Science.gov

Sample records for hibernating juvenile american

  1. The urothelium of a hibernator: the American black bear

    PubMed Central

    Spector, David A; Deng, Jie; Coleman, Richard; Wade, James B

    2015-01-01

    The American black bear undergoes a 3–5 month winter hibernation during which time bears do not eat, drink, defecate, or urinate. During hibernation renal function (GFR) is 16–50% of normal but urine is reabsorbed across the urinary bladder (UB) urothelium thus enabling metabolic recycling of all urinary constituents. To elucidate the mechanism(s) whereby urine is reabsorbed, we examined the UBs of five nonhibernating wild bears using light, electron (EM), and confocal immunofluorescent (IF) microscopy–concentrating on two components of the urothelial permeability barrier – the umbrella cell apical membranes and tight junctions (TJ). Bear UB has the same tissue layers (serosa, muscularis, lamina propria, urothelia) and its urothelia has the same cell layers (basal, intermediate, umbrella cells) as other mammalians. By EM, the bear apical membrane demonstrated a typical mammalian scalloped appearance with hinge and plaque regions – the latter containing an asymmetric trilaminar membrane and, on IF, uroplakins Ia, IIIa, and IIIb. The umbrella cell TJs appeared similar to those in other mammals and also contained TJ proteins occludin and claudin - 4, and not claudin –2. Thus, we were unable to demonstrate urothelial apical membrane or TJ differences between active black bears and other mammals. Expression and localization of UT-B, AQP-1 and -3, and Na+, K+-ATPase on bear urothelial membranes was similar to that of other mammals. Similar studies of urothelia of hibernating bears, including evaluation of the apical membrane lipid bilayer and GAGs layer are warranted to elucidate the mechanism(s) whereby hibernating bears reabsorb their daily urine output and thus ensure successful hibernation. PMID:26109187

  2. Effects of Multiple Routes of Cadmium Exposure on the Hibernation Success of the American Toad (Bufo americanus)

    USGS Publications Warehouse

    James, S.M.; Little, E.E.; Semlitsch, R.D.

    2004-01-01

    The effects of multiple routes of cadmium exposure on juvenile American toads (Bufo americanus) were evaluated using environmentally relevant concentrations. During or after exposure, toads were individually hibernated for 172 days at approximately 4??C. The following experiments were conducted: (1) dermal exposure (hibernation in soil contaminated with up to 120 ??g Cd/ g (dry weight)); (2) injection exposure (single injection with cadmium to achieve a maximum whole-body nominal concentration of 3 ??g Cd/g (wet weight) 12 days before hibernation in uncontaminated soil); and, (3) oral exposure (feeding with mealworms containing ???16 ??g Cd/g (dry weight) for 50 days before hibernation in uncontaminated soil)., We hypothesized that sublethal levels of cadmium would become lethal during hibernation because of combined chemical and cold stress. No prehibernation mortality occurred in the injection and oral exposure studies. There was a significant treatment effect on whole-body cadmium concentration in toads orally or dermally exposed and on percent of cadmium retention in toads orally exposed. There was also a trend of increased time-to-burrowing and more toads partially buried with greater cadmium concentration in the dermal study, which indicated avoidance. In all 3 experiments, no significant differences were found among cadmium treatments in hibernation survival, percent of mass loss, or locomotor performance. However, toads fed mealworms averaging 4.7 ??g Cd/g (dry weight) had only 56% survival compared with 100% survival for controls. Although our results suggest that environmentally relevant levels of cadmium do not pose a great risk to American toads, factors such as soil type or prey species may increase cadmium bioavailability, and other amphibian species may be more sensitive to cadmium than B. americanus.

  3. Serum immune-related proteins are differentially expressed during hibernation in the American black bear.

    PubMed

    Chow, Brian A; Donahue, Seth W; Vaughan, Michael R; McConkey, Brendan; Vijayan, Mathilakath M

    2013-01-01

    Hibernation is an adaptation to conserve energy in the face of extreme environmental conditions and low food availability that has risen in several animal phyla. This phenomenon is characterized by reduced metabolic rate (∼25% of the active basal metabolic rate in hibernating bears) and energy demand, while other physiological adjustments are far from clear. The profiling of the serum proteome of the American black bear (Ursus americanus) may reveal specific proteins that are differentially modulated by hibernation, and provide insight into the remarkable physiological adaptations that characterize ursid hibernation. In this study, we used differential gel electrophoresis (DIGE) analysis, liquid chromatography coupled to tandem mass spectrometry, and subsequent MASCOT analysis of the mass spectra to identify candidate proteins that are differentially expressed during hibernation in captive black bears. Seventy serum proteins were identified as changing by ±1.5 fold or more, out of which 34 proteins increased expression during hibernation. The majority of identified proteins are involved in immune system processes. These included α2-macroglobulin, complement components C1s and C4, immunoglobulin μ and J chains, clusterin, haptoglobin, C4b binding protein, kininogen 1, α2-HS-glycoprotein, and apoplipoproteins A-I and A-IV. Differential expression of a subset of these proteins identified by proteomic analysis was also confirmed by immunodetection. We propose that the observed serum protein changes contribute to the maintenance of the hibernation phenotype and health, including increased capacities for bone maintenance and wound healing during hibernation in bears.

  4. Late-born intermittently fasted juvenile garden dormice use torpor to grow and fatten prior to hibernation: consequences for ageing processes.

    PubMed

    Giroud, Sylvain; Zahn, Sandrine; Criscuolo, François; Chery, Isabelle; Blanc, Stéphane; Turbill, Christopher; Ruf, Thomas

    2014-12-22

    Torpor is thought to slow age-related processes and to sustain growth and fattening of young individuals. Energy allocation into these processes represents a challenge for juveniles, especially for those born late in the season. We tested the hypothesis that late-born juvenile garden dormice (Eliomys quercinus) fed ad libitum ('AL', n = 9) or intermittently fasted ('IF', n = 9) use short torpor bouts to enhance growth and fat accumulation to survive winter. IF juveniles displayed more frequent and longer torpor bouts, compared with AL individuals before hibernation. Torpor frequency correlated negatively with energy expenditure and water turnover. Hence, IF juveniles gained mass at the same rate, reached similar pre-hibernation fattening and displayed identical hibernating patterns and mass losses as AL animals. We found no group differences in relative telomere length (RTL), an indicator of ageing, during the period of highest summer mass gain, despite greater torpor use by IF juveniles. Percentage change in RTL was negatively associated with mean and total euthermic durations among all individuals during hibernation. We conclude that torpor use promotes fattening in late-born juvenile dormice prior to hibernation. Furthermore, we provided the first evidence for a functional link between time spent in euthermy and ageing processes over winter.

  5. Investigating the mechanism for maintaining eucalcemia despite immobility and anuria in the hibernating American black bear (Ursus americanus).

    PubMed

    Seger, Rita L; Cross, Randal A; Rosen, Clifford J; Causey, Robert C; Gundberg, Caren M; Carpenter, Thomas O; Chen, Tai C; Halteman, William A; Holick, Michael F; Jakubas, Walter J; Keisler, Duane H; Seger, Richard M; Servello, Frederick A

    2011-12-01

    Ursine hibernation uniquely combines prolonged skeletal unloading, anuria, pregnancy, lactation, protein recycling, and lipolysis. This study presents a radiographic and biochemical picture of bone metabolism in free-ranging, female American black bears (Ursus americanus) that were active (spring bears and autumn bears) or hibernating (hibernating bears). Hibernating bears included lactating and non-lactating individuals. We measured serum calcium, albumin, inorganic phosphate, creatinine, bone specific alkaline phosphatase (BSALP), CTX, parathyroid hormone, insulin-like growth factor-I (IGF-l), leptin, 25-hydroxyvitamin D [25(OH)D], 1,25-dihydroxyvitamin D [1,25(OH)(2)D] and sclerostin from 35 to 50 tranquilized hibernating bears and 14 to 35 tranquilized spring bears. We compared metacarpal cortical indices (MCI), measured by digital X-ray radiogrammetry, from 60 hunter-killed autumn bears and 79 tranquilized, hibernating bears. MCI was greater in autumn than winter in younger bears, but showed no seasonal difference in older bears. During hibernation eucalcemia was maintained, BSALP was suppressed, and CTX was in the range expected for anuria. During hibernation 1,25(OH)(2)D was produced despite anuria. 1,25(OH)(2)D and IGF-I were less in hibernating than spring bears. In a quarter of hibernating bears, sclerostin was elevated. Leptin was greater in hibernating than spring bears. In hibernating bears, leptin correlated positively with BSALP in non-lactating bears and with CTX in lactating bears. Taken together the biochemical and radiographic findings indicate that during hibernation, bone turnover was persistent, balanced, and suppressed; bone resorption was lower than expected for an unloaded skeleton; and there was no unloading-induced bone loss. The skeleton appears to perceive that it was loaded when it was actually unloaded during hibernation. However, at the level of sclerostin, the skeleton recognized that it was unloaded. During hibernation leptin

  6. The effects of hibernation and captivity on glucose metabolism and thyroid hormones in American black bear (Ursus americanus).

    PubMed

    McCain, Stephanie; Ramsay, Ed; Kirk, Claudia

    2013-06-01

    American black bears (Ursus americanus) have been shown to become transiently insulin resistant and hypothyroid during winter, but no studies have investigated these changes in long-term captive bears or in bears which remain awake year-round. Wild, captive hibernating, and captive nonhibernating bears were evaluated at times corresponding to three of their major physiologic stages: fall (hyperphagic stage), winter (hibernation stage), and summer (normal activity stage). Combined insulin and glucose tolerance tests and thyroid hormone profiles were performed on all bears during each stage. All three groups of bears had evidence of insulin resistance during the winter, as compared to the summer or fall, based on glucose tolerance curves. Analysis of thyroid hormone concentration varied and distinct patterns or similarities were not apparent. While obesity in captive American black bears is multifactorial, the finding that, regardless of their ability to hibernate, captive bears retain similar physiology to their wild counterparts indicates that captive bears' complex physiologic changes need to be addressed in their management.

  7. The effects of poly-unsaturated fatty acids on the physiology of hibernation in a South American marsupial, Dromiciops gliroides.

    PubMed

    Contreras, Carolina; Franco, Marcela; Place, Ned J; Nespolo, Roberto F

    2014-11-01

    Many mammals hibernate, which is a profound lethargic state of several weeks or months during winter, that represents a transitory episode of hetherothermy. As with other cases of dormancy, the main benefit of hibernation seems to be energy saving. However, the depth and duration of torpor can be experimentally modified by the composition of food, especially by fattyacid composition. In eutherians, diets rich in unsaturated fatty acids (i.e., fatty acids with at least one double bond) lengthen torpor, reduce metabolism and permit hibernation at lower temperatures. Here we studied whether diets varying in fatty acid composition have an effect on the physiology of hibernation in a South American marsupial, Dromiciops gliroides. We designed a factorial experiment where thermal acclimation (two levels: natural versus constant temperature) was combined with diet acclimation: saturated (i.e., diets with high concentration of saturated fatty acids) versus unsaturated (i.e., diets with high concentration of unsaturated fatty acids). We measured energy metabolism in active and torpid individuals, as well as torpor duration, and a suite of 12 blood biochemical parameters. After a cafeteria test, we found that D. gliroides did not show any preference for a given diet. Also, we did not find effects of diet on body temperature during torpor, or its duration. However, saturated diets, combined with high temperatures provoked a disproportionate increase in fat utilization, leading to body mass reduction. Those animals were more active, and metabolized more fats than those fed with a high proportion of unsaturated fatty acids (="unsaturated diets"). These results contrast with previous studies, which showed a significant effect of fatty acid composition of diets on food preferences and torpor patterns in mammals.

  8. The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns

    PubMed Central

    Hadj-Moussa, Hanane; Moggridge, Jason A.; Luu, Bryan E.; Quintero-Galvis, Julian F.; Gaitán-Espitia, Juan Diego; Nespolo, Roberto F.; Storey, Kenneth B.

    2016-01-01

    When faced with adverse environmental conditions, the marsupial Dromiciops gliroides uses either daily or seasonal torpor to support survival and is the only known hibernating mammal in South America. As the sole living representative of the ancient Order Microbiotheria, this species can provide crucial information about the evolutionary origins and biochemical mechanisms of hibernation. Hibernation is a complex energy-saving strategy that involves changes in gene expression that are elicited in part by microRNAs. To better elucidate the role of microRNAs in orchestrating hypometabolism, a modified stem-loop technique and quantitative PCR were used to characterize the relative expression levels of 85 microRNAs in liver and skeletal muscle of control and torpid D. gliroides. Thirty-nine microRNAs were differentially regulated during torpor; of these, 35 were downregulated in liver and 11 were differentially expressed in skeletal muscle. Bioinformatic analysis predicted that the downregulated liver microRNAs were associated with activation of MAPK, PI3K-Akt and mTOR pathways, suggesting their importance in facilitating marsupial torpor. In skeletal muscle, hibernation-responsive microRNAs were predicted to regulate focal adhesion, ErbB, and mTOR pathways, indicating a promotion of muscle maintenance mechanisms. These tissue-specific responses suggest that microRNAs regulate key molecular pathways that facilitate hibernation, thermoregulation, and prevention of muscle disuse atrophy. PMID:27090740

  9. Culturally competent practice with African American juvenile sex offenders.

    PubMed

    Venable, Victoria M; Guada, Joseph

    2014-01-01

    African American juveniles adjudicated for sexual offenses may struggle with the mistrust of both the judicial and treatment systems. Unlike general mental health services, juvenile sex offender treatment is often mandated by the court or child welfare services, thus these youths and their families must engage in the treatment process. Without clinicians and services that can acknowledge and respond to a minority youth's experience in a sensitive, culturally competent manner, there could be significant resistance to treatment. Traditional treatment approaches fail to prioritize issues involving cultural competence. This article addresses the unique challenges of African American juvenile sex offenders and makes recommendations for creating culturally competent practice for these youth and their families.

  10. Desert tortoise hibernation: Temperatures, timing, and environment

    USGS Publications Warehouse

    Nussear, K.E.; Esque, T.C.; Haines, D.F.; Tracy, C.R.

    2007-01-01

    This research examined the onset, duration, and termination of hibernation in Desert Tortoises (Gopherus agassizii) over several years at multiple sites in the northeastern part of their geographic range, and recorded the temperatures experienced by tortoises during winter hibernation. The timing of hibernation by Desert Tortoises differed among sites and years. Environmental cues acting over the short-term did not appear to influence the timing of the hibernation period. Different individual tortoises entered hibernation over as many as 44 days in the fall and emerged from hibernation over as many as 49 days in the spring. This range of variation in the timing of hibernation indicates a weak influence at best of exogenous cues hypothesized to trigger and terminate hibernation. There do appear to be regional trends in hibernation behavior as hibernation tended to begin earlier and continue longer at sites that were higher in elevation and generally cooler. The emergence date was generally more similar among study sites than the date of onset. While the climate and the subsequent timing of hibernation differed among sites, the average temperatures experienced by tortoises while hibernating differed by only about five degrees from the coldest site to the warmest site. ?? 2007 by the American Society of Ichthyologists and Herpetologists.

  11. African American teens and the neo-juvenile justice system.

    PubMed

    Rozie-Battle, Judith L

    2002-01-01

    African American youth continue to be overrepresented in the juvenile justice system. As a result of the current political environment and the perceived increase in crime among young people, the nation has moved away from rehabilitation and toward harsher treatment of delinquents. The African American community must encourage policy makers and community leaders to continue to address the disproportionate representation of African American youth in the system. Current policing and prosecutorial policies must also be examined and challenged to end the perception of an unjust system.

  12. Mental health screening results for Native American and Euro-American youth in Oregon juvenile justice settings.

    PubMed

    Crofoot Graham, Thomas L; Corcoran, Kevin

    2003-06-01

    Mental health needs of Native American youth in the Oregon juvenile justice system are compared to those of Euro-American youth. The comparison is between 109 Euro-American youth and 22 Native American youth drawn from two samples of youth adjudicated to community service and incarcerated. The youth completed a mental health history and indices of mental health and health status. Native American youth are disproportionately represented in the Oregon juvenile justice system. Mental health profiles of Native American youth reflect problems at least as severe as those of Euro-American youth, and both Native American and Euro-American youth in the juvenile justice system had profiles different from those of youth not referred for clinical services. More Native American youth (42.5%) compared to Euro-American youth (27.5%) reported considering suicide in the past 12 months. Mental health screenings for both Native American and Euro-American youth are indicated.

  13. Crocodylus acutus (American Crocodile). Long distance juvenile movement

    USGS Publications Warehouse

    Crespo, Rafael; Beauchamp, Jeffrey S.; Mazzotti, Frank; Cherkiss, Michael S.

    2015-01-01

    Crocodylus acutus (American Crocodile) is the most widely distributed New World crocodilian species with its range extending from Peru in the south to the southern tip of peninsular Florida in the north. Crocodylus acutus occupies primarily coastal brackish water habitat, however it also occurs in freshwater to hypersaline habitats (Thorbjarnarson 2010. In Crocodiles. Status Survey and Conservation Action Plan. [Third Edition], American Crocodile Crocodylus acutus, pp. 46–53 S.C. Manolis and C. Stevenson. Crocodile Specialist Group, Darwin). There is limited literature on long distance movements of juvenile crocodilians worldwide and no literature on juvenile crocodiles in Florida. However, adult C. acutus in Florida have been documented to make seasonal movements of 5–15 km from preferred foraging habitat to nesting beaches (Mazzotti 1983. The Ecology of Crocodylus acutus in Florida. PhD Dissertation. The Pennsylvania State University, University Park, Pennsylvania. 161pp), and one adult was documented making a 35 km trip from her nest site to preferred foraging habitat (Cherkiss et. al. 2006. Herpetol. Rev. 38:72–73). Rodda (1984. Herpetologica 40:444–451) reported on juvenile C. acutus movement in Gatun Lake, Panama, and found that juveniles stayed within 1 km of their nest site for the first month. Movements of juvenile Crocodylus porosus (Saltwater Crocodile) in a river system in Northern Australia showed a maximum movement of 38.9 km from a known nest site, with the majority of the crocodiles staying within 15.6 km downstream to 6.8 km upstream (Webb and Messel 1978. Aust. Wildlife Res. 5:263–283). Juvenile movement of Crocodylus niloticus (Nile Crocodile) in Lake Ngezi, Zimbabwe showed crocodiles restricted their movements from 1.0 km up to 4.5 km through the wet and dry seasons (Hutton 1989. Am. Zool. 29:1033–1049). Long distance movements of alligators were recorded for sizes ranging from 28 cm to 361 cm in a coastal refuge in Louisiana, where

  14. Resiliency in American Library Association Award Winning Juvenile Fiction: A Correlational Content Analysis

    ERIC Educational Resources Information Center

    Foreman, Michelle T.

    2010-01-01

    The purpose of this quantitative content analysis was to determine whether there was a relationship between the age, gender, or race of protagonists in contemporary American Library Association award-winning juvenile literature and the representation of resilience by those characters. Award-winning juvenile fiction and biography books were…

  15. American Youth Violence: Implications for National Juvenile Justice Policy.

    ERIC Educational Resources Information Center

    Zimring, Franklin E.

    2000-01-01

    Argues that the perception of increasing youth violence is based on fiction rather than fact. Provides the facts involved in the juvenile justice policy focusing on the differences between juvenile and adult violence, youth violence trends, population trends, and three legal policy issues toward adolescent violence. Offers juvenile crime…

  16. Ethnic Identity and Offending Trajectories among Mexican American Juvenile Offenders: Gang Membership and Psychosocial Maturity

    ERIC Educational Resources Information Center

    Knight, George P.; Losoya, Sandra H.; Cho, Young Il; Chassin, Laurie; Williams, Joanna Lee; Cota-Robles, Sonia

    2012-01-01

    We examined the association of joint trajectories of ethnic identity and criminal offending to psychosocial maturity, gang membership, and Mexican American affiliation among 300 Mexican American male juvenile offenders from ages 14 to 22. There were two low-offending groups: one was the highest in ethnic identity and changing slightly with age and…

  17. Hibernation, sleep, and thermogulation

    NASA Technical Reports Server (NTRS)

    South, F. E.

    1973-01-01

    Nerve activity adaptation to hypothermia and the differences in CNS activity during hypothermia are studied on marmots. Thermoregulatory experiments on hibernating animals indicated a sympathetic response.

  18. Renal adaptation during hibernation.

    PubMed

    Jani, Alkesh; Martin, Sandra L; Jain, Swati; Keys, Daniel; Edelstein, Charles L

    2013-12-01

    Hibernators periodically undergo profound physiological changes including dramatic reductions in metabolic, heart, and respiratory rates and core body temperature. This review discusses the effect of hypoperfusion and hypothermia observed during hibernation on glomerular filtration and renal plasma flow, as well as specific adaptations in renal architecture, vasculature, the renin-angiotensin system, and upregulation of possible protective mechanisms during the extreme conditions endured by hibernating mammals. Understanding the mechanisms of protection against organ injury during hibernation may provide insights into potential therapies for organ injury during cold storage and reimplantation during transplantation.

  19. Renal adaptation during hibernation

    PubMed Central

    Martin, Sandra L.; Jain, Swati; Keys, Daniel; Edelstein, Charles L.

    2013-01-01

    Hibernators periodically undergo profound physiological changes including dramatic reductions in metabolic, heart, and respiratory rates and core body temperature. This review discusses the effect of hypoperfusion and hypothermia observed during hibernation on glomerular filtration and renal plasma flow, as well as specific adaptations in renal architecture, vasculature, the renin-angiotensin system, and upregulation of possible protective mechanisms during the extreme conditions endured by hibernating mammals. Understanding the mechanisms of protection against organ injury during hibernation may provide insights into potential therapies for organ injury during cold storage and reimplantation during transplantation. PMID:24049148

  20. American juvenile justice system: history in the making.

    PubMed

    Meng, Aaron; Segal, Roland; Boden, Eric

    2013-01-01

    The original theory behind separating juvenile offenders from adult offenders was to provide care and direction for youngsters instead of isolation and punishment. This idea took hold in the 19th century and became mainstream by the early 20th century. In the 1950s and 1960s, public concern grew because of a perceived lack of effectiveness and lack of rights. The Supreme Court made a series of rulings solidifying juvenile rights including the right to receive notice of charges, the right to have an attorney and the right to have charges proven beyond a reasonable doubt. In the 1980s, the public view was that the juvenile court system was too lenient and that juvenile crimes were on the rise. In the 1990s, many states passed punitive laws, including mandatory sentencing and blanket transfers to adult courts for certain crimes. As a result, the pendulum is now swinging back toward the middle from rehabilitation toward punishment.

  1. Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) show microstructural bone loss during hibernation but preserve bone macrostructural geometry and strength.

    PubMed

    McGee-Lawrence, Meghan E; Stoll, Danielle M; Mantila, Emily R; Fahrner, Bryna K; Carey, Hannah V; Donahue, Seth W

    2011-04-15

    Lack of activity causes bone loss In most animals. Hibernating bears have physiological processes to prevent cortical and trabecular bone loss associated with reduced physical activity, but different mechanisms of torpor among hibernating species may lead to differences in skeletal responses to hibernation. There are conflicting reports regarding whether small mammals experience bone loss during hibernation. To investigate this phenomenon, we measured cortical and trabecular bone properties in physically active and hibernating juvenile and adult 13-lined ground squirrels (Ictidomys tridecemlineatus, previous genus name Spermophilus). Cortical bone geometry, strength and mineral content were similar in hibernating compared with active squirrels, suggesting that hibernation did not cause macrostructural cortical bone loss. Osteocyte lacunar size increased (linear regression, P=0.001) over the course of hibernation in juvenile squirrels, which may indicate an osteocytic role in mineral homeostasis during hibernation. Osteocyte lacunar density and porosity were greater (+44 and +59%, respectively; P<0.0001) in hibernating compared with active squirrels, which may reflect a decrease in osteoblastic activity (per cell) during hibernation. Trabecular bone volume fraction in the proximal tibia was decreased (-20%; P=0.028) in hibernating compared with physically active adult squirrels, but was not different between hibernating and active juvenile squirrels. Taken together, these data suggest that 13-lined ground squirrels may be unable to prevent microstructural losses of cortical and trabecular bone during hibernation, but importantly may possess a biological mechanism to preserve cortical bone macrostructure and strength during hibernation, thus preventing an increased risk of bone fracture during remobilization in the spring.

  2. Seasonal variation in plasma sex steroid concentrations in juvenile American alligators.

    PubMed

    Rooney, Andrew A; Crain, D Andrew; Woodward, Allan R; Guillette, Louis J

    2004-01-01

    Seasonal variation in plasma sex steroid concentrations is common in mature vertebrates, and is occasionally seen in juvenile animals. In this study, we examine the seasonal pattern of sex hormone concentration in juvenile American alligators (Alligator mississippiensis) and make a limited comparison of these seasonal patterns on two different lakes in Florida. Male juvenile alligators from a reference lake, Lake Woodruff, displayed temporal patterns in plasma testosterone (T) concentrations that appear to be seasonal. A similar pattern in plasma estradiol-17beta (E(2)) was observed in juvenile females from Lake Woodruff. Males had significantly elevated T concentrations during the spring and late summer, whereas females had elevated E(2) in the spring and late summer and significantly depressed E(2) concentrations during the winter. A limited 4-month survey of animals from contaminated Lake Apopka found a lack of such seasonality. These results suggest that: (1) healthy wild populations of juvenile alligators have a prolonged peripubescent period that is marked by seasonal hormonal cycles, (2) juvenile alligators exposed to environmental contaminants can lack such seasonal cyclicity, and (3) future studies of juvenile alligators should incorporate such seasonality into the experimental design.

  3. Food habits of Juvenile American Shad and dynamics of zooplankton in the lower Columbia River

    USGS Publications Warehouse

    Haskell, C.A.; Tiffan, K.F.; Rondorf, D.W.

    2006-01-01

    As many as 2.4 million adult American shad annually pass John Day Dam, Columbia River to spawn upriver, yet food web interactions of juvenile shad rearing in John Day Reservoir are unexplored. We collected zooplankton and conducted mid-water trawls in McNary (June-July) and John Day reservoirs (August-November) from 1994 through 1996 during the outmigration of subyearling American shad and Chinook salmon. Juvenile American shad were abundant and represented over 98% of the trawl catch in late summer. The five major taxa collected in zooplankton tows were Bosmina longirostris, Daphnia, cyclopoid cope-pods, rotifers, and calanoid copepods. We evaluated total crustacean zooplankton abundance and Daphnia biomass in relation to water temperature, flow, depth, diel period, and cross-sectional location using multiple regression. Differences in zooplankton abundance were largely due to differences in water temperature and flow. Spatial variation in total zooplankton abundance was observed in McNary Reservoir, but not in John Day Reservoir. Juvenile American shad generally fed on numerically abundant prey, despite being less preferred than larger bodied zooplankton. A decrease in cladoceran abundance and size in August coupled with large percentages of Daphnia in juvenile American shad stomachs indicated heavy planktivory. Smaller juvenile American shad primarily fed on Daphnia in August, but switched to more evasive copepods as the mean size of fish increased and Daphnia abundance declined. Because Daphnia are particularly important prey items for subyearling Chinook salmon in mainstem reservoirs in mid to late summer, alterations in the cladoceran food base is of concern for the management of outmigrating salmonids and other Columbia River fishes. ?? 2006 by the Northwest Scientific Association. All rights reserved.

  4. Diet of juvenile and adult American Shad in the Columbia River

    USGS Publications Warehouse

    Sauter, Sally T.; Blubaugh, J; Parsley, Michael J.

    2011-01-01

    The diet of juvenile and adult American shad Alosa sapidissima captured from various locations in the Columbia River was investigated during 2007 and 2008. Collection efforts in 2007 were restricted to fish collected from existing adult and juvenile fish collection facilities located at Bonneville Dam and to adult shad captured by angling downstream from Bonneville Dam. In 2008, we used gillnets, electrofishing, beach seining, or cast nets to collect juvenile and adult shad from the saline estuary near Astoria (approximately river km 24) to just upstream from McNary Dam (approximately river km 472). We examined the stomach contents of 436 American shad captured in 2007 and 1,272 captured in 2008. Fish caught within the river were much more likely to contain food items than fish removed from fish collection facilities.


    The diet of age-0 American shad varied spatially and temporally, but was comprised primarily of crustaceans and insects. Prey diversity of age-0 American shad, as assessed by the Shannon Diversity Index, increased with decreasing distance to the estuary. Pre- and partial-spawn American shad primarily consumed Corophium spp. throughout the Columbia River; however, post-spawn adults primarily consumed gastropods upstream of McNary Dam

  5. Energetics of tropical hibernation.

    PubMed

    Dausmann, K H; Glos, J; Heldmaier, G

    2009-04-01

    In this field study, the energetic properties of tropical hibernation were investigated by measuring oxygen consumption and body temperature of the Malagasy primate Cheirogaleus medius in their natural hibernacula. These lemurs use tree holes with extremely varying insulation capacities as hibernacula. In poorly insulated tree holes, tree hole temperature and body temperature fluctuated strongly each day (between 12.8 and 34.4 degrees C). The metabolic rate under these conditions also showed large daily fluctuations between about 29.0 ml O(2)/h and 97.9 ml O(2)/h in parallel with changes in body temperature. In well insulated tree holes in very large trees on the other hand, tree hole temperature and body temperature remained relatively constant at about 25 degrees C. Lemurs hibernating in these tree holes showed a more constant metabolic rate at an intermediate level, but hibernation was interrupted by repeated arousals with peak metabolic rates up to 350 ml O(2)/h. The occurrence of these spontaneous arousals proved that the ability for thermoregulation persists during hibernation. Arousals were energetically costly, but much less so than in temperate and arctic hibernators. Despite the decisive influence of tree hole properties on the pattern of body temperature and metabolic rate during hibernation, the choice of the hibernaculum does not seem to be of energetic importance. The overall energetic savings by tropical hibernation amounted to about 70% as compared to the active season (31.5 vs. 114.3 kJ/d). Therefore, tropical hibernation in C. medius is an effective, well-regulated adaptive response to survive unfavourable seasons.

  6. Hibernation and gas exchange.

    PubMed

    Milsom, William K; Jackson, Donald C

    2011-01-01

    Hibernation in endotherms and ectotherms is characterized by an energy-conserving metabolic depression due to low body temperatures and poorly understood temperature-independent mechanisms. Rates of gas exchange are correspondly reduced. In hibernating mammals, ventilation falls even more than metabolic rate leading to a relative respiratory acidosis that may contribute to metabolic depression. Breathing in some mammals becomes episodic and in some small mammals significant apneic gas exchange may occur by passive diffusion via airways or skin. In ectothermic vertebrates, extrapulmonary gas exchange predominates and in reptiles and amphibians hibernating underwater accounts for all gas exchange. In aerated water diffusive exchange permits amphibians and many species of turtles to remain fully aerobic, but hypoxic conditions can challenge many of these animals. Oxygen uptake into blood in both endotherms and ectotherms is enhanced by increased affinity of hemoglobin for O₂ at low temperature. Regulation of gas exchange in hibernating mammals is predominately linked to CO₂/pH, and in episodic breathers, control is principally directed at the duration of the apneic period. Control in submerged hibernating ectotherms is poorly understood, although skin-diffusing capacity may increase under hypoxic conditions. In aerated water blood pH of frogs and turtles either adheres to alphastat regulation (pH ∼8.0) or may even exhibit respiratory alkalosis. Arousal in hibernating mammals leads to restoration of euthermic temperature, metabolic rate, and gas exchange and occurs periodically even as ambient temperatures remain low, whereas body temperature, metabolic rate, and gas exchange of hibernating ectotherms are tightly linked to ambient temperature.

  7. Experimental evidence for beneficial effects of projected climate change on hibernating amphibians

    PubMed Central

    Üveges, Bálint; Mahr, Katharina; Szederkényi, Márk; Bókony, Veronika; Hoi, Herbert; Hettyey, Attila

    2016-01-01

    Amphibians are the most threatened vertebrates today, experiencing worldwide declines. In recent years considerable effort was invested in exposing the causes of these declines. Climate change has been identified as such a cause; however, the expectable effects of predicted milder, shorter winters on hibernation success of temperate-zone Amphibians have remained controversial, mainly due to a lack of controlled experimental studies. Here we present a laboratory experiment, testing the effects of simulated climate change on hibernating juvenile common toads (Bufo bufo). We simulated hibernation conditions by exposing toadlets to current (1.5 °C) or elevated (4.5 °C) hibernation temperatures in combination with current (91 days) or shortened (61 days) hibernation length. We found that a shorter winter and milder hibernation temperature increased survival of toads during hibernation. Furthermore, the increase in temperature and shortening of the cold period had a synergistic positive effect on body mass change during hibernation. Consequently, while climate change may pose severe challenges for amphibians of the temperate zone during their activity period, the negative effects may be dampened by shorter and milder winters experienced during hibernation. PMID:27229882

  8. Underground hibernation in a primate.

    PubMed

    Blanco, Marina B; Dausmann, Kathrin H; Ranaivoarisoa, Jean F; Yoder, Anne D

    2013-01-01

    Hibernation in mammals is a remarkable state of heterothermy wherein metabolic rates are reduced, core body temperatures reach ambient levels, and key physiological functions are suspended. Typically, hibernation is observed in cold-adapted mammals, though it has also been documented in tropical species and even primates, such as the dwarf lemurs of Madagascar. Western fat-tailed dwarf lemurs are known to hibernate for seven months per year inside tree holes. Here, we report for the first time the observation that eastern dwarf lemurs also hibernate, though in self-made underground hibernacula. Hence, we show evidence that a clawless primate is able to bury itself below ground. Our findings that dwarf lemurs can hibernate underground in tropical forests draw unforeseen parallels to mammalian temperate hibernation. We expect that this work will illuminate fundamental information about the influence of temperature, resource limitation and use of insulated hibernacula on the evolution of hibernation.

  9. Underground hibernation in a primate

    PubMed Central

    Blanco, Marina B.; Dausmann, Kathrin H.; Ranaivoarisoa, Jean F.; Yoder, Anne D.

