days). Naftidrofuryl was administered daily at three different doses: 10, 15 and 22.5 mg/kg i.m., 30 min before the beginning of the experimental hypoxia. The biochemical adaptation to intermittent normobaric hypoxic-normoxic exposures was characterized by the decrease of the muscular contents of creatine phosphate, citrate, alpha-ketoglutarate and glutamate. This adaptation occurred in absence of significant changes in the Vmax of the muscle enzymes tested. By naftidrofuryl treatment, in gastrocnemius muscle from hypoxic rats both alpha-ketoglutarate and creatine phosphate contents maintained normal values, while glutamate concentration remained reduced to subnormal values. With the exception of hexokinase, naftidrofuryl treatment did not modify the Vmax of marker enzymes related to energy transduction.
Identification of Novel Plasmodium falciparum Hexokinase Inhibitors with Antiparasitic Activity.
Davis, Mindy I; Patrick, Stephen L; Blanding, Walker M; Dwivedi, Varun; Suryadi, Jimmy; Golden, Jennifer E; Coussens, Nathan P; Lee, Olivia W; Shen, Min; Boxer, Matthew B; Hall, Matthew D; Sharlow, Elizabeth R; Drew, Mark E; Morris, James C
2016-10-01
Plasmodium falciparum, the deadliest species of malaria parasites, is dependent on glycolysis for the generation of ATP during the pathogenic red blood cell stage. Hexokinase (HK) catalyzes the first step in glycolysis, transferring the γ-phosphoryl group of ATP to glucose to yield glucose-6-phosphate. Here, we describe the validation of a high-throughput assay for screening small-molecule collections to identify inhibitors of the P. falciparum HK (PfHK). The assay, which employed an ADP-Glo reporter system in a 1,536-well-plate format, was robust with a signal-to-background ratio of 3.4 ± 1.2, a coefficient of variation of 6.8% ± 2.9%, and a Z'-factor of 0.75 ± 0.08. Using this assay, we screened 57,654 molecules from multiple small-molecule collections. Confirmed hits were resolved into four clusters on the basis of structural relatedness. Multiple singleton hits were also identified. The most potent inhibitors had 50% inhibitory concentrations as low as ∼1 μM, and several were found to have low-micromolar 50% effective concentrations against asexual intraerythrocytic-stage P. falciparum parasites. These molecules additionally demonstrated limited toxicity against a panel of mammalian cells. The identification of PfHK inhibitors with antiparasitic activity using this validated screening assay is encouraging, as it justifies additional HTS campaigns with more structurally amenable libraries for the identification of potential leads for future therapeutic development. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Zhou, Xiang; Chen, Ruohua; Huang, Gang; Liu, Jianjun
2017-01-01
We assessed the clinical value of 2-fluoro-2-deoxyglucose (18F-FDG) PET/CT imaging for predicting occult nodal metastasis in non-small cell lung cancer (NSCLC) patients. This retrospective study included 54 patients with T1-2N0M0 NSCLC who had undergone 18F-FDG PET/CT before surgery. Occult nodal metastasis was detected in 25.9% (14/54) of the patients. Immunohistochemical analysis revealed that increased glucose transporter 1 expression was associated with occult nodal metastasis, but hexokinase 2 expression was not. Compared to the negative nodal metastasis group, the positive nodal metastasis group was associated with increased maximum standardized uptake value (SUVmax) and tumor size. Multivariate analysis indicated that SUVmax and tumor size were associated with nodal metastasis. Nodal metastasis could be predicted with a sensitivity of 92.9% and a specificity of 55.0% when the SUVmax cutoff was 4.35. When patients were divided into low-risk (tumor size ≤ 2.5 cm and SUVmax ≤ 4.35), moderate-risk (tumor size ≤ 2.5 cm and SUVmax > 4.35 or tumor size > 2.5 cm and SUVmax ≤ 4.35) and high-risk (tumor size > 2.5 cm and SUVmax > 4.35) groups, the lymph node metastasis rates were 4.3%, 22.7%, and 88.9%, respectively. These results indicate that the combination of SUVmax and tumor size has potential clinical value for predicting occult nodal metastasis in NSCLC patients. PMID:29137276
2016-01-01
Reduced cell wall invertase (CWIN) activity has been shown to be associated with poor seed and fruit set under abiotic stress. Here, we examined whether genetically increasing native CWIN activity would sustain fruit set under long-term moderate heat stress (LMHS), an important factor limiting crop production, by using transgenic tomato (Solanum lycopersicum) with its CWIN inhibitor gene silenced and focusing on ovaries and fruits at 2 d before and after pollination, respectively. We found that the increase of CWIN activity suppressed LMHS-induced programmed cell death in fruits. Surprisingly, measurement of the contents of H2O2 and malondialdehyde and the activities of a cohort of antioxidant enzymes revealed that the CWIN-mediated inhibition on programmed cell death is exerted in a reactive oxygen species-independent manner. Elevation of CWIN activity sustained Suc import into fruits and increased activities of hexokinase and fructokinase in the ovaries in response to LMHS. Compared to the wild type, the CWIN-elevated transgenic plants exhibited higher transcript levels of heat shock protein genes Hsp90 and Hsp100 in ovaries and HspII17.6 in fruits under LMHS, which corresponded to a lower transcript level of a negative auxin responsive factor IAA9 but a higher expression of the auxin biosynthesis gene ToFZY6 in fruits at 2 d after pollination. Collectively, the data indicate that CWIN enhances fruit set under LMHS through suppression of programmed cell death in a reactive oxygen species-independent manner that could involve enhanced Suc import and catabolism, HSP expression, and auxin response and biosynthesis. PMID:27462084
Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson
2013-01-01
Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen. PMID:23750237
Vignali, Debora; Cantarelli, Elisa; Bordignon, Carlotta; Canu, Adriana; Citro, Antonio; Annoni, Andrea; Piemonti, Lorenzo; Monti, Paolo
2018-05-01
Stem memory T cells (Tscm) constitute the earliest developmental stage of memory T cells, displaying stem cell-like properties, such as self-renewal capacity. Their superior immune reconstitution potential has sparked interest in cancer immune therapy, vaccine development, and immune reconstitution, whereas their role in autoimmunity is largely unexplored. Here we show that autoreactive CD8 + Tscm specific for β-cell antigens GAD65, insulin, and IGRP are present in patients with type 1 diabetes (T1D). In vitro, the generation of autoreactive Tscm from naive precursors required the presence of the homeostatic cytokine interleukin-7 (IL-7). IL-7 promotes glucose uptake via overexpression of GLUT1 and upregulation of the glycolytic enzyme hexokinase 2. Even though metabolism depends on glucose uptake, the subsequent oxidation of pyruvate in the mitochondria was necessary for Tscm generation from naive precursors. In patients with T1D, high expression of GLUT1 was a hallmark of circulating Tscm, and targeting glucose uptake via GLUT1 using the selective inhibitor WZB117 resulted in inhibition of Tscm generation and expansion. Our results suggest that autoreactive Tscm are present in patients with T1D and can be selectively targeted by inhibition of glucose metabolism. © 2018 by the American Diabetes Association.
NASA Astrophysics Data System (ADS)
Chen, Fei; Ren, Cheng-Gang; Zhou, Tong; Wei, Yu-Jia; Dai, Chuan-Chao
2016-10-01
Endophytes and plants can establish specific long-term symbiosis through the accumulation of secondary metabolites. Previous studies have shown that the endophytic fungus Gilmaniella sp. AL12 can stimulate Atractylodes lancea to produce volatile oils. The purpose of this report is to investigate key factors involved in the stimulation of A. lancea by AL12 and reveal the mechanism. We identified the active component from AL12 as an extracellular mannan with a polymerization degree of 26-42. Differential membrane proteomics of A. lancea was performed by 2D electrophoresis. The results showed that there were significant differences in the expression of 83 proteins. Based on these results, we conclude that AL12 secreted mannan contributes to the antagonistic balance seen in interactions between AL12 and A. lancea. One portion of the mannan was degraded to mannose for hexokinase activation, promoting photosynthesis and energy metabolism, with a potential metabolic fluxes flowing towards terpenoid biosynthesis. The other portion of the mannan directly enhanced autoimmunity of A. lancea through G protein-mediated signal transduction and the mannan-binding lectin pathway. Volatile oil accumulation was ultimately promoted in subsequent defense reactions. This study provides a new perspective on the regulation of secondary metabolites by endophytic fungal elicitors in medicinal plants.
Chen, Fei; Ren, Cheng-Gang; Zhou, Tong; Wei, Yu-Jia; Dai, Chuan-Chao
2016-10-05
Endophytes and plants can establish specific long-term symbiosis through the accumulation of secondary metabolites. Previous studies have shown that the endophytic fungus Gilmaniella sp. AL12 can stimulate Atractylodes lancea to produce volatile oils. The purpose of this report is to investigate key factors involved in the stimulation of A. lancea by AL12 and reveal the mechanism. We identified the active component from AL12 as an extracellular mannan with a polymerization degree of 26-42. Differential membrane proteomics of A. lancea was performed by 2D electrophoresis. The results showed that there were significant differences in the expression of 83 proteins. Based on these results, we conclude that AL12 secreted mannan contributes to the antagonistic balance seen in interactions between AL12 and A. lancea. One portion of the mannan was degraded to mannose for hexokinase activation, promoting photosynthesis and energy metabolism, with a potential metabolic fluxes flowing towards terpenoid biosynthesis. The other portion of the mannan directly enhanced autoimmunity of A. lancea through G protein-mediated signal transduction and the mannan-binding lectin pathway. Volatile oil accumulation was ultimately promoted in subsequent defense reactions. This study provides a new perspective on the regulation of secondary metabolites by endophytic fungal elicitors in medicinal plants.
VDAC electronics: 1. VDAC-hexo(gluco)kinase generator of the mitochondrial outer membrane potential.
Lemeshko, Victor V
2014-05-01
The simplest mechanism of the generation of the mitochondrial outer membrane potential (OMP) by the VDAC (voltage-dependent anion channel)-hexokinase complex (VHC), suggested earlier, and by the VDAC-glucokinase complex (VGC), was computationally analyzed. Even at less than 4% of VDACs bound to hexokinase, the calculated OMP is high enough to trigger the electrical closure of VDACs beyond the complexes at threshold concentrations of glucose. These results confirmed our previous hypothesis that the Warburg effect is caused by the electrical closure of VDACs, leading to global restriction of the outer membrane permeability coupled to aerobic glycolysis. The model showed that the inhibition of the conductance and/or an increase in the voltage sensitivity of a relatively small fraction of VDACs by factors like tubulin potentiate the electrical closure of the remaining free VDACs. The extrusion of calcium ions from the mitochondrial intermembrane space by the generated OMP, positive inside, might increase cancer cell resistance to death. Within the VGC model, the known effect of induction of ATP release from mitochondria by accumulated glucose-6-phosphate in pancreatic beta cells might result not only of the known effect of GK dissociation from the VDAC-GK complex, but also of a decrease in the free energy of glucokinase reaction, leading to the OMP decrease and VDAC opening. We suggest that the VDAC-mediated electrical control of the mitochondrial outer membrane permeability, dependent on metabolic conditions, is a fundamental physiological mechanism of global regulation of mitochondrial functions and of cell death. Copyright © 2014 Elsevier B.V. All rights reserved.
Karro, Niina; Sepp, Mervi; Jugai, Svetlana; Laasmaa, Martin; Vendelin, Marko; Birkedal, Rikke
2017-01-01
Rainbow trout (Oncorhynchus mykiss) cardiomyocytes have a simple morphology with fewer membrane structures such as sarcoplasmic reticulum and t-tubules penetrating the cytosol. Despite this, intracellular ADP diffusion is restricted. Intriguingly, although diffusion is restricted, trout cardiomyocytes seem to lack the coupling between mitochondrial creatine kinase (CK) and respiration. Our aim was to study the distribution of diffusion restrictions in permeabilized trout cardiomyocytes and verify the role of CK. We found a high activity of hexokinase (HK), which led us to reassess the situation in trout cardiomyocytes. We show that diffusion restrictions are more prominent than previously thought. In the presence of a competitive ADP-trapping system, ADP produced by HK, but not CK, was channeled to the mitochondria. In agreement with this, we found no positively charged mitochondrial CK in trout heart homogenate. The results were best fit by a simple mathematical model suggesting that trout cardiomyocytes lack a functional coupling between ATPases and pyruvate kinase. The model simulations show that diffusion is restricted to almost the same extent in the cytosol and by the outer mitochondrial membrane. Furthermore, they confirm that HK, but not CK, is functionally coupled to respiration. In perspective, our results suggest that across a range of species, cardiomyocyte morphology and metabolism go hand in hand with cardiac performance, which is adapted to the circumstances. Mitochondrial CK is coupled to respiration in adult mammalian hearts, which are specialized to high, sustained performance. HK associates with mitochondria in hearts of trout and neonatal mammals, which are more hypoxia-tolerant.
Wang, Haiyan; Arias, Edward B; Yu, Carmen S; Verkerke, Anthony R P; Cartee, Gregory D
2017-11-09
Calorie restriction (CR; reducing calorie intake by ~40% below ad libitum) can increase glucose uptake by insulin-stimulated muscle. Because skeletal muscle is comprised of multiple, heterogeneous fiber types, our primary aim was to determine the effects of CR (initiated at 14 weeks old) and fiber type on insulin-stimulated glucose uptake by single fibers of diverse fiber types in 23-26-month-old rats. Isolated epitrochlearis muscles from AL and CR rats were incubated with [3H]-2-deoxyglucose ± insulin. Glucose uptake and fiber type were determined for single fibers dissected from the muscles. We also determined CR-effects on abundance of several key metabolic proteins in single fibers. CR resulted in: (a) significantly (p < .05 to .001) greater glucose uptake by insulin-stimulated type I, IIA, IIB, IIBX, and IIX fibers; (b) significantly (p < .05 to .001) reduced abundance of several mitochondrial electron transport chain (ETC) and oxidative phosphorylation (OxPhos) proteins in type I, IIA, and IIBX but not IIB and IIX fibers; and (c) unaltered hexokinase II abundance in each fiber type. These results demonstrate that CR can enhance glucose uptake in each fiber type of rat skeletal muscle in the absence of upregulation of the abundance of hexokinase II or key mitochondrial ETC and OxPhos proteins. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chu, Dake; Wei, Li; Li, Xia; Yang, Guodong; Liu, Xinping; Yao, Libo; Zhang, Jian; Shen, Lan
2015-01-01
Cancer cells use glucose and glutamine as the major sources of energy and precursor intermediates, and enhanced glycolysis and glutamimolysis are the major hallmarks of metabolic reprogramming in cancer. Oncogene activation and tumor suppressor gene inactivation alter multiple intracellular signaling pathways that affect glycolysis and glutaminolysis. N-Myc downstream regulated gene 2 (NDRG2) is a tumor suppressor gene inhibiting cancer growth, metastasis and invasion. However, the role and molecular mechanism of NDRG2 in cancer metabolism remains unclear. In this study, we discovered the role of the tumor suppressor gene NDRG2 in aerobic glycolysis and glutaminolysis of cancer cells. NDRG2 inhibited glucose consumption and lactate production, glutamine consumption and glutamate production in colorectal cancer cells. Analysis of glucose transporters and the catalytic enzymes involved in glycolysis revealed that glucose transporter 1 (GLUT1), hexokinase 2 (HK2), pyruvate kinase M2 isoform (PKM2) and lactate dehydrogenase A (LDHA) was significantly suppressed by NDRG2. Analysis of glutamine transporter and the catalytic enzymes involved in glutaminolysis revealed that glutamine transporter ASC amino-acid transporter 2 (ASCT2) and glutaminase 1 (GLS1) was also significantly suppressed by NDRG2. Transcription factor c-Myc mediated inhibition of glycolysis and glutaminolysis by NDRG2. More importantly, NDRG2 inhibited the expression of c-Myc by suppressing the expression of β-catenin, which can transcriptionally activate C-MYC gene in nucleus. In addition, the growth and proliferation of colorectal cancer cells were suppressed significantly by NDRG2 through inhibition of glycolysis and glutaminolysis. Taken together, these findings indicate that NDRG2 functions as an essential regulator in glycolysis and glutaminolysis via repression of c-Myc, and acts as a suppressor of carcinogenesis through coordinately targeting glucose and glutamine transporter, multiple catalytic enzymes involved in glycolysis and glutaminolysis, which fuels the bioenergy and biomaterials needed for cancer proliferation and progress. PMID:26317652
Ding, Fan; Yao, Jia; Rettberg, Jamaica R; Chen, Shuhua; Brinton, Roberta Diaz
2013-01-01
We previously demonstrated that mitochondrial bioenergetic deficits in the female brain accompanied reproductive senescence and was accompanied by a shift from an aerobic glycolytic to a ketogenic phenotype. Herein, we investigated the relationship between systems of fuel supply, transport and mitochondrial metabolic enzyme expression/activity during aging (3-15 months) in the hippocampus of nontransgenic (nonTg) background and 3xTgAD female mice. Results indicate that during female brain aging, both nonTg and 3xTgAD brains undergo significant decline in glucose transport, as detected by FDG-microPET, between 6-9 months of age just prior to the transition into reproductive senescence. The deficit in brain metabolism was sustained thereafter. Decline in glucose transport coincided with significant decline in neuronal glucose transporter expression and hexokinase activity with a concomitant rise in phosphorylated/inactivated pyruvate dehydrogenase. Lactate utilization declined in parallel to the decline in glucose transport suggesting lactate did not serve as an alternative fuel. An adaptive response in the nonTg hippocampus was a shift to transport and utilization of ketone bodies as an alternative fuel. In the 3xTgAD brain, utilization of ketone bodies as an alternative fuel was evident at the earliest age investigated and declined thereafter. The 3xTgAD adaptive response was to substantially increase monocarboxylate transporters in neurons while decreasing their expression at the BBB and in astrocytes. Collectively, these data indicate that the earliest change in the metabolic system of the aging female brain is the decline in neuronal glucose transport and metabolism followed by decline in mitochondrial function. The adaptive shift to the ketogenic system as an alternative fuel coincided with decline in mitochondrial function. Translationally, these data provide insights into the earliest events in bioenergetic aging of the female brain and provide potential targets for preventing shifts to less efficient bioenergetic fuels and transition to the ketogenic phenotype of the Alzheimer's brain.
Li, Qi-Xiang; Zhang, Pei; Liu, Fang; Wang, Xian-Zhi; Li, Lu; Wang, Zhong-Kun; Jiang, Chen-Chen; Zheng, Hai-Lun; Liu, Hao
2017-05-20
To investigate the role of monocarboxylate transporter 1 (MCT1) in enhancing the sensitivity of breast cancer cells to 3-bromopyruvate (3-BrPA). The inhibitory effect of 3-BrPA on the proliferation of breast cancer cells was assessed with MTT assay, and brominated propidium bromide single staining flow cytometry was used for detecting the cell apoptosis. An ELISA kit was used to detect the intracellular levels of hexokinase II, lactate dehydrogenase, lactate, and adenosine triphosphate, and Western blotting was performed to detect the expression of MCT1. MDA-MB-231 cells were transiently transfected with MCT1 cDNA for over-expressing MCT1, and the effect of 3-BrPA on the cell proliferation and adenosine triphosphate level was deteced. 3-BrPA did not produce significant effects on the proliferation and apoptosis of MDA-MB-231 cells, and the cells treated with 200 µmol/L 3-BrPA for 24 h showed an inhibition rate and an apoptosis rate of only 8.72% and 7.8%, respectively. The same treatment, however, produced an inhibition rate and an apoptosis rate of 84.6% and 82.3% in MCF-7 cells, respectively. In MDA-MB-231 cells with MCT1 overexpression, 200 µmol/L 3-BrPA resulted in an inhibition rate of 72.44%, significantly higher than that in the control cells (P<0.05); treatment of the cells with 25, 50, 100, and 200 µmol/L 3-BrPA for 6 h resulted in intracellular adenosine triphosphate levels of 96.98%, 88.44%, 43.3% and 27.56% relative to the control level respectively. MCT1 can enhance the sensitivity of breast cancer cells to 3-BrPA possibly by transporting 3-BrPA into cells to inhibit cell glycolysis.
Amalan, Venkatesan; Vijayakumar, Natesan; Indumathi, Dhananjayan; Ramakrishnan, Arumugam
2016-12-01
P-coumaric acid (p-CA, 3-[4-hydroxyphenyl]-2-propenoic acid), the major component widely found in nutritious plant foods, has various antioxidant, antiinflammatory and anticancer property. To evaluate the antidiabetic and antihyperlipidemic mechanisms, via the effects on carbohydrate, lipids and lipoproteins responses in adult male albino Wistar rats were examined by treated with p-CA. Rats were injected with streptozotocin (STZ, 40mg/kg b.w.) by intraperitonially (i.p.) 30days for the induction of experimental diabetes mellitus. Diabetic rats were treated with p-CA orally at a dose of 100mg/kg b.w. The potential defending character of p-CA against diabetic rats was evaluated by performing the various biochemical parameters and glucose transporter such as GLUT2 mRNA expression of pancreas. Administration of p-CA significantly lowers the blood glucose level, gluconeogenic enzymes such as glucose-6-phosphatase and fructose-1,6-bisphosphatase whereas increases the activities of hexokinase, glucose-6 phosphatase dehydrogenase and GSH via by increasing level of insulin. p-CA reduces the total cholesterol and triglycerides in both plasma and tissues i.e. liver and kidney. p-CA also decreases the LDL-C, VLDL-C and it considerably increase the level of HDL-C. A significant decreased expression of GLUT 2 mRNA in the pancreas was recorded in the supplementation of p-CA treated groups. Taken together, these results suggest that p-CA modulates glucose and lipid metabolism via GLUT 2 activation in the pancreatic and has potentially beneficial effects in improving or treating metabolic disorders. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Kandasamy, Neelamegam; Ashokkumar, Natarajan
2014-09-01
Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)-cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ-Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ-Cd induced diabetic nephrotoxic rats. Copyright © 2014 Elsevier Inc. All rights reserved.
Cell Wall Invertase Promotes Fruit Set under Heat Stress by Suppressing ROS-Independent Cell Death.
Liu, Yong-Hua; Offler, Christina E; Ruan, Yong-Ling
2016-09-01
Reduced cell wall invertase (CWIN) activity has been shown to be associated with poor seed and fruit set under abiotic stress. Here, we examined whether genetically increasing native CWIN activity would sustain fruit set under long-term moderate heat stress (LMHS), an important factor limiting crop production, by using transgenic tomato (Solanum lycopersicum) with its CWIN inhibitor gene silenced and focusing on ovaries and fruits at 2 d before and after pollination, respectively. We found that the increase of CWIN activity suppressed LMHS-induced programmed cell death in fruits. Surprisingly, measurement of the contents of H2O2 and malondialdehyde and the activities of a cohort of antioxidant enzymes revealed that the CWIN-mediated inhibition on programmed cell death is exerted in a reactive oxygen species-independent manner. Elevation of CWIN activity sustained Suc import into fruits and increased activities of hexokinase and fructokinase in the ovaries in response to LMHS Compared to the wild type, the CWIN-elevated transgenic plants exhibited higher transcript levels of heat shock protein genes Hsp90 and Hsp100 in ovaries and HspII17.6 in fruits under LMHS, which corresponded to a lower transcript level of a negative auxin responsive factor IAA9 but a higher expression of the auxin biosynthesis gene ToFZY6 in fruits at 2 d after pollination. Collectively, the data indicate that CWIN enhances fruit set under LMHS through suppression of programmed cell death in a reactive oxygen species-independent manner that could involve enhanced Suc import and catabolism, HSP expression, and auxin response and biosynthesis. © 2016 American Society of Plant Biologists. All rights reserved.
Chen, Fangzheng; Wang, Heng; Lai, Jiadan; Cai, Shujing; Yuan, Linbo
2018-05-04
Pulmonary arterial smooth muscle cell (PASMC) proliferation is vital to pulmonary vascular remodeling in pulmonary arterial hypertension (PAH) pathogenesis, and inhibiting PASMC metabolism could serve as a new possible therapy to reverse the process. 3-Bromopyruvate (3-BrPA) is an effective glycolysis inhibitor with its effect in PAH remains unclear. Our study aims to assess the therapeutic effect of 3-BrPA in PAH rats and investigate the possible mechanism of 3-BrPA in PASMC proliferation and apoptosis. 27 healthy SD rats were grouped and treated with hypoxia/normoxia and administration of 3-BrPA/physiological saline. Mean pulmonary artery pressure (mPAP) and cardiac output (CO) were measured and pulmonary vascular resistance (PVR) was calculated. Right ventricular hypertrophy index (RVHI) was calculated to evaluate the right ventricular hypertrophy degree. The percentage of medial wall area (WA%) and medial wall thickness (WT%) were measured by image analysis. PASMCs groups received hypoxia/normoxia treatments and 3-BrPA/physiological saline. PASMC proliferation and migration were respectively detected by CCK-8 and cell wound scratch assay. Hexokinase II (HK-2) expression and lactate level were respectively measured by Western Blotting and lactate test kit to detect glycolysis. mPAP, PVR, PVHI, WA% and WT% in rats increased after the hypoxia treatment, but were lower compared to rats received 3-BrPA in hypoxia environment. HK-2 expression, lactate concentration, OD value and scratch areas in PASMCs increased after the hypoxia treatment, but were decreased after the administration of 3-BrPA. 3-BrPA can inhibit PASMC proliferation and migration by inhibiting glycolysis, and is effective in reversing the vascular remodeling in hypoxia-induced PAH rats. Copyright © 2017. Published by Elsevier B.V.
Glucose-mediated control of ghrelin release from primary cultures of gastric mucosal cells
Sakata, Ichiro; Park, Won-Mee; Walker, Angela K.; Piper, Paul K.; Chuang, Jen-Chieh; Osborne-Lawrence, Sherri
2012-01-01
The peptide hormone ghrelin is released from a distinct group of gastrointestinal cells in response to caloric restriction, whereas its levels fall after eating. The mechanisms by which ghrelin secretion is regulated remain largely unknown. Here, we have used primary cultures of mouse gastric mucosal cells to investigate ghrelin secretion, with an emphasis on the role of glucose. Ghrelin secretion from these cells upon exposure to different d-glucose concentrations, the glucose antimetabolite 2-deoxy-d-glucose, and other potential secretagogues was assessed. The expression profile of proteins involved in glucose transport, metabolism, and utilization within highly enriched pools of mouse ghrelin cells and within cultured ghrelinoma cells was also determined. Ghrelin release negatively correlated with d-glucose concentration. Insulin blocked ghrelin release, but only in a low d-glucose environment. 2-Deoxy-d-glucose prevented the inhibitory effect of high d-glucose exposure on ghrelin release. mRNAs encoding several facilitative glucose transporters, hexokinases, the ATP-sensitive potassium channel subunit Kir6.2, and sulfonylurea type 1 receptor were expressed highly within ghrelin cells, although neither tolbutamide nor diazoxide exerted direct effects on ghrelin secretion. These findings suggest that direct exposure of ghrelin cells to low ambient d-glucose stimulates ghrelin release, whereas high d-glucose and glucose metabolism within ghrelin cells block ghrelin release. Also, low d-glucose sensitizes ghrelin cells to insulin. Various glucose transporters, channels, and enzymes that mediate glucose responsiveness in other cell types may contribute to the ghrelin cell machinery involved in regulating ghrelin secretion under these different glucose environments, although their exact roles in ghrelin release remain uncertain. PMID:22414807
MicroRNA-7 Promotes Glycolysis to Protect against 1-Methyl-4-phenylpyridinium-induced Cell Death.
Chaudhuri, Amrita Datta; Kabaria, Savan; Choi, Doo Chul; Mouradian, M Maral; Junn, Eunsung
2015-05-08
Parkinson disease is associated with decreased activity of the mitochondrial electron transport chain. This defect can be recapitulated in vitro by challenging dopaminergic cells with 1-methyl-4-phenylpyridinium (MPP(+)), a neurotoxin that inhibits complex I of electron transport chain. Consequently, oxidative phosphorylation is blocked, and cells become dependent on glycolysis for ATP production. Therefore, increasing the rate of glycolysis might help cells to produce more ATP to meet their energy demands. In the present study, we show that microRNA-7, a non-coding RNA that protects dopaminergic neuronal cells against MPP(+)-induced cell death, promotes glycolysis in dopaminergic SH-SY5Y and differentiated human neural progenitor ReNcell VM cells, as evidenced by increased ATP production, glucose consumption, and lactic acid production. Through a series of experiments, we demonstrate that targeted repression of RelA by microRNA-7, as well as subsequent increase in the neuronal glucose transporter 3 (Glut3), underlies this glycolysis-promoting effect. Consistently, silencing Glut3 expression diminishes the protective effect of microRNA-7 against MPP(+). Further, microRNA-7 fails to prevent MPP(+)-induced cell death when SH-SY5Y cells are cultured in a low glucose medium, as well as when differentiated ReNcell VM cells or primary mouse neurons are treated with the hexokinase inhibitor, 2-deoxy-d-glucose, indicating that a functional glycolytic pathway is required for this protective effect. In conclusion, microRNA-7, by down-regulating RelA, augments Glut3 expression, promotes glycolysis, and subsequently prevents MPP(+)-induced cell death. This protective effect of microRNA-7 could be exploited to correct the defects in oxidative phosphorylation in Parkinson disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
FGF21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation
Yan, Xiaoqing; Chen, Jun; Zhang, Chi; Zhou, Shanshan; Zhang, Zhiguo; Chen, Jing; Feng, Wenke; Li, Xiaokun; Tan, Yi
2015-01-01
Fibroblast growth factor 21 (FGF21) plays an important role in energy homoeostasis. The unaddressed question of FGF21’s effect on the development and progression of diabetic cardiomyopathy (DCM) is investigated here with FGF21 knockout (FGF21KO) diabetic mice. Type 1 diabetes was induced in both FGF21KO and C57BL/6J wild-type (WT) mice via streptozotocin. At 1, 2 and 4 months after diabetes onset, the plasma FGF21 levels were significantly decreased in WT diabetic mice compared to controls. There was no significant difference between FGF21KO and WT diabetic mice in blood glucose and triglyceride levels. FGF21KO diabetic mice showed earlier and more severe cardiac dysfunction, remodelling and oxidative stress, as well as greater increase in cardiac lipid accumulation than WT diabetic mice. Western blots showed that increased cardiac lipid accumulation was accompanied by further increases in the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and its target protein CD36, along with decreases in the phosphorylation of AMP-activated protein kinase and the expression of hexokinase II and peroxisome proliferator-activated receptor gamma co-activator 1α in the heart of FGF21KO diabetic mice compared to WT diabetic mice. Our results demonstrate that FGF21 deletion-aggravated cardiac lipid accumulation is likely mediated by cardiac Nrf2-driven CD36 up-regulation, which may contribute to the increased cardiac oxidative stress and remodelling, and the eventual development of DCM. These findings suggest that FGF21 may be a therapeutic target for the treatment of DCM. PMID:25823710
Nedvedova, Iveta; Kolar, David; Elsnicova, Barbara; Hornikova, Daniela; Novotny, Jiri; Kalous, Martin; Pravenec, Michal; Neckar, Jan; Kolar, Frantisek; Zurmanova, Jitka M
2018-04-20
Recently we have shown that adaptation to continuous normobaric hypoxia (CNH) decreases myocardial ischemia/reperfusion injury in spontaneously hypertensive rats (SHR) and in conplastic strain (SHR-mt BN ). The protective effect was stronger in the latter group characterized by a selective replacement of SHR mitochondrial genome with that of a more ischemia-resistant Brown Norway strain. The aim of the present study was to examine the possible involvement of the hypoxia inducible factor (HIF)-dependent pathway of the protein kinase B/glucose transporters/hexokinase (Akt/GLUT/HK) in this mitochondrial genome-related difference of the cardioprotective phenotype. Adult male rats were exposed for 3 weeks to CNH (FiO 2 0.1). The expression of dominant isoforms of Akt, GLUT and HK in left ventricular myocardium was determined by Real-time RT-PCR and Western blotting. Subcellular localization of GLUTs was assessed by quantitative immunofluorescence. Whereas adaptation to hypoxia markedly upregulated protein expression of HK2, GLUT1 and GLUT4 in both rat strains, Akt2 protein level was significantly increased in SHR-mt BN only. Interestingly, higher content of HK2 was revealed in the sarcoplasmic reticulum enriched fraction in SHR-mt BN after CNH. The increased activity of HK determined in the mitochondrial fraction after CNH in both strains suggested an increase of HK association with mitochondria. Interestingly, HIF1a mRNA increased and HIF2a mRNA decreased after CNH, the former effect being more pronounced in SHR-mt BN than in SHR. Pleiotropic effects of upregulated Akt2 along with HK translocation to mitochondria and mitochondria-associated membranes can potentially contribute to a stronger CNH-afforded cardioprotection in SHR-mt BN compared to progenitor SHR.
The low dose gamma ionising radiation impact upon cooperativity of androgen-specific proteins.
Filchenkov, Gennady N; Popoff, Eugene H; Naumov, Alexander D
2014-01-01
The paper deals with effects of the ionising radiation (γ-IR, 0.5 Gy) upon serum testosterone (T), characteristics of testosterone-binding globulin (TeBG) and androgen receptor (AR) in parallel with observation of androgen (A) responsive enzyme activity - hexokinase (HK). The interdependence or relationships of T-levels with parameters of the proteins that provide androgenic regulation are consequently analyzed in post-IR dynamics. The IR-stress adjustment data reveal expediency of TeBG- and AR-cooperativity measurements for more precise assessments of endocrine A-control at appropriate emergencies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bogatskaia, L N; Pisaruk, A V
1987-01-01
Reasons which have induced changes in the glycolysis rate, ATP and 2,3-diphosphoglycerate content in human erythrocytes with ageing are studied. A fall of the hexokinase activity is shown to be one of the reasons of a significant decrease in the glycolysis rate. The total ATPase activity in erythrocytes does not change with the age. At the same time the decay rate of 2,3-diphosphoglycerate increases, that, evidently, is one of the reasons of the 2,3-diphosphoglycerate content decrease in erythrocytes with ageing.
Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun
2018-06-01
High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.
Effects of dietary energy sources on early postmortem muscle metabolism of finishing pigs.
Li, Yanjiao; Yu, Changning; Li, Jiaolong; Zhang, Lin; Gao, Feng; Zhou, Guanghong
2017-12-01
This study investigated the effects of different dietary energy sources on early postmortem muscle metabolism of finishing pigs. Seventy-two barrow (Duroc×Landrace×Yorkshire, DLY) pigs (65.0±2.0 kg) were allotted to three iso-energetic and iso-nitrogenous diets: A (44.1% starch, 5.9% crude fat, and 12.6% neutral detergent fibre [NDF]), B (37.6% starch, 9.5% crude fat, and 15.4% NDF) or C (30.9% starch, 14.3% crude fat, and 17.8% NDF). After the duration of 28-day feeding experiment, 24 pigs (eight per treatment) were slaughtered and the M. longissimus lumborum (LL) samples at 45 min postmortem were collected. Compared with diet A, diet C resulted in greater adenosine triphosphate and decreased phosphocreatine (PCr) concentrations, greater activity of creatine kinase and reduced percentage bound activities of hexokinase (HK), and pyruvate kinase (PK) in LL muscles (p<0.05). Moreover, diet C decreased the phosphor-AKT level and increased the hydroxy-hypoxia-inducible factor-1α (HIF-1α) level, as well as decreased the bound protein expressions of HK II, PKM2, and lactate dehydrogenase A (p<0.05). Diet C with the lowest level of starch and the highest levels of fat and NDF could enhance the PCr utilization and attenuate glycolysis early postmortem in LL muscle of finishing pigs.
Liu, Zhe; Zhang, Yuan-Yuan; Zhang, Qian-Wen; Zhao, Su-Rong; Wu, Cheng-Zhu; Cheng, Xiu; Jiang, Chen-Chen; Jiang, Zhi-Wen; Liu, Hao
2014-04-01
The hexokinase inhibitor 3-bromopyruvate (3-BrPA) can inhibit glycolysis in tumor cells to reduce ATP production, resulting in apoptosis. However, as 3-BrPA is an alkylating agent, its cytotoxic action may be induced by other molecular mechanisms. The results presented here reveal that 3-BrPA-induced apoptosis is caspase independent. Further, 3-BrPA induces the generation of reactive oxygen species in MDA-MB-231 cells, leading to mitochondria-mediated apoptosis. These results suggest that caspase-independent apoptosis may be induced by the generation of reactive oxygen species. In this study, we also demonstrated that 3-BrPA induces apoptosis through the downregulation of myeloid cell leukemia-1 (Mcl-1) in MDA-MB-231 breast cancer cells. The results of Mcl-1 knockdown indicate that Mcl-1 plays an important role in 3-BrPA-induced apoptosis. Further, the upregulation of Mcl-1 expression in 3-BrPA-treated MDA-MB-231 cells significantly increases cell viability. In addition, 3-BrPA treatment resulted in the downregulation of p-Akt, suggesting that 3-BrPA may downregulate Mcl-1 through the phosphoinositide-3-kinase/Akt pathway. These findings indicate that 3-BrPA induces apoptosis in breast cancer cells by downregulating Mcl-1 through the phosphoinositide-3-kinase/Akt signaling pathway.
Wang, Shaoxiao; Spor, Aymé; Nidelet, Thibault; Montalent, Pierre; Dillmann, Christine; de Vienne, Dominique; Sicard, Delphine
2011-01-01
Adaptation is the process whereby a population or species becomes better fitted to its habitat through modifications of various life history traits which can be positively or negatively correlated. The molecular factors underlying these covariations remain to be elucidated. Using Saccharomyces cerevisiae as a model system, we have investigated the effects on life history traits of varying the dosage of genes involved in the transformation of resources into energy. Changing gene dosage for each of three glycolytic enzyme genes (hexokinase 2, phosphoglucose isomerase, and fructose-1,6-bisphosphate aldolase) resulted in variation in enzyme activities, glucose consumption rate, and life history traits (growth rate, carrying capacity, and cell size). However, the range of effects depended on which enzyme was expressed differently. Most interestingly, these changes revealed a genetic trade-off between carrying capacity and cell size, supporting the discovery of two extreme life history strategies already described in yeast populations: the "ants," which have lower glycolytic gene dosage, take up glucose slowly, and have a small cell size but reach a high carrying capacity, and the "grasshoppers," which have higher glycolytic gene dosage, consume glucose more rapidly, and allocate it to a larger cell size but reach a lower carrying capacity. These results demonstrate antagonist pleiotropy for glycolytic genes and show that altered dosage of a single gene drives a switch between two life history strategies in yeast.
Visser, Franziska; Müller, Boje; Rose, Judith; Prüfer, Dirk; Noll, Gundula A
2016-08-09
The immobilisation of enzymes plays an important role in many applications, including biosensors that require enzyme activity, stability and recyclability in order to function efficiently. Here we show that forisomes (plant-derived mechanoproteins) can be functionalised with enzymes by translational fusion, leading to the assembly of structures designated as forizymes. When forizymes are expressed in the yeast Saccharomyces cerevisiae, the enzymes are immobilised by the self-assembly of forisome subunits to form well-structured protein bodies. We used glucose-6-phosphate dehydrogenase (G6PDH) and hexokinase 2 (HXK2) as model enzymes for the one-step production and purification of catalytically active forizymes. These structures retain the typical stimulus-response reaction of the forisome and the enzyme remains active even after multiple assay cycles, which we demonstrated using G6PDH forizymes as an example. We also achieved the co-incorporation of both HXK2 and G6PDH in a single forizyme, facilitating a two-step reaction cascade that was 30% faster than the coupled reaction using the corresponding enzymes on different forizymes or in solution. Our novel forizyme immobilisation technique therefore not only combines the sensory properties of forisome proteins with the catalytic properties of enzymes but also allows the development of multi-enzyme complexes for incorporation into technical devices.
Wu, Chih-Hsien; Lin, Yu-Wen; Wu, Tzu-Fan; Ko, Jiunn-Liang; Wang, Po-Hui
2016-01-26
Two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry were performed to investigate the influence of human nonmetastatic clone 23 type 1 (nm23-H1), a metastasis-associated gene on proteomic alterations in cancer cells of the uterine cervix. It was validated by RT-PCR and Western blot analysis. The expression of voltage-dependent anion channel 1 (VDAC1) was increased in nm23-H1 gene silenced SiHa or CaSki cervical cancer cells. The clinical implication was shown that cervical cancer tissues with positive VDAC1 immunoreactivity exhibited deep stromal invasion (>10 mm in depth) and large tumor size (> 4 cm in diameter). Cervical cancer patients with positive VDAC1 immunoreactivity displayed higher recurrence and poorer overall survival than those with negative VDAC1. Silencing of VDAC1 reduced cell proliferation and migratory ability. Mitochondrial membrane potential was decreased and reactive oxygen species generation was increased in the VDAC1 gene-silenced cervical cancer cells. Cell cycle progression and autophagy were not changed in VDAC1 silencing cells. The cytotoxicity of cisplatin was significantly enhanced by knockdown of cellular VDAC1 and the compounds that interfere with hexokinase binding to VDAC. Therapeutic strategies may be offered using VDAC1 as a target to reduce cell growth and migration, enhance the synergistic therapeutic efficacy of cisplatin and reduce cisplatin dose-limiting toxicity.
Baumstark, Annette; Jendrike, Nina; Pleus, Stefan; Haug, Cornelia; Freckmann, Guido
2017-10-01
Self-monitoring of blood glucose (BG) is an essential part of diabetes therapy. Accurate and reliable results from BG monitoring systems (BGMS) are important especially when they are used to calculate insulin doses. This study aimed at assessing system accuracy of BGMS and possibly related insulin dosing errors. System accuracy of six different BGMS (Accu-Chek ® Aviva Nano, Accu-Chek Mobile, Accu-Chek Performa Nano, CONTOUR ® NEXT LINK 2.4, FreeStyle Lite, OneTouch ® Verio ® IQ) was assessed in comparison to a glucose oxidase and a hexokinase method. Study procedures and analysis were based on ISO 15197:2013/EN ISO 15197:2015, clause 6.3. In addition, insulin dosing error was modeled. In the comparison against the glucose oxidase method, five out of six BGMS fulfilled ISO 15197:2013 accuracy criteria. Up to 14.3%/4.3%/0.3% of modeled doses resulted in errors exceeding ±0.5/±1.0/±1.5 U and missing the modeled target by 20 mg/dL/40 mg/dL/60 mg/dL, respectively. Compared against the hexokinase method, five out of six BGMS fulfilled ISO 15197:2013 accuracy criteria. Up to 25.0%/10.5%/3.2% of modeled doses resulted in errors exceeding ±0.5/±1.0/±1.5 U, respectively. Differences in system accuracy were found, even among BGMS that fulfilled the minimum system accuracy criteria of ISO 15197:2013. In the error model, considerable insulin dosing errors resulted for some of the investigated systems. Diabetes patients on insulin therapy should be able to rely on their BGMS' readings; therefore, they require highly accurate BGMS, in particular, when making therapeutic decisions.
