Science.gov

Sample records for hg0 oxidative absorption

  1. Hg0 absorption in potassium persulfate solution*

    PubMed Central

    Ye, Qun-feng; Wang, Cheng-yun; Wang, Da-hui; Sun, Guan; Xu, Xin-hua

    2006-01-01

    The aqueous phase oxidation of gaseous elemental mercury (Hg0) by potassium persulfate (KPS) catalyzed by Ag+ was investigated using a glass bubble column reactor. Concentration of gaseous mercury and potassium persulfate were measured by cold vapor atom absorption (CVAA) and ion chromatograph (IC), respectively. The effects of pH value, concentration of potassium persulfate and silver nitrate (SN), temperature, Hg0 concentration in the reactor inlet and tertiary butanol (TBA), free radical scavenger, on the removal efficiency of Hg0 were studied. The results showed that the removal efficiency of Hg0 increased with increasing concentration of potassium persulfate and silver nitrate, while temperature and TBA were negatively effective. Furthermore, the removal efficiency of Hg0 was much better in neutral solution than in both acidic and alkaline solution. But the influence of pH was almost eliminated by adding AgNO3. High Hg0 concentration has positive effect. The possible reaction mechanism of gaseous mercury was also discussed. PMID:16615172

  2. Diel variations in photoinduced oxidation of Hg0 in freshwater.

    PubMed

    Garcia, Edenise; Poulain, Alexandre J; Amyot, Marc; Ariya, Parisa A

    2005-05-01

    Experiments have been conducted to determine diel variations in photoinduced Hg0 oxidation in lake water under natural Hg0(aq) concentrations. Pseudo-first-order rates of photooxidation (k') were calculated for water freshly collected in a Canadian Shield lake, Lake Croche (45 degrees 56' N, 74 degrees 00' W), at different periods of the day and subsequently incubated in the dark. Hg0 oxidation rates ranged from 0.02 to 0.07 h(-1), increasing from sunrise to noon and then decreasing throughout the remainder of the day. These changes paralleled those in sunlight intensity integrated over 1 h preceding water collection, and suggested that the water freshly collected in daylight was rich in photochemically produced Hg0 oxidants. It was also estimated that under intense solar radiation, even if oxidation rates reached a peak, reduction of Hg(II) was the prevalent redox process. Inversely, Hg0 oxidation overcame DGM production during the night or at periods of weaker light intensity. Overall, these findings explain the decreases in the DGM pool generally observed overnight. They also support previous reports that, during summer days, volatilization of Hg0 from water represent an important step in the Hg cycle in freshwater systems.

  3. A novel oxidative method for the absorption of Hg(0) from flue gas of coal fired power plants using task specific ionic liquid scrubber.

    PubMed

    Barnea, Zach; Sachs, Tatyana; Chidambaram, Mandan; Sasson, Yoel

    2013-01-15

    A simple continuous process is described for the removal of mercury from gas streams (such as flue gas of a coal fired power stations) using imidazolium based Task Specific Ionic Liquids [TSILs] with the general structure ([RMIM][XI(2)(-)]) where X=Cl, Br or I. The latter are formed by blending dialkylimidazolium halide salts with iodine. When applied in a gas/liquid scrubber, these salts were shown to absorb >99% of elemental mercury originally present in a gas stream in concentration of 75-400 ppb. The mercury abatement is attained by oxidating the mercury to HgI(2) which is bound as a stable IL complex ([RMIM(+)][XHgI(2)(-)]. The novel absorption system exhibits a remarkable mercury concentration factor of seven orders of magnitude. The final solution obtained contains up to 50% (w/w) mercury in the IL. Upon exposure to sodium formate, directly added to the saturated IL at 45 °C, reduced metallic mercury swiftly precipitated from the solution and could be quantitatively separated and collected. The free IL could be fully recycled.

  4. [Removal of NO and Hg0 in flue gas using alkaline absorption enhanced by non-thermal plasma].

    PubMed

    Luo, Hong-Jing; Zhu, Tian-Le; Wang, Mei-Yan

    2010-06-01

    Non-thermal plasma (NTP) induced by positive corona discharge was utilized to oxidize NO and Hg0 to more water-soluble NO2 and Hg2+ under the conditions of simulated flue gas. The effects of discharge voltage and inlet SO2 and NO concentrations on NO and Hg0 oxidation and their removals by alkaline absorption were investigated. The results show that the oxidation and removal of NO and Hg0 are enhanced with the increase of discharge voltage. The concentrations of NO and NO2 at the outlet of absorption tower are 0 and 69 mg/m3 with an inlet NO concentration of 134 mg/m3 and a discharge voltage of 12. 8 kV while the outlet concentrations of Hg0 and Hg2+ are 22 microg/m3 and 11 microg/m3 with an inlet Hg0 concentration of 110 microg/m3 and a discharge voltage of 13.1 kV. The presence of SO2 slightly improves the oxidation and removal of Hg0 while it has almost no effect on NO oxidation and its removal. The oxidation and removal of Hg0 are significantly inhibited with the increase of inlet NO concentration. In the coexistence of 800 mg/m3 SO2, 134 mg/m3 NO and 110 microg/m3 Hg0, the removal efficiencies are 57% for NO and 31% for Hg0 with an energy input of 77 J/L.

  5. Simultaneous oxidation of NO, SO2 and Hg0 from flue gas by pulsed corona discharge.

    PubMed

    Xu, Fei; Luo, Zhongyang; Cao, Wei; Wang, Peng; Wei, Bo; Gao, Xiang; Fang, Mengxiang; Cen, Kefa

    2009-01-01

    A process capable of simultaneously oxidizing NO, SO2, and Hg0 was proposed, using a high-voltage and short-duration positive pulsed corona discharge. By focusing on NO, SO2, and Hg0 oxidation efficiencies, the influences of pulse peak voltage, pulse frequency, initial concentration, electrode number, residence time and water vapor addition were investigated. The results indicate that NO, SO2 and Hg0 oxidation efficiencies depend primarily on the radicals (OH, HO2, O) and the active species (O3, H2O2, etc.) produced by the pulsed corona discharge. The NO, SO2 and Hg0 oxidation efficiencies could be improved as pulse peak voltage, pulse frequency, electrode number and residence time increased, but they were reduced with increasing initial concentrations. By adding water vapor, the SO2 oxidation efficiency was improved remarkably, while the NO oxidation efficiency decreased slightly. In our experiments, the simultaneous NO, SO2, and Hg0 oxidation efficiencies reached to 40%, 98%, and 55% with the initial concentrations 479 mg/m3, 1040 mg/m3, and 15.0 microg/m3, respectively.

  6. NOVEL ECONOMICAL HG(0) OXIDATION REAGENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED BOILERS

    EPA Science Inventory

    The authors have developed a novel economical additive for elemental mercury (Hg0) removal from coal-fired boilers. The oxidation reagent was rigorously tested in a lab-scale fixed-bed column with the Norit America's FGD activated carbon (DOE's benchmark sorbent) in a typical PRB...

  7. NOVEL ECONOMICAL HG(0) OXIDATION REAGENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED BOILERS

    EPA Science Inventory

    The authors have developed a novel economical additive for elemental mercury (Hg0) removal from coal-fired boilers. The oxidation reagent was rigorously tested in a lab-scale fixed-bed column with the Norit America's FGD activated carbon (DOE's benchmark sorbent) in a typical PRB...

  8. Microbial Oxidation of Hg(0) - Its Effect on Hg Stable Isotope Fractionation and Methylmercury Production

    SciTech Connect

    Yee, Nathan; Barkay, Tamar; Reinfelder, John

    2016-06-28

    Mercury (Hg) associated with mixed waste generated by nuclear weapons manufacturing has contaminated vast areas of the Oak Ridge Reservation (ORR). Neurotoxic methylmercury (MeHg) has been formed from the inorganic Hg wastes discharged into headwaters of East Fork Poplar Creek (EFPC). Thus, understanding the processes and mechanisms that lead to Hg methylation along the flow path of EFPC is critical to predicting the impacts of the contamination and the design of remedial action at the ORR. In part I of our project, we investigated Hg(0) oxidation and methylation by anaerobic bacteria. We discovered that the anaerobic bacterium Desulfovibrio desulfuricans ND132 can oxidize elemental mercury [Hg(0)]. When provided with dissolved elemental mercury, D. desulfuricans ND132 converts Hg(0) to Hg(II) and neurotoxic methylmercury [MeHg]. We also demonstrated that diverse species of subsurface bacteria oxidizes dissolved elemental mercury under anoxic conditions. The obligate anaerobic bacterium Geothrix fermentans H5, and the facultative anaerobic bacteria Shewanella oneidensis MR-1 and Cupriavidus metallidurans AE104 can oxidize Hg(0) to Hg(II) under anaerobic conditions. In part II of our project, we established anaerobic enrichment cultures and obtained new bacterial strains from the DOE Oak Ridge site. We isolated three new bacterial strains from subsurface sediments collected from Oak Ridge. These isolates are Bradyrhizobium sp. strain FRC01, Clostridium sp. strain FGH, and a novel Negativicutes strain RU4. Strain RU4 is a completely new genus and species of bacteria. We also demonstrated that syntrophic interactions between fermentative bacteria and sulfate-reducing bacteria in Oak Ridge saprolite mediate iron reduction via multiple mechanisms. Finally, we tested the impact of Hg on denitrification in nitrate reducing enrichment cultures derived from subsurface sediments from the Oak Ridge site, where nitrate is a major contaminant. We showed that there is an inverse

  9. A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere.

    PubMed

    Goodsite, M E; Plane, J M C; Skov, H

    2004-03-15

    The oxidation of elemental mercury (Hg0) to the divalent gaseous mercury dibromide (HgBr2) has been proposed to account for the removal of Hg0 during depletion events in the springtime Arctic. The mechanism of this process is explored in this paper by theoretical calculations of the relevant rate coefficients. Rice-Ramsberger-Kassel-Marcus (RRKM) theory, together with ab initio quantum calculations where required, are used to estimate the following: recombination rate coefficients of Hg with Br, I, and O; the thermal dissociation rate coefficient of HgBr; and the recombination rate coefficients of HgBr with Br, I, OH, and O2. A mechanism based on the initial recombination of Hg with Br, followed by the addition of a second radical (Br, I, or OH) in competition with thermal dissociation of HgBr, is able to account for the observed rate of Hg0 removal, both in Arctic depletion events and at lower latitudes.

  10. Catalytic oxidation of Hg(0) by MnOx-CeO2/γ-Al2O3 catalyst at low temperatures.

    PubMed

    Wang, Pengying; Su, Sheng; Xiang, Jun; You, Huawei; Cao, Fan; Sun, Lushi; Hu, Song; Zhang, Yun

    2014-04-01

    MnOx-CeO2/γ-Al2O3 (MnCe) selective catalytic reduction (SCR) catalysts prepared by sol-gel method were employed for low-temperature Hg(0) oxidation on a fixed-bed experimental setup. BET, XRD and XPS were used to characterize the catalysts. MnCe catalysts exhibited high Hg(0) oxidation activity at low temperatures (100-250 °C) under the simulated flue gas (O2, CO2, NO, SO2, HCl, H2O and balanced with N2). Only a small decrease in mercury oxidation was observed in the presence of 1200 ppm SO2, which proved that the addition of Ce helped resist SO2 poisoning. An enhancing effect of NO was observed due to the formation of multi-activity NOx species. The presence of HCl alone had excellent Hg(0) oxidation ability, while 10 ppm HCl plus 5% O2 further increased Hg(0) oxidation efficiency to 100%. Hg(0) oxidation on the MnCe catalyst surface followed the Langmiur-Hinshelwood mechanism, where reactions took place between the adsorbed active species and adsorbed Hg(0) to form Hg(2+). NH3 competed with Hg(0) for active sites on the catalyst surface, hence inhibiting Hg(0) oxidation. This study shows the feasibility of a single-step process integrating low-temperature SCR and Hg(0) oxidation from the coal combustion flue gas.

  11. Role of NO in Hg(0) oxidation over a commercial selective catalytic reduction catalyst V2O5-WO3/TiO2.

    PubMed

    Liu, Ruihui; Xu, Wenqing; Tong, Li; Zhu, Tingyu

    2015-12-01

    Experiments were conducted in a fixed-bed reactor that contained a commercial catalyst, V2O5-WO3/TiO2, to investigate mercury oxidation in the presence of NO and O2. Mercury oxidation was improved by NO, and the efficiency was increased by simultaneously adding NO and O2. With NO and O2 pretreatment at 350°C, the catalyst exhibited higher catalytic activity for Hg(0) oxidation, whereas NO pretreatment did not exert a noticeable effect. Decreasing the reaction temperature boosted the performance of the catalyst treated with NO and O2. Although NO promoted Hg(0) oxidation at the very beginning, excessive NO counteracted this effect. The results show that NO plays different roles in Hg(0) oxidation; NO in the gaseous phase may directly react with the adsorbed Hg(0), but excessive NO hinders Hg(0) adsorption. The adsorbed NO was converted into active nitrogen species (e.g., NO2) with oxygen, which facilitated the adsorption and oxidation of Hg(0). Hg(0) was oxidized by NO mainly by the Eley-Rideal mechanism. The Hg(0) temperature-programmed desorption experiment showed that weakly adsorbed mercury species were converted to strongly bound ones in the presence of NO and O2.

  12. SIMULTANEOUS CONTROL OF HG(0), SO2, AND NOX BY NOVEL OXIDIZED CALCIUM-BASED SORBENTS

    EPA Science Inventory

    The paper gives results of an investigation of two classes of calcium (Ca)-based sorbents (hydrated limes and silicate compounds). {NOTE: Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents ...

  13. Photocatalytic oxidation removal of Hg0 using ternary Ag/AgI-Ag2CO3 hybrids in wet scrubbing process under fluorescent light

    NASA Astrophysics Data System (ADS)

    Zhang, Anchao; Zhang, Lixiang; Chen, Xiaozhuan; Zhu, Qifeng; Liu, Zhichao; Xiang, Jun

    2017-01-01

    A series of ternary Ag/AgI-Ag2CO3 photocatalysts synthesized using a facile coprecipitation method were employed to investigate their performances of Hg0 removal in a wet scrubbing reactor. The hybrids were characterized by N2 adsorption-desorption, XRD, SEM-EDS, HRTEM, XPS, DRS and ESR. The photocatalytic activities of Hg0 removal were evaluated under fluorescent light. The results showed that AgI content, fluorescent light irradiation, reaction temperature all showed significant influences on Hg0 removal. NO exhibited significant effect on Hg0 removal in comparison to SO2. Among these ternary Ag/AgI-Ag2CO3 hybrids, Ag/AgI(0.1)-Ag2CO3 showed the highest Hg0 removal efficiency, which could be ascribed to the effective separation of photogenerated electron-hole pairs between AgI and Ag2CO3 and the surface plasmon resonance (SPR) effect in the visible region by metallic silver nanoparticles (Ag0 NPs). The trapping studies of reactive radicals showed that the superoxide radicals (rad O2-) may play a key role in Hg0 removal under fluorescent light. According to the experimental and characterization results, a possible photocatalytic oxidation mechanism for enhanced Hg0 removal over Ag/AgI(0.1)-Ag2CO3 hybrid under fluorescent light was proposed.

  14. Effects of properties of manganese oxide-impregnated catalysts and flue gas condition on multipollutant control of Hg0 and NO.

    PubMed

    Chiu, Chun-Hsiang; Hsi, Hsing-Cheng; Lin, Hong-Ping; Chang, Tien-Chin

    2015-06-30

    This research investigated the effects of manganese oxide (MnOx) impregnation on the physical/chemical properties and multi pollutant control effectiveness of Hg(0) and NO using a V2O5-WO3/TiO2-SiO2 selective catalytic reduction (SCR) catalyst. Raw and MnOx-treated SCR samples were bean-shaped nanoparticles with sizes within 10-30 nm. Impregnating MnOx of ≤ 5 wt% caused limited changes in physical properties of the catalyst. The decrease in surface area when the impregnated MnOx amount was 10 wt% may stem from the pore blockage and particle growth or aggregation of the catalyst. Mn(4+) was the main valence state of impregnated MnOx. Apparent crystallinity of MnOx was not observed based on X-ray diffraction. MnOx impregnation enhanced the Hg(0) oxidation and NO/SO2 removal of SCR catalyst. The 5 and 10% MnOx-impregnated samples had the greatest multi pollutant control potentials for Hg(0) oxidation and NO removal; however, the increasing SO2 removal that may be mainly due to SO2-SO3 conversion should be cautioned. HCl and O2 greatly promoted Hg(0) oxidation. SO2 enhanced Hg(0) oxidation at ≤ 200 ppm while NO and NH3 consistently inhibited Hg(0) oxidation. Elevating flue gas temperature enhanced Hg(0) oxidation. Overall, MnOx-impregnated catalysts show stable and consistent multi pollutant removal effectiveness under the test conditions.

  15. Mechanism of Hg(0) oxidation in the presence of HCl over a commercial V2O5-WO3/TiO2 SCR catalyst.

    PubMed

    Liu, Ruihui; Xu, Wenqing; Tong, Li; Zhu, Tingyu

    2015-10-01

    Experiments were conducted in a fixed-bed reactor containing a commercial V2O5/WO3/TiO2 catalyst to investigate mercury oxidation in the presence of HCl and O2. Mercury oxidation was improved significantly in the presence of HCl and O2, and the Hg(0) oxidation efficiencies decreased slowly as the temperature increased from 200 to 400°C. Upon pretreatment with HCl and O2 at 350°C, the catalyst demonstrated higher catalytic activity for Hg(0) oxidation. Notably, the effect of pretreatment with HCl alone was not obvious. For the catalyst treated with HCl and O2, better performance was observed with lower reaction temperatures. The results showed that both HCl and Hg(0) were first adsorbed onto the catalyst and then reacted with O2 following its adsorption, which indicates that the oxidation of Hg(0) over the commercial catalyst followed the Langmuir-Hinshelwood mechanism. Several characterization techniques, including Hg(0) temperature-programmed desorption (Hg-TPD) and X-ray photoelectron spectroscopy (XPS), were employed in this work. Hg-TPD profiles showed that weakly adsorbed mercury species were converted to strongly bound species in the presence of HCl and O2. XPS patterns indicated that new chemisorbed oxygen species were formed by the adsorption of HCl, which consequently facilitated the oxidation of mercury. Copyright © 2015. Published by Elsevier B.V.

  16. Sputter cleaning and dry oxidation of CdTe, HgTe, and Hg 0.8Cd 0.2Te surfaces

    NASA Astrophysics Data System (ADS)

    Solzbach, U.; Richter, H. J.

    1980-07-01

    The analyses of CdTe, HgTe, and Hg 0.8Cd 0.2Te surfaces by XPS and LEED after Ar + sputtering and after the subsequent onset of a dry oxidation are described, and a quantitative evaluation of the XPS spectra is attempted. The results are: Ar + sputtering yields a perfect unreconstructed CdTe surface of stoichiometric composition, whereas the composition of sputtered HgTe and Hg 0.8Cd 0.2Te surfaces generally deviates from the stoichiometry of the respective compound. This deviation is a function of the energy of the Ar ions (1 to 15 keV) and is characterized by an increasing deficit in Hg as the ion energy is raised. The Hg deficit of sputtered Hg 0.8Cd 0.2Te surfaces is substitutionally compensated by an equivalent increase in Cd, and due to this substitution the resulting surfaces are sufficiently ordered to display a distinct LEED pattern. The oxidation of sputtered CdTe, HgTe, and Hg 0.8Cd 0.2Te surfaces in an O 2 atmosphere is an extremely slow process. Therefore, the surfaces to be oxidized were additionally exposed to UV radiation (low pressure mercury lamp), and due to UV generated ozone as an oxidizing agent ultrathin native oxide layers of up to 15 Å thickness were readily obtained. The predominant constituents of these native oxide layers on Hg 0.8Cd 0.2Te are concluded to be CdTeO 3 and TeO 2.

  17. Design Strategies for CeO2-MoO3 Catalysts for DeNOx and Hg(0) Oxidation in the Presence of HCl: The Significance of the Surface Acid-Base Properties.

    PubMed

    Chang, Huazhen; Wu, Qingru; Zhang, Tao; Li, Mingguan; Sun, Xiaoxu; Li, Junhua; Duan, Lei; Hao, Jiming

    2015-10-20

    A series of CeMoOx catalysts with different surface Ce/Mo ratios was synthesized by a coprecipitation method via changing precipitation pH value. The surface basicity on selective catalytic reduction (SCR) catalysts (CeMoOx and VMo/Ti) was characterized and correlated to the durability and activity of catalyst for simultaneous elimination of NOx and Hg(0). The pH value in the preparation process affected the surface concentrations of Ce and Mo, the Brunauer-Emmett-Teller (BET) specific surface area, and the acid-base properties over the CeMoOx catalysts. The O 1s X-ray photoelectron spectroscopy (XPS) spectra and CO2-temperature programmed desorption (TPD) suggested that the surface basicity increased as the pH value increased. The existence of strong basic sites contributed to the deactivation effect of HCl over the VMo/Ti and CeMoOx catalysts prepared at pH = 12. For the CeMoOx catalysts prepared at pH = 9 and 6, the appearance of surface molybdena species replaced the surface -OH, and the existence of appropriate medium-strength basic sites contributed to their resistance to HCl poisoning in the SCR reaction. Moreover, these sites facilitated the adsorption and activation of HCl and enhanced Hg(0) oxidation. On the other hand, the inhibitory effect of NH3 on Hg(0) oxidation was correlated with the competitive adsorption of NH3 and Hg(0) on acidic surface sites. Therefore, acidic surface sites may play an important role in Hg(0) adsorption. The characterization and balance of basicity and acidity of an SCR catalyst is believed to be helpful in preventing deactivation by acid gas in the SCR reaction and simultaneous Hg(0) oxidation.

  18. Simultaneous removal of Hg0 and HCN from the yellow phosphorus tail gas

    NASA Astrophysics Data System (ADS)

    Li, Yanan; Wang, Xueqian

    2017-08-01

    Transition metal oxides supported on TiO2 were synthesized by a sol-gel method and implied to simultaneous removal of Hg0 and HCN under low temperature and micro-oxygen conditions. The results show that catalysts that modified by manganese oxide have superior catalytic oxidation activity for both the removal of elemental mercury (Hg0) and HCN. Furthermore, the O2 can promote in the removal reaction process. The fresh and used catalysts were characterized by BET and XPS. The catalyst characterization indicated that the catalyst possessed a large specific surface area and the chemisorbed oxygen participated in the catalytic oxidation reaction. The MnOx/TiO2 catalyst was demonstrated to a good catalytic oxidant for simultaneous removal of elemental mercury (Hg0) and HCN under micro-oxygen conditions.

  19. The development of iodine based impinger solutions for the efficient capture of Hg0 using direct injection nebulization-inductively coupled plasma mass spectrometry analysis.

    PubMed

    Hedrick, E; Lee, T G; Biswas, P; Zhuang, Y

    2001-09-15

    Inductively coupled plasma mass spectrometry (ICP/MS) with direct injection nebulization (DIN) was used to evaluate novel impinger solution compositions capable of capturing elemental mercury (Hg0) in EPA Method 5 type sampling. An iodine based impinger solution proved to be very efficient for Hg0 capture and was amenable to direct analysis by DIN-ICP/MS. Hg0 capture efficiency using aqueous iodine (I3-) was comparable to Hg0 capture using acidified potassium permanganate impinger solutions which were analyzed by cold vapor atomic absorption spectrometry (CVAAS), with greater than 98% capture of Hg0 in the first oxidizing impinger. Using DIN-ICP/MS, it was demonstrated for the first time that iodine can be generated just prior to impinger sampling for efficiently oxidizing Hg0 and retaining it in solution as HgI4(2-). Due to the increased interest in Hg speciation from combustion sources and the potential for using DIN-ICP/MS for multiple metals analyses, an impinger sampling train for gaseous Hg speciation and multiple metals analyses using DIN-ICP/MS analyses is presented. The unique feature of such a sampling train is that each impinger solution in the series is amenable to direct analysis by DIN-ICP/MS. A bituminous coal was combusted in a bench scale coal system, and gaseous Hg species (oxidized and elemental) were determined using the proposed impinger train. The DIN-ICP/MS instrumental detection limit was 0.003 ppb, and MDLs ranged from 0.007 to 0.116 microg/L (ppb) in a variety of impinger solutions used for Hg capture.

  20. Reduction of Hg(II) to Hg(0) by magnetite.

    PubMed

    Wiatrowski, Heather A; Das, Soumya; Kukkadapu, Ravi; Ilton, Eugene S; Barkay, Tamar; Yee, Nathan

    2009-07-15

    Mercury (Hg) is a highly toxic element, and its contamination of groundwater presents a significant threat to terrestrial ecosystems. Understanding the geochemical processes that mediate mercury transformations in the subsurface is necessary to predict its fate and transport. In this study, we investigated the redox transformation of mercuric Hg (Hg[II]) in the presence of the Fe(II)/Fe(III) mixed valence iron oxide mineral magnetite. Kinetic and spectroscopic experiments were performed to elucidate reaction rates and mechanisms. The experimental data demonstrated that reaction of Hg(II) with magnetite resulted in the loss of Hg(II) and the formation of volatile elemental Hg (Hg[0]). Kinetic experiments showed that Hg(II) reduction occurred within minutes, with reaction rates increasing with increasing magnetite surface area (0.5 to 2 m2/L) and solution pH (4.8 to 6.7), and decreasing with increasing chloride concentration (10(-6) to 10(-2) mol/L). Mössbauer spectroscopic analysis of reacted magnetite samples revealed a decrease in Fe(II) content, corresponding to the oxidation of Fe(II) to Fe(III) in the magnetite structure. X-ray photoelectron spectroscopy detected the presence of Hg(II) on magnetite surfaces, implying that adsorption is involved in the electron transfer process. These results suggest that Hg(II) reaction with solid-phase Fe(II) is a kinetically favorable pathway for Hg(II) reduction in magnetite-hearing environmental systems.

  1. Reduction of Hg(II) to Hg(0) by Magnetite

    SciTech Connect

    Wiatrowski, Heather A.; Das, Soumya; Kukkadapu, Ravi K.; Ilton, Eugene S.; Barkay, Tamar; Yee, Nathan

    2009-06-12

    Mercury (Hg) is a highly toxic element, and its contamination of groundwater presents a significant threat to terrestrial ecosystems. Understanding the geochemical processes that mediate mercury transformations in the subsurface is necessary to predict its fate and transport. In this study, we investigated the redox transformation of mercuric Hg (Hg[II]) in the presence of the Fe(II)/Fe(III) mixed valence iron oxide mineral magnetite. Kinetic and spectroscopic experiments were performed to elucidate reaction rates and mechanisms. The experimental data demonstrated that reaction of Hg(II) with magnetite results in the loss of Hg(II) and the formation of volatile elemental Hg (Hg[0]). Kinetic experiments showed that Hg(II) reduction occurred within minutes, with reaction rates increasing with increasing magnetite suspension density (0.05 to 0.2 g/L) and solution pH (4.8 to 6.7), and decreasing with increasing chloride concentration (10-6 to 10-2 mol/L). Mössbauer spectroscopic analysis of reacted magnetite samples revealed a decrease in Fe(II) content, corresponding the oxidation of Fe(II) to Fe(III) in the magnetite structure. X-ray photoelectron spectroscopy detected the presence of Hg(II) on magnetite surfaces, suggesting that adsorption is involved in the electron transfer process. These results suggest that Hg(II) reaction with solid-phase Fe(II) is a kinetically favorable pathway for Hg(II) reduction in magnetite-bearing environmental systems.

  2. Hg0 and HgCl2 Reference Gas Standards: ?NIST Traceability ...

    EPA Pesticide Factsheets

    EPA and NIST have collaborated to establish the necessary procedures for establishing the required NIST traceability of commercially-provided Hg0 and HgCl2 reference generators. This presentation will discuss the approach of a joint EPA/NIST study to accurately quantify the true concentrations of Hg0 and HgCl2 reference gases produced from high quality, NIST-traceable, commercial Hg0 and HgCl2 generators. This presentation will also discuss the availability of HCl and Hg0 compressed reference gas standards as a result of EPA's recently approved Alternative Methods 114 and 118. Gaseous elemental mercury (Hg0) and oxidized mercury (HgCl2) reference standards are integral to the use of mercury continuous emissions monitoring systems (Hg CEMS) for regulatory compliance emissions monitoring. However, a quantitative disparity of approximately 7-10% has been observed between commercial Hg0 and HgCl2 reference gases which currently limits the use of (HgCl2) reference gas standards. Resolving this disparity would enable the expanded use of (HgCl2) reference gas standards for regulatory compliance purposes.

  3. Hg0 removal from flue gas over different zeolites modified by FeCl3.

    PubMed

    Qi, Hao; Xu, Wenqing; Wang, Jian; Tong, Li; Zhu, Tingyu

    2015-02-01

    The elemental mercury removal abilities of three different zeolites (NaA, NaX, HZSM-5) impregnated with iron(III) chloride were studied on a lab-scale fixed-bed reactor. X-ray diffraction, nitrogen adsorption porosimetry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption (TPD) analyses were used to investigate the physicochemical properties. Results indicated that the pore structure and active chloride species on the surface of the samples are the key factors for physisorption and oxidation of Hg0, respectively. Relatively high surface area and micropore volume are beneficial to efficient mercury adsorption. The active Cl species generated on the surface of the samples were effective oxidants able to convert elemental mercury (Hg0) into oxidized mercury (Hg2+). The crystallization of NaCl due to the ion exchange effect during the impregnation of NaA and NaX reduced the number of active Cl species on the surface, and restricted the physisorption of Hg0. Therefore, the Hg0 removal efficiencies of the samples were inhibited. The TPD analysis revealed that the species of mercury on the surface of FeCl3-HZSM-5 was mainly in the form of mercuric chloride (HgCl2), while on FeCl3-NaX and FeCl3-NaA it was mainly mercuric oxide (HgO). Copyright © 2014. Published by Elsevier B.V.

  4. Isotopic Composition of Gaseous Elemental Mercury (Hg0) at Various Sites in Japan

    NASA Astrophysics Data System (ADS)

    Yamakawa, A.; Moriya, K.; Yoshinaga, J.

    2015-12-01

    Mercury (Hg) is a toxic heavy metal, which exists in various chemical forms in the environmental system. In the atmosphere, Hg exists in three forms (Hg0(g), Hg+2(g), and Hg(p)). Hg0(g) is the dominant species of atmospheric Hg, accounting for >95% of the total Hg in the atmosphere. Because Hg0(g) is highly volatile and has limited solubility in water, it cannot be easily removed by wet or dry deposition processes. Therefore, the residence time of Hg0(g) in the atmosphere is relatively long (1 to 2 years), allowing long-range transport from mercury emission source(s). Conversely, Hg+2(g) and Hg(p) are effectively removed from the atmosphere through wet and dry depositions. The determination of mercury source attribution using quantitative data is challenging because Hg0(g) may be deposited on an area upon oxidation to Hg+2(g) and associated with aerosols and particulates to form Hg(p) while the global cycling of Hg0(g). Over the last decade, the development of analytical methods of highly precise Hg isotopic measurements demonstrated mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) of Hg isotopes in environmental samples. For instance, MDF of Hg isotopes is thought to occur during various natural and industrial Hg transformations. MIF of Hg isotopes is observed during abiotic reduction, photochemical and non-photochemical, and physical and chemical processes. Such processes lead to differences in the Hg isotopic composition of different emission sources, both natural and anthropogenic, and atmospheric processes (i.e., transportation, oxidation/reduction, deposition, and reemission). Therefore, Hg isotopic compositions could be used to trace the sources and processes of atmospheric Hg. For securing the reliability and accuracy of atmospheric Hg isotope data, the methods of collection, pretreatment, and isotopic measurement for Hg0(g) were developed to obtain high recovery yield of samples with no Hg isotopic fractionation during each

  5. Experimental study on Hg0 removal from flue gas over columnar MnOx-CeO2/activated coke

    NASA Astrophysics Data System (ADS)

    Xie, Yine; Li, Caiting; Zhao, Lingkui; Zhang, Jie; Zeng, Guangming; Zhang, Xunan; Zhang, Wei; Tao, Shasha

    2015-04-01

    Mn-Ce mixed oxides supported on commercial columnar activated coke (MnCe/AC) were employed to remove elemental mercury (Hg0) at low temperatures (100-250 °C) without the assistance of HCl in flue gas. The samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD). Effects of some factors, including Mn-Ce loading values, active component, reaction temperatures and flue gas components (O2, SO2, NO, H2O), on Hg0 removal efficiency were investigated. Results indicated that the optimal Mn-Ce loading value and reaction temperature were 6% and 190 °C, respectively. Considerable high Hg0 removal efficiency (>90%) can be obtained over MnCe6/AC under both N2/O2 atmosphere and simulated flue gas atmosphere at 190 °C. Besides, it was observed that O2 and NO exerted a promotional effect on Hg0 removal, H2O exhibited a suppressive effect, and SO2 hindered Hg0 removal seriously when in the absence of O2. Furthermore, the XPS spectra of Hg 4f and Hg-TPD results showed that the captured mercury were existed as Hg0 and HgO on the MnCe6/AC, and HgO was the major species, which illustrated that adsorption and catalytic oxidation process were included for Hg0 removal over MnCe6/AC, and catalytic oxidation played the critical role. What's more, both lattice oxygen and chemisorbed oxygen or OH groups on MnCe6/AC contributed to Hg0 oxidation. MnCe6/AC, which exhibited excellent performance on Hg0 removal in the absence of HCl, appeared to be promising in industrial application, especially for low-rank coal fired flue gas.

  6. Chasing quicksilver: modeling the atmospheric lifetime of Hg(0)(g) in the marine boundary layer at various latitudes.

    PubMed

    Hedgecock, Ian M; Pirrone, Nicola

    2004-01-01

    The lifetime of elemental mercury in the marine boundary layer(MBL) has been studied using AMCOTS (Atmospheric Mercury Chemistry Over The Sea), a box model of MBL photochemistry including aerosols and detailed mercury chemistry. Recently measured Hg(0)(g) oxidation reactions have been included, and the studies were performed as a function of latitude, time of year, boundary layer liquid water content (LWC) and cloud optical depth. The results show that Hg has the shortest lifetime when air temperatures are low and sunlight and deliquescent aerosol particles are plentiful. Thus the modeled lifetime for clear-sky conditions is actually shorter at mid-latitudes and high latitudes than near the equator, and for a given latitude and time of year, cooler temperatures enhance the rate of Hg oxidation. Under typical summer conditions (for a given latitude) of temperature and cloudiness, the lifetime (tau) of Hg(0)(g) in the MBL is calculated to be around 10 days at all latitudes between the equator and 60 degrees N. This is much shorter than the generally accepted atmospheric residence time for Hg(0)(g) of a year or more. Given the relatively stable background concentrations of Hg(0)(g) which have been measured, continual replenishment of Hg(0)(g) must take place, suggesting a "multihop" mechanism for the distribution of Hg, rather than solely aeolian transport with little or no chemical transformation between source and receptor. Inclusion of an empirical Hg(0)(g) emission factor related to insolation was used to stabilize the Hg(0)(g) concentration in the model, and the emission rates necessarily agree well with estimated emission fluxes for the open ocean.

  7. Elemental Mercury in Natural Waters: Occurrence and Determination of Particulate Hg(0).

    PubMed

    Wang, Yongmin; Li, Yanbin; Liu, Guangliang; Wang, Dingyong; Jiang, Guibin; Cai, Yong

    2015-08-18

    Elemental mercury, Hg(0), is ubiquitous in water and involved in key Hg biogeochemical processes. It is extensively studied as a purgeable dissolved species, termed dissolved gaseous mercury (DGM). Little information is available regarding nonpurgeable particulate Hg(0) in water, Hg(0) bound to suspended particulate matter (SPM), which is presumably present due to high affinity of Hg(0) adsorption on solids. By employing stable isotope tracer and isotope dilution (ID) techniques, we investigated the occurrence and quantification of particulate Hg(0) after Hg(0) being spiked into natural waters, aiming to provide firsthand information on particulate Hg(0) in water. A considerable fraction of (201)Hg(0) spiked in water (about 70% after 4 h equilibration) was bound to SPM and nonpurgeable, suggesting the occurrence of particulate Hg(0) in natural waters. A scheme, involving isotope dilution, purge and trap, and inductively coupled plasma mass spectrometry detection, was proposed to quantify particulate Hg(0) by the difference between DGM and total Hg(0), determined immediately and at equilibration after spiking ID Hg isotope, respectively. The application of this newly established method revealed the presence of particulate Hg(0) in Florida Everglades water, as the determined DGM levels (0.14 to 0.22 ng L(-1)) were remarkably lower than total Hg(0) (0.41 to 0.75 ng L(-1)).

  8. Experiments on and mechanism of simultaneous removal of Hg0, SO2 and NO from flus gas using NaClO2 solution.

    PubMed

    Zhao, Yi; Ma, Xiaoying; Liu, Songtao; Yao, Jie

    2009-03-01

    Experiments on the simultaneous removal of mercury (Hg0), sulphur dioxide (SO2) and nitric oxide (NO) from flue gas using sodium chlorite solution (NaClO2) were carried out in a bench-scale bubbling reactor. The effect of initial pH on Hg0 removal efficiency was investigated. The results show that the efficiency of Hg0 removal was higher in acid condition. The effect of the concentrations of SO2 and NO from simulated flue gas on Hg0 removal efficiency with NaClO2 solution was examined. The Hg0 removal efficiency can be significantly improved by adding NO to flue gas, when sufficient NaClO2 solution was available. In the experiment, an amount of NaClO2 was found to be consumed by SO2. The addition of SO2 to simulated flue gas did not significantly affect the efficiency of Hg0 removal. Moreover, under the acid condition, the simultaneous removal of Hg0, SO2 and NO indicated that NaClO2 solution was an excellent absorbent. Finally, the reaction mechanism between Hg0, SO2, NO and NaClO2 is discussed.

  9. Continuous determination of land-atmosphere Hg0 exchange using a novel Relaxed Eddy Accumulation design

    NASA Astrophysics Data System (ADS)

    Osterwalder, Stefan; Fritsche, Johannes; Nilsson, Mats B.; Alewell, Christine; Bishop, Kevin

    2015-04-01

    The fate of anthropogenic emissions to the atmosphere is influenced by the exchange of elemental mercury (Hg0) with the earth surface. However, it remains challenging to quantify these exchanges which hold the key to a better understanding of mercury cycling at different scales, from the entire earth to specific environments. To better test hypotheses about land-atmosphere Hg interactions, we applied dynamic flux chambers (DFCs) for short term measurements and developed a novel Relaxed Eddy Accumulation (REA) design for continuous flux monitoring. Accurate determination of Hg0 fluxes has proven difficult due to the technical challenges presented by the small concentration differences (< 1 ng m-3) between updrafts and downdrafts. To address this we present a dual-intake, single analyzer REA system including a calibration module for periodic quality-control measurements with reference gases. To demonstrate the system performance, we present results from two contrasting environments: In February 2012 REA monitored a heterogeneous urban surface in the center of Basel, Switzerland where an average flux of 14 ng m-2 h-1 was detected with a distinct diurnal pattern. In May 2012, the REA monitored a boreal mire in northern Sweden with different turbulence regimes and Hg0 sink/source characteristics. During the snowmelt period in May 2012 the Hg0 flux averaged at 2 ng m-2 h-1. In order to better quantify inputs and outputs of Hg from boreal landscapes, we subsequently monitored the land-atmosphere exchange of Hg0 during a course of a year and compared the fluxes occasionally with DFC measurements. The amount of Hg0 volatilized from boreal mires was at a similar level as the annual export of Hg in stream water, identifying the mire as net source of Hg to neighboring environments. We believe that this dual-inlet, single detector approach is a significant innovation which can help realize the potential of REA for continuous, long-term determination of land-atmosphere Hg0

  10. Salt-marsh plants as potential sources of Hg0 into the atmosphere

    NASA Astrophysics Data System (ADS)

    Canário, João; Poissant, Laurier; Pilote, Martin; Caetano, Miguel; Hintelmann, Holger; O'Driscoll, Nelson J.

    2017-03-01

    To assess the role of salt-marsh plants on the vegetation-atmospheric Hg0 fluxes, three salt marsh plant species, Halimione portulacoides, Sarcocornia fruticosa and Spartina maritima were selected from a moderately contaminated site in the Tagus estuary during May 2012. Total mercury in stems and leaves for each plant as well as total gaseous mercury and vegetation-air Hg0 fluxes were measured over two continuous days. Mercury fluxes were estimated with a dynamic flux Tedlar® bag coupled to a high-resolution automated mercury analyzer (Tekran 2537A). Other environmental parameters such as air temperature, relative humidity and net solar radiation were also measured aside. H. portulacoides showed the highest total mercury concentrations in stems and leaves and the highest average vegetation-air Hg0 flux (0.48 ± 0.40 ng Hg m-2 h-1). The continuous measurements converged to a daily pattern for all plants, with enhanced fluxes during daylight and lower flux during the night. It is noteworthy that throughout the measurements a negative flux (air-vegetation) was never observed, suggesting the absence of net Hg0 deposition. Based on the above fluxes and the total area occupied by each species we have estimated the total amount of Hg0 emitted from this salt-marsh plants. A daily emission of 1.19 mg Hg d-1 was predicted for the Alcochete marsh and 175 mg Hg d-1 for the entire salt marsh area of the Tagus estuary.

  11. Simultaneous Removal of NO and Hg(0) from Flue Gas over Mn-Ce/Ti-PILCs.

    PubMed

    Wang, Yinyin; Shen, Boxiong; He, Chuan; Yue, Shiji; Wang, Fumei

    2015-08-04

    A series of Mn-Ce/Ti-PILCs (PILCs, pillared interlayered clays) catalysts were prepared via impregnation method in simultaneous removal of NO and elemental mercury in simulated flue gas. The physicochemical properties of these catalysts have been examined by some characterization methods, such as H2-TPR, nitrogen adsorption, XRD and XPS. Mn(6%)-Ce(6%)/Ti-PILCs exhibited superior NO conversion (>95%) and Hg(0) removal efficiency (>90%) at low temperature (250 °C). The results indicated that the elemental mercury had little impact on NO removal efficiency, while the presence of NH3 and NO in SCR system inhibited the Hg(0) removal. NO and Hg(0) removal activity was strongly affected by the transform between surface adsorbed oxygen and lattice oxygen. The species ratio of Mn(4+)/Mn(3+) and Ce(4+)/Ce(3+) on the catalyst surface contributed to the NO conversions and Hg(0) removal. Mn-Ce/Ti-PILCs displayed a broad prospect for controlling the emission of NO and mercury. On the basis of the results obtained, a mechanism for the simultaneous removal of NO and Hg(0) was proposed for the Mn-Ce/Ti-PILCs catalysts: -NH2 + NO → N2 + H2O, -OH + 1/2 Hg(ad) →1/2 HgO + 1/2 H2O.

  12. Oxygen arrangement on Hg0.5Tl0.5Ba2CuOx (100) surface studied by high-resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Oku, Takeo; Nakajima, Satoru

    1999-10-01

    Oxygen arrangement on Hg0.5Tl0.5Ba2CuOx (100) surface was studied by high-resolution electron microscopy. The {100} planes were found to be stable and to have preferred atomic surface. A surface structure model of Hg0.5Tl0.5Ba2CuOx was proposed and compared to the image calculations, which indicated the surface consists of Ba layers and oxygen atoms on the (Hg, Tl) layers. The present work indicates that the stable {100} planes of Hg-1201-type superconducting oxides would be suitable for the future device application.

  13. A comprehensive evaluation of the influence of air combustion and oxy-fuel combustion flue gas constituents on Hg(0) re-emission in WFGD systems.

    PubMed

    Ochoa-González, Raquel; Díaz-Somoano, Mercedes; Martínez-Tarazona, M Rosa

    2014-07-15

    This paper evaluates the influence of the main constituents of flue gases from coal combustion (CO2, O2, N2 and water vapor), in air and oxy-fuel combustion conditions on the re-emission of Hg(0) in wet scrubbers. It was observed that the concentration of water vapor does not affect the re-emission of mercury, whereas O2 and CO2 have a notable influence. High concentrations of O2 in the flue gas prevent the re-emission of Hg(0) due to the reaction of oxygen with the metals present in low oxidation states. High concentrations of CO2, which cause a decrease in the pH and the redox potential of gypsum slurries, reduce the amount of Hg(0) that is re-emitted. As a consequence, the high content of CO2 in oxy-fuel combustion may decrease the re-emission of Hg(0) due to the solubility of CO2 in the suspension and the decrease in the pH. It was also found that O2 affects the stabilization of Hg(2+) species in gypsum slurries. The results of this study confirm that the amount of metals present in limestone as well as the redox potential and pH of the slurries in wet desulphurization plants need to be strictly controlled to reduce Hg(0) re-emissions from power plants operating under oxy-fuel combustion conditions.

  14. Simultaneous removal of NO and Hg(0) over Ce-Cu modified V2O5/TiO2 based commercial SCR catalysts.

    PubMed

    Chi, Guilong; Shen, Boxiong; Yu, Ranran; He, Chuan; Zhang, Xiao

    2017-05-15

    A series of novel Ce-Cu modified V2O5/TiO2 based commercial SCR catalysts were prepared via ultrasonic-assisted impregnation method for simultaneous removal of NO and elemental mercury (Hg(0)). Nitrogen adsorption, X-ray diffraction (XRD), temperature programmed reduction of H2 (H2-TPR) and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. 7% Ce-1% Cu/SCR catalyst exhibited the highest NO conversion efficiency (>97%) at 200-400°C, as well as the best Hg(0) oxidation activity (>75%) at 150-350°C among all the catalysts. The XPS and H2-TPR results indicated that 7% Ce-1% Cu/SCR possess abundant chemisorbed oxygen and good redox ability, which was due to the strong synergy between Ce and Cu in the catalyst. The existence of the redox cycle of Ce(4+)+Cu(1+)↔Ce(3+)+Cu(2+) could greatly improve the catalytic activity. 7% Ce-1% Cu/SCR showed higher resistance to SO2 and H2O than other catalysts. NO has a promoting effect on Hg(0) oxidation. The Hg(0) oxidation activity was inhibited by the injection of NH3, which was due to the competitive adsorption and oxidized mercury could be reduced by ammonia at temperatures greater than 325°C. Therefore, Hg(0) oxidation could easily occurred at the outlet of SCR catalyst layer due to the consumption of NH3. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Hg0 evasion from boreal mires determined with chamber methods and a novel REA design

    NASA Astrophysics Data System (ADS)

    Osterwalder, Stefan; Fritsche, Johannes; Åkerblom, Staffan; Nilsson, Mats B.; Alewell, Christine; Bishop, Kevin

    2015-04-01

    Anthropogenic mercury has accumulated in superficial organic soils of boreal mires, hotspots of methylmercury production. We hypothesize that emission from the peat surface is an important factor in regulating the pool of mercury in mires and ultimately the loading of methylmercury to surface waters. To test this hypothesis, we used both dynamic flux chambers (DFCs) and a dual-intake, single analyzer Relaxed Eddy Accumulation (REA) system to quantify the land-atmosphere exchange of elemental mercury (Hg0) from a mixed acid mire system situated near Vindeln in the county of Västerbotten, Sweden. Teflon and polycarbonate DFCs were used to (i) investigate the effect of sulfur and nitrogen addition as well as warming and changed moisture regimes on Hg0 flux and (ii) to quantify typical all-day summertime fluxes. The novel REA design was developed for long-term, all-year flux monitoring and uses twin inlets at the same level for simultaneous accumulation of up and downdrafts on a pair of gold traps which are then analyzed sequentially on the same detector while another pair of gold traps takes over the accumulation. The exchange of Hg0 from the peatland surface was measured continuously with DFC during cloudless conditions in July 2014 and averaged 0.62 ± 1.3 ng m-2 h-1. The flux revealed a significant diurnal pattern and a strong linear relationship with air temperature inside (R2= 0.65, p < 0.001) and outside (R2= 0.58, p < 0.001) the DFC. Hg0 exchange was significantly lower on experimental plots exposed to elevated sulfur deposition. This indicated either earlier Hg evasion or Hg binding to sulfur in organic matter, making Hg less susceptible to volatilization and more prone to transport in runoff. The REA measurements revealed a seasonal pattern of Hg0 fluxes over the year with net evasion during growing season and dominating deposition from autumn to spring. We managed to perform the first conditional sampling of Hg0 flux over a boreal mire using REA and were

  16. Evaluation of sensory evoked potentials in Long Evans rats gestationally exposed to mercury (Hg0) vapor.

    PubMed

    Herr, David W; Chanda, Sushmita M; Graff, Jaimie E; Barone, Stanley S; Beliles, Robert P; Morgan, Daniel L

    2004-11-01

    Mercury is known to alter neuronal function and has been shown to cross the placental barrier. These experiments were undertaken to examine if gestational exposure to mercury vapor (Hg(0)) would result in alterations in sensory neuronal function in adult offspring. Dams were exposed to 0 or 4 mg/m(3) Hg(0) for 2 h/day from gestational days 6-15. This exposure paradigm has been shown to approximate a maximal tolerated dose of Hg(0) for the dams. Between postnatal days 140-168, male and female offspring (one of each gender/dam) were examined using a battery of sensory evoked potentials. Peripheral nerve action potentials, nerve conduction velocity, somatosensory evoked responses (cortical and cerebellar), brainstem auditory evoked responses, pattern evoked potentials, and flash evoked potentials were quantified. Gestational exposure to 4 mg/m(3) Hg(0) did not significantly alter any of the evoked responses, although there was a suggestion of a decrease in compound nerve action potential (CNAP) amplitudes in male animals for the 3 mA stimulus condition. However, this possible change in CNAP amplitudes was not replicated in a second experiment. All evoked potentials exhibited predictable changes as the stimulus was modified. This shows conclusively that the evoked responses were under stimulus control, and that the study had sufficient statistical power to detect changes of these magnitudes. These results indicate that gestational exposure to 4 mg/m(3) Hg(0) did not result in changes in responses evoked from peripheral nerves, or the somatosensory, auditory, or visual modalities.

  17. Development of cost-effective noncarbon sorbents for Hg(0) removal from coal-fired power plants.

    PubMed

    Lee, Joo-Youp; Ju, Yuhong; Keener, Tim C; Varma, Rajender S

    2006-04-15

    Noncarbonaceous materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups such as amine, amide, thiol, urea, and active additives such as elemental sulfur, sodium sulfide, and sodium polysulfide to examine their potential as sorbents for the removal of elemental mercury (Hg(0)) vapor at coal-fired utility power plants. A number of sorbent candidates such as amine- silica gel, urea- silica gel, thiol- silica gel, amide-silica gel, sulfur-alumina, sulfur-molecular sieve, sulfur-montmorillonite, sodium sulfide-montmorillonite, and sodium polysulfide-montmorillonite, were synthesized and tested in a lab-scale fixed-bed system under an argon flow for screening purposes at 70 degrees C and/or 140 degrees C. Several functionalized silica materials reported in previous studies to effectively control heavy metals in the aqueous phase showed insignificant adsorption capacities for Hg(0) control in the gas phase, suggesting that mercury removal mechanisms in both phases are different. Among elemental sulfur-, sodium sulfide-, and sodium polysulfide-impregnated inorganic samples, sodium polysulfide-impregnated montmorillonite K 10 showed a moderate adsorption capacity at 70 degrees C, which can be used for sorbent injection prior to the wet FGD system.

  18. [Adsorption and removal of gas-phase Hg(0) over a V2O5/AC catalyst in the presence of SO2].

    PubMed

    Wang, Jun-wei; Yang, Jian-li; Liu, Zhen-yu

    2009-12-01

    The adsorption and removal behaviors of gas-phase Hg(0) over V2O5/AC and AC were studied under a simulated flue gas (containing N2, SO2, O2) in a fixed-bed reactor. The influences of the V2O5, loading, SO2 concentration and adsorption temperature on Hg0 adsorption were investigated. The speciation of mercury adsorbed was determined by X-ray photoelectron spectroscopy (XPS). It was found that the V2O5/AC catalyst has a much higher capability than AC for Hg(0) adsorption and removal, mainly because of the catalytic oxidation activity of V2O5. The Hg(0) adsorption capability depends on the V2O5 content of the V2O5/AC catalyst. The amounts of mercury adsorbed increase from 75.9 microg x g(-1) to 89.6 microg x g(-1) (in the absence of O2) and from 115.9 microg x g(-1) to 185.5 microg x g(-1) (in the presence of O2) as the V2O5 loading increases from 0.5% to 1.0%, which are much higher than those over AC under the same conditions (9.6 microg x g(-1) and 23.3 microg x g(-1)). SO2 in the flue gas enhances Hg(0) adsorption over the V2O5/AC catalyst, which is due to the reaction of SO2 and Hg(0) on V2O3/AC. But as the SO2 concentration increases from 500 x 10(-6) to 2000 x 10(-6), the amount of mercury adsorbed has only a slight increase. The optimal temperature for Hg(0) adsorption over the V2O5/AC catalyst is around 150 degrees C, at which the amounts of mercury adsorbed are up to 98.5 microg x g(-1) (in the absence of O2) and 187.7 microg x g(-1) (in the presence of O2). The XPS results indicate the formation of Hg(0) and HgSO4 on the surface of the V2O5/AC catalyst, which confirms the role of V2O5 and SO2.

  19. The catalytic performance and characterization of ZrO2 support modification on CuO-CeO2/TiO2 catalyst for the simultaneous removal of Hg0 and NO

    NASA Astrophysics Data System (ADS)

    Wang, Teng; Li, Caiting; Zhao, Lingkui; Zhang, Junyi; Li, Shanhong; Zeng, Guangming

    2017-04-01

    The different addition amounts of ZrO2 on CuO-CeO2/TiO2 catalyst synthesized by co-precipitation method were investigated to research the simultaneous removal of Hg0 and NO in simulated flue gas. Results indicated that the CuCe/TiZr0.15 catalyst exhibited the superior Hg0 removal efficiency (72.7%) and prominent NO conversion (83.3%). Hg0 slightly restrained the NO conversion. Except for the effect of the separate NH3 and NO on Hg0 removal, significances of the increased NH3/NO ratio on Hg0 removal and NO conversion were detected. The lower GHSV could give rise to the significant acceleration of Hg0 and NO removal. With the existence of SO2 and H2O, the slightly prohibitive effect on Hg0 and NO removal was displayed. BET, XRD, SEM, H2-TPR, XPS, FTIR analysis were applied to characterize catalysts and the results revealed the ZrO2 modified support on CuO-CeO2/TiO2 resulted in strong redox ability, great mobility of surface oxygen and growing total amount of chemisorbed oxygen and lattice oxygen, which favorably impacted on Hg0 and NO removal. The introduction of Zr benefited great surface area, weakened crystallinity of TiO2 and then improved the dispersion of metal oxide species. More stable Lewis acid sites to form coordinated NH3 were generated due to ZrO2 additive. The synergetic effect through redox equilibrium of Ce3+ + Cu2+ ↔ Ce4+ + Cu+ contributed to Hg0 removal and NO conversion. In addition, the simultaneous removal of Hg0 and NO on CuCe/TiZr0.15 in terms of detailed mechanism was discussed.

  20. Mode of incorporation of phosphorus in Hg(0.8)Cd(0.2)Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.; Abbott, R. C.; Nelson, D. A.

    1983-01-01

    Selim and Kroeger (1977) have studied the mode of incorporation of phosphorus in CdTe. According to their findings, phosphorus behaves amphoterically in CdTe acting as an acceptor interstitially and on Te lattice sites, and as a triple donor on Cd lattice sites. The present investigation is concerned with the role of phosphorus in Hg(0.8)Cd(0.2)Te, taking into account Hall-effect and mobility measurements on phosphorus-doped crystals quenched from a temperature in the range from 450 to 600 C subsequent to anneals in different partial pressures of Hg. It is found that the behavior of phosphorus in Hg(0.8)Cd(0.2)Te is similar to that established for CdTe, except that all the electrically active phosphorus defect centers in Hg(0.8)Cd(0.2)Te appear to be only singly ionized. At low Hg pressure, phosphorus is incorporated as a single donor occupying Hg lattice sites, and at high Hg pressure, as a single acceptor on interstitial sites and Te lattice sites.

  1. Density, Electrical Conductivity and Viscosity of Hg(0.8)Cd(0.2)Te Melt

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The density, viscosity, and electrical conductivity of Hg(0.8)Cd(0.2)Te melt were measured as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(0.8)Cd(0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(0.8)Cd(0.2)Te melt as the temperature was decreased to below 1090 K

  2. Mode of incorporation of phosphorus in Hg(0.8)Cd(0.2)Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.; Abbott, R. C.; Nelson, D. A.

    1983-01-01

    Selim and Kroeger (1977) have studied the mode of incorporation of phosphorus in CdTe. According to their findings, phosphorus behaves amphoterically in CdTe acting as an acceptor interstitially and on Te lattice sites, and as a triple donor on Cd lattice sites. The present investigation is concerned with the role of phosphorus in Hg(0.8)Cd(0.2)Te, taking into account Hall-effect and mobility measurements on phosphorus-doped crystals quenched from a temperature in the range from 450 to 600 C subsequent to anneals in different partial pressures of Hg. It is found that the behavior of phosphorus in Hg(0.8)Cd(0.2)Te is similar to that established for CdTe, except that all the electrically active phosphorus defect centers in Hg(0.8)Cd(0.2)Te appear to be only singly ionized. At low Hg pressure, phosphorus is incorporated as a single donor occupying Hg lattice sites, and at high Hg pressure, as a single acceptor on interstitial sites and Te lattice sites.

  3. Mode of incorporation of phosphorus in Hg(0.8)Cd(0.2)Te

    NASA Astrophysics Data System (ADS)

    Vydyanath, H. R.; Abbott, R. C.; Nelson, D. A.

    1983-03-01

    Selim and Kroeger (1977) have studied the mode of incorporation of phosphorus in CdTe. According to their findings, phosphorus behaves amphoterically in CdTe acting as an acceptor interstitially and on Te lattice sites, and as a triple donor on Cd lattice sites. The present investigation is concerned with the role of phosphorus in Hg(0.8)Cd(0.2)Te, taking into account Hall-effect and mobility measurements on phosphorus-doped crystals quenched from a temperature in the range from 450 to 600 C subsequent to anneals in different partial pressures of Hg. It is found that the behavior of phosphorus in Hg(0.8)Cd(0.2)Te is similar to that established for CdTe, except that all the electrically active phosphorus defect centers in Hg(0.8)Cd(0.2)Te appear to be only singly ionized. At low Hg pressure, phosphorus is incorporated as a single donor occupying Hg lattice sites, and at high Hg pressure, as a single acceptor on interstitial sites and Te lattice sites.

  4. Density, Electrical Conductivity and Viscosity of Hg(0.8)Cd(0.2)Te Melt

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The density, viscosity, and electrical conductivity of Hg(0.8)Cd(0.2)Te melt were measured as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(0.8)Cd(0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(0.8)Cd(0.2)Te melt as the temperature was decreased to below 1090 K

  5. Seasonal variations in metallic mercury (Hg0) vapor exchange over biannual wheat - corn rotation cropland in the North China Plain

    NASA Astrophysics Data System (ADS)

    Sommar, J.; Zhu, W.; Shang, L.; Lin, C.-J.; Feng, X. B.

    2015-09-01

    Air-surface gas exchange of Hg0 was measured in five approximately bi-weekly campaigns (in total 87 days) over a wheat-corn rotation cropland located in the North China Plain using the relaxed eddy accumulation (REA) technique. The campaigns were separated over duration of a full year period (201-2013) aiming to capture the flux pattern over essential growing stages of the planting system with a low homogeneous topsoil Hg content (~ 45 ng g-1). Contrasting pollution regimes influenced air masses at the site and corresponding Hg0 concentration means (3.3 in late summer to 6.2 ng m-3 in winter) were unanimously above the typical hemispheric background of 1.5-1.7 ng m-3 during the campaigns. Extreme values in bi-directional net Hg0 exchange were primarily observed during episodes of peaking Hg0 concentrations. In tandem with under-canopy chamber measurements, the above-canopy REA measurements provided evidence for a balance between Hg0 ground emissions and uptake of Hg0 by the developed canopies. During the wheat growing season covering ~ 2/3 of the year at the site, net field-scale Hg0 emission was prevailing for periods of active plant growth until canopy senescence (mean flux: 20.0 ng m-3) disclosing the dominance of Hg0 soil efflux during warmer seasons. In the final vegetative stage of corn and wheat, ground and above-canopy Hg0 flux displayed inversed daytime courses with a near mid-day maximum (emission) and minimum (deposition), respectively. In contrast to wheat, Hg0 uptake of the corn canopy at this stage offset ground Hg0 emissions with additional removal of Hg0 from the atmosphere. Differential uptake of Hg0 between wheat (C3 species) and corn (C4 species) foliage is discernible from estimated Hg0 flux (per leaf area) and Hg content in mature cereal leaves being a factor of > 3 higher for wheat (at ~ 120 ng g-1 dry weight). Furthermore, this study shows that intermittent flood irrigation of the air-dry field induced a short pulse of Hg0 emission due to

  6. Viscosity of Hg(0.84)Zn(0.16)Te Pseudobinary Melt

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Su, Ching-Hua; Sha, Yi-Gao; Lehoczky, S. L.

    1996-01-01

    An oscillating-cup viscometer was developed to measure viscosity of molten HgZnTe ternary semiconductor alloys. Data were collected for the pseudobinary Hg(0.84)Zn(0.16)Te melt between 770 and 850 C. The kinematic viscosity was found to vary from approximately 1.1 to 1.4 x 10(sup -3)sq cm/s. A slow relaxation phenomena was also observed for temperatures from the melting point of 770 to approx. 800 C. Possible mechanisms for this effect are discussed.

  7. Persistent photoconductivity of amorphous Hg0.78Cd0.22Te:In films

    NASA Astrophysics Data System (ADS)

    Lianjie, Yu; Yuhui, Su; Yanli, Shi; Xiongjun, Li; Weiyan, Zhao; Qi, Ma; Yunjian, Tai; Peng, Zhao

    2016-10-01

    The persistent photoconductivity (PPC) of amorphous Hg0.78Cd0.22Te: In films has been studied under illumination by super-bandgap light (a He-Ne laser, hv = 1.96 eV, 30 mW/cm2) and sub-bandgap light (1000 K Blackbody source, the largest photon energies hv p = 0.42 eV, 8.9 mW/cm2) in the range of 80-300 K. The persistent photoconductivity effect increases with increase in illumination intensity and illumination time. However, it decreases with increase in working temperature. The non-exponential decay of photoconductivity implies the presence of continuous distribution of defect states in amorphous Hg0.78Cd0.22Te: In films. These results indicate that the decay of photoconductivity is not governed by the carrier trapped in the intrinsic defects, but it may be due to light-induced defects under light illumination. Project supported by the Natural Science Foundation of Yunnan Province (No. 2008CD176).

  8. Doping behavior of iodine in Hg/0.8/Cd/0.2/Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.; Kroger, F. A.

    1982-01-01

    The defect state prevailing in iodine doped single-crystal samples of Hg0.8Cd0.2Te, annealed at 450-600 C in Hg vapor, has been deduced from Hall effect measurements on samples cooled to 77 K from the annealing temperature. Results are found to be similar to those previously obtained for iodine doped CdS, i.e. iodine acts as a single donor occupying Te lattice sites with a fraction paired with the native acceptor defects. The concentration of iodine on tellurium lattice sites increases with the partial pressure of Hg, whereas that of the pair species increases as the partial pressure of Hg decreases.

  9. Doping behavior of iodine in Hg/0.8/Cd/0.2/Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.; Kroger, F. A.

    1982-01-01

    The defect state prevailing in iodine doped single-crystal samples of Hg0.8Cd0.2Te, annealed at 450-600 C in Hg vapor, has been deduced from Hall effect measurements on samples cooled to 77 K from the annealing temperature. Results are found to be similar to those previously obtained for iodine doped CdS, i.e. iodine acts as a single donor occupying Te lattice sites with a fraction paired with the native acceptor defects. The concentration of iodine on tellurium lattice sites increases with the partial pressure of Hg, whereas that of the pair species increases as the partial pressure of Hg decreases.

  10. Distortion of ReO 6 octahedron in the Hg 0.82Re 0.18Ba 2Ca 2Cu 3O 8+ d superconductor

    NASA Astrophysics Data System (ADS)

    Orlando, M. T. D.; Passos, C. A. C.; Passamai, J. L.; Medeiros, E. F.; Orlando, C. G. P.; Sampaio, R. V.; Correa, H. S. P.; de Melo, F. C. L.; Martinez, L. G.; Rossi, J. L.

    2006-02-01

    Rhenium (Re) LIII edge X-ray absorption spectroscopy was used in order to determine rhenium valence and the local oxygen coordination in Hg0.82Re0.18Ba2Ca2Cu3O8+d polycrystalline samples prepared with three different oxygen content. Thermoelectric power measurements confirmed small increments of charge carrier number as a function of oxygen content. The X-ray absorption near-edge spectroscopy (XANES) analysis showed a valence variation for Re (+6.8, +6.9 and +7.0) in these samples. The extended X-ray absorption fine structure (EXAFS) analysis indicated that the oxygen local order around Re atoms in these Hg0.82Re0.18Ba2Ca2Cu3O8+d samples can be described as a distorted ReO6 octahedron with two different Re-O bound lengths. The valence evaluated by the bound length in the distorted ReO6 octahedron is in agreement with the XANES measurements. Moreover, the distorted ReO6 octahedron and the Cu-Opl angle built a scenario which can justify the high intrinsic term value found in the optimal doped sample under external hydrostatic pressure.

  11. Directional Solidification and Characterization of Hg(0.89) Mn(0.11)Te

    NASA Technical Reports Server (NTRS)

    Price, M. W.; Scripa, R. N.; Lehoczky. S. L.; Szofran, F. R.; Su, C.-H.