    2013-01-01

    Hibernation in mammals is a remarkable state of heterothermy wherein metabolic rates are reduced, core body temperatures reach ambient levels, and key physiological functions are suspended. Typically, hibernation is observed in cold-adapted mammals, though it has also been documented in tropical species and even primates, such as the dwarf lemurs of Madagascar. Western fat-tailed dwarf lemurs are known to hibernate for seven months per year inside tree holes. Here, we report for the first time the observation that eastern dwarf lemurs also hibernate, though in self-made underground hibernacula. Hence, we show evidence that a clawless primate is able to bury itself below ground. Our findings that dwarf lemurs can hibernate underground in tropical forests draw unforeseen parallels to mammalian temperate hibernation. We expect that this work will illuminate fundamental information about the influence of temperature, resource limitation and use of insulated hibernacula on the evolution of hibernation. PMID:23636180

  10. HYDROCEPHALUS IN THREE JUVENILE NORTH AMERICAN BLACK BEARS (URSUS AMERICANUS).

    PubMed

    Ferguson, Sylvia H; Novak, Janelle; Hecht, Silke; Craig, Linden E

    2016-06-01

    Hydrocephalus has been reported in a variety of species, including the North American black bear ( Ursus americanus ). This report describes three cases of hydrocephalus in this species from wild bears aged 3-4 mo considered retrospectively from necropsy records of one institution. Clinical signs included cortical blindness and ataxia. Primary gross findings were doming of the skull, gyri compression and flattening, and lateral ventricle dilation. Two cases had severe bilateral ventricular dilation with loss of the septum pellucidum; atrophy of the surrounding corpus callosum; and bilateral periventricular tears involving the caudate nuclei, internal capsule, and adjacent cerebrum. Histologically, the cases with periventricular tearing had severe axonal loss and degeneration, malacia, hemorrhage, and variable periventricular astrocytosis. All cases were likely congenital, given the bears' age and lack of an apparent acquired obstruction.

  11. Unwrapping the "Pojagi": Traditional Values and Changing Times in a Survey of Korean-American Juvenile Literature

    ERIC Educational Resources Information Center

    Louie, Belinda Y.

    2005-01-01

    This article discusses Korean-American juvenile literature published in the United States in the last century. Teachers and students are invited to discover the knowledge and the pleasure that this collection offers to them. Focusing on the traditional values and changing times in the Korean-American community, this article helps readers…

  12. The effects of juvenile American shad planktivory on zooplankton production in Columbia River food webs

    USGS Publications Warehouse

    Haskell, Craig A.; Tiffan, Kenneth F.; Rondorf, Dennis W.

    2013-01-01

    Columbia River reservoirs support a large population of nonnative American Shad Alosa sapidissima that consume the zooplankton that native fishes also rely on. We hypothesized that the unprecedented biomass of juvenile American Shad in John Day Reservoir is capable of altering the zooplankton community if these fish consume a large portion of the zooplankton production. We derived taxon-specific estimates of zooplankton production using field data and a production model from the literature. Empirical daily ration was estimated for American Shad and expanded to population-level consumption using abundance and biomass data from hydroacoustic surveys. Daphnia spp. production was high in early summer but declined to near zero by September as shad abundance increased. American Shad sequentially consumed Daphnia spp., copepods, and Bosmina spp., which tracked the production trends of these taxa. American Shad evacuation rates ranged from 0.09 to 0.24/h, and daily rations ranged from 0.008 to 0.045 g·g−1·d−1 (dry weight) over all years. We observed peak American Shad biomass (45.2 kg/ha) in 1994, and daily consumption (1.6 kg/ha) approached 30% (5.3 kg/ha) of zooplankton production. On average, American Shad consumed 23.6% of the available zooplankton production (range, <1–83%). The changes in the zooplankton community are consistent with a top-down effect of planktivory by American Shad associated with their unprecedented biomass and consumption, but the effects are likely constrained by temperature, nutrient flux, and the seasonal production patterns of zooplankton in John Day Reservoir. American Shad add to the planktivory exerted by other species like Neomysis mercedis to reduce the capacity of the reservoir to support other planktivorous fishes. The introduction of American Shad and other nonnative species will continue to alter the food web in John Day Reservoir, potentially affecting native fishes, including Pacific salmon Oncorhynchus spp.

  13. Extract of North American ginseng (Panax quinquefolius), administered to leukemic, juvenile mice extends their life span.

    PubMed

    Miller, Sandra C; Delorme, Danielle; Shan, Jacqueline J

    2011-01-01

    In a recent study involving normal, juvenile mice, we showed that CVT-E002, a proprietary extract (Afexa Life Sciences, Inc.) of North American ginseng, Panax quinquefolius, significantly enhanced the absolute levels of cells acting at the first line of defense in tumor combat, i.e., natural killer (NK) cells. The present study evaluated the effect of CVT-E002, on life span when administered intraperitoneally to leukemic, infant/juvenile mice. The extract was administered to groups of mice daily for 14 days in several dosing groups up to 50mg/day from age 7 to 21 days. The tumor was administered intraperitoneally under sterile conditions, in a laminar flow hood at 7 days of age (0.5 x 10(6) leukemic cells), immediately preceding the first CVT-E002 injection for each dose group. The data revealed that CVT-E002 significantly extends the life of leukemic, young mice in a dose-specific manner, i.e., 20 mg/day was effective in extending life, while lower doses of 5, 10 mg as well as higher doses of 30, 40, 50 mg per day were completely ineffective. We have already shown that CVT-E002 significantly elevates NK cells in normal and leukemic, adult mice, as well as in normal, infant/juvenile mice, and we have also shown that CVT-E002 significantly extends the life span of leukemic, adult mice. The results of the present study did indeed show that (i) CVT-E002 extends the life span of leukemic, infant/juvenile mice, and (ii) that the dose of CVT-E002 is critical in achieving life span augmentation in these leukemic infant/juvenile mice.

  14. Trophic interactions and consumption rates of subyearling Chinook Salmon and nonnative juvenile American Shad in Columbia River reservoirs

    USGS Publications Warehouse

    Haskell, Craig A.; Beauchamp, David A.; Bollins, Stephen M

    2017-01-01

    We used a large lampara seine coupled with nonlethal gastric lavage to examine the diets and estimate consumption rates of subyearling Chinook Salmon Oncorhynchus tshawytscha during July and August 2013. During August we also examined the diet and consumption rates of juvenile American Shad Alosa sapidissima, a potential competitor of subyearling Chinook Salmon. Subyearling Chinook Salmon consumed Daphnia in July but switched to feeding on smaller juvenile American Shad in August. We captured no juvenile American Shad in July, but in August juvenile American Shad consumed cyclopoid and calanoid copepods. Stomach evacuation rates for subyearling Chinook Salmon were high during both sample periods (0.58 h−1 in July, 0.51 h−1 in August), and daily ration estimates were slightly higher than values reported in the literature for other subyearlings. By switching from planktivory to piscivory, subyearling Chinook Salmon gained greater growth opportunity. While past studies have shown that juvenile American Shad reduce zooplankton availability for Chinook Salmon subyearlings, our work indicates that they also become important prey after Daphnia abundance declines. The diet and consumption data here can be used in future bioenergetics modeling to estimate the growth of subyearling Chinook Salmon in lower Columbia River reservoirs.

  15. Ethical considerations in hibernation research.

    PubMed

    Jinka, Tulasi R; Duffy, Lawrence K

    2013-07-01

    Ethical research practices are a key component of scientific integrity and of public support for research. Hibernation research presents specific ethical issues in regard to animal welfare. In this article, the authors apply the '3Rs' principles of humane experimental technique (replacement, reduction and refinement) to hibernation research. They provide recommendations for hibernation researchers and suggest future directions for addressing issues specific to hibernation research. They discuss the use of appropriate behavioral and physiological monitoring procedures, the development of species-specific brain atlases for placement of brain probes, the provision of environmental enrichment and the management of studies involving pharmacological induction of torpor. Addressing these issues in hibernation research will lead to improvements in research outcomes and in welfare of hibernating species.

  16. Ethical considerations in hibernation research

    PubMed Central

    Jinka, Tulasi R.; Duffy, Lawrence K.

    2016-01-01

    Ethical research practices are a key component of scientific integrity and of public support for research. Hibernation research presents specific ethical issues in regard to animal welfare. In this article, the authors apply the ‘3Rs’ principles of humane experimental technique (replacement, reduction and refinement) to hibernation research. They provide recommendations for hibernation researchers and suggest future directions for addressing issues specific to hibernation research. They discuss the use of appropriate behavioral and physiological monitoring procedures, the development of species-specific brain atlases for placement of brain probes, the provision of environmental enrichment and the management of studies involving pharmacological induction of torpor. Addressing these issues in hibernation research will lead to improvements in research outcomes and in welfare of hibernating species. PMID:23783315

  17. Salmonella Enterica Serovar Pomona Infection in Farmed Juvenile American Alligators ( Alligator Mississippiensis).

    PubMed

    Sakaguchi, K; Nevarez, J G; Del Piero, F

    2017-03-01

    A fatal epizootic of salmonellosis occurred in farmed juvenile American alligators in Louisiana. Six animals were examined. Gross lesions included severe fibrinonecrotizing enterocolitis, necrotizing splenitis, coelomic effusion, and perivisceral and pulmonary edema. Microscopic examination revealed severe necrotizing enterocolitis and splenitis with intralesional bacteria and pneumocyte necrosis with fibrin thrombi. Salmonella enterica serovar Pomona was isolated from intestine and lung. Clinical salmonellosis is a rare finding in reptiles and salmonellosis caused by S. Pomona is not previously reported in American alligators. Since S. Pomona is a commonly isolated Salmonella serotype from patients with reptile-associated salmonellosis in the United States, and since alligator meat is consumed and the skin is exported to numerous countries, risk of human and animal infection should be considered.

  18. Perceived parental security profiles in African American adolescents involved in the juvenile justice system.

    PubMed

    Andretta, James R; Ramirez, Aaron M; Barnes, Michael E; Odom, Terri; Roberson-Adams, Shelia; Woodland, Malcolm H

    2015-12-01

    Many researchers have shown the importance of parent attachment in childhood and adolescence. The present study extends the attachment literature to African Americans involved in the juvenile justice system (N = 213), and provides an initial inquiry using person-oriented methods. The average age was 16.17 years (SD = 1.44), and the sample was predominantly male (71%). Results of a confirmatory factor analysis of Inventory of Parent and Peer Attachment-Short Form (IPPA-S) scores supported a 3-factor model: (a) Communication, (b) Trust, and (c) Alienation. Model-based clustering was applied to IPPA-S scores, and results pointed to 4 perceived parental security profiles: high security, moderately high security, moderately low security, and low security. In keeping with our hypotheses, IPPA-S profiles were associated with prosocial behaviors, depression, anxiety, and oppositional defiance. Contrary to hypotheses, IPPA-S profiles were not associated with perspective taking, emotional concern, or behaviors characteristic of a conduct disorder. Results also showed that gender, age, family member with whom the participant resides, charge severity, and offense history did not have an effect on IPPA-S clustering. Implications for therapeutic jurisprudence in African Americans involved with the juvenile justice system are provided.

  19. The loss of hyperosmoregulatory ability in migrating juvenile American shad, Alosa sapidissima

    USGS Publications Warehouse

    Zydlewski, J.; McCormick, S.D.

    1997-01-01

    Investigations on juvenile American shad (Alosa sapidissima) revealed several physiological changes associated with downstream migration. Plasma chloride decreased 20% in wild juvenile shad during the autumn migration. Migrants had lower condition factor and hematocrit than non-migrant shad captured by beach seining. Gill Na+,K+-ATPase activity of migrant shad was higher than non-migrant; a 2.5-fold increase was observed in 1993, while a 57% increase was observed in 1994. Similar changes were observed in laboratory studies of shad maintained in fresh water under simulated natural temperature and photoperiod. Plasma chloride dropped 68% and gill Na+,K+-ATPase activity increased 3-fold over a 3-month period. Decreased plasma chloride was associated with increased mortality. Increases in gill Na+,K+-ATPase activity decreases in plasma chloride and osmolality, and incidence of mortality were delayed and moderated, but not eliminated, in shad maintained at constant temperature (24??C). Shad did not survive in fresh water past December regardless of temperature regime. In seawater, all shad survived and showed no perturbation of plasma chloride at 24??C or simulated natural temperature (above 4??C). The decline in hyperosmoregulatory ability, as influenced by declining temperatures, may serve as a proximate cue for autumnal migration.

  20. Resting metabolic rate and heat increment of feeding in juvenile South American fur seals (Arctocephalus australis).

    PubMed

    Dassis, M; Rodríguez, D H; Ieno, E N; Denuncio, P E; Loureiro, J; Davis, R W

    2014-02-01

    Bio-energetic models used to characterize an animal's energy budget require the accurate estimate of different variables such as the resting metabolic rate (RMR) and the heat increment of feeding (HIF). In this study, we estimated the in air RMR of wild juvenile South American fur seals (SAFS; Arctocephalus australis) temporarily held in captivity by measuring oxygen consumption while at rest in a postabsorptive condition. HIF, which is an increase in metabolic rate associated with digestion, assimilation and nutrient interconversion, was estimated as the difference in resting metabolic rate between the postabsorptive condition and the first 3.5h postprandial. As data were hierarchically structured, linear mixed effect models were used to compare RMR measures under both physiological conditions. Results indicated a significant increase (61%) for the postprandial RMR compared to the postabsorptive condition, estimated at 17.93±1.84 and 11.15±1.91mL O2 min(-1)kg(-1), respectively. These values constitute the first estimation of RMR and HIF in this species, and should be considered in the energy budgets for juvenile SAFS foraging at-sea.

  1. Donor life stage influences juvenile American eel Anguilla rostrata attraction to conspecific chemical cues

    USGS Publications Warehouse

    Galbraith, Heather S.; Blakeslee, Carrie J.; Schmucker, Andrew K.; Johnson, Nicholas; Hansen, Michael J.; Li, Weiming

    2017-01-01

    The present study investigated the potential role of conspecific chemical cues in inland juvenile American eel Anguilla rostrata migrations by assessing glass eel and 1 year old elver affinities to elver washings, and elver affinity to adult yellow eel washings. In two-choice maze assays, glass eels were attracted to elver washings, but elvers were neither attracted to nor repulsed by multiple concentrations of elver washings or to yellow eel washings. These results suggest that A. rostrata responses to chemical cues may be life-stage dependent and that glass eels moving inland may use the odour of the previous year class as information to guide migration. The role of chemical cues and olfaction in eel migrations warrants further investigation as a potential restoration tool.

  2. Morphology and histochemistry of juvenile male American alligator (Alligator mississippiensis) phallus.

    PubMed

    Moore, Brandon C; Mathavan, Ketan; Guillette, Louis J

    2012-02-01

    Phalli of male crocodilians transfer sperm to female cloaca during sexual intercourse, resulting in internal fertilization. For over a century there have been scientific descriptions of crocodilian phallus morphologies; however, little work has presented detailed cellular-level analyses of these structures. Here we present a histological investigation of the complex functional anatomy of the juvenile male American alligator phallus, including fibrous and vascular erectile structures, a variety of secretory epithelium morphologies, and observed immune cells. Using 3D reconstruction software, we show the shape and location of vascular erectile tissues within the phallus. Histochemical staining detected mucin-rich secretory cells in glandular epithelial cells of the phallic shaft and also of the semen-conducting ventral sulcus. Lymphoid aggregates, lymphocytes, and epithelial mucin coats suggest an active immune system in the phallus defending from both the external and intracloacal environments. These results better characterize the complexity of the alligator phallus and predict later reproductive functions during adulthood.

  3. Donor life stage influences juvenile American eel Anguilla rostrata attraction to conspecific chemical cues.

    PubMed

    Galbraith, H S; Blakeslee, C J; Schmucker, A K; Johnson, N S; Hansen, M J; Li, W

    2017-01-01

    The present study investigated the potential role of conspecific chemical cues in inland juvenile American eel Anguilla rostrata migrations by assessing glass eel and 1 year old elver affinities to elver washings, and elver affinity to adult yellow eel washings. In two-choice maze assays, glass eels were attracted to elver washings, but elvers were neither attracted to nor repulsed by multiple concentrations of elver washings or to yellow eel washings. These results suggest that A. rostrata responses to chemical cues may be life-stage dependent and that glass eels moving inland may use the odour of the previous year class as information to guide migration. The role of chemical cues and olfaction in eel migrations warrants further investigation as a potential restoration tool.

  4. The Hibernating Stellar Magnet

    NASA Astrophysics Data System (ADS)

    2008-09-01

    First Optically Active Magnetar-Candidate Discovered Astronomers have discovered a most bizarre celestial object that emitted 40 visible-light flashes before disappearing again. It is most likely to be a missing link in the family of neutron stars, the first case of an object with an amazingly powerful magnetic field that showed some brief, strong visible-light activity. Hibernating Stellar Magnet ESO PR Photo 31/08 The Hibernating Stellar Magnet This weird object initially misled its discoverers as it showed up as a gamma-ray burst, suggesting the death of a star in the distant Universe. But soon afterwards, it exhibited some unique behaviour that indicates its origin is much closer to us. After the initial gamma-ray pulse, there was a three-day period of activity during which 40 visible-light flares were observed, followed by a brief near-infrared flaring episode 11 days later, which was recorded by ESO's Very Large Telescope. Then the source became dormant again. "We are dealing with an object that has been hibernating for decades before entering a brief period of activity", explains Alberto J. Castro-Tirado, lead author of a paper in this week's issue of Nature. The most likely candidate for this mystery object is a 'magnetar' located in our own Milky Way galaxy, about 15 000 light-years away towards the constellation of Vulpecula, the Fox. Magnetars are young neutron stars with an ultra-strong magnetic field a billion billion times stronger than that of the Earth. "A magnetar would wipe the information from all credit cards on Earth from a distance halfway to the Moon," says co-author Antonio de Ugarte Postigo. "Magnetars remain quiescent for decades. It is likely that there is a considerable population in the Milky Way, although only about a dozen have been identified." Some scientists have noted that magnetars should be evolving towards a pleasant retirement as their magnetic fields decay, but no suitable source had been identified up to now as evidence for

  5. Verification of a ‘freshwater-type’ life history variant of juvenile American shad in the Columbia River

    USGS Publications Warehouse

    Wetzel, Lisa A.; Larsen, Kimberly A.; Parsley, Michael J.; Zimmerman, Christian E.

    2011-01-01

    American shad are native to the Atlantic coast of North America and were successfully introduced to the Pacific coast in the 1870s. They are now more abundant in the Columbia River than are its native salmon. As in their native range, Columbia River American shad are anadromous and have been assumed to solely exhibit an ‘ocean-type’ life history, characterized by a short period of juvenile rearing in freshwater, followed by seaward migration and saltwater entry before age-1, with sexually mature individuals returning to freshwater to spawn beginning at age-3. During October 2007, emigrating juvenile American shad were captured in the juvenile fish monitoring facility at Bonneville Dam (river kilometer 235) on the Columbia River. Their length frequencies revealed the presence of two modes; the lower mode averaged 77 mm fork length (FL) and the upper mode averaged 184 mm FL. A subsample of fish from each mode was aged using otoliths. Otoliths from the lower mode (n=10) had no annuli, indicating that they were all age-0, while otoliths from the upper mode (n=25) had one or two annuli, indicating that they were either age-1 or age-2, respectively. Spawning adults collected in June 2007 averaged 393 mm FL (range 305-460 mm; n=21) and were estimated to range in age from 3-6. Elemental analyses of juvenile and adult otoliths provide evidence for deviations from the typical migration pattern expected for this species, including extensive freshwater rearing of up to two years. This evidence shows that a ‘freshwater-type’ of juvenile American shad exists as year-round or transient residents in the Columbia River basin. The ecological role of this life history variant within the fish community is unknown.

  6. Gene expression patterns in juvenile American alligators (Alligator mississippiensis) exposed to environmental contaminants.

    PubMed

    Kohno, Satomi; Bermudez, Dieldrich S; Katsu, Yoshinao; Iguchi, Taisen; Guillette, Louis J

    2008-06-23

    Reproductive and developmental abnormalities have been reported in the American alligator (Alligator mississippiensis) population from Lake Apopka, FL, that is chronically exposed to a complex mixture of environmental contaminants. To begin to understand the molecular mechanisms that could lead to the observed abnormalities of the reproductive and endocrine system, we quantified concentrations of the steroid hormones testosterone (T) and estradiol-17beta (E(2)) and expression of steroid hormone receptors and genes relating to steroidogenesis in gonadal tissue from juvenile alligators from three lakes in Florida using enzyme immunoassay and quantitative real-time polymerase chain reaction. Alterations of ESR2 (estrogen receptor beta) and SF1 (steroidogenic factor 1) mRNA expression in male gonadal tissue, without an observed difference in plasma concentrations of T, from the different lakes, begin to provide insight into potential mechanisms underlying the alterations of the reproductive system previously observed. Likewise, alterations in P450 aromatase and DAX1 (dosage-sensitive sex reversal, adrenal hypoplasia congenita critical region on the X chromosome, gene 1) mRNA expression, with elevated plasma E(2) concentrations in females, provide leads to the potential mechanisms modifying folliculogenesis and ovarian development. The investigation of these genes also helps clarify normal endocrine and reproductive system function in the American alligator.

  7. Myocardial ischemic protection in natural mammalian hibernation.

    PubMed

    Yan, Lin; Kudej, Raymond K; Vatner, Dorothy E; Vatner, Stephen F

    2015-03-01

    Hibernating myocardium is an important clinical syndrome protecting the heart with chronic myocardial ischemia, named for its assumed resemblance to hibernating mammals in winter. However, the effects of myocardial ischemic protection have never been studied in true mammalian hibernation, which is a unique strategy for surviving extreme winter environmental stress. The goal of this investigation was to test the hypothesis that ischemic stress may also be protected in woodchucks as they hibernate in winter. Myocardial infarction was induced by coronary occlusion followed by reperfusion in naturally hibernating woodchucks in winter with and without hibernation and in summer, when not hibernating. The ischemic area at risk was similar among groups. Myocardial infarction was significantly less in woodchucks in winter, whether hibernating or not, compared with summer, and was similar to that resulting after ischemic preconditioning. Whereas several genes were up or downregulated in both hibernating woodchuck and with ischemic preconditioning, one mechanism was unique to hibernation, i.e., activation of cAMP-response element binding protein (CREB). When CREB was upregulated in summer, it induced protection similar to that observed in the woodchuck heart in winter. The cardioprotection in hibernation was also mediated by endothelial nitric oxide synthase, rather than inducible nitric oxide synthase. Thus, the hibernating woodchuck heart is a novel model to study cardioprotection for two major reasons: (1) powerful cardioprotection occurs naturally in winter months in the absence of any preconditioning stimuli, and (2) it resembles ischemic preconditioning, but with novel mechanisms, making this model potentially useful for clinical translation.

  8. Myocardial ischemic protection in natural mammalian hibernation

    PubMed Central

    Yan, Lin; Kudej, Raymond K.; Vatner, Dorothy E.

    2015-01-01

    Hibernating myocardium is an important clinical syndrome protecting the heart with chronic myocardial ischemia, named for its assumed resemblance to hibernating mammals in winter. However, the effects of myocardial ischemic protection have never been studied in true mammalian hibernation, which is a unique strategy for surviving extreme winter environmental stress. The goal of this investigation was to test the hypothesis that ischemic stress may also be protected in woodchucks as they hibernate in winter. Myocardial infarction was induced by coronary occlusion followed by reperfusion in naturally hibernating woodchucks in winter with and without hibernation and in summer, when not hibernating. The ischemic area at risk was similar among groups. Myocardial infarction was significantly less in woodchucks in winter, whether hibernating or not, compared with summer, and was similar to that resulting after ischemic preconditioning. Whereas several genes were up or downregulated in both hibernating woodchuck and with ischemic preconditioning, one mechanism was unique to hibernation, i.e., activation of cAMP-response element binding protein (CREB). When CREB was upregulated in summer, it induced protection similar to that observed in the woodchuck heart in winter. The cardioprotection in hibernation was also mediated by endothelial nitric oxide synthase, rather than inducible nitric oxide synthase. Thus, the hibernating woodchuck heart is a novel model to study cardioprotection for two major reasons: (1) powerful cardioprotection occurs naturally in winter months in the absence of any preconditioning stimuli, and (2) it resembles ischemic preconditioning, but with novel mechanisms, making this model potentially useful for clinical translation. PMID:25613166

  9. Variations in mental health problems, substance use, and delinquency between African American and Caucasian juvenile offenders: implications for reentry services.

    PubMed

    Vaughn, Michael G; Wallace, John M; Davis, Larry E; Fernandes, Giselle T; Howard, Matthew O

    2008-06-01

    The incarceration of young people is a growing national problem. Key correlates of incarceration among American youth include mental health problems, substance use, and delinquency. The present study uses a statewide sample of incarcerated youth to examine racial differences in African American and Caucasian juvenile offenders' outcomes related to mental health, substance use, and delinquency. The data indicate that relative to Caucasian offenders, African American offenders report lower levels of mental health problems and substance use but higher levels of delinquent behavior such as violence, weapon carrying, and gang fighting. The data further reveal that African American offenders are more likely than Caucasian offenders to be victims of violence and to experience traumatic events such as witnessing injury and death. Recognition of these patterns may help to improve postrelease services by tailoring or adapting preexisting programs to patterns of risk factors and their relative magnitudes of effect.

  10. Exploring principles of hibernation for organ preservation.

    PubMed

    Ratigan, Emmett D; McKay, Dianne B

    2016-01-01

    Interest in mimicking hibernating states has led investigators to explore the biological mechanisms that permit hibernating mammals to survive for months at extremely low ambient temperatures, with no food or water, and awaken from their hibernation without apparent organ injury. Hibernators have evolved mechanisms to adapt to dramatic reductions in core body temperature and metabolic rate, accompanied by prolonged periods without nutritional intake and at the same time tolerate the metabolic demands of arousal. This review discusses the inherent resilience of hibernators to kidney injury and provides a potential framework for new therapies targeting ex vivo preservation of kidneys for transplantation.

  11. Hibernation for space travel: Impact on radioprotection

    NASA Astrophysics Data System (ADS)

    Cerri, Matteo; Tinganelli, Walter; Negrini, Matteo; Helm, Alexander; Scifoni, Emanuele; Tommasino, Francesco; Sioli, Maximiliano; Zoccoli, Antonio; Durante, Marco

    2016-11-01

    Hibernation is a state of reduced metabolic activity used by some animals to survive in harsh environmental conditions. The idea of exploiting hibernation for space exploration has been proposed many years ago, but in recent years it is becoming more realistic, thanks to the introduction of specific methods to induce hibernation-like conditions (synthetic torpor) in non-hibernating animals. In addition to the expected advantages in long-term exploratory-class missions in terms of resource consumptions, aging, and psychology, hibernation may provide protection from cosmic radiation damage to the crew. Data from over half century ago in animal models suggest indeed that radiation effects are reduced during hibernation. We will review the mechanisms of increased radioprotection in hibernation, and discuss possible impact on human space exploration.

  12. Hibernation for space travel: Impact on radioprotection.

    PubMed

    Cerri, Matteo; Tinganelli, Walter; Negrini, Matteo; Helm, Alexander; Scifoni, Emanuele; Tommasino, Francesco; Sioli, Maximiliano; Zoccoli, Antonio; Durante, Marco

    2016-11-01

    Hibernation is a state of reduced metabolic activity used by some animals to survive in harsh environmental conditions. The idea of exploiting hibernation for space exploration has been proposed many years ago, but in recent years it is becoming more realistic, thanks to the introduction of specific methods to induce hibernation-like conditions (synthetic torpor) in non-hibernating animals. In addition to the expected advantages in long-term exploratory-class missions in terms of resource consumptions, aging, and psychology, hibernation may provide protection from cosmic radiation damage to the crew. Data from over half century ago in animal models suggest indeed that radiation effects are reduced during hibernation. We will review the mechanisms of increased radioprotection in hibernation, and discuss possible impact on human space exploration.

  13. ALTERED HISTOLOGY OF THE THYMUS AND SPLEEN IN CONTAMINANT-EXPOSED JUVENILE AMERICAN ALLIGATORS

    EPA Science Inventory

    Morphological difference in spleen and thymus are closely related to functional immune differences. Hormonal regulation of the immune system has been demonstrated in reptilian splenic and thymic tissue. Spleens and thymus were obtained from juvenile alligators at two reference si...

  14. ALTERATIONS IN SEXUALLY DIMORPHIC BIOTRANSFORMATION OF TESTOSTERONE IN JUVENILE AMERICAN ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM CONTAMINATED LAKES

    EPA Science Inventory

    The goal of this study was to determine whether hepatic biotransformation of testosterone is normally sexually dimorphic in juvenile alligators and whether living in a contaminated environment affects hepatic dimorphism. Lake Woodruff served as our reference site. Moonshine Bay, ...

  15. A qualitative study of relationships among parenting strategies, social capital, the juvenile justice system, and mental health care for at-risk African American male youth.

    PubMed

    Richardson, Joseph B; Brakle, Mischelle Van

    2011-10-01

    For many poor, African American families living in the inner city, the juvenile justice system has become a de facto mental health service provider. In this article, longitudinal, ethnographic study methods were used to examine how resource-deprived, inner-city parents in a New York City community relied on the juvenile justice system to provide their African American male children with mental health care resources. The results of three case studies indicate that this strategy actually contributed to an escalation in delinquency among the youth.

  16. An Afrocentric Program for African American Males in the Juvenile Justice System.

    ERIC Educational Resources Information Center

    Harvey, Aminifu R.; Coleman, Antoinette A.

    1997-01-01

    Claims that the juvenile justice system provides an array of interventions but that culturally relevant programs are necessary to deal with the myriad of social problems. Introduces the MAAT (Egyptian for virtuous or moral life) Center for Human and Organizational Enhancement Inc. and its Rites of Passage program, which uses an Afrocentric…

  17. Academic Potential among African American Adolescents in Juvenile Detention Centers: Implications for Reentry to School

    ERIC Educational Resources Information Center

    Toldson, Ivory A.; Woodson, Kamilah M.; Braithwaite, Ronald; Holliday, Rhonda C.; De La Rosa, Mario

    2010-01-01

    The study explores Black adolescent detainees' academic potential and motivation to return to school, to inform best practices and policies for juvenile reentry to educational settings. Adolescent detainees (N = 1,576) who were recruited from 1 male and 1 female youth detention facility, responded to surveys that assessed postdetention educational…

  18. Yearlong hibernation in a marsupial mammal

    NASA Astrophysics Data System (ADS)

    Geiser, Fritz

    2007-11-01

    Many mammals hibernate each year for about 6 months in autumn and winter and reproduce during spring and summer when they are generally not in torpor. I tested the hypothesis that the marsupial pygmy-possum ( Cercartetus nanus), an opportunistic nonseasonal hibernator with a capacity for substantial fattening, would continue to hibernate well beyond winter. I also quantified how long they were able to hibernate without access to food before their body fat stores were depleted. Pygmy-possums exhibited a prolonged hibernation season lasting on average for 310 days. The longest hibernation season in one individual lasted for 367 days. For much of this time, despite periodic arousals after torpor bouts of ˜12.5 days, energy expenditure was reduced to only ˜2.5% of that predicted for active individuals. These observations represent the first report on body-fat-fuelled hibernation of up to an entire year and provide new evidence that prolonged hibernation is not restricted to placental mammals living in the cold.

  19. Hibernation in a primate: does sleep occur?

    PubMed Central

    Dausmann, Kathrin H.; Faherty, Sheena L.; Klopfer, Peter; Krystal, Andrew D.; Schopler, Robert; Yoder, Anne D.

    2016-01-01

    During hibernation, critical physiological processes are downregulated and thermogenically induced arousals are presumably needed periodically to fulfil those physiological demands. Among the processes incompatible with a hypome tabolic state is sleep. However, one hibernating primate, the dwarf lemur Cheirogaleus medius, experiences rapid eye movement (REM)-like states during hibernation, whenever passively reaching temperatures above 30°C, as occurs when it hibernates in poorly insulated tree hollows under tropical conditions. Here, we report electroencephalographic (EEG) recordings, temperature data and metabolic rates from two related species (C. crossleyi and C. sibreei), inhabiting high-altitude rainforests and hibernating underground, conditions that mirror, to some extent, those experienced by temperate hibernators. We compared the physiology of hibernation and spontaneous arousals in these animals to C. medius, as well as the much more distantly related non-primate hibernators, such as Arctic, golden-mantled and European ground squirrels. We observed a number of commonalities with non-primate temperate hibernators including: (i) monotonous ultra-low voltage EEG during torpor bouts in these relatively cold-weather hibernators, (ii) the absence of sleep during torpor bouts, (iii) the occurrence of spontaneous arousals out of torpor, during which sleep regularly occurred, (iv) relatively high early EEG non-REM during the arousal, and (v) a gradual transition to the torpid EEG state from non-REM sleep. Unlike C. medius, our study species did not display sleep-like states during torpor bouts, but instead exclusively exhibited them during arousals. During these short euthermic periods, non-REM as well as REM sleep-like stages were observed. Differences observed between these two species and their close relative, C. medius, for which data have been published, presumably reflect differences in hibernaculum temperature. PMID:27853604

  20. Diet of juvenile and adult American Shad in the Columbia River

    USGS Publications Warehouse

    Sauter, Sally T.; Blubaugh, J; Parsen, Michael J.

    2011-01-01

    The diet of age-0 American shad varied spatially and temporally, but was comprised primarily of crustaceans and insects. Prey diversity of age-0 American shad, as assessed by the Shannon Diversity Index, increased with decreasing distance to the estuary. Pre- and partial-spawn adult American shad primarily consumed Corophium spp. throughout the Columbia River; however, post-spawn adults primarily consumed gastropods upstream of McNary Dam.