Rodrigues-Ferreira, Clara; da Silva, Ana Paula Pereira; Galina, Antonio
2012-02-01
The alkylating agent 3-Bromopyruvate (3-BrPA) has been used as an anti-tumoral drug due to its anti-proliferative property in hepatomas cells. This propriety is believed to disturb glycolysis and respiration, which leads to a decreased rate of ATP synthesis. In this study, we evaluated the effects of the alkylating agent 3-BrPA on the respiratory states and the metabolic steps of the mitochondria of mice liver, brain and in human hepatocarcinoma cell line HepG2. The mitochondrial membrane potential (ΔΨ(m)), O(2) consumption and dehydrogenase activities were rapidly dissipated/or inhibited by 3-BrPA in respiration medium containing ADP and succinate as respiratory substrate. 3-BrPA inhibition was reverted by reduced glutathione (GSH). Respiration induced by yeast soluble hexokinase (HK) was rapidly inhibited by 3-BrPA. Similar results were observed using mice brain mitochondria that present HK naturally bound to the outer mitochondrial membrane. When the adenine nucleotide transporter (ANT) was blocked by the carboxyatractiloside, the 3-BrPA effect was significantly delayed. In permeabilized human hepatoma HepG2 cells that present HK type II bound to mitochondria (mt-HK II), the inhibiting effect occurred faster when the endogenous HK activity was activated by 2-deoxyglucose (2-DOG). Inhibition of mt-HK II by glucose-6-phosphate retards the mitochondria to react with 3-BrPA. The HK activities recovered in HepG2 cells treated or not with 3-BrPA were practically the same. These results suggest that mitochondrially bound HK supporting the ADP/ATP exchange activity levels facilitates the 3-BrPA inhibition reaction in tumors mitochondria by a proton motive force-dependent dynamic equilibrium between sensitive and less sensitive SDH in the electron transport system.
An Integrated Circuit for Chip-Based Analysis of Enzyme Kinetics and Metabolite Quantification.
Cheah, Boon Chong; Macdonald, Alasdair Iain; Martin, Christopher; Streklas, Angelos J; Campbell, Gordon; Al-Rawhani, Mohammed A; Nemeth, Balazs; Grant, James P; Barrett, Michael P; Cumming, David R S
2016-06-01
We have created a novel chip-based diagnostic tools based upon quantification of metabolites using enzymes specific for their chemical conversion. Using this device we show for the first time that a solid-state circuit can be used to measure enzyme kinetics and calculate the Michaelis-Menten constant. Substrate concentration dependency of enzyme reaction rates is central to this aim. Ion-sensitive field effect transistors (ISFET) are excellent transducers for biosensing applications that are reliant upon enzyme assays, especially since they can be fabricated using mainstream microelectronics technology to ensure low unit cost, mass-manufacture, scaling to make many sensors and straightforward miniaturisation for use in point-of-care devices. Here, we describe an integrated ISFET array comprising 2(16) sensors. The device was fabricated with a complementary metal oxide semiconductor (CMOS) process. Unlike traditional CMOS ISFET sensors that use the Si3N4 passivation of the foundry for ion detection, the device reported here was processed with a layer of Ta2O5 that increased the detection sensitivity to 45 mV/pH unit at the sensor readout. The drift was reduced to 0.8 mV/hour with a linear pH response between pH 2-12. A high-speed instrumentation system capable of acquiring nearly 500 fps was developed to stream out the data. The device was then used to measure glucose concentration through the activity of hexokinase in the range of 0.05 mM-231 mM, encompassing glucose's physiological range in blood. Localised and temporal enzyme kinetics of hexokinase was studied in detail. These results present a roadmap towards a viable personal metabolome machine.
Stockbridge, Randy B.; Wolfenden, Richard
2009-01-01
To evaluate the rate enhancements produced by representative kinases and their thermodynamic basis, rate constants were determined as a function of changing temperature for 1) the spontaneous methanolysis of ATP and 2) reactions catalyzed by kinases to which different mechanisms of action have been ascribed. For each of these enzymes, the minor effects of changing viscosity indicate that kcat/Km is governed by the central chemical events in the enzyme-substrate complex rather than by enzyme-substrate encounter. Individual Arrhenius plots, obtained at intervals between pH 4.8 and 11.0, yielded ΔH‡ and TΔS‡ for the nonenzymatic methanolysis of ATP2−, ATP3−, and ATP4− in the absence of Mg2+. The addition of Mg2+ led to partly compensating changes in ΔH‡ and TΔS‡, accelerating the nonenzymatic methanolysis of ATP 11-fold at pH 7 and 25 °C. The rate enhancements produced by yeast hexokinase, homoserine kinase, and N-acetylgalactosamine kinase (obtained by comparison of their kcat/Km values in the presence of saturating phosphoryl acceptor with the second order rate constant for methanolysis of MgATP) ranged between 1012- and 1014-fold. Their nominal affinities for the altered substrates in the transition state were 2.1 × 10−16 m for N-acetylgalactosamine kinase, 7.4 × 10−17 m for homoserine kinase, and 6.4 × 10−18 m for hexokinase. Compared with nonenzymatic phosphoryl transfer, all three kinases were found to produce major reductions in the entropy of activation, in accord with the likelihood that substrate juxtaposition and desolvation play prominent roles in their catalytic action. PMID:19531469
Thyroid states regulate subcellular glucose phosphorylation activity in male mice
Martins Peçanha, Flavia Letícia; dos Santos, Reinaldo Sousa
2017-01-01
The thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), are very important in organism metabolism and regulate glucose utilization. Hexokinase (HK) is responsible for the first step of glycolysis, catalyzing the conversion of glucose to glucose 6-phosphate. HK has been found in different cellular compartments, and new functions have been attributed to this enzyme. The effects of hyperthyroidism on subcellular glucose phosphorylation in mouse tissues were examined. Tissues were removed, subcellular fractions were isolated from eu- and hyperthyroid (T3, 0.25 µg/g, i.p. during 21 days) mice and HK activity was assayed. Glucose phosphorylation was increased in the particulate fraction in soleus (312.4% ± 67.1, n = 10), gastrocnemius (369.2% ± 112.4, n = 10) and heart (142.2% ± 13.6, n = 10) muscle in the hyperthyroid group compared to the control group. Hexokinase activity was not affected in brain or liver. No relevant changes were observed in HK activity in the soluble fraction for all tissues investigated. Acute T3 administration (single dose of T3, 1.25 µg/g, i.p.) did not modulate HK activity. Interestingly, HK mRNA levels remained unchanged and HK bound to mitochondria was increased by T3 treatment, suggesting a posttranscriptional mechanism. Analysis of the AKT pathway showed a 2.5-fold increase in AKT and GSK3B phosphorylation in the gastrocnemius muscle in the hyperthyroid group compared to the euthyroid group. Taken together, we show for the first time that THs modulate HK activity specifically in particulate fractions and that this action seems to be under the control of the AKT and GSK3B pathways. PMID:28483784
Crisp, D. M.; Pogson, C. I.
1972-01-01
1. Parenchymal cells have been prepared from mouse liver by enzymic and mechanical means. 2. The dry weights, protein and DNA contents of these cells have been determined. 3. Mouse liver `M-' and `L-type' pyruvate kinases have been prepared free of contamination with each other; their kinetic properties have been examined and a method has been developed for their assay in total liver homogenates. 4. Recoveries of phosphoglycerate kinase, lactate dehydrogenase and phosphofructokinase in enzymically prepared cells indicate that little, if any, cytoplasmic protein is lost during preparation. 5. Parenchymal cells exhibit a very substantial increase in the activity ratio of glucokinase to hexokinase over that in total liver homogenate; in three out of eight experiments, hexokinase activity was undetectable. 6. `L-type' pyruvate kinase alone occurs in the parenchymal cell. Non-parenchymal cells are characterized by the presence of `M-type' activity only. 7. Parenchymal cells contain both glucose 6-phosphatase and fructose 1,6-diphosphatase. The non-parenchymal fraction appears to contain fructose 1,6-diphosphatase, but is devoid of glucose 6-phosphatase. 8. No aldolase A was detectable in the whole liver. Aldolase B occurs in both parenchymal and non-parenchymal tissue. 9. Parenchymal cells prepared by mechanical disruption of mouse liver with 20% polyvinyl alcohol exhibit a similar enzyme profile to those prepared enzymically. 10. The methodology involved in the preparation of isolated liver cells is discussed. The importance of the measurement of several parameters as criteria for establishing the viability of parenchymal cells is stressed. 11. The metabolic implications of the results in the present study are discussed. PMID:4262895
Tunholi-Alves, Vinícius Menezes; Tunholi, Victor Menezes; Garcia, Juberlan; Mota, Esther Maria; Castro, Rosane Nora; Pontes, Emerson Guedes; Pinheiro, Jairo
2018-06-01
For the first time, alterations in the oxidative metabolism of Achatina fulica experimentally infected with different parasite loads of Angiostrongylus cantonensis were determined. For this, the hemolymph activities of lactate dehydrogenase (LDH) and hexokinase and the glucose concentrations in the hemolymph, as well as the polysaccharide reserves in the digestive gland and cephalopedal mass, were assessed. Additionally, the contents of some carboxylic acids in the hemolymph of infected and uninfected snails were determined by high-performance liquid chromatography (HPLC), permitting a better understanding of the alterations related to the host's oxidative metabolism. As the main results, activation of oxidative pathways, such as the glycolytic pathway, was demonstrated in response to the increase in the activity of hexokinase. This tendency was confirmed by the decrease in the contents of glucose in the hemolymph of parasitized snails, indicating that the infection by A. cantonensis alters the host's metabolism, and that these changes are strongly influenced by the parasite load. This metabolic scenario was accompanied by activation of the anaerobic fermentative metabolism, indicated not only by an increase in the activity of (LDH), but also by a reduction of the content of pyruvic acid and accumulation of lactic acid in the hemolymph of parasitized snails. In this circumstance, maintenance of the host's redox balance occurs through activation of the fermentative pathways, and LDH plays a central role in this process. Together, the results indicate that A. cantonensis infection induces activation of the anaerobic metabolism of A. fulica, characterized not only by the accumulation of lactic acid, but also by a reduction in the pyruvic acid and oxalic acid contents in the hemolymph of the infected snails.
Yazgan, Ümit Can; Taşdemir, Ezel; Bilgin, Hakkı Murat; Deniz Obay, Basra; Şermet, Abdurrahman; Elbey, Bilal
2015-01-01
The aim of this study was to compare the effect of the resveratrol with gliclazide and losartan in streptozotocin induced diabetic rats. Adult male Wistar albino rats were divided into five groups of seven rats each. Diabetes was induced with a single intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg). Rats with blood glucose levels above 250 mg/dl after 48 h of streptozotocin injection were included in the diabetic group. Gliclazide and resveratrol were administered for 3 weeks at 5 mg/kg per day and losartan was administered for 3 weeks at 30 mg/kg per day in an oral aqueous suspension. At the end of the third week all rats were euthanized and fasting blood glucose, HbA1c and the metabolic activity of the hepatic enzymes hexokinase and glucose-6 phosphate dehydrogenase were measured in tail blood and liver specimens. All parameters were quantified using an ELISA plate reader. Resveratrol and gliclazide significantly reduced both blood glucose levels and HbA1c levels in diabetic rats (p < 0.001). However, losartan did not exhibit the same effects (p < 0.05). The enzymatic activity of the liver enzymes hexokinase, glucose-6 phosphate dehydrogenase, fructose 1,6-biphosphatase, pyruvate kinase and glucose-6 phosphatase were enhanced by resveratrol and gliclazide, while losartan treatment was not associated with significant changes in liver carbohydrate metabolism. Resveratrol was not effective in improving liver carbohydrate metabolism relative to gliclazide, a drug widely used to treat diabetes. Dose-response profile of resveratrol remains indeterminate and additional studies may be necessary to determine effective dosing in diabetes.
Dienel, Gerald A; Cruz, Nancy F; Sokoloff, Louis; Driscoll, Bernard F
2017-01-01
2-Deoxy-D-[ 14 C]glucose ([ 14 C]DG) is commonly used to determine local glucose utilization rates (CMR glc ) in living brain and to estimate CMR glc in cultured brain cells as rates of [ 14 C]DG phosphorylation. Phosphorylation rates of [ 14 C]DG and its metabolizable fluorescent analog, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), however, do not take into account differences in the kinetics of transport and metabolism of [ 14 C]DG or 2-NBDG and glucose in neuronal and astrocytic cells in cultures or in single cells in brain tissue, and conclusions drawn from these data may, therefore, not be correct. As a first step toward the goal of quantitative determination of CMR glc in astrocytes and neurons in cultures, the steady-state intracellular-to-extracellular concentration ratios (distribution spaces) for glucose and [ 14 C]DG were determined in cultured striatal neurons and astrocytes as functions of extracellular glucose concentration. Unexpectedly, the glucose distribution spaces rose during extreme hypoglycemia, exceeding 1.0 in astrocytes, whereas the [ 14 C]DG distribution space fell at the lowest glucose levels. Calculated CMR glc was greatly overestimated in hypoglycemic and normoglycemic cells because the intracellular glucose concentrations were too high. Determination of the distribution space for [ 14 C]glucose revealed compartmentation of intracellular glucose in astrocytes, and probably, also in neurons. A smaller metabolic pool is readily accessible to hexokinase and communicates with extracellular glucose, whereas the larger pool is sequestered from hexokinase activity. A new experimental approach using double-labeled assays with DG and glucose is suggested to avoid the limitations imposed by glucose compartmentation on metabolic assays.
Pan, Minglin; Han, Ying; Basu, Aninda; Dai, Anzhi; Si, Rui; Willson, Conor; Balistrieri, Angela; Scott, Brian T; Makino, Ayako
2018-03-07
Coronary microvascular rarefaction due to endothelial cell (EC) dysfunction is one of the causes of increased morbidity and mortality in diabetes. Coronary ECs in diabetes are more apoptotic due partly to mitochondrial calcium overload. This study was designed to investigate the role of hexokinase 2 (HK2, an endogenous inhibitor of voltage-dependent anion channel) in coronary endothelial dysfunction in type 2 diabetes. We used mouse coronary ECs (MCECs) isolated from type 2 diabetic mice and human coronary ECs (HCECs) from type 2 diabetic patients to examine protein levels and mitochondrial functions. ECs were more apoptotic and capillary density was lower in the left ventricle of diabetic mice than the control. MCECs from diabetic mice exhibited significant increase in mitochondrial Ca 2+ concentration ([Ca 2+ ] mito ) compared to the control. Among several regulatory proteins for [Ca 2+ ] mito , HK1 and HK2 were significantly lower in MCECs from diabetic mice than control MCECs. We also found that the level of HK2 ubiquitination was higher in MCECs from diabetic mice than in control MCECs. In line with the data from MCECs, HCECs from diabetic patients showed lower HK2 protein levels than HCECs from non-diabetic patients. High-glucose treatment, but not high-fat treatment, significantly decreased HK2 protein levels in the MCEC. HK2 overexpression in MCECs of diabetic mice not only lowered the level of [Ca 2+ ] mito , but also reduced mitochondrial ROS production toward the level seen in control MCECs. These data suggest that HK2 is a potential therapeutic target for coronary microvascular disease in diabetes by restoring mitochondrial function in coronary ECs.
Mukherjee, Abir; Ma, Yibao; Yuan, Fang; Gong, Yongling; Fang, Zhenyu; Mohamed, Esraa M.; Berrios, Erika; Shao, Huanjie; Fang, Xianjun
2015-01-01
Lysophosphatidic acid (LPA), a blood-borne lipid mediator, is present in elevated concentrations in ascites of ovarian cancer patients and other malignant effusions. LPA is a potent mitogen in cancer cells. The mechanism linking LPA signal to cancer cell proliferation is not well understood. Little is known about whether LPA affects glucose metabolism to accommodate rapid proliferation of cancer cells. Here we describe that in ovarian cancer cells, LPA enhances glycolytic rate and lactate efflux. A real time PCR-based miniarray showed that hexokinase II (HK2) was the most dramatically induced glycolytic gene to promote glycolysis in LPA-treated cells. Analysis of the human HK2 gene promoter identified the sterol regulatory element-binding protein as the primary mediator of LPA-induced HK2 transcription. The effects of LPA on HK2 and glycolysis rely on LPA2, an LPA receptor subtype overexpressed in ovarian cancer and many other malignancies. We further examined the general role of growth factor-induced glycolysis in cell proliferation. Like LPA, epidermal growth factor (EGF) elicited robust glycolytic and proliferative responses in ovarian cancer cells. Insulin-like growth factor 1 (IGF-1) and insulin, however, potently stimulated cell proliferation but only modestly induced glycolysis. Consistent with their differential effects on glycolysis, LPA and EGF-dependent cell proliferation was highly sensitive to glycolytic inhibition while the growth-promoting effect of IGF-1 or insulin was more resistant. These results indicate that LPA- and EGF-induced cell proliferation selectively involves up-regulation of HK2 and glycolytic metabolism. The work is the first to implicate LPA signaling in promotion of glucose metabolism in cancer cells. PMID:26476080
Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis.
Chen, Yi-Shih; Chao, Yi-Chi; Tseng, Tzu-Wei; Huang, Chun-Kai; Lo, Pei-Ching; Lu, Chung-An
2017-02-01
Sugar regulation of gene expression has profound effects at all stages of the plant life cycle. Although regulation at the transcriptional level is one of the most prominent mechanisms by which gene expression is regulated, only a few transcription factors have been identified and demonstrated to be involved in the regulation of sugar-regulated gene expression. OsMYBS1, an R1/2-type MYB transcription factor, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase gene expression in rice. Arabidopsis contains two OsMYBS1 homologs. In the present study, we investigate MYBS1 and MYBS2 in sugar signaling in Arabidopsis. Our results indicate that MYBS1 and MYBS2 play opposite roles in regulating glucose and ABA signaling in Arabidopsis during seed germination and early seedling development. MYB proteins have been classified into four subfamilies: R2R3-MYB, R1/2-MYB, 3R-MYB, and 4R-MYB. An R1/2-type MYB transcription factor, OsMYBS1, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase genes expression in rice. In this study, two genes homologous to OsMYBS1, MYBS1 and MYBS2, were investigated in Arabidopsis. Subcellular localization analysis showed that MYBS1 and MYBS2 were localized in the nucleus. Rice embryo transient expression assays indicated that both MYBS1 and MYBS2 could recognize the sugar response element, TA-box, in the promoter and induced promoter activity. mybs1 mutant exhibited hypersensitivity to glucose, whereas mybs2 seedlings were hyposensitive to it. MYBS1 and MYBS2 are involved in the control of glucose-responsive gene expression, as the mybs1 mutant displayed increased expression of a hexokinase gene (HXK1), chlorophyll a/b-binding protein gene (CAB1), ADP-glucose pyrophosphorylase gene (APL3), and chalcone synthase gene (CHS), whereas the mybs2 mutant exhibited decreased expression of these genes. mybs1 also showed an enhanced response to abscisic acid (ABA) in the seed germination and seedling growth stages, while mybs2 showed reduced responses. The ABA biosynthesis inhibitor fluridone rescued the mybs1 glucose-hypersensitive phenotype. Moreover, the mRNA levels of three ABA biosynthesis genes, ABA1, NCED9, and AAO3, and three ABA signaling genes, ABI3, ABI4, and ABI5, were increased upon glucose treatment of mybs1 seedlings, but were decreased in mybs2 seedlings. These results indicate that MYBS1 and MYBS2 play opposite roles in regulating glucose and ABA signaling in Arabidopsis during seed germination and early seedling development.
Han, Sungwon; Auger, Christopher; Thomas, Sean C; Beites, Crestina L; Appanna, Vasu D
2014-02-01
The significance of metabolic networks in guiding the fate of the stem cell differentiation is only beginning to emerge. Oxidative metabolism has been suggested to play a major role during this process. Therefore, it is critical to understand the underlying mechanisms of metabolic alterations occurring in stem cells to manipulate the ultimate outcome of these pluripotent cells. Here, using P19 murine embryonal carcinoma cells as a model system, the role of mitochondrial biogenesis and the modulation of metabolic networks during dimethyl sulfoxide (DMSO)-induced differentiation are revealed. Blue native polyacrylamide gel electrophoresis (BN-PAGE) technology aided in profiling key enzymes, such as hexokinase (HK) [EC 2.7.1.1], glucose-6-phosphate isomerase (GPI) [EC 5.3.1.9], pyruvate kinase (PK) [EC 2.7.1.40], Complex I [EC 1.6.5.3], and Complex IV [EC 1.9.3.1], that are involved in the energy budget of the differentiated cells. Mitochondrial adenosine triphosphate (ATP) production was shown to be increased in DMSO-treated cells upon exposure to the tricarboxylic acid (TCA) cycle substrates, such as succinate and malate. The increased mitochondrial activity and biogenesis were further confirmed by immunofluorescence microscopy. Collectively, the results indicate that oxidative energy metabolism and mitochondrial biogenesis were sharply upregulated in DMSO-differentiated P19 cells. This functional metabolic and proteomic study provides further evidence that modulation of mitochondrial energy metabolism is a pivotal component of the cellular differentiation process and may dictate the final destiny of stem cells.
Lis, Paweł; Dyląg, Mariusz; Niedźwiecka, Katarzyna; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław
2016-12-15
This review summarizes the current state of knowledge about the metabolism of cancer cells, especially with respect to the "Warburg" and "Crabtree" effects. This work also summarizes two key discoveries, one of which relates to hexokinase-2 (HK2), a major player in both the "Warburg effect" and cancer cell immortalization. The second discovery relates to the finding that cancer cells, unlike normal cells, derive as much as 60% of their ATP from glycolysis via the "Warburg effect", and the remaining 40% is derived from mitochondrial oxidative phosphorylation. Also described are selected anticancer agents which generally act as strong energy blockers inside cancer cells. Among them, much attention has focused on 3-bromopyruvate (3BP). This small alkylating compound targets both the "Warburg effect", i.e., elevated glycolysis even in the presence oxygen, as well as mitochondrial oxidative phosphorylation in cancer cells. Normal cells remain unharmed. 3BP rapidly kills cancer cells growing in tissue culture, eradicates tumors in animals, and prevents metastasis. In addition, properly formulated 3BP shows promise also as an effective anti-liver cancer agent in humans and is effective also toward cancers known as "multiple myeloma". Finally, 3BP has been shown to significantly extend the life of a human patient for which no other options were available. Thus, it can be stated that 3BP is a very promising new anti-cancer agent in the process of undergoing clinical development.
[Aluminum--occurrence and toxicity for organisms].
Ochmański, W; Barabasz, W
2000-01-01
Aluminium (Al.) is an ubiquitous element found in every food product. The sources of Al. are especially corn, yellow cheese, salt, herbs, spices, tea and tap water. In household Al.-made ware is a major source of the element. Al. may cause diseases in humans, especially hampers many metabolic processes especially turnover of calcium, phosphorus and iron. Salts of Al. may bind to DNA, RNA, inhibit such enzymes as hexokinase, acid and alkaline phosphatases, phosphodiesterase and phosphooxydase. Al. salts are especially harmful to nervous, hematopoietic systems and to skeleton. Al. gets to organism with food, water, cosmetics, from aluminium ware and containers. Toxicity comes from substitution of Mg and Fe ions effecting in disturbances in intracellular signaling, excretory functions and cellular growth. Neurotoxic action of Al. probably comes from substitution of Mg ions in ATP, what finally influences function of every ATP using-enzymes. There are observations in experimental models proving Al. salts are responsible for Alzheimer disease development. Toxicity of Al. to skeletal system results in diminished resistance thus tendencies to breaking, and comes from lower collagen synthesis and slowing down of mineralisation. Low erythropoietin production, inhibition of hem-synthesing enzymes and binding of Al. to transferrin, effects in anaemia. Carcinogenic effects of Al. were nor proved nor denied, but high concentrations of Al. were found in many neoplastic cells. In conclusion, we should introduce prophylactic measures effecting in less Al. intake esp. avoiding use of Al.-made ware nad controlling food for Al. content.
Ding, Fan; Yao, Jia; Rettberg, Jamaica R.; Chen, Shuhua; Brinton, Roberta Diaz
2013-01-01
We previously demonstrated that mitochondrial bioenergetic deficits in the female brain accompanied reproductive senescence and was accompanied by a shift from an aerobic glycolytic to a ketogenic phenotype. Herein, we investigated the relationship between systems of fuel supply, transport and mitochondrial metabolic enzyme expression/activity during aging (3–15 months) in the hippocampus of nontransgenic (nonTg) background and 3xTgAD female mice. Results indicate that during female brain aging, both nonTg and 3xTgAD brains undergo significant decline in glucose transport, as detected by FDG-microPET, between 6–9 months of age just prior to the transition into reproductive senescence. The deficit in brain metabolism was sustained thereafter. Decline in glucose transport coincided with significant decline in neuronal glucose transporter expression and hexokinase activity with a concomitant rise in phosphorylated/inactivated pyruvate dehydrogenase. Lactate utilization declined in parallel to the decline in glucose transport suggesting lactate did not serve as an alternative fuel. An adaptive response in the nonTg hippocampus was a shift to transport and utilization of ketone bodies as an alternative fuel. In the 3xTgAD brain, utilization of ketone bodies as an alternative fuel was evident at the earliest age investigated and declined thereafter. The 3xTgAD adaptive response was to substantially increase monocarboxylate transporters in neurons while decreasing their expression at the BBB and in astrocytes. Collectively, these data indicate that the earliest change in the metabolic system of the aging female brain is the decline in neuronal glucose transport and metabolism followed by decline in mitochondrial function. The adaptive shift to the ketogenic system as an alternative fuel coincided with decline in mitochondrial function. Translationally, these data provide insights into the earliest events in bioenergetic aging of the female brain and provide potential targets for preventing shifts to less efficient bioenergetic fuels and transition to the ketogenic phenotype of the Alzheimer's brain. PMID:24244584
Zhang, Xueyan; Ai, Ziying; Chen, Jing; Yi, Juan; Liu, Zhuan; Zhao, Huaishun; Wei, Hulai
2017-04-01
In human leukaemia, resistance to chemotherapy leads to treatment ineffectiveness or failure. Previous studies have indicated that cancers with increased levels of aerobic glycolysis are insensitive to numerous forms of chemotherapy and respond poorly to radiotherapy. Whether glycolysis serves a key role in drug resistance of leukaemia cells remains unclear. The present study systematically investigated aerobic glycolytic alterations and regulation in K562/adriamycin (ADM) multidrug‑resistant (MDR) and ADM‑sensitive K562 leukaemia cells in normoxia, and the association between drug resistance and improper glycometabolism. The cell proliferating activity was assessed with an MTT colorimetric assay, glycolysis, including glucose consumption, lactate export and key‑enzyme activity was determined by corresponding commercial testing kits. The expression levels of hexokinase‑II (HK‑II), lactate dehydrogenase A (LDHA), glucose transporter‑4 (GLUT‑4), AKT, p‑AKT473/308, mammalian target of rapamycin (mTOR), p‑mTOR, c‑Myc and hypoxia‑inducible factor‑1α (HIF‑1α) were analyzed by western blot or reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). K562/ADM cells exhibited increased glucose consumption and lactate accumulation, increased lactate dehydrogenase, hexokinase and pyruvate kinase activities, and reduced phosphofructokinase activity. In addition, K562/ADM cells expressed significantly more HK‑II and GLUT‑4. Notably, inhibition of glycolysis effectively killed sensitive and resistant leukaemia cells and potently restored the sensitivity of MDR cells to the anticancer agent ADM. The AKT serine/threonine kinase (AKT)/mechanistic target of rapamycin (mTOR) signalling pathway, a crucial regulator of glycometabolic homeostasis, mediated over‑activation and upregulation of c‑Myc expression levels in K562/ADM cells, which directly stimulated glucose consumption and enhanced glycolysis. In conclusion, the present study demonstrated that MDR leukaemia cells exhibit increased aerobic glycolytic activity and that this may be responsible for resistance to chemotherapeutics in leukaemia MDR cells via activation of the AKT‑mTOR‑c‑Myc signalling pathway. Therefore, inhibition of aerobic glycolysis may be a potential therapeutic strategy to efficiently treat multidrug resistance in relapsed or refractory leukaemia and cancers.
Improved Xylose Metabolism by a CYC8 Mutant of Saccharomyces cerevisiae.
Nijland, Jeroen G; Shin, Hyun Yong; Boender, Leonie G M; de Waal, Paul P; Klaassen, Paul; Driessen, Arnold J M
2017-06-01
Engineering Saccharomyces cerevisiae for the utilization of pentose sugars is an important goal for the production of second-generation bioethanol and biochemicals. However, S. cerevisiae lacks specific pentose transporters, and in the presence of glucose, pentoses enter the cell inefficiently via endogenous hexose transporters (HXTs). By means of in vivo engineering, we have developed a quadruple hexokinase deletion mutant of S. cerevisiae that evolved into a strain that efficiently utilizes d-xylose in the presence of high d-glucose concentrations. A genome sequence analysis revealed a mutation (Y353C) in the general corepressor CYC8 , or SSN6 , which was found to be responsible for the phenotype when introduced individually in the nonevolved strain. A transcriptome analysis revealed altered expression of 95 genes in total, including genes involved in (i) hexose transport, (ii) maltose metabolism, (iii) cell wall function (mannoprotein family), and (iv) unknown functions (seripauperin multigene family). Of the 18 known HXTs, genes for 9 were upregulated, especially the low or nonexpressed HXT10 , HXT13 , HXT15 , and HXT16 Mutant cells showed increased uptake rates of d-xylose in the presence of d-glucose, as well as elevated maximum rates of metabolism ( V max ) for both d-glucose and d-xylose transport. The data suggest that the increased expression of multiple hexose transporters renders d-xylose metabolism less sensitive to d-glucose inhibition due to an elevated transport rate of d-xylose into the cell. IMPORTANCE The yeast Saccharomyces cerevisiae is used for second-generation bioethanol formation. However, growth on xylose is limited by pentose transport through the endogenous hexose transporters (HXTs), as uptake is outcompeted by the preferred substrate, glucose. Mutant strains were obtained with improved growth characteristics on xylose in the presence of glucose, and the mutations mapped to the regulator Cyc8. The inactivation of Cyc8 caused increased expression of HXTs, thereby providing more capacity for the transport of xylose, presenting a further step toward a more robust process of industrial fermentation of lignocellulosic biomass using yeast. Copyright © 2017 American Society for Microbiology.
Lv, Zengpeng; Fan, Hao; Zhang, Beibei; Ning, Chao; Xing, Kun; Guo, Yuming
2018-03-08
Genistein (GEN) is a type of isoflavone mainly derived from soy products. In this experiment, we added 40 and 400 mg/kg GEN to the diet of laying broiler breeder hens to clarify the maternal effects of GEN on the development and metabolism of chick embryos. GEN treatment at 40 mg/kg increased embryonic length, weight, and liver index, as well as the width of the proliferative zone in the tibial growth plate of chick embryos. Gene ontology (GO) cluster analysis of the hepatic transcriptome showed that GEN treatment promoted embryonic development and cell proliferation. Low-dose GEN treatment increased insulin growth factor-binding protein (IGFBP)3 mRNA expression in the embryonic liver, whereas high-dose GEN treatment increased IGFBP5 expression and activated the apoptosis and protein tyrosine kinase signaling pathways. Furthermore, adding supplemental GEN to the diet of hens promoted the glycolysis process in the embryonic liver through the insulin-signaling pathway, upregulated target genes (phosphoglucomutase-2, hexokinase 1, dihydroxyacetone phosphate by aldolase, phosphofructokinase, platelet, and enolase 2), and enhanced the transport of carboxylic acids and cholesterol and the synthesis of unsaturated fatty acid (arachidonic acid) in the embryonic liver through upregulation of liver X receptor, sterol regulatory element-binding protein 1, and patatin-like phospholipase A. Additionally, GEN treatment increased fatty acid β-oxidation and Na + /K + -ATPase activity in the embryonic liver through activation of peroxisome proliferator-activated receptors (PPARs; PPARα and PPARδ) and the AMPK signaling pathway, which could provide energy for embryonic development. In addition, GEN treatment in hens increased superoxide dismutase activity and metallothionein expression in the chick embryonic liver and promoted lymphocyte proliferation through upregulation of mRNA expression of CDKN1A, IL12RB1, Sox11, PRKAR1A, PRKCQ, and TCF3. The improved immunity and antioxidant capacity, as a result of maternal GEN effects, was conducive to embryonic development. In conclusion, the addition of GEN to the diet of laying broiler breeder hens significantly promoted the development and metabolism of chick embryos.-Lv, Z., Fan, H., Zhang, B., Ning, C., Xing, K., Guo, Y. Dietary genistein supplementation in laying broiler breeder hens alters the development and metabolism of offspring embryos as revealed by hepatic transcriptome analysis.
Glycolysis in Panc-1 human pancreatic cancer cells is inhibited by everolimus.
Liu, Ling; Gong, Liansheng; Zhang, Yangde; Li, Nianfeng
2013-01-01
The aim of this study was to evaluate the effects and molecular mechanisms of everolimus on Panc-1 human pancreatic cancer cells. Panc-1 human pancreatic cancer cells were treated with everolimus (10 μg/ml) at selected time points (6, 12 and 24 h). Cell proliferation and apoptosis were evaluated by MTT and flow cytometric analyses. The glycolytic activity was determined by measuring the activity of the key enzyme lactate dehydrogenase (LDH) and lactate production. The activity of mammalian target of rapamycin (mTOR) signaling was measured by western blotting. The expression of genes, including hexokinase 2 (HK2) and microRNA-143 (miR-143), was evaluated by real-time polymerase chain reaction (PCR). The administration of everolimus time-dependently inhibited proliferation and glycolysis and induced apoptosis in the Panc-1 human pancreatic cancer cells. As the time of treatment with everolimus increased, the mTOR signaling activity decreased, indicated by lower phosphorylation levels of S6 kinase; however, the phosphorylation levels of mTOR barely changed. Moreover, our data showed an everolimus-induced increase in miR-143 and decrease in HK2 in Panc-1 cells in a time-dependent manner. In conclusion, the current study indicates a novel role of everolimus in its antitumor effect as an inhibitor of glycolysis in Panc-1 human pancreatic cancer cells. Furthermore, our data highlights the significance of exploring the mechanisms of everolimus and miR-143 in malignant tumors.
Huang, Jian -Ping; Tunc-Ozdemir, Meral; Chang, Ying; ...
2015-10-13
HEXOKINASE 1 (AtHXK1) and Regulator of G-protein Signaling 1 (AtRGS1) pathways, mediate D-glucose signaling in Arabidopsis. However, it is not known the degree, if any, that these pathways overlap and how. We show modest signaling crosstalk between these pathways, albeit complex with both epistatic interactions and additive effects that may be indirect. The action of HXK1 on AtRGS1 signaling lies downstream of the primary step in G protein-mediated sugar signaling in which the WD-repeat protein, AGB1, is the propelling signaling element. RHIP1, a previously unknown protein predicted here to have a 3-stranded helical structure, interacts with both AtRGS1 and AtHXK1more » in planta and is required for some glucose-regulated gene expression, providing a physical connection between these two proteins in sugar signaling. The rhip1 null mutant displays similar seedling growth phenotypes as rgs1-2 in response to glucose, further suggesting a role for RHIP1 in glucose signaling. Lastly, glucose signaling is a complex hierarchical relationship which is specific to the target gene and sugar phenotype and suggests that there are two glycolysis-independent glucose signaling sensors: AtRGS1 and AtHXK1 that weakly communicate with each other via feed-back and feed-forward loops to fine tune the response to glucose.« less
Hwang, Daw-Yang; Ismail-Beigi, Faramarz
2002-03-15
Glut-1-mediated glucose transport is augmented in response to a variety of conditions and stimuli. In this study we examined the metabolic fate of glucose in cells in which glucose transport is stimulated by exposure to CoCl(2), an agent that stimulates the expression of a set of hypoxia-responsive genes including several glycolytic enzymes and the Glut-1 glucose transporter. Similarly, we determined the metabolic fate of glucose in stably transfected cells overexpressing Glut-1. Exposure of Clone 9 liver cell line, 3T3-L1 fibroblasts, and C(2)C(12) myoblasts to CoCl(2) resulted in an increase glucose uptake and in the activity of glucose phosphorylation ("hexokinase") and lactate dehydrogenase. In cells treated with CoCl(2), the net increase in glucose taken up was accounted for by its near-complete conversion to lactate. Cells stably transfected to overexpress Glut-1 also exhibited enhanced net uptake of glucose with the near-complete conversion of the increased glucose taken up to lactate; however, the effect in these cells was observed in the absence of any change in the activity of two glycolytic enzymes examined. These findings suggest that in cells in which glucose transport is rate-limiting for glucose metabolism, enhancement of the glucose entry step per se results in a near-complete conversion of the extra glucose to lactate.
Ibarguren, I; Villamarín, J A; Barcia, R; Ramos-Martínez, J I
1989-12-01
Concentrations of glycolytic intermediates and adenine nucleotides have been estimated in adductor muscle and hepatopancreas from the sea mussel Mytilus galloprovincialis Lmk. after various periods of valve closure. Mass action ratios of enzyme steps involved in the metabolism of these components are compared with their equilibrium constants. This reveals hexokinase, phosphofructokinase, pyruvate kinase and fructose-1,6-bisphosphatase catalyze non-equilibrium reactions. The changes in the concentrations of the glycolytic intermediates and in the rate M.A.R./Keq during hypoxia suggest that the carbon flow after valve closure is first controlled by phophofructokinase, but later on the rate of transformation of phosphoenolyruvate regulates this flow.
Arsenate arrests flagellar rotation in cytoplasm-free envelopes of bacteria.
Margolin, Y; Barak, R; Eisenbach, M
1994-01-01
The effect of arsenate on flagellar rotation in cytoplasm-free flagellated envelopes of Escherichia coli and Salmonella typhimurium was investigated. Flagellar rotation ceased as soon as the envelopes were exposed to arsenate. Inclusion of phosphate intracellularly (but not extracellular) prevented the inhibition by arsenate. In a parallel experiment, the rotation was not affected by inclusion of an ATP trap (hexokinase and glucose) within the envelopes. It is concluded that arsenate affects the motor in a way other than reversible deenergization. This may be an irreversible damage to the cell or direct inhibition of the motor by arsenate. The latter possibility suggests that a process of phosphorylation or phosphate binding is involved in the motor function. PMID:8071237
LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training.
Sriwijitkamol, Apiradee; Ivy, John L; Christ-Roberts, Christine; DeFronzo, Ralph A; Mandarino, Lawrence J; Musi, Nicolas
2006-05-01
AMPK is a key regulator of fat and carbohydrate metabolism. It has been postulated that defects in AMPK signaling could be responsible for some of the metabolic abnormalities of type 2 diabetes. In this study, we examined whether insulin-resistant obese Zucker rats have abnormalities in the AMPK pathway. We compared AMPK and ACC phosphorylation and the protein content of the upstream AMPK kinase LKB1 and the AMPK-regulated transcriptional coactivator PPARgamma coactivator-1 (PGC-1) in gastrocnemius of sedentary obese Zucker rats and sedentary lean Zucker rats. We also examined whether 7 wk of exercise training on a treadmill reversed abnormalities in the AMPK pathway in obese Zucker rats. In the obese rats, AMPK phosphorylation was reduced by 45% compared with lean rats. Protein expression of the AMPK kinase LKB1 was also reduced in the muscle from obese rats by 43%. In obese rats, phosphorylation of ACC and protein expression of PGC-1alpha, two AMPK-regulated proteins, tended to be reduced by 50 (P = 0.07) and 35% (P = 0.1), respectively. There were no differences in AMPKalpha1, -alpha2, -beta1, -beta2, and -gamma3 protein content between lean and obese rats. Training caused a 1.5-fold increase in AMPKalpha1 protein content in the obese rats, although there was no effect of training on AMPK phosphorylation and the other AMPK isoforms. Furthermore, training also significantly increased LKB1 and PGC-1alpha protein content 2.8- and 2.5-fold, respectively, in the obese rats. LKB1 protein strongly correlated with hexokinase II activity (r = 0.75, P = 0.001), citrate synthase activity (r = 0.54, P = 0.02), and PGC-1alpha protein content (r = 0.81, P < 0.001). In summary, obese insulin-resistant rodents have abnormalities in the LKB1-AMPK-PGC-1 pathway in muscle, and these abnormalities can be restored by training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandasamy, Neelamegam; Ashokkumar, Natarajan, E-mail: npashokkumar1@gmail.com
Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine,more » blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative nephrotoxicant whether ingested or inhaled. • Myricetin enhances insulin secretion from the damaged pancreatic β-cells. • Myricetin can eliminate metals and scavenge chemical induced free radicals. • Myricetin enhances the glucose uptake by regulating insulin signaling pathway.« less
Xiao, Y P; Wu, T X; Sun, J M; Yang, L; Hong, Q H; Chen, A G; Yang, C M
2012-12-01
A novel metabolomic method based on gas chromatography-mass spectrometry was applied to investigate serum metabolites in response to dietary Gln supplementation in piglets. Sixteen, 21-d-old pigs were weaned and assigned randomly to 2 isonitrogenous diets: 1) Gln diet, which contained 1% L-Gln (as-fed basis), and 2) control diet, which contained L-Ala to make this diet isonitrogenous with the Gln diet. Serum samples were collected to characterize metabolites after a 30-d treatment. in addition, 4 liver samples per treatment were collected to examine enzyme activity and gene expression involved in metabolic regulation. Results indicated that 12 metabolites were altered (P < 0.05) by Gln treatment, including carbohydrates, AA, and fatty acids. A leave-one-out cross validation of random forest analysis indicated that Pro was most important among the 12 metabolites. Thus, these data demonstrate that the control and Gln-supplemented pigs differed (P < 0.05) in terms of metabolism of carbohydrates, Pro, Tyr, and glycerophospholipids. Principal component analysis yielded separate clusters of profiles between the Gln and control groups. Metabolic enzyme activities of Ala aminotransferase and hexokinase increased by 26.8% (P = 0.026) and 26.2% (P = 0.004) in the liver of Gln-supplemented pigs vs. control, respectively, whereas pyruvate kinase (PK) activity decreased by 29.1% (P = 0.001). The gene expression of PK in the liver decreased by 66.1% (P = 0.034) by Gln treatment for 30 d. No differences were observed for the mRNA abundance of mammalian target of rapamycin and PPARγ. On the basis of these data, Gln treatment affected carbohydrate, lipid, and AA metabolism in the whole body of the early weaned piglets. These findings provide insight into specific metabolic pathways and lay the groundwork for the complex metabolic alteration in response to dietary Gln supplementation of pigs.