    1998-01-01

    Two boules of Hg(0.89)Mn(0.11)Te(MMT) were solidified using the vertical Bridgman-Stockbarger method. Translation rates of 0.09 and 0. 18 microns/s were used. The influence of growth rate on axial compositional homogeneity in the MMT boules was evaluated experimentally by conducting precision density measurements on radial slices taken from each boule. In addition, Plane Front Solidification theory and segregation coefficient (k) data for the Hg(1-x)Mn(x)Te system were used to fit theoretical composition profiles to the measured MMT axial composition profiles. The strong correlation between the measured and calculated MMT axial composition profiles indicates diffusion dominated axial solute redistribution in the boules under the applied growth conditions. The analysis of the MMT axial composition profiles by Plane Front Solidification theory allowed the calculation of the effective diffusion coefficient (D(eff) = 3.5 x l0(exp -5) sq cm/s). The k-values for the Hg(1-x)Mn(x)Te system and the D(sub eff) - value were then used to verify that both boules were solidified under conditions which did not exceed the Constitutional Supercooling Criteria under ideal conditions. Finally, a preliminary examination of the radial compositional variation in each MMT was made using Fourier Transform Infra-Red Spectroscopy (FTIR). The radial homogeneity in the MMT boules was found to be comparable for both translation rates.

  12. Analysis of Radial Segregation in Directionally Solidified Hg(0.89)Mn(0.11)Te

    NASA Technical Reports Server (NTRS)

    Price, M. W.; Scripa, R. N.; Szofran, F. R.; Motakef, S.; Hanson, B.

    2003-01-01

    Bridgman growth experiments were performed on Hg(0.89)Mn(0.11)Te (MMT) to determine the extent of radial Manganese segregation during directional solidification. MMT crystals were directionally solidified at rates of 0.09 and 0.18 p d s and in axial thermal gradients of 83 and 68"C/cm. Wavelength Dispersive Spectroscopy (WDS) and Fourier Transform Infra-Red (FTIR) analytical techniques were used to determine the radial homogeneity in all boules and the deflection of the solid-liquid interface (SLI) in two boules that were rapidly quenched after 5 to 6 cm of directional solidification. For all growth runs, the measured radial coinpositional variations were on the order of 0.01 molar percent MnTe in the steady state region of growth. Comparison of the measured radial compositional results of the crystals to predicted values in the diffusion-limited regime indicate a strong influence of convection near the solid-liquid interface. This conclusion is supported by the weak influence of the translation rates and axial thermal gradients utilized in this study upon radial compositional homogeneity.

  13. Directional Solidification and Characterization of Hg(0.89) Mn(0.11)Te

    NASA Technical Reports Server (NTRS)

    Price, M. W.; Scripa, R. N.; Lehoczky. S. L.; Szofran, F. R.; Su, C.-H.

    1998-01-01

    Two boules of Hg(0.89)Mn(0.11)Te(MMT) were solidified using the vertical Bridgman-Stockbarger method. Translation rates of 0.09 and 0. 18 microns/s were used. The influence of growth rate on axial compositional homogeneity in the MMT boules was evaluated experimentally by conducting precision density measurements on radial slices taken from each boule. In addition, Plane Front Solidification theory and segregation coefficient (k) data for the Hg(1-x)Mn(x)Te system were used to fit theoretical composition profiles to the measured MMT axial composition profiles. The strong correlation between the measured and calculated MMT axial composition profiles indicates diffusion dominated axial solute redistribution in the boules under the applied growth conditions. The analysis of the MMT axial composition profiles by Plane Front Solidification theory allowed the calculation of the effective diffusion coefficient (D(eff) = 3.5 x l0(exp -5) sq cm/s). The k-values for the Hg(1-x)Mn(x)Te system and the D(sub eff) - value were then used to verify that both boules were solidified under conditions which did not exceed the Constitutional Supercooling Criteria under ideal conditions. Finally, a preliminary examination of the radial compositional variation in each MMT was made using Fourier Transform Infra-Red Spectroscopy (FTIR). The radial homogeneity in the MMT boules was found to be comparable for both translation rates.

  14. Analysis of radial segregation in directionally solidified Hg 0.89Mn 0.11Te

    NASA Astrophysics Data System (ADS)

    Price, M. W.; Scripa, R. N.; Szofran, F. R.; Motakef, S.; Hanson, B.

    2004-12-01

    Bridgman growth experiments were performed on Hg 0.89Mn 0.11Te (MMT) to determine the extent of radial Manganese segregation during directional solidification. MMT crystals were directionally solidified at rates of 0.09 and 0.18 μm/s and in axial thermal gradients of 83 and 68 °C/cm. Wavelength dispersive spectroscopy and Fourier Transform infra-red analytical techniques were used to determine the radial homogeneity in all boules and the deflection of the solid-liquid interface (SLI) in two boules that were rapidly quenched after 5-6 cm of directional solidification. For all growth runs, the measured radial compositional variations were on the order of 0.01 molar percent MnTe in the steady-state region of growth. Comparison of the measured radial compositional results of the crystals to predicted values in the diffusion-limited regime indicate a strong influence of convection near the SLI. This conclusion is supported by the weak influence of the translation rates and axial thermal gradients utilized in this study upon radial compositional homogeneity.

  15. Analysis of Radial Segregation in Directionally Solidified Hg(0.89)Mn(0.11)Te

    NASA Technical Reports Server (NTRS)

    Price, M. W.; Scripa, R. N.; Szofran, F. R.; Motakef, S.; Hanson, B.

    2003-01-01

    Bridgman growth experiments were performed on Hg(0.89)Mn(0.11)Te (MMT) to determine the extent of radial Manganese segregation during directional solidification. MMT crystals were directionally solidified at rates of 0.09 and 0.18 p d s and in axial thermal gradients of 83 and 68"C/cm. Wavelength Dispersive Spectroscopy (WDS) and Fourier Transform Infra-Red (FTIR) analytical techniques were used to determine the radial homogeneity in all boules and the deflection of the solid-liquid interface (SLI) in two boules that were rapidly quenched after 5 to 6 cm of directional solidification. For all growth runs, the measured radial coinpositional variations were on the order of 0.01 molar percent MnTe in the steady state region of growth. Comparison of the measured radial compositional results of the crystals to predicted values in the diffusion-limited regime indicate a strong influence of convection near the solid-liquid interface. This conclusion is supported by the weak influence of the translation rates and axial thermal gradients utilized in this study upon radial compositional homogeneity.

  16. Fracture mechanisms of Hg 0.8Cd 0.2Te induced by pulsed TEA-CO 2 laser

    NASA Astrophysics Data System (ADS)

    Cai, H.; Cheng, Z. H.; Zhu, H. H.; Zuo, D. L.

    2005-12-01

    The fracture mechanisms of Hg 0.8Cd 0.2Te induced by pulsed TEA-CO 2 laser have been investigated theoretically and experimentally in this paper. The Hg 0.8Cd 0.2Te target was irradiated by a TEA-CO 2 laser with wavelength of 10.6 μm and spike width of 240 ns in an ambient atmosphere. The evident cracks can be found on the surface of the target from the scanning electron microscopy (SEM) photos, indicating that the severe breaks happened during the experiment. Theoretical analysis has also been carried out and the results show that the fracture of Hg 0.8Cd 0.2Te is mainly induced by thermal stresses, although there are three forces (thermal stress, evaporation wave and laser-supported detonation (LSD) wave) exerted on the target surface during the process.

  17. The heat of formation of Mercury vacancies in Hg(0.8)Cd(0.2)Te

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.; Trivedi, S. B.; Whiteside, R. C.; Palosz, W.

    1986-01-01

    A modified mass loss measurement technique has been employed for the first time for the direct in situ determination of vacancy concentrations in Hg(0.8)Cd(0.2)Te at elevated temperatures. This technique can also be used to establish the pressure-temperature phase diagram for this type of system. The derived mean value for the heat of formation of mercury vacancies in the above alloy is 0.43 eV. Theoretical considerations concerning the vacancy formation in HgTe and in Hg(0.8)Cd(0.2)Te are in qualitative agreement with the experimental value.

  18. DEVELOPMENT OF NONCARBON SORBENTS FOR HG0 REMOVAL FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    Noncarbon materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups, such as amine, amide, thiol, and urea; and active additives, such as elemental sulfur, sodium sulfide, and sodium polysulfide...

  19. DEVELOPMENT OF NONCARBON SORBENTS FOR HG0 REMOVAL FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    Noncarbon materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups, such as amine, amide, thiol, and urea; and active additives, such as elemental sulfur, sodium sulfide, and sodium polysulfide...

  20. Absorption of ac fields in amorphous indium-oxide films

    SciTech Connect

    Ovadyahu, Z.

    2014-08-20

    Absorption data from applied ac fields in Anderson-localized amorphous indium-oxide (In{sub x}O) films are shown to be frequency and disorder dependent. The absorption shows a roll-off at a frequency which is much lower than the electron-electron scattering rate of the material when it is in the diffusive regime. This is interpreted as evidence for discreteness of the energy spectrum of the deeply localized regime. This is consistent with recent many-body localization scenarios. As the metal-insulator transition is approached, the absorption shifts to higher frequencies. Comparing with the previously obtained results on the crystalline version of indium-oxide (In{sub 2}O{sub 3−x}) implies a considerably higher inelastic electron-phonon scattering rate in the amorphous material. The range over which the absorption versus frequency decreases may indicate that a wide distribution of localization length is a common feature in these systems.

  1. Asymmetric spin absorption across a low-resistance oxide barrier

    SciTech Connect

    Chen, Shuhan; Qin, Chuan; Ji, Yi

    2015-07-21

    An unconventional method of nonlocal spin detection is demonstrated in mesoscopic lateral spin valves at room temperature. Clear nonlocal spin signals are detected between the two ends of an extended ferromagnetic spin detector. This is different from the conventional method in which the nonlocal voltage is measured between the spin detector and the nonmagnetic channel. The results can be understood as spatially non-uniform absorption of a pure spin current into the spin detector across a low-resistance oxide interface.

  2. Absorption-Enhancing Effect of Nitric Oxide on the Absorption of Hydrophobic Drugs in Rat Duodenum.

    PubMed

    Kishimoto, Hisanao; Miyazaki, Kaori; Takizawa, Yusuke; Shirasaka, Yoshiyuki; Inoue, Katsuhisa

    2016-02-01

    Nitric oxide (NO), an endogenous gas that plays a versatile role in the physiological system, has the ability to increase the intestinal absorption of water-soluble compounds through the paracellular route. However, it remains unclear whether NO can enhance the absorption of hydrophobic drugs through the transcellular route. In this study, we examined the absorption-enhancing effect of NO on intestinal permeability of hydrophobic drugs in rat intestine. The pretreatment of rat gastrointestinal sacs with NOC7, a NO-releasing reagent, significantly increased the permeation of griseofulvin from mucosa to serosa in the sacs prepared from the duodenum, but not in those prepared from the other regions such as jejunum, ileum, and colon. The absorption-enhancing effect of NOC7 on the duodenal permeation varied depending on the hydrophobicity of the drugs used. Furthermore, NOC7 treatment was found to be apparently ineffective on the griseofulvin permeation in the duodenum pretreated with dithiothreitol (DTT) that was used as a mucus remover, even though the permeation was increased by pretreatment with DTT alone. These results suggest that NO increases the absorption of hydrophobic drugs through the transcellular route in the duodenum by modulating the mucus layer function.

  3. On the pressure and temperature dependent ductile, brittle nature of Hg0.91Mn0.09Te semiconductor

    NASA Astrophysics Data System (ADS)

    Shriya, S.; Sapkale, R.; Varshney, M.; Khenata, R.; Varshney, Dinesh

    2017-05-01

    The high-pressure structural phase transition and pressure as well as temperature induced elastic properties of cubic zincblende to rocksalt structures of Hg0.91Mn0.09Te compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), Poisson's ratio ν and Pugh ratio ϕ (= BT/GH) the Hg0.91Mn0.09Te lattice infers mechanical stiffening, thermal softening, and ductile (brittle) nature.

  4. Microwave Absorption Characteristics of Conventionally Heated Nonstoichiometric Ferrous Oxide

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Hwang, Jiann-Yang; Mouris, Joe; Hutcheon, Ron; Sun, Xiang

    2011-08-01

    The temperature dependence of the microwave absorption of conventionally heated nonstoichiometric ferrous oxide (Fe0.925O) was characterized via the cavity perturbation technique between 294 K and 1373 K (21 °C and 1100 °C). The complex relative permittivity and permeability of the heated Fe0.925O sample slightly change with temperature from 294 K to 473 K (21 °C to 200 °C). The dramatic variations of permittivity and permeability of the sample from 473 K to 823 K (200 °C to 550 °C) are partially attributed to the formation of magnetite (Fe3O4) and metal iron (Fe) from the thermal decomposition of Fe0.925O, as confirmed by the high-temperature X-ray diffraction (HT-XRD). At higher temperatures up to 1373 K (1100 °C), it is found that Fe0.925O regenerates and remains as a stable phase with high permittivity. Since the permittivity dominates the microwave absorption of Fe0.925O above 823 K (550 °C), resulting in shallow microwave penetration depth (~0.11 and ~0.015 m at 915 and 2450 MHz, respectively), the regenerated nonstoichiometric ferrous oxide exhibits useful microwave absorption capability in the temperature range of 823 K to1373 K (550 °C to 1100 °C).

  5. Characterization of oxidized carbon materials with photoinduced absorption response

    NASA Astrophysics Data System (ADS)

    Uklein, A. V.; Diyuk, V. E.; Grishchenko, L. M.; Kozhanov, V. O.; Boldyrieva, O. Yu.; Lisnyak, V. V.; Multian, V. V.; Gayvoronsky, V. Ya.

    2016-12-01

    An efficient application of fast remote diagnostics for carbon material (CM) bulk particles was demonstrated. Porous layers of CM particles with different oxidation levels were characterized by self-action of picosecond laser pulses at 1064 nm. Nitrogen adsorption, Boehm titration, and thermal analysis of the oxidized CMs revealed diverse specific surface area S_{BET}, reasonable surface acidity, and high concentration of surface oxygen-containing groups. Dense CM porous layers showed a monotonous reduction of the absorptive nonlinear optical (NLO) response efficiency versus the oxidation level with characteristic magnitude Im(χ _C^{(3)})˜ 10^{-10} esu for the carbon particles fraction. The obtained Im(χ _C^{(3)})/S_{BET} ratio remains approximately constant, which indicates the certain proportion between the absorptive NLO response efficiency and the specific surface area. We suggest to use Im(χ _C^{(3)}) as a figure of merit for carbons subjected to the oxidation—the route to enhance the CM surface reactivity.

  6. Oxidative Tea Polyphenols Greatly Inhibit the Absorption of Atenolol

    PubMed Central

    Shan, Yun; Zhang, Mengmeng; Wang, Tengfei; Huang, Qin; Yin, Dan; Xiang, Zemin; Wang, Xuanjun; Sheng, Jun

    2016-01-01

    Oxidative tea polyphenols (OTPs) is the oxidative polymerization product of epigallocatechin-3-O-gallate (EGCG) forms during the process of Pu-er tea fermentation, and possesses absorption property, which may absorbs on drugs thus impact the drug bioavailability when taking medicines with Pu-er tea. Here we demonstrated that OTP inhibited the absorption of atenolol in the intestine, which was determined by testing atenolol levels of plasma via high performance liquid chromatography (HPLC). After administration of atenolol (50 mg/kg), atenolol was absorbed (Tmax: 1.867 h) with the half-life (t1/2) of 6.663 h in control group; Compared with atenolol group, AUC0-t (h*ng/ml), AUC0-∞(h∗ng/ml), and Cmax of OTP+atenolol group (OTP 500 mg/kg + atenolol 50 mg/kg) reduced 38.7, 27, and 51%, respectively, the atenolol concentration of plasma was reduced by OTP approximately 43, 49, and 55.5% at 30 min, 1 and 2 h, respectively, (P < 0.01). Furthermore, the level of atenolol in feces was higher in the OTP+atenolol group, indicating that the absorption of atenolol in rats was inhibited by OTP. Isothermal titration calorimetry assay identified that EGCG can bind to atenolol and the in vitro results showed that OTP absorbed on atenolol and formed precipitate in acid condition, demonstrating a significant positive relationship between atenolol levels and OTP dosage. Taken together, these results suggested that consuming Pu-er tea with atenolol might inhibit atenolol absorption and possible other drugs. PMID:27445825

  7. Seasonal variations in metallic mercury (Hg0) vapor exchange over biannual wheat-corn rotation cropland in the North China Plain

    NASA Astrophysics Data System (ADS)

    Sommar, Jonas; Zhu, Wei; Shang, Lihai; Lin, Che-Jen; Feng, Xinbin

    2016-04-01

    Air-surface gas exchange of Hg0 was measured in five approximately bi-weekly campaigns (in total 87 days) over a wheat-corn rotation cropland located on the North China Plain (NCP) using the relaxed eddy accumulation (REA) technique. The campaigns were separated over the duration of a full-year period (2012-2013) aiming to capture the flux pattern over essential growing stages of the planting system with a low homogeneous topsoil Hg content ( ˜ 45 ng g-1). Contrasting pollution regimes influenced air masses at the site and corresponding Hg0 concentration means (3.3 in late summer to 6.2 ng m-3 in winter) were unanimously above the typical hemispheric background of 1.5-1.7 ng m-3 during the campaigns. Extreme values in bi-directional net Hg0 exchange were primarily observed during episodes of peaking Hg0 concentrations. In tandem with under-canopy chamber measurements, the above-canopy REA measurements provided evidence for a balance between Hg0 ground emissions and uptake of Hg0 by the developed canopies. During the wheat growing season covering ˜ 2 / 3 of the year at the site, net field-scale Hg0 emission prevailed for periods of active plant growth until canopy senescence (mean flux: 20.0 ng m-3), showing the dominance of Hg0 soil efflux during warmer seasons. In the final vegetative stage of corn and wheat, ground and above-canopy Hg0 flux displayed inversed daytime courses with a near mid-day maximum (emission) and minimum (deposition), respectively. In contrast to wheat, Hg0 uptake of the corn canopy at this stage offset ground Hg0 emissions with additional removal of Hg0 from the atmosphere. Differential uptake of Hg0 between wheat (C3 species) and corn (C4 species) foliage is discernible from estimated Hg0 flux (per leaf area) and Hg content in mature cereal leaves, being a factor of > 3 higher for wheat (at ˜ 120 ng g-1 dry weight). Furthermore, this study shows that intermittent flood irrigation of the air-dry field induced a short pulse of Hg0 emission

  8. Static and time-resolved mid-infrared spectroscopy of Hg0.95Cd0.05Cr2Se4 spinel

    NASA Astrophysics Data System (ADS)

    Barsaume, S.; Telegin, A. V.; Sukhorukov, Yu P.; Stavrias, N.; Fedorov, V. A.; Menshchikova, T. K.; Kimel, A. V.

    2017-08-01

    Static and time-resolved mid-infrared spectroscopy of ferromagnetic single crystal Hg0.95Cd0.05Cr2Se4 was performed below the absorption edge, in order to reveal the origin of the electronic transitions contributing to the magneto-optical properties of this material. The mid-infrared spectroscopy reveals a strong absorption peak around 0.236 eV which formerly was assigned to a transition within the selenide-chromium complexes (ν Se-Cr2+). To reveal the sensitivity of the transition to the magnetic order, we performed the studies in a temperature range across the Curie temperature and magnetic fields across the value at which the saturation of ferromagnetic magnetization occurs. Despite the fact that the Curie temperature of this ferromagnetic semiconductor is around 107 K, the intensity of the mid-infrared transition reduces substantially increasing the temperature, so that already at 70 K the absorption peak is hardly visible. Such a dramatic decrease of the oscillator strength is observed simultaneously with the strong red-shift of the absorption edge in the magnetic semiconductor. Employing a time-resolved pump-and-probe technique enabled us to determine the lifetime of the electrons in the excited state of this optical transition. In the temperature range from 7 K to 80 K, the lifetime changes from 3 ps to 6 ps. This behavior agrees with the phenomenon of giant oscillator strength described earlier for weakly bound excitons in nonmagnetic semiconductors.

  9. Glutamine protects intestinal calcium absorption against oxidative stress and apoptosis.

    PubMed

    Moine, Luciana; Díaz de Barboza, Gabriela; Pérez, Adriana; Benedetto, Mercedes; Tolosa de Talamoni, Nori

    2017-10-01

    The aim of this study was to investigate whether glutamine (GLN) could block the inhibition of the intestinal Ca(2+) absorption caused by menadione (MEN), and elucidate the underlying mechanisms. To do this, one-month old chicks were divided in four groups: 1) controls, 2) MEN treated, 3) GLN treated and 4) GLN treated before or after MEN treatment. Intestinal Ca(2+) absorption as well as protein expression of molecules involved in the transcellular Ca(2+) pathway were determined. Glutathione (GSH) and superoxide anion and activity of enzymes of the antioxidant system were evaluated. Apoptosis was measured by the TUNEL technique, the expression of FAS and FASL and the caspase-3 activity. A previous dose of 0.5gGLN/kg of b.w. was necessary to show its protector effect and a dose of 1g/kg of b.w. could restore the intestinal Ca(2+) absorption after MEN treatment. GLN alone did not modify the protein expression of calbindin D28k and plasma membrane Ca(2+)-ATPase, but blocked the inhibitory effect of the quinone. GLN avoided changes in the intestinal redox state provoked by MEN such as a decrease in the GSH content, and increases in the superoxide anion and in the SOD and CAT activities. GLN abrogated apoptotic effects caused by MEN in intestinal mucosa, as indicated by the reduction of TUNEL (+) cells and the FAS/FASL/caspase-3 pathway. In conclusion, GLN could be an oral nutritional supplement to normalize the redox state and the proliferation/cell death ratio in the small intestine improving the intestinal Ca(2+) absorption altered by oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Real-time measurements of Hg0 and H2S at La Solfatara Crater (Campi Flegrei, Southern Italy) and Mt. Amiata volcano (Siena, Central Italy): a new geochemical approach to estimate the distribution of air contaminants

    NASA Astrophysics Data System (ADS)

    Cabassi, J.; Calabrese, S.; Tassi, F.; Venturi, S.; Capecchiacci, F.; Di Lonardo, C.; D'Alessandro, W.; Vaselli, O.

    2014-12-01

    The emission of Hg and H2S from natural and anthropogenic sources may have a great environmental impact in urban areas as well as in the surroundings of active and passive degassing volcanoes. Mercury is present in the atmosphere mainly in its elemental form (Hg0~98 %), which has a relatively high volatility, low solubility and chemical inertness. Hydrogen sulfide, one of the most abundant gas species in volcanic fluids, is highly poisoning and corrosive. In this study, an innovative real-time method for the measurements of Hg0 and H2S concentrations in air was carried out at La Solfatara Crater, a hydrothermally altered tuff-cone nested in the town of Pozzuoli (Southern Italy), and at Mt. Amiata volcano (Central Italy), where a world-class Hg mining district abandoned in the seventies and a presently-exploited geothermal field for the production of electrical energy occur. The main aims were (i) to test this new methodological approach and (ii) to investigate Hg0 and H2S concentrations and the chemical-physical parameters regulating their spatial distribution in polluted areas. A portable Zeeman atomic absorption spectrometer with high frequency modulation of light polarization (Lumex RA-915M) was used in combination with a pulsed fluorescence gas analyzer (Thermo Scientific Model 450i) to measure Hg0 and H2S, respectively. The instruments were synchronized and set at high-frequency acquisition (10 sec and 1 min, respectively). Measurements were carried out along pathways (up to 12 km long) at an average speed of <10 km/h and coupled with GPS data and meteorological parameters. In selected sites, passive samplers were positioned to determine the time-integrated Hg0 and H2S concentrations to be compared with the real-time measurements. The results indicate that this approach is highly efficient and effective in providing reliable and reproducible Hg0 and H2S concentrations and can be used to identify and characterize gas emitters in different environments.

  11. INVESTIGATING OXIDATION MECHANISMS OF HG0 IN THE FREE TROPOSPHERE AND ITS INFLUENCE ON LONG RANGE MERCURY TRANSPORT

    EPA Science Inventory

    In 2000, the US EPA Office of Research and Development (ORD) initiated a study to evaluate the magnitude of long-range transport of mercury through the marine free troposphere to South Florida via aircraft measurements (200 to 12,000 feet). ORD funded the National Oceanic and At...

  12. INVESTIGATING OXIDATION MECHANISMS OF HG0 IN THE FREE TROPOSPHERE AND ITS INFLUENCE ON LONG RANGE MERCURY TRANSPORT

    EPA Science Inventory

    In 2000, the US EPA Office of Research and Development (ORD) initiated a study to evaluate the magnitude of long-range transport of mercury through the marine free troposphere to South Florida via aircraft measurements (200 to 12,000 feet). ORD funded the National Oceanic and At...

  13. Linewidths in excitonic absorption spectra of cuprous oxide

    NASA Astrophysics Data System (ADS)

    Schweiner, Frank; Main, Jörg; Wunner, Günter

    2016-02-01

    We present a theoretical calculation of the absorption spectrum of cuprous oxide (Cu2O ) based on the general theory developed by Y. Toyozawa. An inclusion not only of acoustic phonons but also of optical phonons and of specific properties of the excitons in Cu2O like the central-cell corrections for the 1 S exciton allows us to calculate the experimentally observed linewidths in experiments by T. Kazimierczuk et al. [T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer, Nature (London) 514, 343 (2014), 10.1038/nature13832] within the same order of magnitude, which demonstrates a clear improvement in comparison to earlier work on this topic. We also discuss a variety of further effects, which explain the still observable discrepancy between theory and experiment but can hardly be included in theoretical calculations.

  14. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  15. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    SciTech Connect

    Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod; Krishnan, Bindu; John, Honey

    2013-05-15

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novel precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.

  16. The saturable absorption and reverse saturable absorption properties of Cu doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Yao, Cheng-Bao; Wen, Xin; Li, Qiang-Hua; Yan, Xiao-Yan; Li, Jin; Zhang, Ke-Xin; Sun, Wen-Jun; Bai, Li-Na; Yang, Shou-Bin

    2017-03-01

    We present the structure and nonlinear absorption (NLA) properties of Cu-doped ZnO (CZO) films prepared by magnetron sputtering. The films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the CZO films can maintain a wurtzite structure. Furthermore, the open-aperture (OA) Z-scan measurements of the film were carried out by nanosecond laser pulse. A transition from saturable absorption (SA) to reverse saturable absorption (RSA) was observed as the excitation intensity increasing. With good excellent nonlinear optical coefficient, the samples were expected to be the potential applications in optical devices.

  17. Two-year record of trace gas (CO2, CH4, O2, and Hg0) concentrations and dynamics in arctic tundra soils of northern Alaska - seasonality, non-linear temperature controls, and effects of soil diffusivity

    NASA Astrophysics Data System (ADS)

    Obrist, D.; Agnan, Y.; Hedge, C.; Moore, C. W.; Helmig, D.; Hueber, J.; Paxton, D.

    2016-12-01

    The goal of this study was to assess the seasonality and temperature sensitivity of tundra soil trace gas evolution. Two years of in situ measurements of carbon dioxide (CO2), methane (CH4), oxygen (O2), and gaseous mercury (Hg0) concentrations were conducted in soils at Toolik Field station using six trace gas wells deployed across two soil profiles and different depths. Soil trace gases were sampled at regular intervals through heated tubing with gas analyzers housed in a field laboratory. Additional measurements included soil temperature and moisture profiles, trace gases in overlying snowpack, and whole-ecosystem trace gas exchange using micrometeorological methods. We show that soil CO2 concentrations exceeded concentrations in the atmosphere year-round, indicative of a consistent soil CO2 source that lasted throughout the arctic winter. Correlations between CO2 concentrations and soil temperatures were weak, and some of the highest soil CO2 concentrations, along with low O2 levels, were observed in December and January. We attribute these unexpected patterns to a strong control of soil diffusivity on trace gas concentrations as soil freezing and the development of the snowpack dramatically reduced gas diffusion rates from soils to the atmosphere. The two soil profiles within close proximity (< 10 m) showed opposite CH4 source and sink characteristics, with one profile exhibiting a net sink (oxidation) and one a net source (methanogenesis). CH4 oxidation was more sensitive to temperature and ceased in the cold winter months, while methanogenesis continued throughout the winter. The sensitivity of soil CH4 concentrations to soil temperatures differed between freezing in fall and thawing in spring. Soil concentration profiles of Hg0, a ubiquitous global pollutant, showed that tundra soils were consistent atmospheric Hg0 sinks. Along with corresponding ecosystem-level flux measurements showing pronounced net atmospheric Hg0 deposition, we determine that dry

  18. Electrospun metal oxide-TiO2 nanofibers for elemental mercury removal from flue gas.

    PubMed

    Yuan, Yuan; Zhao, Yongchun; Li, Hailong; Li, Yang; Gao, Xiang; Zheng, Chuguang; Zhang, Junying

    2012-08-15

    Nanofibers prepared by an electrospinning method were used to remove elemental mercury (Hg(0)) from simulated coal combustion flue gas. The nanofibers composed of different metal oxides (MO(x)) including CuO, In(2)O(3), V(2)O(5), WO(3) and Ag(2)O supported on TiO(2) have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersing X-ray (EDX) and UV-vis spectra. The average diameters of these nanofibers were about 200nm. Compared to pure TiO(2), the UV-vis absorption intensity for MO(x)-TiO(2) increased significantly and the absorption bandwidth also expanded, especially for Ag(2)O-TiO(2) and V(2)O(5)-TiO(2). Hg(0) oxidation efficiencies over the MO(x)-TiO(2) nanofibers were tested under dark, visible light (vis) irradiation and UV irradiation, respectively. The results showed that WO(3) doped TiO(2) exhibited the highest Hg(0) removal efficiency of 100% under UV irradiation. Doping V(2)O(5) into TiO(2) enhanced Hg(0) removal efficiency greatly from 6% to 63% under visible light irradiation. Ag(2)O doped TiO(2) showed a steady Hg(0) removal efficiency of around 95% without any light due to the formation of silver amalgam. An extended experiment with 8 Hg(0) removal cycles showed that the MO(x)-TiO(2) nanofibers were stable for removing Hg(0) from flue gas. Factors responsible for the enhanced photocatalytic activities of the MO(x)-TiO(2) nanofibers were also discussed.

  19. Hg0 and HgCl2 Reference Gas Standards: ?NIST Traceability and Comparability?(And EPA ALT Methods for Hg and HCl )

    EPA Science Inventory

    EPA and NIST have collaborated to establish the necessary procedures for establishing the required NIST traceability of commercially-provided Hg0 and HgCl2 reference generators. This presentation will discuss the approach of a joint EPA/NIST study to accurately quantify the tru...

  20. Hg0 and HgCl2 Reference Gas Standards: NIST Traceability and Comparability (And EPA ALT Methods for Hg and HCl )

    EPA Science Inventory

    EPA and NIST have collaborated to establish the necessary procedures for establishing the required NIST traceability of commercially-provided Hg0 and HgCl2 reference generators. This presentation will discuss the approach of a joint EPA/NIST study to accurately quantify the tru...

  1. Non-Controlled Emission of Inorganic Toxic gas Components (CO, H2S, NH3 and Hg0) to the atmosphere from Arico's landfill, Tenerife, Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Echeita, A.; Perez, C.; Hernandez, C.; Fariña, L.; Lima, R.; Salazar, J.; Hernandez, P.; Perez, N.

    2001-12-01

    Landfill gas is mainly constituted by CO2 and CH4. However, other inorganic toxic gas components such as CO, NH3, H2S and Hg0, are also present. Reduced gas species are produced and released during the anaerobic decomposition of urban waste, while Hg0 is originally present in the waste and it is released as a volatile. Significant amounts of non-controlled emission of these components could be released to the atmosphere in the form of diffuse degassing, The goal of this study is to evaluate the "non-controlled" emissions of these inorganic toxic gas components from Arico's landfill, Tenerife. Arico's landfill (0.35 Km2) holds about 1,200 t/d of urban solid waste with an average organic matter content of 48%. Diffuse CO2 emission has been measured at the surface of Arico's landfill by means of a NDIR according with the accumulation chamber method. Landfill gases were also collected at 40 cm depth using a metallic probe and analyzed within 24 hours for CO2 and CO composition by means of a VARIAN micro-GC QUAD. H2S and Hg0 were analyzed by means of a Polytron-II electrochemical sensor and a JEROME 431-X mercury analyzer, respectively. NH3 was fixed in a boric acid solution and determined by means of a selective electrode. CO concentration ranged from non-detectable to 2,531 ppmv, with a median of 24.3 ppmv. The highest observed Hg0 concentration in the surface landfill gas is 0.004 ppbv, while H2S concentration reached levels up to 12 ppmv. NH3 contents were lower than 1 ppmv. CO, Hg0, H2S and NH3 fluxes have been estimated by multiplying CO2 efflux times (Tox.I.C.)i/CO2 where (Tox.I.C.)i is the concentration of CO, Hg0, H2S and NH3. The highest efflux values for CO, Hg0, H2S and NH3 were 6.8 gm-2d-1, 0.04 µ gm-2d-1, 1.7 mgm-2d-1 and 0.23 gm-2d-1, respectively.

  2. Absorption of nitrogen oxides by sulfoxides and sulfones

    SciTech Connect

    Bikbaeva, G.G.; Isyangil'dina, A.Kh.; Baranovskaya, E.M.; Nikitin, Yu.E.

    1986-10-10

    Petroleum sulfoxides (PSO) have high sorption capacity for NO/sub 2/. In view of their comparative availability and low cost, PSO may be of practical interest as absorbents for nitrogen oxides. At the same time, the properties of adducts formed by sulfoxides, both individual and from petroleum, with nitrogen oxides have been studies very little. In this work the methods of IR and UV spectroscopy were used for studying complex formation of nitrogen oxides with sulfoxides, and also with sulfones, obtained by oxidation of sulfoxides.

  3. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature.

    PubMed

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-19

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4 · 7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  4. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    PubMed Central

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-01-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4·7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures. PMID:25788158

  5. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4.7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  6. DEVELOPMENT OF COST-EFFECTIVE NONCARBON SORBENTS FOR HG0 REMOVAL FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    Noncarbon materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups such as amine, amide, thiol, urea and active additives such as elemental mercury (Hg0) vapor at coal-fired utility ...

  7. DEVELOPMENT OF COST-EFFECTIVE NONCARBON SORBENTS FOR HG0 REMOVAL FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    Noncarbon materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups such as amine, amide, thiol, urea and active additives such as elemental mercury (Hg0) vapor at coal-fired utility ...

  8. Three Dimensional Mapping of Nicle Oxidation States Using Full Field Xray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, G.J.; Chu, Y.; Harris, W.M.; Izzo, J.R.; Grew, K.N., Chiu, W.K.S.; Yi, J.; Andrews, J.C.; Liu, Y., Pierro, P.

    2011-04-28

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  9. Absorption characteristics of elemental mercury in mercury chloride solutions.

    PubMed

    Ma, Yongpeng; Xu, Haomiao; Qu, Zan; Yan, Naiqiang; Wang, Wenhua

    2014-11-01

    Elemental mercury (Hg(0)) in flue gases can be efficiently captured by mercury chloride (HgCl2) solution. However, the absorption behaviors and the influencing effects are still poorly understood. The mechanism of Hg(0) absorption by HgCl2 and the factors that control the removal were studied in this paper. It was found that when the mole ratio of Cl(-) to HgCl2 is 10:1, the Hg(0) removal efficiency is the highest. Among the main mercury chloride species, HgCl3(-) is the most efficient ion for Hg(0) removal in the HgCl2 absorption system when moderate concentrations of chloride ions exist. The Hg(0) absorption reactions in the aqueous phase were investigated computationally using Moller-Plesset perturbation theory. The calculated Gibbs free energies and energy barriers are in excellent agreement with the results obtained from experiments. In the presence of SO3(2-) and SO2, Hg(2+) reduction occurred and Hg(0) removal efficiency decreased. The reduced Hg(0) removal can be controlled through increased chloride concentration to some degree. Low pH value in HgCl2 solution enhanced the Hg(0) removal efficiency, and the effect was more significant in dilute HgCl2 solutions. The presence of SO4(2-) and NO3(-) did not affect Hg(0) removal by HgCl2.

  10. A rapid electrochemical procedure for the detection of Hg(0) produced by mercuric-reductase: application for monitoring Hg-resistant bacteria activity.

    PubMed

    Battistel, Dario; Baldi, Franco; Marchetto, Davide; Gallo, Michele; Daniele, Salvatore

    2012-10-02

    In this work, gold microelectrodes are employed as traps for the detection of volatilized metallic mercury produced by mercuric reductase (MerA) extracted from an Hg-resistant Pseudomonas putida strain FB1. The enzymatic reduction of Hg (II) to Hg (0) was induced by NADPH cofactor added to the samples. The amount of Hg(0) accumulated on the gold microelectrode surface was determined by anodic stripping voltammetry (ASV) after transferring the gold microelectrode in an aqueous solution containing 0.1 M HNO(3) + 1 M KNO(3). Electrochemical measurements were combined with spectrofluorometric assays of NADPH consumption to derive an analytical expression for the detection of a relative MerA activity of different samples with respect to that of P. putida. The method developed here was employed for the rapid determination of MerA produced by bacteria harbored in soft tissues of clams (Ruditapes philippinarum), collected in high Hg polluted sediments of Northern Adriatic Sea in Italy.

  11. Electrical properties of antimony-doped p-type Hg 0.78Cd 0.22Te liquid-phase-epitaxy films

    NASA Astrophysics Data System (ADS)

    Chen, M. C.; Dodge, J. A.

    1986-08-01

    Hall measurements have been performed on antimony-doped p-type Hg 0.78Cd 0.22Te LPE (Liquid-Phase-Epitaxy) films between 20 and 150 K. The ionization energy of isolated shallow acceptors was estimated to be about 11 meV. From the analysis of the Hall coefficient and the hole mobility data, we found that compensation in the films is not enough to explain the typically low hole mobility at low temperatures.

  12. Determination of the Solid/Liquid Interface Shape and Resultant Radial Homogeneity in Directionally Solidified Hg(0.89)Mn(0.11)Te

    NASA Technical Reports Server (NTRS)

    Price, M. W.; Scripa, R. N.; Lehoczky, S. L.; Szofran, F. R.; Hanson, B.

    1999-01-01

    Directional solidification and interrupted directional solidification experiments were used to determine tile shape of the solid/liquid interface and the resultant radial homogeneity in Hg(0.89)Mg(0.11)Te. For directionally solidified samples solidified at a rate of 0.09 microns/sec in a thermal gradient of 83 C/cm, a maximum of 0.006 molar percent MnTe radial variation across the Hg0.89)Mn(0.11)Te boules at specific locations was determined using an FTIR technique. This FTIR evaluation of the radial homogeneity also indicated an asymmetrical, convex interface shape during solidification. The asymmetrical, convex shape of the growth interface was confirmed by interrupted directional solidification experiments. These were performed under the same growth conditions as the normally completed directional solidification experiments except that the samples were quenched before the final growth transient was reached. In these experiments, etching and scanning X-ray fluorescence were used to reveal the shape of the solid/liquid interface. Microprobe analysis of composition gradients across the interface was used to confirm the authors' previous work in evaluating the segregation coefficient of Hg(0.89)Mn(0.11)Te alloy. Microprobe analysis of the interface region of the interrupted growth sample revealed a dendritic structure containing secondary and tertiary dendritic arms.

  13. Determination of the Solid/Liquid Interface Shape and Resultant Radial Homogeneity in Directionally Solidified Hg(0.89)Mn(0.11)Te

    NASA Technical Reports Server (NTRS)

    Price, M. W.; Scripa, R. N.; Lehoczky, S. L.; Szofran, F. R.; Hanson, B.

    1999-01-01

    Directional solidification and interrupted directional solidification experiments were used to determine tile shape of the solid/liquid interface and the resultant radial homogeneity in Hg(0.89)Mg(0.11)Te. For directionally solidified samples solidified at a rate of 0.09 microns/sec in a thermal gradient of 83 C/cm, a maximum of 0.006 molar percent MnTe radial variation across the Hg0.89)Mn(0.11)Te boules at specific locations was determined using an FTIR technique. This FTIR evaluation of the radial homogeneity also indicated an asymmetrical, convex interface shape during solidification. The asymmetrical, convex shape of the growth interface was confirmed by interrupted directional solidification experiments. These were performed under the same growth conditions as the normally completed directional solidification experiments except that the samples were quenched before the final growth transient was reached. In these experiments, etching and scanning X-ray fluorescence were used to reveal the shape of the solid/liquid interface. Microprobe analysis of composition gradients across the interface was used to confirm the authors' previous work in evaluating the segregation coefficient of Hg(0.89)Mn(0.11)Te alloy. Microprobe analysis of the interface region of the interrupted growth sample revealed a dendritic structure containing secondary and tertiary dendritic arms.

  14. Lithocholic acid: a new emergent protector of intestinal calcium absorption under oxidant conditions.

    PubMed

    Marchionatti, Ana M; Pérez, Adriana; Rivoira, María A; Rodríguez, Valeria A; Tolosa de Talamoni, Nori G

    2017-04-01

    LCA and 1,25(OH)2D3 are vitamin D receptor ligands with different binding affinity. The secosteroid stimulates intestinal Ca(2+) absorption. Whether LCA alters this process remains unknown. The aim of our work was to determine the effect of LCA on intestinal Ca(2+) absorption in the absence or presence of NaDOC, bile acid that inhibits the cation transport. The data show that LCA by itself did not alter intestinal Ca(2+) absorption, but prevented the inhibitory effect of NaDOC. The concomitant administration of LCA avoided the reduction of intestinal alkaline phosphatase activity caused by NaDOC. In addition, LCA blocked a decrease caused by NaDOC on gene and protein expression of molecules involved in the transcellular pathway of intestinal Ca(2+) absorption. The oxidative stress and apoptosis triggered by NaDOC were abrogated by LCA co-treatment. In conclusion, LCA placed in the intestinal lumen protects intestinal Ca(2+) absorption against the inhibitory effects caused by NaDOC. LCA avoids the reduction of the transcellular Ca(2+) movement, apparently by blocking the oxidative stress and apoptosis triggered by NaDOC, normalizing the gene and protein expression of molecules involved in Ca(2+) movement. Therefore, LCA might become a possible treatment to improve intestinal calcium absorption under oxidant conditions.

  15. Determination of uranyl incorporation into biogenic manganese oxides using X-ray absorption spectroscopy and scattering

    USGS Publications Warehouse

    Webb, S.M.; Fuller, C.C.; Tebo, B.M.; Bargar, J.R.

    2006-01-01

    Biogenic manganese oxides are common and an important source of reactive mineral surfaces in the environment that may be potentially enhanced in bioremediation cases to improve natural attenuation. Experiments were performed in which the uranyl ion, UO22+ (U(VI)), at various concentrations was present during manganese oxide biogenesis. At all concentrations, there was strong uptake of U onto the oxides. Synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) studies were carried out to determine the molecular-scale mechanism by which uranyl is incorporated into the oxide and how this incorporation affects the resulting manganese oxide structure and mineralogy. The EXAFS experiments show that at low concentrations (2 mol % U, >4 ??M U(VI) in solution), the presence of U(VI) affects the stability and structure of the Mn oxide to form poorly ordered Mn oxide tunnel structures, similar to todorokite. EXAFS modeling shows that uranyl is present in these oxides predominantly in the tunnels of the Mn oxide structure in a tridentate complex. Observations by XRD corroborate these results. Structural incorporation may lead to more stable U(VI) sequestration that may be suitable for remediation uses. These observations, combined with the very high uptake capacity of the Mn oxides, imply that Mn-oxidizing bacteria may significantly influence dissolved U(VI) concentrations in impacted waters via sorption and incorporation into Mn oxide biominerals. ?? 2006 American Chemical Society.

  16. Subwavelength structure for sound absorption from graphene oxide-doped polyvinylpyrrolidone nanofibers

    NASA Astrophysics Data System (ADS)

    Qamoshi, Khadijeh; Rasuli, Reza

    2016-09-01

    We study the sound absorption of the reinforced polyvinylpyrrolidone nanofibers with graphene oxide. It is shown that reinforced nanofibers can acquire impedance-matched surface to airborne sound at special frequencies. To obtain such surface, nanofibers were spun with polyvinylpyrrolidone polymer that was doped by graphene oxide with concentrations of 0, 6 and 12 wt%. It was found that fibers without graphene oxide were spun continuously and randomly, whereas by doping with graphene oxide, the mode of fibers is changed and some nodes form on the fibers coating. The sound absorption coefficient was measured by an impedance tube based on 105341-1 ISO standard. Measurements in the frequency range from 700 to 1600 Hz show that use of graphene oxide as a reinforcing phase increases sound absorption coefficient of the samples at a frequency ~1500 Hz up to ~40 %. Angular eigenfrequency and dissipation coefficient of the samples were obtained by impedance measurement for the prepared samples. Results show that doping the polymer with graphene oxide causes an increase in the angular eigenfrequency and the dissipation coefficient.

  17. Hierarchical porous Ni@boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability.

    PubMed

    Zhao, Biao; Liu, Junwei; Guo, Xiaoqin; Zhao, Wanyu; Liang, Luyang; Ma, Chao; Zhang, Rui

    2017-03-29

    In this article, composites consisting of porous Ni cores coated with boehmite/nickel aluminum oxide nanoflakes were successfully prepared by a versatile method. The crystal constituents and shapes of the boehmite/nickel aluminum oxide nanoflakes were strongly influenced by reaction temperature, and their microwave absorption properties were investigated in terms of complex permittivity and permeability. The results reveal that the composites comprising porous Ni cores coated with boehmite/nickel aluminum oxide synthesized at 180 °C present superior absorption properties. The optimal reflection loss is -44.3 dB (>99.99% attenuation) at 14.4 GHz, and the effective absorption (below -10 dB) bandwidth can be monitored in the frequency range of 5.8-18.0 GHz for an absorber with thickness in the range of 1.5-3.5 mm. The high dissipation capability, good impedance match and multiple reflection of the porous flaky structure are responsible for the improvement in microwave absorption. Moreover, a new absorption mechanism was proposed for the porous structure. In this mechanism, the porous structure serves as a spreading container, which attenuates electromagnetic energy by prolonging the travel path and constrains waves in the void space to gradually consume energy. This method paves a new avenue to design porous magnetic-dielectric absorbing materials.

  18. X-ray absorption spectroscopy characterization of embedded and extracted nano-oxides

    DOE PAGES

    Stan, Tiberiu; Sprouster, David J.; Ofan, Avishai; ...

    2016-12-29

    Here, the chemistries and structures of both embedded and extracted Ysingle bondTisingle bondO nanometer-scale oxides in a nanostructured ferritic alloy (NFA) were probed by x-ray absorption spectroscopy (XAS). Y2Ti2O7 is the primary embedded phase, while the slightly larger extracted oxides are primarily Y2TiO5. Analysis of the embedded nano-oxides is difficult partly due to the multiple Ti environments associated with different oxides and those still residing in matrix lattice sites. Thus, bulk extraction followed by selective filtration was used to isolate the larger Y2TiO5 oxides for XAS, while the smaller predominant embedded phase Y2Ti2O7 oxides passed through the filters and weremore » analyzed using the log-ratio method.« less

  19. Study of nonlinear absorption properties of reduced graphene oxide by Z-scan technique

    NASA Astrophysics Data System (ADS)

    Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.

    2017-05-01

    Graphene has generated enormous research interest during the last decade due to its significant unique properties and wide applications in the field of optoelectronics and photonics. This research studied the structural and nonlinear absorption properties of reduced graphene oxide (rGO) synthesized by Modified Hummer's method. Structural and physiochemical properties of the rGO were explored with the help of Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy (Raman). Nonlinear absorption property in rGO, was investigated by open aperture Z-scan technique by using a continuous wave (CW) laser. The Z-scan results demonstrate saturable absorption property of rGO with a nonlinear absorption coefficient, β, of -2.62 × 10-4 cm/W, making it suitable for applications in Q switching, generation of ultra-fast high energy pulses in laser cavity and mode lockers.

  20. Effect of thickness on nonlinear absorption properties of graphite oxide thin films

    NASA Astrophysics Data System (ADS)

    Sreeja, V. G.; Cheruvalathu, Ajina; Reshmi, R.; Anila, E. I.; Thomas, Sheenu; Jayaraj, M. K.

    2016-10-01

    We report the thickness dependent structural, linear and nonlinear optical properties of graphite oxide (GO) thin films synthesized by spin coating method. We observed that the structural, linear and nonlinear optical properties can be tuned by the film thickness in GO. The nonlinear absorption studies by open aperture z scan technique exhibited a saturable absorption. The nonlinear absorption coefficient and saturation intensity varies with film thickness which is attributed to increased localized defect states in the energy band gap. Our results emphasize relatively large thickness dependent optical nonlinearity of GO thin films and its potential for optical pulse generation, exploring the way to GO based nonlinear applications in Q switched mode locking laser systems. All the coated GO films were characterized by X-Ray diffraction method (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-Vis absorption spectroscopy (UV-Vis), Photoluminescence (PL) and Scanning electron microscope (SEM) measurements.

  1. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals.

    PubMed

    Buonsanti, Raffaella; Llordes, Anna; Aloni, Shaul; Helms, Brett A; Milliron, Delia J

    2011-11-09

    Plasmonic nanocrystals have been attracting a lot of attention both for fundamental studies and different applications, from sensing to imaging and optoelectronic devices. Transparent conductive oxides represent an interesting class of plasmonic materials in addition to metals and vacancy-doped semiconductor quantum dots. Herein, we report a rational synthetic strategy of high-quality colloidal aluminum-doped zinc oxide nanocrystals. The presence of substitutional aluminum in the zinc oxide lattice accompanied by the generation of free electrons is proved for the first time by tunable surface plasmon absorption in the infrared region both in solution and in thin films.

  2. Absorption of inorganic halides produced from Freon 12 by calcium carbonate containing iron(III) oxide

    SciTech Connect

    Imamura, Seiichiro; Matsuba, Yoichi; Yamada, Etsu; Takai, Kenji; Utani, Kazunori

    1997-09-01

    Inorganic halides produced by the catalytic decomposition of Freon 12 were fixed by calcium carbonate, which is the main component of limestone. Iron(III) oxide, which is present as a contaminant in limestone, promoted the absorption of the halides by calcium carbonate at low temperatures. The supposed action of iron(III) oxide was to first react with inorganic halides, forming iron halides, and, then, transfer them to calcium carbonate to replace carbonate ion in a catalytic way. Thus, calcium carbonate containing iron oxides (limestone) can be used as an effective absorbent for the inorganic halogens produced during the decomposition of Freons.

  3. Non-Controlled Biogenic Emission of CO, H2S, NH3 and Hg0 from Lazareto's Landfill, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Nolasco, D.; Lima, R.; Salazar, J.; Hernández, P. A.; Pérez, N. M.

    2002-12-01

    Landfills are important sources of contaminant gases to the surrounding environment and a significant amount of them could be released to the atmosphere through the surface environment in a diffuse form, also known as non-controlled emission of landfill gases. CH4 and CO2 are major components in landfill gases and other gas species are only present in minor amounts. Trace compounds include both inorganic and a large number of volatile organic components. The goal of this study is to evaluate the non-controlled biogenic emission of inorganic toxic gases from Lazareto's landfill. Which is located in the city of Santa Cruz de Tenerife, with a population of about 150,000, and is used as a Palm tree park. Lazareto's landfill has an extension of 0.22 Km2 and it is not operative since 1980. A non-controlled biogenic gas emission survey of 281 sampling sites was carried out from February tod March, 2002. Surface CO2 efflux measurements were performed by means of a portable NDIR sensor according with the accumulation chamber method. Surface CO2 efflux ranged from negligible values up to 30,600 gm-2d-1. At each sampling site, surface landfill gas samples were collected at 40 cm depth using a metallic soil probe. These gas samples were analyzed within 24 hours for major and inorganic toxic gas species by means of microGC and specific electrochemical sensors. The highest concentrations of CO, H2S, NH3 and Hg0 were 3, 20, 2,227, 0.010 ppmV, respectively. Non-controlled biogenic emission rate of CO, H2S, NH3, and Hg0 were estimated by multiplying the observed surface CO2 efflux times (Inorganic Toxic Gas)i/CO2 weight ratio at each sampling site, respectively. The highest surface inorganic toxic gas efllux rates were 699 gm-2d-1 for NH3, 81, 431 and 4 mgm-2d-1 for CO, H2S and Hg0, respectively. Taking into consideration the spatial distribution of the inorganic toxic gas efflux values as well as the extension of the landfill, the non-controlled biogenic emission of CO, H2S, NH3

  4. Metal oxide sunscreens protect skin by absorption, not by reflection or scattering.

    PubMed

    Cole, Curtis; Shyr, Thomas; Ou-Yang, Hao

    2016-01-01

    The inorganic metal oxide sunscreens titanium dioxide and zinc oxide have been considered to protect against sunburning ultraviolet radiation by physically reflecting/scattering the incident photons and thus protecting the skin. Earlier publications suggested, however, that the primary action of UV protection by these sunscreen agents is through absorption and not by reflection. The purpose of this work was to quantitate the contributions of each of these modes of action to the protection provided by inorganic UV sunscreen filters. An optical integrating sphere was used to measure the transmission and the reflectance of titanium dioxide and zinc oxide. The average range of reflection for zinc oxide and titanium dioxide throughout the UV range was only 4-5% (less than SPF 2), providing minimal UV protection via this mechanism. The remainder of the UV protection is provided by semiconductor band gap mediated absorbance of the UV photons. At wavelengths above the semiconductor band gap absorption energy levels (in the long UVA and visible wavelengths), they are predominantly reflectors of light (up to 60% reflection) and non-absorbing. Titanium dioxide and zinc oxide provide UV protection primarily via absorption of UV radiation and not through significant reflection or scattering. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Elemental Mercury Oxidation over Fe-Ti-Mn Spinel: Performance, Mechanism, and Reaction Kinetics.

    PubMed

    Xiong, Shangchao; Xiao, Xin; Huang, Nan; Dang, Hao; Liao, Yong; Zou, Sijie; Yang, Shijian

    2017-01-03

    The design of a high-performance catalyst for Hg(0) oxidation and predicting the extent of Hg(0) oxidation are both extremely limited due to the uncertainties of the reaction mechanism and the reaction kinetics. In this work, Fe-Ti-Mn spinel was developed as a high-performance catalyst for Hg(0) oxidation, and the reaction mechanism and the reaction kinetics of Hg(0) oxidation over Fe-Ti-Mn spinel were studied. The reaction orders of Hg(0) oxidation over Fe-Ti-Mn spinel with respect to gaseous Hg(0) concentration and gaseous HCl concentration were approximately 1 and 0, respectively. Therefore, Hg(0) oxidation over Fe-Ti-Mn spinel mainly followed the Eley-Rideal mechanism (i.e., the reaction of gaseous Hg(0) with adsorbed HCl), and the rate of Hg(0) oxidation mainly depended on Cl(•) concentration on the surface. As H2O, SO2, and NO not only inhibited Cl(•) formation on the surface but also interfered with the interface reaction between gaseous Hg(0) and Cl(•) on the surface, Hg(0) oxidation over Fe-Ti-Mn spinel was obviously inhibited in the presence of H2O, SO2, and NO. Furthermore, the extent of Hg(0) oxidation over Fe-Ti-Mn spinel can be predicted according to the kinetic parameter kE-R, and the predicted result was consistent with the experimental result.

  6. Intestinal paracellular absorption is necessary to support the sugar oxidation cascade in nectarivorous bats.

    PubMed

    Rodriguez-Peña, Nelly; Price, Edwin R; Caviedes-Vidal, Enrique; Flores-Ortiz, Cesar M; Karasov, William H

    2016-03-01

    We made the first measurements of the capacity for paracellular nutrient absorption in intact nectarivorous bats. Leptonycteris yerbabuenae (20 g mass) were injected with or fed inert carbohydrate probes L-rhamnose and D(+)-cellobiose, which are absorbed exclusively by the paracellular route, and 3-O-methyl-D-glucose (3OMD-glucose), which is absorbed both paracellularly and transcellularly. Using a standard pharmacokinetic technique, we collected blood samples for 2 h after probe administration. As predicted, fractional absorption (f) of paracellular probes declined with increasing Mr in the order of rhamnose (f=0.71)>cellobiose (f=0.23). Absorption of 3OMD-glucose was complete (f=0.85; not different from unity). Integrating our data with those for glucose absorption and oxidation in another nectarivorous bat, we conclude that passive paracellular absorption of glucose is extensive in nectarivorous bat species, as in other bats and small birds, and necessary to support high glucose fluxes hypothesized for the sugar oxidation cascade.

  7. Research on filling process of fuel and oxidant during detonation based on absorption spectrum technology

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-12-01

    Research on detonation process is of great significance for the control optimization of pulse detonation engine. Based on absorption spectrum technology, the filling process of fresh fuel and oxidant during detonation is researched. As one of the most important products, H2O is selected as the target of detonation diagnosis. Fiber distributed detonation test system is designed to enable the detonation diagnosis under adverse conditions in detonation process. The test system is verified to be reliable. Laser signals at different working frequency (5Hz, 10Hz and 20Hz) are detected. Change of relative laser intensity in one detonation circle is analyzed. The duration of filling process is inferred from the change of laser intensity, which is about 100~110ms. The peak of absorption spectrum is used to present the concentration of H2O during the filling process of fresh fuel and oxidant. Absorption spectrum is calculated, and the change of absorption peak is analyzed. Duration of filling process calculated with absorption peak consisted with the result inferred from the change of relative laser intensity. The pulse detonation engine worked normally and obtained the maximum thrust at 10Hz under experiment conditions. The results are verified through H2O gas concentration monitoring during detonation.

  8. Microwave-induced activation of additional active edge sites on the MoS2 surface for enhanced Hg0 capture

    NASA Astrophysics Data System (ADS)

    Zhao, Haitao; Mu, Xueliang; Yang, Gang; Zheng, Chengheng; Sun, Chenggong; Gao, Xiang; Wu, Tao

    2017-10-01

    In recent years, significant effort has been made in the development of novel materials for the removal of mercury from coal-derived flue gas. In this research, microwave irradiation was adopted to induce the creation of additional active sites on the MoS2 surface. The results showed that Hg0 capture efficiency of the adsorbent containing MoS2 nanosheets being microwave treated was as high as 97%, while the sample prepared via conventional method only showed an efficiency of 94% in its first 180 min testing. After the adsorbent was treated by microwave irradiation for 3 more times, its mercury removal efficiency was still noticeably higher than that of the sample prepared via conventional method. Characterization of surface structure of the MoS2 containing material together with DFT study further revealed that the (001) basal planes of MoS2 crystal structure were cracked into (100) edge planes (with an angle of approximately 75°) under microwave treatment, which subsequently resulted in the formation of additional active edge sites on the MoS2 surface and led to the improved performance on Hg0 capture.

  9. Nanocrystalline titanium dioxide and magnesium oxide in vitro dermal absorption in human skin.

    PubMed

    van der Merwe, Deon; Tawde, Snehal; Pickrell, John A; Erickson, Larry E

    2009-01-01

    The dermal absorption potential of a nanocrystalline magnesium oxide (MgO) and titanium dioxide (TiO(2)) mixture in dermatomed human skin was assessed in vitro using Bronaugh-type flow-through diffusion cells. Nanocrystalline material was applied to the skin surface at a dose rate of 50 mg/cm(2) as a dry powder, as a water suspension, and as a water/surfactant (sodium lauryl sulfate) suspension, for 8 hours. Dermal absorption of nanocrystalline MgO and TiO(2) through human skin with intact, functional stratum corneum was not detectable under the conditions of this experiment.

  10. Parasitic Absorption Reduction in Metal Oxide-Based Transparent Electrodes: Application in Perovskite Solar Cells.

    PubMed

    Werner, Jérémie; Geissbühler, Jonas; Dabirian, Ali; Nicolay, Sylvain; Morales-Masis, Monica; Wolf, Stefaan De; Niesen, Bjoern; Ballif, Christophe

    2016-07-13

    Transition metal oxides (TMOs) are commonly used in a wide spectrum of device applications, thanks to their interesting electronic, photochromic, and electrochromic properties. Their environmental sensitivity, exploited for gas and chemical sensors, is however undesirable for application in optoelectronic devices, where TMOs are used as charge injection or extraction layers. In this work, we first study the coloration of molybdenum and tungsten oxide layers, induced by thermal annealing, Ar plasma exposure, or transparent conducting oxide overlayer deposition, typically used in solar cell fabrication. We then propose a discoloration method based on an oxidizing CO2 plasma treatment, which allows for a complete bleaching of colored TMO films and prevents any subsequent recoloration during following cell processing steps. Then, we show that tungsten oxide is intrinsically more resilient to damage induced by Ar plasma exposure as compared to the commonly used molybdenum oxide. Finally, we show that parasitic absorption in TMO-based transparent electrodes, as used for semitransparent perovskite solar cells, silicon heterojunction solar cells, or perovskite/silicon tandem solar cells, can be drastically reduced by replacing molybdenum oxide with tungsten oxide and by applying a CO2 plasma pretreatment prior to the transparent conductive oxide overlayer deposition.

  11. Air-surface exchange of Hg0 measured by collocated micrometeorological and enclosure methods - Part 1: Data comparability and method characteristics

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Sommar, J.; Lin, C.-J.; Feng, X.

    2014-09-01

    Reliable quantification of air-biosphere exchange flux of elemental mercury vapor (Hg0) is crucial for understanding global biogeochemical cycle of mercury. However, there has not been a standard analytical protocol for flux quantification, and little attention has been devoted to characterize the temporal variability and comparability of fluxes measured by different methods. In this study, we deployed a collocated set of micro-meteorological (MM) and enclosure measurement systems to quantify Hg0 flux over bare soil and low standing crop in an agricultural field. The techniques include relaxed eddy accumulation (REA), modified Bowen-ratio (MBR), aerodynamic gradient (AGM) as well as dynamic flux chambers of traditional (TDFC) and novel (NDFC) designs. The five systems and their measured fluxes were cross-examined with respect to magnitude, temporal trend and sensitivity to environmental variables. Fluxes measured by the MM and DFC methods showed distinct temporal trends. The former exhibited a highly dynamic temporal variability while the latter had much gradual temporal features. The diurnal characteristics reflected the difference in the fundamental processes driving the measurements. The correlations between NDFC and TDFC fluxes and between MBR and AGM fluxes were significant (R > 0.8, p < 0.05), but the correlation between DFC and MM instantaneous fluxes were from weak to moderate (R = 0.1-0.5). Statistical analysis indicated that the median of turbulent fluxes estimated by the three independent MM-techniques were not significantly different. Cumulative flux measured by TDFC is considerably lower (42% of AGM and 31% of MBR fluxes) while those measured by NDFC, AGM and MBR were similar (< 10% difference). This implicates that the NDFC technique, which accounts for internal friction velocity, effectively bridged the gap in measured Hg0 flux compared to MM techniques. Cumulated flux measured by REA was ~60% higher than the gradient-based fluxes. Environmental

  12. Inside and Outside: X-ray Absorption Spectroscopy Mapping of Chemical Domains in Graphene Oxide.

    PubMed

    De Jesus, Luis R; Dennis, Robert V; Depner, Sean W; Jaye, Cherno; Fischer, Daniel A; Banerjee, Sarbajit

    2013-09-19

    The oxidative chemistry of graphite has been investigated for over 150 years and has attracted renewed interest given the importance of exfoliated graphene oxide as a precursor to chemically derived graphene. However, the bond connectivities, steric orientations, and spatial distribution of functional groups remain to be unequivocally determined for this highly inhomogeneous nonstoichiometric material. Here, we demonstrate the application of principal component analysis to scanning transmission X-ray microscopy data for the construction of detailed real space chemical maps of graphene oxide. These chemical maps indicate very distinct functionalization motifs at the edges and interiors and, in conjunction with angle-resolved near-edge X-ray absorption fine structure spectroscopy, enable determination of the spatial location and orientations of functional groups. Chemical imaging of graphene oxide provides experimental validation of the modified Lerf-Klinowski structural model. Specifically, we note increased contributions from carboxylic acid moieties at edge sites with epoxide and hydroxyl species dominant within the interior domains.

  13. The effect of the material surface oxidation on laser light absorption

    NASA Astrophysics Data System (ADS)

    Hruška, M.; Tesař, J.; Vostřák, M.; Smazalová, E.

    2017-02-01

    This study examines the influence of surface condition on its interaction with a laser beam. The relation was tested on milled C45 steel samples with a different width of created oxide layer. The milled surface with roughness 1.6 was modified by the creation of oxide layer. The oxide layers were created by solid state pulsed laser with scanning optics. The modified samples were processed by high power diode laser with a wide spread beam. The surface temperature was measured by the thermal camera during this process. The surface hardness and hardness depth profile were measured for all modified samples and the emissivity values were measured. The effect of pretreatment on hardness and microstructure will be discussed. The goal of this paper is to describe the relation between the parameters of created oxide layer and its effect on laser beam absorption.

  14. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    NASA Astrophysics Data System (ADS)

    Karthikeyan, B.; Udayabhaskar, R.; Hariharan, S.

    2016-07-01

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  15. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    SciTech Connect

    Karthikeyan, B. Hariharan, S.; Udayabhaskar, R.

    2016-07-11

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  16. Development of a mechanistically based computer simulation of nitrogen oxide absorption in packed towers

    SciTech Connect

    Counce, R.M.

    1981-01-01

    A computer simulation for nitrogen oxide (NO/sub x/) scrubbing in packed towers was developed for use in process design and process control. This simulation implements a mechanistically based mathematical model, which was formulated from (1) an exhaustive literature review; (2) previous NO/sub x/ scrubbing experience with sieve-plate towers; and (3) comparisons of sequential sets of experiments. Nitrogen oxide scrubbing is characterized by simultaneous absorption and desorption phenomena: the model development is based on experiments designed to feature these two phenomena. The model was then successfully tested in experiments designed to put it in jeopardy.

  17. X-ray absorption spectroscopy studies of electrochemically deposited thin oxide films.

    SciTech Connect

    Balasubramanian, M.