  1. Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus)

    PubMed Central

    2011-01-01

    Background Hibernation is an adaptive strategy to survive in highly seasonal or unpredictable environments. The molecular and genetic basis of hibernation physiology in mammals has only recently been studied using large scale genomic approaches. We analyzed gene expression in the American black bear, Ursus americanus, using a custom 12,800 cDNA probe microarray to detect differences in expression that occur in heart and liver during winter hibernation in comparison to summer active animals. Results We identified 245 genes in heart and 319 genes in liver that were differentially expressed between winter and summer. The expression of 24 genes was significantly elevated during hibernation in both heart and liver. These genes are mostly involved in lipid catabolism and protein biosynthesis and include RNA binding protein motif 3 (Rbm3), which enhances protein synthesis at mildly hypothermic temperatures. Elevated expression of protein biosynthesis genes suggests induction of translation that may be related to adaptive mechanisms reducing cardiac and muscle atrophies over extended periods of low metabolism and immobility during hibernation in bears. Coordinated reduction of transcription of genes involved in amino acid catabolism suggests redirection of amino acids from catabolic pathways to protein biosynthesis. We identify common for black bears and small mammalian hibernators transcriptional changes in the liver that include induction of genes responsible for fatty acid β oxidation and carbohydrate synthesis and depression of genes involved in lipid biosynthesis, carbohydrate catabolism, cellular respiration and detoxification pathways. Conclusions Our findings show that modulation of gene expression during winter hibernation represents molecular mechanism of adaptation to extreme environments. PMID:21453527

  2. Survival and behavioral effects of exposure to a hydrokinetic turbine on juvenile Atlantic salmon and adult American shad

    USGS Publications Warehouse

    Castro-Santos, Theodore R.; Haro, Alex

    2015-01-01

    This paper describes a series of experiments designed to measure the effect of exposure to a full-scale, vertical axis hydrokinetic turbine on downstream migrating juvenile Atlantic salmon (N=75) and upstream migrating adult American shad (N=208). Controlled studies were performed in a large-scale, open-channel flume, and all individuals approached the turbine under volitional control. No injuries were observed, and there was no measurable increase in mortality associated with turbine passage. Exposure to the turbine elicited behavioral responses from both species, however, with salmon passing primarily over the downrunning blades. Shad movement was impeded by the device, as indicated by fewer attempts of shorter duration and reduced distance of ascent up the flume. More work should be performed in both laboratory and field conditions to determine to what extent these effects are likely to influence free-swimming fish.

  3. A Critical Analysis of Selected Native American Literature for Juvenile Readers.

    ERIC Educational Resources Information Center

    Walsh, Anna C.; Adams, Caryl L.

    Intended to help teachers who want to offer their students the best native American literature, this paper analyzes a selection of books written by and about native Americans, in particular the Navajo Indians. The criteria used to select materials for the paper include historical accuracy, cultural accuracy, idealism versus realism, and reader…

  4. Outliers in American juvenile justice: the need for statutory reform in North Carolina and New York.

    PubMed

    Tedeschi, Frank; Ford, Elizabeth

    2015-05-01

    There is a well-established and growing body of evidence from research that adolescents who commit crimes differ in many regards from their adult counterparts and are more susceptible to the negative effects of adjudication and incarceration in adult criminal justice systems. The age of criminal court jurisdiction in the United States has varied throughout history; yet, there are only two remaining states, New York and North Carolina, that continue to automatically charge 16 year olds as adults. This review traces the statutory history of juvenile justice in these two states with an emphasis on political and social factors that have contributed to their outlier status related to the age of criminal court jurisdiction. The neurobiological, psychological, and developmental aspects of the adolescent brain and personality, and how those issues relate both to a greater likelihood of rehabilitation in appropriate settings and to greater vulnerability in adult correctional facilities, are also reviewed. The importance of raising the age in New York and North Carolina not only lies in protecting incarcerated youths but also in preventing the associated stigma following release. Mental health practitioners are vital to the process of local and national juvenile justice reform. They can serve as experts on and advocates for appropriate mental health care and as experts on the adverse effects of the adult criminal justice system on adolescents.

  5. Good and Bad in the Hibernating Brain

    NASA Astrophysics Data System (ADS)

    Strijkstra, A. M.

    Hibernators survive long periods of time without behavioural activity. To minimize energy expenditure, hibernators use the natural hypometabolic state of torpor. Deep torpor in ground squirrels is accompanied by reduction of brain activity, and is associated with changes in electrical activity patterns, with changes in neuronal connectivity, with tau protein hyperphosphorylation, and with loss of behavioural function (e.g., spatial memory, operational conditioning, behavioural rhythmicity). Thus, deep torpor does not guarantee unchanged physiological and behavioural outcome. However, the adverse effects of deep torpor may be limited to the extreme hibernation strategy used by ground squirrels. The wide variety of natural hibernation strategies may serve as a basis to identify hypometabolic strategies appropriate for long lasting human hypome- tabolism.

  6. Academic potential among African American adolescents in juvenile detention centers: Implications for reentry to school

    PubMed Central

    Toldson, Ivory A.; Woodson, Kamilah M.; Braithwaite, Ronald; Holliday, Rhonda C.

    2010-01-01

    The study explores Black adolescent detainees academic potential and motivation to return to school to inform best practices and policies for juvenile reentry to educational settings. Adolescent detainees (N = 1,576) who were recruited from one male and one female youth detention facility, responded to surveys that assessed post-detention educational plans, as well as social and emotional characteristics, and criminal history. Multivariate analysis techniques were used to compare factors across race and gender, and plot linear relationships between key indicators of academic potential with associate factors. Findings revealed that youth were more likely to evince academic potential when they had a healthy level of self-esteem, adequate future goal orientation, positive mood, family and community involvement, fewer traumatic events, and less delinquent activity. PMID:21654936

  7. Psychosocial, substance use, and delinquency differences among Anglo, Hispanic White, and African-American male youths entering a juvenile assessment center.

    PubMed

    Dembo, R; Schmeidler, J; Sue, C C; Borden, P; Manning, D; Rollie, M

    1998-06-01

    Using data collected on nearly 4,000 Anglo, Hispanic White, and African-American male youths processed at the Hillsborough County Juvenile Assessment Center, we examine their psychosocial, substance use, and other delinquent behavior differences. In extending the results of previous research in a manner consistent with the concept of relative deviance, significant differences in these variables are found across the three groups. Implications of the findings for theory, service delivery, and policy are also considered.

  8. Altered histology of the thymus and spleen in contaminant-exposed juvenile American alligators.

    PubMed

    Rooney, Andrew A; Bermudez, Dieldrich S; Guillette, Louis J

    2003-06-01

    Morphological differences in spleen and thymus are closely related to functional immune differences. Hormonal regulation of the immune system has been demonstrated in reptilian splenic and thymic tissue. Spleens and thymus were obtained from juvenile alligators at two reference sites in Florida, USA: Orange Lake and a National Wildlife Refuge, Lake Woodruff, as well as from a contaminated lake, Lake Apopka. Lake Apopka has been extensively polluted with agricultural pesticides. Tissues were prepared for histological analysis to determine if previously detected endocrine abnormalities associated with contaminant exposure might also be reflected in morphological differences in splenic and thymic structures important for immunological response. Similar tissues were taken from captive-raised juvenile female alligators (3 years old) that were hatched from eggs collected on Lake Woodruff and Lake Apopka. Differences in thymic ratios (medulla/cortex) were found among alligators collected from the two lakes (P = 0.0051). Alligators from Lake Apopka had smaller thymic ratios than animals from either reference lake. Males from Lake Woodruff had significantly smaller lymphocyte sheaths in the spleen than females (P = 0.0009), indicative of a normal sexual dimorphism. Lymphocyte sheath width differed among females obtained from the three lakes, with females from Lake Apopka having the smallest sheath width and those from Orange Lake having the largest. Malpighian body area was largest in alligators from Orange Lake, intermediate in Lake Woodruff, and smallest in Lake Apopka. In contrast to that observed for wild-caught animals, no difference was found in the thymic medulla/cortex ratio of captive-raised female alligators (P = 0.378). Captive-raised female alligators from Lake Apopka and Lake Woodruff displayed lake-associated differences in lymphocyte sheath width as observed in wild animals; Lake Apopka alligators had smaller lymphocyte sheath width compared to Woodruff

  9. Size and age distributions of Juvenile Connecticut River American shad above Hadley Falls: Influence on outmigration representation and timing

    USGS Publications Warehouse

    O'Donnell, M. J.; Letcher, B.H.

    2008-01-01

    Age- and size-based habitat use and movement patterns of young-of-year American shad in rivers are not well understood. Adult females reach their natal rivers at different times and ascend the river at different rates, which may lead to variation of hatch dates at a single location. Also, shad are serial spawners, so eggs of the same female may be released at different distances from the river mouth. It has long been hypothesized that juvenile shad emigration is a function of size or age, and not necessarily keyed only to a decrease in water temperature during the fall. We seined three sites in the Connecticut River biweekly to collect pre-migrant shad during river residence (spring to fall). During emigration, samples were also collected weekly at two hydroelectric facilities. Otoliths were removed from ???20% of the fish to obtain age and growth rate information. We found increases in length and age over time until late in the season, after which such increases were mostly insigniftlant. Cohorts collected early in the year as pre-migrants were never sampled as migrants later in the year at the hydroelectric projects. Cohorts collected late in the year as migrants were never collected earlier in the year as pre-migrants. Only during a narrow window of time were fish collected as both pre-migrants and migrants. Fish that were hatched later in the season exhibited higher growth rates than fish that were hatched earlier in the season. Copyright ?? 2008 John Wiley & Sons, Ltd.

  10. Binary system parameters and the hibernation model of cataclysmic variables

    SciTech Connect

    Livio, M.; Shara, M.M.

    1987-08-01

    The hibernation model, in which nova systems spend most of the time between eruptions in a state of low mass transfer rate, is examined. The binary systems more likely to undergo hibernation are determined. The predictions of the hibernation scenario are shown to be consistent with available observational data. It is shown how the hibernation scenario provides links between classical novae, dwarf novae, and novalike variables, all of which represent different stages in the cyclic evolution of the same systems. 72 references.

  11. Juvenile angiofibroma

    MedlinePlus

    Nasal tumor; Angiofibroma - juvenile; Benign nasal tumor; Juvenile nasal angiofibroma; JNA ... Juvenile angiofibroma is not very common. It is most often found in adolescent boys. The tumor contains ...

  12. Juvenile Spondyloarthritis

    PubMed Central

    Gmuca, Sabrina; Weiss, Pamela F.

    2015-01-01

    Purpose of review To provide a comprehensive update of the pathogenesis, diagnostic imaging, treatments, and disease activity measurements of juvenile spondyloarthritis (JSpA). Recent findings Genetic and microbiome studies have provided new information regarding possible pathogenesis of JSpA. Recent work suggests that children with JSpA have decreased thresholds for pain in comparison to healthy children. Additionally, pain on physical examination and abnormalities on ultrasound of the entheses are not well correlated. Treatment guidelines for juvenile arthritis, including JSpA, were published by the American College of Rheumatology and are based on active joint count and presence of sacroiliitis. Recent studies have established the efficacy of tumor necrosis factor inhibitors in the symptomatic treatment of axial disease, though their efficacy for halting progression of structural damage is less clear. Newly developed disease activity measures for JSpA include the Juvenile Arthritis Disease Activity Score and the JSpA Disease Activity index. In comparison to other categories of juvenile arthritis, children with JSpA are less likely to attain and sustain inactive disease. Summary Further microbiome and genetic research may help elucidate JSpA pathogenesis. More randomized therapeutic trials are needed and the advent of new composite disease activity measurement tools will hopefully allow for the design of these greatly needed trials. PMID:26002028

  13. Polar bears (Ursus maritimus), the most evolutionary advanced hibernators, avoid significant bone loss during hibernation.

    PubMed

    Lennox, Alanda R; Goodship, Allen E

    2008-02-01

    Some hibernating animals are known to reduce muscle and bone loss associated with mechanical unloading during prolonged immobilisation,compared to humans. However, here we show that wild pregnant polar bears (Ursus maritimus) are the first known animals to avoid significant bone loss altogether, despite six months of continuous hibernation. Using serum biochemical markers of bone turnover, we showed that concentrations for bone resorption are not significantly increased as a consequence of hibernation in wild polar bears. This is in sharp contrast to previous studies on other hibernating species, where for example, black bears (Ursus americanus), show a 3-4 fold increase in serum bone resorption concentrations posthibernation,and must compensate for this loss through rapid bone recovery on remobilisation, to avoid the risk of fracture. In further contrast to black bears, serum concentrations of bone formation markers were highly significantly increased in pregnant female polar bears compared to non-pregnant,thus non-hibernating females both prior to and after hibernation. However, bone formation concentrations in new mothers were significantly reduced compared to pre-hibernation concentrations. The de-coupling of bone turnover in favour of bone formation prior to hibernation, suggests that wild polar bears may posses a unique physiological mechanism for building bone in protective preparation against expected osteopenia associated with disuse,starvation, and hormonal drives to mobilise calcium for reproduction, during hibernation. Understanding this physiological mechanism could have profound implications for a natural solution for the prevention of osteoporosis in animals subjected to captivity with inadequate space for exercise,humans subjected to prolonged bed rest while recovering from illness, or astronauts exposed to antigravity during spaceflight.© 2008 Elsevier Inc. All rights reserved.

  14. DADLE: A Cue to Human ``Hibernation''

    NASA Astrophysics Data System (ADS)

    Biggiogera, M.; Fabene, P.; Zancanaro, C.

    DADLE [D-Ala(2)-D-Leu(5)-enkephalin] can induce hibernation when injected into ground squirrels in summer and is able to increase the survival time of explanted organs such as liver and lung. Since cell metabolism is a target of the peptide, we have treated HeLa cells with DADLE and investigated its possible effect on transcription and proliferation and the resumption of metabolic activity after the treatment. Results show that DADLE is able to reduce the nucleoplasmic transport of RNA, thereby suggesting that the opioid acts a depressor of cell function in vitro. In in vivo experiments, rats acutely injected with DADLE showed reduction of body temperature and locomotion up to 90 min. This suggest that the opioid is able to depress metabolic activities at the organism level. The potential of DADLE as a hibernation induction factor in mammals which are not natural hibernators (inclusive of the human) deserves careful scrutiny.

  15. Wound healing during hibernation by black bears (Ursus americanus) in the wild: elicitation of reduced scar formation.

    PubMed

    Iaizzo, Paul A; Laske, Timothy G; Harlow, Henry J; McClay, Carolyn B; Garshelis, David L

    2012-03-01

    Even mildly hypothermic body or limb temperatures can retard healing processes in mammals. Despite this, we observed that hibernating American black bears (Ursus americanus Pallas, 1780) elicit profound abilities in mounting inflammatory responses to infection and/or foreign bodies. In addition, they resolve injuries during hibernation while maintaining mildly hypothermic states (30-35 °C) and without eating, drinking, urinating or defecating. We describe experimental studies on free-ranging bears that document their abilities to completely resolve cutaneous cuts and punctures incurred during or prior to hibernation. We induced small, full-thickness cutaneous wounds (biopsies or incisions) during early denning, and re-biopsied sites 2-3 months later (near the end of denning). Routine histological methods were used to characterize these skin samples. All biopsied sites with respect to secondary intention (open circular biopsies) and primary intention (sutured sites) healed, with evidence of initial eschar (scab) formation, completeness of healed epidermis and dermal layers, dyskeratosis (inclusion cysts), and abilities to produce hair follicles. These healing abilities of hibernating black bears are a clear survival advantage to animals injured before or during denning. Bears are known to have elevated levels of hibernation induction trigger (delta-opioid receptor agonist) and ursodeoxycholic acid (major bile acid within plasma, mostly conjugated with taurine) during hibernation, which may relate to these wound-healing abilities. Further research as to the underlying mechanisms of wound healing during hibernation could have applications in human medicine. Unique approaches may be found to improve healing for malnourished, hypothermic, diabetic and elderly patients or to reduce scarring associated with burns and traumatic injuries.

  16. Efficacy of an HIV/STI sexual risk-reduction intervention for African American adolescent girls in juvenile detention centers: a randomized controlled trial.

    PubMed

    DiClemente, Ralph J; Davis, Teaniese L; Swartzendruber, Andrea; Fasula, Amy M; Boyce, Lorin; Gelaude, Deborah; Gray, Simone C; Hardin, James; Rose, Eve; Carry, Monique; Sales, Jessica M; Brown, Jennifer L; Staples-Horne, Michelle

    2014-01-01

    Few HIV/STI interventions exist for African American adolescent girls in juvenile detention. The objective was to evaluate the efficacy of an intervention to reduce incident STIs, improve HIV-preventive behaviors, and enhance psychosocial outcomes. We conducted a randomized controlled trial among African American adolescent girls (13-17 years, N = 188) in juvenile detention from March 2011 to May 2012. Assessments occurred at baseline and 3- and 6-months post-randomization and included: audio computer-assisted self-interview, condom skills assessment, and self-collected vaginal swab to detect Chlamydia and gonorrhea. The Imara intervention included three individual-level sessions and four phone sessions; expedited partner therapy was offered to STI-positive adolescents. The comparison group received the usual care provided by the detention center: STI testing, treatment, and counseling. At the 6-month assessment (3-months post-intervention), Imara participants reported higher condom use self-efficacy (p < 0.001), HIV/STI knowledge (p < 0.001), and condom use skills (p < 0.001) compared to control participants. No significant differences were observed between trial conditions in incident Chlamydia or gonorrhea infections, condom use, or number of vaginal sex partners. Imara for detained African American adolescent girls can improve condom use skills and psychosocial outcomes; however, a critical need for interventions to reduce sexual risk remains.

  17. Efficacy of an HIV/STI Sexual Risk-Reduction Intervention for African American Adolescent Girls in Juvenile Detention Centers: A Randomized Controlled Trial

    PubMed Central

    DiClemente, Ralph J.; Davis, Teaniese L.; Swartzendruber, Andrea; Fasula, Amy M.; Boyce, Lorin; Gelaude, Deborah; Gray, Simone C.; Hardin, James; Rose, Eve; Carry, Monique; Sales, Jessica M.; Brown, Jennifer L.; Staples-Horne, Michelle

    2014-01-01

    Background Few HIV/STI interventions exist for African American adolescent girls in juvenile detention. Objective The objective was to evaluate the efficacy of an intervention to reduce incident STIs, improve HIV-preventive behaviors, and enhance psychosocial outcomes. Methods We conducted a randomized controlled trial among African American adolescent girls (13-17 years, N=188) in juvenile detention from March 2011 to May 2012. Assessments occurred at baseline and 3- and 6-months post-randomization and included: audio computer-assisted self-interview, condom skills assessment, and self-collected vaginal swab to detect Chlamydia and gonorrhea. Intervention The Imara intervention included three individual-level sessions and four phone sessions; expedited partner therapy was offered to STI-positive adolescents. The comparison group received the usual care provided by the detention center: STI testing, treatment and counseling. Results At the 6-month assessment (3-months post-intervention) Imara participants reported higher condom use self-efficacy (p<0.001), HIV/STI knowledge (p<0.001), and condom use skills (p<0.001) compared to control participants. No significant differences were observed between trial conditions in incident Chlamydia or gonorrhea infections, condom use, or number of vaginal sex partners. Conclusions Imara for detained African American adolescent girls can improve condom use skills and psychosocial outcomes; however, a critical need for interventions to reduce sexual risk remains. PMID:25190056

  18. Mechanisms of cell survival in myocardial hibernation.

    PubMed

    Depre, Christophe; Vatner, Stephen F

    2005-04-01

    Myocardial hibernation represents a condition of regional ventricular dysfunction in patients with chronic coronary artery disease, which reverses gradually after revascularization. The precise mechanism mediating the regional dysfunction is still debated. One hypothesis suggests that chronic hypoperfusion results in a self-protecting downregulation in myocardial function and metabolism to match the decreased oxygen supply. An alternative hypothesis suggests that the myocardium is subject to repetitive episodes of ischemic dysfunction resulting from an imbalance between myocardial metabolic demand and supply that eventually creates a sustained depression of contractility. It is generally agreed that hibernating myocardium is submitted repeatedly to ischemic stress, and therefore one question persists: how do myocytes survive in the setting of chronic ischemia? The hallmark of hibernating myocardium is a maintained viability of the dysfunctional myocardium which relies on an increased uptake of glucose. We propose that, in addition to this metabolic adjustment, there must be molecular switches that confer resistance to ischemia in hibernating myocardium. Such mechanisms include the activation of a genomic program of cell survival as well as autophagy. These protective mechanisms are induced by ischemia and remain activated chronically as long as either sustained or intermittent ischemia persists.

  19. Effects of different salinities on growth performance, survival, digestive enzyme activity, immune response, and muscle fatty acid composition in juvenile American shad (Alosa sapidissima).

    PubMed

    Liu, Zhi-Feng; Gao, Xiao-Qiang; Yu, Jiu-Xiang; Qian, Xiao-Ming; Xue, Guo-Ping; Zhang, Qiao-Yun; Liu, Bao-Liang; Hong, Lei

    2016-12-24

    The effects of salinity on survival, growth, special activity of digestive enzymes, nonspecific immune response, and muscle fatty acid composition were evaluated in the American shad (Alosa sapidissima). Juveniles of 35 days after hatching were reared at 0 (control), 7, 14, 21, and 28 ppt for 60 days. At the end of the experiment, juvenile American shad presented higher survival and specific growth rate (SGR) in salinity group (7, 14, and 21 ppt) than control group (P < 0.05). The special activity of trypsin and chymotrypsin was highest in fish reared at 21 ppt, while the highest lipase special activity was obtained in control group (P < 0.05). The special activity of alkaline phosphatase (ALP), lysozyme (LZM), superoxide dismutase (SOD), and catalase (CAT) showed significant increases in salinity group (14 and 21 ppt) compared to control group (P < 0.05). Lower muscle ash contents were detected in salinity group (14, 21, and 28 ppt) than control group (P < 0.05), while the contents of crude lipid and crude protein were significantly higher than control group (P < 0.05). The level of monounsaturated fatty acids (MUFA) exhibited a decreasing trend, while an increased level of polyunsaturated fatty acids (PUFA) was detected with the increase of salinity. Among the PUFA, the content of n-3 fatty acids in muscle tissue was found to be increasing with the increasing salinity, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Results indicate that appropriate increase in salinity was reasonable and beneficial for juvenile American shad culture after a comprehensive consideration, especially salinity range from 14 to 21 ppt.

  20. Keep cool: memory is retained during hibernation in Alpine marmots.

    PubMed

    Clemens, L E; Heldmaier, G; Exner, C

    2009-08-04

    Hibernators display severe changes in brain structure during deep torpor, including alterations in synaptic constitution. To address a possible effect on long-term memory, we examined learning behavior and memory of the hibernator Marmota marmota. In two operant conditioning tasks, the marmots learned to jump on two boxes or to walk through a tube. The animals were trained during their active season. Performance improved during the training phase and remained stable in a last test, four weeks before entrance into hibernation. When retested after six months of hibernation, skills were found to be unimpaired (box: before hibernation: 258.2+/-17.7 s, after hibernation: 275.0+/-19.8 s; tube: before hibernation: 158.4+/-9.0 s, after hibernation: 137.7+/-6.3 s). Contrary to these findings, memory seemed to be less fixed during the active season, since changes in test procedure resulted in impaired test performance. Besides the operant conditioning, we investigated the animals' habituation to a novel environment by repeated open field exposure. In the first run, animals showed exploratory behavior and thus a high locomotor activity was observed (63.6+/-10.7 crossed squares). Upon a second exposure, all animals immediately moved into one corner and locomotion ceased (7.2+/-1.9 crossed squares). This habituation was not altered even after hibernation (6.1+/-1.1 crossed squares). We thus conclude that long-term memory is unaffected by hibernation in Alpine marmots.

  1. Antioxidant Defenses in the Brains of Bats during Hibernation.

    PubMed

    Yin, Qiuyuan; Ge, Hanxiao; Liao, Chen-Chong; Liu, Di; Zhang, Shuyi; Pan, Yi-Hsuan

    2016-01-01

    Hibernation is a strategy used by some mammals to survive a cold winter. Small hibernating mammals, such as squirrels and hamsters, use species- and tissue-specific antioxidant defenses to cope with oxidative insults during hibernation. Little is known about antioxidant responses and their regulatory mechanisms in hibernating bats. We found that the total level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the brain of each of the two distantly related hibernating bats M. ricketti and R. ferrumequinum at arousal was lower than that at torpid or active state. We also found that the levels of malondialdehyde (product of lipid peroxidation) of the two hibernating species of bats were significantly lower than those of non-hibernating bats R. leschenaultia and C. sphinx. This observation suggests that bats maintain a basal level of ROS/RNS that does no harm to the brain during hibernation. Results of Western blotting showed that hibernating bats expressed higher amounts of antioxidant proteins than non-hibernating bats and that M. ricketti bats upregulated the expression of some enzymes to overcome oxidative stresses, such as superoxide dismutase, glutathione reductase, and catalase. In contrast, R. ferrumequinum bats maintained a relatively high level of superoxide dismutase 2, glutathione reductase, and thioredoxin-2 throughout the three different states of hibernation cycles. The levels of glutathione (GSH) were higher in M. ricketti bats than in R. ferrumequinum bats and were significantly elevated in R. ferrumequinum bats after torpor. These data suggest that M. ricketti bats use mainly antioxidant enzymes and R. ferrumequinum bats rely on both enzymes and low molecular weight antioxidants (e.g., glutathione) to avoid oxidative stresses during arousal. Furthermore, Nrf2 and FOXOs play major roles in the regulation of antioxidant defenses in the brains of bats during hibernation. Our study revealed strategies used by bats against oxidative

  2. Antioxidant Defenses in the Brains of Bats during Hibernation

    PubMed Central

    Yin, Qiuyuan; Ge, Hanxiao; Liao, Chen-Chong; Liu, Di; Zhang, Shuyi; Pan, Yi-Hsuan

    2016-01-01

    Hibernation is a strategy used by some mammals to survive a cold winter. Small hibernating mammals, such as squirrels and hamsters, use species- and tissue-specific antioxidant defenses to cope with oxidative insults during hibernation. Little is known about antioxidant responses and their regulatory mechanisms in hibernating bats. We found that the total level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the brain of each of the two distantly related hibernating bats M. ricketti and R. ferrumequinum at arousal was lower than that at torpid or active state. We also found that the levels of malondialdehyde (product of lipid peroxidation) of the two hibernating species of bats were significantly lower than those of non-hibernating bats R. leschenaultia and C. sphinx. This observation suggests that bats maintain a basal level of ROS/RNS that does no harm to the brain during hibernation. Results of Western blotting showed that hibernating bats expressed higher amounts of antioxidant proteins than non-hibernating bats and that M. ricketti bats upregulated the expression of some enzymes to overcome oxidative stresses, such as superoxide dismutase, glutathione reductase, and catalase. In contrast, R. ferrumequinum bats maintained a relatively high level of superoxide dismutase 2, glutathione reductase, and thioredoxin-2 throughout the three different states of hibernation cycles. The levels of glutathione (GSH) were higher in M. ricketti bats than in R. ferrumequinum bats and were significantly elevated in R. ferrumequinum bats after torpor. These data suggest that M. ricketti bats use mainly antioxidant enzymes and R. ferrumequinum bats rely on both enzymes and low molecular weight antioxidants (e.g., glutathione) to avoid oxidative stresses during arousal. Furthermore, Nrf2 and FOXOs play major roles in the regulation of antioxidant defenses in the brains of bats during hibernation. Our study revealed strategies used by bats against oxidative

  3. HNF-4 participates in the hibernation-associated transcriptional regulation of the chipmunk hibernation-related protein gene

    PubMed Central

    Tsukamoto, Daisuke; Ito, Michihiko; Takamatsu, Nobuhiko

    2017-01-01

    The chipmunk hibernation-related protein 25 (HP-25) is involved in the circannual control of hibernation in the brain. The liver-specific expression of the HP-25 gene is repressed in hibernating chipmunks under the control of endogenous circannual rhythms. However, the molecular mechanisms that differentially regulate the HP-25 gene during the nonhibernation and hibernation seasons are unknown. Here, we show that the hibernation-associated HP-25 expression is regulated epigenetically. Chromatin immunoprecipitation analyses revealed that significantly less hepatocyte nuclear receptor HNF-4 bound to the HP-25 gene promoter in the liver of hibernating chipmunks compared to nonhibernating chipmunks. Concurrently in the hibernating chipmunks, coactivators were dissociated from the promoter, and active transcription histone marks on the HP-25 gene promoter were lost. On the other hand, small heterodimer partner (SHP) expression was upregulated in the liver of hibernating chipmunks. Overexpressing SHP in primary hepatocytes prepared from nonhibernating chipmunks caused HNF-4 to dissociate from the HP-25 gene promoter, and reduced the HP-25 mRNA level. These results suggest that hibernation-related HP-25 expression is epigenetically regulated by the binding of HNF-4 to the HP-25 promoter, and that this binding might be modulated by SHP in hibernating chipmunks. PMID:28281641

  4. Seasonal oscillation of liver-derived hibernation protein complex in the central nervous system of non-hibernating mammals

    PubMed Central

    Seldin, Marcus M.; Byerly, Mardi S.; Petersen, Pia S.; Swanson, Roy; Balkema-Buschmann, Anne; Groschup, Martin H.; Wong, G. William

    2014-01-01

    Mammalian hibernation elicits profound changes in whole-body physiology. The liver-derived hibernation protein (HP) complex, consisting of HP-20, HP-25 and HP-27, was shown to oscillate circannually, and this oscillation in the central nervous system (CNS) was suggested to play a role in hibernation. The HP complex has been found in hibernating chipmunks but not in related non-hibernating tree squirrels, leading to the suggestion that hibernation-specific genes may underlie the origin of hibernation. Here, we show that non-hibernating mammals express and regulate the conserved homologous HP complex in a seasonal manner, independent of hibernation. Comparative analyses of cow and chipmunk HPs revealed extensive biochemical and structural conservations. These include liver-specific expression, assembly of distinct heteromeric complexes that circulate in the blood and cerebrospinal fluid, and the striking seasonal oscillation of the HP levels in the blood and CNS. Central administration of recombinant HPs affected food intake in mice, without altering body temperature, physical activity levels or energy expenditure. Our results demonstrate that HP complex is not unique to the hibernators and suggest that the HP-regulated liver–brain circuit may couple seasonal changes in the environment to alterations in physiology. PMID:25079892

  5. TRAJECTORIES OF ACCULTURATION AND ENCULTURATION IN RELATION TO HEAVY EPISODIC DRINKING AND MARIJUANA USE IN A SAMPLE OF MEXICAN AMERICAN SERIOUS JUVENILE OFFENDERS

    PubMed Central

    Losoya, Sandra H.; Knight, George P.; Chassin, Laurie; Little, Michelle; Vargas-Chanes, Delfino; Mauricio, Anne; Piquero, Alex

    2009-01-01

    This study examines the longitudinal relations of multiple dimensions of acculturation and enculturation to heavy episodic drinking and marijuana use in a sample of 300 male, Mexican-American, serious juvenile offenders. We track trajectories between ages 15 and 20 and also consider the effects of participants’ time spent residing in supervised settings during these years. Results showed some (although not entirely consistent) support for the hypothesis that bicultural adaptation is most functional in terms of lowered substance use involvement. The current findings demonstrate the importance of examining these relations longitudinally and among multiple dimensions of acculturation and enculturation, and they call into question simple models that suggest that greater acculturation is associated with greater substance use among Mexican-American adolescents. PMID:20198119

  6. Mechanisms responsible for decreased glomerular filtration in hibernation and hypothermia

    NASA Technical Reports Server (NTRS)

    Tempel, G. E.; Musacchia, X. J.; Jones, S. B.

    1977-01-01

    Measurements of blood pressure, heart rate, red blood cell and plasma volumes, and relative distribution of cardiac output were made on hibernating and hypothermic adult male and female golden hamsters weighing 120-140 g to study the mechanisms underlying the elimination or marked depression of renal function in hibernation and hypothermia. The results suggest that the elimination or marked depression in renal function reported in hibernation and hypothermia may partly be explained by alterations in cardiovascular system function. Renal perfusion pressure which decreases nearly 60% in both hibernation and hypothermia and a decrease in plasma volume of roughly 35% in the hypothermic animal might both be expected to markedly alter glomerular function.

  7. Hibernation does not affect memory retention in bats.

    PubMed

    Ruczynski, Ireneusz; Siemers, Björn M

    2011-02-23

    Long-term memory can be critically important for animals in a variety of contexts, and yet the extreme reduction in body temperature in hibernating animals alters neurochemistry and may therefore impair brain function. Behavioural studies on memory impairment associated with hibernation have been almost exclusively conducted on ground squirrels (Rodentia) and provide conflicting results, including clear evidence for memory loss. Here, we for the first time tested memory retention after hibernation for a vertebrate outside rodents-bats (Chiroptera). In the light of the high mobility, ecology and long life of bats, we hypothesized that maintenance of consolidated memory through hibernation is under strong natural selection. We trained bats to find food in one out of three maze arms. After training, the pre-hibernation performance of all individuals was at 100 per cent correct decisions. After this pre-test, one group of bats was kept, with two interruptions, at 7°C for two months, while the other group was kept under conditions that prevented them from going into hibernation. The hibernated bats performed at the same high level as before hibernation and as the non-hibernated controls. Our data suggest that bats benefit from an as yet unknown neuroprotective mechanism to prevent memory loss in the cold brain.

  8. Molecular signatures of mammalian hibernation: comparisons with alternative phenotypes

    PubMed Central

    2013-01-01

    Background Mammalian hibernators display phenotypes similar to physiological responses to calorie restriction and fasting, sleep, cold exposure, and ischemia-reperfusion in non-hibernating species. Whether biochemical changes evident during hibernation have parallels in non-hibernating systems on molecular and genetic levels is unclear. Results We identified the molecular signatures of torpor and arousal episodes during hibernation using a custom-designed microarray for the Arctic ground squirrel (Urocitellus parryii) and compared them with molecular signatures of selected mouse phenotypes. Our results indicate that differential gene expression related to metabolism during hibernation is associated with that during calorie restriction and that the nuclear receptor protein PPARα is potentially crucial for metabolic remodeling in torpor. Sleep-wake cycle-related and temperature response genes follow the same expression changes as during the torpor-arousal cycle. Increased fatty acid metabolism occurs during hibernation but not during ischemia-reperfusion injury in mice and, thus, might contribute to protection against ischemia-reperfusion during hibernation. Conclusions In this study, we systematically compared hibernation with alternative phenotypes to reveal novel mechanisms that might be used therapeutically in human pathological conditions. PMID:23957789

  9. An observational case against nova hibernation

    NASA Technical Reports Server (NTRS)

    Naylor, T.; Charles, P. A.; Mukai, K.; Evans, A.