Skiba-Cassy, Sandrine; Panserat, Stéphane; Larquier, Mélanie; Dias, Karine; Surget, Anne; Plagnes-Juan, Elisabeth; Kaushik, Sadasivam; Seiliez, Iban
2013-04-28
The rainbow trout (Oncorhynchus mykiss) exhibits high dietary amino acid requirements and an apparent inefficiency to use dietary carbohydrates. Using this species, we investigated the metabolic consequences of long-term high carbohydrates/low protein feeding. Fish were fed two experimental diets containing either 20% carbohydrates/50% proteins (C20P50), or high levels of carbohydrates at the expense of proteins (35% carbohydrates/35% proteins--C35P35). The expression of genes related to hepatic and muscle glycolysis (glucokinase (GK), pyruvate kinase and hexokinase) illustrates the poor utilisation of carbohydrates irrespective of their dietary levels. The increased postprandial GK activity and the absence of inhibition of the gluconeogenic enzyme glucose-6-phosphatase activity support the hypothesis of the existence of a futile cycle around glucose phosphorylation extending postprandial hyperglycaemia. After 9 weeks of feeding, the C35P35-fed trout displayed lower body weight and feed efficiency and reduced protein and fat gains than those fed C20P50. The reduced activation of eukaryotic translation initiation factor 4-E binding protein 1 (4E-BP1) in the muscle in this C35P35 group suggests a reduction in protein synthesis, possibly contributing to the reduction in N gain. An increase in the dietary carbohydrate:protein ratio decreased the expression of genes involved in amino acid catabolism (serine dehydratase and branched-chain α-keto acid dehydrogenase E1α and E1β), and increased that of carnitine palmitoyltransferase 1, suggesting a higher reliance on lipids as energy source in fish fed high-carbohydrate and low-protein diets. This probably also contributes to the lower fat gain. Together, these results show that different metabolic pathways are affected by a high-carbohydrate/low-protein diet in rainbow trout.
Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae
Salusjärvi, Laura; Kankainen, Matti; Soliymani, Rabah; Pitkänen, Juha-Pekka; Penttilä, Merja; Ruohonen, Laura
2008-01-01
Background Considerable interest in the bioconversion of lignocellulosic biomass into ethanol has led to metabolic engineering of Saccharomyces cerevisiae for fermentation of xylose. In the present study, the transcriptome and proteome of recombinant, xylose-utilising S. cerevisiae grown in aerobic batch cultures on xylose were compared with those of glucose-grown cells both in glucose repressed and derepressed states. The aim was to study at the genome-wide level how signalling and carbon catabolite repression differ in cells grown on either glucose or xylose. The more detailed knowledge whether xylose is sensed as a fermentable carbon source, capable of catabolite repression like glucose, or is rather recognised as a non-fermentable carbon source is important for further engineering this yeast for more efficient anaerobic fermentation of xylose. Results Genes encoding respiratory proteins, proteins of the tricarboxylic acid and glyoxylate cycles, and gluconeogenesis were only partially repressed by xylose, similar to the genes encoding their transcriptional regulators HAP4, CAT8 and SIP1-2 and 4. Several genes that are repressed via the Snf1p/Mig1p-pathway during growth on glucose had higher expression in the cells grown on xylose than in the glucose repressed cells but lower than in the glucose derepressed cells. The observed expression profiles of the transcription repressor RGT1 and its target genes HXT2-3, encoding hexose transporters suggested that extracellular xylose was sensed by the glucose sensors Rgt2p and Snf3p. Proteome analyses revealed distinct patterns in phosphorylation of hexokinase 2, glucokinase and enolase isoenzymes in the xylose- and glucose-grown cells. Conclusion The results indicate that the metabolism of yeast growing on xylose corresponds neither to that of fully glucose repressed cells nor that of derepressed cells. This may be one of the major reasons for the suboptimal fermentation of xylose by recombinant S. cerevisiae strains. Phosphorylation of different isoforms of glycolytic enzymes suggests that regulation of glycolysis also occurred at a post-translational level, supporting prior findings. PMID:18533012
Pal, A; Rhoads, D B; Tavakkoli, A
2018-02-01
Although Roux-en-Y Gastric Bypass (RYGB) remains the most effective treatment for obesity and type 2 diabetes (T2D), many patients fail to achieve remission, or relapse. Increasing intestinal limb lengths of RYGB may improve outcomes, but the mechanistic basis for this remains unclear. We hypothesize biliopancreatic (BP) limb length modulates the antidiabetic effect of RYGB. Rats underwent RYGB with a 20-cm (RYGB-20cm) or 40-cm (RYGB-40cm) BP limb and were compared with control animals. After 2 and 4 wk, portal and systemic blood was sampled during intestinal glucose infusion. Portosystemic gradient was used to calculate intestinal glucose utilization (G util ), absorption (G absorp ), and hormone secretion. Intestinal morphology and gene expression were assessed. At 2 wk, G absorp progressively decreased with increasing BP limb length; this pattern persisted at 4 wk. G util increased ≈70% in both RYGB-20cm and -40cm groups at 2 wk. At 4 wk, G util progressively increased with limb length. Furthermore, Roux limb weight, and expression of hexokinase and preproglucagon, exhibited a similar progressive increase. At 4 wk, glucagon-like peptide-1 and -2 levels were higher after RYGB-40cm, with associated increased secretion. We conclude that BP limb length modulates multiple antidiabetic mechanisms, analogous to the dose-response relationship of a drug. Early postoperatively, a longer BP limb reduces G absorp . Later, G util , Roux limb hypertrophy, hormone secretion, and hormone levels are increased with longer BP limb. Sustained high incretin levels may prevent weight regain and T2D relapse. These data provide the basis for customizing BP limb length according to patient characteristics and desired metabolic effect. NEW & NOTEWORTHY Biliopancreatic limb length in gastric bypass modulates multiple antidiabetic mechanisms, analogous to the dose-response relationship of a drug. With a longer biliopancreatic limb, Roux limb hypertrophy, increased glucose utilization, reduced glucose absorption, and sustained high incretin levels may prevent weight regain and diabetes relapse.
Motawi, Tarek M K; Sadik, Nermin A H; Fahim, Sally A; Shouman, Samia A
2015-05-25
Imatinib mesylate (IM), a tyrosine kinase inhibitor, is used as targeted cancer therapy. However, mono-targeting by IM does not always achieve full tumor eradication and thus it is recommended to combine IM with other anticancer agents. Clotrimazole (CLT) is an antifungal azole derivative with promising anticancer effects due to inhibiting the activity of glycolytic enzymes. The present study aimed to evaluate the effect of combining CLT with IM on breast cancer cell line in an attempt to establish effective new combination. T47D human breast cancer cell line was treated with different concentrations of IM and/or CLT for 48 h. IM-CLT interaction was determined by isobologram equation and combination index. Cell viability was confirmed by measuring LDH activity. As indicators of glycolysis inhibition, the expression of hexokinase-2 (HK-2) and 6-phosphofructo-1-kinase (PFK-1) plus the activity of intracellular lactate dehydrogenase (LDH) and pyruvate kinase (PK) were determined. In addition, glucose consumption and adenosine triphosphate (ATP) production were measured. Moreover, nitric oxide (NO), vascular endothelial growth factor (VEGF) and hypoxia inducible factor-α (HIF-α) were also determined as they are modulators for glycolysis. This study demonstrated that IM or CLT synergistically inhibited cell growth in T47D as shown by combination and dose reduction indices. The combination of 15 μM IM and 20 μM CLT significantly decreased glucose consumption, activity of both PK and intracellular LDH, while increased leaked LDH, VEGF and NO in the medium compared to each drug alone. Furthermore the combination decreased gene expression of HK-2, PFK-1 and ATP content compared to the control. In conclusion, the synergistic effect of CLT on IM cytotoxicity in T47D cell line maybe mediated through inhibition of glycolysis and increasing both NO and VEGF. Further studies are required to confirm the efficiency and safety of this combination. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The energy blocker inside the power house: Mitochondria targeted delivery of 3-bromopyruvate.
Marrache, Sean; Dhar, Shanta
2015-03-01
A key hallmark of many aggressive cancers is accelerated glucose metabolism. The enzymes that catalyze the first step of glucose metabolism are hexokinases. High levels of hexokinase 2 (HK2) are found in cancer cells, but only in a limited number of normal tissues. Metabolic reprogramming of cancer cells using the energy blocker, 3-bromopyruvate (3-BP) that inhibits HK2 has the potential to provide tumor-specific anticancer agents. However, the unique structural and functional characteristics of mitochondria prohibit selective subcellular targeting of 3-BP to modulate the function of this organelle for therapeutic gain. A mitochondria targeted gold nanoparticle (T-3-BP-AuNP) decorated with 3-BP and delocalized lipophilic triphenylphosphonium cations to target the mitochondrial membrane potential (Δ ψ m ) was developed for delivery of 3-BP to cancer cell mitochondria by taking advantage of higher Δ ψ m in cancer cells compared to normal cells. In vitro studies demonstrated enhanced anticancer activity of T-3-BP-AuNPs compared to the non-targeted construct NT-3-BP-AuNP or free 3-BP. The anticancer activity of T-3-BP-AuNP was further enhanced upon laser irradiation by exciting the surface plasmon resonance band of AuNP and thereby utilizing a combination of 3-BP chemotherapeutic and AuNP photothermal effects. The less toxic behavior of T-3-BPNPs in normal mesenchymal stem cells indicated that these NPs preferentially kill cancer cells. T-3-BP-AuNPs showed enhanced ability to modulate cancer cell metabolism by inhibiting glycolysis as well as demolishing mitochondrial oxidative phosphorylation. Our findings demonstrated that concerted chemo-photothermal treatment of glycolytic cancer cells with a single NP capable of targeting mitochondria mediating simultaneous release of a glycolytic inhibitor and photothermal ablation may have promise as a new anticancer therapy.
Aslanukov, Azamat; Bhowmick, Reshma; Guruju, Mallikarjuna; Oswald, John; Raz, Dorit; Bush, Ronald A; Sieving, Paul A; Lu, Xinrong; Bock, Cheryl B; Ferreira, Paulo A
2006-10-01
The Ran-binding protein 2 (RanBP2) is a large multimodular and pleiotropic protein. Several molecular partners with distinct functions interacting specifically with selective modules of RanBP2 have been identified. Yet, the significance of these interactions with RanBP2 and the genetic and physiological role(s) of RanBP2 in a whole-animal model remain elusive. Here, we report the identification of two novel partners of RanBP2 and a novel physiological role of RanBP2 in a mouse model. RanBP2 associates in vitro and in vivo and colocalizes with the mitochondrial metallochaperone, Cox11, and the pacemaker of glycolysis, hexokinase type I (HKI) via its leucine-rich domain. The leucine-rich domain of RanBP2 also exhibits strong chaperone activity toward intermediate and mature folding species of Cox11 supporting a chaperone role of RanBP2 in the cytosol during Cox11 biogenesis. Cox11 partially colocalizes with HKI, thus supporting additional and distinct roles in cell function. Cox11 is a strong inhibitor of HKI, and RanBP2 suppresses the inhibitory activity of Cox11 over HKI. To probe the physiological role of RanBP2 and its role in HKI function, a mouse model harboring a genetically disrupted RanBP2 locus was generated. RanBP2(-/-) are embryonically lethal, and haploinsufficiency of RanBP2 in an inbred strain causes a pronounced decrease of HKI and ATP levels selectively in the central nervous system. Inbred RanBP2(+/-) mice also exhibit deficits in growth rates and glucose catabolism without impairment of glucose uptake and gluconeogenesis. These phenotypes are accompanied by a decrease in the electrophysiological responses of photosensory and postreceptoral neurons. Hence, RanBP2 and its partners emerge as critical modulators of neuronal HKI, glucose catabolism, energy homeostasis, and targets for metabolic, aging disorders and allied neuropathies.
The role of hexokinase in cardioprotection – mechanism and potential for translation
Pereira, Gonçalo C; Pasdois, Philippe
2015-01-01
Mitochondrial permeability transition pore (mPTP) opening plays a critical role in cardiac reperfusion injury and its prevention is cardioprotective. Tumour cell mitochondria usually have high levels of hexokinase isoform 2 (HK2) bound to their outer mitochondrial membranes (OMM) and HK2 binding to heart mitochondria has also been implicated in resistance to reperfusion injury. HK2 dissociates from heart mitochondria during ischaemia, and the extent of this correlates with the infarct size on reperfusion. Here we review the mechanisms and regulations of HK2 binding to mitochondria and how this inhibits mPTP opening and consequent reperfusion injury. Major determinants of HK2 dissociation are the elevated glucose‐6‐phosphate concentrations and decreased pH in ischaemia. These are modulated by the myriad of signalling pathways implicated in preconditioning protocols as a result of a decrease in pre‐ischaemic glycogen content. Loss of mitochondrial HK2 during ischaemia is associated with permeabilization of the OMM to cytochrome c, which leads to greater reactive oxygen species production and mPTP opening during reperfusion. Potential interactions between HK2 and OMM proteins associated with mitochondrial fission (e.g. Drp1) and apoptosis (B‐cell lymphoma 2 family members) in these processes are examined. Also considered is the role of HK2 binding in stabilizing contact sites between the OMM and the inner membrane. Breakage of these during ischaemia is proposed to facilitate cytochrome c loss during ischaemia while increasing mPTP opening and compromising cellular bioenergetics during reperfusion. We end by highlighting the many unanswered questions and discussing the potential of modulating mitochondrial HK2 binding as a pharmacological target. Linked Articles This article is part of a themed section on Conditioning the Heart – Pathways to Translation. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue‐8 PMID:25204670
Monoaminergic control of cellular glucose utilization by glycogenolysis in neocortex and hippocampus
DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia
2016-01-01
Brainstem nuclei are the principal sites of monoamine (MA) innervation to major forebrain structures. In the cortical grey matter, increased secretion of MA neuromodulators occurs in response to a wealth of environmental and homeostatic challenges, whose onset is associated with rapid, preparatory changes in neural activity as well as with increases in energy metabolism. Blood-borne glucose is the main substrate for energy production in the brain. Once entered the tissue, interstitial glucose is equally accessible to neurons and astrocytes, the two cell types accounting for most of cellular volume and energy metabolism in neocortex and hippocampus. Astrocytes also store substantial amounts of glycogen, but non-stimulated glycogen turnover is very small. The rate of cellular glucose utilization in the brain is largely determined by hexokinase, which under basal conditions is more than 90% inhibited by its product glucose-6-phosphate (Glc-6-P). During rapid increases in energy demand, glycogen is a primary candidate in modulating the intracellular level of Glc-6-P, which can occur only in astrocytes. Glycogenolysis can produce Glc-6-P at a rate higher than uptake and phosphorylation of glucose. MA neurotransmitter are released extrasinaptically by brainstem neurons projecting to neocortex and hippocampus, thus activating MA receptors located on both neuronal and astrocytic plasma membrane. Importantly, MAs are glycogenolytic agents and thus they are exquisitely suitable for regulation of astrocytic Glc-6-P concentration, upstream substrate flow through hexokinase and hence cellular glucose uptake. Conforming to such mechanism, Gerald A. Dienel and Nancy F. Cruz recently suggested that activation of noradrenergic locus coeruleus might reversibly block astrocytic glucose uptake by stimulating glycogenolysis in these cells, thereby anticipating the rise in glucose need by active neurons. In this paper, we further develop the idea that the whole monoaminergic system modulates both function and metabolism of forebrain regions in a manner mediated by glycogen mobilization in astrocytes. PMID:26168779
Muthulakshmi, Shanmugam; Saravanan, Ramalingam
2013-06-01
Azelaic acid (AzA), a C9 linear α,ω-dicarboxylic acid, is found in whole grains namely wheat, rye, barley, oat seeds and sorghum. The study was performed to investigate whether AzA exerts beneficial effect on hepatic key enzymes of carbohydrate metabolism in high fat diet (HFD) induced type 2 diabetic C57BL/6J mice. C57BL/6J mice were fed high fat diet for 10 weeks and subjected to intragastric administration of various doses (20 mg, 40 mg and 80 mg/kg BW) of AzA daily for the subsequent 5 weeks. Rosiglitazone (RSG) was used as reference drug. Body weight, food intake, plasma glucose, plasma insulin, blood haemoglobin (Hb), blood glycosylated haemoglobin (HbA1c), liver glycolytic enzyme (hexokinase), hepatic shunt enzyme (glucose-6-phosphate dehydrogenase), gluconeogenic enzymes(glucose-6-phosphatase and fructose-1,6-bisphosphatase), liver glycogen, plasma and liver triglycerides were examined in mice fed with normal standard diet (NC), high fat diet (HFD), HFD with AzA (HFD + AzA) and HFD with rosiglitazone (HFD + RSG). Among the three doses, 80 mg/kg BW of AzA was able to positively regulate plasma glucose, insulin, blood HbA1c and haemoglobin levels by significantly increasing the activity of hexokinase and glucose-6-phosphate dehydrogenase and significantly decreasing the activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase thereby increasing the glycogen content in the liver. From this study, we put forward that AzA could significantly restore the levels of plasma glucose, insulin, HbA1c, Hb, liver glycogen and carbohydrate metabolic key enzymes to near normal in diabetic mice and hence, AzA may be useful as a biomaterial in the development of therapeutic agents against high fat diet induced T2DM. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Link, Manuela; Schmid, Christina; Pleus, Stefan; Baumstark, Annette; Rittmeyer, Delia; Haug, Cornelia; Freckmann, Guido
2015-04-14
The standard ISO (International Organization for Standardization) 15197 is widely accepted for the accuracy evaluation of systems for self-monitoring of blood glucose (SMBG). Accuracy evaluation was performed for 4 SMBG systems (Accu-Chek Aviva, ContourXT, GlucoCheck XL, GlucoMen LX PLUS) with 3 test strip lots each. To investigate a possible impact of the comparison method on system accuracy data, 2 different established methods were used. The evaluation was performed in a standardized manner following test procedures described in ISO 15197:2003 (section 7.3). System accuracy was assessed by applying ISO 15197:2003 and in addition ISO 15197:2013 criteria (section 6.3.3). For each system, comparison measurements were performed with a glucose oxidase (YSI 2300 STAT Plus glucose analyzer) and a hexokinase (cobas c111) method. All 4 systems fulfilled the accuracy requirements of ISO 15197:2003 with the tested lots. More stringent accuracy criteria of ISO 15197:2013 were fulfilled by 3 systems (Accu-Chek Aviva, ContourXT, GlucoMen LX PLUS) when compared to the manufacturer's comparison method and by 2 systems (Accu-Chek Aviva, ContourXT) when compared to the alternative comparison method. All systems showed lot-to-lot variability to a certain degree; 2 systems (Accu-Chek Aviva, ContourXT), however, showed only minimal differences in relative bias between the 3 evaluated lots. In this study, all 4 systems complied with the evaluated test strip lots with accuracy criteria of ISO 15197:2003. Applying ISO 15197:2013 accuracy limits, differences in the accuracy of the tested systems were observed, also demonstrating that the applied comparison method/system and the lot-to-lot variability can have a decisive influence on accuracy data obtained for a SMBG system. © 2015 Diabetes Technology Society.
DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia
2015-12-01
Brainstem nuclei are the principal sites of monoamine (MA) innervation to major forebrain structures. In the cortical grey matter, increased secretion of MA neuromodulators occurs in response to a wealth of environmental and homeostatic challenges, whose onset is associated with rapid, preparatory changes in neural activity as well as with increases in energy metabolism. Blood-borne glucose is the main substrate for energy production in the brain. Once entered the tissue, interstitial glucose is equally accessible to neurons and astrocytes, the two cell types accounting for most of cellular volume and energy metabolism in neocortex and hippocampus. Astrocytes also store substantial amounts of glycogen, but non-stimulated glycogen turnover is very small. The rate of cellular glucose utilization in the brain is largely determined by hexokinase, which under basal conditions is more than 90 % inhibited by its product glucose-6-phosphate (Glc-6-P). During rapid increases in energy demand, glycogen is a primary candidate in modulating the intracellular level of Glc-6-P, which can occur only in astrocytes. Glycogenolysis can produce Glc-6-P at a rate higher than uptake and phosphorylation of glucose. MA neurotransmitter are released extrasinaptically by brainstem neurons projecting to neocortex and hippocampus, thus activating MA receptors located on both neuronal and astrocytic plasma membrane. Importantly, MAs are glycogenolytic agents and thus they are exquisitely suitable for regulation of astrocytic Glc-6-P concentration, upstream substrate flow through hexokinase and hence cellular glucose uptake. Conforming to such mechanism, Gerald A. Dienel and Nancy F. Cruz recently suggested that activation of noradrenergic locus coeruleus might reversibly block astrocytic glucose uptake by stimulating glycogenolysis in these cells, thereby anticipating the rise in glucose need by active neurons. In this paper, we further develop the idea that the whole monoaminergic system modulates both function and metabolism of forebrain regions in a manner mediated by glycogen mobilization in astrocytes.
Pehleman, Tanya L; Peters, Sandra J; Heigenhauser, George J F; Spriet, Lawrence L
2005-01-01
Whole body glucose disposal and skeletal muscle hexokinase, glycogen synthase (GS), pyruvate dehydrogenase (PDH), and PDH kinase (PDK) activities were measured in aerobically trained men after a standardized control diet (Con; 51% carbohydrate, 29% fat, and 20% protein of total energy intake) and a 56-h eucaloric, high-fat, low-carbohydrate diet (HF/LC; 5% carbohydrate, 73% fat, and 22% protein). An oral glucose tolerance test (OGTT; 1 g/kg) was administered after the Con and HF/LC diets with vastus lateralis muscle biopsies sampled pre-OGTT and 75 min after ingestion of the oral glucose load. The 90-min area under the blood glucose and plasma insulin concentration vs. time curves increased by 2-fold and 1.25-fold, respectively, after the HF/LC diet. The pre-OGTT fraction of GS in its active form and the maximal activity of hexokinase were not affected by the HF/LC diet. However, the HF/LC diet increased PDK activity (0.19 +/- 0.05 vs. 0.08 +/- 0.02 min(-1)) and decreased PDH activation (0.38 +/- 0.08 vs. 0.79 +/- 0.10 mmol acetyl-CoA.kg wet muscle(-1).min(-1)) before the OGTT vs. Con. During the OGTT, GS and PDH activation increased by the same magnitude in both diets, such that PDH activation remained lower during the HF/LC OGTT (0.60 +/- 0.11 vs. 1.04 +/- 0.09 mmol acetyl-CoA.kg(-1).min(-1)). These data demonstrate that the decreased glucose disposal during the OGTT after the 56-h HF/LC diet was in part related to decreased oxidative carbohydrate disposal in skeletal muscle and not to decreased glycogen storage. The rapid increase in PDK activity during the HF/LC diet appeared to account for the reduced potential for oxidative carbohydrate disposal.
40 CFR 90.709 - Calculation and reporting of test results.
Code of Federal Regulations, 2014 CFR
2014-07-01
... expressed to one additional significant figure. (b) Final test results are calculated by summing the initial... applicable standard expressed to one additional significant figure. (c) The final deteriorated test results...
40 CFR 90.709 - Calculation and reporting of test results.
Code of Federal Regulations, 2011 CFR
2011-07-01
... expressed to one additional significant figure. (b) Final test results are calculated by summing the initial... applicable standard expressed to one additional significant figure. (c) The final deteriorated test results...
Lee, H-T; Lin, C-S; Lee, C-S; Tsai, C-Y; Wei, Y-H
2014-04-01
We measured plasma levels of the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) and leucocyte mRNA expression levels of the genes encoding the 8-OHdG repair enzyme human 8-oxoguanine DNA glycosylase 1 (hOGG1), the anti-oxidant enzymes copper/zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase-1 (GPx-1), GPx-4, glutathione reductase (GR) and glutathione synthetase (GS), the mitochondrial biogenesis-related proteins mtDNA-encoded ND 1 polypeptide (ND1), ND6, ATPase 6, mitochondrial transcription factor A (Tfam), nuclear respiratory factor 1(NRF-1), pyruvate dehydrogenase E1 component alpha subunit (PDHA1), pyruvate dehydrogenase kinase isoenzyme 1 (PDK-1) and hypoxia inducible factor-1α (HIF-1α) and the glycolytic enzymes hexokinase-II (HK-II), glucose 6-phosphate isomerase (GPI), phosphofructokinase (PFK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase A (LDHa). We analysed their relevance to oxidative damage in 85 systemic lupus erythematosus (SLE) patients, four complicated SLE patients undergoing rituximab treatment and 45 healthy individuals. SLE patients had higher plasma 8-OHdG levels (P < 0·01) but lower leucocyte expression of the genes encoding hOGG1(P < 0·01), anti-oxidant enzymes (P < 0·05), mitochondrial biogenesis-related proteins (P < 0·05) and glycolytic enzymes (P < 0·05) than healthy individuals. The increase in plasma 8-OHdG was correlated positively with the elevation of leucocyte expression of the genes encoding hOGG1 (P < 0·05), anti-oxidant enzymes (P < 0·05), several mitochondrial biogenesis-related proteins (P < 0·05) and glycolytic enzymes (P < 0·05) in lupus patients. The patients, whose leucocyte mtDNA harboured D310 heteroplasmy, exhibited a positive correlation between the mtDNA copy number and expression of ND1, ND6 and ATPase 6 (P < 0·05) and a negative correlation between mtDNA copy number and systemic lupus erythematosus disease activity index (SLEDAI) (P < 0·05), as well as plasma 8-OHdG (P < 0·05). In particular, four complicated SLE patients with increased expression of the genes encoding the anti-oxidant enzymes, GAPDH, Tfam and PDHA1, experienced better therapeutic outcomes after rituximab therapy. In conclusion, higher oxidative damage with suboptimal increases in DNA repair, anti-oxidant capacity, mitochondrial biogenesis and glucose metabolism may be implicated in SLE deterioration, and this impairment might be improved by targeted biological therapy. © 2013 British Society for Immunology.
Meshchishetn, I F; Iarmol'chuk, G M
1979-01-01
Intramuscular injection of decamin into the animals in a dose of 0.5 and 1 mg/kg has no significant effect on carbohydrate metabolism in the liver of white rats. Decamethoxin and levorin injected in the same doses, specifically in a dose of 1 mg/kg, reduced the level of glucose as well as that of total and free glycogen in the liver. The drugs lowered also the activity of phosphorylase and glocoso-6-phosphatase. Meanwhile the activity of hexokinase, lactate dehydrogenase and phosphoglucosiomerase was potentiated. The animals given decamethoxin showed the aforesaid parameters returning to normal 20 days after the drug was discontinued, whereas similar changes were not found in the rats on levorin.
Substrate-driven chemotactic assembly in an enzyme cascade.
Zhao, Xi; Palacci, Henri; Yadav, Vinita; Spiering, Michelle M; Gilson, Michael K; Butler, Peter J; Hess, Henry; Benkovic, Stephen J; Sen, Ayusman
2018-03-01
Enzymatic catalysis is essential to cell survival. In many instances, enzymes that participate in reaction cascades have been shown to assemble into metabolons in response to the presence of the substrate for the first enzyme. However, what triggers metabolon formation has remained an open question. Through a combination of theory and experiments, we show that enzymes in a cascade can assemble via chemotaxis. We apply microfluidic and fluorescent spectroscopy techniques to study the coordinated movement of the first four enzymes of the glycolysis cascade: hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. We show that each enzyme independently follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Furthermore, we find that the chemotactic assembly of enzymes occurs even under cytosolic crowding conditions.
Substrate-driven chemotactic assembly in an enzyme cascade
NASA Astrophysics Data System (ADS)
Zhao, Xi; Palacci, Henri; Yadav, Vinita; Spiering, Michelle M.; Gilson, Michael K.; Butler, Peter J.; Hess, Henry; Benkovic, Stephen J.; Sen, Ayusman
2018-03-01
Enzymatic catalysis is essential to cell survival. In many instances, enzymes that participate in reaction cascades have been shown to assemble into metabolons in response to the presence of the substrate for the first enzyme. However, what triggers metabolon formation has remained an open question. Through a combination of theory and experiments, we show that enzymes in a cascade can assemble via chemotaxis. We apply microfluidic and fluorescent spectroscopy techniques to study the coordinated movement of the first four enzymes of the glycolysis cascade: hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. We show that each enzyme independently follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Furthermore, we find that the chemotactic assembly of enzymes occurs even under cytosolic crowding conditions.
NASA Technical Reports Server (NTRS)
Lowry, Oliver H.; Krasnov, Igor; Kakueva, E. Ilyina; Nemeth, Patti M.; Mcdougal, David B., Jr.; Choksi, Rati; Carter, Joyce G.; Chi, Maggie M. Y.; Manchester, Jill K.; Pusateri, Mary Ellen
1990-01-01
The effects of microgravity and hind limb suspension on the enzyme patterns are assessed within a slow twitch muscle (soleus) and a fast twitch muscle (tibialis anterior). Studies were made on 95 soleus fibers and about 300 tibialis anterior (TA) fibers. Over 2200 individual enzyme measurements were made. Six key metabolic enzymes (hexokinase, pyruvate kinease, citrate kinase, beta-hydroxyacyl CoA dehydrogenase, glucose-6-P dehydrogenase, and aspartate aminotransferase) plus glutaminase and glutamate decarboxylase, as well as glutamate, aspartate, and GABA, were measured in 11 regions of the hippocampal formation of synchronous, flight, and tail suspension rats. Major differences were observed in the normal distribution of each enzyme and amine acid, but no substantive effects of either microgravity or tail suspension on these patterns were clearly demonstrated.
The metabolic advantage of tumor cells
2011-01-01
1- Oncogenes express proteins of "Tyrosine kinase receptor pathways", a receptor family including insulin or IGF-Growth Hormone receptors. Other oncogenes alter the PP2A phosphatase brake over these kinases. 2- Experiments on pancreatectomized animals; treated with pure insulin or total pancreatic extracts, showed that choline in the extract, preserved them from hepatomas. Since choline is a methyle donor, and since methylation regulates PP2A, the choline protection may result from PP2A methylation, which then attenuates kinases. 3- Moreover, kinases activated by the boosted signaling pathway inactivate pyruvate kinase and pyruvate dehydrogenase. In addition, demethylated PP2A would no longer dephosphorylate these enzymes. A "bottleneck" between glycolysis and the oxidative-citrate cycle interrupts the glycolytic pyruvate supply now provided via proteolysis and alanine transamination. This pyruvate forms lactate (Warburg effect) and NAD+ for glycolysis. Lipolysis and fatty acids provide acetyl CoA; the citrate condensation increases, unusual oxaloacetate sources are available. ATP citrate lyase follows, supporting aberrant transaminations with glutaminolysis and tumor lipogenesis. Truncated urea cycles, increased polyamine synthesis, consume the methyl donor SAM favoring carcinogenesis. 4- The decrease of butyrate, a histone deacetylase inhibitor, elicits epigenic changes (PETEN, P53, IGFBP decrease; hexokinase, fetal-genes-M2, increase) 5- IGFBP stops binding the IGF - IGFR complex, it is perhaps no longer inherited by a single mitotic daughter cell; leading to two daughter cells with a mitotic capability. 6- An excess of IGF induces a decrease of the major histocompatibility complex MHC1, Natural killer lymphocytes should eliminate such cells that start the tumor, unless the fever prostaglandin PGE2 or inflammation, inhibit them... PMID:21649891
2015-01-01
Brassinosteroid (BR) and glucose (Glc) regulate many common responses in plants. Here, we demonstrate that under etiolated growth conditions, extensive interdependence/overlap occurs between BR- and Glc-regulated gene expression as well as physiological responses. Glc could regulate the transcript level of 72% of BR-regulated genes at the whole-genome level, of which 58% of genes were affected synergistically and 42% of genes were regulated antagonistically. Presence of Glc along with BR in medium could affect BR induction/repression of 85% of BR-regulated genes. Glc could also regulate several genes involved in BR metabolism and signaling. Both BR and Glc coregulate a large number of genes involved in abiotic/biotic stress responses and growth and development. Physiologically, Glc and BR interact to regulate hypocotyl elongation growth of etiolated Arabidopsis (Arabidopsis thaliana) seedlings in a dose-dependent manner. Glc may interact with BR via a HEXOKINASE1 (HXK1)-mediated pathway to regulate etiolated hypocotyl elongation. BRASSINOSTEROID INSENSITIVE1 (BRI1) is epistatic to HXK1, as the Glc insensitive2bri1-6 double mutant displayed severe defects in hypocotyl elongation growth similar to its bri1-6 parent. Analysis of Glc and BR sensitivity in mutants defective in auxin response/signaling further suggested that Glc and BR signals may converge at S-phase kinase-associated protein1-Cullin-F-box-TRANSPORT INHIBITOR RESPONSE1/AUXIN-RELATED F-BOX-AUXIN/INDOLE-3-ACETIC ACID-mediated auxin-signaling machinery to regulate etiolated hypocotyl elongation growth in Arabidopsis. PMID:26034265
The UPR reduces glucose metabolism via IRE1 signaling.
van der Harg, Judith M; van Heest, Jessica C; Bangel, Fabian N; Patiwael, Sanne; van Weering, Jan R T; Scheper, Wiep
2017-04-01
Neurons are highly dependent on glucose. A disturbance in glucose homeostasis therefore poses a severe risk that is counteracted by activation of stress responses to limit damage and restore the energy balance. A major stress response that is activated under conditions of glucose deprivation is the unfolded protein response (UPR) that is aimed to restore proteostasis in the endoplasmic reticulum. The key signaling of the UPR involves the transient activation of a transcriptional program and an overall reduction of protein synthesis. Since the UPR is strategically positioned to sense and integrate metabolic stress signals, it is likely that - apart from its adaptive response to restore proteostasis - it also directly affects metabolic pathways. Here we investigate the direct role of the UPR in glucose homeostasis. O-GlcNAc is a post-translational modification that is highly responsive to glucose fluctuations. We find that UPR activation results in decreased O-GlcNAc modification, in line with reduced glucose metabolism. Our data indicate that UPR activation has no direct impact on the upstream processes in glucose metabolism; glucose transporter expression, glucose uptake and hexokinase activity. In contrast, prolonged UPR activation decreases glycolysis and mitochondrial metabolism. Decreased mitochondrial respiration is not accompanied by apoptosis or a structural change in mitochondria indicating that the reduction in metabolic rate upon UPR activation is a physiological non-apoptotic response. Metabolic decrease is prevented if the IRE1 pathway of the UPR is inhibited. This indicates that activation of IRE1 signaling induces a reduction in glucose metabolism, as part of an adaptive response. Copyright © 2017 Elsevier B.V. All rights reserved.
Khosravi, Claire; Battaglia, Evy; Kun, Roland S.; ...
2018-03-22
Background: Plant biomass is the most abundant carbon source for many fungal species. In the biobased industry fungi are used to produce lignocellulolytic enzymes to degrade agricultural waste biomass. Here we evaluated if it would be possible to create an Aspergillus nidulans strain that releases but does not metabolize hexoses from plant biomass. For this purpose, metabolic mutants were generated that were impaired in glycolysis, by using hexokinase (hxkA) and glucokinase (glkA) negative strains. To prevent repression of enzyme production due to the hexose accumulation, strains were generated that combined these mutations with a deletion in creA, the repressor involvedmore » in regulating preferential use of different carbon catabolic pathways. Results: Phenotypic analysis revealed reduced growth for the hxkA1 glkA4 mutant on wheat bran. However, hexoses did not accumulate during growth of the mutants on wheat bran, suggesting that glucose metabolism is re-routed towards alternative carbon catabolic pathways. The creAΔ4 mutation in combination with preventing initial phosphorylation in glycolysis resulted in better growth than the hxkA/glkA mutant and an increased expression of pentose catabolic and pentose phosphate pathway genes. This indicates that the reduced ability to use hexoses as carbon sources created a shift towards the pentose fraction of wheat bran as a major carbon source to support growth. Conclusion: Blocking the direct entry of hexoses to glycolysis activates alternative metabolic conversion of these sugars in A. nidulans during growth on plant biomass, but also upregulates conversion of other sugars, such as pentoses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khosravi, Claire; Battaglia, Evy; Kun, Roland S.
Background: Plant biomass is the most abundant carbon source for many fungal species. In the biobased industry fungi are used to produce lignocellulolytic enzymes to degrade agricultural waste biomass. Here we evaluated if it would be possible to create an Aspergillus nidulans strain that releases but does not metabolize hexoses from plant biomass. For this purpose, metabolic mutants were generated that were impaired in glycolysis, by using hexokinase (hxkA) and glucokinase (glkA) negative strains. To prevent repression of enzyme production due to the hexose accumulation, strains were generated that combined these mutations with a deletion in creA, the repressor involvedmore » in regulating preferential use of different carbon catabolic pathways. Results: Phenotypic analysis revealed reduced growth for the hxkA1 glkA4 mutant on wheat bran. However, hexoses did not accumulate during growth of the mutants on wheat bran, suggesting that glucose metabolism is re-routed towards alternative carbon catabolic pathways. The creAΔ4 mutation in combination with preventing initial phosphorylation in glycolysis resulted in better growth than the hxkA/glkA mutant and an increased expression of pentose catabolic and pentose phosphate pathway genes. This indicates that the reduced ability to use hexoses as carbon sources created a shift towards the pentose fraction of wheat bran as a major carbon source to support growth. Conclusion: Blocking the direct entry of hexoses to glycolysis activates alternative metabolic conversion of these sugars in A. nidulans during growth on plant biomass, but also upregulates conversion of other sugars, such as pentoses.« less
AXIS: Adult Education eXpress Intercommunication Support. Final Report.
ERIC Educational Resources Information Center
Reiff, Tana
This package includes the final report and selected products of the Adult education eXpress Intercommunication Support (AXIS) project, which was conducted to facilitate communication related to professional development services administered by the Pennsylvania Department of Education's Bureau of Adult Basic and Literacy Education (ABLE) and…
Li, Jingjing; Chen, Kan; Wang, Fan; Dai, Weiqi; Li, Sainan; Feng, Jiao; Wu, Liwei; Liu, Tong; Xu, Shizan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Xu, Ling; Guo, Chuanyong
2017-07-11
Methyl jasmonate has recently been found to have anti-cancer activity. Methyl jasmonate detached hexokinase 2 from a voltage dependent anion channel causing a reduction in mitochondrial transmembrane potential that led to the release of cytochrome C and apoptosis inducing factor resulting in intrinsic apoptosis. Blocked adenosine triphosphate synthesis caused by mitochondrial injury hampered oxidative phosphorylation and led to cell necrosis. The results were applied to the in vivo treatment of nude mice with a satisfactory effect. Collectively, our results suggest that methyl jasmonate may be an adjuvant therapy for liver tumors due to its mechanism in cancer cells compared to that in normal cells: The major function is to inhibit glycolysis instead of changing aerobic metabolism.
Li, Jingjing; Chen, Kan; Wang, Fan; Dai, Weiqi; Li, Sainan; Feng, Jiao; Wu, Liwei; Liu, Tong; Xu, Shizan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Xu, Ling; Guo, Chuanyong
2017-01-01
Methyl jasmonate has recently been found to have anti-cancer activity. Methyl jasmonate detached hexokinase 2 from a voltage dependent anion channel causing a reduction in mitochondrial transmembrane potential that led to the release of cytochrome C and apoptosis inducing factor resulting in intrinsic apoptosis. Blocked adenosine triphosphate synthesis caused by mitochondrial injury hampered oxidative phosphorylation and led to cell necrosis. The results were applied to the in vivo treatment of nude mice with a satisfactory effect. Collectively, our results suggest that methyl jasmonate may be an adjuvant therapy for liver tumors due to its mechanism in cancer cells compared to that in normal cells: The major function is to inhibit glycolysis instead of changing aerobic metabolism. PMID:28498814
Adaptation of red cell enzymes and intermediates in metabolic disorders.
Goebel, K M; Goebel, F D; Neitzert, A; Hausmann, L; Schneider, J
1975-01-01
The metabolic activity of the red cell glycolytic pathway hexose monophosphate shunt (HMP) with dependent glutathione system was studied in patients with hyperthyroidism (n = 10), hyperlipoproteinemia (n = 16), hypoglycemia (n = 25) and hyperglycemia (n = 23). In uncontrolled diabetics and patients with hyperthyroidism the mean value of glucose phosphate isomerase (GPI), glucose-6-phosphate dehydrogenase (G-6-PD), glutathione reductase (GR) was increased, whereas these enzyme activities were reduced in patients with hypoglycemia. Apart from a few values of hexokinase (HK) which were lower than normal the results in hyperlipoproteinemia patients remained essentially unchanged, including the intermediates such as 2,3-diphosphoglycerate (2,3-DPG), adenosine triphosphate (ATP) and reduced glutathione (GSH). While increased rates of 2,3-DPG and ATP in hypoglycemia patients were obtained, these substrates were markedly reduced in diabetics.
Rueda, Elda M.; Johnson, Jerry E.; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J.; Sigel, Irena; Chaney, Shawnta Y.
2016-01-01
Purpose The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. Methods mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. Results The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor inner segments. The combined results indicate that glycolysis is regulated by the compartmental expression of hexokinase 2, pyruvate kinase M1, and pyruvate kinase M2 in photoreceptors, whereas the inner retinal neurons exhibit a lower capacity for glycolysis and aerobic glycolysis. Expression of nucleoside diphosphate kinase, mitochondria-associated adenylate kinase, and several mitochondria-associated creatine kinase isozymes was highest in the outer retina, whereas expression of cytosolic adenylate kinase and brain creatine kinase was higher in the cones, horizontal cells, and amacrine cells indicating the diversity of ATP-buffering strategies among retinal neurons. Based on the antibody intensities and the COX and LDH activity, Müller glial cells (MGCs) had the lowest capacity for glycolysis, aerobic glycolysis, and OXPHOS. However, they showed high expression of glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate thiokinase, GABA transaminase, and ~P transferring kinases. This suggests that MGCs utilize TCA cycle anaplerosis and cataplerosis to generate GTP and ~P transferring kinases to produce ATP that supports MGC energy requirements. Conclusions Our comprehensive and integrated results reveal that the adult mouse retina expresses numerous isoforms of ATP synthesizing, regulating, and buffering genes; expresses differential cellular and compartmental levels of glycolytic, OXPHOS, TCA cycle, and ~P transferring kinase proteins; and exhibits differential layer-by-layer LDH and COX activity. New insights into cell-specific and compartmental ATP and GTP production, as well as utilization and buffering strategies and their relationship with known retinal and cellular functions, are discussed. Developing therapeutic strategies for neuroprotection and treating retinal deficits and degeneration in a cell-specific manner will require such knowledge. This work provides a platform for future research directed at identifying the molecular targets and proteins that regulate these processes. PMID:27499608
Rueda, Elda M; Johnson, Jerry E; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J; Sigel, Irena; Chaney, Shawnta Y; Fox, Donald A
2016-01-01
The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor inner segments. The combined results indicate that glycolysis is regulated by the compartmental expression of hexokinase 2, pyruvate kinase M1, and pyruvate kinase M2 in photoreceptors, whereas the inner retinal neurons exhibit a lower capacity for glycolysis and aerobic glycolysis. Expression of nucleoside diphosphate kinase, mitochondria-associated adenylate kinase, and several mitochondria-associated creatine kinase isozymes was highest in the outer retina, whereas expression of cytosolic adenylate kinase and brain creatine kinase was higher in the cones, horizontal cells, and amacrine cells indicating the diversity of ATP-buffering strategies among retinal neurons. Based on the antibody intensities and the COX and LDH activity, Müller glial cells (MGCs) had the lowest capacity for glycolysis, aerobic glycolysis, and OXPHOS. However, they showed high expression of glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate thiokinase, GABA transaminase, and ~P transferring kinases. This suggests that MGCs utilize TCA cycle anaplerosis and cataplerosis to generate GTP and ~P transferring kinases to produce ATP that supports MGC energy requirements. Our comprehensive and integrated results reveal that the adult mouse retina expresses numerous isoforms of ATP synthesizing, regulating, and buffering genes; expresses differential cellular and compartmental levels of glycolytic, OXPHOS, TCA cycle, and ~P transferring kinase proteins; and exhibits differential layer-by-layer LDH and COX activity. New insights into cell-specific and compartmental ATP and GTP production, as well as utilization and buffering strategies and their relationship with known retinal and cellular functions, are discussed. Developing therapeutic strategies for neuroprotection and treating retinal deficits and degeneration in a cell-specific manner will require such knowledge. This work provides a platform for future research directed at identifying the molecular targets and proteins that regulate these processes.