    1998-06-02

    We have utilized ''in situ'' X-ray Absorption Fine Structure Spectroscopy to investigate the structure and composition of thin oxide films of nickel and iron that have been prepared by electrodeposition on a graphite substrate from aqueous solutions. The films are generally disordered. Structural information has been obtained from the analysis of the data. We also present initial findings on the local structure of heavy metal ions, e.g. Sr and Ce, incorporated into the electrodeposited nickel oxide films. Our results are of importance in a number of technological applications, among them, batteries, fuel cells, electrochromic and ferroelectric materials, corrosion protection, as well as environmental speciation and remediation.

  18. Intrinsic nature of visible-light absorption in amorphous semiconducting oxides

    SciTech Connect

    Kang, Youngho; Song, Hochul; Han, Seungwu; Nahm, Ho-Hyun; Jeon, Sang Ho; Cho, Youngmi

    2014-03-01

    To enlighten microscopic origin of visible-light absorption in transparent amorphous semiconducting oxides, the intrinsic optical property of amorphous InGaZnO{sub 4} is investigated by considering dipole transitions within the quasiparticle band structure. In comparison with the crystalline InGaZnO{sub 4} with the optical gap of 3.6 eV, the amorphous InGaZnO{sub 4} has two distinct features developed in the band structure that contribute to significant visible-light absorption. First, the conduction bands are down-shifted by 0.55 eV mainly due to the undercoordinated In atoms, reducing the optical gap between extended states to 2.8 eV. Second, tail states formed by localized oxygen p orbitals are distributed over ∼0.5 eV near the valence edge, which give rise to substantial subgap absorption. The fundamental understanding on the optical property of amorphous semiconducting oxides based on underlying electronic structure will pave the way for resolving instability issues in recent display devices incorporating the semiconducting oxides.

  19. HPLC analysis of in vivo intestinal absorption and oxidative metabolism of salicylic acid in the rat.

    PubMed

    Kuzma, Mónika; Nyúl, Eszter; Mayer, Mátyás; Fischer, Emil; Perjési, Pál

    2016-12-01

    In vivo absorption and oxidative metabolism of salicylic acid in rat small intestine was studied by luminal perfusion experiment. Perfusion through the lumen of proximal jejunum with isotonic medium containing 250 μm sodium salicylate was carried out. Absorption of salicylate was measured by a validated HPLC-DAD method which was evaluated for a number of validation characteristics (specificity, repeatability and intermediate precision, limit of detection, limit of quantification, linearity and accuracy). The method was linear over the concentration range 0.5-50 μg/mL. After liquid-liquid extraction of the perfusion samples oxidative biotransformation of salicylate was also investigated by HPLC-MS. The method was linear over the concentration range 0.25-5.0 μg/mL. Two hydroxylated metabolites of salicylic acid (2,5-dihydroxybenzoic acid and 2,3-dihydroxybenzoic acid) were detected and identified. The mean recovery of extraction was 72.4% for 2,3-DHB, 72.5% for 2,5-DHB and 50.1% for salicylic acid, respectively. The methods were successfully applied to investigate jejunal absorption and oxidative metabolism of sodium salicylate in experimental animals. The methods provide analytical background for further metabolic studies of salycilates under modified physiological conditions.

  20. ULTRAVIOLET ABSORPTION SPECTRUM OF NITROUS OXIDE AS FUNCTION OF TEMPERATURE AND ISOTOPIC SUBSTITUTION

    SciTech Connect

    Selwyn, G.S.; Johnston, H.S.

    1980-07-01

    The ultraviolet absorption spectra of nitrous oxide and its {sup 15}N isotopes over the wavelength range 197 to 172 nm and between 150 and 500 K show a weak continuous absorption and a pattern of diffuse banding that became pronounced at higher temperatures. The temperature dependence of the absorption spectrum results from the activation of the n{sub 2}{double_prime} bending mode. Deconvolution of the data shows that absorption by molecules in the (010) vibrational mode results in a spectrum of vibrational bands superimposed on a continuum. A weaker and nearly continuous spectrum results from the ultraviolet absorption by molecules in the (000) vibrational mode. Analysis of the structuring indicates n{sub 2}{double_prime} = (490 {+-} 10) cm{sup -1}. No rotational structure can be observed. Measurement of the n{sub 2}{double_prime} isotope shift is used to identify the quantum number of the upper state vibrational levels. Normal coordinate analysis of the excited state is used to determine a self-consistent set of molecular parameters: bond angle (115{sup o}), the values of n{sub 1}{prime} and n{sub 3}{prime} (1372 and 1761 cm{sup -1}, respectively), and the force constants of the upper state. It is suggested that the transitions observed are {sup 1}S{sup -}({sup 1}A{sup -}) {l_arrow} X- {sup 1}{sup +} and {sup 1}D {l_arrow} {tilde X} {sup 1}S{sup +}.

  1. Observation of confinement effects through liner and nonlinear absorption spectroscopy in cuprous oxide

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    Cuprous oxide nano clusters, micro cubes and micro particles were successfully synthesized by reducing copper (II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction studies revealed the formation of pure single phase cubic. Raman spectrum shows the inevitable presence of CuO on the surface of the Cu2O powders which may have an impact on the stability of the phase. Transmission electron microscopy (TEM) data revealed that the morphology evolves from nanoclusters to micro cubes and micro particles by increasing the concentration of NaOH. Linear optical measurements show that the absorption peak maximum shifts towards red with changing morphology from nano clusters to micro cubes and micro particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm, 6 ns laser pulses. Samples exhibited saturable as well as reverse saturable absorption. The results show that the transition from SA to RSA is ascribed to excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Due to confinement effects (enhanced band gap) we observed enhanced nonlinear absorption coefficient (βeff) in the case of nano-clusters compared to their micro-cubes and micro-particles.

  2. Investigation on binding of nitric oxide to horseradish peroxidase by absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Qiang, Li; Zhu, Shuhua; Ma, Hongmei; Zhou, Jie

    2010-01-01

    Binding of nitric oxide to horseradish peroxidase (HRP) has been investigated by absorption spectrometry in 0.2 M anaerobic phosphate buffer solution (pH 7.4). Based on this binding equilibrium, a model equation for evaluating the binding constant of nitric oxide to HRP is developed and the binding constant is calculated to be (1.55 ± 0.06) × 10 4 M -1, indicating that HRP can form a stable complex with nitric oxide. The type of inhibition by nitric oxide is validated on the basis of studying initial reaction rates of HRP-catalyzed oxidation of guaiacol in the presence of hydrogen peroxide and nitric oxide. The inhibition mechanism is found to follow an apparent non-competitive inhibition by Lineweaver-Burk method. Based on this kinetic mechanism, the binding constant is also calculated to be (5.22 ± 0.06) × 10 4 M -1. The values of the binding constant determined by the two methods are almost identical. The non-competitive inhibition model is also applicable to studying the effect of nitric oxide on other metalloenzymes, which catalyze the two-substrate reaction with the "ping-pong" mechanism.

  3. A comparison of zinc sulfate and oxide absorption in humans using an oral zinc tolerance test

    SciTech Connect

    English-Westcott, J.L.; Hambidge, K.M.; Ellenbogen, L. Lederle Labs., Pearl River, NY )

    1991-03-15

    The objective of this study was to compare the absorption of zinc from zinc sulfate and zinc oxide, two compounds that are used frequently for zinc supplementation. Absorption of zinc was estimated by an oral zinc tolerance test. At three to five day intervals, each of 16 subjects received either 40 mg of zinc as sulfate, 40 mg of zinc as oxide or 80 ml of water alone. These were administered in a random order, at 0700 hours after a ten hour fast. Plasma zinc was measured at 0, 1, 2, 3, 4, 5, and 6 hours. The areas under the curve were compared in three ways: actual mean plasma zinc values, mean change from the baseline in plasma zinc values, and plasma zinc values after subtracting the control values. The peak plasma zinc, mean {plus minus} SD, occurred two hours after ingestion of the capsules. No increase in plasma zinc values occurred during the control treatment. No significant difference was observed between the response to zinc oxide and zinc sulfate, although both were significantly different from the control treatment. It is concluded that equivalent doses of zinc sulfate and zinc oxide can be used to administer zinc supplementation.

  4. Direct Oxidative Damage of Naked DNA Generated upon Absorption of UV Radiation by Nucleobases.

    PubMed

    Gomez-Mendoza, Miguel; Banyasz, Akos; Douki, Thierry; Markovitsi, Dimitra; Ravanat, Jean-Luc

    2016-10-06

    It has been shown that in addition to formation of pyrimidine dimers, UV irradiation of DNA in the absence of photosensitizer also induces formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine, but the mechanism of formation of that oxidized base has not been clearly established. In the present study, we provide an unambiguous demonstration that absorption of UVC and UVB radiation by the nucleobases induces DNA oxidation via a direct process (one-electron oxidation) and not singlet oxygen. Evidence arose from the fact that polyamine-guanine adducts that are specifically produced through the transient formation of guanine radical cation are generated following UV irradiation of DNA in the presence of a polyamine even in the absence of any photosensitizer.

  5. Titanium-silicon oxide film structures for polarization-modulated infrared reflection absorption spectroscopy

    PubMed Central

    Dunlop, Iain E.; Zorn, Stefan; Richter, Gunther; Srot, Vesna; Kelsch, Marion; van Aken, Peter A.; Skoda, Maximilian; Gerlach, Alexander; Spatz, Joachim P.; Schreiber, Frank

    2010-01-01

    We present a titanium-silicon oxide film structure that permits polarization modulated infrared reflection absorption spectroscopy on silicon oxide surfaces. The structure consists of a ~6 nm sputtered silicon oxide film on a ~200 nm sputtered titanium film. Characterization using conventional and scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy and X-ray reflectometry is presented. We demonstrate the use of this structure to investigate a selectively protein-resistant self-assembled monolayer (SAM) consisting of silane-anchored, biotin-terminated poly(ethylene glycol) (PEG). PEG-associated IR bands were observed. Measurements of protein-characteristic band intensities showed that this SAM adsorbed streptavidin whereas it repelled bovine serum albumin, as had been expected from its structure. PMID:20418963

  6. FORMATION OF REACTIVE GASEOUS MERCURY IN THE ARCTIC: EVIDENCE OF OXIDATION OF HG0 TO GAS-PHASE HG-II COMPOUNDS AFTER ARCTIC SUNRISE

    EPA Science Inventory

    We have measured total gaseous mercury concentrations (Hgo) at Point Barrow, Alaska since September 1998 in an effort to determine the geographic extent and reaction mechanism of the so-called mercury depletion events (MDE) previously reported in the high Arctic at Alert, Canad...

  7. FORMATION OF REACTIVE GASEOUS MERCURY IN THE ARCTIC: EVIDENCE OF OXIDATION OF HG0 TO GAS-PHASE HG-II COMPOUNDS AFTER ARCTIC SUNRISE

    EPA Science Inventory

    We have measured total gaseous mercury concentrations (Hgo) at Point Barrow, Alaska since September 1998 in an effort to determine the geographic extent and reaction mechanism of the so-called mercury depletion events (MDE) previously reported in the high Arctic at Alert, Canad...

  8. X-ray absorption spectroscopy characterization of embedded and extracted nano-oxides

    SciTech Connect

    Stan, Tiberiu; Sprouster, David J.; Ofan, Avishai; Odette, G. Robert; Ecker, Lynne E.; Charit, Indrajit

    2016-12-29

    Here, the chemistries and structures of both embedded and extracted Ysingle bondTisingle bondO nanometer-scale oxides in a nanostructured ferritic alloy (NFA) were probed by x-ray absorption spectroscopy (XAS). Y2Ti2O7 is the primary embedded phase, while the slightly larger extracted oxides are primarily Y2TiO5. Analysis of the embedded nano-oxides is difficult partly due to the multiple Ti environments associated with different oxides and those still residing in matrix lattice sites. Thus, bulk extraction followed by selective filtration was used to isolate the larger Y2TiO5 oxides for XAS, while the smaller predominant embedded phase Y2Ti2O7 oxides passed through the filters and were analyzed using the log-ratio method.

  9. X-ray absorption spectroscopy from H-passivated porous Si and oxidized Si nanocrystals

    SciTech Connect

    Schuppler, S.; Marcus, M.A.; Friedman, S.L.

    1994-11-01

    Quantum confinement in nanoscale Si structures is widely believed to be responsible for the visible luminescence observed from anodically etched porous silicon (por-Si), but little is known about the actual size or shape of these structures. Extended x-ray absorption fine structure data from a wide variety of por-Si samples show significantly reduced average Si coordination numbers due to the sizable contribution of surface-coordinated H. (The IUSI ratios, as large as 1.2, were independently confirmed by ir-absorption and {alpha}-recoil measurements.) The Si coordinations imply very large surface/volume ratios, enabling the average Si structures to be identified as crystalline particles (not wires) whose dimensions are typically <15 {Angstrom}. Comparison of the size-dependent peak luminescence energies with those of oxidized Si nanocrystals, whose shapes are known, shows remarkable agreement. Furthermore, near-edge x-ray absorption fine structure measurements of the nanocrystals shows the outer oxide and interfacial suboxide layers to be constant over a wide range of nanocrystal sizes. The combination of these results effectively rules out surface species as being responsible for the observed visible luminescence in por-Si, and strongly supports quantum confinement as the dominant mechanism occurring in Si particles which are substantially smaller than previously reported or proposed.

  10. A study on optical absorption and constants of doped poly(ethylene oxide)

    NASA Astrophysics Data System (ADS)

    Al-Faleh, R. S.; Zihlif, A. M.

    2011-05-01

    Thin films of polymer electrolyte based on poly(ethylene oxide) doped with sodium iodide (NaI) were prepared using the solution cast method. The films obtained have average thickness of 70 μm and different NaI concentrations. Absorption and reflectance spectra of UV-radiation were studied in the wavelength range 300-800 nm. The optical results were analyzed in terms of absorption formula for non-crystalline materials. The optical energy gap and the basic optical constants, refractive index, and dielectric constants of the prepared films have been investigated and showed a clear dependence on the NaI concentration. The interpreted absorption mechanism is a direct electron transition. The observed optical energy gap for neat poly(ethylene oxide) is about 2.6 eV, and decreases to a value 2.36 eV for the film of 15 wt% NaI content. It was found that the calculated refractive index and the dielectric constants of the polymer electrolyte thin films increase with NaI content. Models were used to describe the dependences of the dielectric constant on the NaI concentration, and the refractive index on the incident photon energy.

  11. Elemental mercury (Hg(0)) in air and surface waters of the Yellow Sea during late spring and late fall 2012: concentration, spatial-temporal distribution and air/sea flux.

    PubMed

    Ci, Zhijia; Wang, Chunjie; Wang, Zhangwei; Zhang, Xiaoshan

    2015-01-01

    The Yellow Sea in East Asia receives great Hg input from regional emissions. However, Hg cycling in this marine system is poorly investigated. In late spring and late fall 2012, we determined gaseous elemental Hg (GEM or Hg(0)) in air and dissolved gaseous Hg (DGM, mainly Hg(0)) in surface waters to explore the spatial-temporal variations of Hg(0) and further to estimate the air/sea Hg(0) flux in the Yellow Sea. The results showed that the GEM concentrations in the two cruises were similar (spring: 1.86±0.40 ng m(-3); fall: 1.84±0.50 ng m(-3)) and presented similar spatial variation pattern with elevated concentrations along the coast of China and lower concentrations in the open ocean. The DGM concentrations of the two cruises were also similar with 27.0±6.8 pg L(-1) in the spring cruise and 28.2±9.0 pg L(-1) in the fall cruise and showed substantial spatial variation. The air/sea Hg(0) fluxes in the spring cruise and fall cruise were estimated to be 1.06±0.86 ng m(-2) h(-1) and 2.53±2.12 ng m(-2) h(-1), respectively. The combination of this study and our previous summer cruise showed that the summer cruise presented enhanced values of GEM, DGM and air/sea Hg(0) flux. The possible reason for this trend was that high solar radiation in summer promoted Hg(0) formation in seawater, and the high wind speed during the summer cruise significantly increased Hg(0) emission from sea surface to atmosphere and subsequently enhanced the GEM levels.

  12. An x-ray absorption spectroscopy study of Mo oxidation in Pb at elevated temperatures

    SciTech Connect

    Liu, Shanshan; Olive, Daniel; Terry, Jeff; Segre, Carlo U.

    2009-06-30

    The corrosion of fuel cladding and structural materials by lead and lead-bismuth eutectic in the liquid state at elevated temperatures is an issue that must be considered when designing advanced nuclear systems and high-power spallation neutron targets. In this work, lead corrosion studies of molybdenum were performed to investigate the interaction layer as a function of temperature by X-ray absorption spectroscopy. In situ X-ray absorption measurements on a Mo substrate with a 3-6 {micro}m layer of Pb deposited by thermal evaporation were performed at temperatures up to 900 C and at a 15{sup o} angle to the incident X-rays. The changes in the local atomic structure of the corrosion layer are visible in the difference extended X-ray absorption fine structure and the linear combination fitting of the X-ray absorption near-edge structure to as-deposited molybdenum sample and molybdenum oxide (MoO{sub 2} and MoO{sub 3}) standards. The data are consistent with the appearance of MoO{sub 3} in an intermediate temperature range (650-800 C) and the more stable MoO{sub 2} phase dominating at high and low temperatures.

  13. Measurement of exhaled nitric oxide in beef cattle using tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Roller, C. B.; Holland, B. P.; McMillen, G.; Step, D. L.; Krehbiel, C. R.; Namjou, K.; McCann, P. J.

    2007-03-01

    Measurement of nitric oxide (NO) in the expired breath of crossbred calves received at a research facility was performed using tunable diode laser absorption spectroscopy. Exhaled NO (eNO) concentrations were measured using NO absorption lines at 1912.07 cm-1 and employing background subtraction. The lower detection limit and measurement precision were determined to be ˜330 parts in 1012 per unit volume. A custom breath collection system was designed to collect lower airway breath of spontaneously breathing calves while in a restraint chute. Breath was collected and analyzed from calves upon arrival and periodically during a 42 day receiving period. There was a statistically significant relationship between eNO, severity of bovine respiratory disease (BRD) in terms of number of times treated, and average daily weight gain over the first 15 days postarrival. In addition, breathing patterns and exhaled CO2 showed a statistically significant relationship with BRD morbidity.

  14. Fuel-rich n-heptane oxidation: A shock tube and laser absorption study

    DOE PAGES

    Loparo, Zachary E.; Lopez, Joseph G.; Neupane, Sneha; ...

    2017-07-29

    Here the chemical kinetics of n-heptane (n-C7H16) – an important reference compound for real fuels – oxidation are well studied at stoichiometric and lean conditions. However, there is only limited information on the n-heptane chemical kinetics in fuel-rich combustion. In order to verify the accuracy of chemical kinetic models at these conditions, the oxidation of rich n-heptane mixtures has been investigated. Combustion of n-C7H16/O2/Ar mixtures at equivalence ratios, φ, of 2.0 and 3.0 behind reflected shock waves has been studied at temperatures ranging from 1066 to 1502 K and at pressures ranging from 1.4 to 6.2 atm. Reaction progress wasmore » monitored by recording pressure and absorption time-histories of ethylene (C2H4) and n-heptane at a location 2 cm from the endwall of a 14-cm inner diameter shock tube. Ethylene and n-heptane absorption time-histories were measured, respectively, using absorption spectroscopy at 10.532 μm from a tunable CO2 laser and at around 3.4 μm from a continuous wave distributed feedback interband cascade laser (ICL). The measured absorption time-histories were compared with modeled predictions from the Lawrence Livermore National Lab (LLNL) detailed n-heptane reaction mechanism. To the best of our knowledge, current data are the first time-resolved n-heptane and ethylene concentration measurements conducted in a shock tube at these conditions.« less

  15. Excess conductivity analysis for Tl 0.8Hg 0.2Ba 2Ca 2Cu 3O 9-δ substituted by Sm and Yb

    NASA Astrophysics Data System (ADS)

    Abou-Aly, A. I.; Awad, R.; Ibrahim, I. H.; Abdeen, W.

    2009-02-01

    A series of superconducting samples of type Tl 0.8Hg 0.2Ba 2Ca 2- xR xCu 3O 9-δ, where R=Sm and Yb with 0≤x≤0.15, were prepared in a sealed quartz tube via a solid-state reaction technique. The electrical resistivity ρ(T) was measured as a function of temperature using the conventional dc four-probe technique. The fluctuation conductivity Δσ, above the superconducting transition temperature Tc, was analyzed as a function of temperature using the Aslamazov and Larkin model. It exhibits five different fluctuation regions namely critical (cr), three-dimensional (3D), two-dimensional (2D), one-dimensional (1D) and short-wave (sw). The zero-temperature coherence length, the effective layer thickness of the two dimensional system, the wire cross-sectional area for one dimensional systems and the inter-layer coupling strength were estimated as a function of the substitution-content x. Furthermore, the thermodynamics critical field, lower critical magnetic field, upper critical magnetic field, critical current density and Fermi energy are calculated from the Ginzburg number.

  16. Synthesis, structural characterization and dielectric properties of (C6H9N2)2(Hg0.75Cd0.25)Cl4 compound.

    PubMed

    Elwej, R; Hamdi, M; Hannachi, N; Hlel, F

    2014-01-01

    The present paper undertakes the study of a title compound whose structure is (C6H9N2)2(Hg0.75Cd0.25)Cl4. The centrosymmetric compound crystallizes in the triclinic space group P-1, with a=7.580(7) Å; b=8.572(8) Å; c=15.433(13) Å; α=84.49(5)°; β=89.13(5)°; γ=68.53(5)° and Z=2. The crystal structure was solved and refined to R (int)=0.0212 using 7932 independent reflections. The atomic arrangement shows an alternation of organic and inorganic layers. Between layers, the cohesion is performed via N-H⋯Cl hydrogen bonding, yet in the organic sheets, cations are further connected to classical π-π stacking. The Infrared and Raman spectra of this compound reported from 400 to 4000 cm(-1) confirmed the presence of the principal bands assigned to the internal modes of organic cation. Solid-state (13)C and (111)Cd CP-MAS-NMR spectra are reported. The dielectric study of this compound has been measured, in order to determine the σ(d.c) conductivity which is thermally activated with activation energy about 1.5 eV.

  17. Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion.

    PubMed

    Zhang, Xiao-Liang; Liu, Zhi-Bo; Li, Xiao-Chun; Ma, Qiang; Chen, Xu-Dong; Tian, Jian-Guo; Xu, Yan-Fei; Chen, Yong-Sheng

    2013-03-25

    The nonlinear refraction (NLR) properties of graphene oxide (GO) in N, N-Dimethylformamide (DMF) was studied in nanosecond, picosecond and femtosecond time regimes by Z-scan technique. Results show that the dispersion of GO in DMF exhibits negative NLR properties in nanosecond time regime, which is mainly attributed to transient thermal effect in the dispersion. The dispersion also exhibits negative NLR in picosecond and femtosecond time regimes, which are arising from sp(2)- hybridized carbon domains and sp(3)- hybridized matrix in GO sheets. To illustrate the relations between NLR and nonlinear absorption (NLA), NLA properties of the dispersion were also studied in nanosecond, picosecond and femtosecond time regimes.

  18. Metal release in metallothioneins induced by nitric oxide: X-ray absorption spectroscopy study.

    PubMed

    Casero, Elena; Martín-Gago, José A; Pariente, Félix; Lorenzo, Encarnación

    2004-12-01

    Metallothioneins (MTs) are low molecular weight proteins that include metal ions in thiolate clusters. The capability of metallothioneins to bind different metals has suggested their use as biosensors for different elements. We study here the interaction of nitric oxide with rat liver MTs by using in situ X-ray absorption spectroscopy techniques. We univocally show that the presence of NO induces the release of Zn atoms from the MT structure to the solution. Zn ions transform in the presence of NO from a tetrahedral four-fold coordinated environment in the MT into a regular octahedral six-fold coordinated state, with interatomic distances compatible with those of Zn solvated in water.

  19. Ultrafast relaxation dynamics of nitric oxide synthase studied by visible broadband transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S.

    2017-09-01

    Ultrafast dynamics of endothelial nitric oxide synthase (eNOS) oxygenase domain was studied by transient absorption spectroscopy pumping at Soret band. The broadband visible probe spectrum has visualized the relaxation dynamics from the Soret band to Q-band and charge transfer (CT) band. Supported by two-dimensional correlation spectroscopy, global fitting analysis has successfully concluded the relaxation dynamics from the Soret band to be (1) electronic transition to Q-band (0.16 ps), (2) ligand dissociation and CT (0.94 ps), (3) relaxation of the CT state (4.0 ps), and (4) ligand rebinding (59 ps).

  20. Analytical modeling and numerical simulation of P+-Hg0.69 Cd0.31Te/n-Hg0.78Cd0.22Te/CdZnTe heterojunction photodetector for a long-wavelength infrared free space optical communication system

    NASA Astrophysics Data System (ADS)

    Dwivedi, A. D. D.

    2011-08-01

    In this paper an analytical modeling and 2D numerical simulation of P+-Hg0.69Cd0.31Te/ n-Hg0.78Cd0.22Te/CdZnTe single heterojunction photodetector using the commercially available atlasTM package from SILVACO® International for long-wavelength free space optical communication has been reported. The photodetector has been studied with respect to energy band diagram, electric field profile, doping profile, dark current, resistance area product, quantum efficiency, spectral response, responsivity, and detectivity by an analytical method using closed form equations. The results obtained on the basis of the analytical model have been compared and contrasted with the simulated results using atlasTM. The photodetector exhibits high values of quantum efficiency ˜80%, responsivity ˜6.75 A/W, specific detectivity ˜2.25 × 1011 mHz1/2W-1 at wavelength10.6 μm, and dark current of the order of 10-11 A. The estimated noise equivalent power (NEP) is of the order of 1 × 10-17 W.

  1. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.

    PubMed

    Li, Hailong; Wu, Chang-Yu; Li, Ying; Zhang, Junying

    2011-09-01

    CeO(2)-TiO(2) (CeTi) catalysts synthesized by an ultrasound-assisted impregnation method were employed to oxidize elemental mercury (Hg(0)) in simulated low-rank (sub-bituminous and lignite) coal combustion flue gas. The CeTi catalysts with a CeO(2)/TiO(2) weight ratio of 1-2 exhibited high Hg(0) oxidation activity from 150 to 250 °C. The high concentrations of surface cerium and oxygen were responsible for their superior performance. Hg(0) oxidation over CeTi catalysts was proposed to follow the Langmuir-Hinshelwood mechanism whereby reactive species from adsorbed flue gas components react with adjacently adsorbed Hg(0). In the presence of O(2), a promotional effect of HCl, NO, and SO(2) on Hg(0) oxidation was observed. Without O(2), HCl and NO still promoted Hg(0) oxidation due to the surface oxygen, while SO(2) inhibited Hg(0) adsorption and subsequent oxidation. Water vapor also inhibited Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. However, the combination of SO(2) and NO without HCl also resulted in high Hg(0) oxidation efficiency. This superior oxidation capability is advantageous to Hg(0) oxidation in low-rank coal combustion flue gas with low HCl concentration.

  2. Experimental study on the absorption behaviors of gas phase bivalent mercury in Ca-based wet flue gas desulfurization slurry system.

    PubMed

    Wang, Yuejun; Wang, Yunjun; Liu, Yue; Wu, Zhongbiao; Mo, Jiansong; Cheng, Bin

    2010-11-15

    Gas phase oxidation and catalytic oxidation of element mercury (Hg(0)) to bivalent mercury (Hg(2+)) were proposed to improve the mercury removal efficiency in the wet flue gas desulfurization (WFGD) system. However, the re-emission of Hg(0), generated by the reduction of absorbed Hg(2+), would lead to a damping of the total mercury removal efficiency. In this paper, the absorption and reduction behaviors of bivalent mercury in the Ca-based WFGD slurry were evaluated in our purpose-built device. According to our experimental results, the slurry chemistry (such as CaSO(3) content, SO(4)(2-), Cl(-) and pH value) had a strong influence on the reduction of absorbed bivalent mercury. And the inlet concentrations of SO(2) and O(2) contribute little to the mercury absorption. Within the typical pH value range of 4.5-5.5, about 70% of inlet bivalent mercury was converted to Hg(0). The re-emission of Hg would be greatly retarded with the increase of [SO(4)(2-)] due to the formation of HgSO(4) or Hg(3)O(2)SO(4). Moreover, it was found that Cl(-) would also inhibit the reduction of bivalent mercury through the ligands reactions between Cl(-) and Hg(2+).

  3. Sensing the dynamics of oxidative stress using enhanced absorption in protein-loaded random media.

    PubMed

    Suárez, Guillaume; Santschi, Christian; Slaveykova, Vera I; Martin, Olivier J F

    2013-12-09

    Reactive oxygen species play a key role in cell signalling and oxidative stress mechanisms, therefore, sensing their production by living organisms is of fundamental interest. Here we describe a novel biosensing method for extracellular detection of endogenous hydrogen peroxide (H2O2). The method is based on the enhancement of the optical absorption spectrum of the hemoprotein cytochrome c when loaded into a highly scattering random medium. Such a configuration enables, in contrast to existing techniques, non-invasive and dynamic detection of the oxidation of cyt c in the presence of H2O2 with unprecedented sensitivity. Dynamic information on the modification of the cell oxidative status of Chlamydomonas reinhardtii, an aquatic green algae, was obtained under oxidative stress conditions induced by the presence of trace concentrations of Cd(II). Furthermore, the dynamics of H2O2 production was investigated under different lighting conditions confirming the impact of Cd(II) on the photosynthetic activity of those phytoplanktonic cells.

  4. Sensing the dynamics of oxidative stress using enhanced absorption in protein-loaded random media

    PubMed Central

    Suárez, Guillaume; Santschi, Christian; Slaveykova, Vera I.; Martin, Olivier J. F.

    2013-01-01

    Reactive oxygen species play a key role in cell signalling and oxidative stress mechanisms, therefore, sensing their production by living organisms is of fundamental interest. Here we describe a novel biosensing method for extracellular detection of endogenous hydrogen peroxide (H2O2). The method is based on the enhancement of the optical absorption spectrum of the hemoprotein cytochrome c when loaded into a highly scattering random medium. Such a configuration enables, in contrast to existing techniques, non-invasive and dynamic detection of the oxidation of cyt c in the presence of H2O2 with unprecedented sensitivity. Dynamic information on the modification of the cell oxidative status of Chlamydomonas reinhardtii, an aquatic green algae, was obtained under oxidative stress conditions induced by the presence of trace concentrations of Cd(II). Furthermore, the dynamics of H2O2 production was investigated under different lighting conditions confirming the impact of Cd(II) on the photosynthetic activity of those phytoplanktonic cells. PMID:24316586

  5. Reduced Graphene Oxide Functionalized with Cobalt Ferrite Nanocomposites for Enhanced Efficient and Lightweight Electromagnetic Wave Absorption

    PubMed Central

    Ding, Yi; Liao, Qingliang; Liu, Shuo; Guo, Huijing; Sun, Yihui; Zhang, Guangjie; Zhang, Yue

    2016-01-01

    In this paper, reduced graphene oxide functionalized with cobalt ferrite nanocomposites (CoFe@rGO) as a novel type of electromagnetic wave (EW) absorbing materials was successfully prepared by a three-step chemical method including hydrothermal synthesis, annealing process and mixing with paraffin. The effect of the sample thickness and the amount of paraffin on the EW absorption properties of the composites was studied, revealing that the absorption peaks shifted toward the low frequency regions with the increasing thickness while other conditions had little or no effect. It is found that the CoFe@rGO enhanced both dielectric losses and magnetic losses and had the best EW absorption properties and the wide wavelength coverage of the hole Ku-Band when adding only 5wt% composites to paraffin. Therefore, CoFe@rGO could be used as an efficient and lightweight EW absorber. Compared with the research into traditional absorbing materials, this figures of merit are typically of the same order of magnitude, but given the lightweight nature of the material and the high level of compatibility with mass production standards, making use of CoFe@rGO as an electromagnetic absorber material shows great potential for real product applications. PMID:27587001

  6. Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers

    PubMed Central

    Ameer, Shahid; Gul, Iftikhar Hussain

    2016-01-01

    The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands). Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO) sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands). The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30–58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands (< −10 dB from 1 MHz to 3 GHz). This excellent microwave absorbing property induced by graphene sheet coupling shows application of these materials with absorption bandwidth which is tailored such that these could be used for low frequency. Previously, these were used for high frequency absorptions (typically > 4 GHz) with limited selective bandwidth. PMID:27270944

  7. Reduced Graphene Oxide Functionalized with Cobalt Ferrite Nanocomposites for Enhanced Efficient and Lightweight Electromagnetic Wave Absorption.

    PubMed

    Ding, Yi; Liao, Qingliang; Liu, Shuo; Guo, Huijing; Sun, Yihui; Zhang, Guangjie; Zhang, Yue

    2016-09-02

    In this paper, reduced graphene oxide functionalized with cobalt ferrite nanocomposites (CoFe@rGO) as a novel type of electromagnetic wave (EW) absorbing materials was successfully prepared by a three-step chemical method including hydrothermal synthesis, annealing process and mixing with paraffin. The effect of the sample thickness and the amount of paraffin on the EW absorption properties of the composites was studied, revealing that the absorption peaks shifted toward the low frequency regions with the increasing thickness while other conditions had little or no effect. It is found that the CoFe@rGO enhanced both dielectric losses and magnetic losses and had the best EW absorption properties and the wide wavelength coverage of the hole Ku-Band when adding only 5wt% composites to paraffin. Therefore, CoFe@rGO could be used as an efficient and lightweight EW absorber. Compared with the research into traditional absorbing materials, this figures of merit are typically of the same order of magnitude, but given the lightweight nature of the material and the high level of compatibility with mass production standards, making use of CoFe@rGO as an electromagnetic absorber material shows great potential for real product applications.

  8. Thermal emissivity and solar absorptivity of aluminum coated with double layers of aluminum oxide and silicon oxide.

    PubMed

    Hass, G; Ramsey, J B; Heaney, J B; Triolo, J J

    1971-06-01

    A technique using evaporated Al coated with double layers of Al(2)O(3) and silicon oxide to produce surface films having low solar absorptivity (alpha) and high total normal and hemispherical emissivities (epsilonN and epsilon) is described. High vacuum evaporation with an electron gun was used for preparing undecomposed films of Al(2)O(3) and SiO(2). alpha and epsilonN were determined from reflectance measurements made in the wavelength region from 0.2micro to 50micro. epsilon was measured calorimetrically by a transient thermal method. alpha of all Al + Al(2)O(3) + silicon oxide film combinations was determined to be about 0.12. The greatest increase in epsilonN and epsilon was obtained when Al was first coated with Al(2)O(3) about lambda/4 thick at 10micro and then overcoated with 2000 A to 4000 A of silicon oxide. With such film combinations alpha/epsilon values of less than 0.2 could be readily achieved. Surface films of this type were found to be extremely stable during simulated solar uv irradiation.

  9. Removing nitric oxide from flue gas using iron(II) citrate chelate absorption with microbial regeneration.

    PubMed

    Xu, Xinhua; Chang, Shih Ger

    2007-04-01

    The addition of metal chelates such as Fe(II)EDTA or Fe(II)Cit to wet flue gas desulfurization systems has been shown to increase the amount of NO(x) absorption from gas streams containing SO(2). This paper attempts to demonstrate the advantage of not only using Fe(II)Cit chelate to absorb nitrogen oxides from flue gas but also the advantage gained from adding microorganisms to the system. Two distinct classes of microorganisms are needed: denitrifying and iron-reducing bacteria. The presence of oxygen in flue gas will affect the absorption efficiency of NO by Fe(II)Cit chelate. The oxidation of Fe(II) can be slowed with the help of bacteria in two ways: bacteria can serve to directly reduce Fe(III) to Fe(II) or they can serve to keep levels of dissolved oxygen in the solution low. As a result, after NO absorption, Fe(II)(Cit)NO will be reduced by denitrifying bacteria to Fe(II)Cit while Fe(III) is reduced by anaerobic bacteria back to Fe(II). Our experiments have shown that the implementation of our protocol allowed for an NO reduction rate constant increase from standard levels of 0.0222-0.100 m Mh(-1) with inlet NO changed from 250 to 1000 ppm. We have also found that total Fe concentration tends to decrease after prolonged periods of operation due to the loss of some Fe to the formation of Fe(OH)(3) that settles together with the sludge at the bottom of bioreactor tank.

  10. An international evaluation of holmium oxide solution reference materials for wavelength calibration in molecular absorption spectrophotometry.

    PubMed

    Travis, John C; Zwinkels, Joanne C; Mercader, Flora; Ruíz, Arquímedes; Early, Edward A; Smith, Melody V; Noël, Mario; Maley, Marissa; Kramer, Gary W; Eckerle, Kenneth L; Duewer, David L

    2002-07-15

    Commercial spectrophotometers typically use absorption-based wavelength calibration reference materials to provide wavelength accuracy for their applications. Low-mass fractions of holmium oxide (Ho2O3) in dilute acidic aqueous solution and in glass matrixes have been favored for use as wavelength calibration materials on the basis of spectral coverage and absorption band shape. Both aqueous and glass Ho2O3 reference materials are available commercially and through various National Metrology Institutes (NMIs). Three NMIs of the North American Cooperation in Metrology (NORAMET) have evaluated the performance of Ho3-(aq)-based Certified Reference Materials (CRMs) under "routine" operating conditions using commercial instrumentation. The study was not intended to intercompare national wavelength scales but to demonstrate comparability of wavelength measurements among the participants and between two versions of the CRMs. It was also designed to acquire data from a variety of spectrophotometers for use in a NIST study of wavelength assignment algorithms and to provide a basis for a possible reassessment of NIST-certified Ho3+(aq) band locations. The resulting data show a substantial level of agreement among laboratories, instruments, CRM preparations, and peak-location algorithms. At the same time, it is demonstrated that the wavelength comparability of the five participating instruments can actually be improved by calibrating all of the instruments to the consensus Ho3+(aq) band locations. This finding supports the value of absorption-based wavelength standards for calibrating absorption spectrophotometers. Coupled with the demonstrated robustness of the band position values with respect to preparation and measurement conditions, it also supports the concept of extending the present approach to additional NMIs in order to certify properly prepared dilute acidic Ho2O3 solution as an intrinsic wavelength standard.

  11. Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: role of intestinal absorption of 4-HHE and reactivity in intestinal cells[S

    PubMed Central

    Awada, Manar; Soulage, Christophe O.; Meynier, Anne; Debard, Cyrille; Plaisancié, Pascale; Benoit, Bérengère; Picard, Grégory; Loizon, Emmanuelle; Chauvin, Marie-Agnès; Estienne, Monique; Peretti, Noël; Guichardant, Michel; Lagarde, Michel; Genot, Claude; Michalski, Marie-Caroline

    2012-01-01

    Dietary intake of long-chain n-3 PUFA is now widely advised for public health and in medical practice. However, PUFA are highly prone to oxidation, producing potentially deleterious 4-hydroxy-2-alkenals. Even so, the impact of consuming oxidized n-3 PUFA on metabolic oxidative stress and inflammation is poorly described. We therefore studied such effects and hypothesized the involvement of the intestinal absorption of 4-hydroxy-2-hexenal (4-HHE), an oxidized n-3 PUFA end-product. In vivo, four groups of mice were fed for 8 weeks high-fat diets containing moderately oxidized or unoxidized n-3 PUFA. Other mice were orally administered 4-HHE and euthanized postprandially versus baseline mice. In vitro, human intestinal Caco-2/TC7 cells were incubated with 4-hydroxy-2-alkenals. Oxidized diets increased 4-HHE plasma levels in mice (up to 5-fold, P < 0.01) compared with unoxidized diets. Oxidized diets enhanced plasma inflammatory markers and activation of nuclear factor kappaB (NF-κB) in the small intestine along with decreasing Paneth cell number (up to −19% in the duodenum). Both in vivo and in vitro, intestinal absorption of 4-HHE was associated with formation of 4-HHE-protein adducts and increased expression of glutathione peroxidase 2 (GPx2) and glucose-regulated protein 78 (GRP78). Consumption of oxidized n-3 PUFA results in 4-HHE accumulation in blood after its intestinal absorption and triggers oxidative stress and inflammation in the upper intestine. PMID:22865918

  12. Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: role of intestinal absorption of 4-HHE and reactivity in intestinal cells.

    PubMed

    Awada, Manar; Soulage, Christophe O; Meynier, Anne; Debard, Cyrille; Plaisancié, Pascale; Benoit, Bérengère; Picard, Grégory; Loizon, Emmanuelle; Chauvin, Marie-Agnès; Estienne, Monique; Peretti, Noël; Guichardant, Michel; Lagarde, Michel; Genot, Claude; Michalski, Marie-Caroline

    2012-10-01

    Dietary intake of long-chain n-3 PUFA is now widely advised for public health and in medical practice. However, PUFA are highly prone to oxidation, producing potentially deleterious 4-hydroxy-2-alkenals. Even so, the impact of consuming oxidized n-3 PUFA on metabolic oxidative stress and inflammation is poorly described. We therefore studied such effects and hypothesized the involvement of the intestinal absorption of 4-hydroxy-2-hexenal (4-HHE), an oxidized n-3 PUFA end-product. In vivo, four groups of mice were fed for 8 weeks high-fat diets containing moderately oxidized or unoxidized n-3 PUFA. Other mice were orally administered 4-HHE and euthanized postprandially versus baseline mice. In vitro, human intestinal Caco-2/TC7 cells were incubated with 4-hydroxy-2-alkenals. Oxidized diets increased 4-HHE plasma levels in mice (up to 5-fold, P < 0.01) compared with unoxidized diets. Oxidized diets enhanced plasma inflammatory markers and activation of nuclear factor kappaB (NF-κB) in the small intestine along with decreasing Paneth cell number (up to -19% in the duodenum). Both in vivo and in vitro, intestinal absorption of 4-HHE was associated with formation of 4-HHE-protein adducts and increased expression of glutathione peroxidase 2 (GPx2) and glucose-regulated protein 78 (GRP78). Consumption of oxidized n-3 PUFA results in 4-HHE accumulation in blood after its intestinal absorption and triggers oxidative stress and inflammation in the upper intestine.

  13. Mercury re-emission in flue gas multipollutants simultaneous absorption system.

    PubMed

    Liu, Yue; Wang, Qingfeng; Mei, Rongjun; Wang, Haiqiang; Weng, Xiaole; Wu, Zhongbiao

    2014-12-02

    Recently, simultaneous removal of SO2, NOx and oxidized mercury in wet flue gas desulfurization (WFGD) scrubber has become a research focus. Mercury re-emission in traditional WFGD system has been widely reported due to the reduction of oxidized mercury by sulfite ions. However, in multipollutants simultaneous absorption system, the formation of a large quantity of nitrate and nitrite ions as NOx absorption might also affect the reduction of oxidized mercury in the aqueous absorbent. As such, this paper studied the effects of nitrate and nitrite ions on mercury re-emission and its related mechanism. Experimental results revealed that the nitrate ions had neglected effect on mercury re-emission while the nitrite ions could greatly change the mercury re-emission behaviors. The nitrite ions could initially improve the Hg(0)-emission through the decomposition of HgSO3NO2(-), but with a further increase in the concentration, they would then inhibit the reduction of bivalent mercury owing to the formation of Hg-nitrite complex [Hg(NO2)x(2-x)]. In addition, the subsequent addition of Cl(-) could further suppress the Hg(0) emission, where the formation of a stable Hg-SO3-NO2-Cl complex was assumed to be the main reason for such strong inhibition effect.

  14. X-Ray Absorption Studies of Vanadium-Containing Metal Oxide Nanocrystals

    SciTech Connect

    Hohn, Keith, L.

    2006-01-09

    Metal oxide nanocrystals offer significant potential for use as catalysts or catalyst supports due to their high surface areas and unique chemical properties that result from the high number of exposed corners and edges. However, little is known about the catalytic activity of these materials, especially as oxidation catalysts. This research focused on the preparation, characterization and use of vanadium-containing nanocrystals as selective oxidation catalysts. Three vanadium-containing nanocrystals were prepared using a modified sol-gel procedure: V/MgO, V/SiO2, and vanadium phosphate (VPO). These represent active oxidation catalysts for a number of industrially relevant reactions. The catalysts were characterized by x-ray diffraction and Raman, UV-VIS, infrared and x-ray absorption spectroscopies with the goal of determining the primary structural and chemical differences between nanocrystals and microcrystals. The catalytic activity of these catalysts was also studied in oxidative dehydrogenation of butane and methanol oxidation to formaldehyde. V/MgO nanocrystals were investigated for activity in oxidative dehydrogenation of butane and compared to conventional V/MgO catalysts. Characterization of V/MgO catalysts using Raman spectroscopy and x-ray absorption spectroscopy showed that both types of catalysts contained magnesium orthovanadate at vanadium loadings below 15 weight%, but above that loading, magnesium pyrovanadate may have been present. In general, MgO nanocrystals had roughly half the crystal size and double the surface area of the conventional MgO. In oxidative dehydrogenation of butane, nanocrystalline V/MgO gave higher selectivity to butene than conventional V/MgO at the same conversion. This difference was attributed to differences in vanadium domain size resulting from the higher surface areas of the nanocrystalline support, since characterization suggested that similar vanadium phases were present on both types of catalysts. Experiments in

  15. X-ray absorption and diffraction study of II VI dilute oxide semiconductor alloy epilayers

    NASA Astrophysics Data System (ADS)

    Boscherini, F.; Malvestuto, M.; Ciatto, G.; D'Acapito, F.; Bisognin, G.; DeSalvador, D.; Berti, M.; Felici, M.; Polimeni, A.; Nabetani, Y.

    2007-11-01

    Dilute oxide semiconductor alloys obtained by adding oxygen to a II-VI binary compound are of potential applicative interest for blue-light emitters in which the oxygen content could be used to tune the band gap. Moreover, their properties can be usefully compared to the more thoroughly studied dilute nitrides in order to gain insight into the common mechanisms which give rise to their highly non-linear physical properties. Recently, it has been possible to deposit ZnSeO and ZnSeOS epilayers on GaAs(001), which exhibit a red-shift of the band gap and giant optical bowing. In order to provide a structural basis for an understanding of their physical properties, we have performed a study of a set of ZnSeO and ZnSeOS epilayers on GaAs by high resolution x-ray diffraction and x-ray absorption fine structure. We have found that the strain goes from compressive to tensile with increasing O and S concentration and that, while all epilayers are never found to be pseudomorphic, the ternary ones exhibit a low relaxed fraction if compared to the ZnSe/GaAs sample. O K-edge x-ray absorption near edge spectra and corresponding simulations within the full multiple-scattering regime show that O is substitutionally incorporated in the host lattice. Zn and Se K-edge extended x-ray absorption fine structure detect the formation of Zn-O and Zn-S bonds; the analysis of these spectra within multiple-scattering theory has allowed us to measure the local structural parameters. The value of Zn-Se bond length is found to be in agreement with estimates based on models of local distortions in strained and relaxed epilayers; an increase of the mean-square relative displacement is detected at high O and S concentration and is related to both intrinsic and extrinsic factors.

  16. Tailoring of absorption edge by thermal annealing in tin oxide thin films

    SciTech Connect

    Thakur, Anup; Gautam, Sanjeev; Kumar, Virender; Chae, K. H.; Lee, Ik-Jae; Shin, Hyun Joon

    2015-05-15

    Tin oxide (SnO{sub 2}) thin films were deposited by radio-frequency (RF) magnetron sputtering on silicon and glass substrates in different oxygen-to-argon gas-flow ratio (O{sub 2}-to-Ar = 0%, 10%, 50%). All films were deposited at room temperature and fixed working pressures, 10 mTorr. The X-ray diffraction (XRD) measurement suggests that all films were crystalline in nature except film deposited in argon environment. Thin films were annealed in air at 200 °C, 400 °C and 600 °C for two hours. All films were highly transparent except the film deposited only in the argon environment. It was also observed that transparency was improved with annealing due to decrease in oxygen vacancies. Atomic force microscopy (AFM), results showed that the surface of all the films were highly flat and smooth. Blue shift was observed in the absorption edge with annealing temperature. It was also observed that there was not big change in the absorption edge with annealing for films deposited in 10% and 50% oxygen-to-argon gas-flow ratio.

  17. Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites

    NASA Astrophysics Data System (ADS)

    Luo, Juhua; Shen, Pan; Yao, Wei; Jiang, Cuifeng; Xu, Jianguang

    2016-03-01

    Strontium ferrite nanoparticles were prepared by a coprecipitation method, and reduced graphene oxide/strontium ferrite/polyaniline (R-GO/SF/PANI) ternary nanocomposites were prepared by in situ polymerization method. The morphology, structure, and magnetic properties of the ternary nanocomposites were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), TEM, Raman, and VSM. The microwave-absorbing properties of the composites were measured by a vector network analyzer. The XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. TEM photographs reveal that strontium ferrite nanoparticles are uniformly dispersed on the surfaces of R-GO sheets. The R-GO/SF/PANI nanocomposite exhibited the best absorption property with the optimum matching thickness of 1.5 mm in the frequency of 2-18 GHz. The value of the maximum RL was -45.00 dB at 16.08 GHz with the 5.48-GHz bandwidth. The excellent absorption properties of R-GO/SF/PANI nanocomposites indicated their great potential as microwave-absorbing materials.

  18. Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites.

    PubMed

    Luo, Juhua; Shen, Pan; Yao, Wei; Jiang, Cuifeng; Xu, Jianguang

    2016-12-01

    Strontium ferrite nanoparticles were prepared by a coprecipitation method, and reduced graphene oxide/strontium ferrite/polyaniline (R-GO/SF/PANI) ternary nanocomposites were prepared by in situ polymerization method. The morphology, structure, and magnetic properties of the ternary nanocomposites were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), TEM, Raman, and VSM. The microwave-absorbing properties of the composites were measured by a vector network analyzer. The XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. TEM photographs reveal that strontium ferrite nanoparticles are uniformly dispersed on the surfaces of R-GO sheets. The R-GO/SF/PANI nanocomposite exhibited the best absorption property with the optimum matching thickness of 1.5 mm in the frequency of 2-18 GHz. The value of the maximum RL was -45.00 dB at 16.08 GHz with the 5.48-GHz bandwidth. The excellent absorption properties of R-GO/SF/PANI nanocomposites indicated their great potential as microwave-absorbing materials.

  19. Influence of sulfur oxidation on the absorption and electronic energy levels of poly(thienothiophene) derivatives.

    PubMed

    He, Youjun; Zhang, Maojie; Min, Jie; Zhao, Guangjin; Li, Yongfang

    2009-11-12

    Two poly(thienothiophene) derivatives containing thieno[3,2-b]thiophene-4,4-dioxide unit were synthesized by Pd-catalyzed Stille coupling method. They were poly(3,6-dihexyl-thieno[3,2-b]thiophene-4,4-dioxide vinylene) (P2) and poly(2,5-diyl-3,6-dihexyl-thieno[3,2-b]thiophene-4,4-dioxide)-co-(2,5-diyl-thiophene) (P4). Poly(3,6-dihexyl-thieno[3,2-b] thiophene vinylene) (P1) and poly(2,5-diyl-3,6-dihexyl-thieno[3,2-b] thiophene)-co-(2,5-diyl-thiophene) (P3) were synthesized for comparison with P2 and P4. After sulfur oxidation on the thienothiophene units, the absorption peaks of the polymer solutions were red-shifted from 540 nm of P1 to 625 nm of P2 and from 445 nm of P3 to 520 nm of P4. The absorption peaks of the polymer films were red-shifted more significantly from 542 nm of P1 to 630 nm of P2 and from 480 nm of P3 to 564 nm of P4. The lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels also decreased a lot after the sulfur oxidation. In comparison with P1, the LUMO and HOMO energy levels of P2 decreased by 0.59 and 0.35 eV, respectively. The levels were 0.87 and 0.39 eV lower in the LUMO and HOMO energy levels of P4 than in that of P3.

  20. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  1. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    PubMed Central

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-01-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements. PMID:28186190

  2. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study.

    PubMed

    Chuang, Cheng-Hao; Ray, Sekhar C; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-10

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp(2)-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  3. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    DOE PAGES

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; ...

    2017-02-10

    Nitrogen-doped graphene oxides (GO:N x) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH 2) 2 ]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:N x synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in whichmore » each N-atom trigonally bonds to three distinct sp 2 -hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:N x . The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.« less

  4. Ag2S deposited on oxidized polypropylene as composite material for solar light absorption

    NASA Astrophysics Data System (ADS)

    Krylova, Valentina; Milbrat, Alexander; Embrechts, Anika; Baltrusaitis, Jonas

    2014-05-01

    Thin film metal chalcogenides are superior solar light absorbers and can be combined into a functional material when deposited on polymeric substrates. Ag2S composite materials were synthesized on oxidized polypropylene using chemical bath deposition method and their properties were explored using XRD, XPS, AFM and UV-Vis. Polypropylene surfaces were modified using solution methods to introduce hydrophilicity via carboxylic group formation which resulted in Ag2S film deposition and adhesion. These films showed slightly sulfur enriched composition from XPS analysis with the sulfate-like species forming, presumably at the oxidized polymer surface sites. Ag2S particle growth mechanism included nucleation and rather large (few μm) aggregate formation eventually covering the complete polymer surface, as inferred from AFM analysis. Absorption edge of the composite material shifted toward the higher wavelength in UV-Vis spectrum with the number of Ag2S exposure times showing a decreasing bandgap and the possibility of obtaining tunable optical property Ag2S-polymer composites using CBD methods.

  5. Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells.

    PubMed

    Song, Guosheng; Shen, Jia; Jiang, Feiran; Hu, Ronggui; Li, Wenyao; An, Lei; Zou, Rujia; Chen, Zhigang; Qin, Zongyi; Hu, Junqing

    2014-03-26

    The molybdenum oxide nanosheets have shown strong localized surface plasmon resonance (LSPR) absorption in the near-infrared (NIR) region. However, the long alky chains of ligands made them hydrophobic and less biocompatible. To meet the requirements of molybdenum based nanomaterials for use as a future photothermal therapy, a simple hydrothermal route has been developed for hydrophilic molybdenum oxide nanospheres and nanoribbons using a molybdenum precursor and poly(ethylene glycol) (PEG). First, molybdenum oxide nanomaterials prepared in the presence of PEG exhibit strong localized surface plasmon resonance (LSPR) absorption in near-infrared (NIR) region, compared with that of no PEG. Second, elevation of synthetic temperature leads to a gradual transformation of molybdenum oxide nanospheres into nanoribbons, entailing the evolution of an intense LSPR absorption in the NIR region. Third, as-prepared molybdenum oxide nanomaterials coated with PEG possess a hydrophilic property and thus can be directly used for biological applications without additional post treatments. Moreover, molybdenum oxide nanoribbons as a model of photothermal materials can efficiently convert the 980 nm wavelength laser energy into heat energy, and this localized hyperthermia produces the effective thermal ablation of cancer cells, meaning a potential photothermal material.

  6. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature.

    PubMed

    Li, Hailong; Wu, Chang-Yu; Li, Ying; Li, Liqing; Zhao, Yongchun; Zhang, Junying

    2012-12-01

    MnO(x)-CeO(2) mixed-oxide supported on TiO(2) (Mn-Ce/Ti) was synthesized by an ultrasound-assisted impregnation method and employed to oxidize elemental mercury (Hg(0)) at 200°C in simulated coal combustion flue gas. Over 90% of Hg(0) oxidation was achieved on the Mn-Ce/Ti catalyst at 200°C under simulated flue gas representing those from burning low-rank coals with a high gas hourly space velocity of 60,000 h(-1). Gas-phase O(2) regenerated the lattice oxygen and replenished the chemisorbed oxygen, which facilitated Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. 10 ppm HCl plus 4% O(2) resulted in 100% Hg(0) oxidation under the experimental conditions. SO(2) competed with Hg(0) for active sites, thus deactivating the catalyst's capability in oxidizing Hg(0). NO covered the active sites and consumed surface oxygen active for Hg(0) oxidation, hence limiting Hg(0) oxidation. Water vapor showed prohibitive effect on Hg(0) oxidation due to its competition with HCl and Hg(0) for active adsorption sites. This study provides information about the promotional or inhibitory effects of individual flue gas components on Hg(0) oxidation over a highly effective Mn-Ce/Ti catalyst. Such knowledge is of fundamental importance for industrial applications of the Mn-Ce/Ti catalyst in coal-fired power plants. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    PubMed Central

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-01-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge. PMID:26908198

  8. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  9. An interband cascade laser-based in situ absorption sensor for nitric oxide in combustion exhaust gases

    NASA Astrophysics Data System (ADS)

    Diemel, O.; Pareja, J.; Dreizler, A.; Wagner, S.

    2017-05-01

    A direct absorption nitric oxide sensor for combustion exhaust gas measurements, based on an interband cascade laser operating at 5.2 µm, is presented. The sensor was applied to the hot air co-flow of an auto-ignition test rig (800-1300 K), which contains nitric oxide mole fractions of the order of 1 mol%, due to prior microwave plasma heating. The effect of non-uniform temperature along the beam path, on both absorption line strength and gas density, was included in mole fraction measurements at various co-flow temperatures and velocities. At an absorption length of only 82 mm, a noise-limited detection limit of 30 ppm with a 10 ms observation time was achieved at 800 K. The results were compared in detail to previously measured mole fractions, using a sampling gas analyzer.

  10. Comparison of Nitric Oxide Concentrations in μs- and ns-Atmospheric Pressure Plasmas by UV Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Peters, F.; Hirschberg, J.; Mertens, N.; Wieneke, S.; Viöl, W.

    2016-04-01

    In this paper, an absorption spectroscopy measurement method was applied on two atmospheric pressure plasma sources to determine their production of nitric oxide. The concentrations are essential for evaluating the plasma sources based on the principle of the Dielectric Barrier Discharge (DBD) for applications in plasma medicine. The described method is based on a setup with an electrodeless discharge lamp filled with a mixture of oxygen and nitrogen. One of the emitted wavelengths is an important resonance wavelength of nitric oxide (λ = 226.2 nm). By comparing the absorption behaviour at the minimum and maximum of the spectral absorption cross section of nitric oxide around that wavelength, and measuring the change in intensity by the absorbing plasma, the concentration of nitric oxide inside the plasma can be calculated. The produced nitric oxide concentrations depend on the pulse duration and are in the range of 180 ppm to 1400 ppm, so that a distance of about 10cm to the respiratory tract is enough to conform to the VDI Guideline 2310.

  11. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    SciTech Connect

    Hendrickson, Joshua R. Leedy, Kevin; Cleary, Justin W.; Vangala, Shivashankar; Nader, Nima; Guo, Junpeng

    2015-11-09

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.

  12. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N.

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  13. An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity.

    PubMed

    He, Yongqiang; Liu, Yue; Wu, Tao; Ma, Junkui; Wang, Xingrui; Gong, Qiaojuan; Kong, Weina; Xing, Fubao; Liu, Yu; Gao, Jianping

    2013-09-15

    Three kinds of graphene oxide (GO) foams were fabricated using different freezing methods (unidirectional freezing drying (UDF), non-directional freezing drying, and air freezing drying), and the corresponding reduced graphene oxide (RGO) foams were prepared by their thermal reduction of those GO foams. These RGO foams were characterized by Fourier transform infrared spectroscopy, thermal gravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The absorption process and the factors that influence the absorption capacity were investigated. The RGO foams are hydrophobic and showed extremely high absorbing abilities for organic liquids. The absorption capacity of the RGO foams made by UDF was higher than 100 g g(-1) for all the oils tested (gasoline, diesel oil, pump oil, lubricating oil and olive oil) and had the highest value of about 122 g g(-1) for olive oil. The oil absorption capacity of the GO foams was lower than that of the RGO foams, but for olive oil, the absorption capacity was still high than 70 g g(-1), which is higher than that of most oil absorbents.

  14. High-Frequency Isotope Measurements in Nitrous Oxide by Using Mid-Ir Laser Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, F.; Baer, D. S.

    2010-12-01

    The stable isotope composition of atmosphere trace gases provides information of their origin and fate that cannot be determined from their concentration measurements alone. Biological source and loss processes, like bacterial production of N2O, are typically accompanied by isotopic selectivity associated with the kinetics of bond formation and destruction. Of the three important biologically mediated greenhouse gases (CO2, CH4 and N2O), the understanding of N2O isotopic budget in air lags far behind the other two gases. One of the reasons of this is due to the low concentration of N2O in ambient air (~320 ppbv), which leads to inherent difficulties in collection, extraction and analysis. We report on the development of novel instrumentation for real-time measurements of nitrogen-isotope ratio (δ15N) and mixing ratio [N2O] of nitrous oxide over a very wide range of mixing ratios. This novel technology, which employs cavity enhanced absorption and a mid-infrared laser and does not require any cryogenic components, has been developed for in situ simultaneous measurements of the mixing ratios of three main isotopomers - 14N14N16O, 15N14N16O and 14N15N16O, which leads to the nitrogen-isotope ratio (δ15N) and the 15N position-dependent enrichment. A precision of better than 1 per mil may be achieved in ambient air (300 ppbv N2O) in less than 300 seconds measurement time.

  15. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O2 lattice in an irradiated (60 MW d kg-1) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (˜0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am3+ species within an [AmO8]13- coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix.

  16. Local Symmetry Effects in Actinide 4f X-ray Absorption in Oxides.

    PubMed

    Butorin, Sergei M; Modin, Anders; Vegelius, Johan R; Suzuki, Michi-To; Oppeneer, Peter M; Andersson, David A; Shuh, David K

    2016-04-19

    A systematic X-ray absorption study at actinide N6,7 (4f → 6d transitions) edges was performed for light-actinide oxides including data obtained for the first time for NpO2, PuO2, and UO3. The measurements were supported by ab initio calculations based on local-density-approximation with added 5f-5f Coulomb interaction (LDA+U). Improved energy resolution compared to common experiments at actinide L(2,3) (2p → 6d transitions) edges allowed us to resolve the major structures of the unoccupied 6d density of states (DOS) and estimate the crystal-field splittings in the 6d shell directly from the spectra of light-actinide dioxides. The measurements demonstrated an enhanced sensitivity of the N(6,7) spectral shape to changes in the compound crystal structure. For nonstoichiometric NpO(2-x), the filling of the entire band gap with Np 6d states was observed thus supporting a phase coexistence of Np metal and stoichiometric NpO2 which is in agreement with the tentative Np-O phase diagram.

  17. Furan- and Thiophene-Based Auxochromes Red-shift Chlorin Absorptions and Enable Oxidative Chlorin Polymerizations.

    PubMed

    Xiong, Ruisheng; Bornhof, Anna-Bea; Arkhypchuk, Anna I; Orthaber, Andreas; Borbas, K Eszter

    2017-03-23

    The de novo syntheses of chemically stable chlorins with five-membered heterocyclic (furane, thiophene, formylfurane and formylthiophene) substituents in selected meso- and β-positions are reported. Heterocycle incorporation in the 3- and 13-positions shifted the chlorin absorption and emission to the red (up to λem =680 nm), thus these readily incorporated substituents function analogously to auxochromes present in chlorophylls, for example, formyl and vinyl groups. Photophysical, theoretical and X-ray crystallographic experiments revealed small but significant differences between the behavior of the furan- and the thiophene-based auxochromes. Four regioisomeric bis-thienylchlorins (3,10; 3,13, 3,15 and 10,15) were oxidatively electropolymerized; the chlorin monomer geometry had a profound impact on the polymerization efficiency and the electrochemical properties of the resulting material. Chemical co-polymerization of 3,13-bis-thienylchlorin with 3-hexylthiophene yielded an organic-soluble red-emitting polymer. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Oxidation of dissolved elemental mercury by thiol compounds under anoxic conditions.

    PubMed

    Zheng, Wang; Lin, Hui; Mann, Benjamin F; Liang, Liyuan; Gu, Baohua

    2013-11-19

    Mercuric ion, Hg(2+), forms strong complexes with thiolate compounds that commonly dominate Hg(II) speciation in natural freshwater. However, reactions between dissolved aqueous elemental mercury (Hg(0)aq) and organic ligands in general, and thiol compounds in particular, are not well studied although these reactions likely affect Hg speciation and cycling in the environment. In this study, we compared the reaction rates between Hg(0)aq and a number of selected organic ligands with varying molecular structures and sulfur (S) oxidation states in dark, anoxic conditions to assess the role of these ligands in Hg(0)aq oxidation. Significant Hg(0)aq oxidation was observed with all thiols but not with ligands containing no S. Compounds with oxidized S (e.g., disulfide) exhibited little or no reactivity toward Hg(0)aq either at pH 7. The rate and extent of Hg(0)aq oxidation varied greatly depending on the chemical and structural properties of thiols, thiol/Hg ratios, and the presence or absence of electron acceptors. Smaller aliphatic thiols and higher thiol/Hg ratios resulted in higher Hg(0)aq oxidation rates than larger aromatic thiols at lower thiol/Hg ratios. The addition of electron acceptors (e.g., humic acid) also led to substantially increased Hg(0)aq oxidation. Our results suggest that thiol-induced oxidation of Hg(0)aq is important under anoxic conditions and can affect Hg redox transformation and bioavailability for microbial methylation.

  19. Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: Dielectric properties, electromagnetic interference shielding and microwave absorption

    SciTech Connect

    Song, Wei-Li; Cao, Mao-Sheng; Wen, Bo; Hou, Zhi-Ling; Cheng, Jin; Yuan, Jie

    2012-07-15

    Graphical abstract: A resistor–capacitor model could well describe the relationships between the structure and the dielectric properties, electromagnetic interference shielding and microwave-absorption of the composites in the frequency range of 2–18 GHz. The resonant behavior associated with the multiwalled carbon nanotubes/zinc oxide (MWCNTs/ZnO) interface greatly broadens the absorption band. Highlights: ► ZnO-immobilized on multiwalled carbon nanotubes (MWCNTs/ZnO) have resonant behavior. ► A resistor–capacitor model describes the relation between the structure and properties. ► The composite with 40 wt% MWCNTs/ZnO has good electromagnetic interference shielding. ► Two different types of absorption peaks are found in the MWCNTs/ZnO composites. ► The existence of MWCNTs/ZnO interface broadens the absorption band. -- Abstract: Zinc oxide (ZnO) nanoparticles were coated on the surfaces of multiwalled carbon nanotubes (MWCNTs). High resolution transmission electron microscopy images show that the wurtzite ZnO immobilized on the MWCNTs is single-crystalline with a preferential [0 0 0 2] growth direction. A capacitor was generated by the interface of ZnO and MWCNTs, and a resistor–capacitor model could well describe the relationships between the structure and the dielectric properties, electromagnetic interference shielding and microwave-absorption of the composites in the frequency range of 2–18 GHz. The network built by ZnO-immobilized MWCNTs could contribute to the improvement of electrical properties. Resonant peaks associated with the capacitor formed by the interface were observed in the microwave absorption spectra, which suggest that reflection–loss peaks greatly broadens the absorption bandwidth.