    1992-01-01

    We use WHT spectroscopy and imaging to show that nova Vul 1670 (= CK Vul) has been incorrectly identified, and thus its luminosity cannot be used as evidence that novae fade into a 'hibernation' phase within 300 yr of their outbursts. INT spectroscopy is used to correct the magnitude of nova Sge 1783 (= WY Sge) for inclination, this result also implying that novae do not fade significantly. We therefore suggest that, while novae decline in the first 60 yr after outburst, thereafter their luminosity remains constant, and they never undergo a 'hibernation' phase. We show that this idea is consistent with the space density of novae and novalike variables, the outburst interval of SS Cyg and the current luminosities of old novae.

  10. Decreased adult neurogenesis in hibernating Syrian hamster.

    PubMed

    León-Espinosa, Gonzalo; García, Esther; Gómez-Pinedo, Ulises; Hernández, Félix; DeFelipe, Javier; Ávila, Jesús

    2016-10-01

    Generation of new neurons from adult neural stem cells occurs in the dentate gyrus (DG) of the hippocampus and the lateral walls of the lateral ventricles. In this article, we study the neurogenesis that takes place during the hibernation of the Syrian hamster (Mesocricetus auratus). Using a variety of standard neurogenesis markers and 5-bromo-2-deoxyuridine (BrdU) incorporation, we describe a preferential decrease in the proliferation of newborn neurons in the subventricular zone (SVZ) of the hibernating hamsters (torpor) rather than in the hippocampus. Furthermore, we demonstrate that the proliferative capacity is recovered after 3-4days of torpor when arousal is triggered under natural conditions (i.e., not artificially provoked). In addition, we show that tau3R, a tau isoform with three microtubule-binding domains, is a suitable marker to study neurogenesis both in the SVZ and subgranular zone (SGZ) of the Syrian hamster brain.

  11. Changes in tau phosphorylation in hibernating rodents.

    PubMed

    León-Espinosa, Gonzalo; García, Esther; García-Escudero, Vega; Hernández, Félix; Defelipe, Javier; Avila, Jesús

    2013-07-01

    Tau is a cytoskeletal protein present mainly in the neurons of vertebrates. By comparing the sequence of tau molecule among different vertebrates, it was found that the variability of the N-terminal sequence in tau protein is higher than that of the C-terminal region. The N-terminal region is involved mainly in the binding of tau to cellular membranes, whereas the C-terminal region of the tau molecule contains the microtubule-binding sites. We have compared the sequence of Syrian hamster tau with the sequences of other hibernating and nonhibernating rodents and investigated how differences in the N-terminal region of tau could affect the phosphorylation level and tau binding to cell membranes. We also describe a change, in tau phosphorylation, on a casein kinase 1 (ck1)-dependent site that is found only in hibernating rodents. This ck1 site seems to play an important role in the regulation of tau binding to membranes.

  12. Modification of glial response in hibernation: a patch-clamp study on glial cells acutely isolated from hibernating land snail.

    PubMed

    Nikolic, Ljiljana; Bataveljic, Danijela; Andjus, Pavle R; Moldovan, Ivana; Nedeljkovic, Miodrag; Petkovic, Branka

    2014-12-01

    Hibernation is a dormant state of some animal species that enables them to survive harsh environmental conditions during the winter seasons. In the hibernating state, preservation of neuronal rhythmic activity at a low level is necessary for maintenance of suspended forms of behavior. As glial cells support rhythmic activity of neurons, preservation of brain function in the hibernating state implies accompanying modification of glial activity. A supportive role of glia in regulating neuronal activity is reflected through the activity of inwardly rectifying K+ channels (Kir). Therefore, we examined electrophysiological response, particularly Kir current response, of glial cells in mixture with neurons acutely isolated from active and hibernating land snail Helix pomatia. Our data show that hibernated glia have significantly lower inward current density, specific membrane conductance, and conductance density compared with active glia. The observed reduction could be attributed to the Kir currents, since the Ba2+-sensitive Kir current density was significantly lower in hibernated glia. Accordingly, a significant positive shift of the current reversal potential indicated a more depolarized state of hibernated glia. Data obtained show that modification of glial current response could be regulated by serotonin (5-HT) through an increase of cGMP as a secondary messenger, since extracellular addition of 5-HT or intracellular administration of cGMP to active glia induced a significant reduction of inward current density and thus mimicked the reduced response of hibernated glia. Lower Kir current density of hibernated glia accompanied the lower electrical activity of hibernated neurons, as revealed by a decrease in neuronal fast inward Na+ current density. Our findings reveal that glial response is reduced in the hibernating state and suggest seasonal modulation of glial activity. Maintenance of low glial activity in hibernation could be important for preservation of brain

  13. Telemetry experiments with a hibernating black bear

    NASA Technical Reports Server (NTRS)

    Craighead, J. J.; Varney, J. R.; Sumner, J. S.; Craighead, F. C., Jr.

    1972-01-01

    The objectives of this research were to develop and test telemetry equipment suitable for monitoring physiological parameters and activity of a hibernating bear in its den, to monitor this data and other environmental information with the Nimbus 3 IRLS data collection system, and to refine immobilizing, handling, and other techniques required in future work with wild bears under natural conditions. A temperature-telemetering transmitter was implanted in the abdominal cavity of a captive black bear and body temperature data was recorded continuously during a 3 month hibernation period. Body temperatures ranging between 37.5 and 31.8 C were observed. Body temperature and overall activity were influenced by disturbances and ambient den temperature. Nychthemeral temperature changes were not noticable. A load cell weight recording device was tested for determining weight loss during hibernation. Monitoring of data by satellite was not attempted. The implanted transmitter was removed and the bear was released with a radiolocation collar at the conclusion of the experiment.

  14. Hibernation energetics of free-ranging little brown bats.

    PubMed

    Jonasson, Kristin A; Willis, Craig K R

    2012-06-15

    Hibernation physiology and energy expenditure have been relatively well studied in large captive hibernators, especially rodents, but data from smaller, free-ranging hibernators are sparse. We examined variation in the hibernation patterns of free-ranging little brown bats (Myotis lucifugus) using temperature-sensitive radio-transmitters. First, we aimed to test the hypothesis that age, sex and body condition affect expression of torpor and energy expenditure during hibernation. Second, we examined skin temperature to assess whether qualitative differences in the thermal properties of the hibernacula of bats, compared with the burrows of hibernating rodents, might lead to different patterns of torpor and arousal for bats. We also evaluated the impact of carrying transmitters on body condition to help determine the potential impact of telemetry studies. We observed large variation in the duration of torpor bouts within and between individuals but detected no effect of age, sex or body condition on torpor expression or estimates of energy expenditure. We observed the use of shallow torpor in the midst of periodic arousals, which may represent a unique adaptation of bats for conservation of energy during the most costly phase of hibernation. There was no difference in the body condition of hibernating bats outfitted with transmitters compared with that of control bats captured from the same hibernaculum at the same time. This study provides new information on the energetics of hibernation in an under-represented taxon and baseline data important for understanding how white-nose syndrome, a new disease devastating populations of hibernating bats in North America, may alter the expression of hibernation in affected bats.

  15. Regulation of blood oxygen transport in hibernating mammals.

    PubMed

    Revsbech, Inge G; Fago, Angela

    2017-03-21

    Along with the periodic reductions in O2 requirements of mammalian hibernators during winter, the O2 affinity of the blood of mammalian hibernators is seasonally regulated to help match O2 supply to consumption, contributing to limit tissue oxidative stress, particularly at arousals. Specifically, mammalian hibernators consistently show an overall increase in the blood-O2 affinity, which causes a decreased O2 unloading to tissues, while having similar or lower tissue O2 tensions during hibernation. This overview explores how the decreased body temperature and concentration of red blood cell 2,3-diphosphoglycerate (DPG) that occur in hibernation contribute separately or in combination to the concurrent increase in the O2 affinity of the hemoglobin, the O2 carrier protein of the blood. Most mammalian hemoglobins are responsive to changes in DPG concentrations, including that of the hibernating brown bear, although the smaller hibernators, such as golden-mantled ground squirrel, chipmunks, and dormice, have hemoglobins with low sensitivity to DPG. While the effect of DPG on oxygenation may vary, the decrease in body temperature invariably increases hemoglobin's O2 affinity in all hibernating species. However, the temperature sensitivity of hemoglobin oxygenation is low in hibernators compared to human, apparently due in part to endothermic allosteric quaternary transition in ground squirrels and dissociation of chloride ions in brown bears. A low heat of blood oxygenation in temporal heterotherms, like hibernators, may thus contribute to reduce heat loss, as found in regional heterotherms, like polar mammals, although the significance would be low in winter hibernation.

  16. Cardiac function adaptations in hibernating grizzly bears (Ursus arctos horribilis).

    PubMed

    Nelson, O Lynne; Robbins, Charles T

    2010-03-01

    Research on the cardiovascular physiology of hibernating mammals may provide insight into evolutionary adaptations; however, anesthesia used to handle wild animals may affect the cardiovascular parameters of interest. To overcome these potential biases, we investigated the functional cardiac phenotype of the hibernating grizzly bear (Ursus arctos horribilis) during the active, transitional and hibernating phases over a 4 year period in conscious rather than anesthetized bears. The bears were captive born and serially studied from the age of 5 months to 4 years. Heart rate was significantly different from active (82.6 +/- 7.7 beats/min) to hibernating states (17.8 +/- 2.8 beats/min). There was no difference from the active to the hibernating state in diastolic and stroke volume parameters or in left atrial area. Left ventricular volume:mass was significantly increased during hibernation indicating decreased ventricular mass. Ejection fraction of the left ventricle was not different between active and hibernating states. In contrast, total left atrial emptying fraction was significantly reduced during hibernation (17.8 +/- 2.8%) as compared to the active state (40.8 +/- 1.9%). Reduced atrial chamber function was also supported by reduced atrial contraction blood flow velocities and atrial contraction ejection fraction during hibernation; 7.1 +/- 2.8% as compared to 20.7 +/- 3% during the active state. Changes in the diastolic cardiac filling cycle, especially atrial chamber contribution to ventricular filling, appear to be the most prominent macroscopic functional change during hibernation. Thus, we propose that these changes in atrial chamber function constitute a major adaptation during hibernation which allows the myocardium to conserve energy, avoid chamber dilation and remain healthy during a period of extremely low heart rates. These findings will aid in rational approaches to identifying underlying molecular mechanisms.

  17. Latitudinal differences in the hibernation characteristics of woodchucks (Marmota monax).

    PubMed

    Zervanos, Stam M; Maher, Christine R; Waldvogel, Jerry A; Florant, Gregory L

    2010-01-01

    There is little information on the phenotypic flexibility of hibernation characteristics within species. To address this issue, we observed differences in hibernation characteristics of three free-ranging populations of woodchucks (Marmota monax) distributed along a latitudinal gradient from Maine to South Carolina. Data from free-ranging animals exhibited a direct relationship between latitude and length of the hibernation season. As expected, woodchucks in the northern latitudes hibernated longer than those in the southern latitudes. Also, the length of interbout arousals decreased with increase in latitude, whereas the length of torpor bouts and the number of arousals increased. Thus, we observed phenotypic plasticity in hibernation characteristics based primarily on latitudinal temperature differences in each population. Further analysis revealed a direct relationship between latitude and total time spent in torpor. Maine animals spent 68% more time in torpor than South Carolina animals. However, total time spent euthermic did not differ among the three populations. The "cost-benefit" hypothesis of hibernation may help to explain these results. It assumes that hibernators avoid the physiological stress of torpor by staying euthermic as much as possible. Woodchucks in each population maximized time spent euthermic, utilizing torpor only at the level needed to survive winter hibernation and to commence reproduction in the spring.

  18. The Adaptive Response to Intestinal Oxidative Stress in Mammalian Hibernation

    DTIC Science & Technology

    2007-11-02

    signaling pathways that minimize oxidative damage to sensitive tissues like the gut. Aim 1: Effect of hibernation on intestinal lipid peroxidation ...in gut mucosa during the hibernation season, indicating increased lipid peroxidation . Conjugated dienes are intermediate compounds produced by... peroxidation of polyunsaturated fatty acids (PUFAs). Levels of malondialdehyde, an end product of lipid peroxidation , estimate the amount of lipid

  19. Is the polar bear (Ursus maritimus) a hibernator? Continued studies on opioids and hibernation

    USGS Publications Warehouse

    Bruce, David S.; Darling, Nancy K.; Seeland, Katheleen J.; Oeltgen, Peter R.; Nilekani, Sita P.; Amstrup, Steven C.

    1990-01-01

    Polar bear behavior and biochemistry suggest they may have the ability to hibernate year-round, even though this species is not considered to be a true hibernator. This observation, plus the discovery of a hibernation-induced trigger (HIT) in the blood of black bears, prompted the examination of polar bear blood collected thoughout the year for evidence ofr HIT, and to determine if it displayed opioid activity, as black bear blood does. A bioassay was conducted by injected summer 13-lined ground squirrels with serum collected from polar bears at different seasons. One group of squirrels was previously implanted with osmotic pumps containing naloxone. The rest had pumps containing saline. Squirrels with saline pumps all hibernated significantly more than those with naloxone, except the group receiving blood from a November polar bear, observed to be highly active and hyperphagic. An in vitro study, using guinea pig ileum, showed that 400 nM morphine inhibited induced contractions and 100 nM naloxone reversed the inhibition. Ten mg of winter polar bear serum albumin fraction (to which HIT binds in ground squirrels and woodchucks) had a similar inhibiting effect, but naloxone, even at 4,000 nM, didn't reverse it. It is concluded that polar bear contains HIT, that it has an opioid effct, but may not itself be an opioid.

  20. Proteogenomic Analysis of a Hibernating Mammal Indicates Contribution of Skeletal Muscle Physiology to the Hibernation Phenotype.

    PubMed

    Anderson, Kyle J; Vermillion, Katie L; Jagtap, Pratik; Johnson, James E; Griffin, Timothy J; Andrews, Matthew T

    2016-04-01

    Mammalian hibernation is a strategy employed by many species to survive fluctuations in resource availability and environmental conditions. Hibernating mammals endure conditions of dramatically depressed heart rate, body temperature, and oxygen consumption yet do not show the typical pathological response. Because of the high abundance and metabolic cost of skeletal muscle, not only must it adjust to the constraints of hibernation, but also it is positioned to play a more active role in the initiation and maintenance of the hibernation phenotype. In this study, MS/MS proteomic data from thirteen-lined ground squirrel skeletal muscles were searched against a custom database of transcriptomic and genomic protein predictions built using the platform Galaxy-P. This proteogenomic approach allows for a thorough investigation of skeletal muscle protein abundance throughout their circannual cycle. Of the 1563 proteins identified by these methods, 232 were differentially expressed. These data support previously reported physiological transitions, while also offering new insight into specific mechanisms of how their muscles might be reducing nitrogenous waste, preserving mass and function, and signaling to other tissues. Additionally, the combination of proteomic and transcriptomic data provides unique opportunities for estimating post-transcriptional regulation in skeletal muscle throughout the year and improving genomic annotation for this nonmodel organism.

  1. Decreases in body temperature and body mass constitute pre-hibernation remodelling in the Syrian golden hamster, a facultative mammalian hibernator

    PubMed Central

    Chayama, Yuichi; Ando, Lisa; Tamura, Yutaka; Miura, Masayuki

    2016-01-01

    Hibernation is an adaptive strategy for surviving during periods with little or no food availability, by profoundly reducing the metabolic rate and the core body temperature (Tb). Obligate hibernators (e.g. bears, ground squirrels, etc.) hibernate every winter under the strict regulation of endogenous circannual rhythms, and they are assumed to undergo adaptive remodelling in autumn, the pre-hibernation period, prior to hibernation. However, little is known about the nature of pre-hibernation remodelling. Syrian hamsters (Mesocricetus auratus) are facultative hibernators that can hibernate irrespective of seasons when exposed to prolonged short photoperiod and cold ambient temperature (SD-Cold) conditions. Their Tb set point reduced by the first deep torpor (DT) and then increased gradually after repeated cycles of DT and periodic arousal (PA), and finally recovered to the level observed before the prolonged SD-Cold in the post-hibernation period. We also found that, before the initiation of hibernation, the body mass of animals decreased below a threshold, indicating that hibernation in this species depends on body condition. These observations suggest that Syrian hamsters undergo pre-hibernation remodelling and that Tb and body mass can be useful physiological markers to monitor the remodelling process during the pre-hibernation period. PMID:27152216

  2. Decreases in body temperature and body mass constitute pre-hibernation remodelling in the Syrian golden hamster, a facultative mammalian hibernator.

    PubMed

    Chayama, Yuichi; Ando, Lisa; Tamura, Yutaka; Miura, Masayuki; Yamaguchi, Yoshifumi

    2016-04-01

    Hibernation is an adaptive strategy for surviving during periods with little or no food availability, by profoundly reducing the metabolic rate and the core body temperature (T b). Obligate hibernators (e.g. bears, ground squirrels, etc.) hibernate every winter under the strict regulation of endogenous circannual rhythms, and they are assumed to undergo adaptive remodelling in autumn, the pre-hibernation period, prior to hibernation. However, little is known about the nature of pre-hibernation remodelling. Syrian hamsters (Mesocricetus auratus) are facultative hibernators that can hibernate irrespective of seasons when exposed to prolonged short photoperiod and cold ambient temperature (SD-Cold) conditions. Their T b set point reduced by the first deep torpor (DT) and then increased gradually after repeated cycles of DT and periodic arousal (PA), and finally recovered to the level observed before the prolonged SD-Cold in the post-hibernation period. We also found that, before the initiation of hibernation, the body mass of animals decreased below a threshold, indicating that hibernation in this species depends on body condition. These observations suggest that Syrian hamsters undergo pre-hibernation remodelling and that T b and body mass can be useful physiological markers to monitor the remodelling process during the pre-hibernation period.

  3. Proteomics approaches shed new light on hibernation physiology.

    PubMed

    Grabek, Katharine R; Martin, Sandra L; Hindle, Allyson G

    2015-08-01

    The broad phylogenetic distribution and rapid phenotypic transitions of mammalian hibernators imply that hibernation is accomplished by differential expression of common genes. Traditional candidate gene approaches have thus far explained little of the molecular mechanisms underlying hibernation, likely due to (1) incomplete and imprecise sampling of a complex phenotype, and (2) the forming of hypotheses about which genes might be important based on studies of model organisms incapable of such dynamic physiology. Unbiased screening approaches, such as proteomics, offer an alternative means to discover the cellular underpinnings that permit successful hibernation and may reveal previously overlooked, important pathways. Here, we review the findings that have emerged from proteomics studies of hibernation. One striking feature is the stability of the proteome, especially across the extreme physiological shifts of torpor-arousal cycles during hibernation. This has led to subsequent investigations of the role of post-translational protein modifications in altering protein activity without energetically wasteful removal and rebuilding of protein pools. Another unexpected finding is the paucity of universal proteomic adjustments across organ systems in response to the extreme metabolic fluctuations despite the universality of their physiological challenges; rather each organ appears to respond in a unique, tissue-specific manner. Additional research is needed to extend and synthesize these results before it will be possible to address the whole body physiology of hibernation.

  4. Energy homeostasis regulatory peptides in hibernating grizzly bears.

    PubMed

    Gardi, János; Nelson, O Lynne; Robbins, Charles T; Szentirmai, Eva; Kapás, Levente; Krueger, James M

    2011-05-15

    Grizzly bears (Ursus arctos horribilis) are inactive for up to 6 months during hibernation. They undergo profound seasonal changes in food intake, body mass, and energy expenditure. The circa-annual regulation of metabolism is poorly understood. In this study, we measured plasma ghrelin, leptin, obestatin, and neuropeptide-Y (NPY) levels, hormones known to be involved in the regulation of energy homeostasis, in ten grizzly bears. Blood samples were collected during the active summer period, early hibernation and late hibernation. Plasma levels of leptin, obestatin, and NPY did not change between the active and the hibernation periods. Plasma total ghrelin and desacyl-ghrelin concentrations significantly decreased during the inactive winter period compared to summer levels. The elevated ghrelin levels may help enhance body mass during pre-hibernation, while the low plasma ghrelin concentrations during hibernation season may contribute to the maintenance of hypophagia, low energy utilization and behavioral inactivity. Our results suggest that ghrelin plays a potential role in the regulation of metabolic changes and energy homeostasis during hibernation in grizzly bears.

  5. Gene Expression Profiling in the Hibernating Primate, Cheirogaleus Medius

    PubMed Central

    Faherty, Sheena L.; Villanueva-Cañas, José Luis; Klopfer, Peter H.; Albà, M. Mar; Yoder, Anne D.

    2016-01-01

    Hibernation is a complex physiological response that some mammalian species employ to evade energetic demands. Previous work in mammalian hibernators suggests that hibernation is activated not by a set of genes unique to hibernators, but by differential expression of genes that are present in all mammals. This question of universal genetic mechanisms requires further investigation and can only be tested through additional investigations of phylogenetically dispersed species. To explore this question, we use RNA-Seq to investigate gene expression dynamics as they relate to the varying physiological states experienced throughout the year in a group of primate hibernators—Madagascar’s dwarf lemurs (genus Cheirogaleus). In a novel experimental approach, we use longitudinal sampling of biological tissues as a method for capturing gene expression profiles from the same individuals throughout their annual hibernation cycle. We identify 90 candidate genes that have variable expression patterns when comparing two active states (Active 1 and Active 2) with a torpor state. These include genes that are involved in metabolic pathways, feeding behavior, and circadian rhythms, as might be expected to correlate with seasonal physiological state changes. The identified genes appear to be critical for maintaining the health of an animal that undergoes prolonged periods of metabolic depression concurrent with the hibernation phenotype. By focusing on these differentially expressed genes in dwarf lemurs, we compare gene expression patterns in previously studied mammalian hibernators. Additionally, by employing evolutionary rate analysis, we find that hibernation-related genes do not evolve under positive selection in hibernating species relative to nonhibernators. PMID:27412611

  6. Abnormal bone composition in female juvenile American alligators from a pesticide-polluted lake (Lake Apopka, Florida).

    PubMed

    Lind, P Monica; Milnes, Matthew R; Lundberg, Rebecca; Bermudez, Dieldrich; Orberg, Jan A; Guillette, Louis J

    2004-03-01

    Reproductive disorders have been found in pesticide-exposed alligators living in Lake Apopka, Florida (USA). These disorders have been hypothesized to be caused by exposure to endocrine- disruptive estrogen-like contaminants. The aim of this study was to expand our analysis beyond previous studies by investigating whether bone tissue, known to be affected by sex steroid hormones, is a potential target of endocrine disruptors. Long bones from 16 juvenile female alligators from Lake Apopka (pesticide-contaminated lake) and Lake Woodruff (control lake) were evaluated by peripheral quantitative computed tomography. We observed significant differences in bone composition, with female alligators from the contaminated lake having greater trabecular bone mineral density (BMD), total BMD, and trabecular mineral content compared with females from the control lake (p < 0.05). Increased trabecular and total BMD measurements suggest that juvenile female alligators from Lake Apopka were exposed to contaminants that created an internal environment more estrogenic than that normally observed. This estrogenic environment could be caused by both natural and anthropogenic compounds. Effects on BMD indicate interference with bone homeostasis. We hypothesize that contaminants present in the lake inhibit the natural and continuous resorption of bone tissue, resulting in increased bone mass. Although this is the only study performed to date examining effects of environmental estrogenic compounds on alligator bones, it supports previous laboratory-based studies in rodents. Further, this study is important in demonstrating that the alterations in morphology and physiology induced in free-ranging individuals living in environments contaminated with endocrine-active compounds are not limited to a few systems or tissues; rather, effects can be observed in many tissues affected by these hormones.

  7. Progressive activation of paratrigeminal nucleus during entrance to hibernation

    SciTech Connect

    Kilduff, T.S.; Sharp, F.R.; Heller, H.C. Univ. of California, San Francisco Veterans Administration Medical Center, San Francisco, CA )

    1988-07-01

    The paratrigeminal nucleus (Pa5) undergoes a progressive increase in its uptake of 2-({sup 14}C)deoxyglucose (2DG) relative to other brain structures during entrance to hibernation in the ground squirrel. This highly significant increase results in the Pa5 becoming the most highly labeled brain region during hibernation, even though it exhibits one of the lowest levels of 2DG uptake in the brain during the nonhibernating state. The progressive activation of the Pa5 observed during entrance is reversed during arousal from hibernation. These observations and the neuroanatomical projections of the Pa5 implicate this nucleus as playing a role in the entrance and maintenance of the hibernating state.

  8. Control of breathing in the echidna (Tachyglossus aculeatus) during hibernation.

    PubMed

    Nicol, Stewart; Andersen, Niels A

    2003-12-01

    Resting non-hibernating echidnas are characterised by low metabolic rates, but also have a very low respiratory frequency and a variable respiratory minute volume, often resulting in low levels of arterial O(2) and high CO(2). As the echidna lies at one physiological extreme among the hibernators, in terms of its large size and low metabolism and ventilatory requirement when not hibernating, a study of control of breathing during hibernation in echidnas should provide a useful test of the generality of various models. We used non-invasive techniques to study breathing patterns and the control of ventilation in 6 echidnas. Hibernating echidnas (T(b) range 7-10 degrees C) showed episodic breathing with bursts of breaths (average 36+/-16 breaths in 24+/-5 min) followed by a period of apnea (76+/-17 min) then a series (8+/-4) of slow breaths at 14+/-1 min intervals leading up to the next burst. Increasing CO(2) levels in the inspired air increased the number of breaths in a burst, eventually leading to continuous breathing. Inter burst breaths were controlled by O(2): hypoxia increased inter burst breaths, and decreased burst length, while hyperoxia abolished inter burst breaths and increased the apneic period. Overall, while CO(2) was a strong respiratory stimulus in hibernating echidnas, O(2) had little effect on total ventilation, but did have a strong effect on the breathing pattern.

  9. SEASONAL VARIATION IN PLASMA SEX STEROID CONCENTRATION IN JUVENILE ALLIGATORS

    EPA Science Inventory

    Seasonal variation in plasma sex steroid concentrations is common in mature vertebrates, and is occasionally seen in juvenile animals. In this study, we examine the seasonal pattern of sex hormone concentration in juvenile American alligators (Alligator mississippiensis) and make...

  10. Maintenance of a fully functional digestive system during hibernation in the European hamster, a food-storing hibernator.

    PubMed

    Weitten, Mathieu; Oudart, Hugues; Habold, Caroline

    2016-03-01

    Some small mammals limit energy expenditure during winter conditions through torpor bouts, which are characterized by a decrease in body temperature and metabolic rate. Individuals arise periodically from torpor to restore critical functions requiring euthermia. Although most of the species involved do not feed during hibernation and rely on body reserves to fulfil energy requirements (fat-storing species), others hoard food in a burrow (food-storing species) and can feed during interbout euthermy. Whereas fat-storing species undergo a marked atrophy of the digestive tract, food-storing species have to maintain a functional digestive system during hibernation. Our study aimed to evaluate the absorption capacities of a food-storing species, the European hamster, throughout the annual cycle. In vivo intestinal perfusions were conducted in different groups of hamsters (n=5) during the different life periods, namely before hibernation, in torpor, during interbout euthermy, and during summer rest. The triglyceride, non-esterified free fatty acid, starch, glucose and protein composition of the perfusate was evaluated before and after the 1h perfusion of a closed intestinal loop. Triglyceride, starch and protein hydrolysis rates were similar in hibernating (torpid and euthermic) and non-hibernating hamsters. Intestinal absorption of free fatty acid was also similar in all groups. However, glucose uptake rate was higher during hibernation than during the summer. In contrast with fat-storing species, the intestinal absorption capacities of food-storing species are fully maintained during hibernation to optimize nutrient assimilation during short interbout euthermy. In particular, glucose uptake rate is increased during hibernation to restore glycaemia and ensure glucose-dependent pathways.

  11. Yellow-bellied marmots (Marmota flaviventris) preserve bone strength and microstructure during hibernation.

    PubMed

    Wojda, Samantha J; McGee-Lawrence, Meghan E; Gridley, Richard A; Auger, Janene; Black, Hal L; Donahue, Seth W

    2012-01-01

    Reduced skeletal loading typically results in decreased bone strength and increased fracture risk for humans and many other animals. Previous studies have shown bears are able to prevent bone loss during the disuse that occurs during hibernation. Studies with smaller hibernators, which arouse intermittently during hibernation, show that they may lose bone at the microstructural level. These small hibernators, like bats and squirrels, do not utilize intracortical remodeling. However, slightly larger mammals like marmots do. In this study we examined the effects of hibernation on bone structural, mineral, and mechanical properties in yellow-bellied marmots (Marmota flaviventris). This was done by comparing cortical bone properties in femurs and trabecular bone properties in tibias from marmots killed before hibernation (fall) and after hibernation (spring). Age data were not available for this study; however, based on femur length the post-hibernation marmots were larger than the pre-hibernation marmots. Thus, cross-sectional properties were normalized by allometric functions of bone length for comparisons between pre- and post-hibernation. Cortical thickness and normalized cortical area were higher in post-hibernation samples; no other normalized cross-sectional properties were different. No cortical bone microstructural loss was evident in osteocyte lacunar measurements, intracortical porosity, or intracortical remodeling cavity density. Osteocyte lacunar area, porosity, and density were surprisingly lower in post-hibernation samples. Trabecular bone volume fraction was not different between pre- and post-hibernation. Measures of both trabecular and cortical bone mineral content were higher in post-hibernation samples. Three-point bending failure load, failure energy, elastic energy, ultimate stress, and yield stress were all higher in post-hibernation samples. These results support the idea that, like bears, marmots are able to prevent disuse osteoporosis during

  12. Hibernation is associated with increased survival and the evolution of slow life histories among mammals.

    PubMed

    Turbill, Christopher; Bieber, Claudia; Ruf, Thomas

    2011-11-22

    Survival probability is predicted to underlie the evolution of life histories along a slow-fast continuum. Hibernation allows a diverse range of small mammals to exhibit seasonal dormancy, which might increase survival and consequently be associated with relatively slow life histories. We used phylogenetically informed GLS models to test for an effect of hibernation on seasonal and annual survival, and on key attributes of life histories among mammals. Monthly survival was in most cases higher during hibernation compared with the active season, probably because inactivity minimizes predation. Hibernators also have approximately 15 per cent higher annual survival than similar sized non-hibernating species. As predicted, we found an effect of hibernation on the relationships between life history attributes and body mass: small hibernating mammals generally have longer maximum life spans (50% greater for a 50 g species), reproduce at slower rates, mature at older ages and have longer generation times compared with similar-sized non-hibernators. In accordance with evolutionary theories, however, hibernating species do not have longer life spans than non-hibernators with similar survival rates, nor do they have lower reproductive rates than non-hibernators with similar maximum life spans. Thus, our combined results suggest that (i) hibernation is associated with high rates of overwinter and annual survival, and (ii) an increase in survival in hibernating species is linked with the coevolution of traits indicative of relatively slow life histories.

  13. Chronic Ingestion of Coal Fly-Ash Contaminated Prey and Its Effects on Health and Immune Parameters in Juvenile American Alligators (Alligator mississippiensis).

    PubMed

    Finger, John W; Hamilton, Matthew T; Metts, Brian S; Glenn, Travis C; Tuberville, Tracey D

    2016-10-01

    Coal-burning power plants supply approximately 37 % of the electricity in the United States. However, incomplete combustion produces ash wastes enriched with toxic trace elements that have historically been disposed of in aquatic basins. Organisms inhabiting such habitats may accumulate these trace elements; however, studies investigating the effects on biota have been primarily restricted to shorter-lived, lower-trophic organisms. The American alligator (Alligator mississippiensis), a long-lived, top-trophic carnivore, has been observed inhabiting these basins, yet the health or immune effects of chronic exposure and possible accumulation remains unknown. In this study, we investigated how chronic dietary ingestion of prey contaminated with coal combustion wastes (CCWs) for 25 months, and subsequent accumulation of trace elements present in CCWs, affected juvenile alligator immune function and health. Alligators were assigned to one of four dietary-treatment groups including controls and those fed prey contaminated with CCWs for one, two, or three times a week. However, no effect of Dietary Treatment (p > 0.05) was observed on any immune parameter or hematological or plasma analyte we tested. Our results suggest that neither exposure to nor accumulation of low doses of CCWs had a negative effect on certain aspects of the immune and hematological system. However, future studies are required to elucidate this further.

  14. Daily torpor and hibernation in birds and mammals

    PubMed Central

    RUF, THOMAS; GEISER, FRITZ

    2014-01-01

    Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e., the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e., hypometabolic states associated with low body temperatures (torpor), have been distinguished: Daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged however, suggesting that these phenotypes may merely represent the extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species, 43 birds and 171 mammals form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms are small on average, but hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (~35°) than daily heterotherms (~25°). Variables of torpor for an average 30-g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ~13°C, and the mean minimum torpor metabolic rate was ~35% of the BMR in daily heterotherms but only 6% of basal metabolic rate in hibernators. Consequently, our analysis strongly supports the view that

  15. Density regulation in toad populations (Epidalea calamita, Bufotes viridis) by differential winter survival of juveniles.

    PubMed

    Sinsch, Ulrich; Schäfer, Alena M

    2016-01-01

    The size of amphibian populations varies considerably between years, so that systematic trends in dynamics are difficult to detect. Informed conservation management of presumably declining populations requires the identification of the most sensitive life stage. In temperate-zone anurans there is growing evidence that juveniles hibernating for the first time suffer from substantial winter losses. In two syntopic toads (Epidalea calamita, Bufotes viridis) we monitored survival of such juveniles during four consecutive winters in the natural habitat and in four temperature treatments (3°, 5 °C, 10°/15 °C or 20 °C, natural light-dark cycle) in temperature-controlled chambers during winter. Specifically, we tested the hypotheses that (1) winter mortality of juvenile toads which hibernate for the first time in their life is an important component of population dynamics, and that (2) mortality rates differed between the two species. Parameters quantified were size-dependent winter mortality and body condition of pre- and post-hibernating juveniles. Field data provided evidence for the important role of winter mortality of first-hibernators in population dynamics. Choice of hibernacula differed in E. calamita between small and medium-sized individuals and also between the two species suggesting distinct mortality risks. The inability of small E. calamita to reach frost-proof hibernacula by burrowing, and the exposure of small B. viridis to predators are the most probable causes of size-assortative winter mortality. In conclusion, E. calamita juveniles may benefit from rising average winter temperatures in the future by decreased risk of freezing to death, whereas predator-caused winter mortality of B. viridis juveniles will also depend on the effects of climate warming on predator phenology.