Inhibitory effects of 3-bromopyruvate in human nasopharyngeal carcinoma cells.
Zou, Xue; Zhang, Mengxiao; Sun, Yiming; Zhao, Surong; Wei, Yingmei; Zhang, Xudong; Jiang, Chenchen; Liu, Hao
2015-10-01
Tumor cells depend on aerobic glycolysis for adenosine triphosphate (ATP) production, which is therefore targeted by therapeutic agents. The compound 3-bromopyruvate (3-BrPA), a strong alkylating agent and hexokinase inhibitor, inhibits tumor cell glycolysis and the production of ATP, causing apoptosis. 3-BrPA induces apoptosis of nasopharyngeal carcinoma (NPC) cell lines HNE1 and CNE-2Z, which may be related to its molecular mechanisms. In the present study, we investigated the effects of 3-BrPA on the viability, reactive oxygen species (ROS), apoptosis and other types of programmed cell death in NPC cells in vitro and in vivo. PI staining showed significant apoptosis in NPC cells accompanied by the overproduction of ROS and downregulation of mitochondrial membrane potential (MMP, ΔΨm) by 3-BrPA. However, the ROS scavenger N-acetyl-L-cysteine (NAC) significantly reduced 3-BrPA-induced apoptosis by decreasing ROS and facilitating the recovery of MMP. We elucidated the molecular mechanisms underlying 3-BrPA activity and found that it caused mitochondrial dysfunction and ROS production, leading to necroptosis of NPC cells. We investigated the effects of the caspase inhibitor z-VAD-fmk, which inhibits apoptosis but promotes death domain receptor (DR)-induced NPC cell necrosis. Necrostatin-1 (Nec-1) inhibits necroptosis, apparently via a DR signaling pathway and thus abrogates the effects of z-VAD‑fmk. In addition, we demonstrated the effective attenuation of 3-BrPA-induced necrotic cell death by Nec-1. Finally, animal studies proved that 3-BrPA exhibited significant antitumor activity in nude mice. The present study is the first demonstration of 3-BrPA-induced non-apoptotic necroptosis and ROS generation in NPC cells and provides potential strategies for developing agents against apoptosis‑resistant cancers.
The accuracy of home glucose meters in hypoglycemia.
Sonmez, Alper; Yilmaz, Zeynep; Uckaya, Gokhan; Kilic, Selim; Tapan, Serkan; Taslipinar, Abdullah; Aydogdu, Aydogan; Yazici, Mahmut; Yilmaz, Mahmut Ilker; Serdar, Muhittin; Erbil, M Kemal; Kutlu, Mustafa
2010-08-01
Home glucose meters (HGMs) may not be accurate enough to sense hypoglycemia. We evaluated the accuracy and the capillary and venous comparability of five different HGMs (Optium Xceed [Abbott Diabetes Care, Alameda, CA, USA], Contour TS [Bayer Diabetes Care, Basel, Switzerland], Accu-Chek Go [Roche Ltd., Basel, Switzerland], OneTouch Select [Lifescan, Milpitas, CA, USA], and EZ Smart [Tyson Bioresearch Inc., Chu-Nan, Taiwan]) in an adult population. The insulin hypoglycemia test was performed to 59 subjects (56 males; 23.6 +/- 3.2 years old). Glucose was measured from forearm venous blood and finger capillary samples both before and after regular insulin (0.1 U/kg) was injected. Venous samples were analyzed in the reference laboratory by the hexokinase method. In vitro tests for method comparison and precision analyses were also performed by spiking the glucose-depleted venous blood. All HGMs failed to sense hypoglycemia to some extend. EZ Smart was significantly inferior in critical error Zone D, and OneTouch Select was significantly inferior in the clinically unimportant error Zone B. Accu-Chek Go, Optium Xceed, and Contour TS had similar performances and were significantly better than the other two HGMs according to error grid analysis or International Organization for Standardization criteria. The in vitro tests were consistent with the above clinical data. The capillary and venous consistencies of Accu-Chek Go and OneTouch Select were better than the other HGMs. The present results show that not all the HGMs are accurate enough in low blood glucose levels. The patients and the caregivers should be aware of these restrictions of the HGMs and give more credit to the symptoms of hypoglycemia than the values obtained by the HGMs. Finally, these results indicate that there is a need for the revision of the accuracy standards of HGMs in low blood glucose levels.
Brain glucose metabolism in an animal model of depression.
Detka, J; Kurek, A; Kucharczyk, M; Głombik, K; Basta-Kaim, A; Kubera, M; Lasoń, W; Budziszewska, B
2015-06-04
An increasing number of data support the involvement of disturbances in glucose metabolism in the pathogenesis of depression. We previously reported that glucose and glycogen concentrations in brain structures important for depression are higher in a prenatal stress model of depression when compared with control animals. A marked rise in the concentrations of these carbohydrates and glucose transporters were evident in prenatally stressed animals subjected to acute stress and glucose loading in adulthood. To determine whether elevated levels of brain glucose are associated with a change in its metabolism in this model, we assessed key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase), products of glycolysis, i.e., pyruvate and lactate, and two selected enzymes of the tricarboxylic acid cycle (pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the hippocampus and frontal cortex. Additionally, we assessed glucose-6-phosphate dehydrogenase activity, a key enzyme in the pentose phosphate pathway (PPP). Prenatal stress increased the levels of phosphofructokinase, an important glycolytic enzyme, in the hippocampus and frontal cortex. However, prenatal stress had no effect on hexokinase or pyruvate kinase levels. The lactate concentration was elevated in prenatally stressed rats in the frontal cortex, and pyruvate levels remained unchanged. Among the tricarboxylic acid cycle enzymes, prenatal stress decreased the level of pyruvate dehydrogenase in the hippocampus, but it had no effect on α-ketoglutarate dehydrogenase. Like in the case of glucose and its transporters, also in the present study, differences in markers of glucose metabolism between control animals and those subjected to prenatal stress were not observed under basal conditions but in rats subjected to acute stress and glucose load in adulthood. Glucose-6-phosphate dehydrogenase activity was not reduced by prenatal stress but was found to be even higher in animals exposed to all experimental conditions, i.e., prenatal stress, acute stress, and glucose administration. Our data indicate that glycolysis is increased and the Krebs cycle is decreased in the brain of a prenatal stress animal model of depression. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Woo, Yu Mi; Shin, Yubin; Lee, Eun Ji; Lee, Sunyoung; Jeong, Seung Hun; Kong, Hyun Kyung; Park, Eun Young; Kim, Hyoung Kyu; Han, Jin; Chang, Minsun; Park, Jong-Hoon
2015-01-01
Tamoxifen resistance is often observed in the majority of estrogen receptor–positive breast cancers and it remains as a serious clinical problem in breast cancer management. Increased aerobic glycolysis has been proposed as one of the mechanisms for acquired resistance to chemotherapeutic agents in breast cancer cells such as adriamycin. Herein, we report that the glycolysis rates in LCC2 and LCC9—tamoxifen-resistant human breast cancer cell lines derived from MCF7— are higher than those in MCF7S, which is the parent MCF7 subline. Inhibition of key glycolytic enzyme such as hexokinase-2 resulted in cell growth retardation at higher degree in LCC2 and LCC9 than that in MCF7S. This implies that increased aerobic glycolysis even under O2-rich conditions, a phenomenon known as the Warburg effect, is closely associated with tamoxifen resistance. We found that HIF-1α is activated via an Akt/mTOR signaling pathway in LCC2 and LCC9 cells without hypoxic condition. Importantly, specific inhibition of hexokinase-2 suppressed the activity of Akt/mTOR/HIF-1α axis in LCC2 and LCC9 cells. In addition, the phosphorylated AMPK which is a negative regulator of mTOR was decreased in LCC2 and LCC9 cells compared to MCF7S. Interestingly, either the inhibition of mTOR activity or increase in AMPK activity induced a reduction in lactate accumulation and cell survival in the LCC2 and LCC9 cells. Taken together, our data provide evidence that development of tamoxifen resistance may be driven by HIF-1α hyperactivation via modulation of Akt/mTOR and/or AMPK signaling pathways. Therefore, we suggest that the HIF-1α hyperactivation is a critical marker of increased aerobic glycolysis in accordance with tamoxifen resistance and thus restoration of aerobic glycolysis may be novel therapeutic target for treatment of tamoxifen-resistant breast cancer. PMID:26158266
Chen, Tingjin; Ning, Dan; Sun, Hengchang; Li, Ran; Shang, Mei; Li, Xuerong; Wang, Xiaoyun; Chen, Wenjun; Liang, Chi; Li, Wenfang; Mao, Qiang; Li, Ye; Deng, Chuanhuan; Wang, Lexun; Wu, Zhongdao; Huang, Yan; Xu, Jin; Yu, Xinbing
2014-01-01
Clonorchiasis, which is induced by the infection of Clonorchis sinensis (C. sinensis), is highly associated with cholangiocarcinoma. Because the available examination, treatment and interrupting transmission provide limited opportunities to prevent infection, it is urgent to develop integrated strategies to prevent and control clonorchiasis. Glycolytic enzymes are crucial molecules for trematode survival and have been targeted for drug development. Hexokinase of C. sinensis (CsHK), the first key regulatory enzyme of the glycolytic pathway, was characterized in this study. The calculated molecular mass (Mr) of CsHK was 50.0 kDa. The obtained recombinant CsHK (rCsHK) was a homotrimer with an Mr of approximately 164 kDa, as determined using native PAGE and gel filtration. The highest activity was obtained with 50 mM glycine-NaOH at pH 10 and 100 mM Tris-HCl at pH 8.5 and 10. The kinetics of rCsHK has a moderate thermal stability. Compared to that of the corresponding negative control, the enzymatic activity was significantly inhibited by praziquantel (PZQ) and anti-rCsHK serum. rCsHK was homotropically and allosterically activated by its substrates, including glucose, mannose, fructose, and ATP. ADP exhibited mixed allosteric effect on rCsHK with respect to ATP, while inorganic pyrophosphate (PPi) displayed net allosteric activation with various allosteric systems. Fructose behaved as a dose-dependent V activator with the substrate glucose. Glucose-6-phosphate (G6P) displayed net allosteric inhibition on rCsHK with respect to ATP or glucose with various allosteric systems in a dose-independent manner. There were differences in both mRNA and protein levels of CsHK among the life stages of adult worm, metacercaria, excysted metacercaria and egg of C. sinensis, suggesting different energy requirements during different development stages. Our study furthers the understanding of the biological functions of CsHK and supports the need to screen for small molecule inhibitors of CsHK to interfere with glycolysis in C. sinensis. PMID:25232723
Ramzy, A R; Nausheen, S; Chelikani, P K
2014-03-01
Enhanced stimulation of the lower gut is hypothesized to play a key role in the weight loss and resolution of diabetes following bariatric surgeries. Ileal transposition (IT) permits study of the effects of direct lower gut stimulation on body weight, glucose homeostasis and other metabolic adaptations without the confounds of gastric restriction or foregut exclusion. However, the underlying mechanisms and the length of the ileum sufficient to produce metabolic benefits following IT surgery remain largely unknown. To determine the effects of transposing varying lengths of the ileum to upper jejunum on food intake, body weight, glucose tolerance and lower gut hormones, and the expression of key markers of glucose and lipid metabolism in skeletal muscle and adipose tissue in rats. Adult male Sprague-Dawley rats (n=9/group) were subjected to IT surgery with translocation of 5, 10 or 20 cm of the ileal segment to proximal jejunum or sham manipulations. Daily food intake and body weight were recorded, and an intraperitoneal glucose tolerance test was performed. Blood samples were assayed for hormones and tissue samples for mRNA (RT-qPCR) and/or protein abundance (immunoblotting) of regulatory metabolic markers. We demonstrate that IT surgery exerts ileal length-dependent effects on multiple parameters including: (1) decreased food intake and weight gain, (2) improved glucose tolerance, (3) increased tissue expression and plasma concentrations of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), and decreased leptin concentrations and (4) upregulation of key markers of glucose metabolism (glucose transporter-4 (GLUT-4), insulin receptor substrate 1 (IRS-1), adenosine monophosphate-activated protein kinase (AMPK), hexokinase (HK) and phosphofructokinase (PFK)) together with a downregulation of lipogenic markers (fatty acid synthase (FAS)) in muscle and adipose tissue. Together, our data demonstrate that the reduction in food intake and weight gain, increase in lower gut hormones, glycemic improvements and associated changes in tissue metabolic markers following IT surgery are dependent on the length of the transposed ileum.
Bekkering, Siroon; van den Munckhof, Inge; Nielen, Tim; Lamfers, Evert; Dinarello, Charles; Rutten, Joost; de Graaf, Jacqueline; Joosten, Leo A B; Netea, Mihai G; Gomes, Marc E R; Riksen, Niels P
2016-11-01
We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed 'trained immunity', and is mediated by epigenetic remodeling and a metabolic switch towards increased aerobic glycolysis. We hypothesize that trained immunity contributes to atherogenesis. Therefore, we investigated the inflammatory phenotype and epigenetic remodeling of monocytes from patients with and without established atherosclerosis. Monocytes were isolated from 20 patients with severe symptomatic coronary atherosclerosis (total plaque score >4 on coronary computed tomography angiography) and 17 patients with asymptomatic carotid atherosclerosis and matched controls for both groups. Ex vivo stimulation, RNA analysis and chromatin immunoprecipitation were performed. Monocytes from patients with symptomatic atherosclerosis have a higher production of pro-inflammatory cytokines upon LPS stimulation than healthy controls (TNFα 499 ± 102 vs. 267 ± 45 pg/ml, p = 0.01). This was associated with lower histone 3 lysine 4 trimethylation (H3K4me3) (19% vs. 33%, p = 0.002), and lower H3K27me3 (0.005% vs. 0.8%, p < 0.0001) on the TNFα promoter. Furthermore, relative mRNA expression of the glycolytic rate limiting enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was higher in patients (0.7 ± 0.2 vs. 0.3 ± 0.1 resp. 1.7 ± 0.2 vs. 1.0 ± 0.1, p = 0.007 resp. 0.003) compared to control individuals. Interestingly, this pro-inflammatory phenotype was only present in patients with symptomatic atherosclerosis, and not in patients with asymptomatic carotid atherosclerosis. Circulating monocytes of patients with symptomatic, but not asymptomatic, atherosclerosis have a pro-inflammatory phenotype and increased expression of glycolytic enzymes, associated with epigenetic remodeling at the level of histone methylation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Ye, Tian; Elbing, Karin; Hohmann, Stefan
2008-09-01
It recently became apparent that the highly conserved Snf1p protein kinase plays roles in controlling different cellular processes in the yeast Saccharomyces cerevisiae, in addition to its well-known function in glucose repression/derepression. We have previously reported that Snf1p together with Gis4p controls ion homeostasis by regulating expression of ENA1, which encodes the Ena1p Na(+) extrusion system. In this study we found that Snf1p is rapidly phosphorylated when cells are exposed to NaCl and this phosphorylation is required for the role of Snf1p in Na(+) tolerance. In contrast to activation by low glucose levels, the salt-induced phosphorylation of Snf1p promoted neither phosphorylation nor nuclear export of the Mig1p repressor. The mechanism that prevents Mig1p phosphorylation by active Snf1p under salt stress does not involve either hexokinase PII or the Gis4p regulator. Instead, Snf1p may mediate upregulation of ENA1 expression via the repressor Nrg1p. Activation of Snf1p in response to glucose depletion requires any of the three upstream protein kinases Sak1p, Tos3p and Elm1p, with Sak1p playing the most prominent role. The same upstream kinases were required for salt-induced Snf1p phosphorylation, and also under these conditions Sak1p played the most prominent role. Unexpectedly, however, it appears that Elm1p plays a dual role in acquisition of salt tolerance by activating Snf1p and in a presently unknown parallel pathway. Together, these results indicate that under salt stress Snf1p takes part in a different pathway from that during glucose depletion and this role is performed together as well as in parallel with its upstream kinase Elm1p. Snf1p appears to be part of a wider functional network than previously anticipated and the full complexity of this network remains to be elucidated.
77 FR 40527 - New Express Mail Price Category-Express Mail Padded Flat Rate Envelope
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... POSTAL SERVICE 39 CFR Part 111 New Express Mail Price Category--Express Mail Padded Flat Rate.... SUPPLEMENTARY INFORMATION: This final rule describes a new price category under Express Mail, Express Mail... new price category is available under Docket Number CP2012-39 on the Postal Regulatory Commission's...
Expressive Arts Project for Young Children with Disabilities. Final Report.
ERIC Educational Resources Information Center
Hutinger, Patricia L.
This final report describes activities and accomplishments of the Expressive Arts Project for Young Children with Disabilities, which developed and evaluated a CD-ROM, ArtSpace. The program, developed on a Macintosh platform, allows the child to either view or make art. It offers real time video, music especially produced to accompany images,…
Sequential Reactions of Surface-Tethered Glycolytic Enzymes
Mukai, Chinatsu; Bergkvist, Magnus; Nelson, Jacquelyn L.; Travis, Alexander J.
2014-01-01
SUMMARY The development of complex hybrid organic-inorganic devices faces several challenges, including how they can generate energy. Cells face similar challenges regarding local energy production. Mammalian sperm solve this problem by generating ATP down the flagellar principal piece by means of glycolytic enzymes, several of which are tethered to a cytoskeletal support via germ cell-specific targeting domains. Inspired by this design, we have produced recombinant hexokinase type 1 and glucose-6-phosphate isomerase capable of oriented immobilization on a nickel-nitrilotriacetic acid modified surface. Specific activities of enzymes tethered via this strategy were substantially higher than when randomly adsorbed. Furthermore, these enzymes showed sequential activities when tethered onto the same surface. This is the first demonstration of surface-tethered pathway components showing sequential enzymatic activities, and it provides a first step toward reconstitution of glycolysis on engineered hybrid devices. PMID:19778729
Pyropheophorbide 2-deoxyglucosamide: a new photosensitizer targeting glucose transporters.
Zhang, Min; Zhang, Zhihong; Blessington, Dana; Li, Hui; Busch, Theresa M; Madrak, Vanessa; Miles, Jeremy; Chance, Britton; Glickson, Jerry D; Zheng, Gang
2003-01-01
To prepare near-infrared fluorescence imaging and photodynamic therapy agents targeted at glucose transporters, pyropheophorbide 2-deoxyglucosamide (Pyro-2DG) was synthesized and evaluated in a 9L glioma rat model. Fluorescence imaging studies demonstrate that Pyro-2DG is selectively accumulated in the tumor. Upon its photoactivation, we demonstrate that this agent efficiently causes selective mitochondrial damage to the region of a tumor that was photoirradiated after administration of this agent, but does not affect tissues photoirradiated in the absence of the agent or tissues treated with the agent that are not photoirradiated. Preliminary confocal microscopy studies suggest that Pyro-2DG is delivered and trapped in tumor cells via the GLUT/hexokinase pathway and therefore is useful both as a tumor-targeted NIR fluorescence imaging probe and as a PDT agent for the destruction of cancer.
[Effect of the nonspecific biogenic stimulators pentoxyl and mumie on metabolic processes].
Shvetskiĭ, A G; Vorob'eva, L M
1978-01-01
Unspecific biogenic stimulants (pentoxyl and mummie) accelerated metabolism of nucleic acids and protein in rat liver tissue. After the treatment with the stimulants the rate of lipolysis exceeded that of lipogenesis. Increase in content of lactate was similar if glycogen and glucose-6-phosphate were used as substrates of glycolysis, but it was stimulated 2-3-fold, when glucose was used; the phenomenon appears to be due to activation of hexokinase. As shown by polarographic measurements mitochondrial respiration was increased in all the metabolic states, but increased doses caused an inhibition of phosphorylation apparently due to functional overstrain of mitochondria. Increased doses of the stimulants accelerated also some other metabolic processes studied, but the effects were not dose-dependent. Pentoxyl and mummie apparently increased processes of protein and nuclei acid metabolism and stimulated the energy-providing reactions.
Kumar, Ajay; Giri, Shailendra; Kumar, Ashok
2016-12-01
The retina is considered to be the most metabolically active tissue in the body. However, the link between energy metabolism and retinal inflammation, as incited by microbial infection such as endophthalmitis, remains unexplored. In this study, using a mouse model of Staphylococcus aureus (SA) endophthalmitis, we demonstrate that the activity (phosphorylation) of 5' adenosine monophosphate-activated protein kinase alpha (AMPKα), a cellular energy sensor and its endogenous substrate; acetyl-CoA carboxylase is down-regulated in the SA-infected retina. Intravitreal administration of an AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), restored AMPKα and acetyl-CoA carboxylase phosphorylation. AICAR treatment reduced both the bacterial burden and intraocular inflammation in SA-infected eyes by inhibiting NF-kB and MAP kinases (p38 and JNK) signalling. The anti-inflammatory effects of AICAR were diminished in eyes pretreated with AMPK inhibitor, Compound C. The bioenergetics (Seahorse) analysis of SA-infected microglia and bone marrow-derived macrophages revealed an increase in glycolysis, which was reinstated by AICAR treatment. AICAR also reduced the expression of SA-induced glycolytic genes, including hexokinase 2 and glucose transporter 1 in microglia, bone marrow-derived macrophages and the mouse retina. Interestingly, AICAR treatment enhanced the bacterial phagocytic and intracellular killing activities of cultured microglia, macrophages and neutrophils. Furthermore, AMPKα1 global knockout mice exhibited increased susceptibility towards SA endophthalmitis, as evidenced by increased inflammatory mediators and bacterial burden and reduced retinal function. Together, these findings provide the first evidence that AMPK activation promotes retinal innate defence in endophthalmitis by modulating energy metabolism and that it can be targeted therapeutically to treat ocular infections. © 2016 John Wiley & Sons Ltd.
CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion.
Zheng, Hongzhi; Fu, Jingqi; Xue, Peng; Zhao, Rui; Dong, Jian; Liu, Dianxin; Yamamoto, Masayuki; Tong, Qingchun; Teng, Weiping; Qu, Weidong; Zhang, Qiang; Andersen, Melvin E; Pi, Jingbo
2015-04-01
The inability of pancreatic β-cells to secrete sufficient insulin in response to glucose stimulation is a major contributing factor to the development of type 2 diabetes (T2D). We investigated both the in vitro and in vivo effects of deficiency of nuclear factor-erythroid 2-related factor 1 (Nrf1) in β-cells on β-cell function and glucose homeostasis. Silencing of Nrf1 in β-cells leads to a pre-T2D phenotype with disrupted glucose metabolism and impaired insulin secretion. Specifically, MIN6 β-cells with stable knockdown of Nrf1 (Nrf1-KD) and isolated islets from β-cell-specific Nrf1-knockout [Nrf1(b)-KO] mice displayed impaired glucose responsiveness, including elevated basal insulin release and decreased glucose-stimulated insulin secretion (GSIS). Nrf1(b)-KO mice exhibited severe fasting hyperinsulinemia, reduced GSIS, and glucose intolerance. Silencing of Nrf1 in MIN6 cells resulted in oxidative stress and altered glucose metabolism, with increases in both glucose uptake and aerobic glycolysis, which is associated with the elevated basal insulin release and reduced glucose responsiveness. The elevated glycolysis and reduced glucose responsiveness due to Nrf1 silencing likely result from altered expression of glucose metabolic enzymes, with induction of high-affinity hexokinase 1 and suppression of low-affinity glucokinase. Our study demonstrated a novel role of Nrf1 in regulating glucose metabolism and insulin secretion in β-cells and characterized Nrf1 as a key transcription factor that regulates the coupling of glycolysis and mitochondrial metabolism and GSIS. Nrf1 plays critical roles in regulating glucose metabolism, mitochondrial function, and insulin secretion, suggesting that Nrf1 may be a novel target to improve the function of insulin-secreting β-cells.
Xiao, Wusheng; Sarsour, Ehab H; Wagner, Brett A; Doskey, Claire M; Buettner, Garry R; Domann, Frederick E; Goswami, Prabhat C
2016-02-01
Polychlorinated biphenyls (PCBs) and their metabolites are environmental pollutants that are known to have adverse health effects. 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone metabolite of 4-monochlorobiphenyl (PCB3, present in the environment and human blood) is toxic to human skin keratinocytes, and breast and prostate epithelial cells. This study investigates the hypothesis that 4-ClBQ-induced metabolic oxidative stress regulates toxicity in human keratinocytes. Results from Seahorse XF96 Analyzer showed that the 4-ClBQ treatment increased extracellular acidification rate, proton production rate, oxygen consumption rate and ATP content, indicative of metabolic oxidative stress. Results from a q-RT-PCR assay showed significant increases in the mRNA levels of hexokinase 2 (hk2), pyruvate kinase M2 (pkm2) and glucose-6-phosphate dehydrogenase (g6pd), and decreases in the mRNA levels of succinate dehydrogenase (complex II) subunit C and D (sdhc and sdhd). Pharmacological inhibition of G6PD-activity enhanced the toxicity of 4-ClBQ, suggesting that the protective function of the pentose phosphate pathway is functional in 4-ClBQ-treated cells. The decrease in sdhc and sdhd expression was associated with a significant decrease in complex II activity and increase in mitochondrial levels of ROS. Overexpression of sdhc and sdhd suppressed 4-ClBQ-induced inhibition of complex II activity, increase in mitochondrial levels of ROS, and toxicity. These results suggest that the 4-ClBQ treatment induces metabolic oxidative stress in HaCaT cells, and while the protective function of the pentose phosphate pathway is active, inhibition of complex II activity sensitizes HaCaT cells to 4-ClBQ-induced toxicity.
Activation of Wnt Signaling in Cortical Neurons Enhances Glucose Utilization through Glycolysis*
Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L. Felipe; Inestrosa, Nibaldo C.
2016-01-01
The Wnt signaling pathway is critical for a number of functions in the central nervous system, including regulation of the synaptic cleft structure and neuroprotection against injury. Deregulation of Wnt signaling has been associated with several brain pathologies, including Alzheimer's disease. In recent years, it has been suggested that the Wnt pathway might act as a central integrator of metabolic signals from peripheral organs to the brain, which would represent a new role for Wnt signaling in cell metabolism. Energy metabolism is critical for normal neuronal function, which mainly depends on glucose utilization. Brain energy metabolism is important in almost all neurological disorders, to which a decrease in the capacity of the brain to utilize glucose has been linked. However, little is known about the relationship between Wnt signaling and neuronal glucose metabolism in the cellular context. In the present study, we found that acute treatment with the Wnt3a ligand induced a large increase in glucose uptake, without changes in the expression or localization of glucose transporter type 3. In addition, we observed that Wnt3a treatment increased the activation of the metabolic sensor Akt. Moreover, we observed an increase in the activity of hexokinase and in the glycolytic rate, and both processes were dependent on activation of the Akt pathway. Furthermore, we did not observe changes in the activity of glucose-6-phosphate dehydrogenase or in the pentose phosphate pathway. The effect of Wnt3a was independent of both the transcription of Wnt target genes and synaptic effects of Wnt3a. Together, our results suggest that Wnt signaling stimulates glucose utilization in cortical neurons through glycolysis to satisfy the high energy demand of these cells. PMID:27703002
HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis.
Barrero, Carlos A; Datta, Prasun K; Sen, Satarupa; Deshmane, Satish; Amini, Shohreh; Khalili, Kamel; Merali, Salim
2013-01-01
Human immunodeficiency virus type 1 encoded viral protein Vpr is essential for infection of macrophages by HIV-1. Furthermore, these macrophages are resistant to cell death and are viral reservoir. However, the impact of Vpr on the macrophage proteome is yet to be comprehended. The goal of the present study was to use a stable-isotope labeling by amino acids in cell culture (SILAC) coupled with mass spectrometry-based proteomics approach to characterize the Vpr response in macrophages. Cultured human monocytic cells, U937, were differentiated into macrophages and transduced with adenovirus construct harboring the Vpr gene. More than 600 proteins were quantified in SILAC coupled with LC-MS/MS approach, among which 136 were significantly altered upon Vpr overexpression in macrophages. Quantified proteins were selected and clustered by biological functions, pathway and network analysis using Ingenuity computational pathway analysis. The proteomic data illustrating increase in abundance of enzymes in the glycolytic pathway (pentose phosphate and pyruvate metabolism) was further validated by western blot analysis. In addition, the proteomic data demonstrate down regulation of some key mitochondrial enzymes such as glutamate dehydrogenase 2 (GLUD2), adenylate kinase 2 (AK2) and transketolase (TKT). Based on these observations we postulate that HIV-1 hijacks the macrophage glucose metabolism pathway via the Vpr-hypoxia inducible factor 1 alpha (HIF-1 alpha) axis to induce expression of hexokinase (HK), glucose-6-phosphate dehyrogenase (G6PD) and pyruvate kinase muscle type 2 (PKM2) that facilitates viral replication and biogenesis, and long-term survival of macrophages. Furthermore, dysregulation of mitochondrial glutamate metabolism in macrophages can contribute to neurodegeneration via neuroexcitotoxic mechanisms in the context of NeuroAIDS.
Southworth, Richard; Parry, Craig R; Parkes, Harold G; Medina, Rodolfo A; Garlick, Pamela B
2003-12-01
2-Fluoro-[(18)F]-2-deoxy-glucose (FDG) is a positron-emitting analogue of glucose used clinically in positron emission tomography (PET) to assess glucose utilization in diseased and healthy tissue. Originally developed to measure local cerebral glucose utilization rates, it has now found applications in tumour diagnosis and in the study of myocardial glucose uptake. Once taken up into the cell, FDG is phosphorylated to FDG-6-phosphate (FDG-6-P) by hexokinase and was originally believed to be trapped as a terminal metabolite. This 'metabolic trapping' of FDG-6-P forms the basis of the analysis of PET data. In this study, we have used (19)F NMR spectroscopy to investigate FDG metabolism following the injection of a bolus of the glucose tracer into the rat (n=6). Ninety minutes after the (19)FDG injection, the brain, heart, liver and kidneys were removed and the (19)FDG metabolites in each were extracted and quantified. We report that significant metabolism of FDG occurs beyond FDG-6-P in all organs examined and that the extent of this metabolism varies from tissue to tissue (degree of metabolism beyond FDG-6-P, expressed as percentage of total organ FDG content, was brain 45 +/- 3%; heart 29 +/- 2%; liver 22+/-3% and kidney 17 +/- 3%, mean +/- SEM n=6). Furthermore, we demonstrate that the relative accumulation of each metabolite was tissue-dependent and reflected the metabolic and regulatory characteristics of each organ. Such inter-tissue differences may have implications for the mathematical modelling of glucose uptake and phosphorylation using FDG as a glucose tracer. Copyright 2003 John Wiley & Sons, Ltd.
Zhou, Hao; Zhang, Ying; Hu, Shunying; Shi, Chen; Zhu, Pingjun; Ma, Qiang; Jin, Qinhua; Cao, Feng; Tian, Feng; Chen, Yundai
2017-08-01
The cardiac microvascular system, which is primarily composed of monolayer endothelial cells, is the site of blood supply and nutrient exchange to cardiomyocytes. However, microvascular ischemia/reperfusion injury (IRI) following percutaneous coronary intervention is a woefully neglected topic, and few strategies are available to reverse such pathologies. Here, we studied the effects of melatonin on microcirculation IRI and elucidated the underlying mechanism. Melatonin markedly reduced infarcted area, improved cardiac function, restored blood flow, and lower microcirculation perfusion defects. Histological analysis showed that cardiac microcirculation endothelial cells (CMEC) in melatonin-treated mice had an unbroken endothelial barrier, increased endothelial nitric oxide synthase expression, unobstructed lumen, reduced inflammatory cell infiltration, and less endothelial damage. In contrast, AMP-activated protein kinase α (AMPKα) deficiency abolished the beneficial effects of melatonin on microvasculature. In vitro, IRI activated dynamin-related protein 1 (Drp1)-dependent mitochondrial fission, which subsequently induced voltage-dependent anion channel 1 (VDAC1) oligomerization, hexokinase 2 (HK2) liberation, mitochondrial permeability transition pore (mPTP) opening, PINK1/Parkin upregulation, and ultimately mitophagy-mediated CMEC death. However, melatonin strengthened CMEC survival via activation of AMPKα, followed by p-Drp1 S616 downregulation and p-Drp1 S37 upregulation, which blunted Drp1-dependent mitochondrial fission. Suppression of mitochondrial fission by melatonin recovered VDAC1-HK2 interaction that prevented mPTP opening and PINK1/Parkin activation, eventually blocking mitophagy-mediated cellular death. In summary, this study confirmed that melatonin protects cardiac microvasculature against IRI. The underlying mechanism may be attributed to the inhibitory effects of melatonin on mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis via activation of AMPKα. © 2017 The Authors. Journal of Pineal Research Published by John Wiley & Sons Ltd.
Dengue virus induces and requires glycolysis for optimal replication.
Fontaine, Krystal A; Sanchez, Erica L; Camarda, Roman; Lagunoff, Michael
2015-02-01
Viruses rely on host cellular metabolism to provide the energy and biosynthetic building blocks required for their replication. Dengue virus (DENV), a member of the Flaviviridae family, is one of the most important arthropod-borne human pathogens worldwide. We analyzed global intracellular metabolic changes associated with DENV infection of primary human cells. Our metabolic profiling data suggested that central carbon metabolism, particularly glycolysis, is strikingly altered during a time course of DENV infection. Glucose consumption is increased during DENV infection and depriving DENV-infected cells of exogenous glucose had a pronounced impact on viral replication. Furthermore, the expression of both glucose transporter 1 and hexokinase 2, the first enzyme of glycolysis, is upregulated in DENV-infected cells. Pharmacologically inhibiting the glycolytic pathway dramatically reduced DENV RNA synthesis and infectious virion production, revealing a requirement for glycolysis during DENV infection. Thus, these experiments suggest that DENV induces the glycolytic pathway to support efficient viral replication. This study raises the possibility that metabolic inhibitors, such as those that target glycolysis, could be used to treat DENV infection in the future. Approximately 400 million people are infected with dengue virus (DENV) annually, and more than one-third of the global population is at risk of infection. As there are currently no effective vaccines or specific antiviral therapies for DENV, we investigated the impact DENV has on the host cellular metabolome to identify metabolic pathways that are critical for the virus life cycle. We report an essential role for glycolysis during DENV infection. DENV activates the glycolytic pathway, and inhibition of glycolysis significantly blocks infectious DENV production. This study provides further evidence that viral metabolomic analyses can lead to the discovery of novel therapeutic targets to block the replication of medically important human pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Activation of Wnt Signaling in Cortical Neurons Enhances Glucose Utilization through Glycolysis.
Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L Felipe; Inestrosa, Nibaldo C
2016-12-09
The Wnt signaling pathway is critical for a number of functions in the central nervous system, including regulation of the synaptic cleft structure and neuroprotection against injury. Deregulation of Wnt signaling has been associated with several brain pathologies, including Alzheimer's disease. In recent years, it has been suggested that the Wnt pathway might act as a central integrator of metabolic signals from peripheral organs to the brain, which would represent a new role for Wnt signaling in cell metabolism. Energy metabolism is critical for normal neuronal function, which mainly depends on glucose utilization. Brain energy metabolism is important in almost all neurological disorders, to which a decrease in the capacity of the brain to utilize glucose has been linked. However, little is known about the relationship between Wnt signaling and neuronal glucose metabolism in the cellular context. In the present study, we found that acute treatment with the Wnt3a ligand induced a large increase in glucose uptake, without changes in the expression or localization of glucose transporter type 3. In addition, we observed that Wnt3a treatment increased the activation of the metabolic sensor Akt. Moreover, we observed an increase in the activity of hexokinase and in the glycolytic rate, and both processes were dependent on activation of the Akt pathway. Furthermore, we did not observe changes in the activity of glucose-6-phosphate dehydrogenase or in the pentose phosphate pathway. The effect of Wnt3a was independent of both the transcription of Wnt target genes and synaptic effects of Wnt3a. Together, our results suggest that Wnt signaling stimulates glucose utilization in cortical neurons through glycolysis to satisfy the high energy demand of these cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Page, Rachel A.; Sukala, William R.; Giri, Mamta; Ghimbovschi, Svetlana D.; Hayat, Irum; Cheema, Birinder S.; Lys, Isabelle; Leikis, Murray; Sheard, Phillip W.; Wakefield, St. John; Breier, Bernhard; Hathout, Yetrib; Brown, Kristy; Marathi, Ramya; Orkunoglu-Suer, Funda E.; Devaney, Joseph M.; Leiken, Benjamin; Many, Gina; Krebs, Jeremy; Hopkins, Will G.; Hoffman, Eric P.
2014-01-01
Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m2 ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and microvascular plasticity relevant to diabetes rehabilitation. PMID:25138607
Storm, P; Aits, S; Puthia, M K; Urbano, A; Northen, T; Powers, S; Bowen, B; Chao, Y; Reindl, W; Lee, D Y; Sullivan, N L; Zhang, J; Trulsson, M; Yang, H; Watson, J D; Svanborg, C
2011-12-01
HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here, we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small-hairpin RNA (shRNA) inhibition, proteomic and metabolomic technology, we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, HAMLET sensitivity was modified by the glycolytic state of tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen, hexokinase 1 (HK1), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 and hypoxia-inducible factor 1α modified HAMLET sensitivity. HK1 was shown to bind HAMLET in a protein array containing ∼8000 targets, and HK activity decreased within 15 min of HAMLET treatment, before morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 min. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene addiction or the Warburg effect.
Rapid upregulation of GLUT-4 and MCT-4 expression during 16 h of heavy intermittent cycle exercise.
Green, H J; Duhamel, T A; Holloway, G P; Moule, J W; Ranney, D W; Tupling, A R; Ouyang, J
2008-02-01
In this study, we have investigated the hypothesis that an exercise protocol designed to repeatedly induce a large dependence on carbohydrate and large increases in glycolytic flux rate would result in rapid increases in the principal glucose and lactate transporters in working muscle, glucose transporter (GLUT)-4 and monocarboxylate transporter (MCT)4, respectively, and in activity of hexokinase (Hex), the enzyme used to phosphorylate glucose. Transporter abundance and Hex activity were assessed in homogenates by Western blotting and quantitative chemiluminescence and fluorometric techniques, respectively, in samples of tissue obtained from the vastus lateralis in 12 untrained volunteers [peak aerobic power (.VO(2peak)) = 44.3 +/- 2.3 ml.kg(-1).min(-1)] before cycle exercise at repetitions 1 (R1), 2 (R2), 9 (R9), and 16 (R16). The 16 repetitions of the exercise were performed for 6 min at approximately 90% .VO(2peak), once per hour. Compared with R1, GLUT-4 increased (P < 0.05) by 28% at R2 and remained elevated (P < 0.05) at R9 and R16. For MCT-4, increases (P < 0.05) of 24% were first observed at R9 and persisted at R16. No changes were observed in GLUT-1 and MCT-1 or in Hex activity. The approximately 17- to 24-fold increase (P < 0.05) in muscle lactate observed at R1 and R2 was reduced (P < 0.05) to an 11-fold increase at R9 and R16. It is concluded that an exercise protocol designed to strain muscle carbohydrate reserves and to result in large increases in lactic acid results in a rapid upregulation of both GLUT-4 and MCT-4.
The mouse forkhead gene Foxp2 modulates expression of the lung genes.
Yang, Zhi; Hikosaka, Keisuke; Sharkar, Mohammad T K; Tamakoshi, Tomoki; Chandra, Abhishek; Wang, Bo; Itakura, Tatsuo; Xue, XiaoDong; Uezato, Tadayoshi; Kimura, Wataru; Miura, Naoyuki
2010-07-03
Foxp2 is expressed in the lung during mouse development. A monoclonal anti-mouse Foxp2 antibody was created to determine the expression pattern in the developing lung. Next, transcriptional control of two lung genes, CC10 and surfactant protein C (SPC) genes, by Foxp2 was investigated in H441 and A549 cells. Thirdly, expression patterns of Foxp2 and Foxf2 were compared in the developing lung. Finally, Foxp2 expression was determined in the Foxf2-null mice. Immunohistochemical staining and in situ hybridization were applied to the sections of lungs in the developing embryos. Monoclonal anti-Foxp2 antibody demonstrated that Foxp2 was expressed in the bronchial epithelium at E10.5 and its expression became restricted to the distal portion of the elongating bronchiolar epithelium and finally to type II alveolar epithelial cells around birth and in the adult. Foxp2 activated the SPC gene promoter in the presence of Nkx2.1 in A549 cells while it repressed the CC10 gene promoter in H441 cells. Next, the expression domains of the Foxp2 and Foxf2 were found to be exclusive in the lung. Finally, the expression of Foxp2 did not change in the lung of Foxf2-null mice. The Foxp2 protein is expressed in the growing distal edge of airway epithelium. When the bronchiolus elongates, Foxp2 suppresses CC10 expression. When the lung alveolus is formed, Foxp2 modulates the Nkx2.1-mediated SPC expression in type II alveolar cells. Foxp2 and Foxf2 independently play distinct roles in the alveoli and the mesenchyme, respectively. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Expressive facial animation synthesis by learning speech coarticulation and expression spaces.
Deng, Zhigang; Neumann, Ulrich; Lewis, J P; Kim, Tae-Yong; Bulut, Murtaza; Narayanan, Shrikanth
2006-01-01
Synthesizing expressive facial animation is a very challenging topic within the graphics community. In this paper, we present an expressive facial animation synthesis system enabled by automated learning from facial motion capture data. Accurate 3D motions of the markers on the face of a human subject are captured while he/she recites a predesigned corpus, with specific spoken and visual expressions. We present a novel motion capture mining technique that "learns" speech coarticulation models for diphones and triphones from the recorded data. A Phoneme-Independent Expression Eigenspace (PIEES) that encloses the dynamic expression signals is constructed by motion signal processing (phoneme-based time-warping and subtraction) and Principal Component Analysis (PCA) reduction. New expressive facial animations are synthesized as follows: First, the learned coarticulation models are concatenated to synthesize neutral visual speech according to novel speech input, then a texture-synthesis-based approach is used to generate a novel dynamic expression signal from the PIEES model, and finally the synthesized expression signal is blended with the synthesized neutral visual speech to create the final expressive facial animation. Our experiments demonstrate that the system can effectively synthesize realistic expressive facial animation.