  20. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal.

    PubMed

    Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.

  1. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal

    SciTech Connect

    Yan Cao; Zhengyang Gao; Jiashun Zhu; Quanhai Wang; Yaji Huang; Chengchung Chiu; Bruce Parker; Paul Chu; Wei-ping Pan

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0) concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH{sub 3} addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH{sub 3} reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation. 30 refs., 4 figs.

  2. In-situ X-Ray Absorption Spectroscopy (XAS) Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction

    PubMed Central

    Benck, Jesse D.; Gul, Sheraz; Webb, Samuel M.; Yachandra, Vittal K.; Yano, Junko; Jaramillo, Thomas F.

    2013-01-01

    In-situ x-ray absorption spectroscopy (XAS) is a powerful technique that can be applied to electrochemical systems, with the ability to elucidate the chemical nature of electrocatalysts under reaction conditions. In this study, we perform in-situ XAS measurements on a bifunctional manganese oxide (MnOx) catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Using x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS), we find that exposure to an ORR-relevant potential of 0.7 V vs. RHE produces a disordered Mn3II,III,IIIO4 phase with negligible contributions from other phases. After the potential is increased to a highly anodic value of 1.8 V vs. RHE, relevant to the OER, we observe an oxidation of approximately 80% of the catalytic thin film to form a mixed MnIII,IV oxide, while the remaining 20% of the film consists of a less oxidized phase, likely corresponding to unchanged Mn3II,III,IIIO4. XAS and electrochemical characterization of two thin film catalysts with different MnOx thicknesses reveals no significant influence of thickness on the measured oxidation states, at either ORR or OER potentials, but demonstrates that the OER activity scales with film thickness. This result suggests that the films have porous structure, which does not restrict electrocatalysis to the top geometric layer of the film. As the portion of the catalyst film that is most likely to be oxidized at the high potentials necessary for the OER is that which is closest to the electrolyte interface, we hypothesize that the MnIII,IV oxide, rather than Mn3II,III,IIIO4, is the phase pertinent to the observed OER activity. PMID:23758050

  3. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    SciTech Connect

    Degueldre, Claude Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O₂ lattice in an irradiated (60 MW d kg⁻¹) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (~0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am³⁺ species within an [AmO₈]¹³⁻ coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix. - Graphical abstract: Americium LIII XAFS spectra recorded for the irradiated MOX sub-sample in the rim zone for a 300 μm×300 μm beam size area investigated over six scans of 4 h. The records remain constant during multi-scan. The analysis of the XAFS signal shows that Am is found as trivalent in the UO₂ matrix. This analytical work shall open the door of very challenging analysis (speciation of fission product and actinides) in irradiated nuclear fuels. - Highlights: • Americium was characterized by microX-ray absorption spectroscopy in irradiated MOX fuel. • The americium redox state as determined from XAS data of irradiated fuel material was Am(III). • In the sample, the Am³⁺ face an AmO₈¹³⁻coordination environment in the (Pu,U)O₂ matrix. • The americium dioxide is reduced by the uranium dioxide matrix.

  4. Oxidation of dissolved elemental mercury by thiol compounds under anoxic conditions

    SciTech Connect

    Zheng, Wang; Lin, Hui; Mann, Benjamin F; Liang, Liyuan; Gu, Baohua

    2013-01-01

    Mercuric mercury, Hg(II), forms strong complexes with thiol compounds that commonly dominate Hg(II) speciation in natural freshwater. However, reactions between dissolved elemental Hg(0) and thiols are not well understood although these processes are likely to be important in determining Hg speciation and geochemical cycling in the environment. In this study, reaction rates and mechanisms between dissolved Hg(0) and a number of selected organic ligands with varying molecular structures and sulfur (S) oxidation states were determined to assess the role of these ligands in Hg(0) redox transformation. We found that all thiols caused oxidation of Hg(0) under anoxic conditions but, contrary to expectation, compounds with higher S-oxidation states (e.g., disulfide) than thiols exhibited little or no reactivity with Hg(0) at pH 7. The rate and extent of Hg(0) oxidation varied widely, with smaller aliphatic thiols showing the greatest degree of oxidation. The mechanism of the oxidation is attributed to a two-step process involving adsorption of Hg(0) to thiols followed by the charge transfer from Hg(0) to electron acceptors. These observations demonstrate a unique thiol-induced oxidation pathway of dissolved Hg(0), with important implications for the redox transformation, speciation, and bioavailability of Hg for microbial methylation in anoxic environments.

  5. Temperature and Field Dependences of Parameters of the Equivalent Circuit Elements of MIS Structures Based on MBE n-Hg0.775Cd0.225Te in the Strong Inversion Mode

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2016-11-01

    A technique is proposed for the determining the parameters of the equivalent circuit elements in strong inversion mode using the measurement results of the admittance of MIS structures based on n-Hg0.775Cd0.225Te grown by molecular beam epitaxy. It is shown that at 77 K and frequencies above 10 kHz, the capacitancevoltage characteristics of MIS structures based on n-Hg0.775Cd0.225Te with a near-surface graded gap layer have a high-frequency behavior with respect to the recharge time of surface states located near the Fermi level of intrinsic semiconductor. It is established that the electron concentration in the near-surface graded-gap layer exceeds an average concentration found by the Hall method by more than 2 times. The proposed technique was used for determining the temperature dependences of the insulator capacitance, capacitance and differential resistance of the space-charge region, and capacitance of the inversion layer in MIS structures based on n-Hg0.775Cd0.225Te without a graded-gap layer. The temperature and voltage dependences of the parameters of the equivalent circuit elements in strong inversion are calculated. The results of calculation are qualitatively consistent with the results obtained from the measurements of the admittance.

  6. Development of a Near-Ir Cavity Enhanced Absorption Spectrometer for the Detection of Atmospheric Oxidation Products and Organoamines

    NASA Astrophysics Data System (ADS)

    Eddingsaas, Nathan C.; Jewell, Breanna; Thurnherr, Emily

    2014-06-01

    An estimated 10,000 to 100,000 different compounds have been measured in the atmosphere, each one undergoes many oxidation reactions that may or may not degrade air quality. To date, the fate of even some of the most abundant hydrocarbons in the atmosphere is poorly understood. One difficulty is the detection of atmospheric oxidation products that are very labile and decompose during analysis. To study labile species under atmospheric conditions, a highly sensitive, non-destructive technique is needed. Here we describe a near-IR incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) setup that we are developing to meet this end. We have chosen to utilize the near-IR, where vibrational overtone absorptions are observed, due to the clean spectral windows and better spectral separation of absorption features. In one spectral window we can simultaneously and continuously monitor the composition of alcohols, hydroperoxides, and carboxylic acids in an air mass. In addition, we have used our CEAS setup to detect organoamines. The long effective path length of CEAS allows for low detection limits, even of the overtone absorption features, at ppb and ppt levels.

  7. Enhanced Rates of Hydrogen Absorption Resulting from Oxidation of Pd and Internal Oxidation of Pd-Al Alloys

    SciTech Connect

    Shanahan, K.L.

    1999-08-20

    The goal of this research was the determination of the relative rates before and after internal oxidation of Pd--Al alloys and oxidation (Pd) and this is independent of whether heat transfer is the rate-limiting step for the internally oxidized Pd--Al alloys rather than a more fundamental step.

  8. Influence of phytase, EDTA, and polyphenols on zinc absorption in adults from porridges fortified with zinc sulfate or zinc oxide.

    PubMed

    Brnić, Marica; Wegmüller, Rita; Zeder, Christophe; Senti, Gabriela; Hurrell, Richard F

    2014-09-01

    Fortification of cereal staples with zinc is recommended to combat zinc deficiency. To optimize zinc absorption, strategies are needed to overcome the inhibitory effect of phytic acid (PA) and perhaps polyphenols. Five zinc absorption studies were conducted in young adults consuming maize or sorghum porridges fortified with 2 mg zinc as zinc sulfate (ZnSO4) or zinc oxide (ZnO) and containing combinations of PA or polyphenols as potential inhibitors and EDTA and phytase as potential enhancers. Fractional absorption of zinc (FAZ) was measured by using the double isotopic tracer ratio method. Adding phytase to the maize porridge immediately before consumption or using phytase for dephytinization during meal preparation both increased FAZ by >80% (both P < 0.001). Adding Na2EDTA at an EDTA:zinc molar ratio of 1:1 increased FAZ from maize porridge fortified with ZnSO4 by 30% (P = 0.01) but had no influence at higher EDTA ratios or on absorption from ZnO. FAZ was slightly higher from ZnSO4 than from ZnO (P = 0.02). Sorghum polyphenols had no effect on FAZ from dephytinized sorghum porridges but decreased FAZ by 20% from PA-rich sorghum porridges (P < 0.02). The combined inhibitory effect of polyphenols and PA was overcome by EDTA. In conclusion, ZnSO4 was better absorbed than ZnO, phytase used to degrade PA during digestion or during food preparation substantially increased zinc absorption from zinc-fortified cereals, EDTA at a 1:1 molar ratio modestly enhanced zinc absorption from ZnSO4-fortified cereals but not ZnO-fortified cereals, and sorghum polyphenols inhibited zinc absorption in the presence, but not absence, of PA. This trial was registered at clinicaltrials.gov as NCT01210794. © 2014 American Society for Nutrition.

  9. Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and Confirmation of Its Robustness by Cu K-edge X-ray Absorption Spectroscopy

    SciTech Connect

    Liu, Xiang; Cui, Shengsheng; Sun, Zijun; Ren, Yang; Zhang, Xiaoyi; Du, Pingwu

    2016-01-21

    Developing efficient water oxidation catalysts made of earth-abundant elements is a demanding challenge that should be met to fulfill the promise of water splitting for clean energy. Herein we report an annealing approach to synthesize binder-free, self-supported heterogeneous copper oxide (CuO) on conductive electrodes for oxygen evolution reaction (OER), producing electrodes with excellent electrocatalytic properties such as high efficiency, low overpotential, and good stability. The catalysts were grown in situ on fluorine-doped tin oxide (FTO) by electrodeposition from a simple Cu(II) salt solution, followed by annealing at a high temperature. Under optimal conditions, the CuO-based OER catalyst shows an onset potential of <0.58 V (vs Ag/AgCl) in 1.0 M KOH at pH 13.6. From the Tafel plot, the required overpotentials for current densities of 0.1 and 1.0 mA/cm2 are only 360 and 430 mV, respectively. The structure and the presence of a CuO motif in the catalyst have been identified by high-energy X-ray diffraction (HE-XRD), Cu K-edge X-ray absorption (XAS) spectra including X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS). To the best of our knowledge, this represents the best catalytic activity for CuO-based OER catalysts to date.

  10. Chromium oxide as a metal diffusion barrier layer: An x-ray absorption fine structure spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ahamad Mohiddon, Md.; Lakshun Naidu, K.; Ghanashyam Krishna, M.; Dalba, G.; Ahmed, S. I.; Rocca, F.

    2014-01-01

    The interaction at the interface between chromium and amorphous Silicon (a-Si) films in the presence of a sandwich layer of chromium oxide is investigated using X-ray absorption fine structure (XAFS) spectroscopy. The oxidized interface was created, in situ, prior to the deposition of a 400 nm tick a-Si layer over a 50 nm tick Cr layer. The entire stack of substrate/metallic Cr/Cr2O3/a-Si was then annealed at temperatures from 300 up to 700 °C. Analysis of the near edge and extended regions of each XAFS spectrum shows that only a small fraction of Cr is able to diffuse through the oxide layer up to 500 °C, while the remaining fraction is buried under the oxide layer in the form of metallic Cr. At higher temperatures, diffusion through the oxide layer is enhanced and the diffused metallic Cr reacts with a-Si to form CrSi2. At 700 °C, the film contains Cr2O3 and CrSi2 without evidence of unreacted metallic Cr. The activation energy and diffusion coefficient of Cr are quantitatively determined in the two temperature regions, one where the oxide acts as diffusion barrier and another where it is transparent to Cr diffusion. It is thus demonstrated that chromium oxide can be used as a diffusion barrier to prevent metal diffusion into a-Si.

  11. [Study on temperature dependence of ultraviolet absorption cross sections of nitric oxide at high temperatures].

    PubMed

    Zhou, Jie; Zhang, Shi-Liang; Chen, Xiao-Hu

    2007-07-01

    To study the temperature dependence of ultraviolet absorption characteristics of NO species in flue gas, the absorption cross sections of NO in the spectral region 200-230 nm at temperatures ranging from 285 to 410 K were measured using a grating monochromator with 0.2 nm resolution, a deuterium lamp and a specially-fabricated closed sample cell. The absorption spectrum of NO consists of discrete bands superimposed on a continuous base. Results indicated that discrete absorption bands were present with a fixed wavelength interval of roughly 10.5 nm. The peaks of discrete bands decreased first and started to increase later as the temperature rose from 285 to 410 K, with a maximum relative variation of 19.3%. Peak position and half width of the absorption peaks did not exhibit apparent change with the variation of temperature. Continuous absorption cross section increased monotonously with the temperature, and the variation gradient gradually decrease with wavelength red shift. The absorption cross section of NO should not be considered as constant when applied in online monitoring of NO concentration in flue gas. A compensation calculation of absorption cross section with respect to temperature effect is indispensable for the purpose of improving online measurement precision of NO concentration.

  12. Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation.

    PubMed

    Zhang, Gaosheng; Liu, Fudong; Liu, Huijuan; Qu, Jiuhui; Liu, Ruiping

    2014-09-02

    In our previous studies, a synthesized Fe-Mn binary oxide was found to be very effective for both As(V) and As(III) removal in aqueous phase, because As(III) could be easily oxidized to As(V). As(III) oxidation and As(V) sorption by the Fe-Mn binary oxide may also play an important role in the natural cycling of As, because of its common occurrence in the environment. In the present study, the respective role of Fe and Mn contents present in the Fe-Mn binary oxide on As(III) removal was investigated via a direct in situ determination of arsenic speciation using X-ray absorption spectroscopy. X-ray absorption near edge structure results indicate that Mn atoms exist in a mixed valence state of +3 and +4 and further confirm that MnOx (1.5 < x < 2) content is mainly responsible for oxidizing As(III) to As(V) through a two-step pathway [reduction of Mn(IV) to Mn(III) and subsequent Mn(III) to Mn(II)] and FeOOH content is dominant for adsorbing the formed As(V). No significant As(III) oxidation by pure FeOOH had been observed during its sorption, when the system was exposed to air. The extended X-ray absorption fine structure results reveal that the As surface complex on both the As(V)- and As(III)-treated sample surfaces is an inner-sphere bidentate binuclear corner-sharing complex with an As-M (M = Fe or Mn) interatomic distance of 3.22-3.24 Å. In addition, the MnOx and FeOOH contents exist only as a mixture, and no solid solution is formed. Because of its high effectiveness, low cost, and environmental friendliness, the Fe-Mn binary oxide would play a beneficial role as both an efficient oxidant of As(III) and a sorbent for As(V) in drinking water treatment and environmental remediation.

  13. Deuterium absorption from the D{sub 2}O exposure of oxidized 4H-SiC (0001), (0001{sup ¯}), and (112{sup ¯}0) surfaces

    SciTech Connect

    Liu, Gang; Xu, Can; Feldman, Leonard C.; Yakshinskiy, Boris; Wielunski, Leszek; Gustafsson, Torgny; Bloch, Joseph; Dhar, Sarit

    2015-03-23

    We report results on deuterium absorption on several oxidized 4H-SiC surfaces following D{sub 2}O vapor absorption. Absorption at the oxide/semiconductor interface is strongly face dependent with an order of magnitude more deuterium on the C-face and a-face than on the Si-face, in contrast to the bulk of the oxides which show essentially no face dependence. Annealing in NO gas produces a large reduction in interfacial deuterium absorption in all cases. The reduction of the positive charge at the interface scales linearly with the interface D content. These results also scale with the variation in interface trap density (D{sub it}) and mobility on the three faces after wet oxidation annealing.

  14. Kinetic and Thermodynamic Characterization of Enhanced Carbon Dioxide Absorption Process with Lithium Oxide-Containing Ternary Molten Carbonate.

    PubMed

    Deng, Bowen; Tang, Juanjuan; Mao, Xuhui; Song, Yuqiao; Zhu, Hua; Xiao, Wei; Wang, Dihua

    2016-10-04

    Efficient and high-flux capture of CO2 is the prerequisite of its utilization. Static absorption of CO2 with solid Li2O and molten salts (Li2O-free and Li2O-containing Li-Na-K carbonates) was investigated using a reactor with in situ pressure monitoring. The absorption capacity of dissolved Li2O was 0.835 molCO2/molLi2O at 723 K, larger than that of solid Li2O. For the solid Li2O absorbents, formation of solid Li2CO3 on the surface can retard the further reactions between Li2O and CO2, whereas the dissociation/dissolution effect of molten carbonate on Li2O improved the mass-specific absorption capacity of liquid Li2O. In Li2O-containing Li-Na-K molten carbonate, CO2 was mostly absorbed by alkaline oxide ions (O(2-)). The chemical interactions between CO2 and CO3(2-) contributed to CO2 uptake via formation of multiple carbonate ions. The mass transfer of these absorbing ions was found as the dominating factor governing the rate of static absorption. Higher temperatures reduced the thermodynamic tendency of CO2 absorption, but a lower viscosity at elevated temperature was conducive to absorption kinetics. Compared with the commonly used CaO absorbent, Li2O was much more dissolvable in molten carbonate. The Li2O-containing molten carbonate is potentially a promising medium for industrial carbon capture and electrochemical transformation process.

  15. Direct observation of single layer graphene oxide reduction through spatially resolved, single sheet absorption/emission microscopy.

    PubMed

    Sokolov, Denis A; Morozov, Yurii V; McDonald, Matthew P; Vietmeyer, Felix; Hodak, Jose H; Kuno, Masaru

    2014-06-11

    Laser reduction of graphene oxide (GO) offers unique opportunities for the rapid, nonchemical production of graphene. By tuning relevant reduction parameters, the band gap and conductivity of reduced GO can be precisely controlled. In situ monitoring of single layer GO reduction is therefore essential. In this report, we show the direct observation of laser-induced, single layer GO reduction through correlated changes to its absorption and emission. Absorption/emission movies illustrate the initial stages of single layer GO reduction, its transition to reduced-GO (rGO) as well as its subsequent decomposition upon prolonged laser illumination. These studies reveal GO's photoreduction life cycle and through it native GO/rGO absorption coefficients, their intrasheet distributions as well as their spatial heterogeneities. Extracted absorption coefficients for unreduced GO are α405 nm ≈ 6.5 ± 1.1 × 10(4) cm(-1), α520 nm ≈ 2.1 ± 0.4 × 10(4) cm(-1), and α640 nm ≈ 1.1 ± 0.3 × 10(4) cm(-1) while corresponding rGO α-values are α405 nm ≈ 21.6 ± 0.6 × 10(4) cm(-1), α520 nm ≈ 16.9 ± 0.4 × 10(4) cm(-1), and α640 nm ≈ 14.5 ± 0.4 × 10(4) cm(-1). More importantly, the correlated absorption/emission imaging provides us with unprecedented insight into GO's underlying photoreduction mechanism, given our ability to spatially resolve its kinetics and to connect local rate constants to activation energies. On a broader level, the developed absorption imaging is general and can be applied toward investigating the optical properties of other two-dimensional materials, especially those that are nonemissive and are invisible to current single molecule optical techniques.

  16. Hydrogen absorption in solid aluminum during high-temperature steam oxidation

    NASA Technical Reports Server (NTRS)

    Andreev, L. A.; Gelman, B. G.; Zhukhovitskiy, A. A.

    1979-01-01

    Hydrogen is emitted by aluminum heated in a vacuum after high-temperature steam treatment. Wire samples are tested for this effect, showing dependence on surface area. Two different mechanisms of absorption are inferred, and reactions deduced.

  17. Abnormal photothermal effect of laser radiation on highly defect oxide bronze nanoparticles under the sub-threshold excitation of absorption

    NASA Astrophysics Data System (ADS)

    Gulyaev, P.; Kotvanova, M.; Omelchenko, A.

    2017-05-01

    The mechanism of abnormal photo-thermal effect of laser radiation on nanoparticles of oxide bronzes has been proposed in this paper. The basic features of the observed effect are: a) sub-threshold absorption of laser radiation by the excitation of donor-like levels formed in the energy gap due to superficial defects of the oxide bronze nano-crystals; b) an interband radiationless transition of energy of excitation on deep triplet levels and c) consequent recombination occurring at the plasmon absorption. K or Na atoms thermally intercalated to the octahedral crystal structure of TiO2 in the wave SHS combustion generate acceptor levels in the gap. The prepared oxide bronzes of the non-stoichiometric composition NaxTiO2 and KxTiO2 were examined by high resolution TEM, and then grinded in a planetary mill with powerful dispersion energy density up to 4000 J/g. This made it possible to obtain nanoparticles about 50 nm with high surface defect density (1017-1019 cm-2 at a depth of 10 nm). High photo-thermal effect of laser radiation on the defect nanocrystals observed after its impregnation into cartilaginous tissue exceeds 7 times in comparison with the intact ones.

  18. Calibration-free self-absorption model for measuring nitric oxide concentration in a pulsed corona discharge.

    PubMed

    Du, Yanjun; Ding, Yanjun; Liu, Yufeng; Lan, Lijuan; Peng, Zhimin

    2014-08-01

    The effect of self-absorption on emission intensity distributions can be used for species concentration measurements. A calculation model is developed based on the Beer-Lambert law to quantify this effect. And then, a calibration-free measurement method is proposed on the basis of this model by establishing the relationship between gas concentration and absorption strength. The effect of collision parameters and rotational temperature on the method is also discussed. The proposed method is verified by investigating the nitric oxide emission bands (A²Σ⁺→X²∏) that are generated by a pulsed corona discharge at various gas concentrations. Experiment results coincide well with the expectations, thus confirming the precision and accuracy of the proposed measurement method.

  19. P2X Receptors Inhibit NaCl Absorption in mTAL Independently of Nitric Oxide

    PubMed Central

    Svendsen, Samuel L.; Isidor, Søren; Praetorius, Helle A.; Leipziger, Jens

    2017-01-01

    Activation of basolateral P2X receptors markedly reduces NaCl absorption in mouse medullary thick ascending limb (mTAL). Here we tested the role of nitric oxide (NO) in the ATP-mediated (P2X) transport inhibition. We used isolated, perfused mTALs from mice to electrically measure NaCl absorption. By microelectrodes we determined the transepithelial voltage (Vte) and transepithelial resistance (Rte). Via these two parameters, we calculated the equivalent short circuit current, I'sc as a measure of the transepithelial Na+ absorption. Basolateral ATP (100 μM) acutely induced reversible inhibition of Na+ absorption (24 ± 4%, n = 10). Addition of L-arginine (100 μM) had no apparent effect on the ATP-induced transport inhibition. Acute reduction of extracellular [Ca2+] to either 100 nM or 0 nM by addition of EGTA had no effect on the ATP-induced transport inhibition. In the presence of the NO synthase (NOS) inhibitor L-NAME (100 μM) and/or ODQ to inhibit the guanylyl cyclase, the ATP effect remained unaffected. Increasing the concentration and incubation time for L-NAME (1 mM) still did not reveal any effect on the ATP-mediated transport inhibition. Acute addition of the NO donors SNAP (100 μM) and Spermine NONOate (10 μM) did not alter tubular transport. High concentrations of L-NAME (1 mM) in itself, however, reduced the transepithelial transport significantly. Thus, we find no evidence for nitric oxide (NO) as second messenger for P2X receptor-dependent transport inhibition in mTAL. Moreover, Ca2+ signaling appears not involved in the ATP-mediated effect. It remains undefined how P2X receptors trigger the marked reduction of transport in the TAL. PMID:28174542

  20. Direct Determination of Oxidation States of Uranium in Mixed-Valent Uranium Oxides Using Total Reflection X-ray Fluorescence X-ray Absorption Near-Edge Spectroscopy.

    PubMed

    Sanyal, Kaushik; Khooha, Ajay; Das, Gangadhar; Tiwari, M K; Misra, N L

    2017-01-03

    Total reflection X-ray fluorescence (TXRF)-based X-ray absorption near-edge spectroscopy has been used to determine the oxidation state of uranium in mixed-valent U3O8 and U3O7 uranium oxides. The TXRF spectra of the compounds were measured using variable X-ray energies in the vicinity of the U L3 edge in the TXRF excitation mode at the microfocus beamline of the Indus-2 synchrotron facility. The TXRF-based X-ray absorption near-edge spectroscopy (TXRF-XANES) spectra were deduced from the emission spectra measured using the energies below and above the U L3 edge in the XANES region. The data processing using TXRF-XANES spectra of U(IV), U(V), and U(VI) standard compounds revealed that U present in U3O8 is a mixture of U(V) and U(VI), whereas U in U3O7 is mixture of U(IV) and U(VI). The results obtained in this study are similar to that reported in literature using the U M edge. The present study has demonstrated the possibility of application of TXRF for the oxidation state determination and elemental speciation of radioactive substances in a nondestructive manner with very small amount of sample requirement.

  1. Optical absorption and luminescence studies of fast neutron-irradiated complex oxides for jewellery applications

    NASA Astrophysics Data System (ADS)

    Mironova-Ulmane, N.; Skvortsova, V.; Popov, A. I.

    2016-07-01

    We studied the optical absorption and luminescence of agate (SiO2), topaz (Al2[SiO4](F,OH)2), beryl (Be3Al2Si6O18), and prehnite (Ca2Al(AlSi3O10)(OH)2) doped with different concentrations of transition metal ions and exposed to fast neutron irradiation. The exchange interaction between the impurity ions and the defects arising under neutron irradiation causes additional absorption as well as bands' broadening in the crystals. These experimental results allow us to suggest the method for obtaining new radiation-defect induced jewellery colors of minerals due to neutron irradiation.

  2. Femtosecond all-optical parallel logic gates based on tunable saturable to reverse saturable absorption in graphene-oxide thin films

    NASA Astrophysics Data System (ADS)

    Roy, Sukhdev; Yadav, Chandresh

    2013-12-01

    A detailed theoretical analysis of ultrafast transition from saturable absorption (SA) to reverse saturable absorption (RSA) has been presented in graphene-oxide thin films with femtosecond laser pulses at 800 nm. Increase in pulse intensity leads to switching from SA to RSA with increased contrast due to two-photon absorption induced excited-state absorption. Theoretical results are in good agreement with reported experimental results. Interestingly, it is also shown that increase in concentration results in RSA to SA transition. The switching has been optimized to design parallel all-optical femtosecond NOT, AND, OR, XOR, and the universal NAND and NOR logic gates.

  3. Femtosecond all-optical parallel logic gates based on tunable saturable to reverse saturable absorption in graphene-oxide thin films

    SciTech Connect

    Roy, Sukhdev Yadav, Chandresh

    2013-12-09

    A detailed theoretical analysis of ultrafast transition from saturable absorption (SA) to reverse saturable absorption (RSA) has been presented in graphene-oxide thin films with femtosecond laser pulses at 800 nm. Increase in pulse intensity leads to switching from SA to RSA with increased contrast due to two-photon absorption induced excited-state absorption. Theoretical results are in good agreement with reported experimental results. Interestingly, it is also shown that increase in concentration results in RSA to SA transition. The switching has been optimized to design parallel all-optical femtosecond NOT, AND, OR, XOR, and the universal NAND and NOR logic gates.

  4. Vapor Absorption and Conductivity in Poly(ethylene Oxide)-Salt-Propylene Glycol Films.

    DTIC Science & Technology

    1987-11-01

    CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE il. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS Unclassified 2. SECURITY CLASSIFICATION ...OF I JAN 73 IS OBSOLETE. UNCILASSIFIED SECURITY CLASSIFICATION OF THIS PAGE SC5384.TR Rockwell InternationalSciTnce Center VAPOR ABSORPTION AND...salt electrolytes occurs primarily in amorphous regions; hence, a low crystal-to- glass transition temperature is a most desirable characteristic

  5. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    NASA Astrophysics Data System (ADS)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  6. Preparation, characterization and nonlinear absorption studies of cuprous oxide nanoclusters, micro-cubes and micro-particles

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Narayana Rao, D.

    2012-07-01

    Cuprous oxide nanoclusters, micro-cubes and micro-particles were successfully synthesized by reducing copper(II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction and FTIR studies revealed that the formation of pure single-phase cubic. Raman and EPR spectral studies show the presence of CuO in as-synthesized powders of Cu2O. Transmission electron microscopy and field emission scanning electron microscopy data revealed that the morphology evolves from nanoclusters to micro-cubes and micro-particles by increasing the concentration of NaOH. Linear optical measurements show absorption peak maximum shifts towards red with changing morphology from nanoclusters to micro-cubes and micro-particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm 6 ns laser pulses. Samples-exhibited both saturable as well as reverse saturable absorption. Due to confinement effects (enhanced band gap), we observed enhanced nonlinear absorption coefficient (β) in the case of nanoclusters compared to their micro-cubes and micro-particles.

  7. Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Saravanan, M.; T. C., Sabari Girisun

    2017-01-01

    Nonlinear absorption and optical limiting properties of ZnFe2O4-rGO magnetic nanostructures was investigated by the Z-scan technique using Q-switched Nd:YAG laser (5 ns, 532 nm, 10 Hz) as an excitation source. Excited state absorption was the dominant process responsible for the observed nonlinearity in ZnFe2O4 decorated rGO which arises due to photo-generated charge carriers in the conduction band of zinc ferrite and increases in defects at the surface of rGO due to the incorporation of ZnFe2O4. The magnitude of the nonlinear absorption co-efficient was found to be in the order of 10-10 m/W. A noteworthy enhancement in the third-order NLO properties in ZnFe2O4-(15 wt%) rGO with those of individual counter parts and well known graphene composites was reported. Role of induced defects states (sp3) arising from the functionalization of rGO in the enhancement of NLO response was explained through Raman studies. Earlier incorporation and distribution of ZnFe2O4 upon GO through one-step hydrothermal method was analyzed by XRD and FTIR. Formation of (nanospheres/nanospindles) ZnFe2O4 along with reduction of graphene oxide was confirmed through TEM analysis. VSM studies showed zinc ferrite decorated rGO posseses superparamagnetic behavior. The tuning of nonlinear optical and magnetic behavior with variation in the content of spinel ferrites upon reduced graphene oxide provides an easy way to attain tunable properties which are exceedingly required in both optoelectronics and photothermal therapy applications.

  8. Atomic Layer Deposition of Hafnium(IV) Oxide on Graphene Oxide: Probing Interfacial Chemistry and Nucleation by using X-ray Absorption and Photoelectron Spectroscopies.

    PubMed

    Alivio, Theodore E G; De Jesus, Luis R; Dennis, Robert V; Jia, Ye; Jaye, Cherno; Fischer, Daniel A; Singisetti, Uttam; Banerjee, Sarbajit

    2015-07-27

    Interfacing graphene with metal oxides is of considerable technological importance for modulating carrier density through electrostatic gating as well as for the design of earth-abundant electrocatalysts. Herein, we probe the early stages of the atomic layer deposition (ALD) of HfO2 on graphene oxide using a combination of C and O K-edge near-edge X-ray absorption fine structure spectroscopies and X-ray photoelectron spectroscopy. Dosing with water is observed to promote defunctionalization of graphene oxide as a result of the reaction between water and hydroxyl/epoxide species, which yields carbonyl groups that further react with migratory epoxide species to release CO2 . The carboxylates formed by the reaction of carbonyl and epoxide species facilitate binding of Hf precursors to graphene oxide surfaces. The ALD process is accompanied by recovery of the π-conjugated framework of graphene. The delineation of binding modes provides a means to rationally assemble 2D heterostructures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Anormalous Optical Absorption in Porous Al_2O3 Host Matrix---Nano-Oxide Particle Nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Lide; Zhang, Biao; Mo, Chimei

    1996-03-01

    Porous Al_2O3 host matrix---nano-γ-Fe_2O3 particle composites (porous nanocomposite) were prepared by pyrolysis of Fe(NO_3)_39H_2O in porous nano- Al_2O3 matrix at 250^0C. Comparing with simple nanocomposites formed by mixing nano-γ-Fe_2O3 and compacting at room temperature, followed by annealing at 250^0C, the following anomalous optical behaviors were observed: for porous nanocomposite containing 5% Fe_2O_3, the aborption edge shifts obviously from 827nm to 543nm, and with increasing dopping amount of Fe_2O3 from 5% to 70%, blue shift phenomina decreases. Namely, the absorption edge moves from 543nm to 710nm. The mechanism of shift of the absorption edge is discussed.

  10. Soybean β-Conglycinin Induces Inflammation and Oxidation and Causes Dysfunction of Intestinal Digestion and Absorption in Fish

    PubMed Central

    Zhang, Jin-Xiu; Guo, Lin-Ying; Feng, Lin; Jiang, Wei-Dan; Kuang, Sheng-Yao; Liu, Yang; Hu, Kai; Jiang, Jun; Li, Shu-Hong; Tang, Ling; Zhou, Xiao-Qiu

    2013-01-01

    β-conglycinin has been identified as one of the major feed allergens. However, studies of β-conglycinin on fish are scarce. This study investigated the effects of β-conglycinin on the growth, digestive and absorptive ability, inflammatory response, oxidative status and gene expression of juvenile Jian carp (Cyprinus carpio var. Jian) in vivo and their enterocytes in vitro. The results indicated that the specific growth rate (SGR), feed intake, and feed efficiency were reduced by β-conglycinin. In addition, activities of trypsin, chymotrypsin, lipase, creatine kinase, Na+,K+-ATPase and alkaline phosphatase in the intestine showed similar tendencies. The protein content of the hepatopancreas and intestines, and the weight and length of the intestines were all reduced by β-conglycinin. β-conglycinin increased lipid and protein oxidation in the detected tissues and cells. However, β-conglycinin decreased superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GR) activities and glutathione (GSH) content in the intestine and enterocytes. Similar antioxidant activity in the hepatopancreas was observed, except for GST. The expression of target of rapamycin (TOR) gene was reduced by β-conglycinin. Furthermore, mRNA levels of interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β) genes were increased by β-conglycinin. However, β-conglycinin increased CuZnSOD, MnSOD, CAT, and GPx1b gene expression. In conclusion, this study indicates that β-conglycinin induces inflammation and oxidation, and causes dysfunction of intestinal digestion and absorption in fish, and finally reduces fish growth. The results of this study provide some information to the mechanism of β-conglycinin-induced negative effects. PMID:23520488

  11. Soybean β-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish.

    PubMed

    Zhang, Jin-Xiu; Guo, Lin-Ying; Feng, Lin; Jiang, Wei-Dan; Kuang, Sheng-Yao; Liu, Yang; Hu, Kai; Jiang, Jun; Li, Shu-Hong; Tang, Ling; Zhou, Xiao-Qiu

    2013-01-01

    β-Conglycinin has been identified as one of the major feed allergens. However, studies of β-conglycinin on fish are scarce. This study investigated the effects of β-conglycinin on the growth, digestive and absorptive ability, inflammatory response, oxidative status and gene expression of juvenile Jian carp (Cyprinus carpio var. Jian) in vivo and their enterocytes in vitro. The results indicated that the specific growth rate (SGR), feed intake, and feed efficiency were reduced by β-conglycinin. In addition, activities of trypsin, chymotrypsin, lipase, creatine kinase, Na(+),K(+)-ATPase and alkaline phosphatase in the intestine showed similar tendencies. The protein content of the hepatopancreas and intestines, and the weight and length of the intestines were all reduced by β-conglycinin. β-Conglycinin increased lipid and protein oxidation in the detected tissues and cells. However, β-conglycinin decreased superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GR) activities and glutathione (GSH) content in the intestine and enterocytes. Similar antioxidant activity in the hepatopancreas was observed, except for GST. The expression of target of rapamycin (TOR) gene was reduced by β-conglycinin. Furthermore, mRNA levels of interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β) genes were increased by β-conglycinin. However, β-conglycinin increased CuZnSOD, MnSOD, CAT, and GPx1b gene expression. In conclusion, this study indicates that β-conglycinin induces inflammation and oxidation, and causes dysfunction of intestinal digestion and absorption in fish, and finally reduces fish growth. The results of this study provide some information to the mechanism of β-conglycinin-induced negative effects.

  12. A thermodynamic model of the Hg(0.8)Cd(0.2)Te-iodine transport system. I - Te-saturated source material. II - Source material composition within the homogeneity range

    NASA Technical Reports Server (NTRS)

    Chandra, D.; Wiedemeier, H.

    1987-01-01

    A thermochemical analysis of the Hg(0.8)Cd(0.2)Te-iodine vapor transport system is presented, and theoretical calculations of diffusion-controlled mass transport rates are made. The predicted mass fluxes are compared with experimental data obtained from transport experiments under vertical, stabilizing conditions reported earlier and with results of additional transport experiments conducted during the present study. Experimental mass transport rate studies of the transport system for fixed amount of excess Hg as a function of transport agent pressure are presented. The mass fluxes are determined for the vertical, stabilizing orientation of the density gradient relative to the gravitational vector. In order to compare experimental mass transport rates with computed values, the thermochemical analysis is extended to take the formation of Hg vacancies in the above compound into account along with their effect on the partial pressure of the system.

  13. Highly sensitive transient absorption imaging of graphene and graphene oxide in living cells and circulating blood.

    PubMed

    Li, Junjie; Zhang, Weixia; Chung, Ting-Fung; Slipchenko, Mikhail N; Chen, Yong P; Cheng, Ji-Xin; Yang, Chen

    2015-07-23

    We report a transient absorption (TA) imaging method for fast visualization and quantitative layer analysis of graphene and GO. Forward and backward imaging of graphene on various substrates under ambient condition was imaged with a speed of 2 μs per pixel. The TA intensity linearly increased with the layer number of graphene. Real-time TA imaging of GO in vitro with capability of quantitative analysis of intracellular concentration and ex vivo in circulating blood were demonstrated. These results suggest that TA microscopy is a valid tool for the study of graphene based materials.

  14. Water absorption in thermally grown oxides on SiC and Si: Bulk oxide and interface properties

    SciTech Connect

    Liu, Gang; Xu, Can; Feldman, Leonard C.; Yakshinskiy, Boris; Wielunski, Leszek; Gustafsson, Torgny; Bloch, Joseph; Dhar, Sarit

    2014-11-10

    We combine nuclear reaction analysis and electrical measurements to study the effect of water exposure (D{sub 2}O) on the n-type 4H-SiC carbon face (0001{sup ¯}) MOS system and to compare to standard silicon based structures. We find that: (1) The bulk of the oxides on Si and SiC behave essentially the same with respect to deuterium accumulation; (2) there is a significant difference in accumulation of deuterium at the semiconductor/dielectric interface, the SiC C-face structure absorbs an order of magnitude more D than pure Si; (3) standard interface passivation schemes such as NO annealing greatly reduce the interfacial D accumulation; and (4) the effective interfacial charge after D{sub 2}O exposure is proportional to the total D amount at the interface.

  15. Interaction between indium tin oxide nanoparticles and cytochrome c: A surface-enhanced Raman scattering and absorption spectroscopic study

    SciTech Connect

    Yang, Yimin E-mail: tqiu@seu.edu.cn; Du, Deyang; Fan, Jiyang; Qiu, Teng E-mail: tqiu@seu.edu.cn; Kong, Fan

    2015-06-28

    Indium-tin-oxide (ITO) nanoparticles were annealed in vacuum or reducing atmosphere to obtain different surface structures and investigate their influence on the adsorptive character and conformation of cytochrome c (Cyt c) molecule. Annealing-induced morphometric or structural changes of ITO nanoparticles were characterized by instruments of transmission electron microscopy, x-ray diffraction, and Raman scattering. Semiconductor ITO nanoparticle-enhanced Raman scattering of Cyt c was observed and the enhanced efficiency was found to closely depend on the surface structures which control the adsorbance of buffer anions needed for Cyt c loading. Direct electron transfer between Cyt c and ITO surface at the moment of molecular elastic collision was found and a reverse electron transfer process for O-terminated surface and metal-terminated surface was observed, according to absorption spectroscopic measurement on the residual solution.

  16. Part per trillion nitric oxide measurement by optical feedback cavity-enhanced absorption spectroscopy in the mid-infrared

    NASA Astrophysics Data System (ADS)

    Ventrillard, Irène; Gorrotxategi-Carbajo, Paula; Romanini, Daniele

    2017-06-01

    While nitric oxide (NO) is being monitored in various fields of application, there is still a lack of available instruments at a sub-ppb level of sensitivity. We report on the first application of Optical Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) to NO trace gas analysis, with a room-temperature quantum-cascade laser at 5.26 µm (1900.5 cm^{-1}). A detection limit of 60 ppt is reached in a single measurement performed in 140 ms. The stability of the instrument allows to average for 10 s down to 8.3 ppt, limited by drift of etalon fringes in the spectra. This work opens the path towards new applications notably in breath analysis and environment sciences.

  17. Nitric oxide reduces Cl− absorption in the mouse cortical collecting duct through an ENaC-dependent mechanism

    PubMed Central

    Pech, Vladimir; Thumova, Monika; Dikalov, Sergey I.; Hummler, Edith; Rossier, Bernard C.; Harrison, David G.

    2013-01-01

    Since nitric oxide (NO) participates in the renal regulation of blood pressure, in part, by modulating transport of Na+ and Cl− in the kidney, we asked whether NO regulates net Cl− flux (JCl) in the cortical collecting duct (CCD) and determined the transporter(s) that mediate NO-sensitive Cl− absorption. Cl− absorption was measured in CCDs perfused in vitro that were taken from aldosterone-treated mice. Administration of an NO donor (10 μM MAHMA NONOate) reduced JCl and transepithelial voltage (VT) both in the presence or absence of angiotensin II. However, reducing endogenous NO production by inhibiting NO synthase (100 μM NG-nitro-l-arginine methyl ester) increased JCl only in the presence of angiotensin II, suggesting that angiotensin II stimulates NO synthase activity. To determine the transport process that mediates NO-sensitive changes in JCl, we examined the effect of NO on JCl following either genetic ablation or chemical inhibition of transporters in the CCD. Since the application of hydrochlorothiazide (100 μM) or bafilomycin (5 nM) to the perfusate or ablation of the gene encoding pendrin did not alter NO-sensitive JCl, NO modulates JCl independent of the Na+-dependent Cl−/HCO3− exchanger (NDCBE, Slc4a8), the A cell apical plasma membrane H+-ATPase and pendrin. In contrast, both total and NO-sensitive JCl and VT were abolished with application of an epithelial Na+ channel (ENaC) inhibitor (3 μM benzamil) to the perfusate. We conclude that NO reduces Cl− absorption in the CCD through a mechanism that is ENaC-dependent. PMID:23515718

  18. Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Namjou, K.; Roller, C. B.; Reich, T. E.; Jeffers, J. D.; McMillen, G. L.; McCann, P. J.; Camp, M. A.

    2006-11-01

    A liquid-nitrogen free mid-infrared tunable diode laser absorption spectroscopy (TDLAS) system equipped with a folded-optical-path astigmatic Herriott cell was used to measure levels of exhaled nitric oxide (eNO) and exhaled carbon dioxide (eCO2) in breath. Quantification of absolute eNO concentrations was performed using NO/CO2 absorption ratios measured by the TDLAS system coupled with absolute eCO2 concentrations measured with a non-dispersive infrared sensor. This technique eliminated the need for routine calibrations using standard cylinder gases. The TDLAS system was used to measure eNO in children and adults (n=799, ages 5 to 64) over a period of more than one year as part of a field study. Volunteers for the study self-reported data including age, height, weight, and health status. The resulting data were used to assess system performance and to generate eNO and eCO2 distributions, which were found to be log-normal and Gaussian, respectively. There were statistically significant differences in mean eNO levels for males and females as well as for healthy and steroid naïve asthmatic volunteers not taking corticosteroid therapies. Ambient NO levels affected measured eNO concentrations only slightly, but this effect was not statistically significant.

  19. Obtaining X-ray absorption near-edge structure for transition metal oxides via the Bethe-Salpeter equation

    NASA Astrophysics Data System (ADS)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Shirley, Eric; Prendergast, David

    Transition metal oxides are an important class of materials featured with strongly correlated effects. Most interesting and yet to-be-unveiled physics is associated with the metal 3d orbitals, which can be probed by X-ray absorption near-edge spectroscopy. A thorough interpretation of the x-ray spectroscopy is often accompanied with first-principles simulations of structures, electronic properties and the corresponding x-ray spectra. However, the simulation for TMOs is particularly challenging with the localized 3d orbitals. Most previous studies relied on the ground-state calculations without the core-hole as a compromise. Other treated the excited atom as a charged impurity but the calculated spectra turn out to be even more deviated from experiments. Here, we present the first study for the O K-edge for several typical TMOs via solving the Bethe-Salpeter equation (BSE). We have found that electron-core-hole interactions can alter the absorption spectra significantly. Our study helps to disentangle core-hole effects from the intrinsic electron correlations and hence facilitates the development of more advanced many-electron theories.

  20. Enhanced bovine serum albumin absorption on the N-hydroxysuccinimide activated graphene oxide and its corresponding cell affinity.

    PubMed

    Xiong, Kun; Fan, Qingbo; Wu, Tingting; Shi, Haishan; Chen, Lin; Yan, Minhao

    2017-12-01

    By successively reacting with N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), the carboxyl on the graphene oxide (GO) surface was successfully activated into NHS active ester. In this study, bovine serum albumin (BSA) was selected as a model protein, used for studying the protein absorption capacity of the NHS activated GO (GO-EDC-NHS). Approximately 12.75mg of BSA could be covalent bonded onto the GO-EDC-NHS surface (BSA-CB-GO), whereas only 6.83mg of BSA physical absorbed onto the GO surface (BSA-NB-GO). With a 168h of phosphate buffer saline (PBS) soaking, the BSA accumulative desorption ratio, which was accordingly assigned to the BSA-NB-GO and the BSA-CB-GO, was separately 29.91wt% and 2.95wt%. Consequently, it proved GO-EDC-NHS exhibited more stable and stronger BSA absorption capacity. As compared to the mouse bone marrow mesenchymal stem cells (mBMSCs) cultivated on the BSA-NB-GO surface, the immunofluorescence staining images showed that more vinculins and integrin α5 were visible in the mBMSCs cultivated on the BSA-CB-GO surface, they also produced more distinct stress fibers and actin-containing microfilaments. In summary, BSA-CB-GO possesses an excellent cell affinity, which can be considered as a promising functional material used for promoting the bone remodeling. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Absorption band III kinetics probe the picosecond heme iron motion triggered by nitric oxide binding to hemoglobin and myoglobin.

    PubMed

    Yoo, Byung-Kuk; Kruglik, Sergei G; Lamarre, Isabelle; Martin, Jean-Louis; Negrerie, Michel

    2012-04-05

    To study the ultrafast movement of the heme iron induced by nitric oxide (NO) binding to hemoglobin (Hb) and myoglobin (Mb), we probed the picosecond spectral evolution of absorption band III (∼760 nm) and vibrational modes (iron-histidine stretching, ν(4) and ν(7) in-plane modes) in time-resolved resonance Raman spectra. The time constants of band III intensity kinetics induced by NO rebinding (25 ps for hemoglobin and 40 ps for myoglobin) are larger than in Soret bands and Q-bands. Band III intensity kinetics is retarded with respect to NO rebinding to Hb and to Mb. Similarly, the ν((Fe-His)) stretching intensity kinetics are retarded with respect to the ν(4) and ν(7) heme modes and to Soret absorption. In contrast, band III spectral shift kinetics do not coincide with band III intensity kinetics but follows Soret kinetics. We concluded that, namely, the band III intensity depends on the heme iron out-of-plane position, as theoretically predicted ( Stavrov , S. S. Biopolymers 2004 , 74 , 37 - 40 ).

  2. Chiral monolithic absorbent constructed by optically active helical-substituted polyacetylene and graphene oxide: preparation and chiral absorption capacity.

    PubMed

    Li, Weifei; Wang, Bo; Yang, Wantai; Deng, Jianping

    2015-02-01

    Chiral monolithic absorbent is successfully constructed for the first time by using optically active helical-substituted polyacetylene and graphene oxide (GO). The preparative strategy is facile and straightforward, in which chiral-substituted acetylene monomer (Ma), cross-linker (Mb), and alkynylated GO (Mc) undergo copolymerization to form the desired monolithic absorbent in quantitative yield. The resulting monoliths are characterized by circular dichroism, UV-vis absorption, scanning electron microscopy (SEM), FT-IR, Raman, energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), XPS, and thermogravimetric analysis (TGA) techniques. The polymer chains derived from Ma form chiral helical structures and thus provide optical activity to the monoliths, while GO sheets contribute to the formation of porous structures. The porous structure enables the monolithic absorbents to demonstrate a large swelling ratio in organic solvents, and more remarkably, the helical polymer chains provide optical activity and further enantio-differentiating absorption ability. The present study establishes an efficient and versatile methodology for preparing novel functional materials, in particular monolithic chiral materials based on substituted polyacetylene and GO.

  3. Blood Trimethylamine-N-Oxide Originates from Microbiota Mediated Breakdown of Phosphatidylcholine and Absorption from Small Intestine

    PubMed Central

    Stremmel, Wolfgang; Schmidt, Kathrin V.; Schuhmann, Vera; Kratzer, Frank; Garbade, Sven F.; Langhans, Claus-Dieter; Fricker, Gert; Okun, Jürgen G.

    2017-01-01

    Elevated serum trimethylamine-N-oxide (TMAO) was previously reported to be associated with an elevated risk for cardiovascular events. TMAO originates from the microbiota-dependent breakdown of food-derived phosphatidylcholine (PC) to trimethylamine (TMA), which is oxidized by hepatic flavin-containing monooxygenases to TMAO. Our aim was to investigate the predominant site of absorption of the bacterial PC-breakdown product TMA. A healthy human proband was exposed to 6.9 g native phosphatidylcholine, either without concomitant treatment or during application with the topical antibiotic rifaximin, or exposed only to 6.9 g of a delayed-release PC formulation. Plasma and urine concentrations of TMA and TMAO were determined by electrospray ionization tandem mass spectrometry (plasma) and gas chromatography-mass spectrometry (urine). Native PC administration without concomitant treatment resulted in peak plasma TMAO levels of 43 ± 8 μM at 12 h post-ingestion, which was reduced by concomitant rifaximin treatment to 22 ± 8 μM (p < 0.05). TMAO levels observed after delayed-release PC administration were 20 ± 3 μM (p < 0.001). Accordingly, the peak urinary concentration at 24 h post-exposure dropped from 252 ± 33 to 185 ± 31 mmol/mmol creatinine after rifaximin treatment. In contrast, delayed-release PC resulted in even more suppressed urinary TMAO levels after the initial 12-h observation period (143 ± 18 mmol/mmol creatinine) and thereafter remained within the control range (24 h: 97 ± 9 mmol/mmol creatinine, p < 0.001 24 h vs. 12 h), indicating a lack of substrate absorption in distal intestine and large bowel. Our results showed that the microbiota in the small intestine generated the PC breakdown product TMA. The resulting TMAO, as a cardiovascular risk factor, was suppressed by topical-acting antibiotics or when PC was presented in an intestinally delayed release preparation. PMID:28129384

  4. Nitric oxide contributes to minerals absorption, proton pumps and hormone equilibrium under cadmium excess in Trifolium repens L. plants.

    PubMed

    Liu, Shiliang; Yang, Rongjie; Pan, Yuanzhi; Ma, Mingdong; Pan, Jiang; Zhao, Yan; Cheng, Qingsu; Wu, Mengxi; Wang, Maohua; Zhang, Lin

    2015-09-01

    Nitric oxide (NO) is a stress-signaling molecule in plants that mediates a wide range of physiological processes and responses to metal toxicity. In this work, various NO modulators (NO donor: SNP; NO scavenger: cPTIO; NO synthase inhibitor: l-NAME; and SNP analogs: sodium nitrite/nitrate and sodium ferrocyanide) were investigated to determine the role of NO in Trifolium repens L. plants exposed to Cd. Cd (100μM) markedly reduced biomass, NO production and chlorophyll (Chl a, Chl b and total Chl) concentration but stimulated reactive oxygen species (ROS) and Cd accumulation in plants. SNP (50μM) substantially attenuated growth inhibition, reduced hydrogen peroxide (H2O2) and malonyldialdehyde (MDA) levels, stimulated ROS-scavenging enzymes/agents, and mitigated the H(+)-ATPase inhibition in proton pumps. Interestingly, SNP considerably up-regulated the levels of jasmonic acid (JA) and proline in plant tissues but down-regulated the levels of ethylene (ET) in both shoots and roots and the level of salicylic acid (SA) in roots only, which might be related to the elevated NO synthesis. Additionally, SNP (25-200μM) regulated mineral absorption and, particularly at 50μM, significantly enhanced the uptake of shoot magnesium (Mg) and copper (Cu) and of root calcium (Ca), Mg and iron (Fe). Nevertheless, the effects of SNP on plant growth were reversed by cPTIO and l-NAME, suggesting that the protective effect of SNP might be associated with NO synthesis in vivo. Moreover, SNP analogs did not display roles similar to that of SNP. These results indicated that NO depleted Cd toxicity by eliminating oxidative damage, enhancing minerals absorption, regulating proton pumps, and maintaining hormone equilibrium.

  5. An empirical computer model of the F-Area A-Line nitrogen oxides absorption column (F-8 Column)

    SciTech Connect

    Shanahan, K.L.; Peterson, S.F.

    1989-09-01

    Large quantities of oxides of nitrogen (NO{sub x}) are routinely emitted from the F-Canyon dissolvers and from the F-Area A-Line denitrators. These gases are routed through a nitrogen oxides absorption column located in the A-Line. This column, referred to as the F-8 Column, removes NO{sub x} from the offgas, streams of the dissolvers and denitrators and generates nitric acid. The nitric acid is recycled to the canyon dissolvers. Because of continually more stringent environmental emission restrictions, control of the F-8 Column has become increasingly more difficult. The Savannah River Site has initiated a project to improve operation and control of the column. The project objectives are to use improved control to produce 50 (weight) percent nitric acid while limiting the instaneous NO{sub x} emission rate to maintain opacity from the F-Area stack to less than 40 percent. The Analytical Development Section (ADS) of the Savannah River Laboratory is supporting the A-Line NO{sub x} Absorption Column Improvement Project by determining how the column is currently performing and recommending ways to meet the project goals. ADS chartered a Task Team to collect and study F-8 Column performance data and to recommend appropriate process control strategies. The Task Team constructed and installed an instrumentation package on the F-8 Column performance data and to recommend appropriate process control strategies. The Task Team constructed and installed an instrumentation package on the F-8 Column which would record normal performance data. Simultaneously, an effort was mounted to construct a computer model of the column which would be used to test candidate process control strategies prior to actual Plant testing. This report describes that model. 3 refs., 18 figs., 1 tab.

  6. Structural, thermal and optical absorption features of heavy metal oxides doped tellurite rich glasses

    NASA Astrophysics Data System (ADS)

    Kaky, Kawa M.; Lakshminarayana, G.; Baki, S. O.; Kityk, I. V.; Taufiq-Yap, Y. H.; Mahdi, M. A.

    In order to improve tellurite glass stability to be applicable for optical fiber amplifier applications, glasses with the composition of (70 - x)TeO2. (10)ZnO. (10)WO3. (5)Na2O. (5)TiO2. (x)Bi2O3 (x = 1, 2, 3, 4, and 5 mol%) have been produced and characterized using the related methods. Structural properties were investigated using X-ray diffraction (XRD) which confirms the non-crystalline structure and scanning electron microscopy (SEM) micrographs also confirm the XRD results. The energy dispersive X-ray (EDX) analysis profiles show that all the mentioned elements are present in the prepared glasses. Following the IR spectra, all the tellurium bonds such as stretching vibrations of TeO4 tbp and TeO3/TeO3+1 unit are revealed. Raman spectra confirm the presence of different functional groups, actually, it shows bands mainly in four spectral regions: R1 (65-150) cm-1, R2 (280-550) cm-1, R3 (880-950) cm-1 and R4 (916-926) cm-1 and the identified bands are assigned to respective molecular groups. The thermal study was carried out using Differential scanning calorimetry (DSC) which indicates good thermal stability of the synthesized glasses with increasing Bi concentration. From the optical absorption spectra, we evaluated cut-off edge wavelengths and found increasing cutoff wavelength with an increase in Bi2O3 concentration. In the UV-Visible region, optical band gap energy and allowed transitions were investigated using three methods; direct, indirect, and absorption spectrum fitting (ASF), and band gaps from indirect and ASF were matched.

  7. Coloration and oxygen vacancies in wide band gap oxide semiconductors: Absorption at metallic nanoparticles induced by vacancy clustering—A case study on indium oxide

    SciTech Connect

    Albrecht, M. Schewski, R.; Irmscher, K.; Galazka, Z.; Markurt, T.; Naumann, M.; Schulz, T.; Uecker, R.; Fornari, R.; Meuret, S.; Kociak, M.

    2014-02-07

    In this paper, we show by optical and electron microscopy based investigations that vacancies in oxides may cluster and form metallic nanoparticles that induce coloration by extinction of visible light. Optical extinction in this case is caused by generation of localized surface plasmon resonances at metallic particles embedded in the dielectric matrix. Based on Mie's approach, we are able to fit the absorption due to indium nanoparticles in In{sub 2}O{sub 3} to our absorption measurements. The experimentally found particle distribution is in excellent agreement with the one obtained from fitting by Mie theory. Indium particles are formed by precipitation of oxygen vacancies. From basic thermodynamic consideration and assuming theoretically calculated activation energies for vacancy formation and migration, we find that the majority of oxygen vacancies form just below the melting point. Since they are ionized at this temperature they are Coulomb repulsive. Upon cooling, a high supersaturation of oxygen vacancies forms in the crystal that precipitates once the Fermi level crosses the transition energy level from the charged to the neutral charge state. From our considerations we find that the ionization energy of the oxygen vacancy must be higher than 200 meV.

  8. Applications of x ray absorption fine structure to the in situ study of the effect of cobalt in nickel hydrous oxide electrodes for fuel cells and rechargeable batteries

    NASA Technical Reports Server (NTRS)

    Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.

    1993-01-01

    Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.

  9. Ultracompact Electro-Absorption Modulators Based on Novel Materials (I): Epsilon-Near-Zero Material and Electro-Absorption Modulation Based on Indium-Tin-Oxide

    DTIC Science & Technology

    2013-08-21

    Indium-Tin-Oxide” 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and...Modulation Based on Indium-Tin-Oxide” Report Title ABSTRACT Indium-tin-oxide (ITO) is widely used as transparent electrode in solar cells and displays...oxide (ITO) is widely used as transparent electrode in solar cells and displays. Recent work showed that ITO and other transparent conducting oxides

  10. Influence of the ``second gap'' on the optical absorption of transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Ha, Viet-Anh; Waroquiers, David; Rignanese, Gian-Marco; Hautier, Geoffroy

    Transparent conducting oxides (TCOs) are critical to many technologies (e.g., thin-film solar cells, flat-panel displays or organic light-emitting diodes). TCOs are heavily doped (n or p-type) oxides that satisfy many design criteria such as high transparency to visible light (i.e., a band gap > 3 eV), high concentration and mobility of carriers (leading to high conductivity), ... In such (highly doped) systems, optical transitions from the conduction band minimum to higher energy bands in n-type or from lower energy bands to the valence band maximum in p-type are possible and can degrade transparency. In fact, it has been claimed that a high energy (> 3eV) for any of these transitions made possible by doping, commonly referred as a high ``second gap'', is a necessary design criterion for high performance TCOs. Here, we study the influence of this second gap on the transparency of doped TCOs by using ab initio calculations within the random phase approximation (RPA) for several well-known p-type and n-type TCOs. Our work highlights how the second gap affects the transparency of doped TCOs, shining light on more accurate design criteria for high performance TCOs.

  11. Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Ye, Weichun; Fu, Jiajia; Wang, Qin; Wang, Chunming; Xue, Desheng

    2015-12-01

    NiCoP alloy nanoparticles supported on reduced graphene oxide (NiCoP/RGO) are synthesized by in situ co-reduction of Ni2+, Co2+ and graphene oxide (GO) with sodium hypophosphite in a one-pot reaction. This synthesis route is simple and can be used for industrial preparation. The different molar ratios of Ni/Co can be obtained by changing the molar ratio of their salts in the reaction bath. The effect of annealing temperature on the crystal structure of NiCoP alloys has been further investigated. After 500 °C annealing, NiCoP alloys exhibit good crystallinity. The as-prepared NiCoP/RGO composites demonstrate high dielectric constant and magnetic loss in the frequency range of 2-18 GHz due to the conductive and ferromagnetic behavior. Also, their coercivity and magnetization strength are decreased from magnetic measurement with the increase of Ni content. As the molar ratio of Ni/Co is 3:1, the maximum value of the reflection loss reaches to -17.84 dB. Furthermore, the NiCoP/RGO composites have better corrosion resistance than traditional iron series magnetic nanoparticles. It is expected that the composites with the thin, light-weighted and broadband absorbing and good anti-corrosion properties will have a great potential for electromagnetic wave absorption applications.

  12. Evaluation of oxidant media for the determination of lead in food slurries by hydride generation atomic absorption spectrometry.

    PubMed

    Madrid, Y; Bonilla, M; Cámara, C

    1990-05-01

    Several oxidant media were evaluated for the generation of lead hydride from slurry samples and their application to the determination of lead in vegetables and fish by hydride generation atomic absorption spectrometry. Three oxidant - acid media were compared: hydrogen peroxide - nitric acid, ammonium persulphate - nitric acid and potassium dichromate - lactic acid. The powdered samples were suspended in Triton X-100 and shaken with 10.0 g of blown zirconia spheres until a slurry was formed. The potassium dichromate - lactic acid medium was the most satisfactory for the determination of lead in fish and vegetables, providing the lowest detection limits as a result of its high sensitivity and low blank values. The ammonium persulphate - nitric acid medium gave good accuracy, precision and selectivity for vegetables (1-2 p.p.m. of lead); however, with fish (0.1-1 p.p.m. of lead) it was only a semi-quantitative medium for the determination of lead owing to its lack of sensitivity and selectivity. The hydrogen peroxide - nitric acid medium was unsatisfactory for the generation of lead hydride from slurry samples because of decomposition of hydrogen peroxide by the organic matter in the sample.

  13. Curium analysis in plutonium uranium mixed oxide by x-ray fluorescence and absorption fine structure spectroscopy.

    PubMed

    Degueldre, C; Borca, C; Cozzo, C

    2013-10-15

    Plutonium uranium mixed oxide (MOX) fuels are being used in commercial nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regards to their environment and the coolant. In this work the study of the local occurrence, speciation and next-neighbour environment of curium (Cm) in the (Pu,U)O2 lattice within an irradiated (60 MW d kg(-1) average burn-up) MOX sample was performed employing micro-x-ray fluorescence (µ-XRF) and micro-x-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Cm (≈ 0.7 wt% in the rim and ≈ 0.03 wt% in the centre) are determined from the experimental data gained for the irradiated fuel material examined in its centre and peripheral (rim) zones of the fuel. Curium occurrence is also reduced from the centre (hot) to the periphery (colder) because of the condensation of these volatile oxides. In the irradiated sample Cm builds up as Cm(3+) species (>90%) within a [CmO8](13-) or [CmO7](11-) coordination environment and no (<10%) Cm(IV) can be detected in the rim zone. Curium dioxide is reduced because of the redox buffering activity of the uranium dioxide matrix and of its thermodynamic instability.

  14. Synthesis of Tb{sub 4}O{sub 7} complexed with reduced graphene oxide for Rhodamine-B absorption

    SciTech Connect

    Gao, Hui; Zhou, Yang; Chen, Keqin; Li, Xiaolong

    2016-05-15

    Highlights: • Tb–rGO composite was fabricated via a facile thermally reduction process. • The green and blue emissions were both observed in the composite. • The composite exhibited efficient absorption capability for Rhodamine-B. - Abstract: Tb{sub 4}O{sub 7} complexed with reduced graphene oxide composite (Tb–rGO) had been designed and fabricated by a facile thermal reduction method. The formation of Tb{sub 4}O{sub 7} particles and reduction of graphene oxide (GO) occurred simultaneously, and partial terbium ions would be complexed with rGO via oxygen-containing function groups on rGO sheets. Introducing of terbium ions could effectively tune the photoluminescence properties of rGO, and the composite exhibited the typical green emission of terbium ions as well as the blue self-luminescence of graphene entered at 440 nm. Moreover, Tb–rGO had demonstrated its high capability as an organic dye (Rhodamine-B) scavenger with high speed and efficiency. The findings showed the promising applications for large-scale removal of organic dye contaminants, especially in the field of waste water treatment.

  15. Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Fu, Chen; He, Da-Wei; Wang, Yong-Sheng; Fu, Ming; Geng, Xin; Zhuo, Zu-Liang

    2015-08-01

    A composite of graphene/PANI/GAunano is synthesized using the co-blend method. The morphologies and microstructures of samples are examined by transition electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). Moreover, the microwave absorption properties of both graphene/PANI and GO/PANI/ GAunano composites are investigated in a microwave frequency band from 1 GHz to 18 GHz. The maximum reflection loss (RL) of GO/PANI/GAunano with a thickness of 2 mm is up to -24.61 dB at 15.45 GHz, and the bandwidth corresponding to RL at -10 dB can reach 4.08 GHz (from 13.92 GHz to 18.00 GHz) for a 2-mm-thick layer. The electromagnetic data demonstrate that GO/PANI/GAunano can be used as an attractive candidate for microwave absorbers. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB932700 and 2011CB932703), the National Natural Science Foundation of China (Grant Nos. 61335006, 61378073, and 61077044), and the Beijing Natural Science Fund (Grant No. 4132031).