  16. Hibernating Little Brown Myotis (Myotis lucifugus) Show Variable Immunological Responses to White-Nose Syndrome

    PubMed Central

    Moore, Marianne S.; Reichard, Jonathan D.; Murtha, Timothy D.; Nabhan, Morgan L.; Pian, Rachel E.; Ferreira, Jennifer S.; Kunz, Thomas H.

    2013-01-01

    White-nose syndrome (WNS) is an emerging infectious disease devastating hibernating North American bat populations that is caused by the psychrophilic fungus Geomyces destructans. Previous histopathological analysis demonstrated little evidence of inflammatory responses in infected bats, however few studies have compared other aspects of immune function between WNS-affected and unaffected bats. We collected bats from confirmed WNS-affected and unaffected sites during the winter of 2008–2009 and compared estimates of their circulating levels of total leukocytes, total immunoglobulins, cytokines and total antioxidants. Bats from affected and unaffected sites did not differ in their total circulating immunoglobulin levels, but significantly higher leukocyte counts were observed in bats from affected sites and particularly in affected bats with elevated body temperatures (above 20°C). Bats from WNS-affected sites exhibited significantly lower antioxidant activity and levels of interleukin-4 (IL-4), a cytokine that induces T cell differentiation. Within affected sites only, bats exhibiting visible fungal infections had significantly lower antioxidant activity and levels of IL-4 compared to bats without visible fungal infections. Overall, bats hibernating in WNS-affected sites showed immunological changes that may be evident of attempted defense against G. destructans. Observed changes, specifically elevated circulating leukocytes, may also be related to the documented changes in thermoregulatory behaviors of affected bats (i.e. increased frequencies in arousal from torpor). Alterations in immune function may reflect expensive energetic costs associated with these processes and intrinsic qualities of the immunocapability of hibernating bats to clear fungal infections. Additionally, lowered antioxidant activity indicates a possible imbalance in the pro- versus antioxidant system, may reflect oxidative tissue damage, and should be investigated as a contributor to WNS

  17. Enhanced oxidative capacity of ground squirrel brain mitochondria during hibernation.

    PubMed

    Ballinger, Mallory A; Schwartz, Christine; Andrews, Matthew T

    2017-03-01

    During hibernation, thirteen-lined ground squirrels (Ictidomys tridecemlineatus) regularly cycle between bouts of torpor and interbout arousal (IBA). Most of the brain is electrically quiescent during torpor but regains activity quickly upon arousal to IBA, resulting in extreme oscillations in energy demand during hibernation. We predicted increased functional capacity of brain mitochondria during hibernation compared with spring to accommodate the variable energy demands of hibernation. To address this hypothesis, we examined mitochondrial bioenergetics in the ground squirrel brain across three time points: spring (SP), torpor (TOR), and IBA. Respiration rates of isolated brain mitochondria through complex I of the electron transport chain were more than twofold higher in TOR and IBA than in SP (P < 0.05). We also found a 10% increase in membrane potential between hibernation and spring (P < 0.05), and that proton leak was lower in TOR and IBA than in SP. Finally, there was a 30% increase in calcium loading in SP brain mitochondria compared with TOR and IBA (P < 0.01). To analyze brain mitochondrial abundance between spring and hibernation, we measured the ratio of copy number in a mitochondrial gene (ND1) vs. a nuclear gene (B2M) in frozen cerebral cortex samples. No significant differences were observed in DNA copies between SP and IBA. These data show that brain mitochondrial bioenergetics are not static across the year and suggest that brain mitochondria function more effectively during the hibernation season, allowing for rapid production of energy to meet demand when extreme physiological changes are occurring.

  18. Foraging proficiency during the nonbreeding season of a specialized forager: are juvenile American Oystercatchers "bumble-beaks" compared to adults?

    USGS Publications Warehouse

    Hand, Christine E.; Sanders, Felicia J.; Jodice, Patrick G.

    2010-01-01

    In many species, immature individuals are less proficient at foraging than are adults, and this difference may be especially critical during winter when survival can be at its minimum. We investigated the foraging proficiency of adult and immature American Oystercatchers (Haematopus palliatus) during the nonbreeding season. Oystercatchers forage on prey that must be handled with specialized skills, so age-related differences in foraging behavior may be expected. We found that adults spent more time searching than did immatures, a trend toward immatures taking longer to handle prey than did adults, and immatures more often handling prey unsuccessfully than did adults. Feeding rates and diet composition did not differ by age class. We posit that the immature birds traded off longer handling times with shorter searching times and that ultimately the abundant prey in the region may contribute to the ability of immature birds to feed at rates similar to those of adults.

  19. Effects of pressure reductions in a proposed siphon water lift system at St. Stephen Dam, South Carolina, on mortality rates of juvenile American shad and blueback herring. Technical report

    SciTech Connect

    Nestler, J.M.; Schilt, C.R.; Jones, D.P.

    1998-09-01

    This report presents results of studies to predict the mortality rate of juvenile blueback herring (Alosa aestivalis) and American shad (A. sapidissima) associated with reduced pressure as they pass downstream through a proposed siphon water lift system at St. Stephen Dam, South Carolina. The primary function of the siphon is to increase attracting flow to better guide upstream migrating adult herring of both species into the existing fish lift for upstream passage. The US Army Engineer District, Charleston, wishes to consider the siphon as an alternative bypass route through the dam for downstream migrating juvenile and adult herring. A pressure-reduction testing system that emulates some of the pressure characteristics of the siphon was used to determine the approximate percentage of juvenile fishes that could be reasonably expected to be killed passing through the reduced pressures anticipated for the siphon water lift system. The testing system could duplicate the range of pressure change anticipated for the siphon lift system but could not obtain pressures lower than 4.1 psi, whereas pressures for some design alternatives may approach the theoretical minimum pressure of 0.0 psi. Study results indicate that the mortality rate is probably about 20 percent. Power analysis indicates that mortality rate above 30 percent is unlikely. Conducting additional mortality studies is recommended to refine predicted mortality rates. Measures should be taken to prevent juvenile fish from entering the siphon lift system if excessive mortality rates are observed.

  20. Characterizing Cardiac Molecular Mechanisms of Mammalian Hibernation via Quantitative Proteogenomics.

    PubMed

    Vermillion, Katie L; Jagtap, Pratik; Johnson, James E; Griffin, Timothy J; Andrews, Matthew T

    2015-11-06

    This study uses advanced proteogenomic approaches in a nonmodel organism to elucidate cardioprotective mechanisms used during mammalian hibernation. Mammalian hibernation is characterized by drastic reductions in body temperature, heart rate, metabolism, and oxygen consumption. These changes pose significant challenges to the physiology of hibernators, especially for the heart, which maintains function throughout the extreme conditions, resembling ischemia and reperfusion. To identify novel cardioadaptive strategies, we merged large-scale RNA-seq data with large-scale iTRAQ-based proteomic data in heart tissue from 13-lined ground squirrels (Ictidomys tridecemlineatus) throughout the circannual cycle. Protein identification and data analysis were run through Galaxy-P, a new multiomic data analysis platform enabling effective integration of RNA-seq and MS/MS proteomic data. Galaxy-P uses flexible, modular workflows that combine customized sequence database searching and iTRAQ quantification to identify novel ground squirrel-specific protein sequences and provide insight into molecular mechanisms of hibernation. This study allowed for the quantification of 2007 identified cardiac proteins, including over 350 peptide sequences derived from previously uncharacterized protein products. Identification of these peptides allows for improved genomic annotation of this nonmodel organism, as well as identification of potential splice variants, mutations, and genome reorganizations that provides insights into novel cardioprotective mechanisms used during hibernation.

  1. Physiological reactions to capture in hibernating brown bears

    PubMed Central

    Evans, Alina L.; Singh, Navinder J.; Fuchs, Boris; Blanc, Stéphane; Friebe, Andrea; Laske, Timothy G.; Frobert, Ole; Swenson, Jon E.; Arnemo, Jon M.

    2016-01-01

    Human disturbance can affect animal life history and even population dynamics. However, the consequences of these disturbances are difficult to measure. This is especially true for hibernating animals, which are highly vulnerable to disturbance, because hibernation is a process of major physiological changes, involving conservation of energy during a resource-depleted time of year. During the winters of 2011–15, we captured 15 subadult brown bears (Ursus arctos) and recorded their body temperatures (n = 11) and heart rates (n = 10) before, during and after capture using biologgers. We estimated the time for body temperature and heart rate to normalize after the capture event. We then evaluated the effect of the captures on the pattern and depth of hibernation and the day of den emergence by comparing the body temperature of captured bears with that of undisturbed subadult bears (n = 11). Both body temperature and heart rate increased during capture and returned to hibernation levels after 15–20 days. We showed that bears required 2–3 weeks to return to hibernation levels after winter captures, suggesting high metabolic costs during this period. There were also indications that the winter captures resulted in delayed den emergence. PMID:27990289

  2. Hibernating bears as a model for preventing disuse osteoporosis

    USGS Publications Warehouse

    Donahue, S.W.; McGee, M.E.; Harvey, K.B.; Vaughan, M.R.; Robbins, C.T.

    2006-01-01

    The hibernating bear is an excellent model for disuse osteoporosis in humans because it is a naturally occurring large animal model. Furthermore, bears and humans have similar lower limb skeletal morphology, and bears walk plantigrade like humans. Black bears (Ursus americanus) may not develop disuse osteoporosis during long periods of disuse (i.e. hibernation) because they maintain osteoblastic bone formation during hibernation. As a consequence, bone volume, mineral content, porosity, and strength are not adversely affected by annual periods of disuse. In fact, cortical bone bending strength has been shown to increase with age in hibernating black bears without a significant change in porosity. Other animals require remobilization periods 2-3 times longer than the immobilization period to recover the bone lost during disuse. Our findings support the hypothesis that black bears, which hibernate for as long as 5-7 months annually, have evolved biological mechanisms to mitigate the adverse effects of disuse on bone porosity and strength. ?? 2005 Elsevier Ltd. All rights reserved.

  3. Cool sex? Hibernation and reproduction overlap in the echidna.

    PubMed

    Morrow, Gemma; Nicol, Stewart C

    2009-06-29

    During hibernation there is a slowing of all metabolic processes, and thus it is normally considered to be incompatible with reproduction. In Tasmania the egg-laying mammal, the echidna (Tachyglossus aculeatus) hibernates for several months before mating in mid-winter, and in previous studies we observed males with females that were still hibernating. We monitored the reproductive activity of radio-tracked echidnas by swabbing the reproductive tract for sperm while external temperature loggers provided information on the timing of hibernation. Additional information was provided by camera traps and ultrasound imaging. More than a third of the females found in mating groups were torpid, and the majority of these had mated. Some females re-entered deep torpor for extended periods after mating. Ultrasound examination showed a developing egg in the uterus of a female that had repeatedly re-entered torpor. The presence of fresh sperm in cloacal swabs taken from this female on three occasions after her presumed date of fertilization indicated she mated several times after being fertilized. The mating of males with torpid females is the result of extreme competition between promiscuous males, while re-entry into hibernation by pregnant females could improve the possibility of mating with a better quality male.

  4. Metabolic Flexibility: Hibernation, Torpor, and Estivation.

    PubMed

    Staples, James F

    2016-03-15

    Many environmental conditions can constrain the ability of animals to obtain sufficient food energy, or transform that food energy into useful chemical forms. To survive extended periods under such conditions animals must suppress metabolic rate to conserve energy, water, or oxygen. Amongst small endotherms, this metabolic suppression is accompanied by and, in some cases, facilitated by a decrease in core body temperature-hibernation or daily torpor-though significant metabolic suppression can be achieved even with only modest cooling. Within some ectotherms, winter metabolic suppression exceeds the passive effects of cooling. During dry seasons, estivating ectotherms can reduce metabolism without changes in body temperature, conserving energy reserves, and reducing gas exchange and its inevitable loss of water vapor. This overview explores the similarities and differences of metabolic suppression among these states within adult animals (excluding developmental diapause), and integrates levels of organization from the whole animal to the genome, where possible. Several similarities among these states are highlighted, including patterns and regulation of metabolic balance, fuel use, and mitochondrial metabolism. Differences among models are also apparent, particularly in whether the metabolic suppression is intrinsic to the tissue or depends on the whole-animal response. While in these hypometabolic states, tissues from many animals are tolerant of hypoxia/anoxia, ischemia/reperfusion, and disuse. These natural models may, therefore, serve as valuable and instructive models for biomedical research.

  5. The contribution of hibernation to heart failure.

    PubMed

    Camici, Paolo G; Rimoldi, Ornella E

    2004-01-01

    For many years the functional sequelae of chronic coronary artery disease (CAD) were considered irreversible. Evidence accrued over the past three decades proves that this concept is not necessarily true. Non-randomised studies demonstrated that coronary revascularisation (CR) confers symptomatic and prognostic benefits to patients with CAD and heart failure. Based on available studies, one can assume that the beneficial effect of CR in heart failure derives primarily from recovery of contractile function in 'hibernating myocardium' (HM), i.e., chronically dysfunctional, but viable, myocardium subtended by stenosed coronary arteries which recovers after CR. Cardiac imaging with echocardiography, single photon and positron emission tomography (PET) and magnetic resonance allows the identification of HM. These techniques have comparable predictive values in patients with moderate left ventricular impairment. PET studies have shown that resting myocardial blood flow is preserved in most cases of HM while its main feature is a severe impairment of coronary flow reserve. Thus, the pathophysiology of HM is more complex than initially postulated. Recent evidence that repetitive ischaemia in patients can be cumulative and lead to more severe and prolonged stunning, lends further support to the hypothesis that, at least initially, stunning and HM are two facets of the same coin.

  6. White-Nose Syndrome Fungus: A Generalist Pathogen of Hibernating Bats

    PubMed Central

    Zukal, Jan; Bandouchova, Hana; Bartonicka, Tomas; Berkova, Hana; Brack, Virgil; Brichta, Jiri; Dolinay, Matej; Jaron, Kamil S.; Kovacova, Veronika; Kovarik, Miroslav; Martínková, Natália; Ondracek, Karel; Rehak, Zdenek; Turner, Gregory G.; Pikula, Jiri

    2014-01-01

    Host traits and phylogeny can determine infection risk by driving pathogen transmission and its ability to infect new hosts. Predicting such risks is critical when designing disease mitigation strategies, and especially as regards wildlife, where intensive management is often advocated or prevented by economic and/or practical reasons. We investigated Pseudogymnoascus [Geomyces] destructans infection, the cause of white-nose syndrome (WNS), in relation to chiropteran ecology, behaviour and phylogenetics. While this fungus has caused devastating declines in North American bat populations, there have been no apparent population changes attributable to the disease in Europe. We screened 276 bats of 15 species from hibernacula in the Czech Republic over 2012 and 2013, and provided histopathological evidence for 11 European species positive for WNS. With the exception of Myotis myotis, the other ten species are all new reports for WNS in Europe. Of these, M. emarginatus, Eptesicus nilssonii, Rhinolophus hipposideros, Barbastella barbastellus and Plecotus auritus are new to the list of P. destructans-infected bat species. While the infected species are all statistically phylogenetically related, WNS affects bats from two suborders. These are ecologically diverse and adopt a wide range of hibernating strategies. Occurrence of WNS in distantly related bat species with diverse ecology suggests that the pathogen may be a generalist and that all bats hibernating within the distribution range of P. destructans may be at risk of infection. PMID:24820101

  7. Standards Relating to Schools and Education. Juvenile Justice Standards Project [of the] Institute of Judicial Administration [and the] American Bar Association. Tentative Draft.

    ERIC Educational Resources Information Center

    [Buss, William; Goldstein, Stephen

    The standards and commentary in this volume are part of a series designed to cover the juvenile justice system and its relationship to the rights and responsibilities of juveniles. This volume on public education is addressed to legislators, courts, lawyers, educators, parents, students, and the general public. The volume proposes standards…

  8. Bats Swarm Where They Hibernate: Compositional Similarity between Autumn Swarming and Winter Hibernation Assemblages at Five Underground Sites.

    PubMed

    van Schaik, Jaap; Janssen, René; Bosch, Thijs; Haarsma, Anne-Jifke; Dekker, Jasja J A; Kranstauber, Bart

    2015-01-01

    During autumn in the temperate zone of both the new and old world, bats of many species assemble at underground sites in a behaviour known as swarming. Autumn swarming behaviour is thought to primarily serve as a promiscuous mating system, but may also be related to the localization and assessment of hibernacula. Bats subsequently make use of the same underground sites during winter hibernation, however it is currently unknown if the assemblages that make use of a site are comparable across swarming and hibernation seasons. Our purpose was to characterize the bat assemblages found at five underground sites during both the swarming and the hibernation season and compare the assemblages found during the two seasons both across sites and within species. We found that the relative abundance of individual species per site, as well as the relative proportion of a species that makes use of each site, were both significantly correlated between the swarming and hibernation seasons. These results suggest that swarming may indeed play a role in the localization of suitable hibernation sites. Additionally, these findings have important conservation implications, as this correlation can be used to improve monitoring of underground sites and predict the importance of certain sites for rare and cryptic bat species.

  9. Bats Swarm Where They Hibernate: Compositional Similarity between Autumn Swarming and Winter Hibernation Assemblages at Five Underground Sites

    PubMed Central

    van Schaik, Jaap; Janssen, René; Bosch, Thijs; Haarsma, Anne-Jifke; Dekker, Jasja J. A.; Kranstauber, Bart

    2015-01-01

    During autumn in the temperate zone of both the new and old world, bats of many species assemble at underground sites in a behaviour known as swarming. Autumn swarming behaviour is thought to primarily serve as a promiscuous mating system, but may also be related to the localization and assessment of hibernacula. Bats subsequently make use of the same underground sites during winter hibernation, however it is currently unknown if the assemblages that make use of a site are comparable across swarming and hibernation seasons. Our purpose was to characterize the bat assemblages found at five underground sites during both the swarming and the hibernation season and compare the assemblages found during the two seasons both across sites and within species. We found that the relative abundance of individual species per site, as well as the relative proportion of a species that makes use of each site, were both significantly correlated between the swarming and hibernation seasons. These results suggest that swarming may indeed play a role in the localization of suitable hibernation sites. Additionally, these findings have important conservation implications, as this correlation can be used to improve monitoring of underground sites and predict the importance of certain sites for rare and cryptic bat species. PMID:26153691

  10. Arctic Ground Squirrels Limit Bone Loss during the Prolonged Physical Inactivity Associated with Hibernation.

    PubMed

    Wojda, Samantha J; Gridley, Richard A; McGee-Lawrence, Meghan E; Drummer, Thomas D; Hess, Ann; Kohl, Franziska; Barnes, Brian M; Donahue, Seth W

    2016-01-01

    Prolonged disuse (e.g., physical inactivity) typically results in increased bone porosity, decreased mineral density, and decreased bone strength, leading to increased fracture risk in many mammals. However, bears, marmots, and two species of ground squirrels have been shown to preserve macrostructural bone properties and bone strength during long seasons of hibernation while they remain mostly inactive. Some small hibernators (e.g., 13-lined ground squirrels) show microstructural bone loss (i.e., osteocytic osteolysis) during hibernation, which is not seen in larger hibernators (e.g., bears and marmots). Arctic ground squirrels (Urocitellus parryii) are intermediate in size between 13-lined ground squirrels and marmots and are perhaps the most extreme rodent hibernator, hibernating for up to 8 mo annually with body temperatures below freezing. The goal of this study was to quantify the effects of hibernation and inactivity on cortical and trabecular bone properties in arctic ground squirrels. Cortical bone geometrical properties (i.e., thickness, cross-sectional area, and moment of inertia) at the midshaft of the femur were not different in animals sampled over the hibernation and active seasons. Femoral ultimate stress tended to be lower in hibernators than in summer animals, but toughness was not affected by hibernation. The area of osteocyte lacunae was not different between active and hibernating animals. There was an increase in osteocytic lacunar porosity in the hibernation group due to increased lacunar density. Trabecular bone volume fraction in the proximal tibia was unexpectedly greater in the hibernation group than in the active group. This study shows that, similar to other hibernators, arctic ground squirrels are able to preserve many bone properties during hibernation despite being physically inactive for up to 8 mo.

  11. DDE in brown and white fat of hibernating bats

    USGS Publications Warehouse

    Clark, D.R.; Krynitsky, A.J.

    1983-01-01

    Samples of brown and white fat from hibernating bats (big brown bat, Eptesicus fuscus; little brown bat, Myotis lucifugus; and eastern pipistrelle, Pipistrellus subflavus) collected in western Maryland, USA, were analysed to determine lipid and DDE content. Amounts of brown fat, expressed as percentages of total bat weight, were the same for all three species. Lipid content of brown fat was significantly less than that of white fat. Lipids of brown fat contained significantly higher (28%) concentrations of DDE than did lipids of white fat. In our mixed-species sample of 14 bats, concentrations of DDE increased exponentially in both brown and white fat as white fat reserves declined. Brown fat facilitates arousal from hibernation by producing heat through rapid metabolism of triglycerides. The question is raised whether organochlorine residues, such as DDE, may be concentrated and then liberated in lethal amounts by the processes of hibernation and arousal.

  12. Prioritization of skeletal muscle growth for emergence from hibernation.

    PubMed

    Hindle, Allyson G; Otis, Jessica P; Epperson, L Elaine; Hornberger, Troy A; Goodman, Craig A; Carey, Hannah V; Martin, Sandra L

    2015-01-15

    Mammalian hibernators provide an extreme example of naturally occurring challenges to muscle homeostasis. The annual hibernation cycle is characterized by shifts between summer euthermy with tissue anabolism and accumulation of body fat reserves, and winter heterothermy with fasting and tissue catabolism. The circannual patterns of skeletal muscle remodelling must accommodate extended inactivity during winter torpor, the motor requirements of transient winter active periods, and sustained activity following spring emergence. Muscle volume in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) calculated from MRI upper hindlimb images (n=6 squirrels, n=10 serial scans) declined from hibernation onset, reaching a nadir in early February. Paradoxically, mean muscle volume rose sharply after February despite ongoing hibernation, and continued total body mass decline until April. Correspondingly, the ratio of muscle volume to body mass was steady during winter atrophy (October-February) but increased (+70%) from February to May, which significantly outpaced changes in liver or kidney examined by the same method. Generally stable myocyte cross-sectional area and density indicated that muscle remodelling is well regulated in this hibernator, despite vastly altered seasonal fuel and activity levels. Body composition analysis by echo MRI showed lean tissue preservation throughout hibernation amid declining fat mass by the end of winter. Muscle protein synthesis was 66% depressed in early but not late winter compared with a summer fasted baseline, while no significant changes were observed in the heart, liver or intestine, providing evidence that could support a transition in skeletal muscle regulation between early and late winter, prior to spring emergence and re-feeding.

  13. Hibernating myocardium results in partial sympathetic denervation and nerve sprouting

    PubMed Central

    Fernandez, Stanley F.; Ovchinnikov, Vladislav; Canty, John M.

    2013-01-01

    Hibernating myocardium due to chronic repetitive ischemia is associated with regional sympathetic nerve dysfunction and spontaneous arrhythmic death in the absence of infarction. Although inhomogeneity in regional sympathetic innervation is an acknowledged substrate for sudden death, the mechanism(s) responsible for these abnormalities in viable, dysfunctional myocardium (i.e., neural stunning vs. sympathetic denervation) and their association with nerve sprouting are unknown. Accordingly, markers of sympathetic nerve function and nerve sprouting were assessed in subendocardial tissue collected from chronically instrumented pigs with hibernating myocardium (n = 18) as well as sham-instrumented controls (n = 7). Hibernating myocardium exhibited evidence of partial sympathetic denervation compared with the normally perfused region and sham controls, with corresponding regional reductions in tyrosine hydroxylase protein (−32%, P < 0.001), norepinephrine uptake transport protein (−25%, P = 0.01), and tissue norepinephrine content (−45%, P < 0.001). Partial denervation induced nerve sprouting with regional increases in nerve growth factor precursor protein (31%, P = 0.01) and growth associated protein-43 (38%, P < 0.05). All of the changes in sympathetic nerve markers were similar in animals that developed sudden death (n = 9) compared with electively terminated pigs with hibernating myocardium (n = 9). In conclusion, sympathetic nerve dysfunction in hibernating myocardium is most consistent with partial sympathetic denervation and is associated with regional nerve sprouting. The extent of sympathetic remodeling is similar in animals that develop sudden death compared with survivors; this suggests that sympathetic remodeling in hibernating myocardium is not an independent trigger for sudden death. Nevertheless, sympathetic remodeling likely contributes to electrical instability in combination with other factors. PMID:23125211

  14. Juvenile Firesetting.

    PubMed

    Peters, Brittany; Freeman, Bradley

    2016-01-01

    Juvenile firesetting is a significant cause of morbidity and mortality in the United States. Male gender, substance use, history of maltreatment, interest in fire, and psychiatric illness are commonly reported risk factors. Interventions that have been shown to be effective in juveniles who set fires include cognitive behavior therapy and educational interventions, whereas satiation has not been shown to be an effective intervention. Forensic assessments can assist the legal community in adjudicating youth with effective interventions. Future studies should focus on consistent assessment and outcome measures to create more evidence for directing evaluation and treatment of juvenile firesetters.

  15. Adaptation of phenylalanine and tyrosine catabolic pathway to hibernation in bats.

    PubMed

    Pan, Yi-Hsuan; Zhang, Yijian; Cui, Jie; Liu, Yang; McAllan, Bronwyn M; Liao, Chen-Chung; Zhang, Shuyi

    2013-01-01

    Some mammals hibernate in response to harsh environments. Although hibernating mammals may metabolize proteins, the nitrogen metabolic pathways commonly activated during hibernation are not fully characterized. In contrast to the hypothesis of amino acid preservation, we found evidence of amino acid metabolism as three of five key enzymes, including phenylalanine hydroxylase (PAH), homogentisate 1,2-dioxygenase (HGD), fumarylacetoacetase (FAH), involved in phenylalanine and tyrosine catabolism were co-upregulated during hibernation in two distantly related species of bats, Myotis ricketti and Rhinolophus ferrumequinum. In addition, the levels of phenylalanine in the livers of these bats were significantly decreased during hibernation. Because phenylalanine and tyrosine are both glucogenic and ketogenic, these results indicate the role of this catabolic pathway in energy supply. Since any deficiency in the catabolism of these two amino acids can cause accumulations of toxic metabolites, these results also suggest the detoxification role of these enzymes during hibernation. A higher selective constraint on PAH, HPD, and HGD in hibernators than in non-hibernators was observed, and hibernators had more conserved amino acid residues in each of these enzymes than non-hibernators. These conserved amino acid residues are mostly located in positions critical for the structure and activity of the enzymes. Taken together, results of this work provide novel insights in nitrogen metabolism and removal of harmful metabolites during bat hibernation.

  16. Mental Health Implications of the Juvenile Justice Standards.

    ERIC Educational Resources Information Center

    Morse, Stephen J.; Whitebread, Charles H., II

    1982-01-01

    The Juvenile Justice Standards developed by the Institute of Judicial Administration and the American Bar Association reflect a trend away from the therapeutic aspect of the juvenile court and toward due process for juveniles accused of delinquent offenses. (Author/MJL)

  17. Juvenile Prostitution.

    ERIC Educational Resources Information Center

    Csapo, Marg

    1986-01-01

    Recent research and Canadian government committee reports concerning juvenile prostitution are reviewed. Proposals are made in the realms of law and social policy; and existing programs are described. (DB)

  18. Effects of Pressure Reductions in a Proposed Siphon Water Lift System at St. Stephen Dam, South Carolina, on Mortality Rates of Juvenile American Shad and Blueback Herring.

    DTIC Science & Technology

    1998-09-01

    unlikely. Conducting additional mortality studies is recommended to refine predicted mortality rates . Measures should be taken to prevent juvenile fish...from entering the siphon lift system if excessive mortality rates are observed.

  19. Skeletal muscle mass and composition during mammalian hibernation.

    PubMed

    Cotton, Clark J

    2016-01-01

    Hibernation is characterized by prolonged periods of inactivity with concomitantly low nutrient intake, conditions that would typically result in muscle atrophy combined with a loss of oxidative fibers. Yet, hibernators consistently emerge from winter with very little atrophy, frequently accompanied by a slight shift in fiber ratios to more oxidative fiber types. Preservation of muscle morphology is combined with down-regulation of glycolytic pathways and increased reliance on lipid metabolism instead. Furthermore, while rates of protein synthesis are reduced during hibernation, balance is maintained by correspondingly low rates of protein degradation. Proposed mechanisms include a number of signaling pathways and transcription factors that lead to increased oxidative fiber expression, enhanced protein synthesis and reduced protein degradation, ultimately resulting in minimal loss of skeletal muscle protein and oxidative capacity. The functional significance of these outcomes is maintenance of skeletal muscle strength and fatigue resistance, which enables hibernating animals to resume active behaviors such as predator avoidance, foraging and mating immediately following terminal arousal in the spring.

  20. Efficacy of coronary angioplasty for the treatment of hibernating myocardium

    PubMed Central

    Fath-Ordoubadi, F; Beatt, K; Spyrou, N; Camici, P

    1999-01-01

    OBJECTIVES—To determine the efficacy of coronary angioplasty as the sole method of revascularisation in patients with coronary artery disease and chronically dysfunctional but viable myocardium (hibernating myocardium), and to assess the effect of restenosis on functional outcome.
DESIGN AND PATIENTS—24 consecutive patients with hibernating myocardium were studied. Positron emission tomography was used to assess myocardial viability, blood flow, and flow reserve. One patient refused angioplasty, one had bypass surgery, and one died while waiting for an elective procedure. The procedure failed in three patients. The remaining 18 patients had repeat echocardiography, 15 had repeat coronary angiography, and nine had repeat assessments of blood flow and flow reserve at mean (SD) 17 (2) weeks after angioplasty. In three patients restenosis was documented.
RESULTS—The wall motion score index in the revascularised territories improved from 1.71 (0.37) to 1.34 (0.47) (p = 0.008). Thirty of 51 dysfunctional segments improved in territories without restenosis compared with three of 14 in restenosed territories (p = 0.001). Hibernating and normal segments had comparable flows (0.82 (0.26) v 0.89 (0.24) ml/min/g; NS) while flow reserve was lower in hibernating segments (1.55 (0.68) v 2.07 (1.08); p = 0.03). In segments without restenosis flow reserve improved from 2.03 (1.25) to 2.33 (1.4) (p = 0.03). Sensitivity, specificity, and positive and negative predictive accuracy of the viability study were 97%, 77%, 82%, and 96%, respectively. After excluding patients with restenosis, specificity and positive predictive accuracy improved to 90% and 93%.
CONCLUSIONS—Angioplasty improves function in hibernating myocardium, and restenosis prevents recovery; hibernating myocardium is characterised by an impairment of flow reserve; restenosis affects the diagnostic accuracy of viability studies.


Keywords: coronary artery disease; percutaneous

  1. Juvenile Idiopathic Arthritis

    MedlinePlus

    ... Is Juvenile Idiopathic Arthritis the same as Juvenile Rheumatoid Arthritis? Yes, Juvenile Idiopathic Arthritis (JIA) is a new ... of chronic inflammatory diseases that affect children. Juvenile Rheumatoid Arthritis (JRA) is the older term that was used ...

  2. Juvenile Justice: A Bibliographic Essay.

    ERIC Educational Resources Information Center

    Kondak, Ann

    1979-01-01

    Provides information on the background and legal framework of the juvenile justice system, the issues that confront it, and the pressures for change, as well as noting some sources of information on the system. Available from American Association of Law Libraries, 53 West Jackson Blvd., Suite 1201, Chicago, Illinois 60604; sc $4.00. (Author/IRT)

  3. Life in the cold: links between mammalian hibernation and longevity.

    PubMed

    Wu, Cheng-Wei; Storey, Kenneth B

    2016-02-01

    The biological process of aging is the primary determinant of lifespan, but the factors that influence the rate of aging are not yet clearly understood and remain a challenging question. Mammals are characterized by >100-fold differences in maximal lifespan, influenced by relative variances in body mass and metabolic rate. Recent discoveries have identified long-lived mammalian species that deviate from the expected longevity quotient. A commonality among many long-lived species is the capacity to undergo metabolic rate depression, effectively re-programming normal metabolism in response to extreme environmental stress and enter states of torpor or hibernation. This stress tolerant phenotype often involves a reduction in overall metabolic rate to just 1-5% of the normal basal rate as well as activation of cytoprotective responses. At the cellular level, major energy savings are achieved via coordinated suppression of many ATP-expensive cell functions; e.g. global rates of protein synthesis are strongly reduced via inhibition of the insulin signaling axis. At the same time, various studies have shown activation of stress survival signaling during hibernation including up-regulation of protein chaperones, increased antioxidant defenses, and transcriptional activation of pro-survival signaling such as the FOXO and p53 pathways. Many similarities and parallels exist between hibernation phenotypes and different long-lived models, e.g. signal transduction pathways found to be commonly regulated during hibernation are also known to induce lifespan extension in animals such as Drosophila melanogaster and Caenorhabditis elegans. In this review, we highlight some of the molecular mechanisms that promote longevity in classic aging models C. elegans, Drosophila, and mice, while providing a comparative analysis to how they are regulated during mammalian hibernation.

  4. (14C)2-deoxyglucose uptake in ground squirrel brain during hibernation

    SciTech Connect

    Kilduff, T.S.; Sharp, F.R.; Heller, H.C.

    1982-02-01

    Autoradiographic patterns of (14C)2-deoxyglucose uptake are described throughout the brains of hibernating and euthermic ground squirrels. Autoradiographs of the brains of hibernating animals are generally homogeneous in comparison to euthermic animals; hence, the relative 2-deoxyglucose uptake (R2DGU) of gray to white matter for the majority of the 85 neural structures examined decreases during hibernation. Two categories of structures are identified as potentially important in hibernation: (1) structures that have the highest R2DGU during hibernation (cochlear nucleus, paratrigeminal nucleus, and superior colliculus) and (2) structures that undergo the least reduction in R2DGU in the transition from euthermia to hibernation (suprachiasmatic nucleus and lateral septal nucleus). The percentage of reduction in R2DGU that a structure undergoes in the transition from euthermia to hibernation is proportional to the R2DGU of that structure during euthermia. The suprachiasmatic, paratrigeminal, and cochlear nuclei undergo less of a reduction than would be predicted from this relationship and may be particularly important during hibernation. Sensory nuclei that receive primary afferent projections are among the structures with the highest R2DGU during hibernation. These metabolically active structures may be responsible for the sensitivity of the hibernator to environmental stimuli.