Palstra, Arjan P; Fukaya, Kosuke; Chiba, Hiroaki; Dirks, Ron P; Planas, Josep V; Ueda, Hiroshi
2015-01-01
Reproductive homing migration of salmonids requires accurate interaction between the reception of external olfactory cues for navigation to the spawning grounds and the regulation of sexual maturation processes. This study aimed at providing insights into the hypothesized functional link between olfactory sensing of the spawning ground and final sexual maturation. We have therefore assessed the presence and expression levels of olfactory genes by RNA sequencing (RNAseq) of the olfactory rosettes in homing chum salmon Oncorhynchus keta Walbaum from the coastal sea to 75 km upstream the rivers at the pre-spawning ground. The progression of sexual maturation along the brain-pituitary-gonadal axis was assessed through determination of plasma steroid levels by time-resolved fluoroimmunoassays (TR-FIA), pituitary gonadotropin subunit expression and salmon gonadotropin-releasing hormone (sgnrh) expression in the brain by quantitative real-time PCR. RNAseq revealed the expression of 75 known and 27 unknown salmonid olfactory genes of which 13 genes were differentially expressed between fish from the pre-spawning area and from the coastal area, suggesting an important role of these genes in homing. A clear progression towards final maturation was characterised by higher plasma 17α,20β-dihydroxy-4-pregnen-3-one (DHP) levels, increased pituitary luteinizing hormone β subunit (lhβ) expression and sgnrh expression in the post brain, and lower plasma testosterone (T) and 17β-estradiol (E2) levels. Olfactomedins and ependymin are candidates among the differentially expressed genes that may connect olfactory reception to the expression of sgnrh to regulate final maturation.
Palstra, Arjan P.; Fukaya, Kosuke; Chiba, Hiroaki; Dirks, Ron P.; Planas, Josep V.; Ueda, Hiroshi
2015-01-01
Reproductive homing migration of salmonids requires accurate interaction between the reception of external olfactory cues for navigation to the spawning grounds and the regulation of sexual maturation processes. This study aimed at providing insights into the hypothesized functional link between olfactory sensing of the spawning ground and final sexual maturation. We have therefore assessed the presence and expression levels of olfactory genes by RNA sequencing (RNAseq) of the olfactory rosettes in homing chum salmon Oncorhynchus keta Walbaum from the coastal sea to 75 km upstream the rivers at the pre-spawning ground. The progression of sexual maturation along the brain-pituitary-gonadal axis was assessed through determination of plasma steroid levels by time-resolved fluoroimmunoassays (TR-FIA), pituitary gonadotropin subunit expression and salmon gonadotropin-releasing hormone (sgnrh) expression in the brain by quantitative real-time PCR. RNAseq revealed the expression of 75 known and 27 unknown salmonid olfactory genes of which 13 genes were differentially expressed between fish from the pre-spawning area and from the coastal area, suggesting an important role of these genes in homing. A clear progression towards final maturation was characterised by higher plasma 17α,20β-dihydroxy-4-pregnen-3-one (DHP) levels, increased pituitary luteinizing hormone β subunit (lhβ) expression and sgnrh expression in the post brain, and lower plasma testosterone (T) and 17β-estradiol (E2) levels. Olfactomedins and ependymin are candidates among the differentially expressed genes that may connect olfactory reception to the expression of sgnrh to regulate final maturation. PMID:26397372
28 CFR 68.52 - Final order of the Administrative Law Judge.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Final order of the Administrative Law... FRAUD § 68.52 Final order of the Administrative Law Judge. (a) Proposed final order. (1) Within twenty... findings of fact, conclusions of law, and orders, together with supporting briefs expressing the reasons...
28 CFR 68.52 - Final order of the Administrative Law Judge.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Final order of the Administrative Law... FRAUD § 68.52 Final order of the Administrative Law Judge. (a) Proposed final order. (1) Within twenty... findings of fact, conclusions of law, and orders, together with supporting briefs expressing the reasons...
28 CFR 68.52 - Final order of the Administrative Law Judge.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Final order of the Administrative Law... FRAUD § 68.52 Final order of the Administrative Law Judge. (a) Proposed final order. (1) Within twenty... findings of fact, conclusions of law, and orders, together with supporting briefs expressing the reasons...
28 CFR 68.52 - Final order of the Administrative Law Judge.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Final order of the Administrative Law... FRAUD § 68.52 Final order of the Administrative Law Judge. (a) Proposed final order. (1) Within twenty... findings of fact, conclusions of law, and orders, together with supporting briefs expressing the reasons...
Bcl-xL mediates RIPK3-dependent necrosis in M. tuberculosis-infected macrophages.
Zhao, X; Khan, N; Gan, H; Tzelepis, F; Nishimura, T; Park, S-Y; Divangahi, M; Remold, H G
2017-11-01
Virulent Mycobacterium tuberculosis (Mtb) triggers necrosis in host Mϕ, which is essential for successful pathogenesis in tuberculosis. Here we demonstrate that necrosis of Mtb-infected Mϕ is dependent on the action of the cytosolic Receptor Interacting Protein Kinase 3 (RIPK3) and the mitochondrial Bcl-2 family member protein B-cell lymphoma-extra large (Bcl-x L ). RIPK3-deficient Mϕ are able to better control bacterial growth in vitro and in vivo. Mechanistically, cytosolic RIPK3 translocates to the mitochondria where it promotes necrosis and blocks caspase 8-activation and apoptosis via Bcl-x L . Furthermore, necrosis is associated with stabilization of hexokinase II on the mitochondria as well as cyclophilin D-dependent mitochondrial permeability transition. Collectively, these events upregulate the level of reactive oxygen species to induce necrosis. Thus, in Mtb-infected Mϕ, mitochondria are an essential platform for induction of necrosis by activating RIPK3 function and preventing caspase 8-activation.
Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis.
Zhang, Yanjun; Clausmeyer, Jan; Babakinejad, Babak; Córdoba, Ainara López; Ali, Tayyibah; Shevchuk, Andrew; Takahashi, Yasufumi; Novak, Pavel; Edwards, Christopher; Lab, Max; Gopal, Sahana; Chiappini, Ciro; Anand, Uma; Magnani, Luca; Coombes, R Charles; Gorelik, Julia; Matsue, Tomokazu; Schuhmann, Wolfgang; Klenerman, David; Sviderskaya, Elena V; Korchev, Yuri
2016-03-22
Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements.
Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis
Córdoba, Ainara López; Ali, Tayyibah; Shevchuk, Andrew; Takahashi, Yasufumi; Novak, Pavel; Edwards, Christopher; Lab, Max; Gopal, Sahana; Chiappini, Ciro; Anand, Uma; Magnani, Luca; Coombes, R. Charles; Gorelik, Julia; Matsue, Tomokazu; Schuhmann, Wolfgang; Klenerman, David; Sviderskaya, Elena V.; Korchev, Yuri
2016-01-01
Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements. PMID:26816294
Brain glucose sensing, glucokinase and neural control of metabolism and islet function.
Ogunnowo-Bada, E O; Heeley, N; Brochard, L; Evans, M L
2014-09-01
It is increasingly apparent that the brain plays a central role in metabolic homeostasis, including the maintenance of blood glucose. This is achieved by various efferent pathways from the brain to periphery, which help control hepatic glucose flux and perhaps insulin-stimulated insulin secretion. Also, critically important for the brain given its dependence on a constant supply of glucose as a fuel--emergency counter-regulatory responses are triggered by the brain if blood glucose starts to fall. To exert these control functions, the brain needs to detect rapidly and accurately changes in blood glucose. In this review, we summarize some of the mechanisms postulated to play a role in this and examine the potential role of the low-affinity hexokinase, glucokinase, in the brain as a key part of some of this sensing. We also discuss how these processes may become altered in diabetes and related metabolic diseases. © 2014 John Wiley & Sons Ltd.
Brain glucose sensing, glucokinase and neural control of metabolism and islet function
Ogunnowo-Bada, E O; Heeley, N; Brochard, L; Evans, M L
2014-01-01
It is increasingly apparent that the brain plays a central role in metabolic homeostasis, including the maintenance of blood glucose. This is achieved by various efferent pathways from the brain to periphery, which help control hepatic glucose flux and perhaps insulin-stimulated insulin secretion. Also, critically important for the brain given its dependence on a constant supply of glucose as a fuel – emergency counter-regulatory responses are triggered by the brain if blood glucose starts to fall. To exert these control functions, the brain needs to detect rapidly and accurately changes in blood glucose. In this review, we summarize some of the mechanisms postulated to play a role in this and examine the potential role of the low-affinity hexokinase, glucokinase, in the brain as a key part of some of this sensing. We also discuss how these processes may become altered in diabetes and related metabolic diseases. PMID:25200293
Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism
Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken
2015-01-01
Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018
Yu, Jing; Jiang, Jiaxi; Ji, Wangming; Li, Yuyang; Liu, Jianping
2011-01-01
Using inulin (polyfructose) obtained from Jerusalen artichokes, we have produced fructose free of residual glucose using a recombinant inulinase-secreting strain of Saccharomyces cerevisiae in a one-step fermentation of Jerusalem artichoke tubers. For producing fructose from inulin, a recombinant inulinase-producing Saccharomyce cerevisiae strain was constructed with a deficiency in fructose uptake by disruption of two hexokinase genes hxk1 and hxk2. The inulinase gene introduced into S. cerevisiae was cloned from Kluyveromyces cicerisporus. Extracellular inulinase activity of the recombinant hxk-mutated S. cerevisiae strain reached 31 U ml(-1) after 96 h growth. When grown in a medium containing Jerusalem artichoke tubers as the sole component without any additives, the recombinant yeast accumulated fructose up to 9.2% (w/v) in the fermentation broth with only 0.1% (w/v) glucose left after 24 h.
High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction.
Lee, Seon-Hwa; Hong, Seung-Hye; Kim, Kyoung-Rok; Oh, Deok-Kun
2017-08-01
To produce tagatose from fructose with a high conversion rate and to establish a high-yield purification method of tagatose from the reaction mixture. Fructose at 1 M (180 g l -1 ) was converted to 0.8 M (144 g l -1 ) tagatose by a three-step enzymatic cascade reaction, involving hexokinase, plus ATP, fructose-1,6-biphosphate aldolase, phytase, over 16 h with a productivity of 9 g l -1 h -1 . No byproducts were detected. Tagatose was recrystallized from ethanol to a purity of 99.9% and a yield of 96.3%. Overall, tagatose at 99.9% purity was obtained from fructose with a yield of 77%. This is the first biotechnological production of tagatose from fructose and the first application of solvent recrystallization for the purification of rare sugars.
Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism.
Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John D R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken
2015-04-23
Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus of glucose uptake as visualized by functional brain imaging.
Usha, V; Vijayammal, P L; Kurup, P A
1989-05-01
Effect of feeding isolated dietary fiber from M. paradisiaca on the metabolism of carbohydrates in the liver has been studied. Fiber fed rats showed significantly lower levels of fasting blood glucose and higher concentration of liver glycogen. Activity of glycogen phosphorylase, glucose-1-phosphate, uridyl transferase and glycogen synthase was significantly higher while phosphoglucomutase activity showed lower activity. Activity of some glycolytic enzymes, viz. hexokinase and pyruvic kinase was lower. Glucose-6-phosphatase showed higher activity while fructose 1-6 diphosphatase activity was not affected. Glucose-6-phosphate dehydrogenase on the other hand showed higher activity. The changes in these enzyme activities have been attributed due to the effect of higher concentration of bile acids produced in the liver as a result of feeding fiber. Evidence for this has been obtained by studying the in vitro effect of cholic acid and chenodeoxy cholic acid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peppler, Willem T.; Miotto, Paula M.; Holloway, Graham P.
The β-3 adrenergic agonist CL 316, 243 acutely lowers blood glucose through a mechanism thought to involve fatty-acid induced insulin release. The purpose of this study was to determine if ablation of the nuclear receptor, receptor-inactivating protein 140 (RIP140), altered this response. Here, we used a single injection of CL 316, 243 (1 mg/kg) and found that whole body RIP140{sup −/−} mice had a greater decline in blood glucose over 2 h. This occurred alongside increased hexokinase II (HKII) protein content in adipose tissue and skeletal muscle, but independent of changes in circulating insulin or indices of lipolysis. These data indicate thatmore » RIP140 has a unique role in the acute effect of β-3 adrenergic receptor activation using CL 316, 243.« less
Recent Advances in Fluorescent Arylboronic Acids for Glucose Sensing
Hansen, Jon Stefan; Christensen, Jørn Bolstad
2013-01-01
Continuous glucose monitoring (CGM) is crucial in order to avoid complications caused by change in blood glucose for patients suffering from diabetes mellitus. The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures. Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution. These properties enable arylboronic acid dyes to provide immediate information of glucose concentrations. Thus, the replacement of the commonly applied semi-invasive and non-invasive techniques relying on glucose binding proteins, such as concanavalin A, or enzymes, such as glucose oxidase, glucose dehydrogenase and hexokinases/glucokinases, might be possible. The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review. PMID:25586415
Dual Proteolytic Pathways Govern Glycolysis and Immune Competence
Lu, Wei; Zhang, Yu; McDonald, David O.; Jing, Huie; Carroll, Bernadette; Robertson, Nic; Zhang, Qian; Griffin, Helen; Sanderson, Sharon; Lakey, Jeremy H.; Morgan, Neil V.; Reynard, Louise N.; Zheng, Lixin; Murdock, Heardley M.; Turvey, Stuart E.; Hackett, Scott J.; Prestidge, Tim; Hall, Julie M.; Cant, Andrew J.; Matthews, Helen F.; Santibanez Koref, Mauro F.; Simon, Anna Katharina; Korolchuk, Viktor I.; Lenardo, Michael J.; Hambleton, Sophie; Su, Helen C.
2014-01-01
SUMMARY Proteasomes and lysosomes constitute the major cellular systems that catabolize proteins to recycle free amino acids for energy and new protein synthesis. Tripeptidyl peptidase II (TPPII) is a large cytosolic proteolytic complex that functions in tandem with the proteasome-ubiquitin protein degradation pathway. We found that autosomal recessive TPP2 mutations cause recurrent infections, autoimmunity, and neurodevelopmental delay in humans. We show that a major function of TPPII in mammalian cells is to maintain amino acid levels, and that TPPII-deficient cells compensate by increasing lysosome number and proteolytic activity. However, the overabundant lysosomes derange cellular metabolism by consuming the key glycolytic enzyme hexokinase-2 through chaperone-mediated autophagy. This reduces glycolysis and impairs the production of effector cytokines including IFN-γ and IL-1β. Thus, TPPII controls the balance between intracellular amino acid availability, lysosome number, and glycolysis, which is vital for adaptive and innate immunity and neurodevelopmental health. PMID:25525876
Technique for evaluation of the strong potential Born approximation for electron capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sil, N.C.; McGuire, J.H.
1985-04-01
A technique is presented for evaluating differential cross sections in the strong potential Born (SPB) approximation. Our final expression is expressed as a finite sum of one-dimensional integrals, expressible as a finite sum of derivatives of hypergeometric functions.
Hyslop, P A; Kuhn, C E; Sauerheber, R D
1985-01-01
We examined the effects of the membrane-impermeant amino-group-modifying agent fluorescein isothiocyanate (FITC) on the basal and insulin-stimulated hexose-transport activity of isolated rat adipocytes. Pre-treatment of cells with FITC causes irreversible inhibition of transport measured in subsequently washed cells. Transport activity was inhibited by approx. 50% with 2 mM-FITC in 8 min. The cells respond to insulin, after FITC treatment and removal, and the fold increase in transport above the basal value caused by maximal concentrations of insulin was independent of the concentration of FITC used for pre-treatment over the range 0-2 mM, where basal activity was progressively inhibited. The ability of FITC to modify selectively hexose transporters accessible only to the external milieu was evaluated by two methods. (1) Free intracellular FITC, and the distribution of FITC bound to cellular components, were assessed after dialysis of the homogenate and subcellular fractionation on sucrose gradients by direct spectroscopic measurement of fluorescein. Most (98%) of the FITC was associated with the non-diffusible fractions. Equilibrium sucrose-density-gradient centrifugation of the homogenate demonstrated that the subcellular distribution of the bound FITC correlated with the density distribution of a plasma-membrane marker, but not markers for Golgi, endoplasmic reticulum, mitochondria or protein. Exposing the cellular homogenate, rather than the intact cell preparation, to 2 mM-FITC resulted in a 4-5-fold increase in total bound FITC, and the density-distribution profile more closely resembled the distribution of total protein. (2) Incubation of hexokinase preparations with FITC rapidly and irreversibly inactivates this protein. However, both intracellular hexokinase total activity and its apparent Michaelis constant for glucose were unaffected in FITC-treated intact cells. Further control experiments demonstrated that FITC pre-treatment of cells had no effect on the intracellular ATP concentration or the dose-response curve of insulin stimulation of hexose transport. Since the fold increase of hexose transport induced by insulin is constant over the range of inhibition of surface-labelled hexose transporters, we suggest that insulin-induced insertion of additional transporters into the plasma membrane may not be the major locus of acceleration of hexose transport by the hormone. PMID:3910027
Azmi, Kifaya; Schonian, Gabriele; Schnur, Lionel F.; Nasereddin, Abedelmajeed; Ereqat, Suheir; Abdeen, Ziad
2013-01-01
Background/Objectives Palestinian strains of L.tropica characterized by multilocus enzyme electrophoresis (MLEE) fall into two zymodemes, either MON-137 or MON-307. Methodology/Principle Findings Assays employing PCR and subsequent RFLP were applied to sequences found in the Hexokinase (HK) gene, an enzyme that is not used in MLEE, and the Phosphoglucomutase (PGM) gene, an enzyme that is used for MLEE, to see if they would facilitate consigning local strains of L.tropica to either zymodeme MON-137 or zymodeme MON-307. Following amplification and subsequent double digestion with the restriction endonucleases MboI and HaeIII, variation in the restriction patterns of the sequence from the HK gene distinguished strains of L.tropica, L.major and L.infantum and also exposed two genotypes (G) among the strains of L.tropica: HK-LtG1, associated with strains of L.tropica of the zymodemes MON-137 and MON-265, and HK-LtG2, associated with strains of L.tropica of the zymodemes MON-307, MON-288, MON-275 and MON-54. Following amplification and subsequent digestion by the restriction endonuclease MboI, variation in the sequence from the PGM gene also exposed two genotypes among the strains of L.tropica: PGM-G1, associated only with strains of L.tropica of the zymodeme MON-137; and PGM-G2, associated with strains of L.tropica of the zymodemes MON-265, MON-307, MON-288, MON-275 and MON-54, and, also, with six strains of L.major, five of L.infantum and one of L.donovani. The use of the HK and PGM gene sequences enabled distinction the L.tropica strains of the zymodeme MON-137 from those of the zymodeme MON-265. This genotyping system ‘correctly’ identified reference strains of L.tropica of known zymodemal affiliation and also from clinical samples, with a level of sensitivity down to <1 fg in the case of the former and to 1 pg of DNA in the case of the latter. Conclusions/Significance Both assays proved useful for identifying leishmanial parasites in clinical samples without resource to culture and MLEE. PMID:24086789
40 CFR 91.509 - Calculation and reporting of test results.
Code of Federal Regulations, 2011 CFR
2011-07-01
... applicable emission standard expressed to one additional significant figure. (ASTM E29-93a has been... contained in the applicable standard expressed to one additional significant figure. (c) The final... expressed to one additional significant figure. (d) If, at any time during the model year, the CumSum...
40 CFR 91.509 - Calculation and reporting of test results.
Code of Federal Regulations, 2014 CFR
2014-07-01
... applicable emission standard expressed to one additional significant figure. (ASTM E29-93a has been... contained in the applicable standard expressed to one additional significant figure. (c) The final... expressed to one additional significant figure. (d) If, at any time during the model year, the CumSum...
Liu, Zhe; Sun, Yiming; Hong, Haiyu; Zhao, Surong; Zou, Xue; Ma, Renqiang; Jiang, Chenchen; Wang, Zhiwei; Li, Huabin; Liu, Hao
2015-01-01
Increasing evidence demonstrates that the hexokinase inhibitor 3-bromopyruvate (3-BrPA) induces the cell apoptotic death by inhibiting ATP generation in human cancer cells. Interestingly, some tumor cell lines are less sensitive to 3-BrPA-induced apoptosis than others. Moreover, the molecular mechanism of 3-BrPA-trigged apoptosis is unclear. In the present study, we examined the effects of 3-BrPA on the viability of the breast cancer cell lines MDA-MB-231 and MCF-7. We further investigated the potential roles of monocarboxylate transporter 1 (MCT1) in drug accumulation and efflux of breast cancer cells. Finally, we explored whether 3-BrPA enhanced daunorubicin (DNR)-induced cytotoxicity through regulation of MCT1 in breast cancer cells. MTT and colony formation assays were used to measure cell viability. Western blot analysis, flow cytometric analysis and fluorescent microscopy were used to determine the molecular mechanism of actions of MCT1 in different breast cancer cell lines. Whole-body bioluminescence imaging was used to investigate the effect of 3-BrPA in vivo. We found that 3-BrPA significantly inhibited cell growth and induced apoptosis in MCF-7 cell line, but not in MDA-MB-231 cells. Moreover, we observed that 3-BrPA efficiently enhanced DNR-induced cytotoxicity in MCF-7 cells by inhibiting the activity of ATP-dependent efflux pumps. We also found that MCT1 overexpression increased the efficacy of 3-BrPA in MDA-MB-231 cells. 3-BrPA markedly suppressed subcutaneous tumor growth in combination with DNR in nude mice implanted with MCF-7 cells. Lastly, our whole-body bioluminescence imaging data indicated that 3-BrPA promoted DNR accumulation in tumors. These findings collectively suggest that 3-BrPA enhanced DNR antitumor activity in breast cancer cells involved MCT-1, suggesting that inhibition of glycolysis could be an effective therapeutic approach for breast cancer treatment.
A Dictionary of Hindi Verbal Expressions (Hindi-English). Final Report.
ERIC Educational Resources Information Center
Bahl, Kali Charan, Comp.
This dictionary covers approximately 28,277 verbal expressions in modern standard Hindi and their rendered English equivalents. The study lists longer verbal expressions which are generally matched by single verbs in English. The lexicographer notes that the majority of entries in this dictionary do not appear in their present form in most other…
Study on the construction of Intelligent Courier Station Model
NASA Astrophysics Data System (ADS)
zhao, Ce; lu, Jia xin; li, Zhuang zhuang; shao, Zi rong; pi, Kun yi
2018-06-01
Campus Express is an important window to observe the city consumption logistics service "last kilometer".The research on Campus Express service is not only conducive to campus environment improvement and service quality promotion, but also provides all types of community, agglomeration areas such as urban terminal "last kilometer" logistics with reference.This article first proposed the main problems of campus express service,analyzed the mode of smart express station and finally built a smart express station.
NASA Astrophysics Data System (ADS)
Han, Sheng; Xi, Shi-qiong; Geng, Wei-dong
2017-11-01
In order to solve the problem of low recognition rate of traditional feature extraction operators under low-resolution images, a novel algorithm of expression recognition is proposed, named central oblique average center-symmetric local binary pattern (CS-LBP) with adaptive threshold (ATCS-LBP). Firstly, the features of face images can be extracted by the proposed operator after pretreatment. Secondly, the obtained feature image is divided into blocks. Thirdly, the histogram of each block is computed independently and all histograms can be connected serially to create a final feature vector. Finally, expression classification is achieved by using support vector machine (SVM) classifier. Experimental results on Japanese female facial expression (JAFFE) database show that the proposed algorithm can achieve a recognition rate of 81.9% when the resolution is as low as 16×16, which is much better than that of the traditional feature extraction operators.
Realistic facial animation generation based on facial expression mapping
NASA Astrophysics Data System (ADS)
Yu, Hui; Garrod, Oliver; Jack, Rachael; Schyns, Philippe
2014-01-01
Facial expressions reflect internal emotional states of a character or in response to social communications. Though much effort has been taken to generate realistic facial expressions, it still remains a challenging topic due to human being's sensitivity to subtle facial movements. In this paper, we present a method for facial animation generation, which reflects true facial muscle movements with high fidelity. An intermediate model space is introduced to transfer captured static AU peak frames based on FACS to the conformed target face. And then dynamic parameters derived using a psychophysics method is integrated to generate facial animation, which is assumed to represent natural correlation of multiple AUs. Finally, the animation sequence in the intermediate model space is mapped to the target face to produce final animation.
Bcl-xL mediates RIPK3-dependent necrosis in M. tuberculosis-infected macrophages
Zhao, Xiaomin; Khan, Nargis; Gan, Huixian; Tzelepis, Fanny; Nishimura, Tomoyasu; Park, Seung-Yeol; Divangahi, Maziar; Remold, Heinz G.
2017-01-01
Virulent Mycobacterium tuberculosis (Mtb) triggers necrosis in host Mφ, which is essential for successful pathogenesis. Here we demonstrate that necrosis of Mtb-infected Mφ is dependent on the action of the cytosolic kinase Receptor Interacting Protein 3 (RIPK3) and the mitochondrial Bcl-2 family member protein B-cell lymphoma - extra large (Bcl-xL). RIPK3-deficient Mφ are able to better control bacterial growth in vitro and in vivo. Cytosolic RIPK3 translocates to the mitochondria where it promotes necrosis and blocks caspase 8-activation and apoptosis via Bcl-xL. Furthermore, necrosis is associated with stabilization of hexokinase II on the mitochondria as well as cyclophilin D-dependent mitochondrial permeability transition (MPT). These events up-regulate the level of reactive oxygen species (ROS) to induce necrosis. Thus, in Mtb-infected Mφ mitochondria are an essential platform for induction of necrosis by activating RIPK3 function and preventing caspase 8 - activation. PMID:28401933
Galina, Antonio
2014-09-01
Enhanced glycolysis, the classic bioenergetic phenotype of cancer cells was described by Otto Warburg approximately 90 years ago. However, the Warburg hypothesis does not necessarily imply mitochondrial dysfunction. The alkyl-halogen, 3-bromopyruvate (3BP), would not be expected to have selective targets for cancer therapy due to its high potential reactivity toward many SH side groups. Contrary to predictions, 3BP interferes with glycolysis and oxidative phosphorylation in cancer cells without side effects in normal tissues. The mitochondrial hexokinase II has been claimed as the main target. This "Organelle in focus" article presents a historical view of the use of 3BP in biochemistry and its effects on ATP-producing pathways of cancer cells. I will discuss how the alkylated enzymes contribute to the cooperative collapse of mitochondria and apoptosis. Perspectives for targeting 3BP to bioenergetics enzymes for cancer treatment will be considered. Copyright © 2014 Elsevier Ltd. All rights reserved.
Why does the brain (not) have glycogen?
DiNuzzo, Mauro; Maraviglia, Bruno; Giove, Federico
2011-05-01
In the present paper we formulate the hypothesis that brain glycogen is a critical determinant in the modulation of carbohydrate supply at the cellular level. Specifically, we propose that mobilization of astrocytic glycogen after an increase in AMP levels during enhanced neuronal activity controls the concentration of glucose phosphates in astrocytes. This would result in modulation of glucose phosphorylation by hexokinase and upstream cell glucose uptake. This mechanism would favor glucose channeling to activated neurons, supplementing the already rich neuron-astrocyte metabolic and functional partnership with important implications for the energy compounds used to sustain neuronal activity. The hypothesis is based on recent modeling evidence suggesting that rapid glycogen breakdown can profoundly alter the short-term kinetics of glucose delivery to neurons and astrocytes. It is also based on review of the literature relevant to glycogen metabolism during physiological brain activity, with an emphasis on the metabolic pathways identifying both the origin and the fate of this glucose reserve. Copyright © 2011 WILEY Periodicals, Inc.
Evaluation of substituted ebselen derivatives as potential trypanocidal agents.
Gordhan, Heeren M; Patrick, Stephen L; Swasy, Maria I; Hackler, Amber L; Anayee, Mark; Golden, Jennifer E; Morris, James C; Whitehead, Daniel C
2017-02-01
Human African trypanosomiasis is a disease of sub-Saharan Africa, where millions are at risk for the illness. The disease, commonly referred to as African sleeping sickness, is caused by an infection by the eukaryotic pathogen, Trypanosoma brucei. Previously, a target-based high throughput screen revealed ebselen (EbSe), and its sulfur analog, EbS, to be potent in vitro inhibitors of the T. brucei hexokinase 1 (TbHK1). These molecules also exhibited potent trypanocidal activity in vivo. In this manuscript, we synthesized a series of sixteen EbSe and EbS derivatives bearing electron-withdrawing carboxylic acid and methyl ester functional groups, and evaluated the influence of these substituents on the biological efficacy of the parent scaffold. With the exception of one methyl ester derivative, these modifications ablated or blunted the potent TbHK1 inhibition of the parent scaffold. Nonetheless, a few of the methyl ester derivatives still exhibited trypanocidal effects with single-digit micromolar or high nanomolar EC 50 values. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nic Lochlainn, Laura; Caffrey, Patrick
2009-01-01
Streptomycetes synthesise several bioactive natural products that are modified with sugar residues derived from GDP-mannose. These include the antifungal polyenes, the antibacterial antibiotics hygromycin A and mannopeptimycins, and the anticancer agent bleomycin. Three enzymes function in biosynthesis of GDP-mannose from the glycolytic intermediate fructose 6-phosphate: phosphomannose isomerase (PMI), phosphomannomutase (PMM) and GDP-mannose pyrophosphorylase (GMPP). Synthesis of GDP-mannose from exogenous mannose requires hexokinase or phosphotransferase enzymes together with PMM and GMPP. In this study, a region containing genes for PMI, PMM and GMPP was cloned from Streptomyces nodosus, producer of the polyenes amphotericins A and B. Inactivation of the manA gene for PMI resulted in production of amphotericins and their aglycones, 8-deoxyamphoteronolides. A double mutant lacking the PMI and PMM genes produced 8-deoxyamphoteronolides in good yields along with trace levels of glycosylated amphotericins. With further genetic engineering these mutants may activate alternative hexoses as GDP-sugars for transfer to aglycones in vivo.
Petit, Lolita; Ma, Shan; Cipi, Joris; Cheng, Shun-Yun; Zieger, Marina; Hay, Nissim; Punzo, Claudio
2018-05-29
Aerobic glycolysis accounts for ∼80%-90% of glucose used by adult photoreceptors (PRs); yet, the importance of aerobic glycolysis for PR function or survival remains unclear. Here, we further established the role of aerobic glycolysis in murine rod and cone PRs. We show that loss of hexokinase-2 (HK2), a key aerobic glycolysis enzyme, does not affect PR survival or structure but is required for normal rod function. Rods with HK2 loss increase their mitochondrial number, suggesting an adaptation to the inhibition of aerobic glycolysis. In contrast, cones adapt without increased mitochondrial number but require HK2 to adapt to metabolic stress conditions such as those encountered in retinitis pigmentosa, where the loss of rods causes a nutrient shortage in cones. The data support a model where aerobic glycolysis in PRs is not a necessity but rather a metabolic choice that maximizes PR function and adaptability to nutrient stress conditions. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Dual proteolytic pathways govern glycolysis and immune competence.
Lu, Wei; Zhang, Yu; McDonald, David O; Jing, Huie; Carroll, Bernadette; Robertson, Nic; Zhang, Qian; Griffin, Helen; Sanderson, Sharon; Lakey, Jeremy H; Morgan, Neil V; Reynard, Louise N; Zheng, Lixin; Murdock, Heardley M; Turvey, Stuart E; Hackett, Scott J; Prestidge, Tim; Hall, Julie M; Cant, Andrew J; Matthews, Helen F; Koref, Mauro F Santibanez; Simon, Anna Katharina; Korolchuk, Viktor I; Lenardo, Michael J; Hambleton, Sophie; Su, Helen C
2014-12-18
Proteasomes and lysosomes constitute the major cellular systems that catabolize proteins to recycle free amino acids for energy and new protein synthesis. Tripeptidyl peptidase II (TPPII) is a large cytosolic proteolytic complex that functions in tandem with the proteasome-ubiquitin protein degradation pathway. We found that autosomal recessive TPP2 mutations cause recurrent infections, autoimmunity, and neurodevelopmental delay in humans. We show that a major function of TPPII in mammalian cells is to maintain amino acid levels and that TPPII-deficient cells compensate by increasing lysosome number and proteolytic activity. However, the overabundant lysosomes derange cellular metabolism by consuming the key glycolytic enzyme hexokinase-2 through chaperone-mediated autophagy. This reduces glycolysis and impairs the production of effector cytokines, including IFN-γ and IL-1β. Thus, TPPII controls the balance between intracellular amino acid availability, lysosome number, and glycolysis, which is vital for adaptive and innate immunity and neurodevelopmental health. Copyright © 2014 Elsevier Inc. All rights reserved.
Shikonin, vitamin K3 and vitamin K5 inhibit multiple glycolytic enzymes in MCF-7 cells.
Chen, Jing; Hu, Xun; Cui, Jingjie
2018-05-01
Glycolysis is the most important source of energy for the production of anabolic building blocks in cancer cells. Therefore, glycolytic enzymes are regarded as potential targets for cancer treatment. Previously, naphthaquinones, including shikonin, vitamin K 3 and vitamin K 5 , have been proven to decrease the rate of glycolysis in cancer cells, which is partly due to suppressed pyruvate kinase activity. In the present study, enzymatic assays were performed using MCF-7 cell lysate in order to screen the profile of glycolytic enzymes in cancer cells inhibited by shikonin, vitamin K 3 and vitamin K 5 , in addition to pyruvate kinase. Results revealed that hexokinase, phosphofructokinase-1, fructose bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase produced in the process of glycolysis were inhibited by shikonin, vitamin K 3 and vitamin K 5 . The results indicated that shikonin, vitamin K 3 and vitamin K 5 are chemical inhibitors of glycolytic enzymes in cancer cells and have potential uses in translational medical applications.
Shikonin, vitamin K3 and vitamin K5 inhibit multiple glycolytic enzymes in MCF-7 cells
Chen, Jing; Hu, Xun; Cui, Jingjie
2018-01-01
Glycolysis is the most important source of energy for the production of anabolic building blocks in cancer cells. Therefore, glycolytic enzymes are regarded as potential targets for cancer treatment. Previously, naphthaquinones, including shikonin, vitamin K3 and vitamin K5, have been proven to decrease the rate of glycolysis in cancer cells, which is partly due to suppressed pyruvate kinase activity. In the present study, enzymatic assays were performed using MCF-7 cell lysate in order to screen the profile of glycolytic enzymes in cancer cells inhibited by shikonin, vitamin K3 and vitamin K5, in addition to pyruvate kinase. Results revealed that hexokinase, phosphofructokinase-1, fructose bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase produced in the process of glycolysis were inhibited by shikonin, vitamin K3 and vitamin K5. The results indicated that shikonin, vitamin K3 and vitamin K5 are chemical inhibitors of glycolytic enzymes in cancer cells and have potential uses in translational medical applications. PMID:29725454
Schneider, Sarah Morar; Sridhar, Vidya; Bettis, Amanda K; Heath-Barnett, Heather; Balog-Alvarez, Cynthia J; Guo, Lee-Jae; Johnson, Rachel; Jaques, Scott; Vitha, Stanislav; Glowcwski, Alan C; Kornegay, Joe N; Nghiem, Peter P
2018-03-05
Metabolic dysfunction in Duchenne muscular dystrophy (DMD) is characterized by reduced glycolytic and oxidative enzymes, decreased and abnormal mitochondria, decreased ATP, and increased oxidative stress. We analyzed glucose metabolism as a potential disease biomarker in the genetically homologous golden retriever muscular dystrophy (GRMD) dog with molecular, biochemical, and in vivo imaging. Pelvic limb skeletal muscle and left ventricle tissue from the heart were analyzed by mRNA profiling, qPCR, western blotting, and immunofluorescence microscopy for the primary glucose transporter (GLUT4). Physiologic glucose handling was measured by fasting glucose tolerance test (GTT), insulin levels, and skeletal and cardiac positron emission tomography/X-ray computed tomography (PET/CT) using the glucose analog 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG). MRNA profiles showed decreased GLUT4 in the cranial sartorius (CS), vastus lateralis (VL), and long digital extensor (LDE) of GRMD vs. normal dogs. QPCR confirmed GLUT4 downregulation but increased hexokinase-1. GLUT4 protein levels were not different in the CS, VL, or left ventricle but increased in the LDE of GRMD vs. normal. Microscopy revealed diffuse membrane expression of GLUT4 in GRMD skeletal but not cardiac muscle. GTT showed higher basal glucose and insulin in GRMD but rapid tissue glucose uptake at 5 min post-dextrose injection in GRMD vs. normal/carrier dogs. PET/ CT with [ 18 F]FDG and simultaneous insulin stimulation showed a significant increase (p = 0.03) in mean standard uptake values (SUV) in GRMD skeletal muscle but not pelvic fat at 5 min post-[ 18 F]FDG /insulin injection. Conversely, mean cardiac SUV was lower in GRMD than carrier/normal (p < 0.01). Altered glucose metabolism in skeletal and cardiac muscle of GRMD dogs can be monitored with molecular, biochemical, and in vivo imaging studies and potentially utilized as a biomarker for disease progression and therapeutic response.
Climent, Montserrat; Quintavalle, Manuela; Miragoli, Michele; Chen, Ju; Condorelli, Gianluigi; Elia, Leonardo
2015-05-22
The miR-143/145 cluster is highly expressed in smooth muscle cells (SMCs), where it regulates phenotypic switch and vascular homeostasis. Whether it plays a role in neighboring endothelial cells (ECs) is still unknown. To determine whether SMCs control EC functions through passage of miR-143 and miR-145. We used cocultures of SMCs and ECs under different conditions, as well as intact vessels to assess the transfer of miR-143 and miR-145 from one cell type to another. Imaging of cocultured cells transduced with fluorescent miRNAs suggested that miRNA transfer involves membrane protrusions known as tunneling nanotubes. Furthermore, we show that miRNA passage is modulated by the transforming growth factor (TGF) β pathway because both a specific transforming growth factor-β (TGFβ) inhibitor (SB431542) and an shRNA against TGFβRII suppressed the passage of miR-143/145 from SMCs to ECs. Moreover, miR-143 and miR-145 modulated angiogenesis by reducing the proliferation index of ECs and their capacity to form vessel-like structures when cultured on matrigel. We also identified hexokinase II (HKII) and integrin β 8 (ITGβ8)-2 genes essential for the angiogenic potential of ECs-as targets of miR-143 and miR-145, respectively. The inhibition of these genes modulated EC phenotype, similarly to miR-143 and miR-145 overexpression in ECs. These findings were confirmed by ex vivo and in vivo approaches, in which it was shown that TGFβ and vessel stress, respectively, triggered miR-143/145 transfer from SMCs to ECs. Our results demonstrate that miR-143 and miR-145 act as communication molecules between SMCs and ECs to modulate the angiogenic and vessel stabilization properties of ECs. © 2015 American Heart Association, Inc.
Rowlands, David S; Page, Rachel A; Sukala, William R; Giri, Mamta; Ghimbovschi, Svetlana D; Hayat, Irum; Cheema, Birinder S; Lys, Isabelle; Leikis, Murray; Sheard, Phillip W; Wakefield, St John; Breier, Bernhard; Hathout, Yetrib; Brown, Kristy; Marathi, Ramya; Orkunoglu-Suer, Funda E; Devaney, Joseph M; Leiken, Benjamin; Many, Gina; Krebs, Jeremy; Hopkins, Will G; Hoffman, Eric P
2014-10-15
Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m(2) ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and microvascular plasticity relevant to diabetes rehabilitation. Copyright © 2014 the American Physiological Society.
Bowman, Kole; Rose, Jack
2017-01-01
Glycogen synthesis by mink uterine glandular and luminal epithelia (GE and LE) is stimulated by estradiol (E 2 ) during estrus. Subsequently, the glycogen deposits are mobilized to near completion to meet the energy requirements of pre-embryonic development and implantation by as yet undetermined mechanisms. We hypothesized that progesterone (P 4 ) was responsible for catabolism of uterine glycogen reserves as one of its actions to ensure reproductive success. Mink were treated with E 2 , P 4 or vehicle (controls) for 3 days and uteri collected 24 h (E 2 , P 4 and vehicle) and 96 h (E 2 ) later. To evaluate E 2 priming, mink were treated with E 2 for 3 days, then P 4 for an additional 3 days (E 2 →P 4 ) and uteri collected 24 h later. Percent glycogen content of uterine epithelia was greater at E 2 + 96 h (GE = 5.71 ± 0.55; LE = 11.54 ± 2.32) than E 2 +24 h (GE = 3.63 ± 0.71; LE = 2.82 ± 1.03), and both were higher than controls (GE = 0.27 ± 0.15; LE = 0.54 ± 0.30; P < 0.05). Treatment as E 2 →P 4 reduced glycogen content (GE = 0.61 ± 0.16; LE = 0.51 ± 0.13), to levels not different from controls, while concomitantly increasing catabolic enzyme (glycogen phosphorylase m and glucose-6-phosphatase) gene expression and amount of phospho-glycogen synthase protein (inactive) in uterine homogenates. Interestingly, E 2 →P 4 increased glycogen synthase 1 messenger RNA (mRNA) and hexokinase 1mRNA and protein. Our findings suggest to us that while E 2 promotes glycogen accumulation by the mink uterus during estrus and pregnancy, it is P 4 that induces uterine glycogen catabolism, releasing the glucose that is essential to support pre-embryonic survival and implantation. © 2016 Japanese Society of Animal Science.
76 FR 77016 - Controlled Substances: Final Adjusted Aggregate Production Quotas for 2011
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-09
... substances previously referenced, expressed in grams of anhydrous acid or base, as follows: Final adjusted...), diphenoxylate, fentanyl, gamma hydroxybutyric acid, hydrocodone, meperidine, methadone, methadone [[Page 77017... 2011 aggregate production quotas for alfentanil, diphenoxylate, gamma hydroxybutyric acid, meperidine...
ERIC Educational Resources Information Center
Jackson, R. W. B.
In this final report concerning declining enrollments in Ontario, the problems are defined almost entirely in economic and financial terms, and the solutions expressed in those terms. The first section of the report briefly reviews the essential background, the economic and financial constraints, and finally the demographic facts. The arguments…
Los Angeles congestion reduction demonstration express lanes program : national evaluation report.
DOT National Transportation Integrated Search
2015-08-01
This document presents the final report on the national evaluation of the Los Angeles Congestion Reduction Demonstration (LA CRD) ExpressLanes Program under the United States Department of Transportation (U.S. DOT) CRD Program. The LA CRD projects fo...