  16. Resolving Sulfur Oxidation and Removal from Pt and Pt3Co Electrocatalysts Using in Situ X-ray Absorption Spectroscopy

    SciTech Connect

    Ramaker, D.; Gatewood, D; Korovina, A; Garsany, Y; Swider-Lyons, K

    2010-01-01

    Adsorbed sulfur is a poison to the Pt catalysts used in proton exchange membrane fuel cells, but it can be removed by potential cycling. This process is studied for S{sub x}-poisoned nanoscale Pt- and Pt{sub 3}Co- on Vulcan carbon (Pt/VC and Pt{sub 3}Co/VC) in perchloric acid electrolyte using the {Delta}{mu} adsorbate isolation technique for in situ X-ray absorption spectroscopy. The {Delta}{mu} technique is modified to better distinguish the {Delta}{mu} signatures for H, O, and Sx on Pt. The resulting {Delta}{mu} analysis suggests that SO{sub 2} on nanoscale Pt is oxidized to bisulfate or sulfate species in two regions, near 1.05 V on the cluster edges of the Pt nanoparticle, and at higher potentials from the Pt(111) faces where oxygen is less strongly bound. The bisulfate or sulfate species desorb from the Pt surface at high potentials due to O(OH) adsorption/replacement and at low potentials due to loss of the Coulomb attraction between the bisulfate anion and the Pt. A similar oxidation process occurs for S{sub x}-poisoned Pt{sub 3}Co/VC, but at lower potentials because a ligand effect coming from Co shifts the oxidization potential of adsorbed SO{sub 2} to lower potentials while pushing OH adsorption to higher potentials. The spectroscopic results give insights into cyclic voltammetry data and are consistent with electrochemical cycling procedures for removing the sulfur.

  17. Oxidative activation of acylguanidine prodrugs: intestinal presystemic activation in rats limits absorption and can be inhibited by co-administration of ketoconazole.

    PubMed

    Humphreys, W G; Obermeier, M T; Chong, S; Kimball, S D; Das, J; Chen, P; Moquin, R; Han, W-C; Gedamke, R; White, R E; Morrison, R A

    2003-01-01

    1. The disposition of acyl prodrugs was studied to improve the delivery of a guanidine-containing parent compound with poor membrane permeability and poor absorption. 2. The prodrugs were evaluated in vitro and in vivo for conversion to drug. Prodrugs were evaluated for hydrolytic or oxidative bioactivation in intestinal homogenate and rat liver S9 or microsomes. The disposition of the prodrugs in vivo was monitored in bile duct-cannulated rats. 3. Compounds with n-alkylacyl groups were efficiently bioactivated, but were hydrolysed before absorption. 4. Hydrolytic bioactivation could be blocked in vitro by branching in the alkyl chain. These compounds showed modest improvements in absorption, despite favourable permeability. Experiments with liver microsomes demonstrated efficient NADPH-dependent oxidative bioactivation, which was proposed to occur through a CYP-mediated side chain oxidation followed by cyclization and release of parent compound. Ketoconazole co-administration yielded approximately a twofold increase in absorption. 5. The hydrolytically stable prodrugs were successful in increasing absorption of parent drug and were efficiently bioactivated, but they did not yield increased systemic levels of drug.

  18. Electrochemical regeneration of sodium hypochlorite in the absorption-oxidation method of desorbing waste gases

    SciTech Connect

    Znamenskii, Yu.D.; Perchugov, G.Ya.

    1988-07-10

    The electrochemical synthesis of sodium hypochlorite from a solution with a reduced concentration of sodium chloride is efficiently carried out with the use of ruthenium oxide-titanium anodes (ROTA). In this context they investigated the electrolysis of a solution of sodium chloride with concentrations equal to 20 and 50 kg/m/sup 3/ in a single cell flow-type electrolyzer with an ROTA and, for comparison, with a graphite anode under laboratory conditions. A flow-type electrolyzer was selected in view of the fact that it most closely satisfies the purposes of gas purification. The current efficiency with respect to sodium hypochlorite was almost two times higher, and the specific consumption of electrical energy was 1.6-1.8 times lower in the case of the ROTA than in the case of the graphite electrode. The yield of sodium chlorate remained on the same level in both cases.

  19. A study of conduction band edge states in complex oxides by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fulton, C. C.; Edge, L. F.; Lucovsky, G.; Lüning, J.

    2006-11-01

    Conduction band edge d-states are compared for complex oxides: (i) mixed tetravalent-trivalent ZrO 2-Y 2O 3 alloys, (ii) tetravalent Zr(Hf)O 2-TiO 2 alloys, and (iii) trivalent La scandate and aluminate. Low Y 2O 3 content cubic ZrO 2-Y 2O 3 alloys display two crystal-field split 4d-features in O K 1 spectra. Alloys with higher Y 2O 3 content, as well as Zr(Hf)O 2-TiO 2 alloys display increased d-state multiplicity. O K 1 spectra of perovskite-structured LaScO 3 and LaAlO 3 indicate Jahn-Teller d-state term-splittings with contributions from both trivalent atomic species.

  20. AC susceptibility of the Hg0.3La0.7Ba2Ca3(Cu0.95Ag0.5)4O10+δ superconductor

    NASA Astrophysics Data System (ADS)

    Mostafa, M. F.; Hassen, A.

    2016-09-01

    In this work, the temperature, magnetic field and frequency dependence of the ac susceptibility of Hg0.3La0.7Ba2Ca3(Cu0.95Ag0.5)4O10+δ were studied. The superconductivity still survives even at this amount of Ag. The magnetic field dependence of the irreversibility line (IL) and the flux pinning of this compound are discussed and compared with those of low Ag content. The IL exhibits thermally activated behaviour. A collective creep of the vortex bundle also occurs for this level of doping. A crossover from a two- to a three-dimensional system is suggested at T/Tc = 0.75 and a magnetic field, Hdc = 0.04 T. Based on vortex glass phase transition theory, the effective pinning energy, ueff, was calculated. The change in the characteristic temperature of the studied compound and that of low Ag content samples are summarised. Comparisons with similar materials are discussed.

  1. Hydrothermal synthesis, characterization by single crystal XRD, structural discussion and electric, dielectrical properties of (C6H9N2)2(Hg0.12Zn0.88)Cl4 hybrid compound

    NASA Astrophysics Data System (ADS)

    Elwej, R.; Hlel, F.

    2016-10-01

    The new hybrid compound "Bis-2-amino-4-picolinium tetrachloro-mercurate-zincate ((C6H9N2)2(Hg0.12Zn0.88)Cl4)" was prepared by hydrothermal method using HCl as solvent and characterized by XRD, NMR-MAS 13C and electrical impedance spectroscopy. The XRD reveals that the compound was crystallized in the triclinic system, centrosymetric space group P 1 bar and the lattice parameters a=7.578(1)Å, b=8.559(1)Å, c=15.418(2)Å, α=84.443(1)°, β=89.506(1)°, γ=68.615(1)° and Z=2. The AC electrical conductivity and the dielectric relaxation properties were measured in the frequency range of 209 Hz-5 MHz at different temperature. The alternating current (AC) conductivity of the investigated compound obeys the Jonscher law: σ(ω)=σdc+Aωn. Furthermore, the temperature dependence of the Jonscher's exponent shows that the conduction inside the studied material is insured by the model: overlapping-large polaron tunneling (OLPT) model.

  2. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide123

    PubMed Central

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F.

    2014-01-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6–71.0) and was not different from that from zinc gluconate with 60.9% (50.6–71.7). Absorption from zinc oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. PMID:24259556

  3. X-ray absorption spectroscopy of titanium oxide by time dependent density functional calculations.

    PubMed

    Fronzoni, G; De Francesco, R; Stener, M; Causà, M

    2006-05-25

    The potentiality of the time dependent density functional theory (TDDFT) for the description of core excitation spectra (XAS) in transition metal oxides is analyzed, considering the rutile form of TiO(2) as a test case. Cluster models are adopted to mimic the bulk, embedded within an array of point charges to simulate the Madelung potential. All of the edges, titanium and oxygen K and titanium L edges, are considered, and the TDDFT results are compared with the experimental data in order to assess the performance of the theoretical approach in dealing with this complex class of compounds. Satisfactory results have been obtained for the Ti and O K edges, while in the case of the Ti L edge some discrepancies with the experiment are still present. The configuration mixing explicitly included in the TDDFT model strongly influences the distribution of the 2p metal oscillator strength. The origin of the spectral features is investigated with the help of the partial density of the virtual states (PDOS) calculated for each core hole considered, which can be qualitatively compared with the theoretical spectra calculated in the Kohn-Sham one-electron approach.

  4. Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles

    PubMed Central

    Oytam, Yalchin; Kirby, Jason K.; Gomez-Fernandez, Laura; Baxter, Brent; McCall, Maxine J.

    2014-01-01

    Previous studies have shown no, or very limited, skin penetration of metal oxide nanoparticles following topical application of sunscreens, yet concerns remain about their safety compared to larger particles. Here, we assessed the comparative dermal absorption of a traceable form of Zn (68Zn) from 68ZnO nano-sized and larger particles in sunscreens. Sunscreens were applied to the backs of virgin or pregnant hairless mice over four days. Control groups received topical applications of the sunscreen formulation containing no ZnO particles, or no treatment. Major organs were assessed for changes in 68Zn/64Zn ratios, 68Zn tracer and total Zn concentrations. Short-term biological impact was assessed by measuring levels of serum amyloid A in blood, and by performing whole-genome transcriptional profiling on livers from each group. Increased concentrations of 68Zn tracer were detected in internal organs of mice receiving topical applications of 68ZnO (nano-sized and larger particles), as well as in fetal livers from treated dams, compared with controls. Furthermore, concentrations of 68Zn in organs of virgin mice treated with sunscreen containing 68ZnO nanoparticles were found to be significantly higher than in mice treated with sunscreen containing larger 68ZnO particles. However, no ZnO-mediated change in total Zn concentration in any of the major organs was observed. Thus, despite 68Zn absorption, which may have been in the form of soluble 68Zn species or 68ZnO particles (not known), Zn homeostasis was largely maintained, and the presence of ZnO particles in sunscreen did not elicit an adverse biological response in the mice following short-term topical applications. PMID:24266363

  5. Prediction of microwave absorption properties of tetrapod-needle zinc oxide whisker radar absorbing material without prior knowledge

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Chen; Wang, Jie; Liu, Jiang-Fan; Song, Zhong-Guo; Xi, Xiao-Li

    2017-07-01

    The radar absorbing material (RAM) containing a tetrapod-needle zinc oxide whisker (T-ZnOw) has been proved to have good efficiency of microwave absorption. However, the available theoretical models, which are intended to predict the microwave absorbing properties of such an interesting composite, still cannot work well without some prior knowledge, like the measured effective electromagnetic parameters of the prepared T-ZnOw composite. Hence, we propose a novel predictive method here to calculate the reflectivity of T-ZnOw RAM without prior knowledge. In this method, the absorbing ability of this kind of material is divided into three main aspects: the unstructured background, the conductive network, and the nanostructured particle. Then, the attenuation properties of these three parts are represented, respectively, by three different approaches: the equivalent spherical particle and the static strong fluctuation theory, the equivalent circuit model obtained from the complex impedance spectra technology, and the combination of four different microscopic electromagnetic responses. The operational calculation scheme can be obtained by integrating these three absorption effects into the existing theoretical attenuation model. The reasonable agreement between the theoretical and experimental data of a T-ZnON/SiO2 composite in the range of 8-14 GHz shows that the proposed scheme can predict the microwave absorption properties of the T-ZnOw RAM. Furthermore, a detailed analysis of these three mechanisms indicates that, on the one hand, the background plays a dominant role in determining the real part of the effective permittivity of the T-ZnOw composite while the network and the particle are the decisive factors of its material loss; on the other hand, an zero-phase impedance, i.e., a pure resistance, with appropriate resonance characteristic might be a rational physical description of the attenuation property of the conductive network, but it is difficult to realize

  6. Fluorinated graphene oxide for enhanced S and X-band microwave absorption

    SciTech Connect

    Sudeep, P. M.; Vinayasree, S.; Mohanan, P.; Ajayan, P. M.; Narayanan, T. N.; Anantharaman, M. R.

    2015-06-01

    Here we report the microwave absorbing properties of three graphene derivatives, namely, graphene oxide (GO), fluorinated GO (FGO, containing 5.6 at. % Fluorine (F)), and highly FGO (HFGO, containing 23 at. % F). FGO is known to be exhibiting improved electrochemical and electronic properties when compared to GO. Fluorination modifies the dielectric properties of GO and hence thought of as a good microwave absorber. The dielectric permittivities of GO, FGO, and HFGO were estimated in the S (2 GHz to 4 GHz) and X (8 GHz to 12 GHz) bands by employing cavity perturbation technique. For this, suspensions containing GO/FGO/HFGO were made in N-Methyl Pyrrolidone (NMP) and were subjected to cavity perturbation. The reflection loss was then estimated and it was found that −37 dB (at 3.2 GHz with 6.5 mm thickness) and −31 dB (at 2.8 GHz with 6 mm thickness) in the S band and a reflection loss of −18 dB (at 8.4 GHz with 2.5 mm thickness) and −10 dB (at 11 GHz with 2 mm thickness) in the X band were achieved for 0.01 wt. % of FGO and HFGO in NMP, respectively, suggesting that these materials can serve as efficient microwave absorbers even at low concentrations.

  7. Mercury speciation by high-performance liquid chromatography atomic fluorescence spectrometry using an integrated microwave/UV interface. Optimization of a single step procedure for the simultaneous photo-oxidation of mercury species and photo-generation of Hg0

    NASA Astrophysics Data System (ADS)

    de Quadros, Daiane P. C.; Campanella, Beatrice; Onor, Massimo; Bramanti, Emilia; Borges, Daniel L. G.; D'Ulivo, Alessandro

    2014-11-01

    We described the hyphenation of photo-induced chemical vapor generation with high performance liquid chromatography-atomic fluorescence spectrometry (HPLC-AFS) for the quantification of inorganic mercury, methylmercury (MeHg) and ethylmercury (EtHg). In the developed procedure, formic acid in mobile phase was used for the photodecomposition of organomercury compounds and reduction of Hg2 + to mercury vapor under microwave/ultraviolet (MW/UV) irradiation. We optimized the proposed method studying the influence of several operating parameters, including the type of organic acid and its concentration, MW power, composition of HPLC mobile phase and catalytic action of TiO2 nanoparticles. Under the optimized conditions, the limits of detection were 0.15, 0.15 and 0.35 μg L- 1 for inorganic mercury, MeHg and EtHg, respectively. The developed method was validated by determination of the main analytical figures of merit and applied to the analysis of three certified reference materials. The online interfacing of liquid chromatography with photochemical-vapor generation-atomic fluorescence for mercury determination is simple, environmentally friendly, and represents an attractive alternative to the conventional tetrahydroborate (THB) system.

  8. Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation.

    PubMed

    Klaus, S; Pültz, S; Thöne-Reineke, C; Wolfram, S

    2005-06-01

    To examine the antiobesity effect of epigallocatechin gallate (EGCG), a green tea bioactive polyphenol in a mouse model of diet-induced obesity. Obesity was induced in male New Zealand black mice by feeding of a high-fat diet. EGCG purified from green tea (TEAVIGO) was supplemented in the diet (0.5 and 1%). Body composition (quantitative magnetic resonance), food intake, and food digestibility were recorded over a 4-week period. Animals were killed and mRNA levels of uncoupling proteins (UCP1-3), leptin, malic enzyme (ME), stearoyl-CoA desaturase-1 (SCD1), glucokinase (GK), and pyruvate kinase (PK) were analysed in different tissues. Also investigated were acute effects of orally administered EGCG (500 mg/kg) on body temperature, activity (transponders), and energy expenditure (indirect calorimetry). Dietary supplementation of EGCG resulted in a dose-dependent attenuation of body fat accumulation. Food intake was not affected but faeces energy content was slightly increased by EGCG, indicating a reduced food digestibility and thus reduced long-term energy absorption. Leptin and SCD1 gene expression in white fat was reduced but SCD1 and UCP1 expression in brown fat was not changed. In liver, gene expression of SCD1, ME, and GK was reduced and that of UCP2 increased. Acute oral administration of EGCG over 3 days had no effect on body temperature, activity, and energy expenditure, whereas respiratory quotient during night (activity phase) was decreased, supportive of a decreased lipogenesis and increased fat oxidation. Dietary EGCG attenuated diet-induced body fat accretion in mice. EGCG apparently promoted fat oxidation, but its fat-reducing effect could be entirely explained by its effect in reducing diet digestibility.

  9. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment.

    PubMed

    Guardia, Pablo; Di Corato, Riccardo; Lartigue, Lenaic; Wilhelm, Claire; Espinosa, Ana; Garcia-Hernandez, Mar; Gazeau, Florence; Manna, Liberato; Pellegrino, Teresa

    2012-04-24

    Iron oxide nanocrystals (IONCs) are appealing heat mediator nanoprobes in magnetic-mediated hyperthermia for cancer treatment. Here, specific absorption rate (SAR) values are reported for cube-shaped water-soluble IONCs prepared by a one-pot synthesis approach in a size range between 13 and 40 nm. The SAR values were determined as a function of frequency and magnetic field applied, also spanning technical conditions which are considered biomedically safe for patients. Among the different sizes tested, IONCs with an average diameter of 19 ± 3 nm had significant SAR values in clinical conditions and reached SAR values up to 2452 W/g(Fe) at 520 kHz and 29 kAm(-1), which is one of the highest values so far reported for IONCs. In vitro trials carried out on KB cancer cells treated with IONCs of 19 nm have shown efficient hyperthermia performance, with cell mortality of about 50% recorded when an equilibrium temperature of 43 °C was reached after 1 h of treatment.

  10. Local environment of iron in heavy ion-irradiated amorphous magnetic oxides by Moessbauer and x-ray absorption spectroscopy

    SciTech Connect

    Studer, F.; Houpert Ch. ); Toulemonde, M. ) Dartyge E. )

    1991-04-01

    Moessbauer and X-ray absorption spectroscopies of some crystallized iron oxides, Fe{sub 2}O{sub 3}, FePO{sub 4}, Fe{sub 3}PO{sub 7}, and SrMn{sub 1.85}Fe{sub 0.15}O{sub 2.5}, the garnet Y{sub 3}Fe{sub 5}O{sub 12}, and the barium hexaferrite BaFe{sub 12}O{sub 19} have been undertaken in order to look at the local order around iron in Y{sub 3}Fe{sub 5}O{sub 12} and BaFe{sub 12}O{sub 19} materials amorphized by irradiation with high energy (27 MeV/n) xenon ions accelerated by GANIL. Simulations of the Moessbauer spectra suggested the presence of fivefold coordinated iron in the amorphous irradiated compounds with a distribution of magnetic interactions due to the variations of the number of iron second neighbors. The XANES spectra at the Fe-K edge confirmed the fivefold coordination of iron in the amorphous ferrites, show that the local structure around iron appears to be similar although the original structures were different, and appear close to the one observed in the Fe{sub 3}PO{sub 7} compound in which iron stands in a trigonal bipyramidal environment.

  11. Minimization of volatile nitrogen oxides interference in the determination of arsenic by hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Moraes Flores, Érico Marlon; da Silva, Letícia Longhi Cirne; Barin, Juliano Smanioto; Saidelles, Ana Paula Fleig; Zanella, Renato; Dressler, Valderi Luis; Paniz, José Neri Gottfried

    2001-10-01

    In this study emphasis was given to minimize the interference of volatile nitrogen oxides from digestion procedures with nitric acid on the determination of arsenic by hydride generation atomic absorption spectrometry (HG AAS). Sulfamic acid (SA) is proposed to minimize this interference by employing three procedures for the digestion of hair in closed systems: conventional and microwave (MW) heating in polytetrafluorethylene (PTFE) vessels and by MW heating in glass vials. Hair samples were digested with H 2SO 4+HNO 3 or HNO 3+H 2O 2 mixtures. Concentrated hydrochloric acid was added for the digestion for the procedure in glass vials. The accuracy of the procedures with PTFE vessels was verified by the spike recoveries of organic ( p-aminobenzenearsonic acid and dimethyl arsinic acid, from 92 to 101%) and inorganic (sodium arsenate, from 98 to 102%) arsenic compounds. For the procedure in glass vials the recovery was from 86 to 97% for organic As and from 97 to 102% for inorganic As. The results obtained for a certified hair reference material using the three digestion procedures were well within the 95% confidence interval of the certificate when SA was added to the solutions. However, when SA was not added, recoveries were low and non-reproducible signals and high background levels were observed. Urea, benzoic acid and hydroxylamine hydrochloride were also studied (maximum As recovery of 90% using hydroxylamine hydrochloride) but the best results were obtained with use of SA.

  12. Temperature dependence of X-ray absorption and nuclear magnetic resonance spectra: probing quantum vibrations of light elements in oxides.

    PubMed

    Nemausat, Ruidy; Gervais, Christel; Brouder, Christian; Trcera, Nicolas; Bordage, Amélie; Coelho-Diogo, Cristina; Florian, Pierre; Rakhmatullin, Aydar; Errea, Ion; Paulatto, Lorenzo; Lazzeri, Michele; Cabaret, Delphine

    2017-02-22

    A combined experimental-theoretical study on the temperature dependence of the X-ray absorption near-edge structure (XANES) and nuclear magnetic resonance (NMR) spectra of periclase (MgO), spinel (MgAl2O4), corundum (α-Al2O3), berlinite (α-AlPO4), stishovite and α-quartz (SiO2) is reported. Predictive calculations are presented when experimental data are not available. For these light-element oxides, both experimental techniques detect systematic effects related to quantum thermal vibrations which are well reproduced by density-functional theory simulations. In calculations, thermal fluctuations of the nuclei are included by considering nonequilibrium configurations according to finite-temperature quantum statistics at the quasiharmonic level. The influence of nuclear quantum fluctuations on XANES and NMR spectroscopies is particularly sensitive to the coordination number of the probed cation. Furthermore, the relative importance of nuclear dynamics and thermal expansion is quantified over a large range of temperatures.

  13. Nephelauxetic effect of low phonon antimony oxide glass in absorption and photoluminescence of rare-earth ions.

    PubMed

    Som, Tirtha; Karmakar, Basudeb

    2011-09-01

    An antimony oxide based monolithic glass with very high Sb2O3 content (70 mol%) in the system K2O-B2O3-Sb2O3 (KBS) has been prepared for the first time. Its phonon energy (602 cm(-1)), evaluated by infrared reflection spectroscopy, is found to be very close to that of fluoride glasses (500-600 cm(-1)). After doping with different rare-earth ions, their UV-vis absorption and photoluminescence properties have been explored, compared with those observed in other hosts and justified with quantitative calculation of nephelauxetic parameter and covalent bonding characteristics. It is been proposed that tunable laser or new color visible light sources may be obtained by controlling these fundamental properties of the glass host. The results also suggest that KBS glass may be used as hosts in the place of fluoride glasses. The Judd-Ofelt parameters, Ωt=2,4,6 for Nd3+, Ho3+, and Er3+ doped in KBS glass have been evaluated and compared with other glasses. It is established that Ωt=2 value follow a direct relationship with covalent character of the hosts which not only supports the above calculation but also provides a generalized evidence for the sensitivity of this parameter to their bonding characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. MnOx/Graphene for the Catalytic Oxidation and Adsorption of Elemental Mercury.

    PubMed

    Xu, Haomiao; Qu, Zan; Zong, Chenxi; Huang, Wenjun; Quan, Fuquan; Yan, Naiqiang

    2015-06-02

    MnOx/graphene composites were prepared and employed to enhance the performance of manganese oxide (MnOx) for the capture of elemental mercury (Hg(0)) in flue gas. The composites were characterized using FT-IR, XPS, XRD, and TEM, and the results showed that the highly dispersed MnOx particles could be readily deposited on graphene nanosheets via hydrothermal process described here. Graphene appeared to be an ideal support for MnOx particles and electron transfer channels in the catalytic oxidation of Hg(0) at a high efficiency. Thus, MnOx/graphene-30% sorbents exhibited an Hg(0) removal efficiency of greater than 90% at 150 °C under 4% O2, compared with the 50% removal efficiency of pure MnOx. The mechanism of Hg(0) capture is discussed, and the main Hg(0) capture mechanisms of MnOx/graphene were catalytic oxidation and adsorption. Mn is the main active site for Hg(0) catalytic oxidation, during which high valence Mn (Mn(4+) or Mn(3+)) is converted to low valence Mn (Mn(3+) or Mn(2+)). Graphene enhanced the electrical conductivity of MnOx, which is beneficial for catalytic oxidation. Furthermore, MnOx/graphene exhibited an excellent regenerative ability, and is a promising sorbent for capturing Hg(0).

  15. [Oxidation of mercury by CuBr2 decomposition under controlled-release membrane catalysis condition].

    PubMed

    Hu, Lin-Gang; Qu, Zan; Yan, Nai-Qiang; Guo, Yong-Fu; Xie, Jiang-Kun; Jia, Jin-Ping

    2014-02-01

    CuBr2 in the multi-porous ceramic membrane can release Br2 at high temperature, which was employed as the oxidant for Hg0 oxidation. Hg0 oxidation efficiency was studied by a membrane catalysis device. Meanwhile, a reaction and in situ monitoring device was designed to avoid the impact of Br2 on the downstream pipe. The result showed that the MnO(x)/alpha-Al2O3 catalysis membrane had a considerable "controlled-release" effect on Br2 produced by CuBr2 decomposition. The adsorption and reaction of Hg0 and Br2 on the surface of catalysis membrane obeyed the Langmuir-Hinshelwood mechanism. The removal efficiency of Hg0 increased with the rising of Br2 concentration. However, when Br2 reached a certain concentration, the removal efficiency was limited by adsorption rate and reaction rate of Hg0 and Br2 on the catalysis membrane. From 473 K to 573 K, the variation of Hg0 oxidation efficiency was relatively stable. SO2 in flue gas inhibited the oxidation of Hg0 while NO displayed no obvious effect.

  16. Significant enhancement of optical absorption through nano-structuring of copper based oxide semiconductors: possible future materials for solar energy applications.

    PubMed

    Bhaumik, Anagh; Shearin, Austin M; Patel, Rishi; Ghosh, Kartik

    2014-06-14

    The optical absorption coefficient is a crucial parameter in determining solar cell efficiency under operational conditions. It is well known that inorganic nanocrystals are a benchmark model for solar cell nanotechnology, given that the tunability of optical properties and stabilization of specific phases are uniquely possible at the nanoscale. A hydrothermal method was employed to fabricate nanostructured copper oxides where the shape, size and phase were tailored by altering the growth parameters, namely the base media used, the reaction temperature, and the reaction time. The nano crystalline structures, phases, morphology, molecular vibrational modes, and optical properties were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence (PL), and UV-vis spectroscopy. A significantly large optical absorption coefficient, of the order of twice that of Si in the visible range, was observed in a particular phase mixture of nanostructured copper oxides. An optical absorption coefficient of 7.05 10(+5) cm(-1) at 525 nm was observed in a particular nanostructured phase mixture of copper oxides which is appreciably larger than commercially pure CuO (1.19 10(+5) cm(-1)) and Si (1.72 10(+5) cm(-1)). A possible mechanism of formation of phase mixtures and morphology of copper oxides has also been discussed, which opens up a roadmap in synthesis of similar morphology nanostructures for efficient solar cells.

  17. Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combusion Exhaust Streams

    SciTech Connect

    Jerald A. Caton; Kalyan Annamalai

    2003-09-24

    An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. The nitric oxide sensor has been used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based sensor measurements showed good agreement with the results from physical probe sampling of the combustion exhaust. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. Future planned modifications will lead to even faster response times at sensitivity levels at or below 1 ppm.

  18. Enhanced Microwave Absorption Properties by Tuning Cation Deficiency of Perovskite Oxides of Two-Dimensional LaFeO3/C Composite in X-Band.

    PubMed

    Liu, Xiang; Wang, Lai-Sen; Ma, Yating; Zheng, Hongfei; Lin, Liang; Zhang, Qinfu; Chen, Yuanzhi; Qiu, Yulong; Peng, Dong-Liang

    2017-03-01

    Development of microwave absorption materials with tunable thickness and bandwidth is particularly urgent for practical applications but remains a great challenge. Here, two-dimensional nanocomposites consisting of perovskite oxides (LaFeO3) and amorphous carbon were successfully obtained through a one pot with heating treatment using sodium chloride as a hard template. The tunable absorption properties were realized by introducing A-site cation deficiency in LaFeO3 perovskite. Among the A-site cation-deficient perovskites, La0.62FeO3/C (L0.62FOC) has the best microwave absorption properties in which the maximum absorption is -26.6 dB at 9.8 GHz with a thickness of 2.94 mm and the bandwidth range almost covers all X-band. The main reason affecting the microwave absorption performance was derived from the A-site cation deficiency which induced more dipoles polarization loss. This work proposes a promising method to tune the microwave absorption performance via introducing deficiency in a crystal lattice.

  19. Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas.

    PubMed

    Zhao, Lingkui; Li, Caiting; Zhang, Xunan; Zeng, Guangming; Zhang, Jie; Xie, Yin'e

    2016-01-01

    In order to reduce the costs, the recycle of spent TiO2-based SCR-DeNOx catalysts were employed as a potential catalytic support material for elemental mercury (Hg(0)) oxidation in simulated coal-fired flue gas. The catalytic mechanism for simultaneous removal of Hg(0) and NO was also investigated. The catalysts were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) method. Results indicated that spent TiO2-based SCR-DeNOx catalyst supported Ce-Mn mixed oxides catalyst (CeMn/SCR1) was highly active for Hg(0) oxidation at low temperatures. The Ce1.00Mn/SCR1 performed the best catalytic activities, and approximately 92.80% mercury oxidation efficiency was obtained at 150 °C. The inhibition effect of NH3 on Hg(0) oxidation was confirmed in that NH3 consumed the surface oxygen. Moreover, H2O inhibited Hg(0) oxidation while SO2 had a promotional effect with the aid of O2. The XPS results illustrated that the surface oxygen was responsible for Hg(0) oxidation and NO conversion. Besides, the Hg(0) oxidation and NO conversion were thought to be aided by synergistic effect between the manganese and cerium oxides.

  20. Strong interlayer coupling mediated giant two-photon absorption in MoS e2 /graphene oxide heterostructure: Quenching of exciton bands

    NASA Astrophysics Data System (ADS)

    Sharma, Rituraj; Aneesh, J.; Yadav, Rajesh Kumar; Sanda, Suresh; Barik, A. R.; Mishra, Ashish Kumar; Maji, Tuhin Kumar; Karmakar, Debjani; Adarsh, K. V.

    2016-04-01

    A complex few-layer MoS e2 /graphene oxide (GO) heterostructure with strong interlayer coupling was prepared by a facile hydrothermal method. In this strongly coupled heterostructure, we demonstrate a giant enhancement of two-photon absorption that is in stark contrast to the reverse saturable absorption of a weakly coupled MoS e2 /GO heterostructure and saturable absorption of isolated MoS e2 . Spectroscopic evidence of our study indicates that the optical signatures of isolated MoS e2 and GO domains are significantly modified in the heterostructure, displaying a direct coupling of both domains. Furthermore, our first-principles calculations indicate that strong interlayer coupling between the layers dramatically suppresses the MoS e2 excitonic bands. We envision that our findings provide a powerful tool to explore different optical functionalities as a function of interlayer coupling, which may be essential for the development of device technologies.

  1. Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs.

    PubMed

    He, Chuan; Shen, Boxiong; Chen, Jianhong; Cai, Ji

    2014-07-15

    A series of innovative Ce-Mn/Ti-pillared-clay (Ce-Mn/Ti-PILC) catalysts combining the advantages of PILCs and Ce-Mn were investigated for elemental mercury (Hg0) capture at 100-350 °C in the absence of HCl in the flue gas. The fresh and used catalysts were characterized by scanning electron microscopy (SEM), nitrogen adsorption-desorption, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The catalyst characterization indicated that the 6%Ce-6%MnOx/Ti-PILC catalyst possessed a large specific surface area and high dispersion of Ce and Mn on the surface. The experimental results indicated that the 6%Ce-6%MnOx/Ti-PILC catalyst exhibited high Hg0 capture (>90%) at 100-350 °C. During the first stage of the reaction, the main Hg0 capture mechanism for the catalyst was adsorption. As the reaction proceeded, the Hg0 oxidation ability was substantially enhanced. Both the hydroxyl oxygen and the lattice oxygen on the surface of the catalysts participated in Hg0 oxidation. At a low temperature (150 °C), the hydroxyl oxygen and lattice oxygen from Ce4+→Ce3+ and Mn3+→Mn2+ on the surface contributed to Hg0 oxidation. However, at a high temperature (250 °C), the hydroxyl oxygen and lattice oxygen from Mn4+→Mn3+ contributed to Hg0 oxidation. Hg0 oxidation was preferred at a high temperature. The 6%Ce-6%MnOx/Ti-PILC catalyst was demonstrated to a good Hg0 adsorbent and catalytic oxidant in the absence of HCl in the flue gas.

  2. Absorption of dietary cholesterol oxidation products and their downstream metabolic effects are reduced by dietary apple polyphenols.

    PubMed

    Ogino, Yamato; Osada, Kyoichi; Nakamura, Shingo; Ohta, Yutaka; Kanda, Tomomasa; Sugano, Michihiro

    2007-03-01

    Exogenous and endogenous cholesterol oxidation products (COPs) perturb various metabolic processes, and thereby they may induce various homeostasis-related disorders. Here, we observed that procyanidin-rich dietary apple polyphenol (APP) from unripe apples alleviates the perturbation of lipid metabolism by decreasing the exogenous COP levels in rats. Dietary COPs may be the greatest source of COPs found in the human body. Rats (4 weeks of age) were fed AIN-purified diets containing 0.3% COPs supplemented with 0.5 or 2.5% APP for 3 weeks. Dietary APP alleviated the growth inhibition action of the exogenous COPs. The modulations of the liver lipid profile by COPs remained unchanged. However, serum total cholesterol, high-density lipoprotein cholesterol, and triglyceride levels increased following the intake of dietary APP. Further, dietary APP inhibited the increase in lipid peroxide levels in the liver and serum by COPs. The activity of hepatic Delta6 desaturase was lowered by dietary APP in a dose-dependent manner, although exogenous COPs generally increased the activity of this enzyme. In keeping with this observation, Delta6 desaturation indices in the phospholipids and cholesteryl esters of the liver and serum lipids were lower in the APP-fed groups than those in the control group. Dietary APP also promoted the excretion of exogenous COPs, cholesterol, and acidic steroids in feces. Therefore, the inhibition of intestinal absorption of COPs may partly contribute to the alleviation of the perturbation of lipid metabolism and lipid peroxidation levels. Thus, APP may be an important removal agent of exogenous toxic material such as COPs contained in processed or fast foods.

  3. Relaxation mechanism in NiFe thin films driven by spin angular momentum absorption throughout the antiferromagnetic phase transition in native surface oxides

    NASA Astrophysics Data System (ADS)

    Frangou, L.; Forestier, G.; Auffret, S.; Gambarelli, S.; Baltz, V.

    2017-02-01

    We report an alternative mechanism for the physical origin of the temperature-dependent ferromagnetic relaxation observed in bare permalloy (NiFe) thin films. Through spin-pumping experiments, we demonstrate that the peak in the temperature dependence of NiFe damping can be understood in terms of enhanced absorption of spin angular momentum at the magnetic phase transition in native antiferromagnetic surface-oxidized layers. These results suggest some avenues for the investigation of an incompletely understood phenomenon in physics.

  4. Effects of fasting and/or oxidizing and reducing agents on absorption of neptunium from the gastrointestinal tract of mice and adult or neonatal rats.

    PubMed

    Sullivan, M F; Ruemmler, P S; Ryan, J L

    1984-12-01

    Neptunium-237(V) nitrate was administered by gavage to groups of fed or fasted adult and 5-day-old rats. Some groups also received the oxidants quinhydrone or ferric iron, and others received the reducing agent ferrous iron. Adult mice received ferric or ferrous iron and 235Np. When the adult rats were killed at 7 days after gavage, measurements showed that, compared with rats that were fed, a 24-hr fast caused a fivefold increase in 237Np absorption and retention. Both quinhydrone and ferric iron caused an even greater increase in absorption in both fed and fasted rats. Ferrous iron, on the other hand, decreased absorption in fasted rats to values lower than those obtained in fed rats. Similar results were obtained in mice treated with 235Np and either ferric or ferrous iron. The highest absorption obtained after gavage of ferric iron to fasted rats and mice was about two orders of magnitude higher than the value obtained in animals that were fed before gavage. The effects of ferric and ferrous iron on neptunium absorption by neonatal rats were similar to their effects on adult animals but of lesser magnitude. These results are consistent with the hypothesis that Np(V), when given in small mass quantities to fed animals, is reduced in the gastrointestinal tract to Np(IV), which is less well absorbed than Np(V).

  5. Enhanced mercury removal from fix-bed reactor by lamella manganese oxide sorbents

    NASA Astrophysics Data System (ADS)

    Cheng, H. W.; Yu, C. T.

    2015-12-01

    Mercury (Hg) is an extremely hazardous metal and attracted more concern because of its high toxicity and bioaccumulation. Several manganese-oxide-containing sorbents prepared by co-precipitation method could exhibit the mercury removal activities toward Hg0. The mercury removal test at the temperature of 300°C has the highest removal efficiency. Under this temperature, the maximum absorption equivalent of Mg-Al-Mn and Mn-Al were up to 90.9 and 247 μg/g, then gradually decreased at 400°C. The mercury removal efficiency declined in the following sequence: Mn-Al > Mg-Al-Mn > Mg-Al-Mn/ACA = Mn/AC(p)> Mn/AC(g), due to the manganese-oxide content formed on the sorbents.

  6. Cavity ring-down spectroscopy (CRDS) system for measuring atmospheric mercury using differential absorption

    NASA Astrophysics Data System (ADS)

    Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.

    2012-04-01

    Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included

  7. Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy.

    PubMed

    Samjeské, Gabor; Miki, Atsushi; Ye, Shen; Osawa, Masatoshi

    2006-08-24

    Surface-enhanced infrared absorption spectroscopy (SEIRAS) combined with cyclic voltammetry or chronoamperometry has been utilized to examine kinetic and mechanistic aspects of the electrocatalytic oxidation of formic acid on a polycrystalline Pt surface at the molecular scale. Formate is adsorbed on the electrode in a bridge configuration in parallel to the adsorption of linear and bridge CO produced by dehydration of formic acid. A solution-exchange experiment using isotope-labeled formic acids (H(12)COOH and H(13)COOH) reveals that formic acid is oxidized to CO(2) via adsorbed formate and the decomposition (oxidation) of formate to CO(2) is the rate-determining step of the reaction. The adsorption/oxidation of CO and the oxidation/reduction of the electrode surface strongly affect the formic acid oxidation by blocking active sites for formate adsorption and also by retarding the decomposition of adsorbed formate. The interplay of the involved processes also affects the kinetics and complicates the cyclic voltammograms of formic acid oxidation. The complex voltammetric behavior is comprehensively explained at the molecular scale by taking all these effects into account.

  8. Time-Resolved Investigation of Cobalt Oxidation by Mn(III)-Rich δ-MnO2 Using Quick X-ray Absorption Spectroscopy.

    PubMed

    Simanova, Anna A; Peña, Jasquelin

    2015-09-15

    Manganese oxides are important environmental oxidants that control the fate of many organic and inorganic species including cobalt. We applied ex situ quick X-ray absorption spectroscopy (QXAS) to determine the time evolution of Co(II) and Co(III) surface loadings and their respective average surface speciation in Mn(III)-rich δ-MnO2 samples at pH 6.5 and loadings of 0.01-0.20 mol Co mol(-1) Mn. In this Mn oxide, which contained few unoccupied vacancies but abundant Mn(III) at edge and interlayer sites, Co(II) sorption and oxidation started at the particle edges. We found no evidence for Co(II) oxidation by interlayer Mn(III) or Mn(III, IV) adjacent to vacancy sites at <10 min. After 10 min, basal surface sites were implicated due to slow Co oxidation by interlayer Mn(III) and reactive sites formed upon removal of interlayer Mn(III), such that 50-60% of the sorbed Co was incorporated into the MnO2 sheets or adsorbed at vacancy sites by 12 h. Our findings indicate that the redox reactivity of surface sites depends on Mn valence and crystallographic location, with Mn(III) at the edges being the most effective oxidant at short reaction times and Mn(III,IV) in the MnO2 sheet contributing at longer reaction times.

  9. Lack of visible chromophore development in the pulse radiolysis oxidation of 5,6-dihydroxyindole-2-carboxylic acid oligomers: DFT investigation and implications for eumelanin absorption properties.

    PubMed

    Pezzella, Alessandro; Panzella, Lucia; Crescenzi, Orlando; Napolitano, Alessandra; Navaratnam, Suppiah; Edge, Ruth; Land, Edward J; Barone, Vincenzo; d'Ischia, Marco

    2009-05-15

    The structural factors underlying the peculiar optical properties and visible chromophore of eumelanin biopolymers are largely uncharted. It is known that synthetic eumelanins from 5,6-dihydroxyindole are black and display a featureless UV-visible absorption spectrum, whereas those from 5,6-dihydroxyindole-2-carboxylic acid (1) are lighter in color and exhibit a distinct band around 310 nm, but the origin of this difference has never been addressed in detail. Recently, we showed that 5,6-dihydroxyindole dimers generate on pulse radiolysis oxidation strongly absorbing transients with intense maxima in the 500-600 nm region, which have been attributed to planar extended quinone methide species. We now report the unexpectedly different behavior of three oligomers from 1, namely, the 4,4'-biindolyl 2, the 4,7'-biindolyl 3, and the 4,7':4',7''-terindolyl 4. Pulse radiolysis oxidation of 2-4 led initially to semiquinone intermediates exhibiting similar absorption maxima at 360-380 nm. Semiquinone absorption decay followed second-order kinetics (2k = 1.4 x 10(8), 3.2 x 10(8), and 1.4 x 10(8) M(-1) s(-1) for 2, 3, and 4, respectively) but did not lead to significant chromophore development in the visible region. Similar absorption traces were obtained from monomer 1. DFT calculations predicted 5,6-dihydroxyindolyl-5,6-indolequinone structures with significant dihedral twists across the interunit single bonds for the most stable two-electron oxidation products of 2 and 3. The computed absorption spectra consistently featured strong bands around 310 nm but little or no absorption in the visible region. It is suggested that the effective conjugation length in oligomeric/polymeric eumelanin components from 1 may be controlled by hindered rotation around inter-ring bonds preventing planarization of the continuous array of indole units. This may provide an explanation for the difference in the absorption properties of polymers from the two key eumelanin monomers.

  10. DEVELOPMENT OF ALL-SOLID-STATE SENSORS FOR MEASUREMENT OF NITRIC OXIDE AND AMMONIA CONCENTRATIONS BY OPTICAL ABSORPTION IN PARTICLE-LADEN COMBUSTION EXHAUST STREAMS

    SciTech Connect

    Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

    2004-09-30

    An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2 described in this progress report, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be

  11. Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combustion Exhaust Streams

    SciTech Connect

    Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

    2005-09-30

    An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the

  12. Reduced Graphene Oxide-Cu0.5Ni0.5Fe2O4-Polyaniline Nanocomposite: Preparation, Characterization and Microwave Absorption Properties

    NASA Astrophysics Data System (ADS)

    Dat, Tran Quang; Ha, Nguyen Tran; Hung, Do Quoc

    2017-06-01

    Reduced graphene oxide-Cu0.5Ni0.5Fe2O4-polyaniline nanocomposite (RGO-CNF-PANI) was synthesized by a three-step method. The morphology, structure and magnetic properties of composite samples were characterized by scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy (RAMAN) and vibrating sample magnetometer. It was found that reduced graphene oxide was exfoliated and decorated homogeneously with ferrite nanoparticles having diameters between 11 nm and 21 nm. The polyaniline was coated by an in situ chemical oxidation polymerization. The measurement of magnetic properties found the remanence (Mr) and coercive field (Hc) were near zero, indicating that the obtained material was superparamagnetic. The microwave measurements found that the nanocomposite exhibited a good absorption property with the optimum matching thickness of 3 mm in the frequency of 8-12 GHz. The value of the maximum RL was -40.7 dB at 9.8 GHz.

  13. Reduced Graphene Oxide-Cu0.5Ni0.5Fe2O4-Polyaniline Nanocomposite: Preparation, Characterization and Microwave Absorption Properties

    NASA Astrophysics Data System (ADS)

    Dat, Tran Quang; Ha, Nguyen Tran; Hung, Do Quoc

    2017-02-01

    Reduced graphene oxide-Cu0.5Ni0.5Fe2O4-polyaniline nanocomposite (RGO-CNF-PANI) was synthesized by a three-step method. The morphology, structure and magnetic properties of composite samples were characterized by scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy (RAMAN) and vibrating sample magnetometer. It was found that reduced graphene oxide was exfoliated and decorated homogeneously with ferrite nanoparticles having diameters between 11 nm and 21 nm. The polyaniline was coated by an in situ chemical oxidation polymerization. The measurement of magnetic properties found the remanence (Mr) and coercive field (Hc) were near zero, indicating that the obtained material was superparamagnetic. The microwave measurements found that the nanocomposite exhibited a good absorption property with the optimum matching thickness of 3 mm in the frequency of 8-12 GHz. The value of the maximum RL was -40.7 dB at 9.8 GHz.

  14. Catalytic oxidation of gas-phase elemental mercury by nano-Fe2O3.

    PubMed

    Kong, Fanhai; Qiu, Jianrong; Liu, Hao; Zhao, Ran; Ai, Zhihui

    2011-01-01

    Heterogeneous oxidation of gas-phase Hg0 by nano-Fe2O3 was investigated on a fixed bed reactor, and the effects of oxygen concentration, bed temperature, water vapour concentration and particle size have been discussed. The results showed that Hg0 could be oxidized by active oxygen atom on the surface of nano-Fe2O3 as well as lattice oxygen in nano-Fe2O3. Among the factors that affect Hg0 oxidation by nano-Fe2O3, bed temperature plays an important role. More than 40% of total mercury was oxidized at 300 degrees C, however, the test temperature at 400 degrees C could cause sintering of nano-catalyst, which led to a lower efficiency of Hg0 oxidation. The increase of oxygen concentration could promote mercury oxidation and led to higher Hg0 oxidation efficiency. No obvious mercury oxidation was detected in the pure N2 atmosphere, which indicates that oxygen is required in the gas stream for mercury oxidation. The presence of water vapour showed different effects on mercury oxidation depending on its concentration. The lower content of water vapour could promote mercury oxidation, while the higher content of water vapour inhibits mercury oxidation.

  15. Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane--Breath Biomarkers of Serious Diseases.

    PubMed

    Wojtas, Jacek

    2015-06-17

    The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using this technique. Thanks to cavity enhanced spectroscopy application, detection limits at the ppb-level and short measurements time (<3 s) were achieved. Absorption lines of reference samples of the selected volatile biomarkers were probed using a distributed feedback quantum cascade laser and a tunable laser system consisting of an optical parametric oscillator and difference frequency generator. Setup using the first source provided a detection limit of 30 ppb for nitric oxide and 250 ppb for carbonyl sulphide. During experiments employing a second laser, detection limits of 0.9 ppb and 0.3 ppb were obtained for carbonyl sulphide and ethane, respectively. The conducted experiments show that this type of diagnosis would significantly increase chances for effective therapy of some diseases. Additionally, it offers non-invasive and real time measurements, high sensitivity and selectivity as well as minimizing discomfort for patients. For that reason, such sensors can be used in screening for early detection of serious diseases.

  16. Self-assembly of defect-rich graphene oxide nanosheets with Na2Ti3O7 nanowires and their superior absorptive capacity to toxic dyes

    NASA Astrophysics Data System (ADS)

    Sun, Yibai; Fu, Wanlin; Dai, Yunqian; Huang, Yiyang; Zhou, Jie; Huang, Chengqian; Yang, Chongya; Huang, Meiyou; Ma, Rongwei; Lin, Baoping

    2017-06-01

    Graphene sheets, a flexible 2D material with excellent absorptive capacity, have great potential as absorbing materials. However, this material has always suffered from irreversible aggregation and thus loses the abundant active sites and large surface area. In this paper, large-scale graphene oxide (GO) sheets were cut and reduced to tiny reduced graphene oxide (RGO) sheets by a cell-break sonicator, for producing numerous defects, which are the center of chemisorption. Furthermore, sodium titanate nanowires functioned as a framework to help to disperse the tiny RGO sheets uniformly. And, in turn, the flexible tiny RGO sheets glued robust nanowires into a free-standing membrane. This novel composite membrane exhibited an ultra-high decoloration efficiency of 99.8% of rhodamine B in a continuous flow mode, and an outstanding absorptive capability of 1.30 × 10-2 mol g-1 correlated to RGO content in batch reaction, which is about two orders of magnitude higher than other reported graphene-based absorbents. In addition, an efficient and feasible method without any heat treatment for regenerating the membrane is illustrated, and the recycled membrane retains superior decoloration efficiency. The excellent absorptive performance indicates the framework-based disperse strategy has great potential for the construction and application of defect-rich graphene.

  17. Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane—Breath Biomarkers of Serious Diseases

    PubMed Central

    Wojtas, Jacek

    2015-01-01

    The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using this technique. Thanks to cavity enhanced spectroscopy application, detection limits at the ppb-level and short measurements time (<3 s) were achieved. Absorption lines of reference samples of the selected volatile biomarkers were probed using a distributed feedback quantum cascade laser and a tunable laser system consisting of an optical parametric oscillator and difference frequency generator. Setup using the first source provided a detection limit of 30 ppb for nitric oxide and 250 ppb for carbonyl sulphide. During experiments employing a second laser, detection limits of 0.9 ppb and 0.3 ppb were obtained for carbonyl sulphide and ethane, respectively. The conducted experiments show that this type of diagnosis would significantly increase chances for effective therapy of some diseases. Additionally, it offers non-invasive and real time measurements, high sensitivity and selectivity as well as minimizing discomfort for patients. For that reason, such sensors can be used in screening for early detection of serious diseases. PMID:26091398

  18. Calculation of optical and K pre-edge absorption spectra for ferrous iron of distorted sites in oxide crystals

    NASA Astrophysics Data System (ADS)

    Vercamer, Vincent; Hunault, Myrtille O. J. Y.; Lelong, Gérald; Haverkort, Maurits W.; Calas, Georges; Arai, Yusuke; Hijiya, Hiroyuki; Paulatto, Lorenzo; Brouder, Christian; Arrio, Marie-Anne; Juhin, Amélie

    2016-12-01

    Advanced semiempirical calculations have been performed to compute simultaneously optical absorption and K pre-edge x-ray absorption spectra of Fe2 + in four distinct site symmetries found in minerals. The four symmetries, i.e., a distorted octahedron, a distorted tetrahedron, a square planar site, and a trigonal bipyramidal site, are representative of the Fe2 + sites found in crystals and glasses. A particular attention has been paid to the definition of the p -d hybridization Hamiltonian which occurs for noncentrosymmetric symmetries in order to account for electric dipole transitions. For the different sites under study, an excellent agreement between calculations and experiments was found for both optical and x-ray absorption spectra, in particular in terms of relative intensities and energy positions of electronic transitions. To our knowledge, these are the first calculations of optical absorption spectra on Fe2 + placed in such diverse site symmetries, including centrosymmetric sites. The proposed theoretical model should help to interpret the features of both the optical absorption and the K pre-edge absorption spectra of 3 d transition metal ions and to go beyond the usual fingerprint interpretation.

  19. Operando soft X-ray absorption spectroscopic study on a solid oxide fuel cell cathode during electrochemical oxygen reduction.

    PubMed

    Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji

    2017-03-16

    Operando soft X-ray absorption spectroscopic technique, which could analyze electronic structures of the electrode materials at elevated temperature and controlled atmosphere under electrochemical polarization, was established and its availability was demonstrated by investigating electronic structural changes of an La2NiO4+d dense film electrode during electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K in fully atmospheric pressure of 100 ppm O2-He, 0.1% O2-He and 1% O2-He gas mixtures. By the PO2 change and the application of electrical potential, considerable spectral changes were observed in O K-edge X-ray absorption spectra while only small spectral changes were observed in Ni L-edge X-ray absorption spectra. Pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied pDOS of Ni3d-O2p hybridization, increased/deceased with cathodic/anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopy developed in this study.

  20. Measurement of absorption spectrum of deuterium oxide (D{sub 2}O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window

    SciTech Connect

    Wang, Yuxin; Wen, Wenhui; Wang, Kai; Wang, Ke; Zhai, Peng; Qiu, Ping

    2016-01-11

    1700-nm window has been demonstrated to be a promising excitation window for deep-tissue multiphoton microscopy (MPM). Long working-distance water immersion objective lenses are typically used for deep-tissue imaging. However, absorption due to immersion water at 1700 nm is still high and leads to dramatic decrease in signals. In this paper, we demonstrate measurement of absorption spectrum of deuterium oxide (D{sub 2}O) from 1200 nm to 2600 nm, covering the three low water-absorption windows potentially applicable for deep-tissue imaging (1300 nm, 1700 nm, and 2200 nm). We apply this measured result to signal enhancement in MPM at the 1700-nm window. Compared with water immersion, D{sub 2}O immersion enhances signal levels in second-harmonic generation imaging, 3-photon fluorescence imaging, and third-harmonic generation imaging by 8.1, 24.8, and 24.7 times with 1662-nm excitation, in good agreement with theoretical calculation based on our absorption measurement. This suggests D{sub 2}O a promising immersion medium for deep-tissue imaging.

  1. Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window

    NASA Astrophysics Data System (ADS)

    Wang, Yuxin; Wen, Wenhui; Wang, Kai; Zhai, Peng; Qiu, Ping; Wang, Ke

    2016-01-01

    1700-nm window has been demonstrated to be a promising excitation window for deep-tissue multiphoton microscopy (MPM). Long working-distance water immersion objective lenses are typically used for deep-tissue imaging. However, absorption due to immersion water at 1700 nm is still high and leads to dramatic decrease in signals. In this paper, we demonstrate measurement of absorption spectrum of deuterium oxide (D2O) from 1200 nm to 2600 nm, covering the three low water-absorption windows potentially applicable for deep-tissue imaging (1300 nm, 1700 nm, and 2200 nm). We apply this measured result to signal enhancement in MPM at the 1700-nm window. Compared with water immersion, D2O immersion enhances signal levels in second-harmonic generation imaging, 3-photon fluorescence imaging, and third-harmonic generation imaging by 8.1, 24.8, and 24.7 times with 1662-nm excitation, in good agreement with theoretical calculation based on our absorption measurement. This suggests D2O a promising immersion medium for deep-tissue imaging.

  2. Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method.

    PubMed

    Liu, Pan-Bo; Huang, Ying; Sun, Xu

    2013-12-11

    The ternary composites of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 (PEDOT-RGO-Co3O4) were synthesized and the electromagnetic absorption property of the composites was investigated. The structure of the composites was characterized with Fourier-transform infrared spectra, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscope. The electromagnetic parameters indicate the enhanced electromagnetic absorption property of the composites was attributed to the better impedance matching. On the basis of the above characterization, an electromagnetic complementary theory was proposed to explain the impedance matching. It can be found that the maximum reflection loss of PEDOT-RGO-Co3O4 can reach -51.1 dB at 10.7 GHz, and the bandwidth exceeding -10 dB is 3.1 GHz with absorber thickness of 2.0 mm. Therefore, the PEDOT-RGO-Co3O4 composites, with such excellent electromagnetic absorption properties and wide absorption bandwidth, can be used as a new kind of candidate for microwave absorbing materials.

  3. Dissimilatory reduction of FeIII (EDTA) with microorganisms in the system of nitric oxide removal from the flue gas by metal chelate absorption.

    PubMed

    Ma, Bi-yao; Li, Wei; Jing, Guo-hua; Shi, Yao

    2004-01-01

    In the system of nitric oxide removal from the flue gas by metal chelate absorption, it is an obstacle that ferrous absorbents are easily oxidized by oxygen in the flue gas to ferric counterparts, which are not capable of binding NO. By adding iron metal or electrochemical method, FeIII(EDTA) can be reduced to FeII(EDTA). However, there are various drawbacks associated with these techniques. The dissimilatory reduction of FeIII(EDTA) with microorganisms in the system of nitric oxide removal by metal chelate absorption was investigated. Ammonium salt instead of nitrate was used as the nitrogen source, as nitrates inhibited the reduction of FeIII due to the competition between the two electron acceptors. Supplemental glucose and lactate stimulated the formation of FeII more than ethanol as the carbon sources. The microorganisms cultured at 50 degrees C were not very sensitive to the other experimental temperature, the reduction percentage of FeIII varied little with the temperature range of 30-50 degrees C. Concentrated Na2CO3 solution was added to adjust the solution pH to an optimal pH range of 6-7. The overall results revealed that the dissimilatory ferric reducing microorganisms present in the mix-culture are probably neutrophilic, moderately thermophilic FeIII reducers.

  4. High-Performance Cathode Based on Microporous Mo-V-Bi Oxide for Li Battery and Investigation by Operando X-ray Absorption Fine Structure.

    PubMed

    Zhang, Zhenxin; Ishikawa, Satoshi; Kikuchi, Masaki; Yoshikawa, Hirofumi; Lian, Qi; Wang, Heng; Ina, Toshiaki; Yoshida, Akihiro; Sadakane, Masahiro; Matsumoto, Futoshi; Ueda, Wataru

    2017-08-09

    The development of cathode-active material of Li battery is important for the current emerging energy transferring and saving problems. A stable crystalline microporous complex metal oxide based on Mo, V, and Bi is an active and suitable material for Li battery. High capacity (380 Ah/kg) and stable cycle performance are achieved. X-ray absorption near-edge structure analyses demonstrate that the original Mo(6+) and V(4+) ions are reduced to Mo(4+) and V(3+) in the discharging process, respectively, which results in a 70-electron reduction per formula. The reduced metal ions can be reoxidized reversibly in the next charging process. Furthermore, extended X-ray absorption fine structure analyses reveal that the Mo-O bonds in the material are lengthened in the discharging process probably due to interaction with Li(+) without change of the basic structure.

  5. Improved microwave absorption and electromagnetic properties of BaFe12O19-poly(vinylidene fluoride) composites by incorporating reduced graphene oxides

    NASA Astrophysics Data System (ADS)

    He, Hongcai; Luo, Feifei; Qian, Neng; Wang, Ning

    2015-02-01

    Three-phase composites of poly(vinylidene fluoride)-BaFe12O19-reduced graphene oxide (PVDF-BFO-RGO) were synthesized by a facile wet chemical method and hot-pressing approach. The phase structure, topography of the hybrid materials were characterized by X-ray diffraction, scanning electron microscopy, and Raman spectra. Influence of RGO on their electromagnetic properties was investigated. Especially, improved microwave absorption and electromagnetic properties of BaFe12O19-PVDF composites by incorporating RGO were obtained and studied. The PVDF/BFO/RGO sample with m(RGO):m(BFO) = 5:100 shows the best microwave absorption properties with a minimum RL = -32 dB at 11 GHz and with the bandwidth less than -20 dB from 9.6 to 12.8 GHz. The composites were believed to have potential applications as the microwave absorber.

  6. The energy absorption capability and time-to-failure of varistors used in station-class metal-oxide surge arresters

    SciTech Connect

    Ringler, K.G.; Kirkby, P.; Erven, C.C.; Lat, M.V.; Malkiewicz, T.A.

    1997-01-01

    Varistors for use in station-class surge arresters were tested to destruction to determine their energy absorption capability at current levels ranging from 0.8 A{sub peak} to 35 kA{sub peak}. Typical mean values increased from 400--600 J/cm{sup 3} at the lowest current end to 1,600--2,000 J/cm{sup 3} at 35 kA{sub peak}. The product of the mean time-to-failure and the mean current was found to be a constant over five orders of magnitude. The varistor failure mode was found to be a characteristic of the current magnitude. It is recommended that standard test methods be developed for the energy absorption capability of metal-oxide surge arresters, and be included in relevant standards.

  7. Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combustion Exhaust Streams

    SciTech Connect

    Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

    2006-12-31

    An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the

  8. Self-absorption theory applied to rocket measurements of the nitric oxide (1,0)[gamma] band in the daytime thermosphere

    SciTech Connect

    Eparvier, F.G.; Barth, C.A. )

    1992-09-01

    Sounding rocket observations of the ultraviolet fluorescent emissions of the nitric oxide molecule in the lower thermospheric dayglow are described and analyzed. The rocket experiment was an ultraviolet spectrometer which took limb-viewing spectra of the dayglow between 90- and 185- km altitude in the spectral region from 2120 to 2505 [angstrom] with a resolution of 2.0 [angstrom]. The flight occurred at local noon on March 7, 1989, from Poker Flat, Alaska. Several NO[gamma] bands were visible at all altitudes of the flight, along with emission features of N[sub 2], O[sup +], and N[sup +]. The data for the NO (1,0) and (0,1)[gamma] bands were modeled with optically thin synthetic spectra and used as diagnostics of nitric oxide concentrations. The resonant NO (1,0)[gamma] band emissions were shown to be attenuated at low altitudes relative to the expected emission rates predicted from comparison with the nonresonant (0,1)[gamma] band. Inversion of the optically thin data resulted in a peak nitric oxide concentration of 3.1x10[sup 8] cm[sup [minus]3] at an altitude of 100km. A self-absorption model using Holstein transmission functions was developed and applied to the (1,0) [gamma] band observation. The model results agree with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO. The success of the model also confirms the value adopted for the absorption oscillator strength of the (1,0)[gamma] band transition and the instrument calibration.

  9. A novel pre-oxidation method for elemental mercury removal utilizing a complex vaporized absorbent.

    PubMed

    Zhao, Yi; Hao, Runlong; Guo, Qing

    2014-09-15

    A novel semi-dry integrative method for elemental mercury (Hg(0)) removal has been proposed in this paper, in which Hg(0) was initially pre-oxidized by a vaporized liquid-phase complex absorbent (LCA) composed of a Fenton reagent, peracetic acid (CH3COOOH) and sodium chloride (NaCl), after which Hg(2+) was absorbed by the resultant Ca(OH)2. The experimental results indicated that CH3COOOH and NaCl were the best additives for Hg(0) oxidation. Among the influencing factors, the pH of the LCA and the adding rate of the LCA significantly affected the Hg(0) removal. The coexisting gases, SO2 and NO, were characterized as either increasing or inhibiting in the removal process, depending on their concentrations. Under optimal reaction conditions, the efficiency for the single removal of Hg(0) was 91%. Under identical conditions, the efficiencies of the simultaneous removal of SO2, NO and Hg(0) were 100%, 79.5% and 80.4%, respectively. Finally, the reaction mechanism for the simultaneous removal of SO2, NO and Hg(0) was proposed based on the characteristics of the removal products as determined by X-ray diffraction (XRD), atomic fluorescence spectrometry (AFS), the analysis of the electrode potentials, and through data from related research references.

  10. Synthesis and microwave absorption property of graphene oxide/carbon nanotubes modified with cauliflower-like Fe3O4 nanospheres

    NASA Astrophysics Data System (ADS)

    Yan, Shaojiu; Wang, Lina; Wang, Tihong; Zhang, Liqiang; Li, Yongfeng; Dai, Shenglong

    2016-03-01

    We report a simple procedure to fabricate graphene oxide/carbon nanotube hybrids coated with cauliflower-like Fe3O4 sphere. Characterizations have been carried out to investigate the morphology, crystalline structure of the composites by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. Fe3O4 particles have the morphologies of multi-lacuna; moreover, some spheres are hollow. As a kind of potential microwave absorption material, the composites are lightweight and exhibit excellent microwave absorbing ability in the range of 2-16 GHz.

  11. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    SciTech Connect

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  12. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    NASA Astrophysics Data System (ADS)

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-01

    is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  13. Mechanism of selenite removal by a mixed adsorbent based on Fe-Mn hydrous oxides studied using X-ray absorption spectroscopy.

    PubMed

    Chubar, Natalia; Gerda, Vasyl; Szlachta, Małgorzata

    2014-11-18

    Selenium cycling in the environment is greatly controlled by various minerals, including Mn and Fe hydrous oxides. At the same time, such hydrous oxides are the main inorganic ion exchangers suitable (on the basis of their chemical nature) to sorb (toxic) anions, separating them from water solutions. The mechanism of selenite adsorption by the new mixed adsorbent composed of a few (amorphous and crystalline) phases [maghemite, MnCO3, and X-ray amorphous Fe(III) and Mn(III) hydrous oxides] was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy [supported by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data]. The complexity of the porous adsorbent, especially the presence of the amorphous phases of Fe(III) and Mn(III) hydrous oxides, is the main reason for its high selenite removal performance demonstrated by batch and column adsorption studies shown in the previous work. Selenite was bound to the material via inner-sphere complexation (via oxygen) to the adsorption sites of the amorphous Fe(III) and Mn(III) oxides. This anion was attracted via bidentate binuclear corner-sharing coordination between SeO3(2-) trigonal pyramids and both FeO6 and MnO6 octahedra; however, the adsorption sites of Fe(III) hydrous oxides played a leading role in selenite removal. The contribution of the adsorption sites of Mn(III) oxide increased as the pH decreased from 8 to 6. Because most minerals have a complex structure (they are seldom based on individual substances) of various crystallinity, this work is equally relevant to environmental science and environmental technology because it shows how various solid phases control cycling of chemical elements in the environment.