  5. Proteomic mechanisms of cardioprotection during mammalian hibernation in woodchucks, Marmota monax.

    PubMed

    Li, Hong; Liu, Tong; Chen, Wei; Jain, Mohit Raja; Vatner, Dorothy E; Vatner, Stephen F; Kudej, Raymond K; Yan, Lin

    2013-09-06

    Mammalian hibernation is a unique strategy for winter survival in response to limited food supply and harsh climate, which includes resistance to cardiac arrhythmias. We previously found that hibernating woodchucks (Marmota monax) exhibit natural resistance to Ca2+ overload-related cardiac dysfunction and nitric oxide (NO)-dependent vasodilation, which maintains myocardial blood flow during hibernation. Since the cellular/molecular mechanisms mediating the protection are less clear, the goal of this study was to investigate changes in the heart proteome and reveal related signaling networks that are involved in establishing cardioprotection in woodchucks during hibernation. This was accomplished using isobaric tags for a relative and absolute quantification (iTRAQ) approach. The most significant changes observed in winter hibernation compared to summer non-hibernation animals were upregulation of the antioxidant catalase and inhibition of endoplasmic reticulum (ER) stress response by downregulation of GRP78, mechanisms which could be responsible for the adaptation and protection in hibernating animals. Furthermore, protein networks pertaining to NO signaling, acute phase response, CREB and NFAT transcriptional regulations, protein kinase A and α-adrenergic signaling were also dramatically upregulated during hibernation. These adaptive mechanisms in hibernators may provide new directions to protect myocardium of non-hibernating animals, especially humans, from cardiac dysfunction induced by hypothermic stress and myocardial ischemia.

  6. Cardiovascular function in large to small hibernators: bears to ground squirrels.

    PubMed

    Nelson, O Lynne; Robbins, Charles T

    2015-04-01

    Mammalian hibernation has intrigued scientists due to extreme variations in normal seasonal physiological homeostasis. Numerous species manifest a hibernation phenotype although the characteristics of the hypometabolic state can be quite different. Ground squirrels (e.g., Sciuridae) are often considered the prototypical hibernator as individuals in this genus transition from an active, euthermic state (37 °C) to a nonresponsive hibernating state where torpid body temperature commonly falls to 3-5 °C. However, the hibernating state is not continuous as periodic warming and arousals occur. In contrast, the larger hibernators of genus Ursus are less hypothermic (body temperatures decline from approximately 37°-33 °C), are more reactive, and cyclical arousals do not occur. Both species dramatically reduce cardiac output during hibernation from the active state (bears ~75 % reduction in bears and ~97 % reduction in ground squirrels), and both species demonstrate hypokinetic atrial chamber activity. However, there are several important differences in cardiac function between the two groups during hibernation. Left ventricular diastolic filling volumes and stroke volumes do not differ in bears between seasons, but increased diastolic and stroke volumes during hibernation are important contributors to cardiac output in ground squirrels. Decreased cardiac muscle mass and increased ventricular stiffness have been found in bears, whereas ground squirrels have increased cardiac muscle mass and decreased ventricular stiffness during hibernation. Molecular pathways of cardiac muscle plasticity reveal differences between the species in the modification of sarcomeric proteins such as titin and α myosin heavy chain during hibernation. The differences in hibernation character are likely to account for the alternative cardiac phenotypes and functional strategies manifested by the two species. Molecular investigation coupled with better knowledge of seasonal physiological

  7. Inter-class competition in stage-structured populations: effects of adult density on life-history traits of adult and juvenile common lizards.

    PubMed

    San-Jose, Luis M; Peñalver-Alcázar, Miguel; Huyghe, Katleen; Breedveld, Merel C; Fitze, Patrick S

    2016-12-01

    Ecological and evolutionary processes in natural populations are largely influenced by the population's stage-structure. Commonly, different classes have different competitive abilities, e.g., due to differences in body size, suggesting that inter-class competition may be important and largely asymmetric. However, experimental evidence states that inter-class competition, which is important, is rare and restricted to marine fish. Here, we manipulated the adult density in six semi-natural populations of the European common lizard, Zootoca vivipara, while holding juvenile density constant. Adult density affected juveniles, but not adults, in line with inter-class competition. High adult density led to lower juvenile survival and growth before hibernation. In contrast, juvenile survival after hibernation was higher in populations with high adult density, pointing to relaxed inter-class competition. As a result, annual survival was not affected by adult density, showing that differences in pre- and post-hibernation survival balanced each other out. The intensity of inter-class competition affected reproduction, performance, and body size in juveniles. Path analyses unravelled direct treatment effects on early growth (pre-hibernation) and no direct treatment effects on the parameters measured after hibernation. This points to allometry of treatment-induced differences in early growth, and it suggests that inter-class competition mainly affects the early growth of the competitively inferior class and thereby their future performance and reproduction. These results are in contrast with previous findings and, together with results in marine fish, suggest that the strength and direction of density dependence may depend on the degree of inter-class competition, and thus on the availability of resources used by the competing classes.

  8. Hibernation-Based Therapy to Improve Survival of Severe Blood Loss

    DTIC Science & Technology

    2013-10-01

    AD_________________ Award Number: W81xwh-10-2-0121 TITLE: Hibernation -Based Therapy to Improve...COVERED 1 October 2012 to 30 September 2013 4. TITLE AND SUBTITLE Hibernation -Based Therapy to Improve Survival of Severe Blood 5a. CONTRACT...risk for bleeding to death. Our overall strategy in this series of studies is to capitalize on the physiologic adaptive responses seen in hibernating

  9. Hibernation-Based Therapy to Improve Survival of Severe Blood Loss

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-10-2-0121 TITLE: Hibernation -Based Therapy to Improve Survival of Severe...2014 4. TITLE AND SUBTITLE Hibernation -Based Therapy to Improve Survival of Severe Blood 5a. CONTRACT NUMBER Loss 5b. GRANT...responses in hibernating mammals to aid in salvage of a patient with a potentially life-threatening blood loss, permitting survival to reach effective

  10. Hibernation-Based Therapy to Improve Survival of Severe Blood Loss

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-10-2-0121 TITLE: Hibernation -Based Therapy to Improve Survival of Severe Blood Loss PRINCIPAL INVESTIGATOR: Gregory...PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED 4. TITLE AND SUBTITLE Hibernation -Based Therapy to... hibernating mammals to aid in salvage of a patient with a potentially life-threatening blood loss, permitting survival to reach effective medical

  11. Hibernation-Based Therapy to Improve Survival of Severe Blood Loss

    DTIC Science & Technology

    2012-10-01

    AD_________________ Award Number: W81XWH-10-2-0121 TITLE: Hibernation -Based Therapy to Improve... Hibernation -Based Therapy to Improve Survival of Severe Blood 5a. CONTRACT NUMBER Loss 5b. GRANT NUMBER W81XWH-10-2-0121 5c. PROGRAM ELEMENT NUMBER...physiologic adaptive responses in hibernating mammals to aid in slavage of a patient with a potentially life-threatening blood loss, permitting

  12. Hibernation-Based Therapy to Improve Survival of Severe Blood Loss

    DTIC Science & Technology

    2011-10-01

    Award Number: W81XWH-10-2-0121 TITLE: Hibernation -Based Therapy to Improve Survival of Severe Blood Loss PRINCIPAL INVESTIGATOR: Gregory...SUBTITLE 5a. CONTRACT NUMBER Hibernation -Based Therapy to Improve Survival of Severe Blood Loss 5b. GRANT NUMBER W81XWH-10-2-0121 5c. PROGRAM...death. The overall strategy is to use strategies learned from study of hibernating mammals to survive a potentially life-threatening blood loss and allow

  13. Bone formation is not impaired by hibernation (disuse) in black bears Ursus americanus

    USGS Publications Warehouse

    Donahue, S.W.; Vaughan, M.R.; Demers, L.M.; Donahue, H.J.

    2003-01-01

    Disuse by bed rest, limb immobilization or space flight causes rapid bone loss by arresting bone formation and accelerating bone resorption. This net bone loss increases the risk of fracture upon remobilization. Bone loss also occurs in hibernating ground squirrels, golden hamsters, and little brown bats by arresting bone formation and accelerating bone resorption. There is some histological evidence to suggest that black bears Ursus americanus do not lose bone mass during hibernation (i.e. disuse). There is also evidence suggesting that muscle mass and strength are preserved in black bears during hibernation. The question of whether bears can prevent bone loss during hibernation has not been conclusively answered. The goal of the current study was to further assess bone metabolism in hibernating black bears. Using the same serum markers of bone remodeling used to evaluate human patients with osteoporosis, we assayed serum from five black bears, collected every 10 days over a 196-day period, for bone resorption and formation markers. Here we show that bone resorption remains elevated over the entire hibernation period compared to the pre-hibernation period, but osteoblastic bone formation is not impaired by hibernation and is rapidly accelerated during remobilization following hibernation.

  14. Response of gut microbiota to fasting and hibernation in Syrian hamsters.

    PubMed

    Sonoyama, Kei; Fujiwara, Reiko; Takemura, Naoki; Ogasawara, Toru; Watanabe, Jun; Ito, Hiroyuki; Morita, Tatsuya

    2009-10-01

    Although hibernating mammals wake occasionally to eat during torpor, this period represents a state of fasting. Fasting is known to alter the gut microbiota in nonhibernating mammals; therefore, hibernation may also affect the gut microbiota. However, there are few reports of gut microbiota in hibernating mammals. The present study aimed to compare the gut microbiota in hibernating torpid Syrian hamsters with that in active counterparts by using culture-independent analyses. Hamsters were allocated to either torpid, fed active, or fasted active groups. Hibernation was successfully induced by maintaining darkness at 4 degrees C. Flow cytometry analysis of cecal bacteria showed that 96-h fasting reduced the total gut bacteria. This period of fasting also reduced the concentrations of short chain fatty acids in the cecal contents. In contrast, total bacterial numbers and concentrations of short chain fatty acids were unaffected by hibernation. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments indicated that fasting and hibernation modulated the cecal microbiota. Analysis of 16S rRNA clone library and species-specific real-time quantitative PCR showed that the class Clostridia predominated in both active and torpid hamsters and that populations of Akkermansia muciniphila, a mucin degrader, were increased by fasting but not by hibernation. From these results, we conclude that the gut microbiota responds differently to fasting and hibernation in Syrian hamsters.

  15. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation.

    PubMed

    McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth

    2015-07-01

    Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria.

  16. Nova outbursts in the case of mild hibernation

    SciTech Connect

    Livio, M.; Shankar, A.; Truran, J.W.

    1988-02-01

    The necessary conditions for the production of strong thermonuclear runaways in the hibernation scenario are identified and explored. It is found that a reduction in the accretion rate by a factor of about 100, for a period longer than a few thousand years, is generally sufficient to ensure nova-type outbursts, even in the presence of rather high preoutburst accretion rates. Nova outbursts can be obtained under mild hibernation conditions on 1 solar mass white dwarfs as well as on very massive ones. A reduction in the accretion rate by a factor of 10 only is insufficient to produce a nova outburst, if the preoutburst accretion rate is as high as 10 to the -8th solar mass/yr. 28 references.

  17. First records of dive durations for a hibernating sea turtle.

    PubMed

    Hochscheid, Sandra; Bentivegna, Flegra; Hays, Graeme C

    2005-03-22

    The first published record, from the early 1970s, of hibernation in sea turtles is based on the reports of the indigenous Indians and fishermen from Mexico, who hunted dormant green turtles (Chelonia mydas) in the Gulf of California. However, there were no successful attempts to investigate the biology of this particular behaviour further. Hence, data such as the exact duration and energetic requirements of dormant winter submergences are lacking. We used new satellite relay data loggers to obtain the first records of up to 7h long dives of a loggerhead turtle (Caretta caretta) overwintering in Greek waters. These represent the longest dives ever reported for a diving marine vertebrate. There is strong evidence that the dives were aerobic, because the turtle surfaced only for short intervals and before the calculated oxygen stores were depleted. This evidence suggests that the common belief that sea turtles hibernate underwater, as some freshwater turtles do, is incorrect.

  18. First records of dive durations for a hibernating sea turtle

    PubMed Central

    Hochscheid, Sandra; Bentivegna, Flegra; Hays, Graeme C

    2005-01-01

    The first published record, from the early 1970s, of hibernation in sea turtles is based on the reports of the indigenous Indians and fishermen from Mexico, who hunted dormant green turtles (Chelonia mydas) in the Gulf of California. However, there were no successful attempts to investigate the biology of this particular behaviour further. Hence, data such as the exact duration and energetic requirements of dormant winter submergences are lacking. We used new satellite relay data loggers to obtain the first records of up to 7 h long dives of a loggerhead turtle (Caretta caretta) overwintering in Greek waters. These represent the longest dives ever reported for a diving marine vertebrate. There is strong evidence that the dives were aerobic, because the turtle surfaced only for short intervals and before the calculated oxygen stores were depleted. This evidence suggests that the common belief that sea turtles hibernate underwater, as some freshwater turtles do, is incorrect. PMID:17148134

  19. Translating drug-induced hibernation to therapeutic hypothermia.

    PubMed

    Jinka, Tulasi R; Combs, Velva M; Drew, Kelly L

    2015-06-17

    Therapeutic hypothermia (TH) improves prognosis after cardiac arrest; however, thermoregulatory responses such as shivering complicate cooling. Hibernators exhibit a profound and safe reversible hypothermia without any cardiovascular side effects by lowering the shivering threshold at low ambient temperatures (Ta). Activation of adenosine A1 receptors (A1ARs) in the central nervous system (CNS) induces hibernation in hibernating species and a hibernation-like state in rats, principally by attenuating thermogenesis. Thus, we tested the hypothesis that targeted activation of the central A1AR combined with a lower Ta would provide a means of managing core body temperature (Tb) below 37 °C for therapeutic purposes. We targeted the A1AR within the CNS by combining systemic delivery of the A1AR agonist (6)N-cyclohexyladenosine (CHA) with 8-(p-sulfophenyl)theophylline (8-SPT), a nonspecific adenosine receptor antagonist that does not readily cross the blood-brain barrier. Results show that CHA (1 mg/kg) and 8-SPT (25 mg/kg), administered intraperitoneally every 4 h for 20 h at a Ta of 16 °C, induce and maintain the Tb between 29 and 31 °C for 24 h in both naïve rats and rats subjected to asphyxial cardiac arrest for 8 min. Faster and more stable hypothermia was achieved by continuous infusion of CHA delivered subcutaneously via minipumps. Animals subjected to cardiac arrest and cooled by CHA survived better and showed less neuronal cell death than normothermic control animals. Central A1AR activation in combination with a thermal gradient shows promise as a novel and effective pharmacological adjunct for inducing safe and reversible targeted temperature management.

  20. Neural Signaling Metabolites May Modulate Energy Use in Hibernation.

    PubMed

    Drew, Kelly L; Frare, Carla; Rice, Sarah A

    2017-01-01

    Despite an epidemic in obesity and metabolic syndrome limited means exist to effect adiposity or metabolic rate other than life style changes. Here we review evidence that neural signaling metabolites may modulate thermoregulatory pathways and offer novel means to fine tune energy use. We extend prior reviews on mechanisms that regulate thermogenesis and energy use in hibernation by focusing primarily on the neural signaling metabolites adenosine, AMP and glutamate.

  1. Characterization of an Opioid-Like Hibernation Induction Trigger

    DTIC Science & Technology

    1989-07-01

    to HIT administration with a dose -reryonse relationship between the amount of adenosina dijphosphate (ADP) added and the extent of aggregation. However...despite the use of high doses of ADP. Our preliminary results suggest that one mechanism of prolonged organ survival following HIT administration may...HIT administration despite high dose ADP to stimulate aggregation . . . . 36 -3- INTRODUCTION A hibernation induction trigger (HIT) molecule derived

  2. Ubiquitous and temperature-dependent neural plasticity in hibernators.

    PubMed

    von der Ohe, Christina G; Darian-Smith, Corinna; Garner, Craig C; Heller, H Craig

    2006-10-11

    Hibernating mammals are remarkable for surviving near-freezing brain temperatures and near cessation of neural activity for a week or more at a time. This extreme physiological state is associated with dendritic and synaptic changes in hippocampal neurons. Here, we investigate whether these changes are a ubiquitous phenomenon throughout the brain that is driven by temperature. We iontophoretically injected Lucifer yellow into several types of neurons in fixed slices from hibernating ground squirrels. We analyzed neuronal microstructure from animals at several stages of torpor at two different ambient temperatures, and during the summer. We show that neuronal cell bodies, dendrites, and spines from several cell types in hibernating ground squirrels retract on entry into torpor, change little over the course of several days, and then regrow during the 2 h return to euthermia. Similar structural changes take place in neurons from the hippocampus, cortex, and thalamus, suggesting a global phenomenon. Investigation of neural microstructure from groups of animals hibernating at different ambient temperatures revealed that there is a linear relationship between neural retraction and minimum body temperature. Despite significant temperature-dependent differences in extent of retraction during torpor, recovery reaches the same final values of cell body area, dendritic arbor complexity, and spine density. This study demonstrates large-scale and seemingly ubiquitous neural plasticity in the ground squirrel brain during torpor. It also defines a temperature-driven model of dramatic neural plasticity, which provides a unique opportunity to explore mechanisms of large-scale regrowth in adult mammals, and the effects of remodeling on learning and memory.

  3. Ca++ induced hypothermia in a hibernator /Citellus beechyi/

    NASA Technical Reports Server (NTRS)

    Hanegan, J. L.; Williams, B. A.

    1975-01-01

    Results of perfusion of excess Ca++ and Na+ into the hypothalamus of the hibernating ground squirrel Citellus beechyi are presented. The significant finding is that perfused excess Ca++ causes a reduction in core temperature when ambient temperature is low (12 C). Ca++ also causes a rise in rectal temperature at high ambient temperature (33 C). Thus hypothalamic Ca++ perfusion apparently causes a nonspecific depression of thermoregulatory control.

  4. Rosetta Lander - Philae: activities after hibernation and landing preparations

    NASA Astrophysics Data System (ADS)

    Ulamec, Stephan; Biele, Jens; Sierks, Holger; Blazquez, Alejandro; Cozzoni, Barbara; Fantinati, Cinzia; Gaudon, Philippe; Geurts, Koen; Jurado, Eric; Paetz, Brigitte.; Maibaum, Michael

    Rosetta is a Cornerstone Mission of the ESA Horizon 2000 programme. It is going to rendezvous with comet 67P/Churyumov-Gerasimenko after a ten year cruise and will study both its nucleus and coma with an orbiting spacecraft as well as with a Lander, Philae. Aboard Philae, a payload consisting of ten scientific instruments will perform in-situ studies of the cometary material. Rosetta and Philae have been in hibernation until January 20, 2014. After the successful wakeup they will undergo a post hibernation commissioning. The orbiter instruments (like e.g. the OSIRIS cameras) are to characterize the target comet to allow landing site selection and the definition of a separation, descent and landing (SDL) strategy for the Lander. By August 2014 our currently very poor knowledge of the characteristics of the nucleus of the comet will have increased dramatically. The paper will report on the latest updates in Separation-Descent-Landing (SDL) planning. Landing is foreseen for November 2014 at a heliocentric distance of 3 AU. Philae will be separated from the mother spacecraft from a dedicated delivery trajectory. It then descends ballistically to the surface of the comet, stabilized with an internal flywheel. At touch-down anchoring harpoons will be fired and a damping mechanism within the landing gear will provide the lander from re-bouncing. The paper will give an overview of the Philae system, the operational activities after hibernation and the latest status on the preparations for landing.

  5. Variation in phenology of hibernation and reproduction in the endangered New Mexico meadow jumping mouse (Zapus hudsonius luteus)

    PubMed Central

    2015-01-01

    Hibernation is a key life history feature that can impact many other crucial aspects of a species’ biology, such as its survival and reproduction. I examined the timing of hibernation and reproduction in the federally endangered New Mexico meadow jumping mouse (Zapus hudsonius luteus), which occurs across a broad range of latitudes and elevations in the American Southwest. Data from museum specimens and field studies supported predictions for later emergence and shorter active intervals in montane populations relative to lower elevation valley populations. A low-elevation population located at Bosque del Apache National Wildlife Refuge (BANWR) in the Rio Grande valley was most similar to other subspecies of Z. hudsonius: the first emergence date was in mid-May and there was an active interval of 162 days. In montane populations of Z. h. luteus, the date of first emergence was delayed until mid-June and the active interval was reduced to ca 124–135 days, similar to some populations of the western jumping mouse (Z. princeps). Last date of immergence into hibernation occurred at about the same time in all populations (mid to late October). In montane populations pregnant females are known from July to late August and evidence suggests that they have a single litter per year. At BANWR two peaks in reproduction were expected based on similarity of active season to Z. h. preblei. However, only one peak was clearly evident, possibly due to later first reproduction and possible torpor during late summer. At BANWR pregnant females are known from June and July. Due to the short activity season and geographic variation in phenology of key life history events of Z. h. luteus, recommendations are made for the appropriate timing for surveys for this endangered species. PMID:26290794

  6. Variation in phenology of hibernation and reproduction in the endangered New Mexico meadow jumping mouse (Zapus hudsonius luteus).

    PubMed

    Frey, Jennifer K

    2015-01-01

    Hibernation is a key life history feature that can impact many other crucial aspects of a species' biology, such as its survival and reproduction. I examined the timing of hibernation and reproduction in the federally endangered New Mexico meadow jumping mouse (Zapus hudsonius luteus), which occurs across a broad range of latitudes and elevations in the American Southwest. Data from museum specimens and field studies supported predictions for later emergence and shorter active intervals in montane populations relative to lower elevation valley populations. A low-elevation population located at Bosque del Apache National Wildlife Refuge (BANWR) in the Rio Grande valley was most similar to other subspecies of Z. hudsonius: the first emergence date was in mid-May and there was an active interval of 162 days. In montane populations of Z. h. luteus, the date of first emergence was delayed until mid-June and the active interval was reduced to ca 124-135 days, similar to some populations of the western jumping mouse (Z. princeps). Last date of immergence into hibernation occurred at about the same time in all populations (mid to late October). In montane populations pregnant females are known from July to late August and evidence suggests that they have a single litter per year. At BANWR two peaks in reproduction were expected based on similarity of active season to Z. h. preblei. However, only one peak was clearly evident, possibly due to later first reproduction and possible torpor during late summer. At BANWR pregnant females are known from June and July. Due to the short activity season and geographic variation in phenology of key life history events of Z. h. luteus, recommendations are made for the appropriate timing for surveys for this endangered species.

  7. Juvenile Justice in Milwaukee

    ERIC Educational Resources Information Center

    Williams, Gary L.; Greer, Lanetta

    2010-01-01

    Historically, there have been several attempts made to address issues surrounding juvenile delinquency. The Wisconsin Legislature outlines the objectives of the juvenile justice system in the Juvenile Justice Code in s. 939.01, ?to promote a juvenile justice system capable of dealing with the problem of juvenile delinquency, a system which will…

  8. Effects of zebra mussel (Dreissena polymorpha) density on the survival and growth of juvenile fathead minnows (Pimephales promelas): Implications for North American river fishes

    USGS Publications Warehouse

    Jennings, Cecil A.

    1996-01-01

    I used replicated 37.8 1 aquaria in a factorial design (four densities of zebra mussel, Dreissena polymorpha; two hydrologic regimes) to determine if the survival or growth of juvenile fathead minnows (Pimephales promelas) was affected by the density of zebra mussel or by the retention time of the test system. None of the fathead minnows died during the 30-d experiment. However, growth of fathead minnows was lower (P0.05). These laboratory results suggest that juvenile fish survival will not be affected by low to moderate densities of mussels (0-3000 m super(-2)) but fish growth might be adversely affected at moderate densities of mussels (e.g., 3000 m super(-2)).

  9. sup 14 C-2-deoxyglucose uptake in the ground squirrel brain during entrance to and arousal from hibernation

    SciTech Connect

    Kilduff, T.S.; Miller, J.D.; Radeke, C.M.; Sharp, F.R.; Heller, H.C. )

    1990-07-01

    Neuronal activity underlying various phases of the mammalian hibernation cycle was investigated using the {sup 14}C-2-deoxyglucose (2DG) method. Relative 2DG uptake (R2DGU) values were computed for 96 brain regions across 7 phases of the hibernation cycle: euthermia, 3 body temperature (Tb) intervals during entrance into hibernation, stable deep hibernation, and 2 Tb intervals during arousal from hibernation. Multivariate statistical techniques were employed to identify objectively groups of brain regions whose R2DGU values showed a similar pattern across all phases of hibernation. Factor analysis revealed that most of the variability in R2DGU values for the 96 brain regions across the entire cycle could be accounted for by 3 principal factors. These factors could accurately discriminate the various phases of hibernation on the basis of the R2DGU values alone. Three hypothalamic and 3 cortical regions were identified as possibly mediating the entrance into hibernation because they underwent a change in R2DGU early in entrance into hibernation and loaded strongly on one of the principal factors. Another 4 hypothalamic regions were similarly identified as possibly causally involved in the arousal from hibernation. These results, coupled with characteristic changes in ordinal rank of the 96 brain regions in each phase of hibernation, support the concept that mammalian hibernation is an active, integrated orchestration of neurophysiological events rather than a state entered through a passive process.

  10. Juvenile rheumatoid arthritis

    MedlinePlus

    ... joints. This form of JIA may turn into rheumatoid arthritis. It may involve five or more large and ... no known prevention for JIA. Alternative Names Juvenile rheumatoid arthritis (JRA); Juvenile chronic polyarthritis; Still disease; Juvenile spondyloarthritis ...

  11. Juvenile Idiopathic Arthritis

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Juvenile Idiopathic Arthritis (JIA) KidsHealth > For Teens > Juvenile Idiopathic ... can affect people under age 17. What Is Juvenile Idiopathic Arthritis? Arthritis doesn't affect young people ...

  12. Temperature-induced shifts in hibernation behavior in experimental amphibian populations.

    PubMed

    Gao, Xu; Jin, Changnan; Llusia, Diego; Li, Yiming

    2015-06-23

    Phenological shifts are primary responses of species to recent climate change. Such changes might lead to temporal mismatches in food webs and exacerbate species vulnerability. Yet insights into this phenomenon through experimental approaches are still scarce, especially in amphibians, which are particularly sensitive to changing thermal environments. Here, under controlled warming conditions, we report a critical, but poorly studied, life-cycle stage (i.e., hibernation) in frogs inhabiting subtropical latitudes. Using outdoor mesocosm experiments, we examined the effects of temperature (ambient vs. + ~2.2/2.4 °C of pre-/post-hibernation warming) and food availability (normal vs. 1/3 food) on the date of entrance into/emergence from hibernation in Pelophylax nigromaculatus. We found temperature was the major factor determining the hibernation period, which showed a significant shortening under experimental warming (6-8 days), with delays in autumn and advances in spring. Moreover, the timing of hibernation was not affected by food availability, whereas sex and, particularly, age were key factors in the species' phenological responses. Specifically, male individuals emerged from hibernation earlier, while older individuals also entered and emerged from hibernation earlier. We believe that this study provides some of the first experimental evidence for the effect of climate warming on the timing of amphibian hibernation.

  13. Potential for discovery of neuroprotective factors in serum and tissue from hibernating species.

    PubMed

    Ross, Austin P; Drew, Kelly L

    2006-08-01

    Hibernation is a unique phenotype displayed by a phylogenetically diverse group of organisms including several species of mammals and one species of primate. Here we review evidence for blood and tissue borne signaling molecules in hibernating animals, achievements in isolating and characterizing these molecules, and potential medicinal applications.

  14. Hibernation in Malagasy mouse lemurs as a strategy to counter environmental challenge

    NASA Astrophysics Data System (ADS)

    Kobbe, Susanne; Dausmann, Kathrin H.

    2009-10-01

    The spiny forest of southwestern Madagascar is the driest and most unpredictable region of the island. It is characterized by a pronounced seasonality with high fluctuations in ambient temperature, low availability of food, and a lack of water during the cool dry season and, additionally, by changes in environmental conditions between years. One of the few mammalian species that manages to inhabit this challenging habitat is the reddish-gray mouse lemur ( Microcebus griseorufus). The aim of our study was to determine whether this small primate uses continuous hibernation as an energy saving strategy, and if so, to characterize its physiological properties. We measured skin temperature of 16 free-ranging individuals continuously over 3 months during the cool dry season using collar temperature data loggers. Prolonged hibernation was found in three mouse lemurs and was not sex dependent (one male, two females). Skin temperature of hibernating individuals tracked ambient temperature passively with a minimum skin temperature of 6.5°C and fluctuated strongly each day (up to 20°C), depending on the insulation capacity of the hibernacula. Individuals remained in continuous hibernation even at an ambient temperature of 37°C. The animals hibernated continuously during the dry season, and hibernation bouts were only interrupted by short spontaneous arousals. The study emphasizes that hibernation is an important measure to counter environmental challenge for more tropical species than previously thought, including primates. It furthermore provides evidence that tropical hibernation is functionally similar among tropical species.

  15. Hibernation in Malagasy mouse lemurs as a strategy to counter environmental challenge.

    PubMed

    Kobbe, Susanne; Dausmann, Kathrin H

    2009-10-01

    The spiny forest of southwestern Madagascar is the driest and most unpredictable region of the island. It is characterized by a pronounced seasonality with high fluctuations in ambient temperature, low availability of food, and a lack of water during the cool dry season and, additionally, by changes in environmental conditions between years. One of the few mammalian species that manages to inhabit this challenging habitat is the reddish-gray mouse lemur (Microcebus griseorufus). The aim of our study was to determine whether this small primate uses continuous hibernation as an energy saving strategy, and if so, to characterize its physiological properties. We measured skin temperature of 16 free-ranging individuals continuously over 3 months during the cool dry season using collar temperature data loggers. Prolonged hibernation was found in three mouse lemurs and was not sex dependent (one male, two females). Skin temperature of hibernating individuals tracked ambient temperature passively with a minimum skin temperature of 6.5 degrees C and fluctuated strongly each day (up to 20 degrees C), depending on the insulation capacity of the hibernacula. Individuals remained in continuous hibernation even at an ambient temperature of 37 degrees C. The animals hibernated continuously during the dry season, and hibernation bouts were only interrupted by short spontaneous arousals. The study emphasizes that hibernation is an important measure to counter environmental challenge for more tropical species than previously thought, including primates. It furthermore provides evidence that tropical hibernation is functionally similar among tropical species.

  16. Impaired skeletal muscle regeneration in the absence of fibrosis during hibernation in 13-lined ground squirrels.

    PubMed

    Andres-Mateos, Eva; Mejias, Rebeca; Soleimani, Arshia; Lin, Brian M; Burks, Tyesha N; Marx, Ruth; Lin, Benjamin; Zellars, Richard C; Zhang, Yonggang; Huso, David L; Marr, Tom G; Leinwand, Leslie A; Merriman, Dana K; Cohn, Ronald D

    2012-01-01

    Skeletal muscle atrophy can occur as a consequence of immobilization and/or starvation in the majority of vertebrates studied. In contrast, hibernating mammals are protected against the loss of muscle mass despite long periods of inactivity and lack of food intake. Resident muscle-specific stem cells (satellite cells) are known to be activated by muscle injury and their activation contributes to the regeneration of muscle, but whether satellite cells play a role in hibernation is unknown. In the hibernating 13-lined ground squirrel we show that muscles ablated of satellite cells were still protected against atrophy, demonstrating that satellite cells are not involved in the maintenance of skeletal muscle during hibernation. Additionally, hibernating skeletal muscle showed extremely slow regeneration in response to injury, due to repression of satellite cell activation and myoblast differentiation caused by a fine-tuned interplay of p21, myostatin, MAPK, and Wnt signaling pathways. Interestingly, despite long periods of inflammation and lack of efficient regeneration, injured skeletal muscle from hibernating animals did not develop fibrosis and was capable of complete recovery when animals emerged naturally from hibernation. We propose that hibernating squirrels represent a new model system that permits evaluation of impaired skeletal muscle remodeling in the absence of formation of tissue fibrosis.

  17. Impaired Skeletal Muscle Regeneration in the Absence of Fibrosis during Hibernation in 13-Lined Ground Squirrels

    PubMed Central

    Soleimani, Arshia; Lin, Brian M.; Burks, Tyesha N.; Marx, Ruth; Lin, Benjamin; Zellars, Richard C.; Zhang, Yonggang; Huso, David L.; Marr, Tom G.; Leinwand, Leslie A.; Merriman, Dana K.; Cohn, Ronald D.

    2012-01-01

    Skeletal muscle atrophy can occur as a consequence of immobilization and/or starvation in the majority of vertebrates studied. In contrast, hibernating mammals are protected against the loss of muscle mass despite long periods of inactivity and lack of food intake. Resident muscle-specific stem cells (satellite cells) are known to be activated by muscle injury and their activation contributes to the regeneration of muscle, but whether satellite cells play a role in hibernation is unknown. In the hibernating 13-lined ground squirrel we show that muscles ablated of satellite cells were still protected against atrophy, demonstrating that satellite cells are not involved in the maintenance of skeletal muscle during hibernation. Additionally, hibernating skeletal muscle showed extremely slow regeneration in response to injury, due to repression of satellite cell activation and myoblast differentiation caused by a fine-tuned interplay of p21, myostatin, MAPK, and Wnt signaling pathways. Interestingly, despite long periods of inflammation and lack of efficient regeneration, injured skeletal muscle from hibernating animals did not develop fibrosis and was capable of complete recovery when animals emerged naturally from hibernation. We propose that hibernating squirrels represent a new model system that permits evaluation of impaired skeletal muscle remodeling in the absence of formation of tissue fibrosis. PMID:23155423

  18. Comparative functional genomics of adaptation to muscular disuse in hibernating mammals

    PubMed Central

    Fedorov, Vadim B.; Goropashnaya, Anna V.; Stewart, Nathan C.; Tøien, Øivind; Chang, Celia; Wang, Haifang; Yan, Jun; Showe, Louise C.; Showe, Michael K.; Barnes, Brian M.