Kagoshima, Hiroshi; Kohara, Yuji
2015-03-15
A wide variety of cells are generated by the expression of characteristic sets of genes, primarily those regulated by cell-specific transcription. To elucidate the mechanism regulating cell-specific gene expression in a highly specialized cell, AFD thermosensory neuron in Caenorhabditis elegans, we analyzed the promoter sequences of guanylyl cyclase genes, gcy-8 and gcy-18, exclusively expressed in AFD. In this study, we showed that AFD-specific expression of gcy-8 and gcy-18 requires the co-expression of homeodomain proteins, CEH-14/LHX3 and TTX-1/OTX1. We observed that mutation of ttx-1 or ceh-14 caused a reduction in the expression of gcy-8 and gcy-18 and that the expression was completely lost in double mutants. This synergy effect was also observed with other AFD marker genes, such as ntc-1, nlp-21and cng-3. Electrophoretic mobility shift assays revealed direct interaction of CEH-14 and TTX-1 proteins with gcy-8 and gcy-18 promoters in vitro. The binding sites of CEH-14 and TTX-1 proteins were confirmed to be essential for AFD-specific expression of gcy-8 and gcy-18 in vivo. We also demonstrated that forced expression of CEH-14 and TTX-1 in AWB chemosensory neurons induced ectopic expression of gcy-8 and gcy-18 reporters in this neuron. Finally, we showed that the regulation of gcy-8 and gcy-18 expression by ceh-14 and ttx-1 is evolutionally conserved in five Caenorhabditis species. Taken together, ceh-14 and ttx-1 expression determines the fate of AFD as terminal selector genes at the final step of cell specification. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Xiaozhen; Jin, Gan; Qian, Jiacheng; Yang, Hongjian; Tang, Hongchao; Meng, Xuli; Li, Yongfeng
2018-04-23
This study aimed to screen sensitive biomarkers for the efficacy evaluation of neoadjuvant chemotherapy in breast cancer. In this study, Illumina digital gene expression sequencing technology was applied and differentially expressed genes (DEGs) between patients presenting pathological complete response (pCR) and non-pathological complete response (NpCR) were identified. Further, gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were then performed. The genes in significant enriched pathways were finally quantified by quantitative real-time PCR (qRT-PCR) to confirm that they were differentially expressed. Additionally, GSE23988 from Gene Expression Omnibus database was used as the validation dataset to confirm the DEGs. After removing the low-quality reads, 715 DEGs were finally detected. After mapping to KEGG pathways, 10 DEGs belonging to the ubiquitin proteasome pathway (HECTD3, PSMB10, UBD, UBE2C, and UBE2S) and cytokine-cytokine receptor interactions (CCL2, CCR1, CXCL10, CXCL11, and IL2RG) were selected for further analysis. These 10 genes were finally quantified by qRT-PCR to confirm that they were differentially expressed (the log 2 fold changes of selected genes were - 5.34, 7.81, 6.88, 5.74, 3.11, 19.58, 8.73, 8.88, 7.42, and 34.61 for HECTD3, PSMB10, UBD, UBE2C, UBE2S, CCL2, CCR1, CXCL10, CXCL11, and IL2RG, respectively). Moreover, 53 common genes were confirmed by the validation dataset, including downregulated UBE2C and UBE2S. Our results suggested that these 10 genes belonging to these two pathways might be useful as sensitive biomarkers for the efficacy evaluation of neoadjuvant chemotherapy in breast cancer.
Ma, Meng; Wang, Qian; Li, Zhanjie; Cheng, Huihui; Li, Zhaojie; Liu, Xiangli; Song, Weining; Appels, Rudi; Zhao, Huixian
2015-07-01
Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over-expression induced production of more cells in the seed coat, leading to an 11-48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over-expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over-expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Frankel, Lois; Brownstein, Beth; Soiffer, Neil
2017-01-01
This report describes the pilot conducted in the final phase of a project, Expanding Audio Access to Mathematics Expressions by Students With Visual Impairments via MathML, to provide easy-to-use tools for authoring and rendering secondary-school algebra-level math expressions in synthesized speech that is useful for students with blindness or low…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-06
... response to the direct final rule. In the first comment, the commenter stated that without a definition of... that without a definition of the term ``manned,'' the rule would be ineffective. In the direct final... are adverse comments. In the first comment, the commenter expressed concern that, without a definition...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... wind turbine generators; a substation; administration, operations and maintenance facilities... Action (the ``Refined Project''). Under the Refined Project configuration, only 112 wind turbines... Report for the Pattern Energy Group's Ocotillo Express Wind Energy Project and Proposed California Desert...
Feltus, F Alex; Ficklin, Stephen P; Gibson, Scott M; Smith, Melissa C
2013-06-05
In genomics, highly relevant gene interaction (co-expression) networks have been constructed by finding significant pair-wise correlations between genes in expression datasets. These networks are then mined to elucidate biological function at the polygenic level. In some cases networks may be constructed from input samples that measure gene expression under a variety of different conditions, such as for different genotypes, environments, disease states and tissues. When large sets of samples are obtained from public repositories it is often unmanageable to associate samples into condition-specific groups, and combining samples from various conditions has a negative effect on network size. A fixed significance threshold is often applied also limiting the size of the final network. Therefore, we propose pre-clustering of input expression samples to approximate condition-specific grouping of samples and individual network construction of each group as a means for dynamic significance thresholding. The net effect is increase sensitivity thus maximizing the total co-expression relationships in the final co-expression network compendium. A total of 86 Arabidopsis thaliana co-expression networks were constructed after k-means partitioning of 7,105 publicly available ATH1 Affymetrix microarray samples. We term each pre-sorted network a Gene Interaction Layer (GIL). Random Matrix Theory (RMT), an un-supervised thresholding method, was used to threshold each of the 86 networks independently, effectively providing a dynamic (non-global) threshold for the network. The overall gene count across all GILs reached 19,588 genes (94.7% measured gene coverage) and 558,022 unique co-expression relationships. In comparison, network construction without pre-sorting of input samples yielded only 3,297 genes (15.9%) and 129,134 relationships. in the global network. Here we show that pre-clustering of microarray samples helps approximate condition-specific networks and allows for dynamic thresholding using un-supervised methods. Because RMT ensures only highly significant interactions are kept, the GIL compendium consists of 558,022 unique high quality A. thaliana co-expression relationships across almost all of the measurable genes on the ATH1 array. For A. thaliana, these networks represent the largest compendium to date of significant gene co-expression relationships, and are a means to explore complex pathway, polygenic, and pleiotropic relationships for this focal model plant. The networks can be explored at sysbio.genome.clemson.edu. Finally, this method is applicable to any large expression profile collection for any organism and is best suited where a knowledge-independent network construction method is desired.
2013-01-01
Background In genomics, highly relevant gene interaction (co-expression) networks have been constructed by finding significant pair-wise correlations between genes in expression datasets. These networks are then mined to elucidate biological function at the polygenic level. In some cases networks may be constructed from input samples that measure gene expression under a variety of different conditions, such as for different genotypes, environments, disease states and tissues. When large sets of samples are obtained from public repositories it is often unmanageable to associate samples into condition-specific groups, and combining samples from various conditions has a negative effect on network size. A fixed significance threshold is often applied also limiting the size of the final network. Therefore, we propose pre-clustering of input expression samples to approximate condition-specific grouping of samples and individual network construction of each group as a means for dynamic significance thresholding. The net effect is increase sensitivity thus maximizing the total co-expression relationships in the final co-expression network compendium. Results A total of 86 Arabidopsis thaliana co-expression networks were constructed after k-means partitioning of 7,105 publicly available ATH1 Affymetrix microarray samples. We term each pre-sorted network a Gene Interaction Layer (GIL). Random Matrix Theory (RMT), an un-supervised thresholding method, was used to threshold each of the 86 networks independently, effectively providing a dynamic (non-global) threshold for the network. The overall gene count across all GILs reached 19,588 genes (94.7% measured gene coverage) and 558,022 unique co-expression relationships. In comparison, network construction without pre-sorting of input samples yielded only 3,297 genes (15.9%) and 129,134 relationships. in the global network. Conclusions Here we show that pre-clustering of microarray samples helps approximate condition-specific networks and allows for dynamic thresholding using un-supervised methods. Because RMT ensures only highly significant interactions are kept, the GIL compendium consists of 558,022 unique high quality A. thaliana co-expression relationships across almost all of the measurable genes on the ATH1 array. For A. thaliana, these networks represent the largest compendium to date of significant gene co-expression relationships, and are a means to explore complex pathway, polygenic, and pleiotropic relationships for this focal model plant. The networks can be explored at sysbio.genome.clemson.edu. Finally, this method is applicable to any large expression profile collection for any organism and is best suited where a knowledge-independent network construction method is desired. PMID:23738693
Dynamic facial expression recognition based on geometric and texture features
NASA Astrophysics Data System (ADS)
Li, Ming; Wang, Zengfu
2018-04-01
Recently, dynamic facial expression recognition in videos has attracted growing attention. In this paper, we propose a novel dynamic facial expression recognition method by using geometric and texture features. In our system, the facial landmark movements and texture variations upon pairwise images are used to perform the dynamic facial expression recognition tasks. For one facial expression sequence, pairwise images are created between the first frame and each of its subsequent frames. Integration of both geometric and texture features further enhances the representation of the facial expressions. Finally, Support Vector Machine is used for facial expression recognition. Experiments conducted on the extended Cohn-Kanade database show that our proposed method can achieve a competitive performance with other methods.
A review of conceptualisation of expressed emotion in caregivers of older adults with dementia.
Li, Chao-Yin; Murray, MaryAnne
2015-02-01
To clarify the concept of 'expressed emotion' and its application to caregivers of older adults with dementia. Expressed emotion has been a useful construct for understanding the quality of family relationships affecting patients with mental illness and their caregivers. However, this concept has been developed without precisely defining 'expressed emotion' as it pertains to dementia patients. Clarity regarding expressed emotion will enable nurses to apply knowledge of expressed emotion and provide important information for the development of new clinical interventions for this specific population. Integrative review. A review of literature on expressed emotion by caregivers of older adults with dementia. The inclusion criteria were: (1) published in English or Chinese during 1970-2012; (2) included both research and theoretical review articles on expressed emotion in nursing and other disciplines such as psychology, psychiatry and sociology. Initially, 236 articles were screened, and finally, 32 articles were evaluated for this review. Emotional expression and expressed emotion were discussed to clarify the distinctions and address overlap between these two similar terms. In addition, expressed emotion was examined further from three different aspects: trait or state, social control and cross-cultural. Finally, the results of reviewed papers for expressed emotion on dementia patients were explored and synthesised. A conceptual definition and a theoretical framework for the concept of expressed emotion are urgently needed to further our understanding of this critical phenomenon. With increasing attention to caregiving for patients with dementia, including the concept of expressed emotion in the research of this field may accelerate understanding of the importance of the family dynamics in advanced ageing caregiving. The expressed emotion concept could guide much of current clinical practice and help professional nurses understand the family's experience and perspective on mental illness, especially regarding dementia within the family. © 2014 John Wiley & Sons Ltd.
40 CFR 92.508 - Calculation and reporting of test results.
Code of Federal Regulations, 2014 CFR
2014-07-01
... expressed to one additional significant figure. (b) Final test results shall be calculated by summing the... contained in the applicable standard expressed to one additional significant figure. (c) Manufacturers and... additional significant figure. (d) If, subsequent to an initial failure of a production line test, the...
40 CFR 92.508 - Calculation and reporting of test results.
Code of Federal Regulations, 2011 CFR
2011-07-01
... expressed to one additional significant figure. (b) Final test results shall be calculated by summing the... contained in the applicable standard expressed to one additional significant figure. (c) Manufacturers and... additional significant figure. (d) If, subsequent to an initial failure of a production line test, the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-23
... Corridor Project, Utah, and the Proposed Pony Express Resource Management Plan Amendment AGENCY: Bureau of...)/Proposed Resource Management Plan Amendment (RMPA) for the Mona to Oquirrh Transmission Corridor Project... Final EIS/Proposed RMPA for the Mona to Oquirrh Transmission Corridor Project have been sent to affected...
Two Arts. Revision and What It Leaves behind
ERIC Educational Resources Information Center
Booten, Kyle
2012-01-01
Inspired by an experience of teaching the drafts of Elizabeth Bishop's "One Art", this article rereads the drafts as far more than imperfect precursors to the final poem. The drafts have their own prosodic features and poetic logic, one that values and enacts a vertiginous dilation of thought, expression and memory. The final version of…
Mukherjee, Archana; Wickstrom, Eric
2009-01-01
This review briefly outlines the importance of molecular imaging, particularly imaging of endogenous gene expression for noninvasive genetic analysis of radiographic masses. The concept of antisense imaging agents and the advantages and challenges in the development of hybridization probes for in vivo imaging are described. An overview of the investigations on oncogene expression imaging is given. Finally, the need for further improvement in antisense-based imaging agents and directions to improve oncogene mRNA targeting is stated. PMID:19264436
Analysis of Market Opportunities for Chinese Private Express Delivery Industry
NASA Astrophysics Data System (ADS)
Jiang, Changbing; Bai, Lijun; Tong, Xiaoqing
China's express delivery market has become the arena in which each express enterprise struggles to chase due to the huge potential demand and high profitable prospects. So certain qualitative and quantitative forecast for the future changes of China's express delivery market will help enterprises understand various types of market conditions and social changes in demand and adjust business activities to enhance their competitiveness timely. The development of China's express delivery industry is first introduced in this chapter. Then the theoretical basis of the regression model is overviewed. We also predict the demand trends of China's express delivery market by using Pearson correlation analysis and regression analysis from qualitative and quantitative aspects, respectively. Finally, we draw some conclusions and recommendations for China's express delivery industry.
[The 2,3-diphosphoglycerate shunt and stabilization of the ATP level in mammalian erythrocytes].
Ataullakhanov, A I; Ataullakhanov, F I; Vitvitskiĭ, V M; Zhabotinskiĭ, A M; Pichugin, A V
1985-06-01
The mechanisms of regulation of energy metabolism in erythrocytes of various mammalian species were investigated. In native erythrocytes of man, sheep, cow, dog and mouse the dependencies of the rates of glucose uptake on ATP concentration (i.e., regulatory parameters of glycolysis) were measured. These parameters plotted in normalized coordinates are not species-specific (invariant). The dependence of the rate of ATP-consuming processes on ATP concentration has been studied for the first time in intact mammalian erythrocytes. This dependence was found to be linear only in the species, in whose erythrocytes the activity of 2,3-diphosphoglycerate shunt is practically zero. In all species under study, the stabilization of ATP level is provided for mainly by the hexokinase-phosphofructokinase system. A comparison of regulatory mechanisms of energy metabolism in mammalian (sheep, cow) erythrocytes, in which the 2,3-diphosphoglycerate shunt is absent, with human and animal erythrocytes, in which this pathway is active, points to the important role of the 2,3-diphosphoglycerate shunt in regulation of energy conversion in erythrocytes. This shunt operates as an additional stabilizer protecting the cell from extremal influences.
Wang, Diane R; Han, Rongkui; Wolfrum, Edward J; McCouch, Susan R
2017-07-01
Harnessing stem carbohydrate dynamics in grasses offers an opportunity to help meet future demands for plant-based food, fiber and fuel production, but requires a greater understanding of the genetic controls that govern the synthesis, interconversion and transport of such energy reserves. We map out a blueprint of the genetic architecture of rice (Oryza sativa) stem nonstructural carbohydrates (NSC) at two critical developmental time-points using a subpopulation-specific genome-wide association approach on two diverse germplasm panels followed by quantitative trait loci (QTL) mapping in a biparental population. Overall, 26 QTL are identified; three are detected in multiple panels and are associated with starch-at-maturity, sucrose-at-maturity and NSC-at-heading. They tag OsHXK6 (rice hexokinase), ISA2 (rice isoamylase) and a tandem array of sugar transporters. This study provides the foundation for more in-depth molecular investigation to validate candidate genes underlying rice stem NSC and informs future comparative studies in other agronomically vital grass species. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Diane R.; Han, Rongkui; Wolfrum, Edward J.
Harnessing stem carbohydrate dynamics in grasses offers an opportunity to help meet future demands for plant-based food, fiber and fuel production, but requires a greater understanding of the genetic controls that govern the synthesis, interconversion and transport of such energy reserves. We map out a blueprint of the genetic architecture of rice ( Oryza sativa) stem nonstructural carbohydrates (NSC) at two critical developmental time-points using a subpopulation-specific genome-wide association approach on two diverse germplasm panels followed by quantitative trait loci (QTL) mapping in a biparental population. Overall, 26 QTL are identified; three are detected in multiple panels and are associatedmore » with starch-at-maturity, sucrose-at-maturity and NSC-at-heading. They tag OsHXK6 (rice hexokinase), ISA2 (rice isoamylase) and a tandem array of sugar transporters. Furthermore, this study provides the foundation for more in-depth molecular investigation to validate candidate genes underlying rice stem NSC and informs future comparative studies in other agronomically vital grass species.« less
Munkhjargal, Munkhbayar; Hatayama, Kohdai; Matsuura, Yuki; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji
2015-05-15
A second-generation novel chemo-mechanical autonomous drug release system, incorporating various improvements over our first-generation system, was fabricated and evaluated. Enhanced oxygen uptake by the enzyme membrane of the organic engine was facilitated by optimizing the quantity of enzyme immobilizer, PVA-SbQ, and by hydrophobizing the membrane surface. Various quantities of PVA-SbQ were evaluated in the organic engine by measuring the decompression rate, with 1.5 mg/cm(2) yielding optimum results. When fluororesin was used as a hydrophobizing coating, the time to reach the peak decompression rate was shortened 2.3-fold. The optimized elements of the system were evaluated as a unit, first in an open loop and then in a closed loop setting, using a mixture of glucose solution (25 mmol/L), ATP and MgCI2 with glucose hexokinase enzyme (HK) as a glucose reducer. In conclusion, feedback-control of physiologically relevant glucose concentration was demonstrated by the second-generation drug release system without any requirement for external energy. Copyright © 2014 Elsevier B.V. All rights reserved.
Giménez-Cassina, Alfredo; Lim, Filip; Díaz-Nido, Javier
2012-12-07
Mitochondrial dysfunction is a common feature of many neurodegenerative disorders. Likewise, activation of glycogen synthase kinase-3 (GSK-3) has been proposed to play an important role in neurodegeneration. This multifunctional protein kinase is involved in a number of cellular functions and we previously showed that chronic inhibition of GSK-3 protects neuronal cells against mitochondrial dysfunction-elicited cell death, through a mechanism involving increased glucose metabolism and the translocation of hexokinase II (HKII) to mitochondria. Here, we sought to gain deeper insight into the molecular basis of this neuroprotection. We found that chronic inhibition of GSK-3, either genetically or pharmacologically, elicited a marked increase in brain-derived neurotrophic factor (BDNF) secretion, which in turn conferred resistance to mitochondrial dysfunction through subcellular re-distribution of HKII. These results define a molecular pathway through which chronic inhibition of GSK-3 may protect neuronal cells from death. Moreover, they highlight the potential benefits of enhanced neurotrophic factor secretion as a therapeutic approach to treat neurodegenerative diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Effects of dietary starch types on early postmortem muscle energy metabolism in finishing pigs.
Li, Y J; Gao, T; Li, J L; Zhang, L; Gao, F; Zhou, G H
2017-11-01
This study aimed to investigate the effects of different dietary starch types on early postmortem muscle energy metabolism in finishing pigs. Ninety barrows (68.0±2.0kg) were randomly allotted to three experimental diets with five replicates of six pigs, containing pure waxy maize starch (WMS), nonwaxy maize starch (NMS), and pea starch (PS) (amylose/amylopectin were 0.07, 0.19 and 0.28 respectively). Compared with the WMS diet, pigs fed the PS diet exhibited greater creatine kinase activity, higher adenosine triphosphate and adenosine diphosphate contents, lower phosphocreatine (PCr), adenosine monophosphate and glycogen contents, and lower glycolytic potential (P<0.05). Moreover, the PS diet led to reduced percentage of bound hexokinase activity, decreased level of phosphorylated AKT (P<0.05) and increased level of hypoxia-inducible factor-1α (P<0.05). In conclusion, diet with high amylose content might promote PCr degradation and inhibit the rate of glycolysis, followed by attenuation of early postmortem glycolysis in finishing pigs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Leptin, An Adipokine With Central Importance in the Global Obesity Problem.
Mechanick, Jeffrey I; Zhao, Shan; Garvey, W Timothy
2017-12-13
Leptin has central importance in the global obesity and cardiovascular disease problem. Leptin is principally secreted by adipocytes and acts in the hypothalamus to suppress appetite and food intake, increase energy expenditure, and regulate body weight. Based on clinical translation of specific and networked actions, leptin affects the cardiovascular system and may be a marker and driver of cardiometabolic risk factors with interventions that are actionable by cardiologists. Leptin subnetwork analysis demonstrates a statistically significant role for ethnoculturally and socioeconomically appropriate lifestyle intervention in cardiovascular disease. Emergent mechanistic components and potential diagnostic or therapeutic targets include hexokinase 3, urocortins, clusterin, sialic acid-binding immunoglobulin-like lectin 6, C-reactive protein, platelet glycoprotein VI, albumin, pentraxin 3, ghrelin, obestatin prepropeptide, leptin receptor, neuropeptide Y, and corticotropin-releasing factor receptor 1. Emergent associated symptoms include weight change, eating disorders, vascular necrosis, chronic fatigue, and chest pain. Leptin-targeted therapies are reported for lipodystrophy and leptin deficiency, but they are investigational for leptin resistance, obesity, and other chronic diseases. Copyright © 2017 World Heart Federation (Geneva). Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ramirez, Joaquin; Periyakaruppan, Adaikkappan; Sarkar, Shubhashish; Ramesh, Govindarajan T.; Sharma, S. Chidananda
2014-02-01
Gravity supports all the life activities present on earth. Microgravity environments have effect on the biological functions and physiological status of an individual. The present study was undertaken to investigate the effect of simulated microgravity on important regulatory enzymes of carbohydrate metabolism in liver using HLS mice model. Following hind limb unloading of mice for 11 days the animal's average body weights were found to be not different, while the liver weights were decreased and found to be significantly different ( p < 0.05) from control mice. Further, in liver the specific activity of hexokinase enzyme was reduced ( p < 0.02) and the phosphoenolpyruvate carboxykinase activity was significantly increased in simulated microgravity subjected mice compared to control ( p < 0.003). Immunoblot analysis show decreased phosphofructokinase-2 activity in HLS mice compared to control. Liver lactate dehydrogenase activity significantly reduced in simulated microgravity subjected mice ( p < 0.005). Thus in our study the rodents have adapted to simulated microgravity conditions, with decreased glycolysis and increased gluconeogenesis in liver and reciprocally regulated.
Bantug, Glenn R; Fischer, Marco; Grählert, Jasmin; Balmer, Maria L; Unterstab, Gunhild; Develioglu, Leyla; Steiner, Rebekah; Zhang, Lianjun; Costa, Ana S H; Gubser, Patrick M; Burgener, Anne-Valérie; Sauder, Ursula; Löliger, Jordan; Belle, Réka; Dimeloe, Sarah; Lötscher, Jonas; Jauch, Annaïse; Recher, Mike; Hönger, Gideon; Hall, Michael N; Romero, Pedro; Frezza, Christian; Hess, Christoph
2018-03-20
Glycolysis is linked to the rapid response of memory CD8 + T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8 + T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3β (GSK3β) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3β at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8 + T cells to rapidly acquire effector function. Copyright © 2018 Elsevier Inc. All rights reserved.
Wang, Diane R.; Han, Rongkui; Wolfrum, Edward J.; ...
2017-05-30
Harnessing stem carbohydrate dynamics in grasses offers an opportunity to help meet future demands for plant-based food, fiber and fuel production, but requires a greater understanding of the genetic controls that govern the synthesis, interconversion and transport of such energy reserves. We map out a blueprint of the genetic architecture of rice ( Oryza sativa) stem nonstructural carbohydrates (NSC) at two critical developmental time-points using a subpopulation-specific genome-wide association approach on two diverse germplasm panels followed by quantitative trait loci (QTL) mapping in a biparental population. Overall, 26 QTL are identified; three are detected in multiple panels and are associatedmore » with starch-at-maturity, sucrose-at-maturity and NSC-at-heading. They tag OsHXK6 (rice hexokinase), ISA2 (rice isoamylase) and a tandem array of sugar transporters. Furthermore, this study provides the foundation for more in-depth molecular investigation to validate candidate genes underlying rice stem NSC and informs future comparative studies in other agronomically vital grass species.« less
The postmitotic Saccharomyces cerevisiae after spaceflight showed higher viability
NASA Astrophysics Data System (ADS)
Yi, Zong-Chun; Li, Xiao-Fei; Wang, Yan; Wang, Jie; Sun, Yan; Zhuang, Feng-Yuan
2011-06-01
The budding yeast Saccharomyces cerevisiae has been proposed as an ideal model organism for clarifying the biological effects caused by spaceflight conditions. The postmitotic S. cerevisiae cells onboard Practice eight recoverable satellite were subjected to spaceflight for 15 days. After recovery, the viability, the glycogen content, the activities of carbohydrate metabolism enzymes, the DNA content and the lipid peroxidation level in yeast cells were analyzed. The viability of the postmitotic yeast cells after spaceflight showed a three-fold increase as compared with that of the ground control cells. Compared to the ground control cells, the lipid peroxidation level in the spaceflight yeast cells markedly decreased. The spaceflight yeast cells also showed an increase in G2/M cell population and a decrease in Sub-G1 cell population. The glycogen content and the activities of hexokinase and succinate dehydrogenase significantly decreased in the yeast cells after spaceflight. In contrast, the activity of malate dehydrogenase showed an obvious increase after spaceflight. These results suggested that microgravity or spaceflight could promote the survival of postmitotic S. cerevisiae cells through regulating carbohydrate metabolism, ROS level and cell cycle progression.
Riepsaame, Joey; van Oudenaren, Adri; den Broeder, Berlinda J. H.; van IJcken, Wilfred F. J.; Pothof, Joris; Leenen, Pieter J. M.
2013-01-01
Dendritic cell (DC) maturation is a tightly regulated process that requires coordinated and timed developmental cues. Here we investigate whether microRNAs are involved in this process. We identify microRNAs in mouse GM-CSF-generated, monocyte-related DC (GM-DC) that are differentially expressed during both spontaneous and LPS-induced maturation and characterize M-CSF receptor (M-CSFR), encoded by the Csf1r gene, as a key target for microRNA-mediated regulation in the final step toward mature DC. MicroRNA-22, -34a, and -155 are up-regulated in mature MHCIIhi CD86hi DC and mediate Csf1r mRNA and protein down-regulation. Experimental inhibition of Csf1r-targeting microRNAs in vitro results not only in sustained high level M-CSFR protein expression but also in impaired DC maturation upon stimulation by LPS. Accordingly, over-expression of Csf1r in GM-DC inhibits terminal differentiation. Taken together, these results show that developmentally regulated microRNAs control Csf1r expression, supplementing previously identified mechanisms that regulate its transcription and protein surface expression. Furthermore, our data indicate a novel function for Csf1r in mouse monocyte-derived DC, showing that down-regulation of M-CSFR expression is essential for final DC maturation. PMID:24198819
Final report: Compiled MPI. Cost-Effective Exascale Application Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gropp, William Douglas
2015-12-21
This is the final report on Compiled MPI: Cost-Effective Exascale Application Development, and summarizes the results under this project. The project investigated runtime enviroments that improve the performance of MPI (Message-Passing Interface) programs; work at Illinois in the last period of this project looked at optimizing data access optimizations expressed with MPI datatypes.
Alterations in Bronchial Airway miRNA Expression for Lung Cancer Detection.
Pavel, Ana B; Campbell, Joshua D; Liu, Gang; Elashoff, David; Dubinett, Steven; Smith, Kate; Whitney, Duncan; Lenburg, Marc E; Spira, Avrum
2017-11-01
We have previously shown that gene expression alterations in normal-appearing bronchial epithelial cells can serve as a lung cancer detection biomarker in smokers. Given that miRNAs regulate airway gene expression responses to smoking, we evaluated whether miRNA expression is also altered in the bronchial epithelium of smokers with lung cancer. Using epithelial brushings from the mainstem bronchus of patients undergoing bronchoscopy for suspected lung cancer (as part of the AEGIS-1/2 clinical trials), we profiled miRNA expression via small-RNA sequencing from 347 current and former smokers for which gene expression data were also available. Patients were followed for one year postbronchoscopy until a final diagnosis of lung cancer ( n = 194) or benign disease ( n = 153) was made. Following removal of 6 low-quality samples, we used 138 patients (AEGIS-1) as a discovery set to identify four miRNAs (miR-146a-5p, miR-324-5p, miR-223-3p, and miR-223-5p) that were downregulated in the bronchial airway of lung cancer patients (ANOVA P < 0.002, FDR < 0.2). The expression of these miRNAs is significantly more negatively correlated with the expression of their mRNA targets than with the expression of other nontarget genes (K-S P < 0.05). Furthermore, these mRNA targets are enriched among genes whose expression is elevated in cancer patients (GSEA FDR < 0.001). Finally, we found that the addition of miR-146a-5p to an existing mRNA biomarker for lung cancer significantly improves its performance (AUC) in the 203 samples (AEGIS-1/2) serving an independent test set (DeLong P < 0.05). Our findings suggest that there are miRNAs whose expression is altered in the cytologically normal bronchial epithelium of smokers with lung cancer, and that they may regulate cancer-associated gene expression differences. Cancer Prev Res; 10(11); 651-9. ©2017 AACR . ©2017 American Association for Cancer Research.
Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matt Vaughn Greg Harrington Daniel R Bush
2002-08-06
This project was based on our discovery that sucrose acts as a signaling molecule that regulates the activity of a proton-sucrose symporter in sugar beet leaf tissue. A major objective here was determining how sucrose transporter activity is being regulated. When sucrose accumulates in the phloem sucrose transport activity drops dramatically. Western blots of plasma membrane proteins isolated from sucrose treated leaves showed that the loss of sucrose transport activity was proportional to a decline in symporter abundance, demonstrating that sucrose transport is regulated by changes in the amount of BvSUT1 protein. BvSUT1 transcript levels decreased in parallel with themore » loss of sucrose transport activity. Nuclear run-on experiments demonstrated that BvSUT1 gene transcription was repressed significantly in nuclei from leaves fed 100 mM exogenous sucrose, showing that sucrose-dependent modulation of BvSUT1 mRNA levels is mediated by changes in transcription. To identify which secondary messenger systems might be involved in regulating symporter activity, we used a variety of pharmacological agents to probe for a role of calcium or protein phosphorylation in sucrose signaling. In a detailed analysis, only okadaic acid altered sucrose transport activity. These results suggest a protein phosphatase is involved. We hypothesized that protein kinase inhibitors would have a neutral affect or increase symporter transcription. Transpirational feeding of the protein kinase inhibitor staurosporine had no impact on sucrose transport while calphostin C, an inhibitor of protein kinase C, caused a 60% increase. These data provided good evidence that protein phosphorylation plays a central role in regulating sucrose symporter expression and sucrose transport activity. To determine whether protein phosphorylation is involved in sucrose regulation of proton-sucrose symporter activity, we pre-fed leaves with staurosporine for 4 h and then fed the treated leaves water or 100 mM sucrose for an additional 20 h. Sucrose transport activity was higher than the water control in both staurosporine/water- and staurosporine/sucrose-fed leaves. In contrast, sucrose transport activity was only 40% of the water control in sucrose-fed leaves. Taken together, these results showed that a phosphorylation-dependent signal transduction pathway is involved in sucrose-mediated regulation of BvSUT1 gene expression, sucrose transport activity, and ultimately phloem loading. Publications originating from this work: Vaughn MW, GN. Harrington, and DR Bush 2002. Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem. Proc. Natl. Acad. Sci. USA 99:10876-10880 Ransom-Hodgkins W, MW Vaughn, and DR Bush 2003. Protein phosphorylation mediates a key step in sucrose-regulation of the expression and transport activity of a beet proton-sucrose symporter. Planta 217:483-489 Harrington GN and Bush DR 2003. The bifunctional role of hexokinase in metabolism and glucose signaling. Plant Cell 15: 2493-2496« less
Progranulin levels in blood in Alzheimer's disease and mild cognitive impairment.
Cooper, Yonatan A; Nachun, Daniel; Dokuru, Deepika; Yang, Zhongan; Karydas, Anna M; Serrero, Ginette; Yue, Binbin; Boxer, Adam L; Miller, Bruce L; Coppola, Giovanni
2018-05-01
Changes in progranulin ( GRN ) expression have been hypothesized to alter risk for Alzheimer's disease (AD). We investigated the relationship between GRN expression in peripheral blood and clinical diagnosis of AD and mild cognitive impairment (MCI). Peripheral blood progranulin gene expression was measured, using microarrays from Alzheimer's ( n = 186), MCI ( n = 118), and control ( n = 204) subjects from the University of California San Francisco Memory and Aging Center (UCSF-MAC) and two independent published series (AddNeuroMed and ADNI). GRN gene expression was correlated with clinical, demographic, and genetic data, including APOE haplotype and the GRN rs5848 single-nucleotide polymorphism. Finally, we assessed progranulin protein levels, using enzyme-linked immunosorbent assay, and methylation status using methylation microarrays. We observed an increase in blood progranulin gene expression and a decrease in GRN promoter methylation in males ( P = 0.007). Progranulin expression was 13% higher in AD and MCI patients compared with controls in the UCSF-MAC cohort ( F 2,505 = 10.41, P = 3.72*10 -5 ). This finding was replicated in the AddNeuroMed ( F 2,271 = 17.9, P = 4.83*10 -8 ) but not the ADNI series. The rs5848 SNP (T-allele) predicted decreased blood progranulin gene expression ( P = 0.03). The APOE4 haplotype was positively associated with progranulin expression independent of diagnosis ( P = 0.04). Finally, we did not identify differences in plasma progranulin protein levels or gene methylation between diagnostic categories. Progranulin mRNA is elevated in peripheral blood of patients with AD and MCI and its expression is associated with numerous genetic and demographic factors. These data suggest a role in the pathogenesis of neurodegenerative dementias besides frontotemporal dementia.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-20
... quality impacts associated with the construction and operation of a liquefied natural gas (LNG) import terminal and natural gas pipeline proposed by AES Sparrows Point LNG, LLC and Mid-Atlantic Express, LLC, in... of the following LNG terminal and natural gas pipeline facilities: A ship unloading facility, with...
Extraction and representation of common feature from uncertain facial expressions with cloud model.
Wang, Shuliang; Chi, Hehua; Yuan, Hanning; Geng, Jing
2017-12-01
Human facial expressions are key ingredient to convert an individual's innate emotion in communication. However, the variation of facial expressions affects the reliable identification of human emotions. In this paper, we present a cloud model to extract facial features for representing human emotion. First, the uncertainties in facial expression are analyzed in the context of cloud model. The feature extraction and representation algorithm is established under cloud generators. With forward cloud generator, facial expression images can be re-generated as many as we like for visually representing the extracted three features, and each feature shows different roles. The effectiveness of the computing model is tested on Japanese Female Facial Expression database. Three common features are extracted from seven facial expression images. Finally, the paper is concluded and remarked.
Hibino, Kei; Yukawa, Shintaro; Kodama, Masahiro; Yoshida, Fujio
2005-12-01
This study investigated inhibitory factors in anger expressive behaviors among Japanese junior high school students. It also examined the relations between anger experiences and personality traits: verbal expression and narcissism. The result indicated that the factors of "friend relationships" and "cost-reward consciousness" were selected as those which inhibited anger expressive behaviors. Results of a covariance structure analysis were as follows. First, narcissistic personality elicited feelings of anger and depression and cognitions of inflating and calming, which all facilitated aggressive behavior, social sharing, and object-displacement as anger expressive behaviors. Second, verbal expression elicited cognitions of objectifying and self-reproaching, and the former inhibited anger expressive behaviors, though the latter facilitated them. Finally, "cost-reward consciousness" inhibited anger expressive behaviors for boys, while "normative consciousness" inhibited them for girls.
On January 18, 2001, the U.S. Environmental Protection Agency (EPA) finalized the maximum contaminant level (MCL) for arsenic at 0.01 mg/L. EPA subsequently revised the rule text to express the MCL as 0.010 mg/L (10 μg/L). The final rule requires all community and non-transient, ...
Hu, Dongxiao; Zhou, Jiansong; Wang, Fenfen; Shi, Haiyan; Li, Yang; Li, Baohua
2015-12-01
Cadherin switch, as a key hallmark of epithelial-mesenchymal transition (EMT), is characterized by reduced E-cadherin expression and increased N-cadherin or P-cadherin expression, and has been implicated in many aggressive tumors, but the importance and regulatory mechanism of cadherin switch in cervical cancer have not been investigated. Our study aimed to explore the role of cadherin switch by regulation of HPV-16 E6/E7 in progression and metastasis of cervical cancer. The expressions of E-cadherin and P-cadherin were examined by immunohistochemical staining in 40 cases of high-grade cervical lesions with HPV-16 infection only in which HPV-16 E6 and E7 expression had been detected using qRT-PCR method. Through modulating E6 and E7 expression using HPV-16 E6/E7 promoter-targeting siRNAs or expressed vector in vitro, cell growth, migration, and invasion were separately tested by MTT, wound-healing and transwell invasion assays, as well as the expressions of these cadherins by western blot analyses. Finally, the expressions of these cadherins in cancerous tissues of BALB/c-nu mouse model inoculated with the stable HPV-16 E6/E7 gene silencing Siha and Caski cells were also measured by immunohistochemical staining. Pearson correlation coefficient analyses showed the strongly inverse correlation of E-cadherin expression and strongly positive correlation of P-cadherin expression with E6/E7 level in 40 cases of high-grade cervical lesions. Furthermore, the modulation of HPV-16 E6/E7 expression remarkably influenced cell proliferation, migration, and invasion, as well as the protein levels of E-cadherin and P-cadherin in cervical cell lines. Finally, the reduction of HPV-16 E6/E7 expression led to up-regulated expression of E-cadherin and down-regulated expression of P-cadherin in BALB/c-nu mouse model in vivo assay. Our results unraveled the possibility that HPV-16 E6/E7 could promote cell invasive potential via regulating cadherin switching, and consequently contribute to progression and metastasis of cervical cancer.
A generalized expression for lag-time in the gas-phase permeation of hollow tubes
NASA Technical Reports Server (NTRS)
Shah, K. K.; Nelson, H. G.; Johnson, D. L.; Hamaker, F. M.
1975-01-01
A generalized expression for the nonsteady-state parameter, lag-time, has been obtained from Fick's second law for gas-phase transport through hollow, cylindrical membranes. This generalized expression is simplified for three limiting cases of practical interest: (1) diffusion controlled transport, (2) phase boundary reaction control at the inlet surface, and (3) phase boundary reaction control at the outlet surface. In all three cases the lag-time expressions were found to be inversely proportional only to the diffusion coefficient and functionally dependent on the membrane radii. Finally, the lag-time expressions were applied to experimentally obtained lag-time data for alpha-phase titanium and alpha-phase iron.
Ventura-López, Claudia; Galindo-Torres, Pavel E; Arcos, Fabiola G; Galindo-Sánchez, Clara; Racotta, Ilie S; Escobedo-Fregoso, Cristina; Llera-Herrera, Raúl; Ibarra, Ana M
2017-05-15
The increased use of massive sequencing technologies has enabled the identification of several genes known to be involved in different mechanisms associated with reproduction that so far have only been studied in vertebrates and other model invertebrate species. In order to further investigate the genes involved in Litopenaeus vannamei reproduction, cDNA and SSH libraries derived from female eyestalk and gonad were produced, allowing the identification of expressed sequences tags (ESTs) that potentially have a role in the regulation of gonadal maturation. In the present study, different transcripts involved in reproduction were identified and a number of them were characterized as full-length. These transcripts were evaluated in males and females in order to establish their tissue expression profiles during developmental stages (juvenile, subadult and adult), and in the case of females, their possible association with gonad maturation was assessed through expression analysis of vitellogenin. The results indicated that the expression of vitellogenin receptor (vtgr) and minichromosome maintenance (mcm) family members in the female gonad suggest an important role during previtellogenesis. Additionally, the expression profiles of genes such as famet, igfbp and gpcr in brain tissues suggest an interaction between the insulin/insulin-like growth factor signaling pathway (IIS) and methyl farnesoate (MF) biosynthesis for control of reproduction. Furthermore, the specific expression pattern of farnesoic acid O-methyltransferase suggests that final synthesis of MF is carried out in different target tissues, where it is regulated by esterase enzymes under a tissue-specific hormonal control. Finally, the presence of a vertebrate type steroid receptor in hepatopancreas and intestine besides being highly expressed in female gonads, suggest a role of that receptor during sexual maturation. Copyright © 2016 Elsevier Inc. All rights reserved.
Transgenic miR156 switchgrass in the field: growth, recalcitrance and rust susceptibility
Baxter, Holly L.; Mazarei, Mitra; Dumitrache, Alexandru; ...
2017-04-24
Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. High expressing lines were extremely dwarfed, whereas low and moderate-expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156more » overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%–56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development.« less
Transgenic miR156 switchgrass in the field: growth, recalcitrance and rust susceptibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Holly L.; Mazarei, Mitra; Dumitrache, Alexandru
Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. High expressing lines were extremely dwarfed, whereas low and moderate-expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156more » overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%–56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development.« less
Lin28 sustains early renal progenitors and induces Wilms tumor
Urbach, Achia; Yermalovich, Alena; Zhang, Jin; Spina, Catherine S.; Zhu, Hao; Perez-Atayde, Antonio R.; Shukrun, Rachel; Charlton, Jocelyn; Sebire, Neil; Mifsud, William; Dekel, Benjamin; Pritchard-Jones, Kathy; Daley, George Q.
2014-01-01
Wilms Tumor, the most common pediatric kidney cancer, evolves from the failure of terminal differentiation of the embryonic kidney. Here we show that overexpression of the heterochronic regulator Lin28 during kidney development in mice markedly expands nephrogenic progenitors by blocking their final wave of differentiation, ultimately resulting in a pathology highly reminiscent of Wilms tumor. Using lineage-specific promoters to target Lin28 to specific cell types, we observed Wilms tumor only when Lin28 is aberrantly expressed in multiple derivatives of the intermediate mesoderm, implicating the cell of origin as a multipotential renal progenitor. We show that withdrawal of Lin28 expression reverts tumorigenesis and markedly expands the numbers of glomerulus-like structures and that tumor formation is suppressed by enforced expression of Let-7 microRNA. Finally, we demonstrate overexpression of the LIN28B paralog in a significant percentage of human Wilms tumor. Our data thus implicate the Lin28/Let-7 pathway in kidney development and tumorigenesis. PMID:24732380
An Endogenous Accelerator for Viral Gene Expression Confers a Fitness Advantage
Teng, Melissa W.; Bolovan-Fritts, Cynthia; Dar, Roy D.; Womack, Andrew; Simpson, Michael L.; Shenk, Thomas; Weinberger, Leor S.
2012-01-01
Many signaling circuits face a fundamental tradeoff between accelerating their response speed while maintaining final levels below a cytotoxic threshold. Here, we describe a transcriptional circuitry that dynamically converts signaling inputs into faster rates without amplifying final equilibrium levels. Using time-lapse microscopy, we find that transcriptional activators accelerate human cytomegalovirus (CMV) gene expression in single cells without amplifying steady-state expression levels, and this acceleration generates a significant replication advantage. We map the accelerator to a highly self-cooperative transcriptional negative-feedback loop (Hill coefficient ~ 7) generated by homo-multimerization of the virus’s essential transactivator protein IE2 at nuclear PML bodies. Eliminating the IE2-accelerator circuit reduces transcriptional strength through mislocalization of incoming viral genomes away from PML bodies and carries a heavy fitness cost. In general, accelerators may provide a mechanism for signal-transduction circuits to respond quickly to external signals without increasing steady-state levels of potentially cytotoxic molecules. PMID:23260143
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayala, Alejandro; Hentschinski, Martin; Jalilian-Marian, Jamal
Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DIS at small x using the spinor helicity formalism. The target proton or nucleus is described using the Color Glass Condensate (CGC) formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Finally, our analytic expressions can also be used to calculate the real partmore » of the Next to Leading Order (NLO) corrections to di-hadron production in DIS by integrating out one of the three final state partons.« less
ERIC Educational Resources Information Center
Children's Express Foundation, Inc., New York, NY.