  14. Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2012-05-30

    Fluorine was determined via the rotational molecular absorption line of aluminum mono fluoride (AlF) generated in C(2)H(2)/N(2)O flame at 227.4613 nm using a high-resolution continuum source flame atomic absorption spectrophotometer (HR-CS-FAAS). The effects of AlF wavelength, burner height, fuel rate (C(2)H(2)/N(2)O) and amount of Al on the accuracy, precision and sensitivity were investigated and optimized. The Al-F absorption band at 227.4613 nm was found to be the most suitable analytical line with respect to sensitivity and spectral interferences. Maximum sensitivity and a good linearity were obtained in acetylene-nitrous oxide flame at a flow rate of 210 L h(-1) and a burner height of 8mm using 3000 mg L(-1) of Al for 10-1000 mg L(-1)of F. The accuracy and precision of the method were tested by analyzing spiked samples and waste water certified reference material. The results were in good agreement with the certified and spiked amounts as well as the precision of several days during this study was satisfactory (RSD<10%). The limit of detection and characteristic concentration of the method were 5.5 mg L(-1) and 72.8 mg L(-1), respectively. Finally, the fluorine concentrations in several toothpaste samples were determined. The results found and given by the producers were not significantly different. The method was simple, fast, accurate and sensitive. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Yan, D.; Cheng, S.; Zhuo, R. F.; Chen, J. T.; Feng, J. J.; Feng, H. T.; Li, H. J.; Wu, Z. G.; Wang, J.; Yan, P. X.

    2009-03-01

    Hydrohausmannite nanoparticles (~10 nm) were prepared by the hydrothermal method at 100 °C for 72 h. Subsequent annealing was done in air at 400 °C and 800 °C for 10 h, Mn3O4 nanoparticles (~25 nm) and 3D Mn2O3 porous networks were obtained, respectively. The products were characterized by XRD, TEM, SAED and FESEM. Time-dependent experiments were carried out to exhibit the formation process of the Mn2O3 networks. Their microwave absorption properties were investigated by mixing the product and paraffin wax with 50 vol%. The Mn3O4 nanoparticles possess excellent microwave absorbing properties with the minimum reflection loss of -27.1 dB at 3.1 GHz. In contrast, the Mn2O3 networks show the weakest absorption of all samples. The absorption becomes weaker with the annealing time increasing at 800 °C. The attenuation of microwave can be attributed to dielectric loss and their absorption mechanism was discussed in detail. Corrections were made to figure 9 of this article on 17 February 2009. The corrected electronic version is identical to the print version.

  16. Enhancement of conduction noise absorption by hybrid absorbers composed of indium-tin-oxide thin film and magnetic composite sheet on a microstrip line

    SciTech Connect

    Kim, Sun-Hong; Kim, Sung-Soo

    2014-05-05

    In order to develop wide-band noise absorbers with a focused design for low frequency performance, this study investigates hybrid absorbers that are composed of conductive indium-tin-oxide (ITO) thin film and magnetic composite sheets. The ITO films prepared via reactive sputtering exhibit a typical value of electrical resistivity of ≃10{sup −4} Ω m. Rubber composites with flaky Fe-Si-Al particles are used as the magnetic sheet with a high permeability and high permittivity. For the ITO film with a low surface resistance and covered by the magnetic sheet, approximately 90% power absorption can be obtained at 1 GHz, which is significantly higher than that of the original magnetic sheet or ITO film. The high power absorption of the hybrid absorber is attributed to the enhanced ohmic loss of the ITO film through increased electric field strength bounded by the upper magnetic composite sheet. However, for the reverse layering sequence of the ITO film, the electric field experienced by ITO film is very weak due to the electromagnetic shielding by the under layer of magnetic sheet, which does not result in enhanced power absorption.

  17. Chemical absorption process for degradation of VOC gas using heterogeneous gas-liquid photocatalytic oxidation: toluene degradation by photo-Fenton reaction.

    PubMed

    Tokumura, Masahiro; Nakajima, Rina; Znad, Hussein Tawfeek; Kawase, Yoshinori

    2008-10-01

    A novel process for degradation of toluene in the gas-phase using heterogeneous gas-liquid photocatalytic oxidation has been developed. The degradation of toluene gas by photo-Fenton reaction in the liquid-phase has experimentally examined. The photo-Fenton reaction in the liquid-phase could improve the overall toluene absorption rate by increasing the driving force for mass transfer and as a result enhance the removal of toluene in the exhaust gas. The toluene concentrations in the inlet gas were varied in the range from 0.0968 to 8.69 g m(-3) with initial hydrogen peroxide concentration of 400 mg l(-1) and Fe dose of 5.0 mg l(-1). It was found that toluene in the inlet gas was almost completely dissolved into water and degraded in the liquid-phase for the inlet toluene gas concentration of less than 0.42 g m(-3). The dynamic process of toluene gas degradation by the photo-Fenton reaction providing information for reaction kinetics and mass transfer rate was examined. Toluene removal kinetic analysis indicated that photo-Fenton degradation was significantly affected by H(2)O(2) concentration. The experimental results were satisfactorily described by the predictions simulated using the simplified tanks-in-series model combined with toluene removal kinetic analysis. The present results showed that the proposed chemical absorption process using the photo-Fenton heterogeneous gas-liquid photocatalytic oxidation is very effective for degradation of volatile organic gases.

  18. Conversion of elemental mercury with a novel membrane delivery catalytic oxidation system (MDCOs).

    PubMed

    Guo, Yongfu; Yan, Naiqiang; Yang, Shijian; Qu, Zan; Wu, Zhongbiao; Liu, Yue; Liu, Ping; Jia, Jinping

    2011-01-15

    In order to overcome the shortcomings of the traditional catalytic oxidation (TCO) mode for the conversion of the trace level of elemental mercury (Hg(0)) in flue gas, we put forward a novel and unique assembly that integrated membrane delivery with catalytic oxidation systems (MDCOs), which combined the controlled delivery of oxidants with the catalytic oxidation of Hg(0). The results show that the demanded HCl for Hg(0) conversion in the MDCOs was less than 5% of that in the TCO mode, and over 90% of Hg(0) removal efficiency can be obtained in the MDCOs with less than 0.5 mg m(-3) of HCl escaped. Meanwhile, the inhibition of SO(2) to Hg(0) catalytic conversion in the MDCOs was also less significant than in the TCO. The MDCOs have high retainability for HCl, which is quite favorable to Hg(0) conversion and HCl utilization. The reaction mechanism on mercury conversion in the MDCOs is discussed. The MDCOs appear to be a promising method for emission control of elemental mercury.

  19. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    NASA Technical Reports Server (NTRS)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  20. Facile synthesis of ZnFe{sub 2}O{sub 4}/reduced graphene oxide nanohybrids for enhanced microwave absorption properties

    SciTech Connect

    Yang, Zhiwei; Wan, Yizao; Xiong, Guangyao; Li, Deying; Li, Qiuping; Ma, Chunying; Guo, Ruisong; Luo, Honglin

    2015-01-15

    Highlights: • ZnFe{sub 2}O{sub 4} nanoparticles with a small diameter are uniformly anchored on RGO surface. • A strong interfacial bonding was formed between ZnFe{sub 2}O{sub 4} nanoparticles and RGO. • The minimum RL of ZnFe{sub 2}O{sub 4}/RGO nanohybrids is −29.3 dB at 16.7 GHz and 1.6 mm. • ZnFe{sub 2}O{sub 4}/RGO nanohybrids show great promise as a microwave absorption material. - Abstract: The nanohybrids composed of ZnFe{sub 2}O{sub 4} and reduced graphene oxide (RGO) have been synthesized by a facile one-step hydrothermal strategy. The morphology and structure of ZnFe{sub 2}O{sub 4}/RGO nanohybrids were characterized by transmission electron microscopy, X-ray diffraction and Raman spectra. RGO content was also determined by thermogravimetric analysis. The results confirm the formation of nanohybrids with a content of 20.4 wt% RGO and extensive interfaces between small-diameter ZnFe{sub 2}O{sub 4} nanoparticles and RGO sheets. The magnetic properties and electromagnetic parameters of ZnFe{sub 2}O{sub 4}/RGO nanohybrids were measured and the microwave absorption properties were investigated. ZnFe{sub 2}O{sub 4}/RGO nanohybrids exhibit the advantages of thin matching thickness and strong absorption at high frequency bands. It is demonstrated that ZnFe{sub 2}O{sub 4}/RGO nanohybrids can be a powerful candidate in the field of microwave absorption.

  1. The origin of the absorption spectra of porphyrin N- and dithiaporphyrin S-oxides in their neutral and protonated states.

    PubMed

    Bruhn, Torsten; Brückner, Christian

    2015-02-07

    meso-Tetraphenylporphyrin N-oxide (1) and meso-tetraphenyl-21,23-dithiaporphyrin S-oxide (3) possess optical spectra that are distinctly different from their parent porphyrins, meso-tetraphenylporphyrin (2) and meso-tetraphenyl-21,23-dithiaporphyrin (4), respectively. The hyperporphyrin spectra were reproduced and classified using TD CAM-B3LYP and SCS-CC2 computational methods. Calculations revealed the electronic and conformational influences of the N- and S-oxide functionalities. While the N-oxide under acidic conditions forms a dication with a UV-vis spectrum that is nearly indistinguishable from that of the diprotonated parent porphyrin, the diprotonated S-oxide possesses a much different UV-vis spectrum from diprotonated parent dithiaporphyrin. A computational study of the protonation events revealed the site and degree of protonation and rationalized the regular and hyperporphyrin UV-vis spectra of the neutral and protonated species, respectively. The study illuminates the electronic effects of the relatively rare modification of the inner porphyrin heteroatoms. It also illustrates a case in which TD CAM-B3LYP reaches its limits to make reliable predictions about the optical properties of a porphyrinoid, making the use of higher methods essential.

  2. Structural differences of oxidized iron-sulfur and nickel-iron cofactors in O2-tolerant and O2-sensitive hydrogenases studied by X-ray absorption spectroscopy.

    PubMed

    Sigfridsson, Kajsa G V; Leidel, Nils; Sanganas, Oliver; Chernev, Petko; Lenz, Oliver; Yoon, Ki-Seok; Nishihara, Hirofumi; Parkin, Alison; Armstrong, Fraser A; Dementin, Sébastien; Rousset, Marc; De Lacey, Antonio L; Haumann, Michael

    2015-02-01

    The class of [NiFe]-hydrogenases comprises oxygen-sensitive periplasmic (PH) and oxygen-tolerant membrane-bound (MBH) enzymes. For three PHs and four MBHs from six bacterial species, structural features of the nickel-iron active site of hydrogen turnover and of the iron-sulfur clusters functioning in electron transfer were determined using X-ray absorption spectroscopy (XAS). Fe-XAS indicated surplus oxidized iron and a lower number of ~2.7 Å Fe-Fe distances plus additional shorter and longer distances in the oxidized MBHs compared to the oxidized PHs. This supported a double-oxidized and modified proximal FeS cluster in all MBHs with an apparent trimer-plus-monomer arrangement of its four iron atoms, in agreement with crystal data showing a [4Fe3S] cluster instead of a [4Fe4S] cubane as in the PHs. Ni-XAS indicated coordination of the nickel by the thiol group sulfurs of four conserved cysteines and at least one iron-oxygen bond in both MBH and PH proteins. Structural differences of the oxidized inactive [NiFe] cofactor of MBHs in the Ni-B state compared to PHs in the Ni-A state included a ~0.05 Å longer Ni-O bond, a two times larger spread of the Ni-S bond lengths, and a ~0.1 Å shorter Ni-Fe distance. The modified proximal [4Fe3S] cluster, weaker binding of the Ni-Fe bridging oxygen species, and an altered localization of reduced oxygen species at the active site may each contribute to O2 tolerance.

  3. Cobalt complexes with pyrazole ligands as catalyst precursors for the peroxidative oxidation of cyclohexane: X-ray absorption spectroscopy studies and biological applications.

    PubMed

    Silva, Telma F S; Martins, Luísa M D R S; Guedes da Silva, M Fátima C; Kuznetsov, Maxim L; Fernandes, Alexandra R; Silva, Ana; Pan, Chun-Jern; Lee, Jyh-Fu; Hwang, Bing-Joe; Pombeiro, Armando J L

    2014-04-01

    [CoCl(μ-Cl)(Hpz(Ph))3]2 (1) and [CoCl2(Hpz(Ph))4] (2) were obtained by reaction of CoCl2 with HC(pz(Ph))3 and Hpz(Ph), respectively (Hpz(Ph)=3-phenylpyrazole). The compounds were isolated as air-stable solids and fully characterized by IR and far-IR spectroscopy, MS(ESI+/-), elemental analysis, cyclic voltammetry (CV), controlled potential electrolysis, and single-crystal X-ray diffraction. Electrochemical studies showed that 1 and 2 undergo single-electron irreversible Co(II)→Co(III) oxidations and Co(II)→Co(I) reductions at potentials measured by CV, which also allowed, in the case of dinuclear complex 1, the detection of electronic communication between the Co centers through the chloride bridging ligands. The electrochemical behavior of models of 1 and 2 were also investigated by density functional theory (DFT) methods, which indicated that the vertical oxidation of 1 and 2 (that before structural relaxation) affects mostly the chloride and pyrazolyl ligands, whereas adiabatic oxidation (that after the geometry relaxation) and reduction are mostly metal centered. Compounds 1 and 2 and, for comparative purposes, other related scorpionate and pyrazole cobalt complexes, exhibit catalytic activity for the peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone under mild conditions (room temperature, aqueous H2O2). In situ X-ray absorption spectroscopy studies indicated that the species derived from complexes 1 and 2 during the oxidation of cyclohexane (i.e., Ox-1 and Ox-2, respectively) are analogous and contain a Co(III) site. Complex 2 showed low in vitro cytotoxicity toward the HCT116 colorectal carcinoma and MCF7 breast adenocarcinoma cell lines.

  4. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas.

    PubMed

    Yang, Jianping; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2014-12-16

    To remove Hg(0) in coal combustion flue gas and eliminate secondary mercury pollution of the spent catalyst, a new regenerable magnetic catalyst based on cobalt oxide loaded magnetospheres from fly ash (Co-MF) was developed. The catalyst, with an optimal loading of 5.8% cobalt species, attained approximately 95% Hg(0) removal efficiency at 150 °C under simulated flue gas atmosphere. O2 could enhance the Hg(0) removal activity of magnetospheres catalyst via the Mars-Maessen mechanism. SO2 displayed an inhibitive effect on Hg(0) removal capacity. NO with lower concentration could promote the Hg(0) removal efficiency. However, when increasing the NO concentration to 300 ppm, a slightly inhibitive effect of NO was observed. In the presence of 10 ppm of HCl, greater than 95.5% Hg(0) removal efficiency was attained, which was attributed to the formation of active chlorine species on the surface. H2O presented a seriously inhibitive effect on Hg(0) removal efficiency. Repeated oxidation-regeneration cycles demonstrated that the spent Co-MF catalyst could be regenerated effectively via thermally treated at 400 °C for 2 h.

  5. Mechanism of Heterogeneous Mercury Oxidation by HBr over V2O5/TiO2 Catalyst.

    PubMed

    Wang, Zhen; Liu, Jing; Zhang, Bingkai; Yang, Yingju; Zhang, Zhen; Miao, Sen

    2016-05-17

    Catalytic oxidation of elemental mercury (Hg(0)) through a selective catalytic reduction (SCR) system is a promising method to reduce mercury emissions from coal-burning power plants. The density functional theory (DFT) and periodic slab models were used to study the reaction mechanism of Hg(0) oxidation by HBr on V2O5/TiO2 SCR catalyst surface. The interaction mechanisms of Hg(0), HBr, HgBr, and HgBr2 on V2O5/TiO2(001) were investigated. The oxidation reaction energy profiles and the corresponding geometries of the intermediates, final states, and transition states were researched. The results indicate that Hg(0) and HgBr2 are weakly adsorbed on the oxygen sites of the V2O5/TiO2(001) surface with physisorption. HgBr is chemically adsorbed on the surface. HBr is dissociatively adsorbed on the surface with an energy barrier of 85.59 kJ/mol. The reaction of Hg(0) oxidation by HBr follows the Eley-Rideal mechanism: Hg(0) interacts with a surface Br from HBr dissociation to form HgBr, and surface HgBr further interacts with HBr to form HgBr2, last HgBr2 desorbs from the surface. Comparing the energy pathway of Hg(0) oxidation over V2O5/TiO2(001) surface by HBr to that of HCl, it is found that the dissociation energy barrier of HBr is lower than that of HCl, the formation and desorption energy barriers of HgBr2 are also lower than that of HgCl2, which explains why HBr is much more effective than HCl in promoting Hg(0) oxidation.

  6. Characterization by X-Ray Absorption, X-Ray Powder Diffraction, and Magnetic Susceptibility of Cu Zn Co Al Containing Hydroxycarbonates, Oxycarbonates, Oxides, and Their Products of Reduction

    NASA Astrophysics Data System (ADS)

    Porta, Piero; Morpurgo, Simone; Pettiti, Ida

    1996-02-01

    Copper-zinc-cobalt-aluminium-containing crystalline hydroxycarbonates having hydrotalcite structure have been prepared by coprecipitation. X-ray powder diffraction (XRPD), magnetic susceptibility, and extended X-ray absorption fine structure (EXAFS) indicate that Cu2+, Zn2+, and Co2+are present in an octahedral environment. Calcination of the hydroxycarbonates at 723 K produces quasi-amorphous oxycarbonates where Cu2+and Co2+still retain octahedral coordination and cobalt is almost completely oxidized to Co3+. The coordination of Zn2+, at this stage, is intermediate between the octahedral one of the precursors and the tetrahedral one of ZnO and Zn-based spinels. Further calcination at 973 K produces a mixture of crystalline oxides such as CuO, ZnO, CuAl2O4, ZnAl2O4, and ZnCo2O4. EXAFS analysis of these samples indicates that copper is mainly in a fourfold coordination (although two longer Cu-O distances are also detected), zinc is tetrahedral, and cobalt (as Co3+) is essentially octahedral. EXAFS and XANES investigations performed afterin situreduction (10% H2/N2, at 523 and 623 K) on the oxycarbonates and oxides reveal that the total Cu2+→ Cu0reduction occurs only at 623 K in both series of samples, Co3+is reduced to Co2+only at 623 K in the oxycarbonates, and Zn2+is never reduced.

  7. Direct determination of silicon in powdered aluminium oxide by use of slurry sampling with in situ fusion graphite-furnace atomic-absorption spectrometry.

    PubMed

    Minami, H; Yoshida, T; Okutsu, K; Zhang, Q; Inoue, S; Atsuya, I

    2001-08-01

    A direct method for determination of silicon in powdered high-purity aluminium oxide samples, by slurry sampling with in situ fusion graphite-furnace atomic-absorption spectrometry (GF-AAS), has been established. A slurry sample was prepared by 10-min ultrasonication of a powdered sample in an aqueous solution containing both sodium carbonate and boric acid as a mixed flux. An appropriate portion of the slurry was introduced into a pyrolytic graphite furnace equipped with a platform. Silicon compounds to be determined and aluminium oxide were fused by the in situ fusion process with the flux in the furnace under optimized heating conditions, and the silicon absorbance was then measured directly. The calibration curve was prepared by use of a silicon standard solution containing the same concentration of the flux as the slurry sample. The accuracy of the proposed method was confirmed by analysis of certified reference materials. The proposed method gave statistically accurate values at the 95% confidence level. The detection limit was 3.3 microg g(-1) in solid samples, when 300 mg/20 mL slurry was prepared and a 10 microL portion of the slurry was measured. The precision of the determination (RSD for more than four separate determinations) was 14% and 2%, respectively, for levels of 10 and 100 microg g(-1) silicon in aluminium oxide.

  8. Simultaneous absorption of NOx and SO2 from flue gas with pyrolusite slurry combined with gas-phase oxidation of NO using ozone.

    PubMed

    Sun, Wei-yi; Ding, Sang-lan; Zeng, Shan-shan; Su, Shi-jun; Jiang, Wen-ju

    2011-08-15

    NO was oxidized into NO(2) first by injecting ozone into flue gas stream, and then NO(2) was absorbed from flue gas simultaneously with SO(2) by pyrolusite slurry. Reaction mechanism and products during the absorption process were discussed in the followings. Effects of concentrations of injected ozone, inlet NO, pyrolusite and reaction temperature on NO(x)/SO(2) removal efficiency and Mn extraction rate were also investigated. The results showed that ozone could oxidize NO to NO(2) with selectivity and high efficiency, furthermore, MnO(2) in pyrolusite slurry could oxidize SO(2) and NO(2) into MnSO(4) and Mn(NO(3))(2) in liquid phase, respectively. Temperature and concentrations of injected ozone and inlet NO had little impact on both SO(2) removal efficiency and Mn extraction rate. Specifically, Mn extraction rate remained steady at around 85% when SO(2) removal efficiency dropped to 90%. NO(x) removal efficiency increased with the increasing of ozone concentration, inlet NO concentration and pyrolusite concentration, however, it remained stable when reaction temperature increased from 20°C to 40°C and decreased when the flue gas temperature exceeded 40°C. NO(x) removal efficiency reached 82% when inlet NO at 750 ppm, injected ozone at 900 ppm, concentration of pyrolusite at 500 g/L and temperature at 25°C.

  9. Formation of soluble mercury oxide coatings: Transformation of elemental mercury in soils

    DOE PAGES

    Miller, Carrie L.; Watson, David B.; Lester, Brian P.; ...

    2015-09-21

    In this study, the impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reactingmore » with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.« less

  10. Formation of Soluble Mercury Oxide Coatings: Transformation of Elemental Mercury in Soils.

    PubMed

    Miller, Carrie L; Watson, David B; Lester, Brian P; Howe, Jane Y; Phillips, Debra H; He, Feng; Liang, Liyuan; Pierce, Eric M

    2015-10-20

    The impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reacting with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.

  11. Formation of soluble mercury oxide coatings: Transformation of elemental mercury in soils

    SciTech Connect

    Miller, Carrie L.; Watson, David B.; Lester, Brian P.; Howe, Jane Y.; Phillips, Debra H.; He, Feng; Liang, Liyuan; Pierce, Eric M.

    2015-09-21

    In this study, the impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reacting with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.

  12. NOVEL OXIDANT FOR ELEMENTAL MERCURY CONTROL FROM FLUE GAS

    EPA Science Inventory

    A novel economical oxidant has been developed for elemental mercury (Hg(0)) removal from coal-fired boilers. The oxidant was rigorously tested in a lab-scale fixed-bed system with the Norit America's FGD activated carbon (DOE's benchmark sorbent) in a typical PRB subbituminous/l...

  13. NOVEL OXIDANT FOR ELEMENTAL MERCURY CONTROL FROM FLUE GAS

    EPA Science Inventory

    A novel economical oxidant has been developed for elemental mercury (Hg(0)) removal from coal-fired boilers. The oxidant was rigorously tested in a lab-scale fixed-bed system with the Norit America's FGD activated carbon (DOE's benchmark sorbent) in a typical PRB subbituminous/l...

  14. A study of physical and optical absorption spectra of VO2+ ions in potassium and sodium oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Kumar, J. Siva; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    Spectroscopic and physical properties of V2O5 doped mixed alkali borate glasses are investigated. Borate glasses containing fixed concentrations of alkaline earth oxides (MgO and BaO) and alkali oxides (K2O and Na2O) were changes and are prepared by melt quenching technique. The values of ri, rp, Rm, αm molar volume and Λth increase and oxygen packing density, density and dopant ion concentration decrease with increasing of K2O content. As a result there shall be an increase in the disorder of the glass network. The optical band gap energies, Urbach energy, boron-boron separation,refractive index, dielectric constant, electronic polarizability and reflection loss values are varies nonlinearly with the K2O content which manifests the mixed alkali effect.

  15. Absorption of calcium ions on oxidized graphene sheets and study its dynamic behavior by kinetic and isothermal models

    NASA Astrophysics Data System (ADS)

    Fathy, Mahmoud; Abdel Moghny, Th.; Mousa, Mahmoud Ahmed; El-Bellihi, Abdel-Hameed A.-A.; Awadallah, Ahmed E.

    2016-11-01

    Sorption of calcium ion from the hard underground water using novel oxidized graphene (GO) sheets was studied in this paper. Physicochemical properties and microstructure of graphene sheets were investigated using Raman spectrometer, thermogravimetry analyzer, transmission electron microscope, scanning electron microscope. The kinetics adsorption of calcium on graphene oxide sheets was examined using Lagergren first and second orders. The results show that the Lagergren second-order was the best-fit model that suggests the conception process of calcium ion adsorption on the Go sheets. For isothermal studies, the Langmuir and Freundlich isotherm models were used at temperatures ranging between 283 and 313 K. Thermodynamic parameters resolved at 283, 298 and 313 K indicating that the GO adsorption was exothermic spontaneous process. Finally, the graphene sheets show high partiality toward calcium particles and it will be useful in softening and treatment of hard water.

  16. Combined use of lightweight magnetic Fe3O4-coated hollow glass spheres and electrically conductive reduced graphene oxide in an epoxy matrix for microwave absorption

    NASA Astrophysics Data System (ADS)

    Wang, Junpeng; Wang, Jun; Zhang, Bin; Sun, Yu; Chen, Wei; Wang, Tao

    2016-03-01

    Epoxy resin based lightweight composites comprising Fe3O4-coated hollow glass spheres (HGS@Fe3O4) and reduced graphene oxide (RGO) were prepared. Impedance matching condition and electromagnetic wave attenuation characteristic are used for analysis of the reflection loss (RL) performance of the composites. Compared with pure HGS@Fe3O4 and RGO composite, the -10 dB absorption bandwidth and the minimum RL of the hybrid composites are enhanced. RL values less than -10 dB are obtained in a wide frequency range and the corresponding bandwidth can reach up to 3.6 GHz when an appropriate absorber thickness is chosen. The density of the hybrid composite is in the range of 0.57-0.72 g/cm3, which is attractive candidate for a new type of lightweight microwave absorber.

  17. Self-assembled bundled TiO2 nanowire arrays encapsulated with indium tin oxide for broadband absorption in plasmonic photocatalysis.

    PubMed

    Huang, Hao; Hao, Qi; Fan, Xingce; Luo, Zhengwei; Hou, Xiangyu; Yang, Xiaozhi; Qiu, Teng; Chu, Paul K

    2017-10-11

    In order to enhance photocatalysis by broadening light harvesting, bundled TiO2 nanowire bundle arrays are encapsulated with indium tin oxide (ITO) by a self-assembly technique involving anodization, electrochemical etching, and ITO deposition. The plasmonic photocatalyst, which has a multiscale structure with variable nanoscale gaps as well as microscale funnels, shows broadband localized surface plasmon resonance absorption of 84% in the wavelength range between 400 and 2500 nm. The improved photocatalytic efficiency is demonstrated by methyl orange degradation under sunlight illumination. The improvement stems from enhanced light harvesting arising from the localized surface plasmon resonance of the ITO membrane which extends the light response to the visible and NIR regions and excites hot charge carriers.

  18. [The effect of electromagnetic waves of very high frequency of molecular spectra of radiation and absorption of nitric oxide on the functional activity of platelets].

    PubMed

    Kirichuk, V F; Maĭborodin, A V; Volin, M V; Krenitskiĭ, A P; Tupikin, V D

    2001-01-01

    A study was made of the effect of electromagnetic EMI MMD-fluctuation on the frequencies of molecular spectra of radiation, and nitric oxide absorption under in vitro conditions on the functional activity of platelets in patients with unstable angina pectoris, with the help of a specially created generator. At amplitude-modulated and continuous modes of EMI MMD-irradiation of platelet-rich plasma for 5, 15 and 30 min the platelet functional activity decreases, which was shown up in reduction of their activation and fall of aggregative ability. The degree, to which platelet functional activity was inhibited, depended on the mode of irradiation and on duration of EMI MMD effect. The most obvious changes in platelet activation and in their readiness to aggregative response were observed at a continuous mode of irradiation within a 15 min interval.

  19. Open-path quantum cascade laser-based system for simultaneous remote sensing of methane, nitrous oxide, and water vapor using chirped-pulse differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Castillo, Paulo; Diaz, Adrian; Thomas, Benjamin; Gross, Barry; Moshary, Fred

    2015-10-01

    Methane and Nitrous Oxide are long-lived greenhouse gases in the atmosphere with significant global warming effects. We report on application of chirped-pulsed quantum cascade lasers (QCLs) to simultaneous measurements of these trace gases in both open-path fence-line and backscatter systems. The intra-pulse thermal frequency chip in a QCL can be time resolved and calibrated to allow for high resolution differential optical absorption spectroscopy over the spectral window of the chip, which for a DFB-QCL can be reach ~2cm-1 for a 500 nsec pulse. The spectral line-shape of the output from these lasers are highly stable from pulse to pulse over long period of time (> 1 day), and the system does not require frequent calibrations.

  20. Improved microwave absorption and electromagnetic properties of BaFe{sub 12}O{sub 19}-poly(vinylidene fluoride) composites by incorporating reduced graphene oxides

    SciTech Connect

    He, Hongcai; Luo, Feifei; Qian, Neng; Wang, Ning

    2015-02-28

    Three-phase composites of poly(vinylidene fluoride)-BaFe{sub 12}O{sub 19}-reduced graphene oxide (PVDF–BFO-RGO) were synthesized by a facile wet chemical method and hot-pressing approach. The phase structure, topography of the hybrid materials were characterized by X-ray diffraction, scanning electron microscopy, and Raman spectra. Influence of RGO on their electromagnetic properties was investigated. Especially, improved microwave absorption and electromagnetic properties of BaFe{sub 12}O{sub 19}–PVDF composites by incorporating RGO were obtained and studied. The PVDF/BFO/RGO sample with m(RGO):m(BFO) = 5:100 shows the best microwave absorption properties with a minimum RL = −32 dB at 11 GHz and with the bandwidth less than −20 dB from 9.6 to 12.8 GHz. The composites were believed to have potential applications as the microwave absorber.

  1. X-ray absorption and emission spectroscopy of Cr(III) (hydr)oxides: analysis of the K-pre-edge region.

    PubMed

    Frommer, Jakob; Nachtegaal, Maarten; Czekaj, Izabela; Weng, Tsu-Chien; Kretzschmar, Ruben

    2009-11-05

    Pre-edge spectral features below the main X-ray absorption K-edge of transition metals show a pronounced chemical sensitivity and are promising sources of structural information. Nevertheless, the use of pre-edge analysis in applied research is limited because of the lack of definite theoretical peak-assignments. The aim of this study was to determine the factors affecting the chromium K-pre-edge features in trivalent chromium-bearing oxides and oxyhydroxides. The selected phases varied in the degree of octahedral polymerization and the degree of iron-for-chromium substitution in the crystal structure. We investigated the pre-edge fine structure by means of high-energy-resolution fluorescence detected X-ray absorption spectroscopy and by 1s2p resonant X-ray emission spectroscopy. Multiplet theory and full multiple-scattering calculations were used to analyze the experimental data. We show that the chromium K-pre-edge contains localized and nonlocalized transitions. Contributions arising from nonlocalized metal-metal transitions are sensitive to the nearest metal type and to the linkage mode between neighboring metal octahedra. Analyzing these transitions opens up new opportunities for investigating the local coordination environment of chromium in poorly ordered solids of environmental relevance.

  2. A feasibility study on oxidation state of arsenic in cut tobacco, mainstream cigarette smoke and cigarette ash by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, C.; Hu, J.; McAdam, K. G.

    2009-11-01

    This work describes the application of synchrotron-based X-ray Absorption Near-Edge Structure spectroscopy to study the oxidation state of arsenic in cigarette mainstream smoke, cut tobacco and cigarette ash. The level of arsenic in the total particulate matter of the smoke is approximately 1 ppm for the standard research reference cigarette 2R4F and its replacement 3R4F. Smoke particulate samples collected by a conventional glass-fiber membrane (commercially known as Cambridge filter pad) and a jet-impaction method were analyzed and compared. In addition smoke particulate samples were aged either at ambient temperature or at 195 K. X-ray Absorption Near-Edge Structure spectroscopy results revealed that the cut tobacco powder and cigarette ash contained almost exclusively As V. The smoke particulate samples however contained a mixture of As III and As V. The As V in the smoke particulate was reduced to As III upon aging. Stabilizing the smoke particulate matter at 195 K by solid CO 2 slowed down this aging reaction and revealed a higher percentage of As V. This behavior is consistent with the redox properties of the arsenic species and the smoke particulate matrix.

  3. Chamomile (Matricaria recutita L.) decoction extract inhibits in vitro intestinal glucose absorption and attenuates high fat diet-induced lipotoxicity and oxidative stress.

    PubMed

    Jabri, Mohamed-Amine; Sakly, Mohsen; Marzouki, Lamjed; Sebai, Hichem

    2017-03-01

    The present study aimed to investigate the inhibitory effect of chamomile decoction extract (CDE) on intestinal glucose absorption as well as its protective role against high fat diet (HFD)-induced obesity and lipotoxicity in rats. We used the Ussing chamber system to investigate the effect of CDE on intestinal transport of glucose. Male Wistar rats were fed HFD for six weeks to provoke obesity. CDE (100mg/kg, b.w. p.o.) has been per orally administered to HFD fed rats. Ex vivo, we found that CDE significantly and dose-dependently increased intestinal absorption of glucose. In vivo, HFD increased the body, liver and kidney weights, while CDE treatment showed a significant protective effects. High fat diet induced also a lipid profiles disorder and a disturbances in kidney and liver function parameters. Moreover liver and kidney lipotoxicity is accompanied by an oxidative stress status characterized by increased lipoperoxidation, depletion of antioxidant enzymes activity and non-enzymatic antioxidant (-SH groups and GSH) levels as well as increased levels of free iron, hydrogen peroxide (H2O2) and calcium. However, treatment with CDE alleviated all the deleterious effects of HFD feed. These findings suggest that chamomile decoction extract can be used as functional beverage against obesity, hyperglycemia and hyperlipidemia.

  4. UV Absorption Cross Sections of Nitrous Oxide (N2O) and Carbon Tetrachloride (CCl4) Between 210 and 350 K and the Atmospheric Implications

    NASA Technical Reports Server (NTRS)

    Carlon, Nabilah Rontu; Papanastasiou, Dimitrios K.; Fleming, Eric L.; Jackman, Charles H.; Newman, Paul A.; Burkholder, James B.

    2010-01-01

    Absorption cross sections of nitrous oxide (N2O) and carbon tetrachloride (CCl4) are reported at five atomic UV lines (184.95, 202.548, 206.200, 213.857, and 228.8 nm) at 27 temperatures in the range 210-350 K. In addition, UV absorption spectra of CCl4 are reported between 200-235 nm as a function of temperature (225-350 K). The results from this work are critically compared with results from earlier studies. For N2O, the present results are in good agreement with the current JPL recommendation enabling a reduction in the estimated uncertainty in the N2O atmospheric photolysis rate. For CCl4, the present cross section results are systematically greater than the current recommendation at the reduced temperatures most relevant to stratospheric photolysis. The new cross sections result in a 5-7% increase in the modeled CCl4 photolysis loss, and a slight decrease in the stratospheric lifetime, from 51 to 50 years, for present day conditions. The corresponding changes in modeled inorganic chlorine and ozone in the stratosphere are quite small. A CCl4 cross section parameterization for use in 37 atmospheric model calculations is presented.

  5. Study of the nonlinear optical absorption and refraction of indium doped zinc oxide (IZO) thin films using Z-scan technique

    NASA Astrophysics Data System (ADS)

    Zin, Maung Htwe; Zhang, Yun-Dong; Yao, Cheng-Bao; Li, Hui; Yuan, Ping

    2016-11-01

    Indium doped zinc oxide (IZO) thin films were grown on sapphire substrate by radio frequency (RF/DC) magnetron sputtering technique. The structural characterization and surface morphology of IZO thin films were analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The XRD results show that the samples exhibit polycrystalline characteristics and still retained wurtzite structure. The surface morphology of the samples reveals the average crystallite sizes are increased as indium content. In addition, the linear optical properties of IZO thin films were studied by UV-VIS spectrometer with wavelength range 200-900 nm. The high transmittances and the band gap values were observed in both thin films. Moreover, the nonlinear optical absorption and refraction of IZO thin films were investigated using nanosecond Z-scan technique. These samples show self-focusing optical nonlinearity and good two-photon nonlinear optical absorption behaviors. Therefore, these studies make the IZO thin films as the applications in nonlinear optical devices.

  6. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy.

    PubMed

    Fan, Jian-Xin; Wang, Yu-Jun; Liu, Cun; Wang, Li-Hua; Yang, Ke; Zhou, Dong-Mei; Li, Wei; Sparks, Donald L

    2014-08-30

    The geochemical behavior and speciation of arsenic (As) in paddy soils is strongly controlled by soil redox conditions and the sequestration by soil iron oxyhydroxides. Hence, the effects of iron oxide reductive dissolution on the adsorption, transformation and precipitation of As(III) and As(V) in soils were investigated using batch experiments and synchrotron based techniques to gain a deeper understanding at both macroscopic and microscopic scales. The results of batch sorption experiments revealed that the sorption capacity of As(V) on anoxic soil was much higher than that on control soil. Synchrotron based X-ray fluorescence (μ-XRF) mapping studies indicated that As was heterogeneously distributed and was mainly associated with iron in the soil. X-ray absorption near edge structure (XANES), micro-X-ray absorption near edge structure (μ-XANES) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the primary speciation of As in the soil is As(V). These results further suggested that, when As(V) was introduced into the anoxic soil, the rapid coprecipitation of As(V) with ferric/ferrous ion prevented its reduction to As(III), and was the main mechanism controlling the immobilization of As. This research could improve the current understanding of soil As chemistry in paddy and wetland soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Valence- and element-dependent water oxidation behaviors: in situ X-ray diffraction, absorption and electrochemical impedance spectroscopies.

    PubMed

    Hsu, Chia-Shuo; Suen, Nian-Tzu; Hsu, Ying-Ya; Lin, Hsuan-Yu; Tung, Ching-Wei; Liao, Yen-Fa; Chan, Ting-Shan; Sheu, Hwo-Shuenn; Chen, San-Yuan; Chen, Hao Ming

    2017-03-08

    Metal oxides of the spinel family have shown great potential towards the oxygen evolution reaction (OER), but the fundamental OER mechanism of spinel oxides is still far from being completely understood, especially for the role of the metal ions. Owing to various coordinated sites of divalent/trivalent metals ions and surface conditions (morphology and defects), it is a great challenge to have a fair assessment of the electrocatalytic performance of spinel systems. Herein, we demonstrated a series of MFe2O4 (M = Fe, Co, Ni, Zn) with a well-controlled morphology to achieve a comprehensive study of electrocatalytic activity toward OER. By utilizing several in situ analyses, we could conclude a universal rule that the activities for OER in the metal oxide systems were determined by the occurrence of a phase transformation, and this structural transformation could work well in both crystallographic sites (Td and Oh sites). Additionally, the divalent metal ion significantly dominated the formation of oxyhydroxide through an epitaxial relationship, which depended on the atomic arrangement at the interface of spinel and metal oxyhydroxide, while trivalent metal ions remained unchanged as a host lattice. The metal oxyhydroxide was formed during a redox reaction rather than being formed during OER. The occurrence of the redox reaction seems to accompany a remarkable increase in resistance and capacitance might result from the structural transformation from spinel to metal oxyhydroxide. We believe that the approaching strategies and information obtained in the present study can offer a guide to designing a promising electrocatalytic system towards the oxygen evolution reaction and other fields.

  8. Two-photon-absorption line strengths for nitric oxide: Comparison of theory and sub-Doppler, laser-induced fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Kulatilaka, Waruna D.; Lucht, Robert P.

    2017-03-01

    We discuss the results of high-resolution, sub-Doppler two-photon-absorption laser-induced fluorescence (TPALIF) spectroscopy of nitric oxide at low pressure and room temperature. The measurements were performed using the single-longitudinal mode output of a diode-laser-seeded optical parametric generator (OPG) system with a measured frequency bandwidth of 220 MHz. The measurements were performed using a counter-propagating pump beam geometry, resulting in sub-Doppler TPALIF spectra of NO for various rotational transitions in the (0,0) vibrational band of the A2Σ+ - X2Π electronic transition. The experimental results are compared with the results of a perturbative treatment of the rotational line strengths for the 20 different rotational branches of the X2Π(v″ = 0) → A2Σ+(v' = 0) two-photon absorption band. In the derivation of the expressions for the two-photon transition absorption strength, the closure relation is used for rotational states in the intermediate levels of the two-photon transition in analogy with the Placzek treatment of Raman transitions. The theoretical treatment of the effect of angular momentum coupling on the two-photon rotational line strengths features the use of irreducible spherical tensors and 3j symbols. The final results are expressed in terms of the Hund's case (a) coupling coefficients aJ and bJ for the X2Π(v″ = 0) rotational level wavefunctions, which are intermediate between Hund's case (a) and case (b). Considerable physical insight is provided by this final form of the equations for the rotational line strengths. Corrections to the two-photon absorption rotational line strength for higher order effects such as centrifugal stretching can be included in a straightforward fashion in the analysis by incorporating higher order terms in these coupling coefficients aJ and bJ, although these corrections are essentially negligible for J < 50. The theoretical calculations of relative line intensities are in good agreement both

  9. Acidification of rain by the oxidation of dissolved SO/sub 2/ and the absorption of HNO/sub 3/

    SciTech Connect

    Durham, J.L.; Barnes, H.M.; Overton, J.H. Jr.

    1984-01-01

    Most O3alculations have been performed for sub-cloud acidification of rain. The roles of chemical oxidation kinetics, mass transport rates for gas scavenging, and the raindrop size distribution have been examined. H/sub 2/O/sub 2/ (10 ppb) greatly dominates O/sub 3/ and Mn(+2) in oxidizing dissolved SO/sub 2/ to form H(-1) and SO/sub 4/(-2). HNO/sub 3/ is important for acidification of rain and it also slightly inhibits SO/sub 4/(-2) formation. Sub-cloud scavenging of H/sub 2/O/sub 2/ and HNO/sub 3/ is mass transport limited, thus causing the acidification of rain to be mass-transported limited. The Marshall-Palmer distribution results in greater predictions of acidity, SO/sub 4/(-2), and NO/sub 3/(-1) than the best distribution for raindrops larger than 0.2 mm. Sub-cloud acidification of rain is strongly dependent on: (a) the concentrations of SO/sub 2/, H/sub 2/O/sub 2/, and HNO/sub 3/, (b) the sub-cloud fall distance, and (c) the raindrop size distribution.

  10. Time-Resolved Quantitative Measurement of OH HO2 and CH2O in Fuel Oxidation Reactions by High Resolution IR Absorption Spectroscopy.

    SciTech Connect

    Huang, Haifeng; Rotavera, Brandon; Taatjes, Craig A.

    2014-08-01

    Combined with a Herriott-type multi-pass slow flow reactor, high-resolution differential direct absorption spectroscopy has been used to probe, in situ and quantitatively, hydroxyl (OH), hydroperoxy (HO 2 ) and formaldehyde (CH 2 O) molecules in fuel oxidation reactions in the reactor, with a time resolution of about 1 micro-second. While OH and CH 2 O are probed in the mid-infrared (MIR) region near 2870nm and 3574nm respectively, HO 2 can be probed in both regions: near-infrared (NIR) at 1509nm and MIR at 2870nm. Typical sensitivities are on the order of 10 10 - 10 11 molecule cm -3 for OH at 2870nm, 10 11 molecule cm -3 for HO 2 at 1509nm, and 10 11 molecule cm -3 for CH 2 O at 3574nm. Measurements of multiple important intermediates (OH and HO 2 ) and product (CH 2 O) facilitate to understand and further validate chemical mechanisms of fuel oxidation chemistry.

  11. Laser-Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design.

    PubMed

    Yeo, Junyeob; Hong, Sukjoon; Kim, Gunho; Lee, Habeom; Suh, Young Duk; Park, Inkyu; Grigoropoulos, Costas P; Ko, Seung Hwan

    2015-06-23

    Recent development of laser-induced hydrothermal growth enabled direct digital growth of ZnO nanowire array at an arbitrary position even on 3D structures by creating a localized temperature field through a photothermal reaction in liquid environment. However, its spatial size was generally limited by the size of the focused laser spot and the thermal diffusion, and the target material has been limited to ZnO. In this paper, we demonstrated a next generation laser-induced hydrothermal growth method to grow nanowire on a selected area that is even smaller than the laser focus size by designing laser absorption layer. The control of laser-induced temperature field was achieved through adjusting the physical properties of the substrate (dimension and thermal conductivity), and it enabled a successful synthesis of smaller nanowire array without changing any complex optics. Through precise localized temperature control with laser, this approach could be extended to various nanowires including ZnO and TiO2 nanowires even on heat sensitive polymer substrate.

  12. Equilibrator-based measurements of dissolved nitrous oxide in the surface ocean using an integrated cavity output laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Grefe, I.; Kaiser, J.

    2013-07-01

    A laser-based analyser for nitrous oxide, carbon monoxide and water vapour was coupled to an equilibrator for continuous high-resolution dissolved gas measurements in the surface ocean. Results for nitrous oxide measurements from laboratory tests and field deployments are presented here. Short-term precision for 10 s-average N2O mole fractions at an acquisition rate of 1 Hz was better than 0.2 nmol mol-1 for standard gases and equilibrator measurements. The same precision was achieved for replicate standard gas analyses within 1 h of each other. The accuracy of the equilibrator measurements was verified by comparison with purge-and-trap GC-MS measurements of N2O concentrations in discrete samples from the Southern Ocean and showed agreement to within the 2% measurement uncertainty of the GC-MS method. Measured atmospheric N2O mole fractions agreed with AGAGE values to within 0.4%. The equilibrator response time to concentration changes in water was 142 to 203 s, depending on the headspace flow rate. The system was tested at sea during a north-to-south transect of the Atlantic Ocean. While the subtropical gyres were slightly undersaturated, the equatorial region was a source of nitrous oxide to the atmosphere. The ability to measure at high temporal and spatial resolution revealed sub-mesoscale variability in dissolved N2O concentrations. The magnitude of the observed saturation is in agreement with published data. Mean sea-to-air fluxes in the tropical and subtropical Atlantic ranged between -1.6 and 0.11 μmol m-2d-1 and confirm that the subtropical Atlantic is not an important source region for N2O to the atmosphere, compared to average global fluxes of 0.6 to 2.4 μmol m-2d-1. The system can be easily modified for autonomous operation on voluntary observing ships (VOS). Further work should include an interlaboratory comparison exercise with other methods of dissolved N2O analyses.

  13. In-operando synchronous time-multiplexed O K-edge x-ray absorption spectromicroscopy of functioning tantalum oxide memristors

    SciTech Connect

    Kumar, Suhas; Graves, Catherine E.; Strachan, John Paul Williams, R. Stanley; Kilcoyne, A. L. David; Tyliszczak, Tolek; Nishi, Yoshio

    2015-07-21

    Memristors are receiving keen interest because of their potential varied applications and promising large-scale information storage capabilities. Tantalum oxide is a memristive material that has shown promise for high-performance nonvolatile computer memory. The microphysics has been elusive because of the small scale and subtle physical changes that accompany conductance switching. In this study, we probed the atomic composition, local chemistry, and electronic structure of functioning tantalum oxide memristors through spatially mapped O K-edge x-ray absorption. We developed a time-multiplexed spectromicroscopy technique to enhance the weak and possibly localized oxide modifications with spatial and spectral resolutions of <30 nm and 70 meV, respectively. During the initial stages of conductance switching of a micrometer sized crosspoint device, the spectral changes were uniform within the spatial resolution of our technique. When the device was further driven with millions of high voltage-pulse cycles, we observed lateral motion and separation of ∼100 nm-scale agglomerates of both oxygen interstitials and vacancies. We also demonstrate a unique capability of this technique by identifying the relaxation behavior in the material during electrical stimuli by identifying electric field driven changes with varying pulse widths. In addition, we show that changes to the material can be localized to a spatial region by modifying its topography or uniformity, as against spatially uniform changes observed here during memristive switching. The goal of this report is to introduce the capability of time-multiplexed x-ray spectromicroscopy in studying weak-signal transitions in inhomogeneous media through the example of the operation and temporal evolution of a memristor.

  14. In-operando synchronous time-multiplexed O K-edge x-ray absorption spectromicroscopy of functioning tantalum oxide memristors

    NASA Astrophysics Data System (ADS)

    Kumar, Suhas; Graves, Catherine E.; Strachan, John Paul; Kilcoyne, A. L. David; Tyliszczak, Tolek; Nishi, Yoshio; Williams, R. Stanley

    2015-07-01

    Memristors are receiving keen interest because of their potential varied applications and promising large-scale information storage capabilities. Tantalum oxide is a memristive material that has shown promise for high-performance nonvolatile computer memory. The microphysics has been elusive because of the small scale and subtle physical changes that accompany conductance switching. In this study, we probed the atomic composition, local chemistry, and electronic structure of functioning tantalum oxide memristors through spatially mapped O K-edge x-ray absorption. We developed a time-multiplexed spectromicroscopy technique to enhance the weak and possibly localized oxide modifications with spatial and spectral resolutions of <30 nm and 70 meV, respectively. During the initial stages of conductance switching of a micrometer sized crosspoint device, the spectral changes were uniform within the spatial resolution of our technique. When the device was further driven with millions of high voltage-pulse cycles, we observed lateral motion and separation of ˜100 nm-scale agglomerates of both oxygen interstitials and vacancies. We also demonstrate a unique capability of this technique by identifying the relaxation behavior in the material during electrical stimuli by identifying electric field driven changes with varying pulse widths. In addition, we show that changes to the material can be localized to a spatial region by modifying its topography or uniformity, as against spatially uniform changes observed here during memristive switching. The goal of this report is to introduce the capability of time-multiplexed x-ray spectromicroscopy in studying weak-signal transitions in inhomogeneous media through the example of the operation and temporal evolution of a memristor.

  15. Photochemical Oxidation of Dissolved Elemental Mercury by Carbonate Radicals in Water

    DOE PAGES

    He, Feng; Zhao, Weirong; Liang, Liyuan; ...

    2014-11-11

    In this study, photochemical oxidation of dissolved elemental mercury, Hg(0), affects mercury chemical speciation and its transfer at the water-air interface in the aquatic environment. The mechanisms and factors that control Hg(0) photooxidation, however, are not completely understood, especially concerning the role of dissolved organic matter (DOM) and carbonate (CO32-) in natural freshwaters. Here, we evaluate Hg(0) photooxidation rates affected by reactive ionic species (e.g., DOM, CO32-, and NO3–) and free radicals in creek water and a phosphate buffer solution (pH 8) under simulated solar irradiation. The Hg(0) photooxidation rate (k = 1.44 h-1) is much higher in the presencemore » of both CO32- and NO3- than in the presence of CO32-, NO3-, or DOM alone (k = 0.1–0.17 h-1). Using scavengers and enhancers for singlet oxygen (1O2) and hydroxyl (HO•) radicals, as well as electron paramagnetic resonance spectroscopy, we found that carbonate radicals (CO3•-) primarily drive Hg(0) photooxidation. The addition of DOM to the solution of CO32- and NO3- decreased the oxidation rate by half. This study identifies an unrecognized pathway of Hg(0) photooxidation by CO3•- radicals and the inhibitory effect of DOM, which could be important in assessing Hg transformation and the fate of Hg in water containing carbonate such as hard water and seawater.« less

  16. X-ray absorption spectroscopy study of parent misfit-layered cobalt oxide [Sr₂O₂]q}CoO₂

    SciTech Connect

    Chou, Ta-Lei; Chan, Ting-Shan; Chen, Jin-Ming; Yamauchi, Hisao; Karppinen, Maarit

    2013-06-01

    Here we present a comprehensive X-ray absorption spectroscopy study carried out at Co-L₂,₃, Co-K, O-K and Sr-K edges for the parent misfit-layered cobalt oxide phase [Sr₂O₂]₀.₅₂CoO₂; comparison is made to another misfit-layered oxide [CoCa₂O₃]₀.₆₂CoO₂ and the perovskite oxide LaCoO₃. A high-quality sample of [Sr₂O₂]₀.₅₂CoO₂ was obtained through ultra-high-pressure synthesis using Sr₃Co₂O₆ and Sr(OH)₂∙8H₂O as starting materials. Different dosages of KClO₃ were mixed with the raw materials as an oxygen source and tested, but it was found that the window for the redox control of [Sr₂O₂]₀.₅₂CoO₂ is rather narrow. From Co-K and Co-L₂,₃ spectra a mixed III/IV valence state is revealed for cobalt in [Sr₂O₂]₀.₅₂}CoO₂, but the average valence value is a little lower than in [CoCa₂O₃]₀.₆₂CoO₂. Then, Sr-K spectrum indicates that the [Sr₂O₂] double-layer block in [Sr₂O₂]₀.₅₂CoO₂ clearly deviates from the cubic SrO rock-salt structure, suggesting a more complicated coordination environment for strontium. This together with a somewhat low Co-valence value and the fact that the phase formation of [Sr₂O₂]₀.₅₂CoO₂ required the presence of Sr(OH)₂∙8H₂O in the high-pressure synthesis suggest that the [Sr₂O₂] block contains ---OH groups, i.e. [Sr₂(O,OH)₂]₀.₅₂CoO₂. - Graphical abstract: [Sr₂O₂]₀.₅₂CoO₂ obtained through high-pressure synthesis is a parent of misfit-layered cobalt oxides, such as [CoCa₂O₃]₀.₆₂CoO₂ or [MmA₂O2+m]qCoO₂ in general. Our comprehensive X-ray absorption spectroscopy study shows that both [Sr₂O₂]₀.₅₂CoO₂ and [CoCa₂O₃]₀.₆₂CoO₂ possess mixed III/IV valence cobalt, but the average Co-valence is a little lower in the former. This is tentatively believed to be due to OH--- groups replacing part of O²⁻ ions in the [Sr

  17. Hard X-ray photoelectron and X-ray absorption spectroscopy characterization of oxidized surfaces of iron sulfides

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yuri; Tomashevich, Yevgeny; Vorobyev, Sergey; Saikova, Svetlana; Romanchenko, Alexander; Félix, Roberto

    2016-11-01

    Hard X-ray photoelectron spectroscopy (HAXPES) using an excitation energy range of 2 keV to 6 keV in combination with Fe K- and S K-edge XANES, measured simultaneously in total electron (TEY) and partial fluorescence yield (PFY) modes, have been applied to study near-surface regions of natural polycrystalline pyrite FeS2 and pyrrhotite Fe1-xS before and after etching treatments in an acidic ferric chloride solution. It was found that the following near-surface regions are formed owing to the preferential release of iron from oxidized metal sulfide lattices: (i) a thin, no more than 1-4 nm in depth, outer layer containing polysulfide species, (ii) a layer exhibiting less pronounced stoichiometry deviations and low, if any, concentrations of polysulfide, the composition and dimensions of which vary for pyrite and pyrrhotite and depend on the chemical treatment, and (iii) an extended almost stoichiometric underlayer yielding modified TEY XANES spectra, probably, due to a higher content of defects. We suggest that the extended layered structure should heavily affect the near-surface electronic properties, and processes involving the surface and interfacial charge transfer.

  18. Human systemic exposure to [¹⁴C]-paraphenylenediamine-containing oxidative hair dyes: Absorption, kinetics, metabolism, excretion and safety assessment.

    PubMed

    Nohynek, Gerhard J; Skare, Julie A; Meuling, Wim J A; Wehmeyer, Kenneth R; de Bie, Albertus Th H J; Vaes, Wouter H J; Dufour, Eric K; Fautz, Rolf; Steiling, Winfried; Bramante, Mario; Toutain, Herve

    2015-07-01

    Systemic exposure was measured in humans after hair dyeing with oxidative hair dyes containing 2.0% (A) or 1.0% (B) [(14)C]-p-phenylenediamine (PPD). Hair was dyed, rinsed, dried, clipped and shaved; blood and urine samples were collected for 48 hours after application. [(14)C] was measured in all materials, rinsing water, hair, plasma, urine and skin strips. Plasma and urine were also analysed by HLPC/MS/MS for PPD and its metabolites (B). Total mean recovery of radioactivity was 94.30% (A) or 96.21% (B). Mean plasma Cmax values were 132.6 or 97.4 ng [(14)C]-PPDeq/mL, mean AUC(0-∞) values 1415 or 966 ng [(14)C]-PPDeq/mL*hr in studies A or B, respectively. Urinary excretion of [(14)C] mainly occurred within 24 hrs after hair colouring with a total excretion of 0.72 or 0.88% of applied radioactivity in studies A or B, respectively. Only N,N'-diacetylated-PPD was detected in plasma and the urine. A TK-based human safety assessment estimated margins of safety of 23.3- or 65-fold relative to respective plasma AUC or Cmax values in rats at the NOAEL of a toxicity study. Overall, hair dyes containing PPD are unlikely to pose a health risk since they are used intermittently and systemic exposure is limited to the detoxified metabolite N,N'-diacetyl-PPD.

  19. Laboratory simulation of Hg0 emissions from a snowpack.

    PubMed

    Dommergue, Aurélien; Bahlmann, Enno; Ebinghaus, Ralf; Ferrari, Christophe; Boutron, Claude

    2007-05-01

    Snow surfaces play an important role in the biogeochemical cycle of mercury in high-latitude regions. Snowpacks act both as sources and sinks for gaseous compounds. Surprisingly, the roles of each environmental parameter that can govern the air-surface exchange over snow are not well understood owing to the lack of systematic studies. A laboratory system called the laboratory flux measurement system was used to study the emission of gaseous elemental mercury from a natural snowpack under controlled conditions. The first results from three snowpacks originating from alpine, urban and polar areas are presented. Consistent with observations in the field, we were able to reproduce gaseous mercury emissions and showed that they are mainly driven by solar radiation and especially UV-B radiation. From these laboratory experiments, we derived kinetic constants which show that divalent mercury can have a short natural lifetime of about 4-6 h in snow.

  20. Seasonal and Diurnal Variations of Hg(0) Over New England

    NASA Astrophysics Data System (ADS)

    Mao, H.; Talbot, R.; Sigler, J.; Sive, B.; Hegarty, J.

    2007-12-01

    Diurnal to interannual variability of Hg° over New England was investigated using multiple years of Hg° measurements at two inland sites, Thompson Farm (TF, 43.11° N, 70.95° W, 24 m, 25 km inland) and Pac Monadnock (PM, 42.86° N, 71.88° W, 700 m, 180 km inland), and one summer of measurements from a marine site, Appledore Island (AI, 42.97° N, 70.62° W, sea level), from the University of New Hampshire AIRMAP observing network. Possible sources were identified via a thorough examination of relationships between Hg° and a number of trace gases, e.g., CO, CO2, CH4, NOy, NO, SO2, and VOCs. The measurements of Hg at TF showed distinct seasonality with an annual maxima in late winter - early spring and a minima in early fall, with large day-to-day variation. A decreasing trend in the mixing ratio of Hg over the time period of March - September occurred at a rate of 0.5 - 0.6 ppqv d-1 for all years except 2004 (0.3 ppqv d-1). Measurements of Hg° at the elevated site PM exhibited much smaller daily and annual variation, particularly reflected in the slower warm season decline (relative to TF) of 0.2 and 0.3 ppqv d-1 in 2005 and 2006 respectively. The AI data appeared to track the variation observed at TF albeit with much higher minima. Hg° was correlated most strongly with CO and NOy in winter suggesting that anthropogenic emissions were the primary source of Hg° . Applying the Hg° - CO relationship, we found that the seasonally averaged Hg° mixing ratio of ~160 ppqv at PM can be considered the regional background level. The positive Hg° -NOy correlation along the lower boundary of all data points indicated dry deposition as a stronger sink for Hg° than suggested by previous studies. We estimated a dry deposition velocity for Hg° of 0.17 - 0.20 cm s-1, and a lifetime of ~11 days in the local PBL at TF. Correlation between Hg° and CHBr3 at both TF and AI suggested a role of the oceanic source influencing the ambient levels of Hg° in the marine and coastal environments. It was also hypothesized that the overall significantly lower Hg° levels and steeper decreasing trend during the warm season at TF compared to those at PM may reflect the impact of marine halogen chemistry. The stronger decline in warm season Hg° during 2005 compared to 2004 may indicate that changes in precipitation played a role in mitigating evasion from the surface. Colder winter climate was found to be accompanied by higher levels of all anthropogenic tracers except Hg° , possibly a result of the predominant meridional flow that entrained fresh emissions during transport of the polluted Arctic air mass as it circulated over the eastern U.S. In contrast, little variation in Hg° indicates a homogeneous distribution of surface Hg° mixing ratios in winter and/or quick removal of mercury released from anthropogenic sources. During warmer winters the Hg° -CO slope value possibly reflects the ratio of Hg° loss relative to changes in CO more than their emission ratios.

  1. Hydrogenated amorphous silicon oxide (a-SiOx:H) single junction solar cell with 8.8% initial efficiency by reducing parasitic absorptions

    NASA Astrophysics Data System (ADS)

    Kim, Do Yun; Guijt, Erwin; van Swaaij, René A. C. M. M.; Zeman, Miro

    2017-04-01

    Hydrogenated amorphous silicon oxide (a-SiOx:H) solar cells have been successfully implemented to multi-junction thin film silicon solar cells. The efficiency of these solar cells, however, has still been below that of state-of-the-art solar cells mainly due to the low Jsc of the a-SiOx:H solar cells and the unbalanced current matching between sub-cells. In this study, we carry out optical simulations to find the main optical losses for the a-SiOx:H solar cell, which so far was mainly optimized for Voc and fill-factor (FF). It is observed that a large portion of the incident light is absorbed parasitically by the p-a-SiOx:H and n-a-SiOx:H layers, although the use of these layers leads to the highest Voc × FF product. When a more transparent and conductive p-nc-SiOx:H layer is substituted for the p-a-SiOx:H layer, the parasitic absorption loss at short wavelengths is notably reduced, leading to higher Jsc. However, this gain in Jsc by the use of the p-nc-SiOx:H compromises the Voc. When replacing the n-a-SiOx:H layer for an n-nc-SiOx:H layer that has low n and k values, the plasmonic absorption loss at the n-nc-SiOx:H/Ag interfaces and the parasitic absorption in the n-nc-SiOx:H are substantially reduced. Implementation of this n-nc-SiOx:H leads to an increase of the Jsc without a drop of the Voc and FF. When implementing a thinner p-a-SiOx:H layer, a thicker i-a-SiOx:H layer, and an n-nc-SiOx:H layer, a-SiOx:H solar cells with not only high Jsc but also high Voc and FF can be fabricated. As a result, an 8.8% a-SiOx:H single junction solar cell is successfully fabricated with a Voc of 1.02 V, a FF of 0.70, and a Jsc of 12.3 mA/cm2, which is the highest efficiency ever reported for this type of solar cell.

  2. A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide

    SciTech Connect

    Meng, Qingyong; Meyer, Hans-Dieter

    2014-09-28

    Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamical calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical B{sup ~} {sup 1}A{sup ′}←X{sup ~} {sup 1}A{sup ′} UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045–20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201–4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438–10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation.

  3. A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Meyer, Hans-Dieter

    2014-09-01

    Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamical calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical tilde{B}{}^1A^' }leftarrow tilde{X}{}^1A^' } UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045-20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201-4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438-10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation.

  4. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst.

    PubMed

    Li, Hailong; Wu, Shaokang; Wu, Chang-Yu; Wang, Jun; Li, Liqing; Shih, Kaimin

    2015-06-16

    CuO-CeO2/TiO2 (CuCeTi) catalyst synthesized by a sol-gel method was employed to investigate mercury conversion under a selective catalytic reduction (SCR) atmosphere (NO, NH3 plus O2). Neither NO nor NH3 individually exhibited an inhibitive effect on elemental mercury (Hg(0)) conversion in the presence of O2. However, Hg(0) conversion over the CuCeTi catalyst was greatly inhibited under SCR atmosphere. Systematic experiments were designed to investigate the inconsistency and explore the in-depth mechanisms. The results show that the copresence of NO and NH3 induced reduction of oxidized mercury (Hg(2+), HgO in this study), which offset the effect of catalytic Hg(0) oxidation, and hence resulted in deactivation of Hg(0) conversion. High NO and NH3 concentrations with a NO/NH3 ratio of 1.0 facilitated Hg(2+) reduction and therefore lowered Hg(0) conversion. Hg(2+) reduction over the CuCeTi catalyst was proposed to follow two possible mechanisms: (1) direct reaction, in which NO and NH3 react directly with HgO to form N2 and Hg(0); (2) indirect reaction, in which the SCR reaction consumed active surface oxygen on the CuCeTi catalyst, and reduced species on the CuCeTi catalyst surface such as Cu2O and Ce2O3 robbed oxygen from adjacent HgO. Different from the conventionally considered mechanisms, that is, competitive adsorption responsible for deactivation of Hg(0) conversion, this study reveals that oxidized mercury can transform into Hg(0) under SCR atmosphere. Such knowledge is of fundamental importance in developing efficient and economical mercury control technologies for coal-fired power plants.

  5. Role of Bi promotion and solvent in platinum-catalyzed alcohol oxidation probed by in situ X-ray absorption and ATR-IR spectroscopy.

    PubMed

    Mondelli, Cecilia; Grunwaldt, Jan-Dierk; Ferri, Davide; Baiker, Alfons

    2010-01-01

    Modification of 5 wt% Pt/Al(2)O(3) by Bi (0.9 wt%) affords a drastic improvement of catalytic activity in the liquid phase aerobic oxidation of benzyl alcohol. The nature of the solvent employed, cyclohexane or toluene, seems to influence the catalytic activity as well. We have investigated the catalysts under working conditions using in situ X-ray absorption spectroscopy (XAS) and attenuated total reflection infrared spectroscopy (ATR-IR), aiming at uncovering the roles of the metal promoter and the reaction medium. XAS confirms that Bi is oxidized more easily than Pt, maintaining the catalytic activity of the metallic Pt sites for a longer period of time. Interestingly, toluene contrary to cyclohexane reduced Pt to a large extent. The freshly reduced noble metal sites seem to directly interact with the solvent, inducing an immediate poisoning of the material and limiting its performance. This behaviour is not observed in the presence of Bi, whose geometric effect (site blocking) is interpreted as additionally limiting the adsorption of toluene and the premature deactivation of Pt. ATR-IR spectroscopy during CO adsorption on Pt and during reaction indicates that Bi is located rather on extended surfaces than on step or kink sites. Side products, CO and benzoate species, appearing during the reaction reveal that the geometric suppression of undesired reactions does not occur to the same extent on Pt-based catalysts as on Pd, suggesting that decarbonylation of the produced aldehyde on Pt may occur also on sites other than the (111) terraces.