    2014-01-01

    Hibernation is an energy saving adaptation that involves a profound suppression of physical activity that can continue for 6-8 months in highly seasonal environments. While immobility and disuse generate muscle loss in most mammalian species, in contrast, hibernating bears and ground squirrels demonstrate limited muscle atrophy over the prolonged periods of physical inactivity during winter suggesting that hibernating mammals have adaptive mechanisms to prevent disuse muscle atrophy. To identify common transcriptional programs that underlie molecular mechanisms preventing muscle loss, we conducted a large-scale gene expression screen in hind limb muscles comparing hibernating and summer active black bears and arctic ground squirrels using custom 9,600 probe cDNA microarrays. A molecular pathway analysis showed an elevated proportion of over-expressed genes involved in all stages of protein biosynthesis and ribosome biogenesis in muscle of both species during torpor of hibernation that suggests induction of translation at different hibernation states. The induction of protein biosynthesis likely contributes to attenuation of disuse muscle atrophy through the prolonged periods of immobility of hibernation. The lack of directional changes in genes of protein catabolic pathways does not support the importance of metabolic suppression for preserving muscle mass during winter. Coordinated reduction of multiple genes involved in oxidation reduction and glucose metabolism detected in both species is consistent with metabolic suppression and lower energy demand in skeletal muscle during inactivity of hibernation. PMID:25314618

  19. Insight into temperature-dependent microRNA function in mammalian hibernators

    PubMed Central

    Biggar, Kyle K; Storey, Kenneth B

    2014-01-01

    Mammalian hibernation involves re-programming of metabolic functions, in part, facilitated by microRNA. Although much is known about microRNA function, we lack knowledge on low temperature microRNA target selection. It is possible that the thermodynamics of microRNA target selection could dictate unique temperature-dependent sets of microRNA targets for hibernators. PMID:27582076

  20. Temperature-induced shifts in hibernation behavior in experimental amphibian populations

    PubMed Central

    Gao, Xu; Jin, Changnan; Llusia, Diego; Li, Yiming

    2015-01-01

    Phenological shifts are primary responses of species to recent climate change. Such changes might lead to temporal mismatches in food webs and exacerbate species vulnerability. Yet insights into this phenomenon through experimental approaches are still scarce, especially in amphibians, which are particularly sensitive to changing thermal environments. Here, under controlled warming conditions, we report a critical, but poorly studied, life-cycle stage (i.e., hibernation) in frogs inhabiting subtropical latitudes. Using outdoor mesocosm experiments, we examined the effects of temperature (ambient vs. + ~2.2/2.4 °C of pre-/post-hibernation warming) and food availability (normal vs. 1/3 food) on the date of entrance into/emergence from hibernation in Pelophylax nigromaculatus. We found temperature was the major factor determining the hibernation period, which showed a significant shortening under experimental warming (6–8 days), with delays in autumn and advances in spring. Moreover, the timing of hibernation was not affected by food availability, whereas sex and, particularly, age were key factors in the species’ phenological responses. Specifically, male individuals emerged from hibernation earlier, while older individuals also entered and emerged from hibernation earlier. We believe that this study provides some of the first experimental evidence for the effect of climate warming on the timing of amphibian hibernation. PMID:26100247

  1. A hormone priming regimen and hibernation affect oviposition in the boreal toad (Anaxyrus boreas boreas).

    PubMed

    Calatayud, N E; Langhorne, C J; Mullen, A C; Williams, C L; Smith, T; Bullock, L; Kouba, A J; Willard, S T

    2015-09-01

    Declines of the southern Rocky Mountain population of boreal toad (Anaxyrus boreas boreas) have led to the establishment of a captive assurance population and reintroduction program, in an attempt to preserve and propagate this geographically isolated population. One of the unique adaptations of this species is its ability to survive in cold environments by undergoing long periods of hibernation. In captivity, hibernation can be avoided altogether, decreasing morbidity caused by compromised immune systems. However, it is not entirely clear how essential hibernation is to reproductive success. In this study, the effects of hibernation versus nonhibernation, and exogenous hormones on oviposition, were examined in boreal toad females in the absence of males. In the summers of 2011 and 2012, 20 females housed at Mississippi State University were treated with a double priming dose of hCG and various ovulatory doses of hCG and LH-releasing hormone analog but denied hibernation. Exogenous hormones, in the absence of hibernation, could not induce oviposition over two breeding seasons (2011-2012). In contrast, during the summer of 2012 and 2013, 17 of 22 females (77%) housed at the Native Aquatic Species Restoration Facility (Alamosa, CO, USA) oviposited after they were treated with two priming doses of hCG (3.7 IU/g each) and a single ovulation dose of hCG (13.5 IU/g) and LH-releasing hormone analog (0.4 μg/g) after hibernation. There was a significant difference in oviposition between females that were hibernated and received hormones (2012, P < 0.05 and 2013, P < 0.01) compared to hibernated control females. In 2013, 12 of 16 remaining Mississippi State University females from the same group used in 2011 and 2012 were hibernated for 1, 3, and 6 months, respectively and then treated with the same hormone regimen administered to females at the Native Aquatic Species Restoration Facility. Together, hibernation and hormone treatments significantly increased

  2. Mammalian hibernation and regulation of lipid metabolism: a focus on non-coding RNAs.

    PubMed

    Lang-Ouellette, D; Richard, T G; Morin, P

    2014-11-01

    Numerous species will confront severe environmental conditions by undergoing significant metabolic rate reduction. Mammalian hibernation is one such natural model of hypometabolism. Hibernators experience considerable physiological, metabolic, and molecular changes to survive the harsh challenges associated with winter. Whether as fuel source or as key signaling molecules, lipids are of primary importance for a successful bout of hibernation and their careful regulation throughout this process is essential. In recent years, a plethora of non-coding RNAs has emerged as potential regulators of targets implicated in lipid metabolism in diverse models. In this review, we introduce the general characteristics associated with mammalian hibernation, present the importance of lipid metabolism prior to and during hibernation, as well as discuss the potential relevance of non-coding RNAs such as miRNAs and lncRNAs during this process.

  3. The physiological link between metabolic rate depression and tau phosphorylation in mammalian hibernation.

    PubMed

    Stieler, Jens T; Bullmann, Torsten; Kohl, Franziska; Tøien, Øivind; Brückner, Martina K; Härtig, Wolfgang; Barnes, Brian M; Arendt, Thomas

    2011-01-18

    Abnormal phosphorylation and aggregation of tau protein are hallmarks of a variety of neurological disorders, including Alzheimer's disease (AD). Increased tau phosphorylation is assumed to represent an early event in pathogenesis and a pivotal aspect for aggregation and formation of neurofibrillary tangles. However, the regulation of tau phosphorylation in vivo and the causes for its increased stage of phosphorylation in AD are still not well understood, a fact that is primarily based on the lack of adequate animal models. Recently we described the reversible formation of highly phosphorylated tau protein in hibernating European ground squirrels. Hence, mammalian hibernation represents a model system very well suited to study molecular mechanisms of both tau phosphorylation and dephosphorylation under in vivo physiological conditions. Here, we analysed the extent and kinetics of hibernation-state dependent tau phosphorylation in various brain regions of three species of hibernating mammals: arctic ground squirrels, Syrian hamsters and black bears. Overall, tau protein was highly phosphorylated in torpor states and phosphorylation levels decreased after arousal in all species. Differences between brain regions, hibernation-states and phosphosites were observed with respect to degree and kinetics of tau phosphorylation. Furthermore, we tested the phosphate net turnover of tau protein to analyse potential alterations in kinase and/or phosphatase activities during hibernation. Our results demonstrate that the hibernation-state dependent phosphorylation of tau protein is specifically regulated but involves, in addition, passive, temperature driven regulatory mechanisms. By determining the activity-state profile for key enzymes of tau phosphorylation we could identify kinases potentially involved in the differentially regulated, reversible tau phosphorylation that occurs during hibernation. We show that in black bears hibernation is associated with conformational

  4. Titin isoform switching is a major cardiac adaptive response in hibernating grizzly bears.

    PubMed

    Nelson, O Lynne; Robbins, Charles T; Wu, Yiming; Granzier, Henk

    2008-07-01

    The hibernation phenomenon captures biological as well as clinical interests to understand how organs adapt. Here we studied how hibernating grizzly bears (Ursus arctos horribilis) tolerate extremely low heart rates without developing cardiac chamber dilation. We evaluated cardiac filling function in unanesthetized grizzly bears by echocardiography during the active and hibernating period. Because both collagen and titin are involved in altering diastolic function, we investigated both in the myocardium of active and hibernating grizzly bears. Heart rates were reduced from 84 beats/min in active bears to 19 beats/min in hibernating bears. Diastolic volume, stroke volume, and left ventricular ejection fraction were not different. However, left ventricular muscle mass was significantly lower (300 +/- 12 compared with 402 +/- 14 g; P = 0.003) in the hibernating bears, and as a result the diastolic volume-to-left ventricular muscle mass ratio was significantly greater. Early ventricular filling deceleration times (106.4 +/- 14 compared with 143.2 +/- 20 ms; P = 0.002) were shorter during hibernation, suggesting increased ventricular stiffness. Restrictive pulmonary venous flow patterns supported this conclusion. Collagen type I and III comparisons did not reveal differences between the two groups of bears. In contrast, the expression of titin was altered by a significant upregulation of the stiffer N2B isoform at the expense of the more compliant N2BA isoform. The mean ratio of N2BA to N2B titin was 0.73 +/- 0.07 in the active bears and decreased to 0.42 +/- 0.03 (P = 0.006) in the hibernating bears. The upregulation of stiff N2B cardiac titin is a likely explanation for the increased ventricular stiffness that was revealed by echocardiography, and we propose that it plays a role in preventing chamber dilation in hibernating grizzly bears. Thus our work identified changes in the alternative splicing of cardiac titin as a major adaptive response in hibernating grizzly

  5. Fighting Juvenile Gun Violence. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Sheppard, David; Grant, Heath; Rowe, Wendy; Jacobs, Nancy

    This bulletin describes the Office of Juvenile Justice and Delinquency Prevention's efforts to fight juvenile gun violence. The Office awarded four community demonstration grants to implement "Partnerships To Reduce Juvenile Gun Violence." Partnership goals include increasing the effectiveness of existing strategies by enhancing and…

  6. Juvenile delinquency and adolescent fatherhood.

    PubMed

    Khurana, Atika; Gavazzi, Stephen M

    2011-08-01

    This study examined ecological risk factors associated with teen paternity in a sample of 2,931 male adolescents coming to the attention of juvenile courts across five midwestern counties. In contrast to previous studies documenting significantly higher rates of teen paternity among African American youth, we found that the European American court-involved youth in our sample were as likely to be teen fathers as their African American counterparts. However, an in-depth examination of the social ecologies of these court-involved youth revealed significant racial differences (regardless of the paternity status), with African American males reporting more prior offenses, delinquent peer associations, traumatic pasts, risky sexual behaviors, and educational risks as compared to European American youth, who reported greater involvement in substance use. Furthermore, logistic regression analyses revealed that after controlling for age and racial background, youth who reported greater exposure to trauma and prior offenses had significantly greater odds of having fathered a child. Surprisingly, youth who were teen fathers reported lower rates of behavioral problems as compared to their nonfathering peers. Given the cross-sectional nature of our data, interpretation of this result is limited. Overall, our findings underscore the need for developing a comprehensive understanding of the ecological risk and protective factors present in the lives of teen fathers coming in contact with the juvenile justice system, as an essential first step in designing effective and relevant intervention programs and services for this at-risk population.

  7. Seasonal variation in plasma thyroid hormone concentrations in coastal versus inland populations of juvenile American alligators (Alligator mississippiensis): influence of plasma iodide concentrations.

    PubMed

    Boggs, Ashley S P; Hamlin, Heather J; Lowers, Russell H; Guillette, Louis J

    2011-12-01

    Thyroid hormones, essential for normal growth and health, are associated with changes in temperature, photoperiod, and reproduction. Iodide, a necessary element for thyroid hormone production, varies in diet, and is more abundant in estuarine environments, which could alter thyroid hormone variation. However, associations between thyroid hormone concentrations in animals from marine versus freshwater environments, which could become more pertinent with rising sea levels associated with global climate change, are not well studied. To determine the importance of dietary iodide in seasonal variation of plasma thyroid hormone concentrations, we analyzed seasonal variation of plasma thyroxine (T(4)) and triiodothyronine (T(3)) concentrations in juvenile alligators from an estuarine habitat (Merritt Island National Wildlife Refuge; MI) and a freshwater habitat (Lake Woodruff National Wildlife Refuge; LW) and compared these results to plasma inorganic iodide (PII) concentrations. Alligators from MI did not display seasonal variation in plasma T(4), but exhibited a seasonal pattern in plasma T(3) concentrations similar to alligators from LW. Plasma thyroid hormone concentrations were consistently higher at MI than at LW. PII concentrations were correlated with plasma T(4) and T(3) concentrations in juvenile alligators from LW but not MI. The data on plasma T(4) and T(3) concentrations suggest altered iodide metabolism in estuarine alligators. Differences in thyroid hormone concentrations between the populations could be due to differences in dietary iodide, which need to be further evaluated.

  8. Juvenile Justice & Youth Violence.

    ERIC Educational Resources Information Center

    Howell, James C.

    Youth violence and the juvenile justice system in the United States are explored. Part 1 takes stock of the situation. The first chapter discusses the origins and evaluation of the juvenile justice system, and the second considers the contributions of the Federal Juvenile Justice and Delinquency Prevention Act to the existing juvenile justice…

  9. Hibernation does not reduce cortical bone density, area or second moments of inertia in woodchucks (Marmota monax).

    PubMed

    Doherty, Alison H; Frampton, Jason D; Vinyard, Christopher J

    2012-06-01

    Long periods of inactivity in most mammals result in bone loss that may not be completely recoverable during an individual's lifetime regardless of future activity. Prolonged inactivity is normal during hibernation, but it remains uncertain whether hibernating mammals suffer decreased bone properties after hibernation that affects survival. We test the hypothesis that relative cortical area (C(A) ), apparent density, bone area fraction (B.Ar/T.Ar), and moments of inertia do not differ between museum samples of woodchucks (Marmota monax) collected before and after hibernation. We used peripheral quantitative computed tomography to examine bone geometry in the femur, tibia, humerus and mandible. We see little evidence for changes in bone measures with hibernation supporting our hypothesis. In fact, when including subadults to increase sample sizes and controlling age statistically, we observed a trend toward increased bone properties following hibernation. Diaphyses were significantly denser in the humerus, femur, and tibia after hibernation, and relative mandibular cortical area was significantly larger. Similarly, relative mechanical indices were significantly larger in the mandible after hibernation. Although tests of individual measures in many cases were not significantly different prehibernation versus posthibernation, the overall pattern of average increase posthibernation was significant for relative C(A) and densities as well as relative diaphyseal mechanical indices when examining outcomes collectively. The exception to this pattern was a reduction in metaphyseal trabecular bone following hibernation. Individually, only humeral B.Ar/T.Ar was significantly reduced, but the average reduction in trabecular measures post-hibernation was significant when examined collectively. Because the sample included subadults, we suggest that much of the increased bone relates to their continued growth during hibernation. Our results indicate that woodchucks are more

  10. Effect of body mass on hibernation strategies of woodchucks (Marmota monax).

    PubMed

    Zervanos, Stam M; Maher, Christine R; Florant, Gregory L

    2014-09-01

    The benefits of mammalian hibernation have been well documented. However, the physiological and ecological costs of torpor have been emphasized only recently as part of a hibernation-optimization hypothesis. This hypothesis predicts that hibernators with greater availability of energy minimize costs of torpor by less frequent utilization of torpor and by maintaining higher body temperatures (T(b)) during torpor. In order to further examine the relationship between body mass and other parameters of hibernation, we present data, collected over a 12-year period, on the hibernation patterns of free-living woodchucks (Marmota monax) in southeastern Pennsylvania. Body mass was positively correlated with T(b) and negatively correlated with percentage of the heterothermic period spent in torpor. Thus, woodchucks with greater mass exhibited less time in torpor as a proportion of their heterothermic period and at higher T(b) than those with lesser mass. This strategy potentially enhances the physiological and physical ability of woodchucks to defend territories, avoid predation, find mates, and complete the reproductive cycle upon emergence from hibernation. Our results further support the hibernation-optimization hypothesis by demonstrating the relationship between body mass and characteristics of torpor and contributing toward a fuller understanding of this concept.

  11. Hibernation induces immune changes in the lung of 13-lined ground squirrels (Ictidomys tridecemlineatus).

    PubMed

    Bohr, Matthew; Brooks, Abigail R; Kurtz, Courtney C

    2014-12-01

    During hibernation, significant changes occur in the systemic and intestinal immune populations. We found that the lungs of hibernating 13-lined ground squirrels (Ictidomys tridecemlineatus) also undergo shifts in immune phenotype. Within the population of mononuclear cells, the percentage of T cells increases and the percentage of CD11b/c(+) cells decreases in hibernators. E-selectin, which promotes endothelial attachment, increases during arousal from torpor. Levels of the anti-inflammatory cytokine interleukin (IL)-10 in the lung are lower during hibernation while levels of the pro-inflammatory cytokine, tumor necrosis factor (TNF)-α remain constant. Expression of suppressor of cytokine signaling (SOCS) proteins is also decreased in torpid hibernators. Our data point to a unique immune phenotype in the lung of hibernating ground squirrels in which certain immunosuppressive proteins are downregulated while some potentially inflammatory proteins are maintained or amplified. This indicates that the lung houses an immune population that can potentially respond to antigenic challenge during hibernation.

  12. Enhanced antioxidant defense due to extracellular catalase activity in Syrian hamster during arousal from hibernation.

    PubMed

    Ohta, Hitomi; Okamoto, Iwao; Hanaya, Toshiharu; Arai, Shigeyuki; Ohta, Tsunetaka; Fukuda, Shigeharu

    2006-08-01

    Mammalian hibernators are considered a natural model for resistance to ischemia-reperfusion injuries, and protective mechanisms against oxidative stress evoked by repeated hibernation-arousal cycles in these animals are increasingly the focus of experimental investigation. Here we show that extracellular catalase activity provides protection against oxidative stress during arousal from hibernation in Syrian hamster. To examine the serum antioxidant defense system, we first assessed the hibernation-arousal state-dependent change in serum attenuation of cytotoxicity induced by hydrogen peroxide. Serum obtained from hamsters during arousal from hibernation at a rectal temperature of 32 degrees C, concomitant with the period of increased oxidative stress, attenuated the cytotoxicity four-fold more effectively than serum from cenothermic control hamsters. Serum catalase activity significantly increased during arousal, whereas glutathione peroxidase activity decreased by 50%, compared with cenothermic controls. The cytoprotective effect of purified catalase at the concentration found in serum was also confirmed in a hydrogen peroxide-induced cytotoxicity model. Moreover, inhibition of catalase by aminotriazole led to an 80% loss of serum hydrogen peroxide scavenging activity. These results suggest that extracellular catalase is effective for protecting hibernators from oxidative stress evoked by arousal from hibernation.

  13. Elevated expression of protein biosynthesis genes in liver and muscle of hibernating black bears (Ursus americanus).

    PubMed

    Fedorov, Vadim B; Goropashnaya, Anna V; Tøien, Oivind; Stewart, Nathan C; Gracey, Andrew Y; Chang, Celia; Qin, Shizhen; Pertea, Geo; Quackenbush, John; Showe, Louise C; Showe, Michael K; Boyer, Bert B; Barnes, Brian M

    2009-04-10

    We conducted a large-scale gene expression screen using the 3,200 cDNA probe microarray developed specifically for Ursus americanus to detect expression differences in liver and skeletal muscle that occur during winter hibernation compared with animals sampled during summer. The expression of 12 genes, including RNA binding protein motif 3 (Rbm3), that are mostly involved in protein biosynthesis, was induced during hibernation in both liver and muscle. The Gene Ontology and Gene Set Enrichment analysis consistently showed a highly significant enrichment of the protein biosynthesis category by overexpressed genes in both liver and skeletal muscle during hibernation. Coordinated induction in transcriptional level of genes involved in protein biosynthesis is a distinctive feature of the transcriptome in hibernating black bears. This finding implies induction of translation and suggests an adaptive mechanism that contributes to a unique ability to reduce muscle atrophy over prolonged periods of immobility during hibernation. Comparing expression profiles in bears to small mammalian hibernators shows a general trend during hibernation of transcriptional changes that include induction of genes involved in lipid metabolism and carbohydrate synthesis as well as depression of genes involved in the urea cycle and detoxification function in liver.

  14. Manual of Standards for Juvenile Training Schools and Services.

    ERIC Educational Resources Information Center

    Commission on Accreditation for Corrections, Rockville, MD.

    This manual of standards for juvenile training schools and services contains 487 American Correctional Association standards for the accreditation of juvenile training schools (youth development centers, villages, correction centers, treatment centers, service centers, homes for boys and girls, camps, and ranches). Standards presented are…

  15. Report to Congress on Juvenile Violence Research. OJJDP Report.

    ERIC Educational Resources Information Center

    Office of Juvenile Justice and Delinquent Prevention (Dept. of Justice), Washington, DC.

    This report presents the collective results of studies funded under the Office of Juvenile Justice and Delinquency Prevention congressional directive. The studies confirm that young African-American males are disproportionately involved as offenders and victims of violence, that firearms play a large role in juvenile violence, and that gang…

  16. Hypothalamic gene expression underlying pre-hibernation satiety.

    PubMed

    Schwartz, C; Hampton, M; Andrews, M T

    2015-03-01

    Prior to hibernation, 13-lined ground squirrels (Ictidomys tridecemlineatus) enter a hypophagic period where food consumption drops by an average of 55% in 3 weeks. This occurs naturally, while the ground squirrels are in constant environmental conditions and have free access to food. Importantly, this transition occurs before exposure to hibernation conditions (5°C and constant darkness), so the ground squirrels are still maintaining a moderate level of activity. In this study, we used the Illumina HiSeq 2000 system to sequence the hypothalamic transcriptomes of ground squirrels before and after the autumn feeding transition to examine the genes underlying this extreme change in feeding behavior. The hypothalamus was chosen because it is known to play a role in the control and regulation of food intake and satiety. Overall, our analysis identified 143 genes that are significantly differentially expressed between the two groups. Specifically, we found five genes associated with feeding behavior and obesity (VGF, TRH, LEPR, ADIPOR2, IRS2) that are all upregulated during the hypophagic period, after the feeding transition has occurred. We also found that serum leptin significantly increases in the hypophagic group. Several of the genes associated with the natural autumnal feeding decline in 13-lined ground squirrels show parallels to signaling pathways known to be disrupted in human metabolic diseases, like obesity and diabetes. In addition, many other genes were identified that could be important for the control of food consumption in other animals, including humans.

  17. Blood cell dynamics during hibernation in the European Ground Squirrel.

    PubMed

    Bouma, H R; Strijkstra, A M; Boerema, A S; Deelman, L E; Epema, A H; Hut, R A; Kroese, F G M; Henning, R H

    2010-08-15

    Hibernation is a unique natural model to study large and specific modulation in numbers of leukocytes and thrombocytes, with potential relevance for medical application. Hibernating animals cycle through cold (torpor) and warm (arousal) phases. Previous research demonstrated clearance of leukocytes and thrombocytes from the circulation during torpor, but did not provide information regarding the timing during torpor or the subtype of leukocytes affected. To study the influence of torpor-bout duration on clearance of circulating cells, we measured blood cell dynamics in the European Ground Squirrel. Numbers of leukocytes and thrombocytes decreased within 24h of torpor by 90% and remained unchanged during the remainder of the torpor-bout. Differential counts demonstrated that granulocytes, lymphocytes and monocytes are all affected by torpor. Although a decreased production might explain the reduced number of thrombocytes, granulocytes and monocytes, this cannot explain the observed lymphopenia since lymphocytes have a much lower turnover rate than thrombocytes, granulocytes and monocytes. In conclusion, although underlying biochemical signaling pathways need to be unraveled, our data show that the leukocyte count drops dramatically after entrance into torpor and that euthermic cell counts are restored within 1.5h after onset of arousal, even before body temperature is fully normalized.

  18. Changes in calpains and calpastatin in the soleus muscle of Daurian ground squirrels during hibernation.

    PubMed

    Yang, Chen-Xi; He, Yue; Gao, Yun-Fang; Wang, Hui-Ping; Goswami, Nandu

    2014-10-01

    We investigated changes in muscle mass, calpains, calpastatin and Z-disk ultrastructure in the soleus muscle (SOL) of Daurian ground squirrels (Spermophilus dauricus) after hibernation or hindlimb suspension to determine possible mechanisms by which muscle atrophy is prevented in hibernators. Squirrels (n=30) were divided into five groups: no hibernation group (PRE, n=6); hindlimb suspension group (HLS, n=6); two month hibernation group (HIB, n=6); two day group after 90±12 days of hibernation (POST, n=6); and forced exercise group (one time forced, moderate-intensity treadmill exercise) after arousal (FE, n=6). Activity and protein expression of calpains were determined by casein zymography and western blotting, and Z-disk ultrastructure was observed by transmission electron microscopy. The following results were found. Lower body mass and higher SOL muscle mass (mg) to total body mass (g) ratio were observed in HIB and POST; calpain-1 activity increased significantly by 176% (P=0.034) in HLS compared to the PRE group; no significant changes were observed in calpain-2 activity. Protein expression of calpain-1 and calpain-2 increased by 83% (P=0.041) and 208% (P=0.029) in HLS compared to the PRE group, respectively; calpastatin expression increased significantly by 180% (P<0.001) and 153% (P=0.007) in HIB and POST, respectively; the myofilaments were well-organized, and the width of the sarcomere and the Z-disk both appeared visually similar among the pre-hibernation, hibernating and post-hibernation animals. Inhibition of calpain activity and consequently calpain-mediated protein degradation by highly elevated calpastatin protein expression levels may be an important mechanism for preventing muscle protein loss during hibernation and ensuring that Z-lines remained ultrastructurally intact.

  19. Changes during hibernation in different phospholipid and free and esterified cholesterol serum levels in black bears

    USGS Publications Warehouse

    Chauhan, V.; Sheikh, A.; Chauhan, A.; Tsiouris, J.; Malik, M.; Vaughan, M.

    2002-01-01

    During hibernation, fat is known to be the preferred source of energy. A detailed analysis of different phospholipids, as well as free and esterified cholesterol, was conducted to investigate lipid abnormalities during hibernation. The levels of total phospholipids and total cholesterol in the serum of black bears were found to increase significantly in hibernation as compared with the active state. Both free and esterified cholesterol were increased in the hibernating state in comparison with the active state (P < 0.05). The percentage increase during hibernation was more in free cholesterol (57%) than in esterified cholesterol (27%). Analysis of subclasses of serum phospholipids showed that choline containing phospholipids, i.e., sphingomyelin (SPG) (14%) and phosphatidylcholine (PC) (76%), are the major phospholipids in the serum of bear. The minor phospholipids included 8% of phosphatidylserine (PS) + phosphatidylinositol (PI), while phosphatidylethanolamine (PE) was only 2% of the total phospholipids. A comparison of phospholipid subclasses showed that PC, PS + PI and SPG were significantly increased, while PE was significantly decreased (P < 0.05) in the hibernating state as compared with the active state in black bears. These results suggest that the catabolism of phospholipids and cholesterol is decreased during hibernation in black bears, leading to their increased levels in the hibernating state as compared with the active state. In summary, our results indicate that serum cholesterol and phospholipid fractions (except PE) are increased during hibernation in bears. It is proposed that the increase of these lipids may be due to the altered metabolism of lipoproteins that are responsible for the clearance of the lipids. ?? 2002 E??ditions scientifiques et me??dicales Elsevier SAS and Socie??te?? franc??aise de biochimie et biologie mole??culaire. All rights reserved.

  20. Metabolic depression in hibernation and major depression: an explanatory theory and an animal model of depression.

    PubMed

    Tsiouris, John A

    2005-01-01

    Metabolic depression, an adaptive biological process for energy preservation, is responsible for torpor, hibernation and estivation. We propose that a form of metabolic depression, and not mitochondrial dysfunction, is the process underlying the observed hypometabolism, state-dependent neurobiological changes and vegetative symptoms of major depression in humans. The process of metabolic depression is reactivated via differential gene expression in response to perceived adverse stimuli in predisposed persons. Behavior inhibition by temperament, anxiety disorders, genetic vulnerabilities, and early traumatic experiences predispose persons to depression. The proposed theory is supported by similarities in the presentation and neurobiology of hibernation in bears and major depression and explains the yet unexplained neurobiological changes of depression. Although, gene expression is suppressed in other hibernators by deep hypothermia, bears were chosen because they hibernate with mild hypothermia. Pre-hibernation in bears and major depression with atypical features are both characterized by fat storage through overeating, oversleeping, and decreased mobility. Hibernation in bears and major depression with melancholic features are characterized by withdrawal from the environment, lack of energy, loss of weight from not eating and burning stored fat, changes in sleep pattern, and the following similar neurobiological findings: reversible subclinical hypothyroidism; increased concentration of serum cortisol; acute phase protein response; low respiratory quotient; oxidative stress response; decreased neurotransmitter levels; and changes in cyclic-adenosine monophosphate-binding activity. Signaling systems associated with protein phosphorylation, transcription factors, and gene expression are responsible for the metabolic depression process during pre-hibernation and hibernation. Antidepressants and mood stabilizers interfere with the hibernation process and produce their

  1. Acute toxicity of resmethrin, malathion and methoprene to larval and juvenile American lobsters (Homarus amemcanus) and analysis of pesticide levels in surface waters after Scourge™, Anvil™ and Altsoid™ application

    USGS Publications Warehouse

    Zulkosky, Ann M.; Ruggieri, Joseph P.; Terracciano, Stephen A.; Brownawell, Bruce J.; McElroy, Anne E.

    2005-01-01

    Acute toxicity and immune response, combined with temperature stress effects, were evaluated in larval and juvenile American lobsters (Homarus americanus) exposed to malathion, resmethrin and methoprene. These pesticides were used to control West Nile virus in New York in 1999, the same year the American lobster population collapsed in western Long Island Sound (LIS). Whereas the suite of pesticides used for mosquito control changed in subsequent years, a field study was also conducted to determine pesticide concentrations in surface waters on Long Island and in LIS after operational applications. The commercial formulations used in 2002 and 2003—Scourge, Anvil and Altosid—contain the active ingredients resmethrin, sumithrin and methoprene, respectively. Concentrations of the synergist piperonyl butoxide (PBO) were also measured as a proxy for pesticide exposure. Acute mortality in Stage I-II larval lobsters demonstrated that they are extremely sensitive to continuous resmethrin exposure. Resmethrin LC50s for larval lobsters determined under flow-through conditions varied from 0.26–0.95 μg L−1 in 48- and 96-h experiments at 16°C, respectively. Increased temperature (24°C) did not significantly alter resmethrin toxicity. Malathion and methoprene were less toxic than resmethrin. The 48-h LC50 for malathion was 3.7 μg L−1 and methoprene showed no toxicity at the highest (10 μg L−1) concentration tested. Phenoloxidase activity was used as a measure of immune response for juvenile lobsters exposed to sublethal pesticide concentrations. In continuous exposures to sublethal doses of resmethrin (0.03 μg L−1) or malathion (1 μg L−1) for 7 d at 16 or 22°C, temperature had a significant effect on phenoloxidase activity (P ≤ 0.006) whereas pesticide exposure did not (P = 0.880). The analytical methods developed using high performance liquid chromatography coupled to time-of-flight mass spectroscopy (LC-TOF-MS) provided high sensitivity with mass

  2. Exploring the Bone Proteome to Help Explain Altered Bone Remodeling and Preservation of Bone Architecture and Strength in Hibernating Marmots.

    PubMed

    Doherty, Alison H; Roteliuk, Danielle M; Gookin, Sara E; McGrew, Ashley K; Broccardo, Carolyn J; Condon, Keith W; Prenni, Jessica E; Wojda, Samantha J; Florant, Gregory L; Donahue, Seth W

    2016-01-01

    Periods of physical inactivity increase bone resorption and cause bone loss and increased fracture risk. However, hibernating bears, marmots, and woodchucks maintain bone structure and strength, despite being physically inactive for prolonged periods annually. We tested the hypothesis that bone turnover rates would decrease and bone structural and mechanical properties would be preserved in hibernating marmots (Marmota flaviventris). Femurs and tibias were collected from marmots during hibernation and in the summer following hibernation. Bone remodeling was significantly altered in cortical and trabecular bone during hibernation with suppressed formation and no change in resorption, unlike the increased bone resorption that occurs during disuse in humans and other animals. Trabecular bone architecture and cortical bone geometrical and mechanical properties were not different between hibernating and active marmots, but bone marrow adiposity was significantly greater in hibernators. Of the 506 proteins identified in marmot bone, 40 were significantly different in abundance between active and hibernating marmots. Monoaglycerol lipase, which plays an important role in fatty acid metabolism and the endocannabinoid system, was 98-fold higher in hibernating marmots compared with summer marmots and may play a role in regulating the changes in bone and fat metabolism that occur during hibernation.