This document is a report of the Children's Express Symposium III, a forum for journalists on children's issues. Included in the report are the comments of news media executives, journalists, broadcasters, experts on children's issues, directors of children's programs, and young people affected by the policies and practices discussed. Opening…
Zhao, Mingzhi; Wu, Feilin; Xu, Ping
2015-12-01
Trypsin is one of the most important enzymatic tools in proteomics and biopharmaceutical studies. Here, we describe the complete recombinant expression and purification from a trypsinogen expression vector construct. The Sus scrofa cationic trypsin gene with a propeptide sequence was optimized according to Escherichia coli codon-usage bias and chemically synthesized. The gene was inserted into pET-11c plasmid to yield an expression vector. Using high-density E. coli fed-batch fermentation, trypsinogen was expressed in inclusion bodies at 1.47 g/L. The inclusion body was refolded with a high yield of 36%. The purified trypsinogen was then activated to produce trypsin. To address stability problems, the trypsin thus produced was acetylated. The final product was generated upon gel filtration. The final yield of acetylated trypsin was 182 mg/L from a 5-L fermenter. Our acetylated trypsin product demonstrated higher BAEE activity (30,100 BAEE unit/mg) than a commercial product (9500 BAEE unit/mg, Promega). It also demonstrated resistance to autolysis. This is the first report of production of acetylated recombinant trypsin that is stable and suitable for scale-up. Copyright © 2015 Elsevier Inc. All rights reserved.
Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position.
Harris, J; Honigberg, L; Robinson, N; Kenyon, C
1996-10-01
In C. elegans, the Hox gene mab-5, which specifies the fates of cells in the posterior body region, has been shown to direct the migrations of certain cells within its domain of function. mab-5 expression switches on in the neuroblast QL as it migrates into the posterior body region. mab-5 activity is then required for the descendants of QL to migrate to posterior rather than anterior positions. What information activates Hox gene expression during this cell migration? How are these cells subsequently guided to their final positions? We address these questions by describing four genes, egl-20, mig-14, mig-1 and lin-17, that are required to activate expression of mab-5 during migration of the QL neuroblast. We find that two of these genes, egl-20 and mig-14, also act in a mab-5-independent way to determine the final stopping points of the migrating Q descendants. The Q descendants do not migrate toward any obvious physical targets in wild-type or mutant animals. Therefore, these genes appear to be part of a system that positions the migrating Q descendants along the anteroposterior axis.
Air-liquid interface enhances oxidative phosphorylation in intestinal epithelial cell line IPEC-J2.
Klasvogt, Sonja; Zuschratter, Werner; Schmidt, Anke; Kröber, Andrea; Vorwerk, Sandra; Wolter, Romina; Isermann, Berend; Wimmers, Klaus; Rothkötter, Hermann-Josef; Nossol, Constanze
2017-01-01
The intestinal porcine epithelial cell line IPEC-J2, cultured under the air-liquid interface (ALI) conditions, develops remarkable morphological characteristics close to intestinal epithelial cells in vivo . Improved oxygen availability has been hypothesised to be the leading cause of this morphological differentiation. We assessed oxygen availability in ALI cultures and examined the influence of this cell culture method on glycolysis and oxidative phosphorylation in IPEC-J2 using the submerged membrane culture (SMC) and ALI cultures. Furthermore, the role of HIF-1 as mediator of oxygen availability was analysed. Measurements of oxygen tension confirmed increased oxygen availability at the medium-cell interface and demonstrated reduced oxygen extraction at the basal compartment in ALI. Microarray analysis to determine changes in the genetic profile of IPEC-J2 in ALI identified 2751 modified transcripts. Further examinations of candidate genes revealed reduced levels of glycolytic enzymes hexokinase II and GAPDH, as well as lactate transporting monocarboxylate transporter 1 in ALI, whereas expression of the glucose transporter GLUT1 remained unchanged. Cytochrome c oxidase (COX) subunit 5B protein analysis was increased in ALI, although mRNA level remained at constant level. COX activity was assessed using photometric quantification and a three-fold increase was found in ALI. Quantification of glucose and lactate concentrations in cell culture medium revealed significantly reduced glucose levels and decreased lactate production in ALI. In order to evaluate energy metabolism, we measured cellular adenosine triphosphate (ATP) aggregation in homogenised cell suspensions showing similar levels. However, application of the uncoupling agent FCCP reduced ATP levels in ALI but not in SMC. In addition, HIF showed reduced mRNA levels in ALI. Furthermore, HIF-1 α protein was reduced in the nuclear compartment of ALI when compared to SCM as confirmed by confocal microscopy. These results indicate a metabolic switch in IPEC-J2 cultured under ALI conditions enhancing oxidative phosphorylation and suppressing glycolysis. ALI-induced improvement of oxygen supply reduced nuclear HIF-1 α , demonstrating a major change in the transcriptional response.
Air–liquid interface enhances oxidative phosphorylation in intestinal epithelial cell line IPEC-J2
Klasvogt, Sonja; Zuschratter, Werner; Schmidt, Anke; Kröber, Andrea; Vorwerk, Sandra; Wolter, Romina; Isermann, Berend; Wimmers, Klaus; Rothkötter, Hermann-Josef; Nossol, Constanze
2017-01-01
The intestinal porcine epithelial cell line IPEC-J2, cultured under the air–liquid interface (ALI) conditions, develops remarkable morphological characteristics close to intestinal epithelial cells in vivo. Improved oxygen availability has been hypothesised to be the leading cause of this morphological differentiation. We assessed oxygen availability in ALI cultures and examined the influence of this cell culture method on glycolysis and oxidative phosphorylation in IPEC-J2 using the submerged membrane culture (SMC) and ALI cultures. Furthermore, the role of HIF-1 as mediator of oxygen availability was analysed. Measurements of oxygen tension confirmed increased oxygen availability at the medium–cell interface and demonstrated reduced oxygen extraction at the basal compartment in ALI. Microarray analysis to determine changes in the genetic profile of IPEC-J2 in ALI identified 2751 modified transcripts. Further examinations of candidate genes revealed reduced levels of glycolytic enzymes hexokinase II and GAPDH, as well as lactate transporting monocarboxylate transporter 1 in ALI, whereas expression of the glucose transporter GLUT1 remained unchanged. Cytochrome c oxidase (COX) subunit 5B protein analysis was increased in ALI, although mRNA level remained at constant level. COX activity was assessed using photometric quantification and a three-fold increase was found in ALI. Quantification of glucose and lactate concentrations in cell culture medium revealed significantly reduced glucose levels and decreased lactate production in ALI. In order to evaluate energy metabolism, we measured cellular adenosine triphosphate (ATP) aggregation in homogenised cell suspensions showing similar levels. However, application of the uncoupling agent FCCP reduced ATP levels in ALI but not in SMC. In addition, HIF showed reduced mRNA levels in ALI. Furthermore, HIF-1α protein was reduced in the nuclear compartment of ALI when compared to SCM as confirmed by confocal microscopy. These results indicate a metabolic switch in IPEC-J2 cultured under ALI conditions enhancing oxidative phosphorylation and suppressing glycolysis. ALI-induced improvement of oxygen supply reduced nuclear HIF-1α, demonstrating a major change in the transcriptional response. PMID:28250970
Stochastic gene expression in Arabidopsis thaliana.
Araújo, Ilka Schultheiß; Pietsch, Jessica Magdalena; Keizer, Emma Mathilde; Greese, Bettina; Balkunde, Rachappa; Fleck, Christian; Hülskamp, Martin
2017-12-14
Although plant development is highly reproducible, some stochasticity exists. This developmental stochasticity may be caused by noisy gene expression. Here we analyze the fluctuation of protein expression in Arabidopsis thaliana. Using the photoconvertible KikGR marker, we show that the protein expressions of individual cells fluctuate over time. A dual reporter system was used to study extrinsic and intrinsic noise of marker gene expression. We report that extrinsic noise is higher than intrinsic noise and that extrinsic noise in stomata is clearly lower in comparison to several other tissues/cell types. Finally, we show that cells are coupled with respect to stochastic protein expression in young leaves, hypocotyls and roots but not in mature leaves. Our data indicate that stochasticity of gene expression can vary between tissues/cell types and that it can be coupled in a non-cell-autonomous manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, A.; Tun, D.M.; Garcia, A.
1994-08-01
We show that the radiative corrections containing terms up to order [alpha][ital q]/[pi][ital M][sub 1] for unpolarized semileptonic decays of baryons with positron emission can be obtained by simply reversing the sign of the axial-vector form factors in the corresponding final expressions of such decays with electron emission. This rule is valid regardless of the final kinematical variables chosen and of the particular Lorentz frame in which the final results are required.
Chianello Nicolau, Marina; Pinto, Luis Felipe Ribeiro; Nicolau-Neto, Pedro; de Pinho, Paulo Roberto Alves; Rossini, Ana; de Almeida Simão, Tatiana; Soares Lima, Sheila Coelho
2016-01-01
AIM To compare expression of nicotinic cholinergic receptors (CHRNs) in healthy and squamous cell carcinoma-affected esophagus and determine the prognostic value. METHODS We performed RT-qPCR to measure the expression of CHRNs in 44 esophageal samples from healthy individuals and in matched normal surrounding mucosa, and in tumors from 28 patients diagnosed with esophageal squamous cell carcinoma (ESCC). Next, we performed correlation analysis for the detected expression of these receptors with the habits and clinico-pathological characteristics of all study participants. In order to investigate the possible correlations between the expression of the different CHRN subunits in both healthy esophagus and tissues from ESCC patients, correlation matrices were generated. Subsequently, we evaluated whether the detected alterations in expression of the various CHRNs could precede histopathological modifications during the esophageal carcinogenic processes by using receiver operating characteristic curve analysis. Finally, we evaluated the impact of CHRNA5 and CHRNA7 expression on overall survival by using multivariate analysis. RESULTS CHRNA3, CHRNA5, CHRNA7 and CHRNB4, but not CHRNA1, CHRNA4, CHRNA9 or CHRNA10, were found to be expressed in normal (healthy) esophageal mucosa. In ESCC, CHRNA5 and CHRNA7 were overexpressed as compared with patient-matched surrounding non-tumor mucosa (ESCC-adjacent mucosa; P < 0.0001 and P = 0.0091, respectively). Positive correlations were observed between CHRNA3 and CHRNB4 expression in all samples analyzed. Additionally, CHRNB4 was found to be differentially expressed in the healthy esophagus and the normal-appearing ESCC-adjacent mucosa, allowing for distinguishment between these tissues with a sensitivity of 75.86% and a specificity of 78.95% (P = 0.0002). Finally, CHRNA5 expression was identified as an independent prognostic factor in ESCC; patients with high CHRNA5 expression showed an increased overall survival, in comparison with those with low expression. The corresponding age- and tumor stage-adjusted hazard ratio was 0.2684 (95%CI: 0.075-0.97, P = 0.0448). CONCLUSION Expression of CHRNs is homogeneous along healthy esophagus and deregulated in ESCC, suggesting a pathogenic role for these receptors in ESCC development and progression. PMID:27610024
Chianello Nicolau, Marina; Pinto, Luis Felipe Ribeiro; Nicolau-Neto, Pedro; de Pinho, Paulo Roberto Alves; Rossini, Ana; de Almeida Simão, Tatiana; Soares Lima, Sheila Coelho
2016-08-21
To compare expression of nicotinic cholinergic receptors (CHRNs) in healthy and squamous cell carcinoma-affected esophagus and determine the prognostic value. We performed RT-qPCR to measure the expression of CHRNs in 44 esophageal samples from healthy individuals and in matched normal surrounding mucosa, and in tumors from 28 patients diagnosed with esophageal squamous cell carcinoma (ESCC). Next, we performed correlation analysis for the detected expression of these receptors with the habits and clinico-pathological characteristics of all study participants. In order to investigate the possible correlations between the expression of the different CHRN subunits in both healthy esophagus and tissues from ESCC patients, correlation matrices were generated. Subsequently, we evaluated whether the detected alterations in expression of the various CHRNs could precede histopathological modifications during the esophageal carcinogenic processes by using receiver operating characteristic curve analysis. Finally, we evaluated the impact of CHRNA5 and CHRNA7 expression on overall survival by using multivariate analysis. CHRNA3, CHRNA5, CHRNA7 and CHRNB4, but not CHRNA1, CHRNA4, CHRNA9 or CHRNA10, were found to be expressed in normal (healthy) esophageal mucosa. In ESCC, CHRNA5 and CHRNA7 were overexpressed as compared with patient-matched surrounding non-tumor mucosa (ESCC-adjacent mucosa; P < 0.0001 and P = 0.0091, respectively). Positive correlations were observed between CHRNA3 and CHRNB4 expression in all samples analyzed. Additionally, CHRNB4 was found to be differentially expressed in the healthy esophagus and the normal-appearing ESCC-adjacent mucosa, allowing for distinguishment between these tissues with a sensitivity of 75.86% and a specificity of 78.95% (P = 0.0002). Finally, CHRNA5 expression was identified as an independent prognostic factor in ESCC; patients with high CHRNA5 expression showed an increased overall survival, in comparison with those with low expression. The corresponding age- and tumor stage-adjusted hazard ratio was 0.2684 (95%CI: 0.075-0.97, P = 0.0448). Expression of CHRNs is homogeneous along healthy esophagus and deregulated in ESCC, suggesting a pathogenic role for these receptors in ESCC development and progression.
Introducing the Geneva Multimodal expression corpus for experimental research on emotion perception.
Bänziger, Tanja; Mortillaro, Marcello; Scherer, Klaus R
2012-10-01
Research on the perception of emotional expressions in faces and voices is exploding in psychology, the neurosciences, and affective computing. This article provides an overview of some of the major emotion expression (EE) corpora currently available for empirical research and introduces a new, dynamic, multimodal corpus of emotion expressions, the Geneva Multimodal Emotion Portrayals Core Set (GEMEP-CS). The design features of the corpus are outlined and justified, and detailed validation data for the core set selection are presented and discussed. Finally, an associated database with microcoded facial, vocal, and body action elements, as well as observer ratings, is introduced.
Miller, Carly; Newton, Sarah E
2006-12-01
There are differences between males and females regarding the perception, expression, and tolerance of pain that stems from a variety of social and psychologic influences. Personal self-efficacy and lifespan socialization are two such influences, and they provide new dimensions for nurses to better understand the pain experience. This article will present a review of the literature regarding personal self-efficacy and lifespan socialization and their effects on pain perception and expression among males and females. Finally, nursing implications related to the topic will be discussed.
75 FR 3383 - New Postal Product
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-21
...] New Postal Product AGENCY: Postal Regulatory Commission. ACTION: Final rule. SUMMARY: The Commission.... Introduction The Postal Service seeks to add a new product identified as Express Mail [[Page 3384
Multiple effects of genetic background on variegated transgene expression in mice.
Opsahl, Margaret L; McClenaghan, Margaret; Springbett, Anthea; Reid, Sarah; Lathe, Richard; Colman, Alan; Whitelaw, C Bruce A
2002-01-01
BLG/7 transgenic mice express an ovine beta-lactoglobulin transgene during lactation. Unusually, transgene expression levels in milk differ between siblings. This variable expression is due to variegated transgene expression in the mammary gland and is reminiscent of position-effect variegation. The BLG/7 line was created and maintained on a mixed CBA x C57BL/6 background. We have investigated the effect on transgene expression of backcrossing for 13 generations into these backgrounds. Variable transgene expression was observed in all populations examined, confirming that it is an inherent property of the transgene array at its site of integration. There were also strain-specific effects on transgene expression that appear to be independent of the inherent variegation. The transgene, compared to endogenous milk protein genes, is specifically susceptible to inbreeding depression. Outcrossing restored transgene expression levels to that of the parental population; thus suppression was not inherited. Finally, no generation-dependent decrease in mean expression levels was observed in the parental population. Thus, although the BLG/7 transgene is expressed in a variegated manner, there was no generation-associated accumulated silencing of transgene expression. PMID:11901126
Multiple effects of genetic background on variegated transgene expression in mice.
Opsahl, Margaret L; McClenaghan, Margaret; Springbett, Anthea; Reid, Sarah; Lathe, Richard; Colman, Alan; Whitelaw, C Bruce A
2002-03-01
BLG/7 transgenic mice express an ovine beta-lactoglobulin transgene during lactation. Unusually, transgene expression levels in milk differ between siblings. This variable expression is due to variegated transgene expression in the mammary gland and is reminiscent of position-effect variegation. The BLG/7 line was created and maintained on a mixed CBA x C57BL/6 background. We have investigated the effect on transgene expression of backcrossing for 13 generations into these backgrounds. Variable transgene expression was observed in all populations examined, confirming that it is an inherent property of the transgene array at its site of integration. There were also strain-specific effects on transgene expression that appear to be independent of the inherent variegation. The transgene, compared to endogenous milk protein genes, is specifically susceptible to inbreeding depression. Outcrossing restored transgene expression levels to that of the parental population; thus suppression was not inherited. Finally, no generation-dependent decrease in mean expression levels was observed in the parental population. Thus, although the BLG/7 transgene is expressed in a variegated manner, there was no generation-associated accumulated silencing of transgene expression.
Expansins expression is associated with grain size dynamics in wheat (Triticum aestivum L.)
Lizana, X. Carolina; Riegel, Ricardo; Gomez, Leonardo D.; Herrera, Jaime; Isla, Adolfo; McQueen-Mason, Simon J.; Calderini, Daniel F.
2010-01-01
Grain weight is one of the most important components of cereal yield and quality. A clearer understanding of the physiological and molecular determinants of this complex trait would provide an insight into the potential benefits for plant breeding. In the present study, the dynamics of dry matter accumulation, water uptake, and grain size in parallel with the expression of expansins during grain growth in wheat were analysed. The stabilized water content of grains showed a strong association with final grain weight (r2=0.88, P <0.01). Grain length was found to be the trait that best correlated with final grain weight (r2=0.98, P <0.01) and volume (r2=0.94, P <0.01). The main events that defined final grain weight occurred during the first third of grain-filling when maternal tissues (the pericarp of grains) undergo considerable expansion. Eight expansin coding sequences were isolated from pericarp RNA and the temporal profiles of accumulation of these transcripts were monitored. Sequences showing high homology with TaExpA6 were notably abundant during early grain expansion and declined as maturity was reached. RNA in situ hybridization studies revealed that the transcript for TaExpA6 was principally found in the pericarp during early growth in grain development and, subsequently, in both the endosperm and pericarp. The signal in these images is likely to be the sum of the transcript levels of all three sequences with high similarity to the TaExpA6 gene. The early part of the expression profile of this putative expansin gene correlates well with the critical periods of early grain expansion, suggesting it as a possible factor in the final determination of grain size. PMID:20080826
Efficient expression systems for cysteine proteases of malaria parasites
Sarduy, Emir Salas; de los A. Chávez Planes, María
2013-01-01
Papain-like cysteine proteases of malaria parasites are considered important chemotherapeutic targets or valuable models for the evaluation of drug candidates. Consequently, many of these enzymes have been cloned and expressed in Escherichia coli for their biochemical characterization. However, their expression has been problematic, showing low yield and leading to the formation of insoluble aggregates. Given that highly-productive expression systems are required for the high-throughput evaluation of inhibitors, we analyzed the existing expression systems to identify the causes of such apparent issues. We found that significant divergences in codon and nucleotide composition from host genes are the most probable cause of expression failure, and propose several strategies to overcome these limitations. Finally we predict that yeast hosts Saccharomyces cerevisiae and Pichia pastoris may be better suited than E. coli for the efficient expression of plasmodial genes, presumably leading to soluble and active products reproducing structural and functional characteristics of the natural enzymes. PMID:23018863
A gene profiling deconvolution approach to estimating immune cell composition from complex tissues.
Chen, Shu-Hwa; Kuo, Wen-Yu; Su, Sheng-Yao; Chung, Wei-Chun; Ho, Jen-Ming; Lu, Henry Horng-Shing; Lin, Chung-Yen
2018-05-08
A new emerged cancer treatment utilizes intrinsic immune surveillance mechanism that is silenced by those malicious cells. Hence, studies of tumor infiltrating lymphocyte populations (TILs) are key to the success of advanced treatments. In addition to laboratory methods such as immunohistochemistry and flow cytometry, in silico gene expression deconvolution methods are available for analyses of relative proportions of immune cell types. Herein, we used microarray data from the public domain to profile gene expression pattern of twenty-two immune cell types. Initially, outliers were detected based on the consistency of gene profiling clustering results and the original cell phenotype notation. Subsequently, we filtered out genes that are expressed in non-hematopoietic normal tissues and cancer cells. For every pair of immune cell types, we ran t-tests for each gene, and defined differentially expressed genes (DEGs) from this comparison. Equal numbers of DEGs were then collected as candidate lists and numbers of conditions and minimal values for building signature matrixes were calculated. Finally, we used v -Support Vector Regression to construct a deconvolution model. The performance of our system was finally evaluated using blood biopsies from 20 adults, in which 9 immune cell types were identified using flow cytometry. The present computations performed better than current state-of-the-art deconvolution methods. Finally, we implemented the proposed method into R and tested extensibility and usability on Windows, MacOS, and Linux operating systems. The method, MySort, is wrapped as the Galaxy platform pluggable tool and usage details are available at https://testtoolshed.g2.bx.psu.edu/view/moneycat/mysort/e3afe097e80a .
Huang, Qi; Li, Shu; Cheng, Pu; Deng, Mei; He, Xin; Wang, Zhen; Yang, Cheng-Hui; Zhao, Xiao-Ying; Huang, Jian
2017-07-21
To systematically evaluate the prognostic-predictive capability of Bcl-2 in colorectal cancer (CRC). A systematic literature search was conducted using PubMed, Web of Science and EMBASE databases. Any eligible study must meet the following criteria: (1) bcl-2 expression was evaluated in human CRC tissues by immunohistochemistry; (2) assessment of the relationships between bcl-2 expression and overall survival (OS), disease free survival (DFS), recurrent free survival (RFS) or clinic-pathological characteristics of CRC was included; (3) sufficient information was provided to estimate the hazard ratio (HR) or odds ratio and their 95% confidence intervals (CIs); and (4) the study was published in English. The impact of Bcl-2 expression on survival of CRC patients were evaluated through this meta-analysis. A total of 40 eligible articles involving 7658 patients were enrolled in our final analysis. We drew the conclusion that Bcl-2 high expression was significantly correlated with favorable OS (pooled HR = 0.69, 95%CI: 0.55-0.87, P = 0.002) and better DFS/RFS (pooled HR = 0.65, 95%CI: 0.50-0.85, P = 0.001). Additionally, the subgroup analysis suggested that Bcl-2 overexpression was significantly associated with prognosis (OS) especially in patients came from Europe and America but not Asian and patients who did not receive any adjuvant therapy before surgery. Finally, our present results indicated that expression of bcl-2 protein was associated with high differentiation grade and A/B Ducks' stage. Bcl-2 high expression was significantly correlated with favorable OS and better DFS/RFS. Hence, we propose that Bcl-2 may be a valuable prognostic-predictive marker in CRC.
Huang, Qi; Li, Shu; Cheng, Pu; Deng, Mei; He, Xin; Wang, Zhen; Yang, Cheng-Hui; Zhao, Xiao-Ying; Huang, Jian
2017-01-01
AIM To systematically evaluate the prognostic-predictive capability of Bcl-2 in colorectal cancer (CRC). METHODS A systematic literature search was conducted using PubMed, Web of Science and EMBASE databases. Any eligible study must meet the following criteria: (1) bcl-2 expression was evaluated in human CRC tissues by immunohistochemistry; (2) assessment of the relationships between bcl-2 expression and overall survival (OS), disease free survival (DFS), recurrent free survival (RFS) or clinic-pathological characteristics of CRC was included; (3) sufficient information was provided to estimate the hazard ratio (HR) or odds ratio and their 95% confidence intervals (CIs); and (4) the study was published in English. The impact of Bcl-2 expression on survival of CRC patients were evaluated through this meta-analysis. RESULTS A total of 40 eligible articles involving 7658 patients were enrolled in our final analysis. We drew the conclusion that Bcl-2 high expression was significantly correlated with favorable OS (pooled HR = 0.69, 95%CI: 0.55-0.87, P = 0.002) and better DFS/RFS (pooled HR = 0.65, 95%CI: 0.50-0.85, P = 0.001). Additionally, the subgroup analysis suggested that Bcl-2 overexpression was significantly associated with prognosis (OS) especially in patients came from Europe and America but not Asian and patients who did not receive any adjuvant therapy before surgery. Finally, our present results indicated that expression of bcl-2 protein was associated with high differentiation grade and A/B Ducks’ stage. CONCLUSION Bcl-2 high expression was significantly correlated with favorable OS and better DFS/RFS. Hence, we propose that Bcl-2 may be a valuable prognostic-predictive marker in CRC. PMID:28785155
Rahimi, Roghayeh; Ebtekar, Massoumeh; Moazzeni, Seyed Mohammad; Mostafaie, Ali; Mahdavi, Mehdi
2015-01-01
Objective(s): Multi-epitopic protein vaccines and direction of vaccine delivery to dendritic cells (DCs) are promising approaches for enhancing immune responses against mutable pathogens. Escherichia coli is current host for expression of recombinant proteins, and it is important to optimize expression condition. The aim of this study was the optimization of multi-epitopic HIV-1 tat/pol/gag/env recombinant protein (HIVtop4) expression by E. coli and conjugation of purified protein to anti DEC-205 monoclonal antibody as candidate vaccine. Materials and Methods: In this study, expression was induced in BL21 (DE3) E. coli cells by optimization of induction condition, post induction incubation time, temperature and culture medium formula. Some culture mediums were used for cell culture, and isopropyl-beta-D-thiogalactopyranoside was used for induction of expression. Protein was purified by Ni-NTA column chromatography and confirmed against anti-His antibody in western-blotting. To exploit DCs properties for immunization purposes, recombinant protein chemically coupled to αDEC-205 monoclonal antibody and confirmed against anti-His antibody in western-blotting. Results: The optimum condition for expression was 1 mM IPTG during 4 hr cultures in 2XYT medium, and final protein produced in soluble form. Conjugation of purified protein to αDEC-205 antibody resulted in smears of protein: antibodies conjugate in different molecular weights. Conclusion: The best cultivation condition for production of HIVtop4 protein is induction by 1 mM IPTG during 4 hr in 2XYT medium. The final concentration of purified protein was 500 µg/ml. PMID:25810888
Murasugi, Akira
2013-01-01
Midkine is a heparin-binding growth factor that promotes cell growth, survival, and migration. Externally added midkine prevents ventricular remodeling and improves long-term survival after myocardial infarction in the mouse. Preclinical testing of this protein is in progress. Externally added pleiotrophin, a member of the midkine protein family, promotes functional recovery after neural transplantation in rats. Thus, pleiotrophin is also a candidate therapeutic protein. Large amounts of these proteins were obtained by using the heterologous protein expression system of Pichia pastoris, and the recombinant P. pastoris clones were cultured in a controlled fermentor. Intracellular expression yielded about 300 mg/L recombinant human (rh)-midkine, which was extracted, renatured, and purified. From 1 L of the culture, 64 mg of rh-midkine was purified. Secretory expression induced by the midkine secretion signal resulted in about 100 mg of rhmidkine in 1 L of the culture supernatant, but over 70% of the rh-midkine had yeast-specific glycosylation. Three threonyl residues that are targets for glycosylation were substituted with alanyl residues, and nonglycosylated, active rh-midkine was obtained. In secretory expression using α-mating factor prepro-sequence, about 640 mg/L rh-midkine was obtained, but it was partially truncated. Therefore, a protease-deficient host was used, and about 360 mg/L intact rh-midkine was then obtained. The rh-midkine was recovered and purified, with 70% final yield. All purified rh-midkine, regardless of expression method, was able to promote mammalian cell proliferation. In secretory expression of rh-pleiotrophin using α- mating factor prepro-sequence, 260 mg/L rh-pleiotrophin could be secreted. The rh-pleiotrophin was recovered and efficiently purified with 72% final yield.
Back to basics: pBR322 and protein expression systems in E. coli.
Balbás, Paulina; Bolívar, Francisco
2004-01-01
The extensive variety of plasmid-based expression systems in E. coli resulted from the fact that there is no single strategy for achieving maximal expression of every cloned gene. Although a number of strategies have been implemented to deal with problems associated to gene transcription and translation, protein folding, secretion, location, posttranslational modifications, particularities of different strains, and the like and more integrated processes have been developed, the basic plasmid-borne elements and their interaction with the particular host strain will influence the overall expression system and final productivity. Plasmid vector pBR322 is a well-established multipurpose cloning vector in laboratories worldwide, and a large number of derivatives have been created for specific applications and research purposes, including gene expression in its natural host, E. coli, and few other bacteria. The early characterization of the molecule, including its nucleotide sequence, replication and maintenance mechanisms, and determination of its coding regions, accounted for its success, not only as a universal cloning vector, but also as a provider of genes and an origin of replication for other intraspecies vectors. Since the publication of the aforementioned reviews, novel discoveries pertaining to these issues have appeared in the literature that deepen the understanding of the plasmid's features, behavior, and impact in gene expression systems, as well as some important strain characteristics that affect plasmid replication and stability. The objectives of this review include updating and discussing the new information about (1) the replication and maintenance of pBR322; (2) the host-related modulation mechanisms of plasmid replication; (3) the effects of growth rate on replication control, stability, and recombinant gene expression; (4) ways for plasmid amplification and elimination. Finally, (5) a summary of novel ancillary studies about pBR322 is presented.
Alimu, Reyihanguli; Mao, Xinfang; Liu, Zhongyuan
2013-06-01
To improve the expression level of tmAMP1m gene from Tenebrio molitor in Escherichia coli, we studied the effects of expression level and activity of the fusion protein HIS-TmAMP1m by conditions, such as culture temperature, inducing time and the final concentration of inductor Isopropyl beta-D-thiogalactopyranoside (IPTG). We analyzed the optimum expression conditions by Tricine-SDS-PAGE electrophoresis, meanwhile, detected its antibacterial activity by using agarose cavity diffusion method. The results suggest that when inducing the recombinant plasmid with a final IPTG concentration of 0.1 mmol/L at 37 degrees C for 4 h, there was the highest expression level of fusion protein HIS-TmAMP1m in Escherichia coli. Under these conditions, the expression of fusion protein accounted for 40% of the total cell lysate with the best antibacterial activity. We purified the fusion protein HIS-TmAMPlm with nickel-nitrilotriacetic acid (Ni-NTA) metal-affinity chromatography matrices. Western blotting analysis indicates that the His monoclonal antibody could be specifically bound to fusion protein HIS-TmAMPlm. After expression by inducing, the fusion protein could inhibit the growth of host cell transformed by pET30a-tmAMP1m. The fusion protein HIS-TmAMP1m had better stability and remained higher antibacterial activities when incubated at 100 degrees C for 10 h, repeated freeze thawing at -20 degrees C, dissolved in strong acid and alkali, or treated by organic solvents and protease. Moreover, the minimum inhibitory concentration results demonstrated that the fusion protein HIS-TmAMP1m has a good antibacterial activity against Staphylococcus aureus, Staphylococcus sp., Corynebacterium glutamicum, Bacillus thuringiensis, Corynebacterium sp. This study laid the foundation to promote the application of insect antimicrobial peptides and further research.
A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis.
Yue, Jie; Fu, Gang; Zhang, Dawei; Wen, Jianping
2017-08-01
To improve heterologous proteins production, we constructed a maltose-inducible expression system in Bacillus subtilis. An expression system based on the promoter for maltose utilization constructed in B. subtilis. Successively, to improve the performance of the P malA -derived system, mutagenesis was employed by gradually shortening the length of P malA promoter and altering the spacing between the predicted MalR binding site and the -35 region. Furthermore, deletion of the maltose utilization genes (malL and yvdK) improved the P malA promoter activity. Finally, using this efficient maltose-inducible expression system, we enhanced the production of luciferase and D-aminoacylase, compared with the P hpaII system. A maltose-inducible expression system was constructed and evaluated. It could be used for high level expression of heterologous proteins production.
Khiavi, Monir Moradzadeh; Vosoughhosseini, Sepideh; Saravani, Shirin; Halimi, Monireh
2012-01-01
Mucoepidermoid carcinoma is the most common salivary gland malignancy with highly variable biologic potential that correlates with the histopathologic grade of the tumor. Therefore, identification of the histopathologic grade of the mucoepidermoid carcinoma is very important in the treatment and determination of the final prognosis. The present study was performed to survey immunohistochemically Epidermal Growth Factor ReceptorEGFR and c-erbB-2 expression in different grades of mucoepidermoid carcinoma. This retrospective study included 46 formalin-fixed, paraffin-embedded blocks of mucoepidermoid carcinoma. Based on histopathologic parameters, samples were classified into three grades. Then new sections were made and stained by immunohistochemistry (IHC) method for EGFR and c-erbB-2. Finally, EGFR and c-erbB-2 expression and their correlation with histopathologic grading were statistically analyzed by ANOVA. Nineteen samples of normal salivary gland tissue were also chosen as control group. The means of EGFR and c-erbB-2 were 71%, 71%, respectively. Statistically significant correlation was found between EGFR expression and histopathologic grading of mucoepidermoid carcinoma of salivary glands (P < 0.001). There was no statistically significant correlation between histopathologic grading of salivary gland mucoepidermoid carcinoma and c-erbB-2 expression (P = 0.60). There is a parallelism between an increase in EGFR expression and increase in the histopathologic grading of salivary gland mucoepidermoid carcinoma. Therefore, the biologic behavior of salivary gland mucoepidermoid carcinoma can be determined by EGFR expression and it is a useful technique for determination of tumor grades and probably their prognosis.
On readout of vibrational qubits using quantum beats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shyshlov, Dmytro; Babikov, Dmitri, E-mail: Dmitri.Babikov@mu.edu; Berrios, Eduardo
2014-12-14
Readout of the final states of qubits is a crucial step towards implementing quantum computation in experiment. Although not scalable to large numbers of qubits per molecule, computational studies show that molecular vibrations could provide a significant (factor 2–5 in the literature) increase in the number of qubits compared to two-level systems. In this theoretical work, we explore the process of readout from vibrational qubits in thiophosgene molecule, SCCl{sub 2}, using quantum beat oscillations. The quantum beats are measured by first exciting the superposition of the qubit-encoding vibrational states to the electronically excited readout state with variable time-delay pulses. Themore » resulting oscillation of population of the readout state is then detected as a function of time delay. In principle, fitting the quantum beat signal by an analytical expression should allow extracting the values of probability amplitudes and the relative phases of the vibrational qubit states. However, we found that if this procedure is implemented using the standard analytic expression for quantum beats, a non-negligible phase error is obtained. We discuss the origin and properties of this phase error, and propose a new analytical expression to correct the phase error. The corrected expression fits the quantum beat signal very accurately, which may permit reading out the final state of vibrational qubits in experiments by combining the analytic fitting expression with numerical modelling of the readout process. The new expression is also useful as a simple model for fitting any quantum beat experiments where more accurate phase information is desired.« less
Wang, Lishi; Huang, Yue; Jiao, Yan; Chen, Hong; Cao, Yanhong; Bennett, Beth; Wang, Yongjun; Gu, Weikuan
2013-01-01
The purpose of this study is to investigate whether expression profiles of alcoholism-relevant genes in different parts of the brain are correlated differently with those in the liver. Four experiments were conducted. First, we used gene expression profiles from five parts of the brain (striatum, prefrontal cortex, nucleus accumbens, hippocampus, and cerebellum) and from liver in a population of recombinant inbred mouse strains to examine the expression association of 10 alcoholism-relevant genes. Second, we conducted the same association analysis between brain structures and the lung. Third, using five randomly selected, nonalcoholism-relevant genes, we conducted the association analysis between brain and liver. Finally, we compared the expression of 10 alcoholism-relevant genes in hippocampus and cerebellum between an alcohol preference strain and a wild-type control. We observed a difference in correlation patterns in expression levels of 10 alcoholism-relevant genes between different parts of the brain with those of liver. We then examined the association of gene expression between alcohol dehydrogenases (Adh1, Adh2, Adh5, and Adh7) and different parts of the brain. The results were similar to those of the 10 genes. Then, we found that the association of those genes between brain structures and lung was different from that of liver. Next, we found that the association patterns of five alcoholism-nonrelevant genes were different from those of 10 alcoholism-relevant genes. Finally, we found that the expression level of 10 alcohol-relevant genes is influenced more in hippocampus than in cerebellum in the alcohol preference strain. Our results show that the expression of alcoholism-relevant genes in liver is differently associated with the expression of genes in different parts of the brain. Because different structural changes in different parts of the brain in alcoholism have been reported, it is important to investigate whether those structural differences in the brains of those with alcoholism are due to the difference in the associations of gene expression between genes in liver and in different parts of the brain.
Mechanisms underlying 3-bromopyruvate-induced cell death in colon cancer.
Sun, Yiming; Liu, Zhe; Zou, Xue; Lan, Yadong; Sun, Xiaojin; Wang, Xiu; Zhao, Surong; Jiang, Chenchen; Liu, Hao
2015-08-01
3-Bromopyruvate (3BP) is an energy-depleting drug that inhibits Hexokinase II activity by alkylation during glycolysis, thereby suppressing the production of ATP and inducing cell death. As such, 3BP can potentially serve as an anti-tumorigenic agent. Our previous research showed that 3BP can induce apoptosis via AKT /protein Kinase B signaling in breast cancer cells. Here we found that 3BP can also induce colon cancer cell death by necroptosis and apoptosis at the same time and concentration in the SW480 and HT29 cell lines; in the latter, autophagy was also found to be a mechanism of cell death. In HT29 cells, combined treatment with 3BP and the autophagy inhibitor 3-methyladenine (3-MA) exacerbated cell death, while viability in 3BP-treated cells was enhanced by concomitant treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (z-VAD-fmk) and the necroptosis inhibitor necrostatin (Nec)-1. Moreover, 3BP inhibited tumor growth in a SW480 xenograft mouse model. These results indicate that 3BP can suppress tumor growth and induce cell death by multiple mechanisms at the same time and concentration in different types of colon cancer cell by depleting cellular energy stores.
A Quantitative Acetylomic Analysis of Early Seed Development in Rice (Oryza sativa L.).
Wang, Yifeng; Hou, Yuxuan; Qiu, Jiehua; Li, Zhiyong; Zhao, Juan; Tong, Xiaohong; Zhang, Jian
2017-06-27
PKA (protein lysine acetylation) is a critical post-translational modification that regulates various developmental processes, including seed development. However, the acetylation events and dynamics on a proteomic scale in this process remain largely unknown, especially in rice early seed development. We report the first quantitative acetylproteomic study focused on rice early seed development by employing a mass spectral-based (MS-based), label-free approach. A total of 1817 acetylsites on 1688 acetylpeptides from 972 acetylproteins were identified in pistils and seeds at three and seven days after pollination, including 268 acetyproteins differentially acetylated among the three stages. Motif-X analysis revealed that six significantly enriched motifs, such as (DxkK), (kH) and (kY) around the acetylsites of the identified rice seed acetylproteins. Differentially acetylated proteins among the three stages, including adenosine diphosphate (ADP) -glucose pyrophosphorylases (AGPs), PDIL1-1 (protein disulfide isomerase like 1-1), hexokinases, pyruvate dehydrogenase complex (PDC) and numerous other regulators that are extensively involved in the starch and sucrose metabolism, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle and photosynthesis pathways during early seed development. This study greatly expanded the rice acetylome dataset, and shed novel insight into the regulatory roles of PKA in rice early seed development.
Sundaram, Ramalingam; Shanthi, Palanivelu; Sachdanandam, Panchanatham
2014-05-15
The present study was designed to evaluate the antihyperglycemic potential of tangeretin on the activities of key enzymes of carbohydrate and glycogen metabolism in control and streptozotocin induced diabetic rats. The daily oral administration of tangeretin (100mg/kg body weight) to diabetic rats for 30 days resulted in a significant reduction in the levels of plasma glucose, glycosylated hemoglobin (HbA1c) and increase in the levels of insulin and hemoglobin. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, lactate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen phosphorylase in liver of diabetic rats were significantly reverted to near normal levels by the administration of tangeretin. Further, tangeretin administration to diabetic rats improved hepatic glycogen content suggesting the antihyperglycemic potential of tangeretin in diabetic rats. The effect produced by tangeretin on various parameters was comparable to that of glibenclamide - a standard oral hypoglycemic drug. Thus, these results show that tangeretin modulates the activities of hepatic enzymes via enhanced secretion of insulin and decreases the blood glucose in streptozotocin induced diabetic rats by its antioxidant potential. Copyright © 2014 Elsevier GmbH. All rights reserved.
Metabolism of 13C-enriched D-fructose in hepatocytes from Goto-Kakizaki rats.
Malaisse, Willy J; Ladriere, Laurence; Verbruggen, Ingrid; Willem, Rudolph
2004-05-01
This study aims at assessing the conversion of exogenous D-[1-13C]fructose, D-[2-13C]fructose or D-[6-13C]-fructose (10 mM) to 13C-enriched and either hydrogenated or deuterated D-glucose, L-lactate and L-alanine released by rat liver cells prepared from Goto-Kakizaki rats and incubated for 120 min in the presence of unlabelled D-glucose (also 10 mM) and D2O. The results of this study are relevant to the relative contribution of fructokinase and hexokinase isoenzyme to the phosphorylation of D-fructose, the capacity of D-glucose to confer to glucokinase positive cooperativity towards D-fructose, the circulation of D-fructose 6-phosphate in the pentose phosphate pathway, the regulation of the cytosolic NADD/NADH ratio, the respective fate of D-fructose-derived D-glyceraldehyde and dihydroxyacetone phosphate, the deuteration of fructose-derived glycolytic intermediates at the phosphoglucoisomerase, phosphomannoisomerase, enolase, pyruvate kinase and glutamate-alanine transaminase levels, and the unequal generation of L-[1-13C]lactate by cells exposed to D-[1-13C]fructose or D-[6-13C]fructose versus D-[2-13C]-fructose.
Ferritin (FER), isoferritins and aluminum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, J.; Cho, S.W.; Clauberg, M.