  6. Theoretical calculations of x-ray-absorption spectra of copper in La2CuO4 and related oxide compounds

    NASA Astrophysics Data System (ADS)

    Guo, J.; Ellis, D. E.; Goodman, G. L.; Alp, E. E.; Soderholm, L.; Shenoy, G. K.

    1990-01-01

    We report the results of theoretical calculations of copper K-edge x-ray-absorption near-edge spectra (XANES) in La2CuO4 and related oxides Cu2O, CuO, and KCuO2. The final bound states were obtained from the self-consistent-field discrete-variational Xα method (SCF DV Xα), and continuum states were found by the multiple-scattering method using the muffin-tin truncation of the SCF DV Xα potentials. Composition of the final-state wave functions was analyzed. The 1s ionization potentials of the three reference compounds obtained from the SCF DV Xα transition-state calculations were used to set up the relative energy scale for the calculated cross section. The principal features of measured Cu K-edge XANES for Cu2O, CuO, and KCuO2 were reproduced satisfactorily by our calculations along with their relative energy positions. Our calculated polarized XANES of La2CuO4 were compared with measured spectra, and two shakeup features were identified with radiation polarized along the crystal c axis. By quantitatively comparing the measured spectra with a model based on our calculated cross sections, their intensities were found to be ~24% and 10% of the main transition with shakeup energies of 5.7 and 9.5 eV, respectively. We suggest that these multielectron excitation features involve Cu 3d-->4p transitions.

  7. X-ray Absorption Spectroscopic Characterization of the Synthesis Process: Revealing the Interactions in Cetyltrimethylammonium Bromide-Modified Sulfur–Graphene Oxide Nanocomposites

    SciTech Connect

    Ye, Yifan; Kawase, Ayako; Song, Min-Kyu; Feng, Bingmei; Liu, Yi-Sheng; Marcus, Matthew A.; Feng, Jun; Fang, Haitao; Cairns, Elton J.; Zhu, Junfa; Guo, Jinghua

    2016-04-22

    In this paper, we have investigated the chemical bonding interaction of S in a CTAB (cetyltrimethylammonium bromide, CH3(CH2)15N+(CH3)3Br)-modified sulfur–graphene oxide (S–GO) nanocomposite used as the cathode material for Li/S cells by S K-edge X-ray absorption spectroscopy (XAS). The results show that the introduction of CTAB to the S–GO nanocomposite and changes in the synthesis recipe including alteration of the S precursor ratios and the sequence of mixing ingredients lead to the formation of different S species. CTAB modifies the cathode materials through bonding with Na2Sx in the precursor solution, which is subsequently converted to C–S bonds during the heat treatment at 155 °C. Moreover, GO bonds with CTAB and acts as the nucleation center for S precipitation. Finally, all these interactions among S, CTAB, and GO help to immobilize the sulfur in the cathode and may be responsible for the enhanced cell cycle life of CTAB–S–GO nanocomposite-based Li/S cells.

  8. X-ray Absorption Spectroscopic Characterization of the Synthesis Process: Revealing the Interactions in Cetyltrimethylammonium Bromide-Modified Sulfur–Graphene Oxide Nanocomposites

    DOE PAGES

    Ye, Yifan; Kawase, Ayako; Song, Min-Kyu; ...

    2016-04-22

    In this paper, we have investigated the chemical bonding interaction of S in a CTAB (cetyltrimethylammonium bromide, CH3(CH2)15N+(CH3)3Br–)-modified sulfur–graphene oxide (S–GO) nanocomposite used as the cathode material for Li/S cells by S K-edge X-ray absorption spectroscopy (XAS). The results show that the introduction of CTAB to the S–GO nanocomposite and changes in the synthesis recipe including alteration of the S precursor ratios and the sequence of mixing ingredients lead to the formation of different S species. CTAB modifies the cathode materials through bonding with Na2Sx in the precursor solution, which is subsequently converted to C–S bonds during the heat treatmentmore » at 155 °C. Moreover, GO bonds with CTAB and acts as the nucleation center for S precipitation. Finally, all these interactions among S, CTAB, and GO help to immobilize the sulfur in the cathode and may be responsible for the enhanced cell cycle life of CTAB–S–GO nanocomposite-based Li/S cells.« less

  9. Microwave absorption properties of lightweight absorber based on Fe50Ni50-coated poly(acrylonitrile) microspheres and reduced graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wang, Jun; Wang, Junpeng; Huo, Siqi; Zhang, Bin; Tang, Yushan

    2016-09-01

    In this paper, we proposed a facile method to obtain the lightweight composites consisting of surface modified Fe50Ni50-coated poly(acrylonitrile) microspheres (PANS@SMF), reduced graphene oxide (RGO) and epoxy resin. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM) and vector network analyzer (VNA). Impedance matching condition and electromagnetic wave attenuation characteristic were used for the reflection loss (RL) performance of the composites. Compared with pure PANS@SMF and RGO composites, the -10 dB absorption bandwidth and the minimum RL of the hybrid composites were enhanced. The bandwidth less than -10 dB was almost 4.5 GHz in the range of 10 GHz to 14.5 GHz, with a matching thickness of 2.5 mm. The density of the hybrid composites was in the range of 0.25-0.34 g/cm3. Therefore, the hybrid composite can be considered as a potential lightweight microwave absorber.

  10. Pseudocapacitive behavior of manganese oxide in lithium-ion-doped butylmethylpyrrolidinium-dicyanamide ionic liquid investigated using in situ X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Tsung; Li, Yun-Shan; Sun, I.-Wen; Chang, Jeng-Kuei

    2014-01-01

    Ideal pseudocapacitive behavior of α-MnO2 electrodes over a potential range of 3 V is found in lithium bis(trifluoromethylsulfonyl)imide (LiTFSI)-doped butylmethylpyrrolidinium-dicyanamide (BMP-DCA) ionic liquid (IL), which is non-flammable and has a decomposition temperature of as high as ∼300 °C. Accordingly, this electrolyte is promising for high-energy, high-power, and high-safety supercapacitor applications. The addition of 0.01 M LiTFSI in the IL improves the oxide capacitance from 90 F g-1 to 120 F g-1, which is due to the incorporated Li+ ions promoting Mn valent state variation (between trivalent and tetravalent) during charge-discharge. However, excessive LiTFSI doping causes a capacitance decay due to reduced electrolyte ionic conductivity. In situ X-ray absorption spectroscopy is used to investigate the energy storage mechanism. A capacitance activation process of α-MnO2 in the Li+-doped BMP-DCA IL is found.

  11. Oxidation of elemental mercury vapor over gamma-Al2O3 supported CuCl2 catalyst for mercury emissions control

    SciTech Connect

    Liu, Zhouyang; Liu, Xin; Lee, Joo-Youp; Bolin, Trudy B.

    2015-09-01

    In our previous studies, CuCl2 demonstrated excellent Hg(0) oxidation capability and holds potential for Hg(0) oxidation in coal-fired power plants. In this study, the properties and performances of CuCl2 supported onto gamma-Al2O3 with high surface area were investigated. From various characterization techniques using XPS, XAFS, XRD, TPR, SEM and TGA, the existence of multiple copper species was identified. At low CuCl2 loadings, CuCl2 forms copper aluminate species with gamma-Al2O3 and is inactive for Hg(0) oxidation. At high loadings, amorphous CuCl2 forms onto the gamma-Al2O3 surface, working as a redox catalyst for Hg(0) oxidation by consuming Cl to be converted into CuCl and then being regenerated back into CuCl2 in the presence of O-2 and HCl gases. The 10%(wt) CuCl2/gamma-Al2O3 catalyst showed excellent Hg(0) oxidation performance and SO2 resistance at 140 degrees C under simulated flue gas conditions containing 6%(v) O-2 and 10 ppmv HCl. The oxidized Hg(0) in the form of HgCl2 has a high solubility in water and can be easily captured by other air pollution control systems such as wet scrubbers in coal-fired power plants. The CuCl2/gamma-Al2O3 catalyst can be used as a low temperature Hg(0) oxidation catalyst. (C) 2015 Elsevier B.V. All rights reserved.

  12. Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas.

    PubMed

    An, Jiutao; Shang, Kefeng; Lu, Na; Jiang, Yuze; Wang, Tiecheng; Li, Jie; Wu, Yan

    2014-03-15

    The use of non-thermal plasma (NTP) injection approach to oxidize elemental mercury (Hg(0)) in simulated flue gas at 110°C was studied, where a surface discharge plasma reactor (SDPR) inserted in the simulated flue duct was used to generate and inject active species into the flue gas. Approximately 81% of the Hg(0) was oxidized and 20.5μgkJ(-1) of energy yield was obtained at a rate of 3.9JL(-1). A maximal Hg(0) oxidation efficiency was found with a change in the NTP injection air flow rate. A high Hg(0) oxidation efficiency was observed in the mixed flue gas that included O2, H2O, SO2, NO and HCl. Chemical and physical processes (e.g., ozone, N2 metastable states and UV-light) were found to contribute to Hg(0) oxidation, with ozone playing a dominant role. The deposited mercury species on the internal surface of the flue duct was analyzed using X-ray photoelectron spectroscopy (XPS) and electronic probe microanalysis (EPMA), and the deposit was identified as HgO. The mercury species is thought to primarily exist in the form of HgO(s) by adhering to the suspended aerosols in the gas-phase.

  13. NOVEL OXIDANT FOR ELEMENTAL MERCURY CONTROL FROM FLUE GAS

    EPA Science Inventory

    The primary objective of this study is to develop and test advanced noncarbonaceous solid sorbent materials suitable for removing the elemental form of mercury from power plant emissions. An efficient and cost-effective novel Hg(0) oxidant was evaluated in a lab-scale fixed-bed ...

  14. NOVEL OXIDANT FOR ELEMENTAL MERCURY CONTROL FROM FLUE GAS

    EPA Science Inventory

    The primary objective of this study is to develop and test advanced noncarbonaceous solid sorbent materials suitable for removing the elemental form of mercury from power plant emissions. An efficient and cost-effective novel Hg(0) oxidant was evaluated in a lab-scale fixed-bed ...

  15. X-Ray absorption edge determination of the oxidation state and coordination number of copper: application to the type 3 site in rhus vernicifera laccase and its reaction with oxygen

    SciTech Connect

    Kau, L.S.; Spira-Solomon, D.J.; Penner-Hahn, J.E.; Hodgson, K.O.; Solomon, E.I.

    1987-10-14

    Cu X-ray absorption edge features of 19 Cu(I) and 40 Cu(II) model complexes have been systematically studied and correlated with oxidation state and geometry. Studies of Cu(I) model complexes with different coordination number reveal that an 8983-8984-eV peak (assigned as the Cu 1s ..-->.. 4p transition) can be correlated in energy, shape, and intensity with ligation and site geometry of the cuprous ion. These Cu(I) edge features have been qualitatively interpreted with ligand field concepts. Alternatively, no Cu(II) complex exhibits a peak below 8985.0 eV. The limited intensity observed in the 8983-8985-eV region for some Cu(II) complexes is associated with the tail of an absorption peak at approx. 8986 eV which is affected by the covalency of the equatorial ligands. These models studies allow accurate calibration of a normalized difference edge procedure which is used for the quantitative determination of Cu(I) content in copper complexes of mixed oxidation state composition. This normalized difference edge analysis is then used to quantitatively determine the oxidation states of the copper sites in type 2 copper-depleted (T2D) and native forms of the multicopper oxidase, Rhus vernicifera laccase. The type 3 site of the T2D laccase is found to be fully reduced and stable to oxidation by O/sub 2/ or by 25-fold protein equivalents of ferricyanide, but it can be oxidized by reaction with peroxide. The increase in intensity of the 330-nm absorption feature which results from peroxide titration of T2D laccase is found to correlate linearly with the percent of oxidation of the binuclear copper site.

  16. Oxidation of elemental mercury by aqueous chlorine (HOCl/OCl-): Implications for tropospheric mercury chemistry

    NASA Astrophysics Data System (ADS)

    Lin, Che-Jen; Pehkonen, Simo O.

    1998-11-01

    The stoichiometry and kinetics of elemental mercury (Hg0) oxidation by aqueous chlorine (HOCl/OCl-) have been investigated. The stoichiometric ratio of Hg0 to HOCl/OCl- is found to be 1:1, the same as the electron transfer ratio. The rate constants of the oxidation are measured in a novel fashion by using chloramine (NH2Cl) as the free chlorine reservoir. The rate constants at room temperature (23°˜ 25°C) for the Hg0-HOCl and Hg0-OCl- are measured to be (2.09±0.06)×106 and (1.99±0.05)×106 M-1 s-1, respectively. Based on the solubility data of chlorine, the intrinsic Henry's law constant of chlorine is calculated to be 7.61×10-2 M atm-1 at 25°C. Model study using the kinetic data in this investigation shows that the oxidation of Hg0 by aqueous chlorine is an important pathway contributing dissolved divalent mercury (Hg(II)) in atmospheric water, especially at higher cloud water pH when solubility of chlorine is greatly increased and before sunrise when chlorine reaches its peak concentrations in the marine troposphere.

  17. Vanadium K-edge X-ray-absorption spectroscopy of the functioning and thionine-oxidized forms of the VFe-protein of the vanadium nitrogenase from Azotobacter chroococcum.

    PubMed Central

    Arber, J M; Dobson, B R; Eady, R R; Hasnain, S S; Garner, C D; Matsushita, T; Nomura, M; Smith, B E

    1989-01-01

    Vanadium K-edge X-ray-absorption spectra were collected for samples of thionine-oxidized, super-reduced (during enzyme turnover) and dithionite-reduced VFe-protein of the vanadium nitrogenase of Azotobacter chroococcum (Acl*). Both the e.x.a.f.s and the x.a.n.e.s. (X-ray-absorption near-edge structure) are consistent with the vanadium being present as part of a VFeS cluster; the environment of the vanadium is not changed significantly in different oxidation states of the protein. The vanadium atom is bound to three oxygen (or nitrogen), three sulphur and three iron atoms at 0.215(3), 0.231(3) and 0.275(3) nm respectively. PMID:2730564

  18. Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation.

    PubMed

    Highfield, James; Liu, Tao; Loo, Yook Si; Grushko, Benjamin; Borgna, Armando

    2009-02-28

    The Ru/Cu system is of historical significance in catalysis. The early development and application of X-ray absorption spectroscopy (XAS) led to the original 'bimetallic cluster" concept for highly-immiscible systems. This work explores alkali leaching of Al-based ternary crystalline and quasicrystalline precursors as a potential route to bulk Ru/Cu alloys. Single-phase ternary alloys at 3 trial compositions; Al(71)Ru(22)Cu(7), Al(70.5)Ru(17)Cu(12.5), and Al(70)Ru(10)Cu(20), were prepared by arc melting of the pure metal components. After leaching, the bimetallic residues were characterized principally by transmission XAS, "as-leached" and after annealing in H(2) (and passivation) in a thermobalance. XRD and BET revealed a nanocrystalline product with a native structure of hexagonal Ru. XPS surface analysis of Ru(22)Cu(7) and Ru(17)Cu(12.5) found only slight enrichment by Cu in the as-leached forms, with little change upon annealing. Ru(10)Cu(20) was highly segregated as-leached. XANES data showed preferential oxidation of Cu in Ru(22)Cu(7), implying that it exists as an encapsulating layer. TG data supports this view since it does not show the distinct two-stage O(2) uptake characteristic of skeletal Ru. Cu K-edge EXAFS data for Ru(22)Cu(7) were unique in showing a high proportion of Ru neighbours. The spacing, d(CuRu) = 2.65 A, was that expected from a hypothetical (ideal) solid solution at this composition, but this is unlikely in such a bulk-immiscible system and Ru K-edge EXAFS failed to confirm bulk alloying. Furthermore its invariance under annealing was more indicative of an interfacial bond between bulk components, although partial alloying with retention of local order cannot entirely be ruled out. The XAS and XPS data were reconciled in a model involving surface and bulk segregation, Cu being present at both the grain exterior and in ultra-fine internal pores. This structure can be considered as the 3-dimensional analogue of the classical type

  19. The CO oxidation kinetics on supported Pd model catalysts: A molecular beam/in situ time-resolved infrared reflection absorption spectroscopy study

    NASA Astrophysics Data System (ADS)

    Libuda, J.; Meusel, I.; Hoffmann, J.; Hartmann, J.; Piccolo, L.; Henry, C. R.; Freund, H.-J.

    2001-03-01

    Combining molecular beam techniques and time-resolved infrared reflection absorption spectroscopy (TR-IRAS) we have studied the kinetics of the CO oxidation reaction on an alumina-supported Pd model catalyst. The Pd particles are deposited by metal evaporation under ultrahigh vacuum (UHV) conditions onto a well-ordered alumina film, prepared on a NiAl(110) single crystal. Particle size, density and structure of the Pd deposits have been characterized in previous studies. In the low temperature region, transient and steady-state experiments have been performed over a wide range of CO and oxygen fluxes by crossing two effusive molecular beams on the sample surface. We determine the steady-state CO2 production rate as a function of the CO fraction in the impinging gas flux. Simultaneously, the occupation of CO adsorption sites under steady-state conditions is monitored by in situ IR spectroscopy. The origin of different types of CO2 transients is discussed. In particular we focus on the transient CO2 production after switching off the CO beam. For the model catalyst investigated, detailed reaction rate measurements in combination with time-resolved IRAS show that the origin of the particular transient behavior of the supported model system is not due to the presence of specific adsorption sites on small particles, as has been proposed previously. Instead, we show that the transient behavior can be semiquantitatively simulated on the basis of a simple kinetic model considering a homogeneous surface, and accounting for the inhibition of the dissociative adsorption of O2 at high CO coverage. Moreover, it is discussed how the inherent heterogeneity of the supported particle system can additionally enhance the observed effect.

  20. Graphene oxide-TiO2 composite solid phase extraction combined with graphite furnace atomic absorption spectrometry for the speciation of inorganic selenium in water samples.

    PubMed

    Zhang, Yanan; Chen, Beibei; Wu, Shaowei; He, Man; Hu, Bin

    2016-07-01

    In this paper, a method of graphene oxide (GO)-TiO2 composite solid phase extraction followed by graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the speciation of inorganic selenium in environmental waters. The adsorption behavior of inorganic Se(IV) and Se(VI) on the GO-TiO2(1:1) composite was investigated. It was found that Se(IV) was quantitatively retained on the GO-TiO2 composites within a wide pH range of 0.5-10, while Se(VI) was quantitatively adsorbed on GO-TiO2(1:1) composite at pH 0.5-2, and no obvious adsorption of Se(VI) within the pH range of 4-10 was found. By selecting pH 6.0, Se(IV) could be easily determined. After reduction of Se(VI), total Se was determined by the proposed method, and Se(VI) was calculated as the difference between the total Se and Se(IV). The factors affecting the separation/preconcentration of Se(IV) and Se(VI) were studied. Under the optimum conditions, the isothermal adsorption of Se(IV) on the GO-TiO2(1:1) composite fitted Langmuir model; a linear range over 0.1-12ngmL(-1) was obtained. The limit of detection (LOD) and precision of the method for Se(IV) was 0.04ngmL(-1) and 9.4% (cSe(IV)=0.5ngmL(-1), n=7), respectively. In order to verify the accuracy of the method, a standard water sample (GSBZ50031-94) was analyzed, and the determined value was in a good agreement to the certified value. The established method was applied to inorganic Se speciation in environmental water samples and the recovery of 87.4-102% was obtained for the spiked samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Continuous measurements of nitrous oxide, carbon monoxide, methane and carbon dioxide in the surface ocean with novel laser-absorption analysers

    NASA Astrophysics Data System (ADS)

    Kaiser, Jan; Grefe, Imke; Wager, Natalie; Bakker, Dorothee C. E.; Lee, Gareth A.

    2013-04-01

    In recent years, improvements in spectroscopic technology have revolutionised atmospheric trace gas research. In particular, cavity-based optical absorption analysers allow determination of gas concentrations with high frequency, repeatability, reproducibility and long-term stability. These qualities make them particularly suitable for autonomous measurements on voluntary observing ships (VOS). Here, we present results from three of the first deployments of such analysers on research ships, as a first step towards VOS installations. Los Gatos off-axis ICOS (Integrated Cavity Output Spectroscopy) analysers were used to measure nitrous oxide (N2O), carbon monoxide (CO), methane (CH4) and carbon dioxide (CO2) mixing ratios in ocean surface water during research cruises in 2010, 2011 and 2012. The analysers were coupled to an equilibrator fed by the scientific seawater supply in the ship's laboratories. The equilibrator measurements were alternated with regular measurements of marine air and calibrated standard gases. Short-term precision for 10 s-average N2O mole fractions at an acquisition rate of 1 Hz was better than 0.2 nmol mol-1. The same value was achieved for duplicate measurements of a standard gas analysed within 1 hour of each other. The response time to concentration changes in water was 142-203 s, depending on the headspace flow rate. During the first deployment on the AMT20 cruise (Atlantic Meridional Transect, Southampton to Punta Arenas, 12 October to 25 November 2010), we unexpectedly found the subtropical gyres to be slightly undersaturated in N2O, implying that this region acted as a sink for this greenhouse gas. In contrast, the equatorial region was supersaturated and a source of nitrous oxide to the atmosphere. Mean sea-to-air fluxes were overall small and ranged between -1.6 and 0.11 μmol m-2 d-1 (negative fluxes imply an net uptake by the ocean). Despite the good short-term repeatability, significant calibration drift occurred between the six

  2. Nutrient absorption.

    PubMed

    Rubin, Deborah C

    2004-03-01

    Our understanding of nutrient absorption continues to grow, from the development of unique animal models and from studies in which cutting-edge molecular and cellular biologic approaches have been used to analyze the structure and function of relevant molecules. Studies of the molecular genetics of inherited disorders have also provided many new insights into these processes. A major advance in lipid absorption has been the cloning and characterization of several intestinal acyl CoA:monoacylglycerol acyltransferases; these may provide new targets for antiobesity drug therapy. Studies of intestinal cholesterol absorption and reverse cholesterol transport have encouraged the development of novel potential treatments for hyperlipidemia. Observations in genetically modified mice and in humans with mutations in glucose transporter 2 suggest the importance of a separate microsomal membrane transport pathway for glucose transport. The study of iron metabolism has advanced greatly with the identification of the hemochromatosis gene and the continued examination of the genetic regulation of iron absorptive pathways. Several human thiamine transporters have been identified, and their specific roles in different tissues are being explored.

  3. PERITONEAL ABSORPTION

    PubMed Central

    Hahn, P. F.; Miller, L. L.; Robscheit-Robbins, F. S.; Bale, W. F.; Whipple, G. H.

    1944-01-01

    The absorption of red cells from the normal peritoneum of the dog can be demonstrated by means of red cells labeled with radio-iron incorporated in the hemoglobin of these red cells. Absorption in normal dogs runs from 20 to 100 per cent of the amount given within 24 hours. Dogs rendered anemic by bleeding absorb red cells a little less rapidly—ranging from 5 to 80 per cent of the injected red cells. Doubly depleted dogs (anemic and hypoproteinemic) absorb even less in the three experiments recorded. This peritoneal absorption varies widely in different dogs and even in the same dog at different times. We do not know the factors responsible for these variations but there is no question about active peritoneal absorption. The intact red cells pass readily from the peritoneal cavity into lymph spaces in diaphragm and other areas of the peritoneum. The red cells move along the lymphatics and through the lymph glands with little or no phagocytosis and eventually into the large veins through the thoracic ducts. PMID:19871404

  4. Disentangling eumelanin "black chromophore": visible absorption changes as signatures of oxidation state- and aggregation-dependent dynamic interactions in a model water-soluble 5,6-dihydroxyindole polymer.

    PubMed

    Pezzella, Alessandro; Iadonisi, Alfonso; Valerio, Silvia; Panzella, Lucia; Napolitano, Alessandra; Adinolfi, Matteo; d'Ischia, Marco

    2009-10-28

    A fundamental unsettled issue concerning eumelanins, the functional biopolymers of human skin and hair, is why they are black. The experimental difficulty lies in the virtual insolubility of these pigments, causing marked scattering effects and hindering characterization of the intrinsic absorption properties of the heterogeneous species produced by oxidative polymerization of 5,6-dihydroxyindole (DHI) and related monomer precursors. The synthesis of spectrally robust, water-soluble DHI polymers is therefore an important goal in the prospects of disentangling intrinsic absorption properties of eumelanin components by circumventing scattering effects. Reported herein is the first water-soluble DHI polymer produced by oxidation of ad hoc designed 5,6-dihydroxy-3-indolyl-1-thio-beta-D-galactopyranoside (1). The dark brown polymer exhibited a distinct band at 314 nm and a broad visible absorption, resembling that of natural eumelanins. Main isolable oligomer intermediates including 2,7'- and 2,4'-biindolyls 2 and 3, attest the close resemblance to the mode of coupling of the parent DHI. Sodium borohydride reduction caused decoloration and a marked absorbance decrease in the visible region around 550 nm, but did not affect the UV band at 314 nm. Measurements of absorbance variations with dilution indicated a linear response at 314 nm, but a significant deviation from linearity in the visible region, with the largest decrease around 500 nm. It is argued that eumelanin black color is not only intrinsically defined by the overlap of pi-electron conjugated chromophores within the individual polymer components, as commonly believed, but also by oxidation state- and aggregation-dependent interchromophoric interactions causing perturbations of the heterogeneous ensemble of pi-electron systems and overall spectral broadening.

  5. Enhanced microwave absorption performance of lightweight absorber based on reduced graphene oxide and Ag-coated hollow glass spheres/epoxy composite

    SciTech Connect

    Wang, Junpeng; Sun, Yu; Chen, Wei; Wang, Tao; Xu, Renxin; Wang, Jun

    2015-04-21

    Using a combination of Ag-coated hollow glass spheres (HGS@Ag) and a small quantity of graphene sheets within the epoxy matrix, we have prepared a novel lightweight high efficiency microwave absorption composite. Compared with pure HGS@Ag and graphene composite, the −10 dB absorption bandwidth and the minimum reflection loss of the novel composite are improved. Reflection loss exceeding −20 dB is obtained for composites in a wide frequency range and the minimum reflection loss reaches −46 dB while bandwidth less than −10 dB can reach up to 4.1 GHz when an appropriate absorber thickness between 2 and 3.5 mm is chosen. The enhanced microwave absorption performance of the novel composite is due to the enhanced dielectric response, enhanced conductivity, and the trap of electromagnetic radiation with increased propagation paths by multiple reflections.

  6. Novel visualization studies of lignocellulosic oxidation chemistry by application of C-near edge X-ray absorption fine structure spectroscopy

    Treesearch

    Douglas G. Mancosky; Lucian A. Lucia; Hiroki Nanko; Sue Wirick; Alan W. Rudie; Robert Braun

    2005-01-01

    The research presented herein is the first attempt to probe the chemical nature of lignocellulosic samples by the application of carbon near edge X-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft X-ray technique that principally provides selective interrogation of discrete atomic moieties using photoelectrons of variable energies. The X1A beam...

  7. Elemental mercury oxidation and adsorption on magnesite powder modified by Mn at low temperature.

    PubMed

    Xu, Yalin; Zhong, Qin; Liu, Xinya

    2015-01-01

    Mn modified the commercial magnesite powder prepared by wet impregnation method has been shown to be effective for gas-phase elemental mercury (Hg(0)) removal at low temperatures. The prepared samples are characterized in detail across multiform techniques: XRF, BET, SEM-EDX, XRD, H2-TPR, and XPS, and all the results show that the amorphous MnO2 impregnated on magnesite powder improves the removal efficiency of Hg(0). Through further analysis by TG and in situ FTIR, the reasonable removal mechanism is also speculated. The results indicate that chemisorbed oxygen is an important reactant in the heterogeneous reaction, and gas-phase Hg(0) is adsorbed and then oxidized to solid MnHgO3 on the surface of the adsorbent.

  8. In situ Fe K-edge X-ray absorption fine structure of a pyrite electrode in a Li/polyethylene oxide (LiClO{sub 4})/FeS{sub 2} battery environment

    SciTech Connect

    Totir, D.; Bae, I.T.; Hu, Y.; Scherson, D.A.; Antonio, M.R.

    1996-12-31

    Electronic and structural properties of materials generated by the reduction and subsequent oxidation of pyrite in a lithium-based solid polymer electrolyte have been examined by in situ fluorescence Fe K-edge X-ray absorption fine structure (XAFS) in a FeS{sub 2}/Li battery environment. The XAFS results obtained are consistent with the formation of metallic iron as one of the products of the full (4-electron) discharge, in agreement with information reported in other laboratories. Extended X-ray absorption fine structure (EXAFS) data reveal that a subsequent 2-electron or 4-electron recharge generates a species with a Fe-S bond distance identical to that of pyrite, d(Fe-S) = 2.259 {angstrom}, with no other clearly detectable interactions due to more distant atoms. Based on the similarities between the metrical parameters and other features in the X-ray absorption near edge structure (XANES), the ferrous sites in these species appear to be tetrahedrally coordinated, as in chalcopyrite (CuFeS{sub 2}), for which d(Fe-S) is 2.257 {angstrom}, and, thus, different than in Li{sub 2} FeS{sub 2}, a material that exhibits longer Fe-S distances.

  9. Photochemical Oxidation of Dissolved Elemental Mercury by Carbonate Radicals in Water

    SciTech Connect

    He, Feng; Zhao, Weirong; Liang, Liyuan; Gu, Baohua

    2014-11-11

    In this study, photochemical oxidation of dissolved elemental mercury, Hg(0), affects mercury chemical speciation and its transfer at the water-air interface in the aquatic environment. The mechanisms and factors that control Hg(0) photooxidation, however, are not completely understood, especially concerning the role of dissolved organic matter (DOM) and carbonate (CO32-) in natural freshwaters. Here, we evaluate Hg(0) photooxidation rates affected by reactive ionic species (e.g., DOM, CO32-, and NO3) and free radicals in creek water and a phosphate buffer solution (pH 8) under simulated solar irradiation. The Hg(0) photooxidation rate (k = 1.44 h-1) is much higher in the presence of both CO32- and NO3- than in the presence of CO32-, NO3-, or DOM alone (k = 0.1–0.17 h-1). Using scavengers and enhancers for singlet oxygen (1O2) and hydroxyl (HO) radicals, as well as electron paramagnetic resonance spectroscopy, we found that carbonate radicals (CO3•-) primarily drive Hg(0) photooxidation. The addition of DOM to the solution of CO32- and NO3- decreased the oxidation rate by half. This study identifies an unrecognized pathway of Hg(0) photooxidation by CO3•- radicals and the inhibitory effect of DOM, which could be important in assessing Hg transformation and the fate of Hg in water containing carbonate such as hard water and seawater.

  10. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers.

    PubMed

    van Dam, Dick; van Hoof, Niels J J; Cui, Yingchao; van Veldhoven, Peter J; Bakkers, Erik P A M; Gómez Rivas, Jaime; Haverkort, Jos E M

    2016-12-27

    Photovoltaic cells based on arrays of semiconductor nanowires promise efficiencies comparable or even better than their planar counterparts with much less material. One reason for the high efficiencies is their large absorption cross section, but until recently the photocurrent has been limited to less than 70% of the theoretical maximum. Here we enhance the absorption in indium phosphide (InP) nanowire solar cells by employing broadband forward scattering of self-aligned nanoparticles on top of the transparent top contact layer. This results in a nanowire solar cell with a photovoltaic conversion efficiency of 17.8% and a short-circuit current of 29.3 mA/cm(2) under 1 sun illumination, which is the highest reported so far for nanowire solar cells and among the highest reported for III-V solar cells. We also measure the angle-dependent photocurrent, using time-reversed Fourier microscopy, and demonstrate a broadband and omnidirectional absorption enhancement for unpolarized light up to 60° with a wavelength average of 12% due to Mie scattering. These results unambiguously demonstrate the potential of semiconductor nanowires as nanostructures for the next generation of photovoltaic devices.

  11. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  12. Adsorption state and morphology of anthraquinone-2-carboxylic acid deposited from solution onto the atomically-smooth native oxide surface of Al(111) films studied by infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy.

    PubMed

    Higo, Morihide; Miake, Takeshi; Mitsushio, Masaru; Yoshidome, Toshifumi; Ozono, Yoshihisa

    2008-03-01

    The adsorption state and morphology of anthraquinone-2-carboxylic acid (AQ-2-COOH) deposited from acetone solutions (0.02 - 1.00 mg ml(-1)) onto atomically-smooth native oxide surfaces of Al(111) films were investigated by infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The atomically-smooth oxide surfaces were prepared by vacuum evaporation of Al on mica substrates at 350 degrees C, followed by oxidation in an oxygen-dc glow discharge at room temperature. It was found that AQ-2-COOH is adsorbed on the film surfaces in both the neutral and ionized state, where the amount of the neutral molecules increases with increasing concentration. This molecule is adsorbed as both a uniform nanometer-scale film, and as micrometer-sized particles with heights ranging from 10 to 200 nm above the film surface. The volumes of the particles of deposited AQ-2-COOH increased with increasing concentration. It is concluded that the particles are microcrystallites of neutral AQ-2-COOH and that the thin uniform film results from AQ-2-COOH anion formation on the film surfaces. A comparison of the results obtained by use of these surface analytical techniques clearly shows the features and advantages of these tools.

  13. Room temperature redox reaction by oxide ion migration at carbon/Gd-doped CeO2 heterointerface probed by an in situ hard x-ray photoemission and soft x-ray absorption spectroscopies

    PubMed Central

    Tsuchiya, Takashi; Miyoshi, Shogo; Yamashita, Yoshiyuki; Yoshikawa, Hideki; Terabe, Kazuya; Kobayashi, Keisuke; Yamaguchi, Shu

    2013-01-01

    In situ hard x-ray photoemission spectroscopy (HX-PES) and soft x-ray absorption spectroscopy (SX-XAS) have been employed to investigate a local redox reaction at the carbon/Gd-doped CeO2 (GDC) thin film heterointerface under applied dc bias. In HX-PES, Ce3d and O1s core levels show a parallel chemical shift as large as 3.2 eV, corresponding to the redox window where ionic conductivity is predominant. The window width is equal to the energy gap between donor and acceptor levels of the GDC electrolyte. The Ce M-edge SX-XAS spectra also show a considerable increase of Ce3+ satellite peak intensity, corresponding to electrochemical reduction by oxide ion migration. In addition to the reversible redox reaction, two distinct phenomena by the electrochemical transport of oxide ions are observed as an irreversible reduction of the entire oxide film by O2 evolution from the GDC film to the gas phase, as well as a vigorous precipitation of oxygen gas at the bottom electrode to lift off the GDC film. These in situ spectroscopic observations describe well the electrochemical polarization behavior of a metal/GDC/metal capacitor-like two-electrode cell at room temperature. PMID:27877594

  14. Infrared heterodyne spectroscopy of astronomical and laboratory sources at 8.5 micron. [absorption line profiles of nitrogen oxide and black body emission from Moon and Mars

    NASA Technical Reports Server (NTRS)

    Mumma, M.; Kostiuk, T.; Cohen, S.; Buhl, D.; Vonthuna, P. C.

    1974-01-01

    The first infrared heterodyne spectrometer using tuneable semiconductor (PbSe) diode lasers has been constructed and was used near 8.5 micron to measure absorption line profiles of N2O in the laboratory and black body emission from the Moon and from Mars. Spectral information was recorded over a 200 MHz bandwidth using an 8-channel filter bank. The resolution was 25 MHz and the minimum detectable (black body) power was 1 x 10 to the minus 16th power watts for 8 minutes of integration. The results demonstrate the usefulness of heterodyne spectroscopy for the study of remote and local sources in the infrared.

  15. An improved electrothermal atomic absorption spectroscopy method for the determination of lithium in molybdenum oxide using slurry sampling and a tungsten atomizer

    NASA Astrophysics Data System (ADS)

    Dočekal, Bohumil; Krivan, Viliam

    1993-11-01

    A transversely heated tungsten-tube atomizer, WETA 82, was used for the direct determination of lithium in ultra-high purity molybdenum trioxide by slurry sampling electrothermal atomic absorption spectrometry. Optimized conditions with regard to sample preparation, temperature program, possible spectral interferences and depressive effects of sample matrix were presented. Analytical performance of the conventional graphite atomizer and the tungsten atomizer were compared. Using the WETA 82 atomizer, a detection limit for lithium of 2 ng g -1 can be achieved, which is one order of magnitude lower than that for conventional graphite atomizers.

  16. [Investigation of effect and process of nitric oxide removal in rotating drum biofilter coupled with absorption by Fe(II) (EDTA)].

    PubMed

    Chen, Jun; Yang, Xuan; Yu, Jian-Ming; Jiang, Yi-Feng; Chen, Jian-Meng

    2012-02-01

    In order to accelerate the NO removal efficiency, a novel and effective system was developed for the complete treatment of NO from flue gases. The system features NO absorption by Fe(II) (EDTA) and biological denitrification in a rotating drum biofilter (RDB) so as to promote biological reduction. The experimental results show that a moderate amount of Fe(II) (EDTA) was added to the nutrient solution to improve the mass transfer efficiency of NO from gas to liquid, with the concomitant formation of nitrosyl complex Fe(II) (EDTA)-NO. Under the experimental conditions of rotational speed was at 0.5 r x min(-1), EBRT of 57.7 s, temperature was at 30 degrees C, pH was 7-8, with the increasing concentration of Fe(II) (EDTA) was from 0 mg x L(-1) to 500 mg x L(-1), the NO removal efficiency was improved from 61.1% to 97.6%, and the elimination capacity was from 16.2 g (m3 x h)(-1) to 26.7 g (m3 x h)(-1). In order to simulate the denitrifying process of waste gas containing NO by using RDB coupled with Fe(II) (EDTA) absorption, a tie-in equation of NO removal and the Fe(II) (EDTA) concentration added in RDB was established. The experimental NO removal efficiency change tendency agrees fairly with that predicted by the proposed equation.

  17. A study of physical and optical absorption spectra of VO{sup 2+} ions in potassium and sodium oxide borate glasses

    SciTech Connect

    Srinivas, G. Ramesh, B.; Kumar, J. Siva; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-23

    Spectroscopic and physical properties of V{sub 2}O{sub 5} doped mixed alkali borate glasses are investigated. Borate glasses containing fixed concentrations of alkaline earth oxides (MgO and BaO) and alkali oxides (K{sub 2}O and Na{sub 2}O) were changes and are prepared by melt quenching technique. The values of r{sub i}, r{sub p}, R{sub m}, α{sub m} molar volume and Λ{sub th} increase and oxygen packing density, density and dopant ion concentration decrease with increasing of K{sub 2}O content. As a result there shall be an increase in the disorder of the glass network. The optical band gap energies, Urbach energy, boron-boron separation,refractive index, dielectric constant, electronic polarizability and reflection loss values are varies nonlinearly with the K{sub 2}O content which manifests the mixed alkali effect.

  18. Acid-site characterization of water-oxidized alumina films by near-edge x-ray absorption and soft x-ray photoemission

    SciTech Connect

    O`Hagan, P.J.; Merrill, R.P.; Rhodin, T.N.; Woronick, S.W.; Shinn, N.D.; Woolery, G.L.; Chester, A.W.

    1994-12-01

    Hydroxylated alumina films have been synthesized by water oxidation of single crystal Al(110) surfaces. Thermal dehydroxylation results in anion vacancies which produce an Al(3s) defect state 3.5 eV below the conduction band edge. A maximum in the defect-DOS occurs for oxides heated to 350 to 400C, which is where the materials exhibit maximum Lewis acidity with respect to C{sub 2}H{sub 4}. Adsorbed C{sub 2}H{sub 4} produces thermally active C{sub 2} species which interact covalently with the defect-DOS and nonbonding O(2p) from the top of the valence band. C(1s) binding energies suggest significant charge transfer which is consistent with a carbenium ion. Ni evaporated onto the surface, however, transfers charge directly to Al species and does not interact with O atoms at the defect site. The defect-DOS is regenerated when the C{sub 2} species decomposes or when Ni migrates thermally through the oxide layer.

  19. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    NASA Technical Reports Server (NTRS)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  20. The Be K-edge in beryllium oxide and chalcogenides: soft x-ray absorption spectra from first-principles theory and experiment.

    PubMed

    Olovsson, W; Weinhardt, L; Fuchs, O; Tanaka, I; Puschnig, P; Umbach, E; Heske, C; Draxl, C

    2013-08-07

    We have carried out a theoretical and experimental investigation of the beryllium K-edge soft x-ray absorption fine structure of beryllium compounds in the oxygen group, considering BeO, BeS, BeSe, and BeTe. Theoretical spectra are obtained ab initio, through many-body perturbation theory, by solving the Bethe-Salpeter equation (BSE), and by supercell calculations using the core-hole approximation. All calculations are performed with the full-potential linearized augmented plane-wave method. It is found that the two different theoretical approaches produce a similar fine structure, in good agreement with the experimental data. Using the BSE results, we interpret the spectra, distinguishing between bound core-excitons and higher energy excitations.

  1. Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    NASA Astrophysics Data System (ADS)

    Hammer, Melanie S.; Martin, Randall V.; van Donkelaar, Aaron; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-03-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Ångström exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30 % over South America in September, up to 20 % over southern Africa in July, and up to 15 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years

  2. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    NASA Technical Reports Server (NTRS)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  3. Interpreting the Ultraviolet Aerosol Index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    NASA Astrophysics Data System (ADS)

    Hammer, M. S.; Martin, R. V.; van Donkelaar, A.; Buchard, V.; Torres, O.; Ridley, D. A.; Spurr, R. J. D.

    2015-10-01

    Satellite observations of the Ultraviolet Aerosol Index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The addition of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after adding BrC to the model is broadly consistent with reported observations for biomass burning aerosol, with Absorbing Angstrom Exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 35 % over South America in September, up to 25 % over southern Africa in July, and up to 20 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  4. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants.

    PubMed

    Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat; Seraphin, Supapan

    2009-08-30

    Nitrogen-doped TiO(2) was developed to enable photocatalytic reactions using the visible range of the solar spectrum. This work reports on the synthesis, characterisation and kinetic study of interstitial N-doped TiO(2) prepared by the sol-gel method using three different types of nitrogen dopants: diethanolamine, triethylamine and urea. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-visible spectroscopy were used to analyse the titania. Different interstitial N-doped TiO(2) properties, such as absorption ability in the UV-visible light region, redshift in adsorption edge, good crystallisation and composition ratio of titania structures (anatase and rutile) could be obtained from different nitrogen dopants. Amongst investigated nitrogen precursors, diethanolamine provided the highest visible light absorption ability of interstitial N-doped TiO(2) with the smallest energy bandgap and the smallest anatase crystal size, resulting in the highest efficiency in 2-chlorophenol degradation. The photocatalytic activity of all N-doped TiO(2) can be arranged in the following order: TiO(2)/diethanolamine>TiO(2)/triethylamine>TiO(2)/urea>un-doped TiO(2). The initial rate of 2-chlorophenol degradation using the interstitial N-doped TiO(2) with diethanolamine was 0.59 mg/L-min and the kinetic constant was 2.34 x 10(-2)min(-1) with a half-life of 98 min. In all cases, hydroquinone was detected as a major intermediate in the degradation of 2-chlorophenol.

  5. Fixed energy X-ray absorption voltammetry.

    PubMed

    Minguzzi, Alessandro; Lugaresi, Ottavio; Locatelli, Cristina; Rondinini, Sandra; D'Acapito, Francesco; Achilli, Elisabetta; Ghigna, Paolo

    2013-08-06

    In this paper, the fixed energy X-ray absorption voltammetry (FEXRAV) is introduced. FEXRAV represents a novel in situ X-ray absorption technique for fast and easy preliminary characterization of electrode materials and consists of recording the absorption coefficient at a fixed energy while varying at will the electrode potential. The energy is chosen close to an X-ray absorption edge, in order to give the maximum contrast between different oxidation states of an element. It follows that any shift from the original oxidation state determines a variation of the absorption coefficient. Although the information given by FEXRAV obviously does not supply the detailed information of X-ray absorption near edge structure (XANES) or extended X-ray absorption fine structure (EXAFS), it allows to quickly map the oxidation states of the element under consideration within the selected potential windows. This leads to the rapid screening of several systems under different experimental conditions (e.g., nature of the electrolyte, potential window) and is preliminary to more deep X-ray absorption spectroscopy (XAS) characterizations, like XANES or EXAFS. In addition, the time-length of the experiment is much shorter than a series of XAS spectra and opens the door to kinetic analysis.

  6. Detection of nitric oxide pollution

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Weisbach, M. F.

    1973-01-01

    Studies of absorption spectra enhancement of certain atomic and molecular species inserter in dye-laser cavities have indicated that nitric oxide can be determined at low concentrations. Absorption coefficient of small amounts of nitric oxide in intra-laser-cavity absorption cell containing helium is enhanced by more than two orders of magnitude.

  7. Absorptive coating for aluminum solar panels

    NASA Technical Reports Server (NTRS)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  8. Absorptive coating for aluminum solar panels

    NASA Technical Reports Server (NTRS)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  9. Microwave Assisted Synthesis of Iron(III) Oxyhydroxides/Oxides Characterized Using Transmission Electron Microscopy, X-ray Diffraction, and X-ray Absorption Spectroscopy

    PubMed Central

    Parsons, J.G.; Luna, C.; Botez, C.E.; Elizalde, J.; Gardea-Torresdey, J.L.

    2009-01-01

    Microwave assisted synthesis of iron oxide/oxyhydroxide nanophases was conducted using iron(III) chloride titrated with sodium hydroxide at seven different temperatures from 100°C to 250°C with pulsed microwaves. From the XRD results, it was determined that there were two different phases synthesized during the reactions which were temperature dependent. At the lower temperatures, 100°C and 125°C, it was determined that an iron oxyhydroxide chloride was synthesized. Whereas, at higher temperatures, at 150°C and above, iron(III) oxide was synthesized. From the XRD, we also determined the FWHM and the average size of the nanoparticles using the Scherrer equation. The average size of the nanoparticles synthesized using the experimental conditions were 17, 21, 12, 22, 26, 33, 28 nm, respectively for the reactions from 100°C to 250°C. The particles also had low anisotropy indicating spherical nanoparticles, which was later confirmed using TEM. Finally, XAS studies show that the iron present in the nanophase was present as iron(III) coordinated to six oxygen atoms in the first coordination shell. The higher coordination shells also conform very closely to the ideal or bulk crystal structures. PMID:20161181

  10. Resveratrol improves high fat diet-induced fatty liver and insulin resistance by concomitant inhibiting proteolytic cleavage of SREBPS , FFAs oxidation, and intestinal TGS absorption.

    PubMed

    Khaleel, Eman F; Abdel-Aleem, Ghada Ahmed; Mostafa, Dalia Gamal Eldin

    2017-08-04

    Resveratrol (RES) has the ability to ameliorate non-alcoholic fatty liver disease (NAFLD) and the mechanism remains unclear. Hence, using high-fat diet (HFD) obese rat model, we investigated the effect of low dose of RES (20 mg/kg) on hepatic Sterol regulatory element-binding proteins (SREBPs)-lipogenesis pathway, enzymes involved in β-oxidation and activity of pancreatic lipase. 4 groups of rats (n=8) of either control (12 % of calories as fat) or HFD (40 % of calories as fat), both were administered with either normal saline as vehicle or RES as a concomitant treatment for 8 weeks on a daily basis, orally. Then, various biochemical, histological and molecular experiments were carried out. RES prevented the development and progression of NAFLD and significantly improved insulin sensitivity through 1) inhibiting the proteolytic cleavage of SREBPs-1 and SREBPs-2 without affecting their precursor mRNA or protein levels 2) inhibiting FFA beta-oxidation and generation of ROS through significant inhibition of CPT-1 and UCP-2, 3) decreasing activity of pancreatic lipase in vivo and in-vitro. In conclusion, Our findings are the first in the literature to show new mechanisms of hepatoprotective effect of RES against HFD induced NAFLD in rats.

  11. Absorption and metabolism of cis-9,trans-11-CLA and of its oxidation product 9,11-furan fatty acid by Caco-2 cells.

    PubMed

    Buhrke, Thorsten; Merkel, Roswitha; Lengler, Imme; Lampen, Alfonso

    2012-04-01

    Furan fatty acids (furan-FA) can be formed by auto-oxidation of conjugated linoleic acids (CLA) and may therefore be ingested when CLA-containing foodstuff is consumed. Due to the presence of a furan ring structure, furan-FA may have toxic properties, however, these substances are toxicologically not well characterized so far. Here we show that 9,11-furan-FA, the oxidation product of the major CLA isomer cis-9,trans-11-CLA (c9,t11-CLA), is not toxic to human intestinal Caco-2 cells up to a level of 100 μM. Oil-Red-O staining indicated that 9,11-furan-FA as well as c9,t11-CLA and linoleic acid are taken up by the cells and stored in the form of triglycerides in lipid droplets. Chemical analysis of total cellular lipids revealed that 9,11-furan-FA is partially elongated probably by the enzymatic activity of cellular fatty acid elongases whereas c9,t11-CLA is partially converted to other isomers such as c9,c11-CLA or t9,t11-CLA. In the case of 9,11-furan-FA, there is no indication for any modification or activation of the furan ring system. From these results, we conclude that 9,11-furan-FA has no properties of toxicological relevance at least for Caco-2 cells which serve as a model for enterocytes of the human small intestine.

  12. Characterization of the coral allene oxide synthase active site with UV-visible absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopy: evidence for tyrosinate ligation to the ferric enzyme heme iron.

    PubMed

    Abraham, B D; Sono, M; Boutaud, O; Shriner, A; Dawson, J H; Brash, A R; Gaffney, B J

    2001-02-20

    Coral allene oxide synthase (AOS), a hemoprotein with weak sequence homology to catalase, is the N-terminal domain of a naturally occurring fusion protein with an 8R-lipoxygenase. AOS converts 8R-hydroperoxyeicosatetraenoic acid to the corresponding allene oxide. The UV--visible absorption and magnetic circular dichroism spectra of ferric AOS and of its cyanide and azide complexes, and the electron paramagnetic resonance spectra of native AOS (high-spin, g = 6.56, 5.22, 2.00) and of its cyanide adduct (low-spin, g = 2.86, 2.24, 1.60) closely resemble the corresponding spectra of bovine liver catalase (BLC). These results provide strong evidence for tyrosinate ligation to the heme iron of AOS as has been established for catalases. On the other hand, the positive circular dichroism bands in the Soret region for all three derivatives of ferric AOS are almost the mirror image of those in catalase. In addition, the cyanide affinity of native AOS (K(d) = 10 mM at pH 7) is about 3 orders of magnitude lower than that of BLC. Thus, while these results conclusively support a common tyrosinate-ligated heme in AOS as in catalase, significant differences exist in the interaction between their respective heme prosthetic groups and protein environments, and in the access of small molecules to the heme iron.

  13. New methodological approach for the vanadium K-edge X-ray absorption near-edge structure interpretation: application to the speciation of vanadium in oxide phases from steel slag.

    PubMed

    Chaurand, Perrine; Rose, Jérôme; Briois, Valérie; Salome, Murielle; Proux, Olivier; Nassif, Vivian; Olivi, Luca; Susini, Jean; Hazemann, Jean-Louis; Bottero, Jean-Yves

    2007-05-17

    This paper presents a comparison between several methods dedicated to the interpretation of V K-edge X-ray absorption near-edge structure (XANES) features. V K-edge XANES spectra of several V-bearing standard compounds were measured in an effort to evaluate advantages and limits of each method. The standard compounds include natural minerals and synthetic compounds containing vanadium at various oxidation state (from +3 to +5) and in different symmetry (octahedral, tetrahedral, and square pyramidal). Correlations between normalized pre-edge peak area and its centroid position have been identified as the most reliable method for determining quantitative and accurate redox and symmetry information for vanadium. This methodology has been previously developed for the Fe K edge. It is also well adapted for the V K edge and is less influenced by the standard choice than other methods. This methodology was applied on an "environmental sample," i.e., a well-crystallized leached steel slag containing vanadium as traces. Micro-XANES measurements allowed elucidating the microdistribution of vanadium speciation in leached steel slag. The vanadium exhibits an important evolution from the unaltered to the altered phases. Its oxidation state increases from +3 to +5 together with the decrease of its symmetry (from octahedral to tetrahedral).

  14. Determination of thiolic compounds as mercury complexes by cold vapor atomic absorption spectrometry and its application to wines.

    PubMed

    Bramanti, Emilia; Cavallaro, Rosa; Onor, Massimo; Zamboni, Roberto; D'Ulivo, Alessandro

    2008-01-15

    We report on the application of a commercially available mercury analyzer, which is based on vapour generation of Hg(0) by NaBH(4) reduction and atomic absorption detection, to the quantification and characterization of -SH groups and its application to wine samples. The behaviour of Hg(II) and thiol-Hg(II) (RS-Hg) complexes at nanomolar level (RS=l-cysteine, dl-penicillamine, N-acetyl penicillamine, glutathione, cysteinylglycine, homocysteine) has been studied following their reduction with alkaline NaBH(4) to give Hg(0). In the absence of thiol-Hg(II) is quantitatively converted to Hg(0) by stoichiometric amount of NaBH(4) (reaction ratio 1/4mole NaBH(4)/mole Hg), while the complete reduction of Hg(II)-thiol complexes to Hg(0) requires molar excess of NaBH(4) up to six orders of magnitude, depending on the type of complex and on the pK(a) of the thiolic group. Under an appropriate excess of reductant, Hg(II) and its thiol complexes are not distinguishable giving the same response. These properties allow the discrimination of Hg(II) from Hg(II)-thiol complexes without any preliminary separation and the quantification of thiol groups. Instrumental detection limits are as low as 2.5pg, permitting sample dilution, therefore, minimizing the risk of possible interferences occurring with complex real matrices. The method has been applied to quantification of thiol groups in wine samples. Comparison with results obtained by HPLC coupled to atomic fluorescence detection confirmed the promising potentialities of the method.

  15. Nano-engineering of p-n CuFeO2-ZnO heterojunction photoanode with improved light absorption and charge collection for photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Karmakar, Keshab; Sarkar, Ayan; Mandal, Kalyan; Gopal Khan, Gobinda

    2017-08-01

    The effective utilization of abundant visible solar light for photoelectrochemical water splitting is a green approach for energy harvesting, to reduce the enormous rise of carbon content in the atmosphere. Here, a novel efficient design strategy for p-n type nano-heterojunction photoanodes is demonstrated, with the goal of improving water splitting efficiency by growing low band gap p-CuFeO2 nanolayers on n-ZnO nanorods by an easy and scalable electrochemical route. The photoconversion efficiency of p-n CuFeO2/ZnO photoanodes is found to be ˜450% higher than that of pristine ZnO nanorod electrodes under visible solar light illumination (λ > 420 nm, intensity 10 mW cm-2). The p-n CuFeO2/ZnO nano-engineering not only boosts the visible light absorption but also resolves limitations regarding effective charge carrier separation and transportation due to interfacial band alignment. This photoanode also shows remarkably enhanced stability, where the formation of p-n nano-heterojunction enhances the easy migration of holes to the electrode/electrolyte interface, and of electrons to the counter electrode (Pt) for hydrogen generation. Therefore, this work demonstrates that p-n nano-engineering is a potential strategy to design light-harvesting electrodes for water splitting and clean energy generation.

  16. Synthesis temperature effect on the structural features and optical absorption of Zn(1-x)Co(x)Al2O4 oxides.

    PubMed

    Gaudon, M; Apheceixborde, A; Ménétrier, M; Le Nestour, A; Demourgues, A

    2009-10-05

    Zinc/cobalt aluminates with spinel-type structure were prepared by a polymeric route, leading to a pure phase with controlled grain size. The prepared pigments were characterized by powder X-ray diffraction Rietveld analyses in order to determine structural features, scanning electron microscopy for morphological investigation, helium pycnometry and (27)Al MAS NMR in order to highlight the occurrence of defects inside the structure, and UV-visible-near-IR spectroscopy to identify electronic transitions responsible for the compounds' color. The green-blue coloration of these pigments is known to be dependent on the sample thermal history. Here, for the first time, the Zn(1-x)Co(x)Al(2)O(4) color is newly interpreted. The pigment is green once synthesized at low temperature (i.e., with diminution of the pigment grain size); this variation was attributed to the appearance of a new absorption band located at about 500 nm, linked to a complex network feature involving Co ions in octahedral sites as well as oxygen and cationic vacancies. Hence, this work shows the possibility of easily getting a nonstoichiometric network with an abnormal cationic distribution from "chimie douce" processes with moderate synthesis temperature, and so various colorations for the same composition.

  17. Studies of nitride- and oxide-based materials as absorptive shifters for embedded attenuated phase-shifting mask in 193 nm

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-ming; Chang, Keh-wen; Lee, Ming-der; Loong, Wen-An

    1999-07-01

    Abstract-Five materials which are PdSixOy, CrAlxOy, SiNx, TiSixNy, and TiSixOyNz as absorptive shifters for attenuated phase-shifting mask in 193 nm wavelength lithography are presented. PdSixOy films were deposited by dual e-gun evaporation. CrAlxOy, TiSixNy and TiSixOyNz films were formed by plasma sputtering and SiNx films were formed with LPCVD. All of these materials are shown to be capable of achieving 4 percent - 15 percent transmittance in 193 nm with thickness that produce a 180 degrees phase shift. Under BCl3:Cl2 equals 14:70 sccm; chamber pressure 5 mtorr and RF power 1900W, the dry etching selectivity of TiSixNy over DQN positive resist and fused silica, were found to be 2:1 and 4,8:1 respectively. An embedded layer TiSixNy with 0.5 micrometers line/space was successfully patterned.

  18. Sequential and Coupled Proton and Electron Transfer Events in the S2 → S3 Transition of Photosynthetic Water Oxidation Revealed by Time-Resolved X-ray Absorption Spectroscopy.

    PubMed

    Zaharieva, Ivelina; Dau, Holger; Haumann, Michael

    2016-12-20

    The choreography of electron transfer (ET) and proton transfer (PT) in the S-state cycle at the manganese-calcium (Mn4Ca) complex of photosystem II (PSII) is pivotal for the mechanism of photosynthetic water oxidation. Time-resolved room-temperature X-ray absorption spectroscopy (XAS) at the Mn K-edge was employed to determine the kinetic isotope effect (KIE = τD2O/τH2O) of the four S transitions in a PSII membrane particle preparation in H2O and D2O buffers. We found a small KIE (1.2-1.4) for manganese oxidation by ET from Mn4Ca to the tyrosine radical (YZ(•+)) in the S0(n) → S1(+) and S1(n) → S2(+) transitions and for manganese reduction by ET from substrate water to manganese ions in the O2-evolving S3(n) → S0(n) step, but a larger KIE (∼1.8) for manganese oxidation in the S2(n) → S3(+) step (subscript, number of accumulated oxidizing equivalents; superscript, charge of Mn4Ca). Kinetic lag phases detected in the XAS transients prior to the respective ET steps were assigned to S3(+) → S3(n) (∼150 μs, H2O; ∼380 μs, D2O) and S2(+) → S2(n) (∼25 μs, H2O; ∼120 μs, D2O) steps and attributed to PT events according to their comparatively large KIE (∼2.4, ∼4.5). Our results suggest that proton movements and molecular rearrangements within the hydrogen-bonded network involving Mn4Ca and its bound (substrate) water ligands and the surrounding amino acid/water matrix govern to different extents the rates of all ET steps but affect particularly strongly the S2(n) → S3(+) transition, assigned as proton-coupled electron transfer. Observation of a lag phase in the classical S2 → S3 transition verifies that the associated PT is a prerequisite for subsequent ET, which completes Mn4Ca oxidation to the all-Mn(IV) level.

  19. Solar Absorption in a Stratosphere Perturbed by NOx Injection.

    PubMed

    Luther, F M

    1976-04-02

    The changes in the solar absorption by nitrogen dioxide and ozone induced by the injection of NO(x) (oxides of nitrogen) in the stratosphere are complementary, even though the nitrogen dioxide absorption is only a small fraction of the ozone absorption for an unperturbed stratosphere. The factors causing this effect are described, and an analysis is made of the perturbed solar radiation budget.

  20. Systematic Oxidation of Polystyrene by Ultraviolet-Ozone, Characterized by Near-Edge X-ray Absorption Fine Structure and Contact Angle

    SciTech Connect

    Klein,R.; Fischer, D.; Lenhart, J.

    2008-01-01

    The process of implanting oxygen in polystyrene (PS) via exposure to ultraviolet-ozone (UV-O) was systematically investigated using the characterization technique of near-edge X-ray absorption fine structure (NEXAFS). Samples of PS exposed to UV-O for 10-300 s and washed with isopropanol were analyzed using the carbon and oxygen K-edge NEXAFS partial electron yields, using various retarding bias voltages to depth-profile the oxygen penetration into the surface. Evaluation of reference polymers provided a scale to quantify the oxygen concentration implanted by UV-O treatment. We find that ozone initially reacts with the double bonds on the phenyl rings, forming carbonyl groups, but within 1 min of exposure, the ratio of double to single oxygen bonds stabilizes at a lower value. Oxygen penetrates the film with relative ease, creating a fairly uniform distribution of oxygen within at least the first 4 nm (the effective depth probed by NEXAFS here). Before oxygen accumulates in large concentrations, however, it preferentially degrades the uppermost layer of the film by removing oxygenated low-molecular-weight oligomers. The failure to accumulate high concentrations of oxygen is seen in the nearly constant carbon edge jump, the low concentration of oxygen even at 5 min exposure (58% of that in poly(4-acetoxystyrene), the polymer with the most similarities to UV-O-treated PS), and the relatively high contact angles. At 5 min exposure the oxygen concentration contains ca. 7 atomic % oxygen. The oxygen species that are implanted consist predominantly of single O-C bonds and double OC bonds but also include a small fraction of O-H. UV-O treatment leads a plateau after 2 min exposure in the water contact angle hysteresis, at a value of 67 {+-} 2, due primarily to chemical heterogeneity. Annealing above Tg allows oxygenated species to move short distances away from the surface but not diffuse further than 1-2 nm.

  1. Oxidized derivatives of Octopus vulgaris and Carcinus aestuarii hemocyanins at pH 7.5 and related models by x-ray absorption spectroscopy.

    PubMed Central

    Borghi, Elena; Solari, Pier Lorenzo; Beltramini, Mariano; Bubacco, Luigi; Di Muro, Paolo; Salvato, Benedetto

    2002-01-01

    The binuclear copper sites of the met and met-azido derivatives of Octopus vulgaris and Carcinus aestuarii hemocyanins at pH 7.5 were characterized by high-resolution x-ray absorption spectroscopy in the low energy region (XANES) and in the higher region (EXAFS). The accuracy of the analysis of the data was tested with two mononuclear and six binuclear copper(II) complexes of the poly(benzimidazole) ligand systems 2-BB, L-5,5 and L-6,6 (Casella et al., 1993, Inorg. Chem. 32:2056-2067; 1996, Inorg. Chem. 35:1101-1113). Their structural and reactivity properties are related to those of the protein's derivatives. The results obtained for those models with resolved x-ray structure (the 2-BB-aquo and azido mononuclear complexes, and the binuclear L-5,5 Cu(II)-bis(hydroxo) (Casella et al., unpublished)), extends the validity of our approach to the other poly(benzimidazole)-containing complexes and to the hemocyanin derivatives. Comparison between the protein's and the complexes' data, support a description of the met-derivatives as a five-coordinated O-bridged binuclear copper(II) center and favors, for both species, a bis(hydroxo) structure with a 3-A Cu-Cu distance. For O. vulgaris met-azido derivative a mu-1,3 bridging mode for the ligand appears the most likely. The structural situation of C. aestuarii met-azido-derivative is less clear: a mu-1,1 mode is favored, but a terminal mode cannot be excluded. PMID:12023249

  2. Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe2O4.

    PubMed

    Yang, Yingju; Liu, Jing; Zhang, Bingkai; Liu, Feng

    2017-01-05

    MnFe2O4 has been regarded as a very promising sorbent for mercury emission control in coal-fired power plants because of its high adsorption capacity, magnetic, recyclable and regenerable properties. First-principle calculations based on density functional theory (DFT) were used to elucidate the mercury adsorption and oxidation mechanisms on MnFe2O4 surface. DFT calculations show that Mn-terminated MnFe2O4 (1 0 0) surface is much more stable than Fe-terminated surface. Hg(0) is physically adsorbed on Fe-terminated MnFe2O4 (1 0 0) surface. Hg(0) adsorption on Mn-terminated MnFe2O4 (1 0 0) surface is a chemisorption process. The partial density of states (PDOS) analysis indicates that Hg atom interacts strongly with surface Mn atoms through the orbital hybridization. HgO is adsorbed on the MnFe2O4 surface in a chemical adsorption manner. The small HOMO-LUMO energy gap implies that HgO molecular shows high chemical reactivity for HgO adsorption on MnFe2O4 surface. The energy barriers of Hg(0) oxidation by oxygen on Fe- and Mn-terminated MnFe2O4 surfaces are 206.37 and 76.07kJ/mol, respectively. Mn-terminated surface is much more favorable for Hg(0) oxidation than Fe-terminated surface. In the whole Hg(0) oxidation process, the reaction between adsorbed mercury and surface oxygen is the rate-determining step.

  3. Absorption and Metabolism of Xanthophylls

    PubMed Central

    Kotake-Nara, Eiichi; Nagao, Akihiko

    2011-01-01

    Dietary carotenoids, especially xanthophylls, have attracted significant attention because of their characteristic biological activities, including anti-allergic, anti-cancer, and anti-obese actions. Although no less than forty carotenoids are ingested under usual dietary habits, only six carotenoids and their metabolites have been found in human tissues, suggesting selectivity in the intestinal absorption of carotenoids. Recently, facilitated diffusion in addition to simple diffusion has been reported to mediate the intestinal absorption of carotenoids in mammals. The selective absorption of carotenoids may be caused by uptake to the intestinal epithelia by the facilitated diffusion and an unknown excretion to intestinal lumen. It is well known that β-carotene can be metabolized to vitamin A after intestinal absorption of carotenoids, but little is known about the metabolic transformation of non provitamin A xanthophylls. The enzymatic oxidation of the secondary hydroxyl group leading to keto-carotenoids would occur as a common pathway of xanthophyll metabolism in mammals. This paper reviews the absorption and metabolism of xanthophylls by introducing recent advances in this field. PMID:21747746

  4. Frequency dependence of two-photon absorption in InSb and Hg1-xCdxTe

    NASA Astrophysics Data System (ADS)

    Johnston, A. M.; Pidgeon, C. R.; Dempsey, J.