FER from Alzheimer's brain contains more Al. One source of Al is beverages. Of the several common beverages analyzed, Pepsi, sold in bottles but not in cans, contained the highest conc. of Al (10..mu..M). Male albino rats were fed 10..mu..M Al in drinking water for one year. They were then sacrificed and their brain homogenates were analyzed for FER, Al and several enzymes. The results: compared to controls, the homogenates of the Al fed rats had 276.5% more Al bound to Fer (114.2 +/- 25.3 g atoms/mol) and 30% less hexokinase activity (150 units/mg protein). Acetyl choline esterase and alkalinemore » ribonuclease levels remained unchanged. Isoelectrofocusing (pH 4-6.5) of human-brain FER yielded at least five bands. None corresponded with those from human liver FER or horse spleen FER. Horse spleen FER was applied to DEAE sephadex and eluted by NaCl-batchwise gradient. Five distinct fractions were obtained. The most acidic eluted last. It contained least Fe, tended to precipitate on standing and required less Al or Be to ppt. Thus, isoferritins may differ in their metal binding capacity and perhaps in their related physiological functions.« less
Shaibani, Parmiss Mojir; Etayash, Hashem; Naicker, Selvaraj; Kaur, Kamaljit; Thundat, Thomas
2017-01-27
We report a simple, fast, and cost-effective approach that measures cancer cell metabolism and their response to anticancer drugs in real time. Using a Light Addressable Potentiometric Sensor integrated with pH sensitive hydrogel nanofibers (NF-LAPS), we detect localized changes in pH of the media as cancer cells consume glucose and release lactate. NF-LAPS shows a sensitivity response of 74 mV/pH for cancer cells. Cancer cells (MDA MB231) showed a response of ∼0.4 unit change in pH compared to virtually no change observed for normal cells (MCF10A). We also observed a drop in pH for the multidrug-resistant cancer cells (MDA-MB-435MDR) in the presence of doxorubicin. However, inhibition of the metabolic enzymes such as hexokinase and lactate dehydrogenase-A suggested an improvement in the efficacy of doxorubicin by decreasing the level of acidification. This approach, based on extracellular acidification, enhances our understanding of cancer cell metabolic modes and their response to chemotherapies, which will help in the development of better treatments, including choice of drugs and dosages.
Ashokkumar, Natarajan; Pari, Leelavinothan
2005-01-01
The effect of N-benzoyl-D-phenylalanine (NBDP) and metformin was studied on the activities of carbohydrate metabolic enzymes in neonatal streptozotocin (nSTZ) non-insulin-dependent diabetic rats. To induce non-insulin-dependent diabetes mellitus (NIDDM), single dose injection of streptozotocin (STZ; 100 mg/kg body weight; i.p.) was given to 2-day old rats. After 10-12 weeks, rats weighing >150 g were selected for screening in NIDDM model, they were checked for fasting blood glucose concentrations to conform the status of NIDDM. NBDP (50,100 and 200 mg/kg body weight) was administered orally for 6 weeks into the confirmed diabetic rats. The activities of gluconeogenic enzymes were significantly increased, whereas the activities of hexokinase and glucose-6-phosphate dehydrogenase were significantly decreased in nSTZ diabetic rats. Both NBDP and metformin were able to restore the altered enzyme activities to almost control concentrations. Combination treatment was more effective than either drug alone. The administration of NBDP along with metformin to nSTZ diabetic rats normalizes blood glucose and causes marked improvement of altered carbohydrate metabolic enzymes during diabetes.
Yu, Zhimin; Zhao, Haifeng; Zhao, Mouming; Lei, Hongjie; Li, Huiping
2012-12-01
The aim of this work was to further investigate the glycolysis performance of lager and ale brewer's yeasts under different fermentation temperature using a combined analysis of metabolic flux, glycolytic enzyme activities, and flux control. The results indicated that the fluxes through glycolytic pathway decreased with the change of the fermentation temperature from 15 °C to 10 °C, which resulted in the prolonged fermentation times. The maximum activities (V (max)) of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) at key nodes of glycolytic pathway decreased with decreasing fermentation temperature, which was estimated to have different control extent (22-84 %) on the glycolytic fluxes in exponential or flocculent phase. Moreover, the decrease of V (max) of PFK or PK displayed the crucial role in down-regulation of flux in flocculent phase. In addition, the metabolic state of ale strain was more sensitive to the variation of temperature than that of lager strain. The results of the metabolic flux and nodes control analysis in brewer's yeasts under different fermentation temperature may provide an alternative approach to regulate glycolytic flux by changing V (max) and improve the production efficiency and beer quality.
Pari, Leelavinothan; Chandramohan, Ramasamy
2017-07-01
We evaluated the modulatory effects of naringin on altered hepatic key enzymes of carbohydrate metabolism in high-fat diet/low-dose streptozotocin-induced diabetic rats. Oral treatment of naringin at a doses of 20, 40 and 80 mg/kg body weight to diabetic rats for 30 days resulted in a significant reduction in the levels of plasma glucose, blood glycosylated hemoglobin and increase in the levels of plasma insulin and blood hemoglobin. The altered activities of the hepatic key enzymes of carbohydrate metabolism such as hexokinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase, glycogen phosphorylase and glycogen content of diabetic rats were significantly reverted to near normal levels by the treatment of naringin in a dose-dependent manner. Naringin at a dose of 80 mg/kg body weight showed the highest significant effect than the other two doses (20 and 40 mg/kg). Further, immunohistochemical observation of pancreas revealed that naringin-treated diabetic rats showed the increased number of insulin immunoreactive β-cells, which confirmed the biochemical findings. These findings revealed that naringin has potential antihyperglycemic activity in high-fat diet/low-dose streptozotocin-induced diabetic rats.
Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality
Teo, Gianni; Suzuki, Yasuo; Uratsu, Sandie L.; Lampinen, Bruce; Ormonde, Nichole; Hu, William K.; DeJong, Ted M.; Dandekar, Abhaya M.
2006-01-01
Sorbitol and sucrose are major products of photosynthesis distributed in apple trees (Malus domestica Borkh. cv. “Greensleeves”) that affect quality in fruit. Transgenic apple plants were silenced or up-regulated for sorbitol-6-phosphate dehydrogenase by using the CaMV35S promoter to define the role of sorbitol distribution in fruit development. Transgenic plants with suppressed sorbitol-6-phosphate dehydrogenase compensated by accumulating sucrose and starch in leaves, and morning and midday net carbon assimilation rates were significantly lower. The sorbitol to sucrose ratio in leaves was reduced by ≈90% and in phloem exudates by ≈75%. The fruit accumulated more glucose and less fructose, starch, and malic acid, with no overall differences in weight and firmness. Sorbitol dehydrogenase activity was reduced in silenced fruit, but activities of neutral invertase, vacuolar invertase, cell wall-bound invertase, fructose kinase, and hexokinase were unaffected. Analyses of transcript levels and activity of enzymes involved in carbohydrate metabolism throughout fruit development revealed significant differences in pathways related to sorbitol transport and breakdown. Together, these results suggest that sorbitol distribution plays a key role in fruit carbon metabolism and affects quality attributes such as sugar–acid balance and starch accumulation. PMID:17132742
Age-related defects in erythrocyte 2,3-diphosphoglycerate metabolism in dementia.
Kaminsky, Yury G; Reddy, V Prakash; Ashraf, Ghulam Md; Ahmad, Ausaf; Benberin, Valery V; Kosenko, Elena A; Aliev, Gjumrakch
2013-01-01
Alzheimer disease (AD) is the most common dementing illness. Metabolic defects in the brain with aging contribute to the pathogenesis of AD. These changes can be found systematically and thus can be used as potential biomarkers. Erythrocytes (RBCs) are passive "reporter cells" that are not well studied in AD. In the present study, we analyzed an array of glycolytic and related enzymes and intermediates in RBCs from patients with AD and non-Alzheimer dementia (NA), age-matched controls (AC) and young adult controls (YC). AD is characterized by higher activities of hexokinase, phosphofructokinase, and bisphosphoglycerate mutase and bisphosphoglycerate phosphatase in RBCs. In our study, we observed that glycolytic and related enzymes displayed significantly lower activities in AC. However, similar or significantly higher activities were observed in AD and NA groups as compared to YC group. 2,3-diphosphoglycerate (2,3-DPG) levels were significantly decreased in AD and NA patients. The pattern of changes between groups in the above indices strongly correlates with each other. Collectively, our data suggested that AD and NA patients are associated with chronic disturbance of 2,3-DPG metabolism in RBCs. These defects may play a pivotal role in physiological processes, which predispose elderly subjects to AD and NA.
Nuclear factor one B (NFIB) encodes a subtype-specific tumour suppressor in glioblastoma
Stringer, Brett W.; Bunt, Jens; Day, Bryan W.; Barry, Guy; Jamieson, Paul R.; Ensbey, Kathleen S.; Bruce, Zara C.; Goasdoué, Kate; Vidal, Hélène; Charmsaz, Sara; Smith, Fiona M.; Cooper, Leanne T.; Piper, Michael
2016-01-01
Glioblastoma (GBM) is an essentially incurable and rapidly fatal cancer, with few markers predicting a favourable prognosis. Here we report that the transcription factor NFIB is associated with significantly improved survival in GBM. NFIB expression correlates inversely with astrocytoma grade and is lowest in mesenchymal GBM. Ectopic expression of NFIB in low-passage, patient-derived classical and mesenchymal subtype GBM cells inhibits tumourigenesis. Ectopic NFIB expression activated phospho-STAT3 signalling only in classical and mesenchymal GBM cells, suggesting a mechanism through which NFIB may exert its context-dependent tumour suppressor activity. Finally, NFIB expression can be induced in GBM cells by drug treatment with beneficial effects. PMID:27083054
Two-Dimensional Modelling of the Hall Thruster Discharge: Final Report
2007-09-10
performing a number Nprob,jk of probability tests to determine the real number of macroions to be created, Njk, in a particular cell and time step. The...hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...temperature-dependent yield expression is proposed, which avoids integrals expressions at the same time that it recovers approximately the reduction of that
Clipperton-Allen, Amy E.; Lee, Anna W.; Reyes, Anny; Devidze, Nino; Phan, Anna; Pfaff, Donald W.; Choleris, Elena
2012-01-01
Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85–100%) and low (40–60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice. PMID:22079582
Rivas, Daniel; Akter, Rahima; Duque, Gustavo
2007-01-01
Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630
False recognition of facial expressions of emotion: causes and implications.
Fernández-Dols, José-Miguel; Carrera, Pilar; Barchard, Kimberly A; Gacitua, Marta
2008-08-01
This article examines the importance of semantic processes in the recognition of emotional expressions, through a series of three studies on false recognition. The first study found a high frequency of false recognition of prototypical expressions of emotion when participants viewed slides and video clips of nonprototypical fearful and happy expressions. The second study tested whether semantic processes caused false recognition. The authors found that participants made significantly higher error rates when asked to detect expressions that corresponded to semantic labels than when asked to detect visual stimuli. Finally, given that previous research reported that false memories are less prevalent in younger children, the third study tested whether false recognition of prototypical expressions increased with age. The authors found that 67% of eight- to nine-year-old children reported nonpresent prototypical expressions of fear in a fearful context, but only 40% of 6- to 7-year-old children did so. Taken together, these three studies demonstrate the importance of semantic processes in the detection and categorization of prototypical emotional expressions.
Advances in recombinant protein expression for use in pharmaceutical research.
Assenberg, Rene; Wan, Paul T; Geisse, Sabine; Mayr, Lorenz M
2013-06-01
Protein production for structural and biophysical studies, functional assays, biomarkers, mechanistic studies in vitro and in vivo, but also for therapeutic applications in pharma, biotech and academia has evolved into a mature discipline in recent years. Due to the increased emphasis on biopharmaceuticals, the growing demand for proteins used for structural and biophysical studies, the impact of genomics technologies on the analysis of large sets of structurally diverse proteins, and the increasing complexity of disease targets, the interest in innovative approaches for the expression, purification and characterisation of recombinant proteins has steadily increased over the years. In this review, we summarise recent developments in the field of recombinant protein expression for research use in pharma, biotech and academia. We focus mostly on the latest developments for protein expression in the most widely used expression systems: Escherichia coli (E. coli), insect cell expression using the Baculovirus Expression Vector System (BEVS) and, finally, transient and stable expression of recombinant proteins in mammalian cells. Copyright © 2013. Published by Elsevier Ltd.
Harb, Kawssar; Magrinelli, Elia; Nicolas, Céline S; Lukianets, Nikita; Frangeul, Laura; Pietri, Mariel; Sun, Tao; Sandoz, Guillaume; Grammont, Franck; Jabaudon, Denis; Studer, Michèle; Alfano, Christian
2016-01-01
During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features. DOI: http://dx.doi.org/10.7554/eLife.09531.001 PMID:26814051
Effects of menopause and high-intensity training on insulin sensitivity and muscle metabolism.
Mandrup, Camilla M; Egelund, Jon; Nyberg, Michael; Enevoldsen, Lotte Hahn; Kjær, Andreas; Clemmensen, Andreas E; Christensen, Anders Nymark; Suetta, Charlotte; Frikke-Schmidt, Ruth; Steenberg, Dorte Enggaard; Wojtaszewski, Jørgen F P; Hellsten, Ylva; Stallknecht, Bente M
2018-02-01
To investigate peripheral insulin sensitivity and skeletal muscle glucose metabolism in premenopausal and postmenopausal women, and evaluate whether exercise training benefits are maintained after menopause. Sedentary, healthy, normal-weight, late premenopausal (n = 21), and early postmenopausal (n = 20) women were included in a 3-month high-intensity exercise training intervention. Body composition was assessed by magnetic resonance imaging and dual-energy x-ray absorptiometry, whole body glucose disposal rate (GDR) by hyperinsulinemic euglycemic clamp (40 mU/m/min), and femoral muscle glucose uptake by positron emission tomography/computed tomography, using the glucose analog fluorodeoxyglucose, expressed as estimated metabolic rate (eMR). Insulin signaling was investigated in muscle biopsies. Age difference between groups was 4.5 years, and no difference was observed in body composition. Training increased lean body mass (estimate [95% confidence interval] 0.5 [0.2-0.9] kg, P < 0.01) and thigh muscle mass (0.2 [-0.1 to 0.6] kg, P < 0.01), and decreased fat percentage (1.0 [0.5-1.5]%, P < 0.01) similarly in the two groups. The postmenopausal women had lower eMR in vastus lateralis muscle than the premenopausal women (-14.0 [-26.0 to -2.0] μmol/min/kg, P = 0.02), and tended to have lower eMR in femoral muscles (-11.2 [-22.7 to 0.4] μmol/min/kg, P = 0.06), and also GDR (-59.3 [-124.8 to 6.3] mg/min, P = 0.08), but increased similarly in both groups with training (eMR vastus lateralis muscle: 27.8 [19.6-36.0] μmol/min/kg, P < 0.01; eMR femoral muscle: 20.0 [13.1-26.7] μmol/min/kg, P < 0.01, respectively; GDR: 43.6 [10.4-76.9] mg/min, P = 0.01). Potential mechanisms underlying the training-induced increases in insulin sensitivity included increased expression of hexokinase (19.2 [5.0-24.7] AU, P = 0.02) and glycogen synthase (32.4 [15.0-49.8] AU, P < 0.01), and also increased insulin activation of Akt2 (20.6 [3.4-29.0], P = 0.03) and dephosphorylation of glycogen synthase (-41.8 [-82.9 to -0.7], P = 0.05). Insulin sensitivity was reduced in early postmenopausal women. However, postmenopausal women increased peripheral insulin sensitivity, skeletal muscle insulin-stimulated glucose uptake, and skeletal muscle mass to the same extent as premenopausal women after 3 months of high-intensity exercise training.
Exaggerated perception of facial expressions is increased in individuals with schizotypal traits
Uono, Shota; Sato, Wataru; Toichi, Motomi
2015-01-01
Emotional facial expressions are indispensable communicative tools, and social interactions involving facial expressions are impaired in some psychiatric disorders. Recent studies revealed that the perception of dynamic facial expressions was exaggerated in normal participants, and this exaggerated perception is weakened in autism spectrum disorder (ASD). Based on the notion that ASD and schizophrenia spectrum disorder are at two extremes of the continuum with respect to social impairment, we hypothesized that schizophrenic characteristics would strengthen the exaggerated perception of dynamic facial expressions. To test this hypothesis, we investigated the relationship between the perception of facial expressions and schizotypal traits in a normal population. We presented dynamic and static facial expressions, and asked participants to change an emotional face display to match the perceived final image. The presence of schizotypal traits was positively correlated with the degree of exaggeration for dynamic, as well as static, facial expressions. Among its subscales, the paranoia trait was positively correlated with the exaggerated perception of facial expressions. These results suggest that schizotypal traits, specifically the tendency to over-attribute mental states to others, exaggerate the perception of emotional facial expressions. PMID:26135081
Exaggerated perception of facial expressions is increased in individuals with schizotypal traits.
Uono, Shota; Sato, Wataru; Toichi, Motomi
2015-07-02
Emotional facial expressions are indispensable communicative tools, and social interactions involving facial expressions are impaired in some psychiatric disorders. Recent studies revealed that the perception of dynamic facial expressions was exaggerated in normal participants, and this exaggerated perception is weakened in autism spectrum disorder (ASD). Based on the notion that ASD and schizophrenia spectrum disorder are at two extremes of the continuum with respect to social impairment, we hypothesized that schizophrenic characteristics would strengthen the exaggerated perception of dynamic facial expressions. To test this hypothesis, we investigated the relationship between the perception of facial expressions and schizotypal traits in a normal population. We presented dynamic and static facial expressions, and asked participants to change an emotional face display to match the perceived final image. The presence of schizotypal traits was positively correlated with the degree of exaggeration for dynamic, as well as static, facial expressions. Among its subscales, the paranoia trait was positively correlated with the exaggerated perception of facial expressions. These results suggest that schizotypal traits, specifically the tendency to over-attribute mental states to others, exaggerate the perception of emotional facial expressions.
Transgenic over-expression of YY1 induces pathologic cardiac hypertrophy in a sex-specific manner
Stauffer, Brian L.; Dockstader, Karen; Russell, Gloria; Hijmans, Jamie; Walker, Lisa; Cecil, Mackenzie; Demos-Davies, Kimberly; Medway, Allen; McKinsey, Timothy A.; Sucharov, Carmen C.
2015-01-01
YY1 can activate or repress transcription of various genes. In cardiac myocytes in culture YY1 has been shown to regulate expression of several genes involved in myocyte pathology. YY1 can also acutely protect the heart against detrimental changes in gene expression. In this study we show that cardiac over-expression of YY1 induces pathologic cardiac hypertrophy in male mice, measured by changes in gene expression and lower ejection fraction/fractional shortening. In contrast, female animals are protected against pathologic gene expression changes and cardiac dysfunction. Furthermore, we show that YY1 regulates, in a sex-specific manner, the expression of mammalian enable (Mena), a factor that regulates cytoskeletal actin dynamics and whose expression is increased in several models of cardiac pathology, and that Mena expression in humans with heart failure is sex-dependent. Finally, we show that sex differences in YY1 expression are also observed in human heart failure. In summary, this is the first work to show that YY1 has a sex-specific effect in the regulation of cardiac pathology. PMID:25935483
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-05
.... 139(l)(1). The I-75 Express Lanes Project will design a managed lane system along I-75 from the SR 155..., permits and approvals for the project. DATES: By this notice, the FHWA is advising the public of the final... action on the highway project will be barred unless the claim is filed on or before December 2, 2013. If...
Cadmium induces cadmium-tolerant gene expression in the filamentous fungus Trichoderma harzianum.
Cacciola, Santa O; Puglisi, Ivana; Faedda, Roberto; Sanzaro, Vincenzo; Pane, Antonella; Lo Piero, Angela R; Evoli, Maria; Petrone, Goffredo
2015-11-01
The filamentous fungus Trichoderma harzianum, strain IMI 393899, was able to grow in the presence of the heavy metals cadmium and mercury. The main objective of this research was to study the molecular mechanisms underlying the tolerance of the fungus T. harzianum to cadmium. The suppression subtractive hybridization (SSH) method was used for the characterization of the genes of T. harzianum implicated in cadmium tolerance compared with those expressed in the response to the stress induced by mercury. Finally, the effects of cadmium exposure were also validated by measuring the expression levels of the putative genes coding for a glucose transporter, a plasma membrane ATPase, a Cd(2+)/Zn(2+) transporter protein and a two-component system sensor histidine kinase YcbA, by real-time-PCR. By using the aforementioned SSH strategy, it was possible to identify 108 differentially expressed genes of the strain IMI 393899 of T. harzianum grown in a mineral substrate with the addition of cadmium. The expressed sequence tags identified by SSH technique were encoding different genes that may be involved in different biological processes, including those associated to primary and secondary metabolism, intracellular transport, transcription factors, cell defence, signal transduction, DNA metabolism, cell growth and protein synthesis. Finally, the results show that in the mechanism of tolerance to cadmium a possible signal transduction pathway could activate a Cd(2+)/Zn(2+) transporter protein and/or a plasma membrane ATPase that could be involved in the compartmentalization of cadmium inside the cell.
RGSS-ID: an approach to new radiologic reporting system.
Ikeda, M; Sakuma, S; Maruyama, K
1990-01-01
RGSS-ID is a developmental computer system that applies artificial intelligence (AI) methods to a reporting system. The representation scheme called Generalized Finding Representation (GFR) is proposed to bridge the gap between natural language expressions in the radiology report and AI methods. The entry process of RGSS-ID is made mainly by selecting items; our system allows a radiologist to compose a sentence which can be completely parsed by the computer. Further RGSS-ID encodes findings into the expression corresponding to GFR, and stores this expression into the knowledge data base. The final printed report is made in the natural language.
FoxM1 Promotes Glioma Cells Progression by Up-Regulating Anxa1 Expression
Cheng, Shi-Xiang; Tu, Yue; Zhang, Sai
2013-01-01
Forkhead box M1 (FoxM1) is a member of the forkhead transcription factor family and is overexpression in malignant gliomas. However, the molecular mechanisms by which FoxM1lead to glioma carcinogenesis and progression are still not well known. In the present study, we show that Anxa1 was overexpression in gliomas and predicted the poor outcome. Furthermore, Anxa1 closely related to the FoxM1 expression and was a direct transcriptional target of FoxM1. Overexpression of FoxM1 up-regulated Anxa1 expression, whereas suppression of FoxM1 expression down-regulated Anxa1 expression in glioma cells. Finally, FoxM1 enhanced the proliferation, migration, and angiogenesis in Anxa1-dependent manner both in vitro and in vivo. Our findings provide both clinical and mechanistic evidences that FoxM1 contributes to glioma development by directly up-regulating Anxa1 expression. PMID:23991102
Network-Induced Classification Kernels for Gene Expression Profile Analysis
Dror, Gideon; Shamir, Ron
2012-01-01
Abstract Computational classification of gene expression profiles into distinct disease phenotypes has been highly successful to date. Still, robustness, accuracy, and biological interpretation of the results have been limited, and it was suggested that use of protein interaction information jointly with the expression profiles can improve the results. Here, we study three aspects of this problem. First, we show that interactions are indeed relevant by showing that co-expressed genes tend to be closer in the network of interactions. Second, we show that the improved performance of one extant method utilizing expression and interactions is not really due to the biological information in the network, while in another method this is not the case. Finally, we develop a new kernel method—called NICK—that integrates network and expression data for SVM classification, and demonstrate that overall it achieves better results than extant methods while running two orders of magnitude faster. PMID:22697242
Unseen stimuli modulate conscious visual experience: evidence from inter-hemispheric summation.
de Gelder, B; Pourtois, G; van Raamsdonk, M; Vroomen, J; Weiskrantz, L
2001-02-12
Emotional facial expression can be discriminated despite extensive lesions of striate cortex. Here we report differential performance with recognition of facial stimuli in the intact visual field depending on simultaneous presentation of congruent or incongruent stimuli in the blind field. Three experiments were based on inter-hemispheric summation. Redundant stimulation in the blind field led to shorter latencies for stimulus detection in the intact field. Recognition of the expression of a half-face expression in the intact field was faster when the other half of the face presented to the blind field had a congruent expression. Finally, responses to the expression of whole faces to the intact field were delayed for incongruent facial expressions presented in the blind field. These results indicate that the neuro-anatomical pathways (extra-striate cortical and sub-cortical) sustaining inter-hemispheric summation can operate in the absence of striate cortex.
77 FR 65549 - Agency Information Collection Activities: Final Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-29
... Guarantee Agreement--Working Capital Guarantee Credits Global Credit Express--Originating Lender Other... said experience of each member of senior management and each person who will be responsible for the Ex...
Chen, Yinglong; Wang, Haimiao; Hu, Wei; Wang, Shanshan; Wang, Youhua; Snider, John L; Zhou, Zhiguo
2017-03-01
Soil waterlogging events and high temperature conditions occur frequently in the Yangtze River Valley, yet the effects of these co-occurring stresses on fiber elongation have received little attention. In the current study, the combined effect of elevated temperature (ET) and soil waterlogging (SW) more negatively affected final fiber length (reduced by 5.4%-11.3%) than either stress alone by altering the composition of osmotically active solutes (sucrose, malate, and K + ), where SW had the most pronounced effect. High temperature accelerated early fiber development, but limited the duration of elongation, thereby limiting final fiber length. Treatment of ET alone altered fiber sucrose content mainly through decreased source strength and the expression of the sucrose transporter gene GhSUT-1, making sucrose availability the primary determinant of final fiber length under ET. Waterlogging stress alone decreased source strength, down-regulated GhSUT-1 expression and enhanced SuSy catalytic activity for sucrose reduction. Waterlogging treatment alone also limited fiber malate production by down-regulating GhPEPC-1 & -2. However, combined elevated temperature and waterlogging limited primary cell wall synthesis by affecting GhCESAs genes and showed a negative impact on all three major osmotic solutes through the regulation of GhSUT-1, GhPEPC-1 & -2 and GhKT-1 expression and altered SuSy activity, which functioned together to produce a shorter fiber length. Copyright © 2017 Elsevier B.V. All rights reserved.
Psychometric challenges and proposed solutions when scoring facial emotion expression codes.
Olderbak, Sally; Hildebrandt, Andrea; Pinkpank, Thomas; Sommer, Werner; Wilhelm, Oliver
2014-12-01
Coding of facial emotion expressions is increasingly performed by automated emotion expression scoring software; however, there is limited discussion on how best to score the resulting codes. We present a discussion of facial emotion expression theories and a review of contemporary emotion expression coding methodology. We highlight methodological challenges pertinent to scoring software-coded facial emotion expression codes and present important psychometric research questions centered on comparing competing scoring procedures of these codes. Then, on the basis of a time series data set collected to assess individual differences in facial emotion expression ability, we derive, apply, and evaluate several statistical procedures, including four scoring methods and four data treatments, to score software-coded emotion expression data. These scoring procedures are illustrated to inform analysis decisions pertaining to the scoring and data treatment of other emotion expression questions and under different experimental circumstances. Overall, we found applying loess smoothing and controlling for baseline facial emotion expression and facial plasticity are recommended methods of data treatment. When scoring facial emotion expression ability, maximum score is preferred. Finally, we discuss the scoring methods and data treatments in the larger context of emotion expression research.
2015-10-01
already been well characterized. Finally, we have also been recruiting migraine patients since they commonly report light sensitivity between headaches...and have been recruiting migraine subjects in the immediate 25-mile radius using email announcements and also the UIHC database by diagnostic...expression of pain from feigned pain as might occur when monitoring photosensitivity for migraine treatment. 3D also proves its value for expressions of
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... revises Table 1 of the final rule by moving the units, expressed as grams of ozone per gram of product (g... 2A, 2B, and 2C by adding units, expressed as grams of ozone per gram of VOC (g O 3 /g VOC), to the... Webbing/Veiling Coatings WFC 0.85 Weld-Through Primers WTP 1.00 Wood Stains WSP 1.40 [[Page 14284
Growth Factor Receptor-Directed Therapy in Human Breast Cancer
1997-12-01
related more to acquired rather than to intrinsic drug resistance. 3) To define the role of HER-2 and heregulin gene expression in antiestrogen... treatment strategies in affected patients. 3) Role of HER-2 and heregulin gene expression in antiestrogen resistance. The hypothesis that heregulins may be a...native amplification/overexpression of the HER-2/neu gene and sion. Finally, to avoid the possibility that any observed are shown as positive controls
Orthogonal control of expression mean and variance by epigenetic features at different genomic loci
Dey, Siddharth S.; Foley, Jonathan E.; Limsirichai, Prajit; ...
2015-05-05
While gene expression noise has been shown to drive dramatic phenotypic variations, the molecular basis for this variability in mammalian systems is not well understood. Gene expression has been shown to be regulated by promoter architecture and the associated chromatin environment. However, the exact contribution of these two factors in regulating expression noise has not been explored. Using a dual-reporter lentiviral model system, we deconvolved the influence of the promoter sequence to systematically study the contribution of the chromatin environment at different genomic locations in regulating expression noise. By integrating a large-scale analysis to quantify mRNA levels by smFISH andmore » protein levels by flow cytometry in single cells, we found that mean expression and noise are uncorrelated across genomic locations. Furthermore, we showed that this independence could be explained by the orthogonal control of mean expression by the transcript burst size and noise by the burst frequency. Finally, we showed that genomic locations displaying higher expression noise are associated with more repressed chromatin, thereby indicating the contribution of the chromatin environment in regulating expression noise.« less
Immunological aspects in chronic lymphocytic leukemia (CLL) development.
García-Muñoz, Ricardo; Galiacho, Verónica Roldan; Llorente, Luis
2012-07-01
Chronic lymphocytic leukemia (CLL) is unique among B cell malignancies in that the malignant clones can be featured either somatically mutated or unmutated IGVH genes. CLL cells that express unmutated immunoglobulin variable domains likely underwent final development prior to their entry into the germinal center, whereas those that express mutated variable domains likely transited through the germinal center and then underwent final development. Regardless, the cellular origin of CLL remains unknown. The aim of this review is to summarize immunological aspects involved in this process and to provide insights about the complex biology and pathogenesis of this disease. We propose a mechanistic hypothesis to explain the origin of B-CLL clones into our current picture of normal B cell development. In particular, we suggest that unmutated CLL arises from normal B cells with self-reactivity for apoptotic bodies that have undergone receptor editing, CD5 expression, and anergic processes in the bone marrow. Similarly, mutated CLL would arise from cells that, while acquiring self-reactivity for autoantigens-including apoptotic bodies-in germinal centers, are also still subject to tolerization mechanisms, including receptor editing and anergy. We believe that CLL is a proliferation of B lymphocytes selected during clonal expansion through multiple encounters with (auto)antigens, despite the fact that they differ in their state of activation and maturation. Autoantigens and microbial pathogens activate BCR signaling and promote tolerogenic mechanisms such as receptor editing/revision, anergy, CD5+ expression, and somatic hypermutation in CLL B cells. The result of these tolerogenic mechanisms is the survival of CLL B cell clones with similar surface markers and homogeneous gene expression signatures. We suggest that both immunophenotypic surface markers and homogenous gene expression might represent the evidence of several attempts to re-educate self-reactive B cells.
Oluwatobi, Stephen; Oshokoya, Damilare; Atayero, Aderemi; Oludayo, Olumuyiwa; Nsofor, Colette; Oyebode, Adeola
2018-08-01
This data article is an expression of data that reflects how students' participation in the Hult Prize 2018 regional finals affects their decision to become entrepreneurs. The primary data was sourced using a questionnaire developed with Google doc form. Out of 120 students that participated in the Hult Prize 2018 regional finals in Nigeria, 103 of them responded. Their responses are as presented in this article. Such will be relevant to researchers who want to find out why students desire to become entrepreneurs and the best approach and timing to enable them.
Newman, Laura E; Schiavon, Cara; Kahn, Richard A
2016-01-01
We describe the construction and uses of a series of plasmids for directing expression to varied levels of exogenous proteins targeted to the mitochondrial matrix or intermembrane space. We found that the level of protein expression achieved, the kinetics of expression and mitochondrial import, and half-life after import can each vary with the protein examined. These factors should be considered when directing localization of an exogenous protein to mitochondria for rescue, proteomics, or other approaches. We describe the construction of a collection of plasmids for varied expression of proteins targeted to the mitochondrial matrix or intermembrane space, using previously defined targeting sequences and strength CMV promoters. The limited size of these compartments makes them particularly vulnerable to artifacts from over-expression. We found that different proteins display different kinetics of expression and import that should be considered when analyzing results from this approach. Finally, this collection of plasmids has been deposited in the Addgene plasmid repository to facilitate the ready access and use of these tools.
Zenke, Kosuke; Nam, Yoon Kwon; Kim, Ki Hong
2010-01-01
In the present study, we have developed short interfering RNA (siRNA) expression vector utilizing rock bream beta-actin promoter and examined the possible use for the inhibition of highly pathogenic fish virus, rock bream iridovirus (RBIV), replication in vitro. Initially, in order to express siRNA effectively, we added several modifications to wild-type rock bream beta-actin promoter. Next, we succeeded in knocking down the expression of enhanced green fluorescent protein reporter gene expression in fish cells using newly developed vector more effectively than the fugu U6 promoter-driven vector we described previously. Finally, we could observe that cells transfected with modified rock bream beta-actin promoter-driven siRNA expression vector targeting major capsid protein (MCP) gene of RBIV exhibited more resistance to RBIV challenge than other control cells. Our results indicate that this novel siRNA expression vector can be used as a new tool for therapeutics in virus infection in fish species.
Closed form expressions for ABER and capacity over EGK fading channel in presence of CCI
NASA Astrophysics Data System (ADS)
Singh, S. Pratap; Kumar, Sanjay
2017-03-01
Goal of next generation wireless communication system is to achieve very high data rate. Femto-cell is one of the possibilities to achieve the above target. However, co-channel interference (CCI) is the important concern in femto-cell. This paper presents closed form expressions for average bit error rate (ABER) and capacity for different adaptive schemes under extended generalised-K (EGK) fading channel in the presence of CCI. A novel conditional unified expression (CUE) is derived, which results different conditional error probability and normalised average capacity. Using CUE, a generic expression for ABER is obtained. In addition, closed form expressions for ABER for different modulation schemes under EGK fading channel in presence of CCI are also derived. Further, it is shown that generic ABER expression results into ABER of different modulation schemes. Besides, the closed form expressions of capacity for different adaptive schemes under EGK in presence of CCI are derived. Finally, analytical and simulated results are obtained with excellent agreement.
MicroRNA filters Hox temporal transcription noise to confer boundary formation in the spinal cord
NASA Astrophysics Data System (ADS)
Li, Chung-Jung; Hong, Tian; Tung, Ying-Tsen; Yen, Ya-Ping; Hsu, Ho-Chiang; Lu, Ya-Lin; Chang, Mien; Nie, Qing; Chen, Jun-An
2017-03-01
The initial rostrocaudal patterning of the neural tube leads to differential expression of Hox genes that contribute to the specification of motor neuron (MN) subtype identity. Although several 3' Hox mRNAs are expressed in progenitors in a noisy manner, these Hox proteins are not expressed in the progenitors and only become detectable in postmitotic MNs. MicroRNA biogenesis impairment leads to precocious expression and propagates the noise of Hoxa5 at the protein level, resulting in an imprecise Hoxa5-Hoxc8 boundary. Here we uncover, using in silico simulation, two feed-forward Hox-miRNA loops accounting for the precocious and noisy Hoxa5 expression, as well as an ill-defined boundary phenotype in Dicer mutants. Finally, we identify mir-27 as a major regulator coordinating the temporal delay and spatial boundary of Hox protein expression. Our results provide a novel trans Hox-miRNA circuit filtering transcription noise and controlling the timing of protein expression to confer robust individual MN identity.
Effects of spatial frequency content on classification of face gender and expression.
Aguado, Luis; Serrano-Pedraza, Ignacio; Rodríguez, Sonia; Román, Francisco J
2010-11-01
The role of different spatial frequency bands on face gender and expression categorization was studied in three experiments. Accuracy and reaction time were measured for unfiltered, low-pass (cut-off frequency of 1 cycle/deg) and high-pass (cutoff frequency of 3 cycles/deg) filtered faces. Filtered and unfiltered faces were equated in root-mean-squared contrast. For low-pass filtered faces reaction times were higher than unfiltered and high-pass filtered faces in both categorization tasks. In the expression task, these results were obtained with expressive faces presented in isolation (Experiment 1) and also with neutral-expressive dynamic sequences where each expressive face was preceded by a briefly presented neutral version of the same face (Experiment 2). For high-pass filtered faces different effects were observed on gender and expression categorization. While both speed and accuracy of gender categorization were reduced comparing to unfiltered faces, the efficiency of expression classification remained similar. Finally, we found no differences between expressive and non expressive faces in the effects of spatial frequency filtering on gender categorization (Experiment 3). These results show a common role of information from the high spatial frequency band in the categorization of face gender and expression.
Liu, Ju-Fang; Tsao, Ya-Ting; Hou, Chun-Han
2015-01-01
Osteosarcoma is a common, high malignant, and metastatic bone cancer. Amphiregulin (AREG) has been associated with cancer cellular activities. However, the effect of AREG on metastasis activity in human osteosarcoma cells has yet to be determined. We determined that AREG increases the expression of intercellular adhesion molecule-1 (ICAM-1) through PI3K/Akt signaling pathway via its interaction with the epidermal growth factor receptor, thus resulting in the enhanced cell migration of osteosarcoma. Furthermore, AREG stimulation increased the association of NF-κB to ICAM-1 promoter which then up-regulated ICAM-1 expression. Finally, we observed that shRNA silencing of AREG decreased osteosarcoma metastasis in vivo. Our findings revealed a relationship between osteosarcoma metastatic potential and AREG expression and the modulating effect of AREG on ICAM-1 expression. PMID:26503469
40 CFR 90.509 - Calculation and reporting of test results.
Code of Federal Regulations, 2014 CFR
2014-07-01
... contained in the applicable emission standard expressed to one additional significant figure. ASTM E29-93a... additional significant figure. (2) Final deteriorated test results (for Phase 2 test engines only) are...
Missouri Department of Transportation (RDT) Peer Exchange Final Report.
DOT National Transportation Integrated Search
2002-06-01
The expressed objectives of the peer exchange were to: : Verify and/or improve research-related processes : Increase effectiveness of research, development and technology transfer efforts to : best serve MODOT strategic goals and objectives :...
Assessing Anger Expression: Construct Validity of Three Emotion Expression-Related Measures
Jasinski, Matthew J.; Lumley, Mark A.; Latsch, Deborah V.; Schuster, Erik; Kinner, Ellen; Burns, John W.
2016-01-01
Self-report measures of emotional expression are common, but their validity to predict objective emotional expression, particularly of anger, is unclear. We tested the validity of the Anger Expression Inventory (AEI; Spielberger et al., 1985)), Emotional Approach Coping Scale (EAC; Stanton, Kirk, Cameron & Danoff-Burg, 2000), and Toronto Alexithymia Scale-20 (TAS-20; Bagby, Taylor, & Parker, 1994) to predict objective anger expression in 95 adults with chronic back pain. Participants attempted to solve a difficult computer maze by following the directions of a confederate who treated them rudely and unjustly. Participants then expressed their feelings for 4 minutes. Blinded raters coded the videos for anger expression, and a software program analyzed expression transcripts for anger-related words. Analyses related each questionnaire to anger expression. The AEI anger-out scale predicted greater anger expression, as expected, but AEI anger-in did not. The EAC emotional processing scale predicted less anger expression, but the EAC emotional expression scale was unrelated to anger expression. Finally, the TAS-20 predicted greater anger expression. Findings support the validity of the AEI anger-out scale but raise questions about the other measures. The assessment of emotional expression by self-report is complex and perhaps confounded by general emotional experience, the specificity or generality of the emotion(s) assessed, and self-awareness limitations. Performance-based or clinician-rated measures of emotion expression are needed. PMID:27248355
Development of genetically engineered bacteria for production of selected aromatic compounds
Ward, Thomas E.; Watkins, Carolyn S.; Bulmer, Deborah K.; Johnson, Bruce F.; Amaratunga, Mohan
2001-01-01
The cloning and expression of genes in the common aromatic pathway of E. coli are described. A compound for which chorismate, the final product of the common aromatic pathway, is an anabolic intermediate can be produced by cloning and expressing selected genes of the common aromatic pathway and the genes coding for enzymes necessary to convert chorismate to the selected compound. Plasmids carrying selected genes of the common aromatic pathway are also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-31
This report provides a brief overview of the Workshop on Structure of the Eukaryotic Genome and Regulation of its Expression held in Tbilisi, Georgia, USSR. The report describes the presentations made at the meeting but also goes on to describe the state of molecular biology and genetics research in the Soviet Union and makes recommendations on how to improve future such meetings.
Clipperton-Allen, Amy E; Lee, Anna W; Reyes, Anny; Devidze, Nino; Phan, Anna; Pfaff, Donald W; Choleris, Elena
2012-02-28
Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85-100%) and low (40-60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice. Copyright © 2011 Elsevier Inc. All rights reserved.
75 FR 77871 - Agency Information Collection Activities: Final Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... Information and Regulatory Affairs, 725 17th Street, NW., Washington, DC 20038 attn: OMB 3048- xxxx...-xxxx. Type of Review: New. Need and Use: The Application for Express Insurance will be used to...
Share the road campaign research study : final report
DOT National Transportation Integrated Search
2012-07-01
This report presents the Environmental Data Test Plan for the national evaluation of the Los Angeles (LA) Congestion Reduction Demonstration (Metro ExpressLanes) under the United States Department of Transportation (U.S. DOT) Congestion Reduction Dem...
Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law
NASA Astrophysics Data System (ADS)
Yongyi, Gao; Zhixiao, Su
In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.
Martin, G A; Kawaguchi, R; Lam, Y; DeGiovanni, A; Fukushima, M; Mutter, W
2001-10-01
The Rapid Translation System (RTS 500) (Roche Molecular Biochemicals) is a high-yield protein expression system that utilizes an enhanced E. coli lysate for an in vitro transcription/translation reaction. In contrast to conventional transcription/translation, this system allows protein expression to continue for more than 24 h. We demonstrated the utility of the RTS 500 by expressing different soluble and active proteins that generally pose problems in cell-based expression systems. We first expressed GFP-lunasin, a fusion protein that, because of its toxicity, has been impossible to produce in whole cells. The second protein we expressed, human interleukin-2 (IL-2), is generally difficult to produce, either as the native molecule or as a GSTfusion protein, in a soluble form in bacteria. Finally, we demonstrated the capacity of the RTS 500 to co-express proteins, by the simultaneous production of GFP and CAT in a single reaction. This new technology appears to be particularly usefulfor the convenient production of preparative amounts (100-900 microg) of proteins that are toxic or insoluble in cell-based systems.
Wang, Weishan; Yang, Tongjian; Li, Yihong; Li, Shanshan; Yin, Shouliang; Styles, Kathryn; Corre, Christophe; Yang, Keqian
2016-07-15
Precise control of gene expression using exogenous factors is of great significance. To develop ideal inducible expression systems for streptomycetes, new genetic parts, oxytetracycline responsive repressor OtrR, operator otrO, and promoter otrBp from Streptomyces rimosus, were selected de novo and characterized in vivo and in vitro. OtrR showed strong affinity to otrO (KD = 1.7 × 10(-10) M) and oxytetracycline induced dissociation of the OtrR/DNA complex in a concentration-dependent manner. On the basis of these genetic parts, a synthetic inducible expression system Potr* was optimized. Induction of Potr* with 0.01-4 μM of oxytetracycline triggered a wide-range expression level of gfp reporter gene in different Streptomyces species. Benchmarking Potr* against the widely used constitutive promoters ermE* and kasOp* revealed greatly enhanced levels of expression when Potr* was fully induced. Finally, Potr* was used as a tool to activate and optimize the expression of the silent jadomycin biosynthetic gene cluster in Streptomyces venezuelae. Altogether, the synthetic Potr* presents a new versatile tool for fine-tuning gene expression in streptomycetes.