    1980-07-01

    The frequency dependence of two-photon absorption is measured over a wide range in InSb and Hg0.78Cd0.22Te, showing good agreement with a nonparabolic-band perturbation calculation and wide divergence from "tunneling" theory. Associated photoconductivity measurements, required in the analysis, confirm that Auger scattering is the dominant process at room temperature in n-InSb, but at low temperatures have yielded a direct value of the lifetime of τ(77 K)=143 ns for radiative recombination.

  5. Micro-scale thermal imaging of CO2 absorption in the thermochemical energy storage of Li metal oxides at high temperature

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko; Takasu, Hiroki; Zamengo, Massimiliano; Kato, Yukitaka

    2017-05-01

    Li-Metal oxides (typical example: lithium ortho-silicate Li4SiO4) are regarded as a novel solid carbon dioxide CO2 absorbent accompanied by an exothermic reaction. At temperatures above 700°C the sorbent is regenerated with the release of the captured CO2 in an endothermic reaction. As the reaction equilibrium of this reversible chemical reaction is controllable only by the partial pressure of CO2, the system is regarded as a potential candidate for chemical heat storage at high temperatures. In this study, we applied our recent developed mobile type instrumentation of micro-scale infrared thermal imaging system to observe the heat of chemical reaction of Li4SiO4 and CO2 at temperature higher than 600°C or higher. In order to quantify the micro-scale heat transfer and heat exchange in the chemical reaction, the superimpose signal processing system is setup to determine the precise temperature. Under an ambient flow of carbon dioxide, a powder of Li4SiO4 with a diameter 50 micron started to shine caused by an exothermic chemical reaction heat above 600°C. The phenomena was accelerated with increasing temperature up to 700°C. At the same time, the reaction product lithium carbonate (Li2CO3) started to melt with endothermic phase change above 700°C, and these thermal behaviors were captured by the method of thermal imaging. The direct measurement of multiple thermal phenomena at high temperatures is significant to promote an efficient design of chemical heat storage materials. This is the first observation of the exothermic heat of the reaction of Li4SiO4 and CO2 at around 700°C by the thermal imaging method.

  6. Study of the OH and Cl-initiated oxidation, IR absorption cross-section, radiative forcing, and global warming potential of four C4-hydrofluoroethers.

    PubMed

    Oyaro, Nathan; Sellevåg, Stig R; Nielsen, Claus J

    2004-11-01

    Infrared absorption cross-sections and OH and Cl reaction rate coefficients for four C4-hydrofluoroethers (CF3)2CHOCH3, CF3CH2OCH2CF3, CF3CF2CH2OCH3, and CHF2CF2CH2OCH3 are reported. Relative rate measurements at 298 K and 1013 hPa of OH and Cl reaction rate coefficients give k(OH+(CF3)2CHOCH3) = (1.27+/-0.13) x 10(-13), k(OH+CF3CH2OCH2CF3) = (1.51+/-0.24) x 10(-13), k(OH+CF3CF2CH2OCH3) = (6.42+/-0.33) x 10(-13), k(OH+CHF2CF2CH2OCH3) = (8.7 +/-0.5) x 10(-13), k(Cl+(CF3)2CHOCH3) = (8.4+/-1.3) x 10(-12), k(Cl+CF3CH2OCH2CF3) = (6.5+/-1.7) x 10(-13), k(Cl+CF3CF2CH2OCH3) = (4.0+/-0.8) x 10(-11), and k(Cl+CHF2CF2CH2OCH3) = (2.65+/-0.17) x 10(-11) cm3 molecule(-1) s(-1). The primary products of the OH and Cl reactions with the fluorinated ethers have been identified as esters, and OH and Cl reaction rate coefficients for one of these, CF3CH2OCHO, are reported: k(OH+CF3CH2OCHO) = (7.7+/-0.9) x 10(-14) and kCl+CF3CH2OCHO) = (6.3+/-1.9) x 10(-14) cm3 molecule(-1) s(-1) The rate coefficient for the Cl-atom reaction with CHF2CH2F is derived as k(Cl+CHF2CH2F) = (3.0+/-0.9) x 10(-14) cm3 molecule(-1) s(-1) at 298 K. The error limits include 3sigma from the statistical data analyses as well as the errors in the rate coefficients of the reference compounds employed. The tropospheric lifetimes of the hydrofluoroethers are estimated to be short tauOH((CF3)2CHOCH3) approximately 100 days, tauOH(CF3CH2OCH2CF3) approximately 80 days, tauOH(CF3CF2CH2OCH3) approximately 20 days, and tauOH(CHF2CF2CH2OCH3) approximately 14 days, and their global warming potentials are small compared to CFC-11.

  7. Design of 3D MnO2/Carbon sphere composite for the catalytic oxidation and adsorption of elemental mercury.

    PubMed

    Xu, Haomiao; Jia, Jinping; Guo, Yongfu; Qu, Zan; Liao, Yong; Xie, Jiangkun; Shangguan, Wenfeng; Yan, Naiqiang

    2017-08-08

    Three-dimensional (3D) MnO2/Carbon Sphere (MnO2/CS) composite was synthesized from zero-dimensional carbon spheres and one-dimensional α-MnO2 using hydrothermal method. The hierarchical MnO2/CS composite was applied for the catalytic oxidation and adsorption of elemental mercury (Hg(0)) from coal-fired flue gas. The characterization results indicated that this composite exhibits a 3D urchin morphology. Carbon spheres act as the core and α-MnO2 nano-rods grew on the surface of carbon spheres. This 3D hierarchical structure benefits the enlargement of surface areas and pore volumes. Hg(0) removal experimental results indicated that the MnO2/CS composite has an outstanding Hg(0) removal performance due to the higher catalytic oxidation and adsorption performance. MnO2/CS composite had higher than 99% Hg(0) removal efficiency even after 600min reaction. In addition, the nano-sized MnO2/CS composite exhibited better SO2 resistance than pure α-MnO2. Moreover, the Hg-TPD results indicated that the adsorbed mercury can release from the surface of MnO2/CS using a thermal decomposition method. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Absorption of Thermal Neutrons in Uranium

    DOE R&D Accomplishments Database

    Creutz, E. C.; Wilson, R. R.; Wigner, E. P.

    1941-09-26

    A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.

  9. Layered structure of the near-surface region of oxidized chalcopyrite (CuFeS2): hard X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and DFT+U studies.

    PubMed

    Mikhlin, Yuri; Nasluzov, Vladimir; Romanchenko, Alexander; Tomashevich, Yevgeny; Shor, Alexey; Félix, Roberto

    2017-01-25

    The depletion of oxidized metal sulfide surfaces in metals due to the preferential release of cations is a common, but as yet poorly understood phenomenon. Herein, X-ray photoelectron spectroscopy using excitation energies from 1.25 keV to 6 keV, and Fe K- and S K-edge X-ray absorption near-edge spectra in total electron and partial fluorescence yield modes was employed to study natural chalcopyrite oxidized in air and etched in an acidic ferric sulfate solution. The metal-depleted undersurface formed was found to consist of a thin, 1-4 nm, outer layer containing polysulfide species, a layer with a pronounced deficiency of metals, mainly iron, and an abundant disulfide content but negligible polysulfide content (about 20 nm thick after the chemical etching), and a defective underlayer which extended down to about a hundred nm. DFT+U was used to simulate chalcopyrite with increasing numbers of removed Fe atoms. It was found that the structure with disulfide anion near double Fe vacancies, and the 'defective' structure comprising Cu in the position of Fe and Cu vacancy are most energetically favorable, especially when using a higher Hubbard-type parameter U, and have a large density of states at the Fermi level, whereas polysulfide anions are stable only near the surface. We propose a mechanism explaining the formation of the layered undersurface and 'passivation' of metal sulfides by (i) arrested decomposition of a nearly stoichiometric sulfide surface, and (ii) faster interfacial transfer and solid diffusion of cations towards the surface; (iii) stability limits for specific defect structures, promoting their expansion in depth rather than through compositional changes, excluding surface layers; (iv) decay of surface polysulfide layer yielding elemental sulfur.

  10. A photo-oxidation procedure using UV radiation/H 2O 2 for decomposition of wine samples — Determination of iron and manganese content by flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    dos Santos, Walter N. L.; Brandão, Geovani C.; Portugal, Lindomar A.; David, Jorge M.; Ferreira, Sérgio L. C.

    2009-06-01

    This paper proposes the use of photo-oxidation with UV radiation/H 2O 2 as sample pretreatment for the determination of iron and manganese in wines by flame atomic absorption spectrometry (FAAS). The optimization involved the study of the following variables: pH and concentration of buffer solution, concentrated hydrogen peroxide volume and irradiation time. The evaluation of sample degradation was monitored by measuring the absorbance at the maximum wavelength of red wine (530 nm). Using the experimental conditions established during the optimization (irradiation time of 30 min, oxidant volume of 2.5 mL, pH 10, and a buffer concentration of 0.15 mol L - 1 ), this procedure allows the determination of iron and manganese with limits of detection of 30 and 22 μg L - 1 , respectively, for a 5 mL volume of digested sample. The precision levels, expressed as relative standard deviation (RSD), were 2.8% and 0.65% for iron and 2.7% and 0.54% for manganese for concentrations of 0.5 and 2.0 mg L - 1 , respectively. Addition/recovery tests for evaluation of the accuracy were in the ranges of 90%-111% and 95%-107% for iron and manganese, respectively. This digestion procedure has been applied for the determination of iron and manganese in six wine samples. The concentrations varied from 1.58 to 2.77 mg L - 1 for iron and from 1.30 to 1.91 mg L - 1 for manganese. The results were compared with those obtained by an acid digestion procedure and determination of the elements by FAAS. There was no significant difference between the results obtained by the two methods based on a paired t-test (at 95% confidence level).

  11. Use of Doehlert and constrained mixture designs in the development of a photo-oxidation procedure using UV radiation/H₂O₂ for decomposition of landfill leachate samples and determination of metals by flame atomic absorption spectrometry.

    PubMed

    Bezerra, Marcos A; Souza, Antônio D S; Oliveira, Rafael V; Oliveira, Djalma M; Cardoso, Luiz A M; Sousa Filho, Hélio R

    2015-03-01

    This work proposes the use of photo-oxidation degradation with UV radiation/H2O2 as sample treatment for the determination of Fe, Zn, Mn, Ni and Co in municipal solid waste landfill leachate by flame atomic absorption spectrometry (FAAS). Three variables (pH, irradiation time and buffer concentration) were optimized using Doehlert design and the proportions of mixture components submitted to UV radiation (leachate sample, buffer solution and H2O2 30%, v/v) were optimized using a constrained mixture design. Using the experimental conditions established, this procedure allows limits of detection of 0.075, 0.025, 0.010, 0.075 and 0.041 µg mL-1, and the precision levels expressed as relative standard (%RSD, 0.5 µg mL-1) were 3.6, 1.8, 1.3, 3.3 and 1.7%, for Fe, Mn, Zn, Ni and Co respectively. Recovery tests were carried out for evaluation of the procedure accuracy and recoveries were between 92 and 106% for the studied metals. This procedure has been applied for the analysis of the landfill leachate collected in Jequié, a city of the southwestern region of the State of Bahia, Brazil. The results were compared with those obtained by acid digestion. There was no significant difference between the results obtained by the two methods based on paired t-test at 95% confidence level.

  12. Soft X-ray absorption and photoemission spectroscopy study of semiconductor oxide nanoparticles for dye-sensitized solar cell: ZnSnO3 and Zn2SnO4

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Woo; Lee, Eunsook; Kim, D. H.; Seong, Seungho; Moon, Soo Yeon; Shin, Yu-Ju; Baik, J.; Shin, H. J.; Kang, J.-S.

    2016-06-01

    The electronic structures of the Zn-stannate nanoparticles of ZnSnO3 and Zn2SnO4, which are the potential nano-structured semiconductor oxides for a dye sensitized solar cell (DSSC), have been investigated by employing photoemission spectroscopy (PES) and soft X-ray absorption spectroscopy (XAS), and compared to those of reference materials. The divalent and tetravalent valence states of Zn2+ and Sn4+ ions are confirmed experimentally. The energy levels of both the valence-band and conduction-band edges are determined experimentally. The top of the valence band in PES is slightly higher in Zn2SnO4 than in ZnSnO3. The onset energies of the O 1s XAS spectra of the Zn-stannates are found to be similar to each other, but higher than that of TiO2. The O 1 s XAS spectrum of ZnSnO3 exhibits the higher unoccupied density of states near the bottom of the conduction band than those of Zn2SnO4, SnO2 and ZnO, reflecting the larger number of holes in the Zn 3 d bands of ZnSnO3. Hence, the easier electron transfer is expected from the LUMO (lowest unoccupied molecular orbital) of a dye molecule to the conduction band of ZnSnO3 nanoparticles on the transparent conductive electrode of a DSSC.

  13. The pathophysiological role of oxidized cholesterols in epicardial fat accumulation and cardiac dysfunction: a study in swine fed a high caloric diet with an inhibitor of intestinal cholesterol absorption, ezetimibe.

    PubMed

    Shimabukuro, Michio; Okawa, Chinami; Yamada, Hirotsugu; Yanagi, Shuhei; Uematsu, Etsuko; Sugasawa, Noriko; Kurobe, Hirotsugu; Hirata, Yoichiro; Kim-Kaneyama, Joo-Ri; Lei, Xiao-Feng; Takao, Shoichiro; Tanaka, Yasutake; Fukuda, Daiju; Yagi, Shusuke; Soeki, Takeshi; Kitagawa, Tetsuya; Masuzaki, Hiroaki; Sato, Masao; Sata, Masataka

    2016-09-01

    Oxidized cholesterols (oxycholesterols) in food have been recognized as strong atherogenic components, but their tissue distributions and roles in cardiovascular diseases remain unclear. To investigate whether accumulation of oxycholesterols is linked to cardiac morphology and function, and whether reduction of oxycholesterols can improve cardiac performance, domestic male swine were randomized to a control diet (C), high caloric diet (HCD) or HCD+Ezetimibe, an inhibitor of intestinal cholesterol absorption, group (HCD+E) and evaluated for: (1) distribution of oxycholesterol components in serum and tissues, (2) levels of oxycholesterol-related enzymes, (3) paracardial and epicardial coronary fat thickness, and (4) cardiac performance. Ezetimibe treatment for 8weeks attenuated increases in oxycholesterols in the HCD group almost completely in liver, but reduced only levels of 4β-hydroxycholesterol in left ventricular (LV) myocardium. Ezetimibe treatment altered the expression of genes for cholesterol and fatty acid metabolism and decreased the expression of CYP3A46, which catabolizes cholesterol to 4β-hydroxycholesterol, strongly in liver. An increase in epicardial fat thickness and impaired cardiac performance in the HCD group were improved by ezetimibe treatment, and the improvement was closely related to the reduction in levels of 4β-hydroxycholesterol in LV myocardium. In conclusion, an increase in oxycholesterols in the HCD group was closely related to cardiac hypertrophy and dysfunction, as well as an increase in epicardial fat thickness. Ezetimibe may directly reduce oxycholesterol in liver and LV myocardium, and improve cardiac morphology and function. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Oxidation State Specific Generation of Arsines from Methylated Arsenicals Based on L- Cysteine Treatment in Buffered Media for Speciation Analysis by Hydride Generation - Automated Cryotrapping - Gas Chromatography-Atomic Absorption Spectrometry with the Multiatomizer

    PubMed Central

    Matoušek, Tomáš; Hernández-Zavala, Araceli; Svoboda, Milan; Langrová, Lenka; Adair, Blakely M.; Drobná, Zuzana; Thomas, David J.; Stýblo, Miroslav; Dědina, Jiří

    2008-01-01

    An automated system for hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer is described. Arsines are preconcentrated and separated in a Chromosorb filled U-tube. An automated cryotrapping unit, employing nitrogen gas formed upon heating in the detection phase for the displacement of the cooling liquid nitrogen, has been developed. The conditions for separation of arsines in a Chromosorb filled U-tube have been optimized. A complete separation of signals from arsine, methylarsine, dimethylarsine, and trimethylarsine has been achieved within a 60 s reading window. The limits of detection for methylated arsenicals tested were 4 ng l−1. Selective hydride generation is applied for the oxidation state specific speciation analysis of inorganic and methylated arsenicals. The arsines are generated either exclusively from trivalent or from both tri- and pentavalent inorganic and methylated arsenicals depending on the presence of L-cysteine as a prereductant and/or reaction modifier. A TRIS buffer reaction medium is proposed to overcome narrow optimum concentration range observed for the L-cysteine modified reaction in HCl medium. The system provides uniform peak area sensitivity for all As species. Consequently, the calibration with a single form of As is possible. This method permits a high-throughput speciation analysis of metabolites of inorganic arsenic in relatively complex biological matrices such as cell culture systems without sample pretreatment, thus preserving the distribution of tri- and pentavalent species. PMID:18521190

  15. Mercury oxidation and adsorption characteristics of potassium permanganate modified lignite semi-coke.

    PubMed

    Zhang, Huawei; Chen, Jitao; Liang, Peng; Wang, Li

    2012-01-01

    The adsorption characteristics of virgin and potassium permanganate modified lignite semi-coke (SC) for gaseous Hg0 were investigated in an attempt to produce more effective and lower price adsorbents for the control of elemental mercury emission. Brunauer-Emmett-Teller (BET) measurements, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to analyze the surface physical and chemical properties of SC, Mn-SC and Mn-H-SC before and after mercury adsorption. The results indicated that potassium permanganate modification had significant influence on the properties of semi-coke, such as the specific surface area, pore structure and surface chemical functional groups. The mercury adsorption efficiency of modified semi-coke was lower than that of SC at low temperature, but much higher at high temperature. Amorphous Mn7+, Mn6+ and Mn4+ on the surface of Mn-SC and Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg0, which oxidized the elemental mercury into Hg2+ and captured it. Thermal treatment reduced the average oxidation degree of Mn(x+) on the surface of Mn-SC from 3.80 to 3.46. However, due to the formation of amorphous MnOx, the surface oxidation active sites for gaseous Hg0 increased, which gave Mn-H-SC higher mercury adsorption efficiency than that of Mn-SC at high temperature.

  16. Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise.

    PubMed

    Lindberg, Steve E; Brooks, Steve; Lin, C J; Scott, Karen J; Landis, Matthew S; Stevens, Robert K; Goodsite, Mike; Richter, Andreas

    2002-03-15

    Gaseous elemental mercury (Hg0) is a globally distributed air toxin with a long atmospheric residence time. Any process that reduces its atmospheric lifetime increases its potential accumulation in the biosphere. Our data from Barrow, AK, at 71 degrees N show that rapid, photochemically driven oxidation of boundary-layer Hg0 after polar sunrise, probably by reactive halogens, creates a rapidly depositing species of oxidized gaseous mercury in the remote Arctic troposphere at concentrations in excess of 900 pg m(-3). This mercury accumulates in the snowpack during polar spring at an accelerated rate in a form that is bioavailable to bacteria and is released with snowmelt during the summer emergence of the Arctic ecosystem. Evidence suggests that this is a recent phenomenon that may be occurring throughout the earth's polar regions.

  17. Comparative oxidation state specific analysis of arsenic species by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry and hydride generation-cryotrapping-atomic absorption spectrometry.

    PubMed

    Currier, Jenna; Saunders, R Jesse; Ding, Lan; Bodnar, Wanda; Cable, Peter; Matoušek, Tomáš; Creed, John T; Stýblo, Miroslav

    2013-06-01

    The formation of methylarsonous acid (MAs(III)) and dimethylarsinous acid (DMAs(III)) in the course of inorganic arsenic (iAs) metabolism plays an important role in the adverse effects of chronic exposure to iAs. High-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) and hydride generation-cryotrapping-atomic absorption spectrometry (HG-CT-AAS) have been frequently used for the analysis of MAs(III) and DMAs(III) in biological samples. While HG-CT-AAS has consistently detected MAs(III) and DMAs(III), HPLC-ICP-MS analyses have provided inconsistent and contradictory results. This study compares the capacities of both methods to detect and quantify MAs(III) and DMAs(III) in an in vitro methylation system consisting of recombinant human arsenic (+3 oxidation state) methyltransferase (AS3MT), S-adenosylmethionine as a methyl donor, a non-thiol reductant tris(2-carboxyethyl)phosphine, and arsenite (iAs(III)) or MAs(III) as substrate. The results show that reversed-phase HPLC-ICP-MS can identify and quantify MAs(III) and DMAs(III) in aqueous mixtures of biologically relevant arsenical standards. However, HPLC separation of the in vitro methylation mixture resulted in significant losses of MAs(III), and particularly DMAs(III) with total arsenic recoveries below 25%. Further analyses showed that MAs(III) and DMAs(III) bind to AS3MT or interact with other components of the methylation mixture, forming complexes that do not elute from the column. Oxidation of the mixture with H2O2 which converted trivalent arsenicals to their pentavalent analogs prior to HPLC separation increased total arsenic recoveries to ~95%. In contrast, HG-CT-AAS analysis found large quantities of methylated trivalent arsenicals in mixtures incubated with either iAs(III) or MAs(III) and provided high (>72%) arsenic recoveries. These data suggest that an HPLC-based analysis of biological samples can underestimate MAs(III) and DMAs(III) concentrations and that

  18. Redox chemistry of a binary transition metal oxide (AB 2 O 4 ): a study of the Cu 2+ /Cu 0 and Fe 3+ /Fe 0 interconversions observed upon lithiation in a CuFe 2 O 4 battery using X-ray absorption spectroscopy

    DOE PAGES

    Cama, Christina A.; Pelliccione, Christopher J.; Brady, Alexander B.; ...

    2016-06-06

    Copper ferrite, CuFe2 O 4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2 O 4. A phase pure tetragonal CuFe2 O 4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. We used ex situ X-ray absorption spectroscopy (XAS) measurements to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-raymore » absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(II) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(III) cations to octahedral positions previously occupied by copper(II). Then, upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(III) was achieved. Our results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.« less

  19. Redox chemistry of a binary transition metal oxide (AB 2 O 4 ): a study of the Cu 2+ /Cu 0 and Fe 3+ /Fe 0 interconversions observed upon lithiation in a CuFe 2 O 4 battery using X-ray absorption spectroscopy

    SciTech Connect

    Cama, Christina A.; Pelliccione, Christopher J.; Brady, Alexander B.; Li, Jing; Stach, Eric A.; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S.; Takeuchi, Kenneth J.; Marschilok, Amy C.

    2016-06-06

    Copper ferrite, CuFe2 O 4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2 O 4. A phase pure tetragonal CuFe2 O 4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. We used ex situ X-ray absorption spectroscopy (XAS) measurements to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(II) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(III) cations to octahedral positions previously occupied by copper(II). Then, upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(III) was achieved. Our results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  20. Redox chemistry of a binary transition metal oxide (AB 2 O 4 ): a study of the Cu 2+ /Cu 0 and Fe 3+ /Fe 0 interconversions observed upon lithiation in a CuFe 2 O 4 battery using X-ray absorption spectroscopy

    SciTech Connect

    Cama, Christina A.; Pelliccione, Christopher J.; Brady, Alexander B.; Li, Jing; Stach, Eric A.; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S.; Takeuchi, Kenneth J.; Marschilok, Amy C.

    2016-06-06

    Copper ferrite, CuFe2 O 4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2 O 4. A phase pure tetragonal CuFe2 O 4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. We used ex situ X-ray absorption spectroscopy (XAS) measurements to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(II) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(III) cations to octahedral positions previously occupied by copper(II). Then, upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(III) was achieved. Our results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  1. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    PubMed

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  2. Origin of oxidized mercury in the summertime free troposphere over the southeastern US

    NASA Astrophysics Data System (ADS)

    Shah, V.; Jaeglé, L.; Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Selin, N. E.; Song, S.; Campos, T. L.; Flocke, F. M.; Reeves, M.; Stechman, D.; Stell, M.; Festa, J.; Stutz, J.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Tyndall, G. S.; Apel, E. C.; Hornbrook, R. S.; Hills, A. J.; Riemer, D. D.; Blake, N. J.; Cantrell, C. A.; Mauldin, R. L., III

    2016-02-01

    We collected mercury observations as part of the Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) aircraft campaign over the southeastern US between 1 June and 15 July 2013. We use the GEOS-Chem chemical transport model to interpret these observations and place new constraints on bromine radical initiated mercury oxidation chemistry in the free troposphere. We find that the model reproduces the observed mean concentration of total atmospheric mercury (THg) (observations: 1.49 ± 0.16 ng m-3, model: 1.51 ± 0.08 ng m-3), as well as the vertical profile of THg. The majority (65 %) of observations of oxidized mercury (Hg(II)) were below the instrument's detection limit (detection limit per flight: 58-228 pg m-3), consistent with model-calculated Hg(II) concentrations of 0-196 pg m-3. However, for observations above the detection limit we find that modeled Hg(II) concentrations are a factor of 3 too low (observations: 212 ± 112 pg m-3, model: 67 ± 44 pg m-3). The highest Hg(II) concentrations, 300-680 pg m-3, were observed in dry (RH < 35 %) and clean air masses during two flights over Texas at 5-7 km altitude and off the North Carolina coast at 1-3 km. The GEOS-Chem model, back trajectories and observed chemical tracers for these air masses indicate subsidence and transport from the upper and middle troposphere of the subtropical anticyclones, where fast oxidation of elemental mercury (Hg(0)) to Hg(II) and lack of Hg(II) removal lead to efficient accumulation of Hg(II). We hypothesize that the most likely explanation for the model bias is a systematic underestimate of the Hg(0) + Br reaction rate. We find that sensitivity simulations with tripled bromine radical concentrations or a faster oxidation rate constant for Hg(0) + Br, result in 1.5-2 times higher modeled Hg(II) concentrations and improved agreement with the observations. The modeled tropospheric lifetime of Hg(0) against oxidation to Hg(II) decreases from 5 months in the

  3. Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al2O3 at lower temperatures.

    PubMed

    Li, Jianfeng; Yan, Naiqiang; Qu, Zan; Qiao, Shaohua; Yang, Shijian; Guo, Yongfu; Liu, Ping; Jia, Jinping

    2010-01-01

    In order to facilitate the removal of elemental mercury (Hg(0)) from coal-fired flue gas, catalytic oxidation of Hg(0) with manganese oxides supported on inert alumina (alpha-Al2O3) was investigated at lower temperatures (373-473 K). To improve the catalytic activity and the sulfur-tolerance of the catalysts at lower temperatures, several metal elements were employed as dopants to modify the catalyst of Mn/alpha-Al2O3. The best performance among the tested elements was achieved with molybdenum (Mo) as the dopant in the catalysts. It can work even better than the noble metal catalyst Pd/alpha-Al2O3. Additionally, the Mo doped catalyst displayed excellent sulfur-tolerance performance at lower temperatures, and the catalytic oxidation efficiency for Mo(0.03)-Mn/alpha-Al2O3 was over 95% in the presence of 500 ppm SO2 versus only about 48% for the unmodified catalyst. The apparent catalytic reaction rate constant increased by approximately 5.5 times at 423 K. In addition, the possible mechanisms involved in Hg(0) oxidation and the reaction with the Mo modified catalyst have been discussed.

  4. Determination of mercury in gold bullion by flame and graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Hinds, Michael W.

    1998-08-01

    A procedure was developed to determine mercury in unrefined gold by flame and graphite furnace atomic absorption spectrometry (FAAS and GFAAS). High acid content (60-80% of concentrated HCl in water) was needed to keep silver (usually present with gold deposits) in solution as a chloro-complex. Although Hg determinations by FAAS and GFAAS have poor sensitivity, the relatively high concentrations of Hg (0.02-0.2%) are well within the capabilities of these techniques. No significant difference was observed between concentration values obtained from these techniques and those obtained by inductively coupled plasma atomic emission spectrometry (ICP-AES) with the same sample. The limit of detection (3 s) was found to be approximately 20 μg g -1 for both GFAAS and FAAS determinations. However, FAAS is the recommended method due to simplicity of operation, higher sample throughput, low cost, and ease of method transfer to other laboratories.

  5. Survey of catalysts for oxidation of mercury in flue gas.

    PubMed

    Presto, Albert A; Granite, Evan J

    2006-09-15

    Methods for removing mercury from flue gas have received increased attention because of recent limitations placed on mercury emissions from coal-fired utility boilers by the U. S. Environmental Protection Agency and various states. A promising method for mercury removal is catalytic oxidation of elemental mercury (Hg0) to oxidized mercury (Hg2+), followed by wet flue gas desulfurization (FGD). FGD cannot remove Hg0, but easily removes Hg2+ because of its solubility in water. To date, research has focused on three broad catalyst areas: selective catalytic reduction catalysts, carbon-based materials, and metals and metal oxides. We review published results for each type of catalyst and also present a discussion on the possible reaction mechanisms in each case. One of the major sources of uncertainty in understanding catalytic mercury oxidation is a lack of knowledge of the reaction mechanisms and kinetics. Thus, we propose that future research in this area should focus on two major aspects: determining the reaction mechanism and kinetics and searching for more cost-effective catalyst and support materials.

  6. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  7. Rectal absorption of propylthiouracil.

    PubMed

    Bartle, W R; Walker, S E; Silverberg, J D

    1988-06-01

    The rectal absorption of propylthiouracil (PTU) was studied and compared to oral absorption in normal volunteers. Plasma levels of PTU after administration of suppositories of PTU base and PTU diethanolamine were significantly lower compared to the oral route. Elevated plasma reverse T3 levels were demonstrated after each treatment, however, suggesting a desirable therapeutic effect at this dosage level for all preparations.

  8. Hg⁰ removal from flue gas by ionic liquid/H₂O₂.

    PubMed

    Cheng, Guangwen; Bai, Bofeng; Zhang, Qiang; Cai, Ming

    2014-09-15

    1-Alkyl-3-methylimidazolium chloride ionic liquids ([Cnmim] Cl, n=4, 6, 8) were prepared. The ionic liquid was then mixed with hydrogen peroxide (H2O2) to form an absorbent. The Hg(0) removal performance of the absorbent was investigated in a gas/liquid scrubber using simulated flue gas. It was found that the ionic liquid/H2O2 mixture was an excellent absorbent and could be used to remove Hg(0) from flue gas. When the mass ratio of H2O2 to ionic liquid was 0.5, the absorbent showed high Hg(0) removal efficiency (up to 98%). The Hg(0) removal efficiency usually increased with the absorption temperature, while decreased with the increase of alkyl chain length in ionic liquid molecule. The Hg(0) removal mechanism involved with Hg(0) oxidation by H2O2 and Hg(2+) transfer from aqueous phase to ionic liquid phase.

  9. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.

    PubMed

    Butun, Serkan; Aydin, Koray

    2014-08-11

    Light absorption is a fundamental optical process playing significantly important role in wide variety of applications ranging from photovoltaics to photothermal therapy. Semiconductors have well-defined absorption bands with low-energy edge dictated by the band gap energy, therefore it is rather challenging to tune the absorption bandwidth of semiconductors. However, resonant absorbers based on plasmonic nanostructures and optical metamaterials emerged as alternative light absorbers due to spectrally selective absorption bands resulting from optical resonances. Recently, a broadband plasmonic absorber design was introduced by Aydin et al. with a reasonably high broadband absorption. Based on that design, here, structurally tunable, broadband absorbers with improved performance are demonstrated. This broadband absorber has a total thickness of 190 nm with 80% average measured absorption (90% simulated absorption) over the entire visible spectrum (400 - 700 nm). Moreover, the effect of the metal and the oxide thicknesses on the absorption spectra are investigated and results indicate that the shorter and the longer band-edge of broadband absorption can be structurally tuned with the metal and the oxide thicknesses, as well as with the resonator size. Detailed numerical simulations shed light on the type of optical resonances that contribute to the broadband absorption response and provide a design guideline for realizing plasmonic absorbers with structurally tunable bandwidths.

  10. X-ray absorption spectroscopy on layered photosystem II membrane particles suggests manganese-centered oxidation of the oxygen-evolving complex for the S0-S1, S1-S2, and S2-S3 transitions of the water oxidation cycle.

    PubMed

    Iuzzolino, L; Dittmer, J; Dörner, W; Meyer-Klaucke, W; Dau, H

    1998-12-08

    By application of microsecond light flashes the oxygen-evolving complex (OEC) was driven through its functional cycle, the S-state cycle. The S-state population distribution obtained by the application of n flashes (n = 0. 6) was determined by analysis of EPR spectra; Mn K-edge X-ray absorption spectra were collected. Taking into consideration the likely statistical error in the data and the variability stemming from the use of three different approaches for the determination of edge positions, we obtained an upshift of the edge position by 0.8-1.5, 0.5-0.9, and 0.6-1.3 eV for the S0-S1, S1-S2, and S2-S3 transitions, respectively, and a downshift by 2.3-3.1 eV for the S3-S0 transition. These results are highly suggestive of Mn oxidation state changes for all four S-state transitions. In the S0-state spectrum, a clearly resolved shoulder in the X-ray spectrum around 6555 eV points toward the presence of Mn(II). We propose that photosynthetic oxygen evolution involves cycling of the photosystem II manganese complex through four distinct oxidation states of this tetranuclear complex: Mn(II)-Mn(III)-Mn(IV)2 in the S0-state, Mn(III)2-Mn(IV)2 in the S1-state, Mn(III)1-Mn(IV)3 in the S2-state, and Mn(IV)4 in the S3-state.

  11. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  12. [Study on cadmium absorption in pumpkin by atomic absorption spectrophotometry].

    PubMed

    Li, Zhen-Xia; Jing, Rui-Jun; Dong, Wei-Hua; Li, Xin-Zheng; Liu, Hong

    2006-08-01

    A study was carried out on the characteristic of cadmium absorption in pumpkin by atomic absorption spectrophotometer. The results show that the cadmium absorption amount in pumpkin increased with the increase in cadmium concentration. Meanwhile the cadmium absorption amount in pumpkin increased with time. Eight hours after being cultured in the liquid, the cadmium absorption amount became saturated. The cadmium absorption rate reached the peak after 2 hours, then the absorption rate gradually reduced. The cadmium absorption amount in pumpkin is less in acid or alkali compared with neutral condition. And the absorption amount became minimum in pH 3, while maximum in pH 7.

  13. AQUEOUS REDUCTION OF HG2+ TO HG0 BY HO2 IN THE CMAQ-MODEL

    EPA Science Inventory

    Numerical models of atmospheric mercury are formulated based on the current understanding of mercury chemistry in air and in atmospheric water. Recent evidence that significant reduction of Hg2+ by reaction with HO2 may not actually occur in natural atmospheric water has obviou...

  14. Thermophysical Properties and Structural Transition of Hg(0.8)Cd(0.2)Te Melt

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.; Lehoczky, S. L.

    2004-01-01

    Thermophysical properties, namely, density, viscosity, and electrical conductivity of Hg(sub o.8)Cd(sub 0.2)Te melt were measured as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were simultaneously determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(sub o.8)Cd(sub 0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(sub 0.8)Cd(0.2)Te melt as the temperature was decreased from 1090 K to the liquidus temperature.

  15. Thermophysical Properties and Structural Transition of Hg(0.8)Cd(0.2)Te Melt

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.; Lehoczky, S. L.

    2004-01-01

    Thermophysical properties, namely, density, viscosity, and electrical conductivity of Hg(sub o.8)Cd(sub 0.2)Te melt were measured as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were simultaneously determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(sub o.8)Cd(sub 0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(sub 0.8)Cd(0.2)Te melt as the temperature was decreased from 1090 K to the liquidus temperature.

  16. PERFORMANCE OF A NEW DIFFUSIVE SAMPLER FOR HG0 DETERMINATION IN THE TROPOSPHERE

    EPA Science Inventory

    Mercury behaves uniquely in the atmosphere due to its volatility and long lifetime. The existing methods for measuring atmospheric mercury are either expensive or labour intensive. The present paper presents a new measurement technique, the diffusive sampler, that is portable, in...

  17. Binding of Vapour-Phase Mercury (Hg0) on Chemically Treated Bauxite Residues (Red Mud)

    EPA Science Inventory

    In this study, Hg capture using red mud, seawater-neutralized red mud, and acid-treated red mud is evaluated and compared to other, more conventional sorbent materials. Red mud (also known as bauxite residue) is a by-product of extracting alumina from ground bauxite ore by treati...

  18. Binding of Vapour-Phase Mercury (Hg0) on Chemically Treated Bauxite Residues (Red Mud)

    EPA Science Inventory

    In this study, Hg capture using red mud, seawater-neutralized red mud, and acid-treated red mud is evaluated and compared to other, more conventional sorbent materials. Red mud (also known as bauxite residue) is a by-product of extracting alumina from ground bauxite ore by treati...

  19. Commensurate magnetic structure of CeRhIn4.85 Hg0.15

    SciTech Connect

    Bao, Wei C; Ronning, Filip; Bauer, Eric D; Thompson, Joe D; Gasparovic, Y; Lynn, J; Fisk, Z

    2008-01-01

    We show using neutron diffraction that the magnetic structure of CrRhIn{sub 4.85}Hg{sub 0.15} is characterized by a commensurate propagation vector (1,2,1/2,1/2). This is different from the magnetic structure in the parent compound CeRhIn{sub 5}, which orders with an incommensurate propagation vector (1/2,1/2,0.297). The special relation between the commensurate magnetic mode and unconventional superconductivity has been shown previously for this class of heavy fermion superconductors. This work provides further evidence for the ubiquity of this antiferromagnetic mode.

  20. AQUEOUS REDUCTION OF HG2+ TO HG0 BY HO2 IN THE CMAQ-MODEL

    EPA Science Inventory

    Numerical models of atmospheric mercury are formulated based on the current understanding of mercury chemistry in air and in atmospheric water. Recent evidence that significant reduction of Hg2+ by reaction with HO2 may not actually occur in natural atmospheric water has obviou...

  1. PERFORMANCE OF A NEW DIFFUSIVE SAMPLER FOR HG0 DETERMINATION IN THE TROPOSPHERE

    EPA Science Inventory

    Mercury behaves uniquely in the atmosphere due to its volatility and long lifetime. The existing methods for measuring atmospheric mercury are either expensive or labour intensive. The present paper presents a new measurement technique, the diffusive sampler, that is portable, in...

  2. Effects of H ₂SO₄ and O ₂ on Hg⁰ uptake capacity and reversibility of sulfur-impregnated activated carbon under dynamic conditions.

    PubMed

    Wei, Yuanyang; Yu, Danqing; Tong, Shitang; Jia, Charles Q

    2015-02-03

    Powder activated carbon (AC) injection is widely considered as the most viable technology for removing gaseous elemental mercury (Hg(0)) in flue gases of coal-fired power plants. However, sulfuric acid (H2SO4) can form on the external and internal surfaces of AC particles due to the presence of sulfur oxides, nitrogen oxides, oxygen, and moisture in flue gases. This work focuses on the effects of H2SO4 and O2 on the Hg(0) uptake capacity and reversibility of sulfur impregnated activated carbon (SIAC) under dynamic conditions. Experiments were conducted with 25 μg-Hg(0)/m(3) of nitrogen or air, using a semicontinuous flow fixed-bed reactor kept at 120 or 180 °C. H2SO4 had a profound hindering effect on Hg(0) uptake due to pore blockage. O2 significantly enhanced Hg(0) uptake and its reversibility, via the oxidation of Hg(0) which facilitated chemisorption and the subsequent physisorption onto chemically adsorbed Hg. Absorption of Hg in H2SO4 was unlikely a significant contributor, when Hg(0) concentrations were at levels of typical power plants (tens of ppb). The reversibility of and relative contributions of physisorption and chemisorption to Hg(0) uptake would change with Hg(0) concentrations in flue gases. These findings could be significant in developing a complete solution for Hg capture where the handling of spent sorbent materials and the possible secondary pollution need to be considered.

  3. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  4. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  5. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  6. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  7. Soliton absorption spectroscopy

    PubMed Central

    Kalashnikov, V. L.; Sorokin, E.

    2010-01-01

    We analyze optical soliton propagation in the presence of weak absorption lines with much narrower linewidths as compared to the soliton spectrum width using the novel perturbation analysis technique based on an integral representation in the spectral domain. The stable soliton acquires spectral modulation that follows the associated index of refraction of the absorber. The model can be applied to ordinary soliton propagation and to an absorber inside a passively modelocked laser. In the latter case, a comparison with water vapor absorption in a femtosecond Cr:ZnSe laser yields a very good agreement with experiment. Compared to the conventional absorption measurement in a cell of the same length, the signal is increased by an order of magnitude. The obtained analytical expressions allow further improving of the sensitivity and spectroscopic accuracy making the soliton absorption spectroscopy a promising novel measurement technique. PMID:21151755

  8. Olefin recovery via chemical absorption

    SciTech Connect

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  9. Spectral dependences of extrinsic optical absorption in sillenite crystals

    SciTech Connect

    Kisteneva, M G; Khudyakova, E S; Shandarov, S M; Akrestina, A S; Dyu, V G; Kargin, Yu F

    2015-07-31

    The influence of laser irradiation at wavelengths of 532 and 655 nm and annealing in air at temperatures from 200 to 370 °C on optical absorption spectra of undoped bismuth silicon oxide and bismuth germanium oxide and aluminium-doped bismuth titanium oxide crystals has been studied experimentally. The experimental data have been interpreted in terms of a model for extrinsic absorption that takes into account not only the contribution of the photoexcitation of electrons from deep donor centres with a normal distribution of their concentration with respect to ionisation energy but also that of intracentre transitions. (laser applications and other topics in quantum electronics)

  10. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  11. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  12. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  13. Intranasal absorption of oxymorphone.

    PubMed

    Hussain, M A; Aungst, B J

    1997-08-01

    The nasal bioavailability of oxymorphone HCI was determined. Rats were surgically prepared to isolate the nasal cavity, into which a solution of oxymorphone was administered. A reference group of rats was administered oxymorphone HCl intravenously. Plasma oxymorphone concentrations were determined by HPLC. Nasal absorption was rapid, nasal bioavailability was 43%, and the iv and nasal elimination profiles were similar. Oxymorphone HCI appears to have the solubility, potency, and absorption properties required for efficient nasal delivery, which is an alternative to injections.

  14. Optical absorption spectra of dications of carotenoids

    SciTech Connect

    Jeevarajan, J.A.; Wei, C.C.; Jeevarajan, A.S.; Kispert, L.D.

    1996-04-04

    Quantitative optical absorption spectra of the cation radicals and the dications of canthaxanthin (I), {beta}carotene (II), 7`-cyano-7`-ethoxycarbonyl-7`-apo-{beta}-carotene (III), and 7`,7`-dimethyl-7`-apo-{beta}-carotene (IV) in dichloromethane solution are reported. Exclusive formation of dications occurs when the carotenoids are oxidized with ferric chloride. Addition of neutral carotenoid to the dications results in equilibrium formation of cation radicals. Oxidation with iodine in dichloromethane affords only cation radicals; electrochemical oxidation under suitable conditions yields both dications and cation radicals. Values of the optical parameters depend on the nature of the oxidative medium. The oscillator strengths calculated for gas phase cation radicals and dications of I-IV using the INDO/S method show the same trend as the experimental values. 31 refs., 4 figs., 2 tabs.

  15. Investigation of the Uranium Solubility and Absorption

    NASA Astrophysics Data System (ADS)

    Anicin, I.; Banjanac, R.; Dragic, A.; Jokovic, D.; Udovicic, V.

    2005-01-01

    Particles of uranium oxides were produced by combustion of depleted uranium (isotopic contents: 99.8% 238U, 0.2% 235U). Solubility of uranium oxides as well as solubility of metallic uranium in water of various pH values was investigated by x-ray spectroscopy. Also, eventual absorption of dissolved uranium oxides by plants from uranium contaminated ground was investigated. A thin uranium-oxide layer was spread on the soil planted with various vegetables. After a two-month vegetation period the uranium originated radioactivity in the vegetable samples were measured by x-ray spectroscopy and compared with the measurements of samples treated likewise, but in soil without addition of uranium. Due to low radioactivity of the vegetable samples, the spectra were analyzed using Bayesian inference, too.

  16. Mercury Adsorption and Oxidation over Cobalt Oxide Loaded Magnetospheres Catalyst from Fly Ash in Oxyfuel Combustion Flue Gas.

    PubMed

    Yang, Jianping; Zhao, Yongchun; Chang, Lin; Zhang, Junying; Zheng, Chuguang

    2015-07-07

    Cobalt oxide loaded magnetospheres catalyst from fly ash (Co-MF catalyst) showed good mercury removal capacity and recyclability under air combustion flue gas in our previous study. In this work, the Hg(0) removal behaviors as well as the involved reactions mechanism were investigated in oxyfuel combustion conditions. Further, the recyclability of Co-MF catalyst in oxyfuel combustion atmosphere was also evaluated. The results showed that the Hg(0) removal efficiency in oxyfuel combustion conditions was relative high compared to that in air combustion conditions. The presence of enriched CO2 (70%) in oxyfuel combustion atmosphere assisted the mercury oxidation due to the oxidation of function group of C-O formed from CO2. Under both atmospheres, the mercury removal efficiency decreased with the addition of SO2, NO, and H2O. However, the enriched CO2 in oxyfuel combustion atmosphere could somewhat weaken the inhibition of SO2, NO, and H2O. The multiple capture-regeneration cycles demonstrated that the Co-MF catalyst also present good regeneration performance in oxyfuel combustion atmosphere.

  17. Ultraviolet Absorption by Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Madronich, S.; Lee-Taylor, J. M.; Hodzic, A.; Aumont, B.

    2014-12-01

    Secondary organic aerosols (SOA) are typically formed in the atmosphere by the condensation of a myriad of intermediates from the photo-oxidation of volatile organic compounds (VOCs). Many of these partly oxidized molecules have functional groups (chromophores) that absorb at the ultraviolet (UV) wavelengths available in the troposphere (λ ≳ 290 nm). We used the explicit chemical model GECKO-A (Generator of Explicit Chemistry and Kinetics for Organics in the Atmosphere) to estimate UV absorption cross sections for the gaseous and particulate components of SOA from different precursors (biogenic and anthropogenic) and formed in different environments (low and high NOx, day and night). Model predictions are evaluated with laboratory and field measurements of SOA UV optical properties (esp. mass absorption coefficients and single scattering albedo), and implications are presented for surface UV radiation trends, urban actinic flux modification, and SOA lifetimes.

  18. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  19. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  20. Selenium-mercury interaction during intestinal absorption of /sup 75/Se compounds in chicks

    SciTech Connect

    Mykkaenen, H.M.M.; Metsaeniitty, L.

    1987-08-01

    The effects of inorganic (HgCl/sub 2/) and organic (CH/sub 3/HgCl) mercury on the intestinal absorption of Se compounds (Na/sub 2/(75)SeO/sub 3/, Na/sub 2/(75)SeO4, L-(/sup 75/Se)methionine ((/sup 75/Se)Met)) were determined in 3-wk-old White Leghorn cockerels by the in vivo ligated duodenal loop procedure. The intraduodenal dose contained 0.05 microCi /sup 75/Se, 0.01 mM Se, 150 mM NaCl and 0-1.0 mM Hg. In the presence of 1 mM inorganic Hg in the intraduodenal dose, the absorption of the inorganic /sup 75/Se compounds was only about 65% of that in the control group, whereas only a slight inhibitory effect on (/sup 75/Se)Met absorption was observed. Methylmercury had no effect on (/sup 75/Se)selenite absorption. Precipitation of the /sup 75/Se-selenite in the intestinal lumen partly explained the direct interaction between inorganic Hg and Se compounds. Absorption of (/sup 75/Se)Met and (/sup 75/Se)selenite was also determined in chicks fed after hatching a purified diet supplemented with varying amounts of Hg (0-500 mg/kg) and Se (0-4 mg/kg). Dietary Hg significantly reduced the transfer of (/sup 75/Se)selenite to body by enhancing the accumulation of the isotope in the intestinal tissue. Dietary Hg did not affect the absorption of (/sup 75/Se)Met, but altered the whole-body distribution of this Se compound. Because interaction between Se and Hg was observed mainly between the inorganic compounds and with use of a manyfold excess of Hg over Se, the data suggest that intestinal interaction between these metals is not of great nutritional importance.

  1. An investigation of the Fe and Mo oxidation states in Sr[subscript 2]Fe[subscript 2]Mo[subscript x]O[subscript 6] (0.25 [less than] x [less than] 1.0) double perovskites by X-ray absorption spectroscopy

    SciTech Connect

    Hayes, John R.; Grosvenor, Andrew P.

    2012-10-25

    Sr{sub 2}FeMoO{sub 6} double perovskite systems are widely studied because of their interesting and technologically relevant physical properties. Sr{sub 2}FeMoO{sub 6} is just a single composition in the Sr{sub 2}Fe{sub 2-x}Mo{sub x}O{sub 6} solid-solution, and it is important to understand how the composition impacts the transition-metal valence states. Variations in the lattice parameters of these materials were studied using powder X-ray diffraction and it was found that a large change in the lattice constant occurs between Sr{sub 2}Fe{sub 1.50}Mo{sub 0.50}O{sub 6} and Sr{sub 2}Fe{sub 1.35}Mo{sub 0.65}O{sub 6} that likely coincides with a transition from a cubic to a tetragonal unit cell, in agreement with previous studies. Fe K- and Mo K-edge X-ray absorption near-edge spectra were also collected to investigate how the oxidation state and coordination environment change with composition. When the Mo content is low, Fe adopts a 3+ oxidation state and Mo adopts a 6+ oxidation state. As the Mo content is increased, the Fe and Mo cations are both partially reduced, resulting in a mixture of Fe{sup 3+} and Fe{sup 2+} and Mo{sup 5+} and Mo{sup 6+}. The reduction of the metal centers apparently drives the change in unit cell. The influence of preparation method on the oxidation states of Fe and Mo was also investigated by annealing the materials under vacuum. The results reported here show that the oxidation states of Fe and Mo are strongly impacted by both composition and preparation method, which may account for the wide variety of oxidation state and magnetic properties that have been reported previously.

  2. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  3. The two-photon absorptivity of rotational transitions in the A2 Sigma hyperon + (v prime = O) - X-2 pion (v prime prime = O) gamma band of nitric oxide

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1982-01-01

    A predominantly single-mode pulsed dye laser system giving a well characterized spatial and temporal output suitable for absolute two-photon absorptivity measurements was used to study the NO gamma(0,0) S11 + R21 (J double prime = 7-1/2) transition. Using a calibrated induced-fluorescence technique, an absorptivity parameter of 2.8 + or - 1.4 x 10 to the minus 51st power cm to the 6th power was obtained. Relative strengths of other rotational transitions in the gamma(0,0) band were also measured and shown to compare well with predicted values in all cases except the O12 (J double prime = 10-1/2) transition.

  4. Nitrogen dioxide absorption in aqueous sodium sulfite

    NASA Astrophysics Data System (ADS)

    Shen, Chen Hua

    The Clean Air Act of 1990 requires additional reduction of acid gases, sulfur dioxide, and nitrogen oxides released into the atmosphere from coal-fired electric power plants. In the case of older existing power plants, a possible retrofit strategy is to oxidize nitric oxide (NO, the major constituent of NOsbX in flue gas) to nitrogen dioxide (NOsb2) by the addition of methanol or other hydrocarbons into the duct at an optimum temperature regime. NOsb2 can then be removed by either modifying existing SOsb2 control equipment or by adding a limestone (CaCOsb3) slurry scrubbing process. Limestone reacts with SOsb2 to from CaSOsb3, and the free sulfite (SO{sb3sp{=}}) in the solution is reactive toward NOsb2. The focus of this research is to study the reaction between NOsb2 and aqueous sulfite at elevated temperature and in the presence of gas phase Osb2. The removal of NOsb2 by limestone slurry scrubbing involves the reaction between NOsb2 and SO{sb3sp{=}}, bisulfite (HSO{sb3sp{-}}) and water. The reactions between NOsb2 and SO{sb3sp{=}}/HSO{sb3sp{-}} are first order in both reactants, while the NOsb2-water reaction is second order in NOsb2 concentration. The rate constants of the above reactions and the NOsb2-thiosulfate (Ssb2O{sb3sp{=}}) reaction were determined at 55sp°C. SO{sb3sp{=}} was found to be the most reactive toward NOsb2, while the contribution of chemical reaction still dominated in the absorption of NOsb2 into water. The effect of gas phase SOsb2 and Osb2, and liquid phase additives such as Ssb2O{sb3sp{=}}, Casp{++}, Mgsp{++}, and Clsp{-} on NOsb2 absorption was also investigated. The absorption of NOsb2 catalyzes free radical reactions that lead to sulfite oxidation. A semi-empirical model was proposed to relate the rate of sulfite oxidation to the rate of NOsb2 absorption. Thiosulfate inhibits sulfite oxidation by providing an alternative route for the termination of the free radical reactions, and a fundamental model was derived to quantify the effect

  5. Removing sulphur oxides from a fluid stream

    DOEpatents

    Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan

    2014-04-08

    A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.

  6. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  7. Visual Absorption Capability

    Treesearch

    Lee Anderson; Jerry Mosier; Geoffrey Chandler

    1979-01-01

    Visual absorption capability (VAC) is a tool to assess a landscape's susceptibility to visual change caused by man's activities. This paper explores different descriptive approaches to VAC and addresses in depth the development of the VAC process used on the Klamath National Forest. Four biophysical factors were selected to assess VAC for the lands within the...

  8. Bioacoustic Absorption Spectroscopy

    DTIC Science & Technology

    2016-06-07

    simulation of the effects of absorptivity due to fish on transmission loss in shallow water, Proceedings of the Oceans 96 Conference, IEEE Press. PATENTS ...The Naval Research Laboratory has decided to apply for an international patent on my design of low cost, ultra-wide bandwidth, light weight, autonomous

  9. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  10. Accumulation and oxidation of elemental mercury in tropical soils.

    PubMed

    Soares, Liliane Catone; Egreja Filho, Fernando Barboza; Linhares, Lucília Alves; Windmoller, Cláudia Carvalhinho; Yoshida, Maria Irene

    2015-09-01

    The role of chemical and mineralogical soil properties in the retention and oxidation of atmospheric mercury in tropical soils is discussed based on thermal desorption analysis. The retention of gaseous mercury by tropical soils varied greatly both quantitatively and qualitatively with soil type. The average natural mercury content of soils was 0.08 ± 0.06 μg g(-1) with a maximum of 0.215 ± 0.009 μg g(-1). After gaseous Hg(0) incubation experiments, mercury content of investigated soils ranged from 0.6 ± 0.2 to 735 ± 23 μg g(-1), with a mean value of 44 ± 146 μg g(-1). Comparatively, A horizon of almost all soil types adsorbed more mercury than B horizon from the same soil, which demonstrates the key role of organic matter in mercury adsorption. In addition to organic matter, pH and CEC also appear to be important soil characteristics for the adsorption of mercury. All thermograms showed Hg(2+) peaks, which were predominant in most of them, indicating that elemental mercury oxidized in tropical soils. After four months of incubation, the thermograms showed oxidation levels from 70% to 100%. As none of the samples presented only the Hg(0) peak, and the soils retained varying amounts of mercury despite exposure under the same incubation conditions, it became clear that oxidation occurred on soil surface. Organic matter seemed to play a key role in mercury oxidation through complexation/stabilization of the oxidized forms. The lower percentages of available mercury (extracted with KNO3) in A horizons when compared to B horizons support this idea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Coupled Mercury–Cell Sorption, Reduction, and Oxidation on Methylmercury Production by Geobacter sulfurreducens PCA

    SciTech Connect

    Lin, Hui; Morrell-Falvey, Jennifer L.; Rao, Balaji; Liang, Liyuan; Gu, Baohua

    2014-09-30

    G. sulfurreducens PCA cells have been shown to reduce, sorb, and methylate Hg(II) species, but it is unclear whether this organism can oxidize and methylate dissolved elemental Hg(0) as shown for Desulfovibrio desulfuricans ND132. Using Hg(II) and Hg(0) separately as Hg sources in washed cell assays in phosphate buffered saline (pH 7.4), in this paper we report how cell-mediated Hg reduction and oxidation compete or synergize with sorption, thus affecting the production of toxic methylmercury by PCA cells. Methylation is found to be positively correlated to Hg sorption (r = 0.73) but negatively correlated to Hg reduction (r = -0.62). These reactions depend on the Hg and cell concentrations or the ratio of Hg to cellular thiols (-SH). Oxidation and methylation of Hg(0) are favored at relatively low Hg to cell–SH molar ratios (e.g., <1). Increasing Hg to cell ratios from 0.25 × 10–19 to 25 × 10–19 moles-Hg/cell (equivalent to Hg/cell–SH of 0.71 to 71) shifts the major reaction from oxidation to reduction. In the absence of five outer membrane c-type cytochromes, mutant ΔomcBESTZ also shows decreases in Hg reduction and increases in methylation. However, the presence of competing thiol-binding ions such as Zn2+ leads to increased Hg reduction and decreased methylation. Finally, these results suggest that the coupled cell-Hg sorption and redox transformations are important in controlling the rates of Hg uptake and methylation by G. sulfurreducens PCA in anoxic environments.

  12. Coupled mercury-cell sorption, reduction, and oxidation on methylmercury production by Geobacter sulfurreducens PCA.

    PubMed

    Lin, Hui; Morrell-Falvey, Jennifer L; Rao, Balaji; Liang, Liyuan; Gu, Baohua

    2014-10-21

    G. sulfurreducens PCA cells have been shown to reduce, sorb, and methylate Hg(II) species, but it is unclear whether this organism can oxidize and methylate dissolved elemental Hg(0) as shown for Desulfovibrio desulfuricans ND132. Using Hg(II) and Hg(0) separately as Hg sources in washed cell assays in phosphate buffered saline (pH 7.4), we report how cell-mediated Hg reduction and oxidation compete or synergize with sorption, thus affecting the production of toxic methylmercury by PCA cells. Methylation is found to be positively correlated to Hg sorption (r = 0.73) but negatively correlated to Hg reduction (r = -0.62). These reactions depend on the Hg and cell concentrations or the ratio of Hg to cellular thiols (-SH). Oxidation and methylation of Hg(0) are favored at relatively low Hg to cell-SH molar ratios (e.g., <1). Increasing Hg to cell ratios from 0.25 × 10(-19) to 25 × 10(-19) moles-Hg/cell (equivalent to Hg/cell-SH of 0.71 to 71) shifts the major reaction from oxidation to reduction. In the absence of five outer membrane c-type cytochromes, mutant ΔomcBESTZ also shows decreases in Hg reduction and increases in methylation. However, the presence of competing thiol-binding ions such as Zn(2+) leads to increased Hg reduction and decreased methylation. These results suggest that the coupled cell-Hg sorption and redox transformations are important in controlling the rates of Hg uptake and methylation by G. sulfurreducens PCA in anoxic environments.

  13. Coupled Mercury–Cell Sorption, Reduction, and Oxidation on Methylmercury Production by Geobacter sulfurreducens PCA

    DOE PAGES

    Lin, Hui; Morrell-Falvey, Jennifer L.; Rao, Balaji; ...

    2014-09-30

    G. sulfurreducens PCA cells have been shown to reduce, sorb, and methylate Hg(II) species, but it is unclear whether this organism can oxidize and methylate dissolved elemental Hg(0) as shown for Desulfovibrio desulfuricans ND132. Using Hg(II) and Hg(0) separately as Hg sources in washed cell assays in phosphate buffered saline (pH 7.4), in this paper we report how cell-mediated Hg reduction and oxidation compete or synergize with sorption, thus affecting the production of toxic methylmercury by PCA cells. Methylation is found to be positively correlated to Hg sorption (r = 0.73) but negatively correlated to Hg reduction (r = -0.62).more » These reactions depend on the Hg and cell concentrations or the ratio of Hg to cellular thiols (-SH). Oxidation and methylation of Hg(0) are favored at relatively low Hg to cell–SH molar ratios (e.g., <1). Increasing Hg to cell ratios from 0.25 × 10–19 to 25 × 10–19 moles-Hg/cell (equivalent to Hg/cell–SH of 0.71 to 71) shifts the major reaction from oxidation to reduction. In the absence of five outer membrane c-type cytochromes, mutant ΔomcBESTZ also shows decreases in Hg reduction and increases in methylation. However, the presence of competing thiol-binding ions such as Zn2+ leads to increased Hg reduction and decreased methylation. Finally, these results suggest that the coupled cell-Hg sorption and redox transformations are important in controlling the rates of Hg uptake and methylation by G. sulfurreducens PCA in anoxic environments.« less

  14. Perspectives on iron absorption.

    PubMed

    Hallberg, Leif; Hulthén, Lena

    2002-01-01

    Newly established relationships between dietary iron absorption and serum ferritin and between serum ferritin and iron stores permit calculation of amounts of stored iron under different conditions at steady states when absorption equals losses. The rate of growth of stores can also be calculated. All calculations are based on observations and require no model assumptions. Present analyses demonstrated an effective control of iron absorption preventing development of iron overload in otherwise healthy subjects even if the diet is fortified with iron and even if meat intake is high. There are strong relationships between iron requirements, bioavailability of dietary iron, and amounts of stored iron. Our observations that a reduction in iron stores and a calculated decrease of hemoglobin iron had the same increasing effect on iron absorption suggest that the control of iron absorption is mediated from a common cell, which may register both size of iron stores and hemoglobin iron deficit. We suggest that the hepatocyte is that cell. Nutritional iron deficiency is especially critical in menstruating women, in the latter third of pregnancy, during adolescence for both girls and boys, and in the weaning period from 4 to 6 months to 2 years of age. The body possesses remarkable, potential control systems of probable very ancient origin capable of preventing both iron deficiency and iron overload. Present problems with iron deficiency being the most frequent deficiency disorder are related to nonbiological changes in our societies over the most recent 10,000 years. This perspective on iron homeostasis or iron balance is mainly based on studies in humans of clinical and epidemiological observations, trying to understand why iron deficiency is the most frequent deficiency disorder in the world in spite of the ingenious mechanisms in the body that should prevent it. Withdrawal of iron fortification of flour in Sweden in 1994 led to a significant increase in iron deficiency

  15. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  16. Quantum absorption refrigerator.

    PubMed

    Levy, Amikam; Kosloff, Ronnie

    2012-02-17

    A quantum absorption refrigerator driven by noise is studied with the purpose of determining the limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously to hot, cold, and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics. The third law is quantified; the cooling power J(c) vanishes as J(c) ∝ T(c)(α), when T(c)→0, where α=d+1 for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic field, where d is the dimension of the bath.

  17. Acoustic absorption by sunspots

    NASA Technical Reports Server (NTRS)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1987-01-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  18. Vehicular impact absorption system

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.; Wilson, A. H. (Inventor)

    1978-01-01

    An improved vehicular impact absorption system characterized by a plurality of aligned crash cushions of substantially cubic configuration is described. Each consists of a plurality of voided aluminum beverage cans arranged in substantial parallelism within a plurality of superimposed tiers and a covering envelope formed of metal hardware cloth. A plurality of cables is extended through the cushions in substantial parallelism with an axis of alignment for the cushions adapted to be anchored at each of the opposite end thereof.

  19. Hydrogen Absorption by Niobium.

    DTIC Science & Technology

    1982-04-13

    incorporate an independent means for ascertaining surface cleanliness (e.g. AES). The form of the absorption curve in Fig. 7 appears to agree with that...very interesting study and is well within the capabilities of the systen designed, if the surface cleanliness can be assured. Wire specimens have a...assessing surface cleanliness would be an important supporting technique for understanding the results of these measurements. The simple kinetic

  20. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  1. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  2. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  3. BASIC STUDIES IN PERCUTANEOUS ABSORPTION.

    DTIC Science & Technology

    SKIN(ANATOMY), *BIOLOGICAL ABSORPTION, BIOLOGICAL ABSORPTION, SKIN(ANATOMY), BIOCHEMISTRY, MEMBRANES(BIOLOGY), PERMEABILITY, LIPIDS, PROTEINS, AMINO ... ACIDS , WATER, PH FACTOR, CHROMATOGRAPHIC ANALYSIS, THERMAL PROPERTIES, TEMPERATURE, HUMIDITY, HISTOLOGY, ADULTS, INFANTS, HUMANS, MONKEYS.

  4. Optical absorption and disorder in delafossites

    NASA Astrophysics Data System (ADS)

    Senty, Tess R.; Haycock, Barry; Lekse, Jonathan; Matranga, Christopher; Wang, Hong; Panapitiya, Gihan; Bristow, Alan D.; Lewis, James P.

    2017-07-01

    We present compelling experimental results of the optical characteristics of transparent oxide CuGaO2 and related CuGa1-xFexO2 (with 0.00 ≤x ≤0.05 ) alloys, whereby the forbidden electronic transitions for CuGaO2 become permissible in the presence of B-site (Ga sites) alloying with Fe. Our computational structural results imply a correlation between the global strain on the system and a decreased optical absorption edge. However, herein, we show that the relatively ordered CuGa1-xFexO2 (for 0.00 ≤x ≤0.04 ) structures exhibit much weaker vis-absorption compared to the relatively disordered CuGa0.95Fe0.05O2.

  5. Determination of the molar absorptivity of NADH.

    PubMed

    McComb, R B; Bond, L W; Burnett, R W; Keech, R C; Bowers, G N

    1976-02-01

    The molar absorptivity of NADH at 340 nm has been determined by an indirect procedure in which high-purity glucose is phosphorylated by ATP in the presence of hexokinase, coupled to oxidation of the glucose-6-phosphate by NAD+ in the presence of glucose-6-phosphate dehydrogenase. The average value from 85 independent determinations is 6317 liter mol-1 cm-1 at 25 degrees C and pH 7.8. The overall uncertainty is -4.0 to +