  3. Remarkable preservation of Ca2+ homeostasis and inhibition of apoptosis contribute to anti-muscle atrophy effect in hibernating Daurian ground squirrels

    PubMed Central

    Fu, Weiwei; Hu, Huanxin; Dang, Kai; Chang, Hui; Du, Bei; Wu, Xue; Gao, Yunfang

    2016-01-01

    The underlying mechanisms that hibernators deviated from muscle atrophy during prolonged hibernating inactivity remain elusive. This study tested the hypothesis that the maintenance of intracellular Ca2+ homeostasis and inhibition of apoptosis would be responsible for preventing muscle atrophy in hibernating Daurian ground squirrels. The results showed that intracellular Ca2+ homeostasis was maintained in soleus and extensor digitorum longus (EDL) in hibernation and post-hibernation, while cytosolic Ca2+ was overloaded in gastrocnemius (GAS) in hibernation with a recovery in post-hibernation. The Ca2+ overload was also observed in interbout arousals in all three type muscles. Besides, the Bax/Bcl-2 ratio was unchanged in transcriptional level among pre-hibernation, hibernation and interbout arousals, and reduced to a minimum in post-hibernation. Furthermore, the Bax/Bcl-2 ratio in protein level was reduced in hibernation but recovered in interbout arousals. Although cytochrome C was increased in GAS and EDL in post-hibernation, no apoptosis was observed by TUNEL assay. These findings suggested that the intracellular Ca2+ homeostasis in hibernation might be regulated by the cytosolic Ca2+ overload during interbout arousals, which were likely responsible for preventing muscle atrophy via inhibition of apoptosis. Moreover, the muscle-specificity indicated that the different mechanisms against disuse-induced atrophy might be involved in different muscles in hibernation. PMID:27256167

  4. The awakening of a classical nova from hibernation

    NASA Astrophysics Data System (ADS)

    Mróz, Przemek; Udalski, Andrzej; Pietrukowicz, Paweł; Szymański, Michał K.; Soszyński, Igor; Wyrzykowski, Łukasz; Poleski, Radosław; Kozłowski, Szymon; Skowron, Jan; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał

    2016-09-01

    Cataclysmic variable stars—novae, dwarf novae, and nova-likes—are close binary systems consisting of a white dwarf star (the primary) that is accreting matter from a low-mass companion star (the secondary). From time to time such systems undergo large-amplitude brightenings. The most spectacular eruptions, with a ten-thousandfold increase in brightness, occur in classical novae and are caused by a thermonuclear runaway on the surface of the white dwarf. Such eruptions are thought to recur on timescales of ten thousand to a million years. In between, the system’s properties depend primarily on the mass-transfer rate: if it is lower than a billionth of a solar mass per year, the accretion becomes unstable and the matter is dumped onto the white dwarf during quasi-periodic dwarf nova outbursts. The hibernation hypothesis predicts that nova eruptions strongly affect the mass-transfer rate in the binary, keeping it high for centuries after the event. Subsequently, the mass-transfer rate should significantly decrease for a thousand to a million years, starting the hibernation phase. After that the nova awakes again—with accretion returning to the pre-eruption level and leading to a new nova explosion. The hibernation model predicts cyclical evolution of cataclysmic variables through phases of high and low mass-transfer. The theory gained some support from the discovery of ancient nova shells around the dwarf novae Z Camelopardalis and AT Cancri, but direct evidence for considerable mass-transfer changes prior, during and after nova eruptions has not hitherto been found. Here we report long-term observations of the classical nova V1213 Cen (Nova Centauri 2009) covering its pre- and post-eruption phases and precisely documenting its evolution. Within the six years before the explosion, the system revealed dwarf nova outbursts indicative of a low mass-transfer rate. The post-nova is two orders of magnitude brighter than the pre-nova at minimum light with no trace of

  5. The awakening of a classical nova from hibernation.

    PubMed

    Mróz, Przemek; Udalski, Andrzej; Pietrukowicz, Paweł; Szymański, Michał K; Soszyński, Igor; Wyrzykowski, Łukasz; Poleski, Radosław; Kozłowski, Szymon; Skowron, Jan; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał

    2016-09-29

    Cataclysmic variable stars-novae, dwarf novae, and nova-likes-are close binary systems consisting of a white dwarf star (the primary) that is accreting matter from a low-mass companion star (the secondary). From time to time such systems undergo large-amplitude brightenings. The most spectacular eruptions, with a ten-thousandfold increase in brightness, occur in classical novae and are caused by a thermonuclear runaway on the surface of the white dwarf. Such eruptions are thought to recur on timescales of ten thousand to a million years. In between, the system's properties depend primarily on the mass-transfer rate: if it is lower than a billionth of a solar mass per year, the accretion becomes unstable and the matter is dumped onto the white dwarf during quasi-periodic dwarf nova outbursts. The hibernation hypothesis predicts that nova eruptions strongly affect the mass-transfer rate in the binary, keeping it high for centuries after the event. Subsequently, the mass-transfer rate should significantly decrease for a thousand to a million years, starting the hibernation phase. After that the nova awakes again-with accretion returning to the pre-eruption level and leading to a new nova explosion. The hibernation model predicts cyclical evolution of cataclysmic variables through phases of high and low mass-transfer. The theory gained some support from the discovery of ancient nova shells around the dwarf novae Z Camelopardalis and AT Cancri, but direct evidence for considerable mass-transfer changes prior, during and after nova eruptions has not hitherto been found. Here we report long-term observations of the classical nova V1213 Cen (Nova Centauri 2009) covering its pre- and post-eruption phases and precisely documenting its evolution. Within the six years before the explosion, the system revealed dwarf nova outbursts indicative of a low mass-transfer rate. The post-nova is two orders of magnitude brighter than the pre-nova at minimum light with no trace of dwarf

  6. Suppression of guinea pig ileum induced contractility by plasma albumin of hibernators

    USGS Publications Warehouse

    Bruce, David S.; Ambler, Douglas L.; Henschel, Timothy M.; Oeltgen, Peter R.; Nilekani, Sita P.; Amstrup, Steven C.

    1992-01-01

    Previous studies suggest that hibernation may be regulated by internal opioids and that the putative “hibernation induction trigger” (HIT) may itself be an opioid. This study examined the effect of plasma albumin (known to bind HIT) on induced contractility of the guinea pig ileum muscle strip. Morphine (400 nM) depressed contractility and 100 nM naloxone restored it. Ten milligrams of lyophilized plasma albumin fractions from hibernating ground squirrels, woodchucks, black bears, and polar bears produced similar inhibition, with partial reversal by naloxone. Five hundredths mg of d-Ala2-d-Leu5-enkephalin (DADLE) also inhibited contractility and naloxone reversed it. Conclusions are that hibernating individuals of these species contain an HIT substance that is opioid in nature and summer animals do not; an endogenous opioid similar to leu-enkephalin may be the HIT compound or give rise to it.

  7. Hibernation in black bears: independence of metabolic suppression from body temperature.

    PubMed

    Tøien, Øivind; Blake, John; Edgar, Dale M; Grahn, Dennis A; Heller, H Craig; Barnes, Brian M

    2011-02-18

    Black bears hibernate for 5 to 7 months a year and, during this time, do not eat, drink, urinate, or defecate. We measured metabolic rate and body temperature in hibernating black bears and found that they suppress metabolism to 25% of basal rates while regulating body temperature from 30° to 36°C, in multiday cycles. Heart rates were reduced from 55 to as few as 9 beats per minute, with profound sinus arrhythmia. After returning to normal body temperature and emerging from dens, bears maintained a reduced metabolic rate for up to 3 weeks. The pronounced reduction and delayed recovery of metabolic rate in hibernating bears suggest that the majority of metabolic suppression during hibernation is independent of lowered body temperature.

  8. Multiple Substance Use Disorders in Juvenile Detainees.

    ERIC Educational Resources Information Center

    McClelland, Gary M.; Elkington, Katherine S.; Teplin, Linda A.; Abram, Karen M.

    2004-01-01

    Objective: To estimate the 6-month prevalence of multiple substance use disorders (SUDs) among juvenile detainees by demographic subgroups (sex, race/ethnicity, age). Method: Participants were a randomly selected sample of 1,829 African American, non-Hispanic white, and Hispanic detainees (1,172 males, 657 females, aged 10 to 18). Patterns and…

  9. Hibernation, stress, intestinal functions, and catecholoamine turnover rate in hamsters and gerbils

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1973-01-01

    Bioenergetic studies on hamsters during depressed metabolic states are reported. External support of blood glucose extended the survival times of hibernating animals. Radioresistance increased in hibernating as well as in hypothermic hamsters. Marked changes in hamster catecholamine turnover rates were observed during acclimatization to high temperature stress. High radioresistance levels of the gerbil gastrointestinal system were attributed in part to the ability of the gut to maintain functional integrity.

  10. Database Entity Persistence with Hibernate for the Network Connectivity Analysis Model

    DTIC Science & Technology

    2014-04-01

    hides both the underlying database implementation and the mechanism or the framework being used to persist data to the database ( McKenzie , 2008, p...DAOFactory class will have a single static invocable method that will return an instantiated instance of the DAOFactory ( McKenzie et al., 2008, p 399). The... McKenzie , C. Hibernate Made Easy: Simplified Data Persistence with Hibernate and JPA Annotations; PulpJava: Palo Alto, CA, 2008. 6. Freeman, E.; Freeman

  11. Metabolic changes in summer active and anuric hibernating free-ranging brown bears (Ursus arctos).

    PubMed

    Stenvinkel, Peter; Fröbert, Ole; Anderstam, Björn; Palm, Fredrik; Eriksson, Monica; Bragfors-Helin, Ann-Christin; Qureshi, Abdul Rashid; Larsson, Tobias; Friebe, Andrea; Zedrosser, Andreas; Josefsson, Johan; Svensson, My; Sahdo, Berolla; Bankir, Lise; Johnson, Richard J

    2013-01-01

    The brown bear (Ursus arctos) hibernates for 5 to 6 months each winter and during this time ingests no food or water and remains anuric and inactive. Despite these extreme conditions, bears do not develop azotemia and preserve their muscle and bone strength. To date most renal studies have been limited to small numbers of bears, often in captive environments. Sixteen free-ranging bears were darted and had blood drawn both during hibernation in winter and summer. Samples were collected for measurement of creatinine and urea, markers of inflammation, the calcium-phosphate axis, and nutritional parameters including amino acids. In winter the bear serum creatinine increased 2.5 fold despite a 2-fold decrease in urea, indicating a remarkable ability to recycle urea nitrogen during hibernation. During hibernation serum calcium remained constant despite a decrease in serum phosphate and a rise in FGF23 levels. Despite prolonged inactivity and reduced renal function, inflammation does not ensue and bears seem to have enhanced antioxidant defense mechanisms during hibernation. Nutrition parameters showed high fat stores, preserved amino acids and mild hyperglycemia during hibernation. While total, essential, non-essential and branched chain amino acids concentrations do not change during hibernation anorexia, changes in individual amino acids ornithine, citrulline and arginine indicate an active, although reduced urea cycle and nitrogen recycling to proteins. Serum uric acid and serum fructose levels were elevated in summer and changes between seasons were positively correlated. Further studies to understand how bears can prevent the development of uremia despite minimal renal function during hibernation could provide new therapeutic avenues for the treatment of human kidney disease.

  12. The Relationship of Sleep with Temperature and Metabolic Rate in a Hibernating Primate

    PubMed Central

    Krystal, Andrew D.; Schopler, Bobby; Kobbe, Susanne; Williams, Cathy; Rakatondrainibe, Hajanirina; Yoder, Anne D.; Klopfer, Peter

    2013-01-01

    Study Objectives It has long been suspected that sleep is important for regulating body temperature and metabolic-rate. Hibernation, a state of acute hypothermia and reduced metabolic-rate, offers a promising system for investigating those relationships. Prior studies in hibernating ground squirrels report that, although sleep occurs during hibernation, it manifests only as non-REM sleep, and only at relatively high temperatures. In our study, we report data on sleep during hibernation in a lemuriform primate, Cheirogaleus medius. As the only primate known to experience prolonged periods of hibernation and as an inhabitant of more temperate climates than ground squirrels, this animal serves as an alternative model for exploring sleep temperature/metabolism relationships that may be uniquely relevant to understanding human physiology. Measurements and Results We find that during hibernation, non-REM sleep is absent in Cheirogaleus. Rather, periods of REM sleep occur during periods of relatively high ambient temperature, a pattern opposite of that observed in ground squirrels. Like ground squirrels, however, EEG is marked by ultra-low voltage activity at relatively low metabolic-rates. Conclusions These findings confirm a sleep-temperature/metabolism link, though they also suggest that the relationship of sleep stage with temperature/metabolism is flexible and may differ across species or mammalian orders. The absence of non-REM sleep suggests that during hibernation in Cheirogaleus, like in the ground squirrel, the otherwise universal non-REM sleep homeostatic response is greatly curtailed or absent. Lastly, ultra-low voltage EEG appears to be a cross-species marker for extremely low metabolic-rate, and, as such, may be an attractive target for research on hibernation induction. PMID:24023713

  13. Phospholipids of liver cell nuclei during hibernation of Yakutian ground squirrel.

    PubMed

    Lakhina, A A; Markevich, L N; Zakharova, N M; Afanasyev, V N; Kolomiytseva, I K; Fesenko, E E

    2016-07-01

    In hibernating Yakutian ground squirrels S. undulatus, the content of total phospholipids in the nuclei of liver increased by 40% compared to that in animals in summer. In torpid state, the amount of sphingomyelin increased almost 8 times; phosphatidylserine, 7 times; and cardiolipin, 4 times. In active "winter" ground squirrels, the amount of sphingomyelin, phosphatidylserine, and cardiolipin decreased compared to the hibernating individuals but remained high compared to the "summer" ones. The torpor state did not affect the amount of lysophosphatidylcholine and phosphatidylinositol.

  14. Contraction kinetics of ventricular muscle from hibernating and nonhibernating mammals.

    NASA Technical Reports Server (NTRS)

    South, F. E.; Jacobs, H. K.

    1973-01-01

    Temperature-dependent studies of excitability and tension-production kinetics were made on isolated trabecular strips from hibernating hamsters (HH), nonhibernating hamsters (CH), and from rats (R). The strips were electrically driven and isometric tension along with its first time derivative (dP/dt) were recorded. Excitabilities of both hamster tissues were greater than that of rat tissue from 5 to 38 C with HH greater than CH. Peak tension production followed the order of HH greater than CH greater than R at all temperatures below 24 C. Rat preparations showed an optimum peak tension production at about 31 C while HH and CH showed optima between 17 and 24 C. Times to maximal rates of tension rise showed significant variation. In this respect, the order of sensitivity to decreasing temperature was HH greater than CH greater than R.

  15. Great tits search for, capture, kill and eat hibernating bats.

    PubMed

    Estók, Péter; Zsebok, Sándor; Siemers, Björn M

    2010-02-23

    Ecological pressure paired with opportunism can lead to surprising innovations in animal behaviour. Here, we report predation of great tits (Parus major) on hibernating pipistrelle bats (Pipistrellus pipistrellus) at a Hungarian cave. Over two winters, we directly observed 18 predation events. The tits specifically and systematically searched for and killed bats for food. A substantial decrease in predation on bats after experimental provisioning of food to the tits further supports the hypothesis that bat-killing serves a foraging purpose in times of food scarcity. We finally conducted a playback experiment to test whether tits would eavesdrop on calls of awakening bats to find them in rock crevices. The tits could clearly hear the calls and were attracted to the loudspeaker. Records for tit predation on bats at this cave now span more than ten years and thus raise the question of whether cultural transmission plays a role for the spread of this foraging innovation.

  16. Serotonergic modulation of hippocampal pyramidal cells in euthermic, cold-acclimated, and hibernating hamsters

    NASA Technical Reports Server (NTRS)

    Horrigan, D. J.; Horwitz, B. A.; Horowitz, J. M.

    1997-01-01

    Serotonergic fibers project to the hippocampus, a brain area previously shown to have distinctive changes in electroencephalograph (EEG) activity during entrance into and arousal from hibernation. The EEG activity is generated by pyramidal cells in both hibernating and nonhibernating species. Using the brain slice preparation, we characterized serotonergic responses of these CA1 pyramidal cells in euthermic, cold-acclimated, and hibernating Syrian hamsters. Stimulation of Shaffer-collateral/commissural fibers evoked fast synaptic excitation of CA1 pyramidal cells, a response monitored by recording population spikes (the synchronous generation of action potentials). Neuromodulation by serotonin (5-HT) decreased population spike amplitude by 54% in cold-acclimated animals, 80% in hibernating hamsters, and 63% in euthermic animals. The depression was significantly greater in slices from hibernators than from cold-acclimated animals. In slices from euthermic animals, changes in extracellular K+ concentration between 2.5 and 5.0 mM did not significantly alter serotonergic responses. The 5-HT1A agonist 8-hydroxy-2(di-n-propylamino)tetralin mimicked serotonergic inhibition in euthermic hamsters. Results show that 5-HT is a robust neuromodulator not only in euthermic animals but also in cold-acclimated and hibernating hamsters.

  17. Intensity of parasitic mite infection decreases with hibernation duration of the host snail.

    PubMed

    Haeussler, E M; Pizá, J; Schmera, D; Baur, B

    2012-07-01

    Temperature can be a limiting factor on parasite development. Riccardoella limacum, a haematophagous mite, lives in the mantle cavity of helicid land snails. The prevalence of infection by R. limacum in populations of the land snail Arianta arbustorum is highly variable (0-78%) in Switzerland. However, parasitic mites do not occur in host populations at altitudes of 1290 m or higher. It has been hypothesized that the host's hibernation period might be too long at high elevations for mites and their eggs to survive. To test this hypothesis, we experimentally infected snails and allowed them to hibernate at 4°C for periods of 4-7 months. Winter survival of host snails was negatively affected by R. limacum. The intensity of mite infection decreased with increasing hibernation duration. Another experiment with shorter recording intervals revealed that mites do not leave the host when it buries in the soil at the beginning of hibernation. The number of mites decreased after 24 days of hibernation, whereas the number of eggs attached to the lung tissue remained constant throughout hibernation. Thus, R. limacum survives the winter in the egg stage in the host. Low temperature at high altitudes may limit the occurrence of R. limacum.

  18. Membrane lipids and morphology of brain cortex synaptosomes isolated from hibernating Yakutian ground squirrel.

    PubMed

    Kolomiytseva, Iskra K; Perepelkina, Natalia I; Zharikova, Alevtina D; Popov, Victor I

    2008-12-01

    Synaptosomes were isolated from Yakutian ground squirrel brain cortex of summer and winter hibernating animals in active and torpor states. Synaptosomal membrane cholesterol and phospholipids were determined. The seasonal changes of synaptosomal lipid composition were found. Synaptosomes isolated from hibernating Yakutian ground squirrel brain cortex maintained the cholesterol sphingomyelin, phosphatidylethanolamine, lysophosphatidylcholine, cardiolipin, phosphatidylinositol and phosphatidylserine contents 2.5, 1.8, 2.6, 1.8, 1.6, and 1.3 times less, respectively, and the content of phosphatidylcholine twice as much as the one in summer season. The synaptosomal membrane lipid composition of summer animals was shown to be markedly different from that as hibernating ground squirrels and non-hibernating rodents. It is believed that phenotypic changes of synaptosomal membrane lipid composition in summer Yakutian ground squirrel are the important preparation step for hibernation. The phosphatidylethanolamine content was increased in torpor state compared with winter-active state and the molar ratio of cholesterol/phospholipids in synaptosomal membrane of winter torpor ground squirrels was lower than that in active winter and summer animals. These events were supposed to lead to increase of the synaptosomal membrane fluidity during torpor. Synaptosomes isolated from torpor animals have larger sizes and contain a greater number of synaptic vesicles on the synaptosomal profile area. The synaptosomal membrane lipid composition and synaptosome morphology were involved in phenotypic adaptation of Yakutian ground squirrel to hibernation.

  19. Juvenile Delinquency: An Introduction

    ERIC Educational Resources Information Center

    Smith, Carolyn A.

    2008-01-01

    Juvenile Delinquency is a term which is often inaccurately used. This article clarifies definitions, looks at prevalence, and explores the relationship between juvenile delinquency and mental health. Throughout, differences between males and females are explored. (Contains 1 table.)

  20. Variation in sex steroids and phallus size in juvenile American alligators (Alligator mississippiensis) collected from 3 sites within the Kissimmee-Everglades drainage in Florida (USA).

    PubMed

    Gunderson, Mark P; Bermudez, Dieldrich S; Bryan, Teresa A; Degala, Satish; Edwards, Thea M; Kools, Stefan A E; Milnes, Matthew R; Woodward, Allan R; Guillette, Louis J

    2004-07-01

    This 3-year study was designed to examine variation in plasma sex steroids, phallus size, and the standard error (S.E.) associated with these endpoints in juvenile alligators collected from 3 sites within the Kissimmee-Everglades drainage (Florida, USA) with varying concentrations of sediment organochlorine contaminants. We hypothesized that decreased plasma sex steroid concentrations and phallus size would be observed in the higher contaminant site when compared to the intermediate and lower contaminant sites. Furthermore, we hypothesized that greater S.E. associated with these endpoints would be observed for the populations from more contaminated sites. We found that differences existed with females from the higher contaminant site exhibiting lower plasma estradiol-17beta (E2) and testosterone (T) concentrations. Males from the higher contaminant site exhibited smaller phallus sizes than males from the intermediate and lower contaminant sites. Smaller phallus size in this case differed from that reported in Lake Apopka male alligators [Gen. Comp. Endocrinol. 116 (1999) 356] in that a significant positive relationship between body size and phallus size existed. No difference among sites was observed in plasma T for males. Lower S.E. was associated with E2 and T concentrations in females from the higher contaminant site and in phallus size in males from the higher contaminant site. This pattern was opposite to what we had hypothesized. We concluded that variation in plasma E2 and T concentrations, phallus size, and the S.E. associated with these endpoints exists among the 3 sites with the patterns matching the patterns of organochlorine contamination, although S.E. patterns were opposite to what was predicted.

  1. Influences of sex, incubation temperature, and environmental quality on gonadal estrogen and androgen receptor messenger RNA expression in juvenile American alligators (Alligator mississippiensis).

    PubMed

    Moore, Brandon C; Milnes, Matthew R; Kohno, Satomi; Katsu, Yoshinao; Iguchi, Taisen; Guillette, Louis J

    2010-01-01

    Gonadal steroid hormone receptors play a vital role in transforming ligand signals into gene expression. We have shown previously that gonads from wild-caught juvenile alligators express greater levels of estrogen receptor 1 (ESR1) than estrogen receptor 2 (ESR2). Furthermore, sexually dimorphic ESR2 mRNA expression (female > male) observed in animals from the reference site (Lake Woodruff, FL, USA) was lost in alligators from the contaminated Lake Apopka (FL, USA). We postulated that environmental contaminant exposure could influence gonadal steroid hormone receptor expression. Here, we address questions regarding gonadal estrogen and androgen receptor (AR) mRNA expression in 1-yr-old, laboratory-raised alligators. What are relative expression levels within gonads? Do these levels vary between sexes or incubation temperatures? Can contaminant exposure change these levels? We observed a similar pattern of expression (ESR1 > AR > ESR2) in ovary and testis. However, both incubation temperature and environment modulated expression. Males incubated at 33.5 degrees C expressed greater AR levels than females incubated at 30 degrees C; dimorphic expression was not observed in animals incubated at 32 degrees C. Compared to Lake Woodruff alligators, Lake Apopka animals of both sexes showed lesser ESR2 mRNA expression levels. Employing cluster analyses, we integrated these receptor expression patterns with those of steroidogenic factors. Elevated ESR2 and CYP19A1 expressions were diagnostic of alligator ovary, whereas elevated HSD3B1, CYP11A1, and CYP17A1 expressions were indicative of testis. In contrast, AR, ESR1, and NR5A1 showed variable expressions that were not entirely associated with sex. These findings demonstrate that the mRNA expression of receptors required for steroid hormone signaling are modified by exposure to environmental factors, including temperature and contaminants.

  2. Differences in alarm calls of juvenile and adult European ground squirrels (Spermophilus citellus): Findings on permanently marked animals from a semi-natural enclosure.

    PubMed

    Schneiderov, Irena; Schnitzerov, Petra; Uhlikov, Jitka; Brandl, Pavel; Zouhar, Jan; Matejů, Jan

    2015-11-01

    The European ground squirrel (Spermophilus citellus) emits alarm calls that warn conspecifics of potential danger. Although it has been observed that inexperienced juveniles of this species emit alarm calls that sound similar to those of adults, studies focusing on juvenile alarm calls are lacking. We analyzed the acoustic structure of alarm calls emitted by six permanently marked European ground squirrels living in a semi-natural enclosure when they were juveniles and after 1 year as adults. We found that the acoustic structure of the juvenile alarm calls was significantly different from those of adults and that the alarm calls underwent nearly the same changes in all studied individuals. All juveniles emitted alarm calls consisting of one element with almost constant frequency, but their alarm calls included a second frequency-modulated element after their first hibernation as adults. Our data show that the duration of the first element is significantly shorter in adults than in juveniles. Additionally, the frequency of the first element is significantly higher in adults than in juveniles. Similar to previous findings in other Palearctic ground squirrel species, our data are inconsistent with the assumption that juvenile mammals emit vocalizations with higher fundamental frequencies than adults. However, our results do not support the previously suggested hypothesis that juvenile ground squirrels conceal information regarding their age in their alarm calls because we found significant differences in alarm calls of juveniles and adults.

  3. Juvenile Arrests, 2007. Juvenile Justice Bulletin

    ERIC Educational Resources Information Center

    Puzzanchera, Charles

    2009-01-01

    This Bulletin summarizes 2007 juvenile crime and arrest data reported by local law enforcement agencies across the country and cited in the FBI report, "Crime in the United States 2007." The Bulletin describes the extent and nature of juvenile crime that comes to the attention of the justice system. It serves as a baseline for comparison for…

  4. Juvenile Arrests, 2000. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Snyder, Howard N.

    This bulletin examines the national and state juvenile arrest rate in 2000 using data reported annually by local law enforcement agencies nationwide to the FBI's Uniform Crime Reporting program. Results indicate that the murder rate in 2000 was the lowest since 1965; juvenile arrests for violence in 2000 were the lowest since 1988; few juveniles…

  5. Juvenile Arrests, 1999. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Snyder, Howard N.

    This bulletin presents a summary and analysis of national and state juvenile arrest data for 1999. Data come from the FBI's annual "Crime in the United States" report, which offers the estimated number of crimes reported to law enforcement agencies. The 1999 murder rate was the lowest since 1966. Of the nearly 1,800 juveniles murdered in…

  6. Juvenile Arrests 1996. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Snyder, Howard N.

    In 1996, law enforcement agencies in the United States made an estimated 2.9 million arrests of persons under the age of 18. According to Federal Bureau of Investigation (FBI) figures, juveniles accounted for 19% of all arrests and 19% of all violent crime in 1996. The substantial growth in juvenile crime that began in the late 1980s peaked in…

  7. Juvenile Arrests, 1998. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Snyder, Howard N.

    This report provides a summary and analysis of national and state juvenile arrest data in the United States. In 1998, law enforcement agencies made an estimated 2.6 million arrests of persons under age 18. Federal Bureau of Investigations statistics indicate that juveniles account for 18% of all arrests, and 17% of all violent crime arrests in…

  8. Juvenile Justice Glossary.

    ERIC Educational Resources Information Center

    Update on Law-Related Education, 2000

    2000-01-01

    Provides a list of terms pertaining to the juvenile justice system, such as appeal and due process, that are used throughout this edition of "Update on Law-Related Education," in particular, with the teaching strategies "The Case of Gerry Gault" (SO 532 196) "Today's Juvenile Court" (SO 532 197), and "Using the Juvenile Justice Poster" (SO 532…

  9. Concepts Shaping Juvenile Justice

    ERIC Educational Resources Information Center

    White, Rob

    2008-01-01

    Rob White's paper explores ways in which community building can be integrated into the practices of juvenile justice work. He provides a model of what can be called "restorative social justice", one that builds upon the juvenile conferencing model by attempting to fuse social justice concerns with progressive juvenile justice practices.

  10. Hibernation in the pygmy slow loris (Nycticebus pygmaeus): multiday torpor in primates is not restricted to Madagascar.

    PubMed

    Ruf, Thomas; Streicher, Ulrike; Stalder, Gabrielle L; Nadler, Tilo; Walzer, Chris

    2015-12-03

    Hibernation and short daily torpor are states of energy conservation with reduced metabolism and body temperature. Both hibernation, also called multiday torpor, and daily torpor are common among mammals and occur in at least 11 orders. Within the primates, there is a peculiar situation, because to date torpor has been almost exclusively reported for Malagasy lemurs. The single exception is the African lesser bushbaby, which is capable of daily torpor, but uses it only under extremely adverse conditions. For true hibernation, the geographical restriction was absolute. No primate outside of Madagascar was previously known to hibernate. Since hibernation is commonly viewed as an ancient, plesiomorphic trait, theoretically this could mean that hibernation as an overwintering strategy was lost in all other primates in mainland Africa, Asia, and the Americas. However, we hypothesized that a good candidate species for the use of hibernation, outside of Madagascar should be the pygmy slow loris (Nycticebus pygmaeus), a small primate inhabiting tropical forests. Here, we show that pygmy slow lorises exposed to natural climatic conditions in northern Vietnam during winter indeed undergo torpor lasting up to 63 h, that is, hibernation. Thus, hibernation has been retained in at least one primate outside of Madagascar.

  11. Hibernation in the pygmy slow loris (Nycticebus pygmaeus): multiday torpor in primates is not restricted to Madagascar

    PubMed Central

    Ruf, Thomas; Streicher, Ulrike; Stalder, Gabrielle L.; Nadler, Tilo; Walzer, Chris

    2015-01-01

    Hibernation and short daily torpor are states of energy conservation with reduced metabolism and body temperature. Both hibernation, also called multiday torpor, and daily torpor are common among mammals and occur in at least 11 orders. Within the primates, there is a peculiar situation, because to date torpor has been almost exclusively reported for Malagasy lemurs. The single exception is the African lesser bushbaby, which is capable of daily torpor, but uses it only under extremely adverse conditions. For true hibernation, the geographical restriction was absolute. No primate outside of Madagascar was previously known to hibernate. Since hibernation is commonly viewed as an ancient, plesiomorphic trait, theoretically this could mean that hibernation as an overwintering strategy was lost in all other primates in mainland Africa, Asia, and the Americas. However, we hypothesized that a good candidate species for the use of hibernation, outside of Madagascar should be the pygmy slow loris (Nycticebus pygmaeus), a small primate inhabiting tropical forests. Here, we show that pygmy slow lorises exposed to natural climatic conditions in northern Vietnam during winter indeed undergo torpor lasting up to 63 h, that is, hibernation. Thus, hibernation has been retained in at least one primate outside of Madagascar. PMID:26633602

  12. Interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on polyphenism in ants

    PubMed Central

    Libbrecht, Romain; Corona, Miguel; Wende, Franziska; Azevedo, Dihego O.; Serrão, Jose E.; Keller, Laurent

    2013-01-01

    Polyphenism is the phenomenon in which alternative phenotypes are produced by a single genotype in response to environmental cues. An extreme case is found in social insects, in which reproductive queens and sterile workers that greatly differ in morphology and behavior can arise from a single genotype. Experimental evidence for maternal effects on caste determination, the differential larval development toward the queen or worker caste, was recently documented in Pogonomyrmex seed harvester ants, in which only colonies with a hibernated queen produce new queens. However, the proximate mechanisms behind these intergenerational effects have remained elusive. We used a combination of artificial hibernation, hormonal treatments, gene expression analyses, hormone measurements, and vitellogenin quantification to investigate how the combined effect of environmental cues and hormonal signaling affects the process of caste determination in Pogonomyrmex rugosus. The results show that the interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on the production of alternative phenotypes and set vitellogenin as a likely key player in the intergenerational transmission of information. This study reveals how hibernation triggers the production of new queens in Pogonomyrmex ant colonies. More generally, it provides important information on maternal effects by showing how environmental cues experienced by one generation can translate into phenotypic variation in the next generation. PMID:23754378

  13. Hibernation site requirements of bats in man-made hibernacula in a spatial context.

    PubMed

    de Boer, W F; van de Koppel, S; de Knegt, H J; Dekker, J J A

    2013-03-01

    Bat hibernacula selection depends on various spatial and nonspatial variables that differ widely between sites. However, previous studies have focused mainly on nonspatial variables. This research investigated factors that determined the abundance and species richness of hibernating bats in hibernation objects of the New Dutch Waterline, The Netherlands, and determined the relevant scales over which spatial factors operate using regression techniques and ecological-niche factor analyses. The effects of 32 predictor variables on several response variables, i.e., the total bat abundance, species richness, and abundance and presence of bat species, were investigated. Predictor variables were classified as internal variables (e.g., building size, climatic conditions, and human access) or external variables (e.g., ground and vegetation cover and land cover type) that were measured at different spatial scales to study the influence of the spatial context. The internal building variables (mainly the size of hibernacula and the number of hiding possibilities) affected the hibernating bat abundance and species richness. Climatic variables, such as changes in temperature and humidity, were less important. The hibernation site suitability was also influenced by spatial variables at a variety of scales, thereby indicating the importance of scale-dependent species-environment relationships. The absence of human use and public access enhanced hibernation site suitability, but the internal size-related variables had the greatest positive effect on hibernation site suitability. These results demonstrate the importance of considering the different spatial scales of the surrounding landscape to better understand habitat selection, and they offer directives to managers to optimize objects for hibernating bats and to improve management and bat conservation. The analyses have wider applications to other wildlife-habitat studies.

  14. Diet-independent remodeling of cellular membranes precedes seasonally changing body temperature in a hibernator.

    PubMed

    Arnold, Walter; Ruf, Thomas; Frey-Roos, Fredy; Bruns, Ute

    2011-04-13

    Polyunsaturated fatty acids (PUFA) have a multitude of health effects. Their incorporation into membrane phospholipids (PL) is generally believed to depend directly on dietary influx. PL influence transmembrane protein activity and thus can compensate temperature effects; e.g. PL n-6 PUFA are thought to stabilize heart function at low body temperature (T(b)), whereas long chain (>C18) n-3 PUFA may boost oxidative capacity. We found substantial remodeling of membranes in free-living alpine marmots which was largely independent of direct dietary supply. Organ PL n-6 PUFA and n-6 to n-3 ratios were highest at onset and end of hibernation after rapid increases during a brief transitional period prior to hibernation. In contrast, longer chain PL n-3 PUFA content was low at end of summer but maximal at end of hibernation. After termination of hibernation in spring, these changes in PL composition were rapidly reversed. Our results demonstrate selective trafficking of PUFA within the body, probably governed by a circannual endogenous rhythm, as hibernating marmots were in winter burrows isolated for seven months from food and external cues signaling the approaching spring. High concentrations of PL n-6 PUFA throughout hibernation are in line with their hypothesized function of boosting SERCA 2a activity at low T(b). Furthermore, we found increasing rate of rewarming from torpor during winter indicating increasing oxidative capacity that could be explained by the accumulation of long-chain PL n-3 PUFA. It may serve to minimize the time necessary for rewarming despite the increasing temperature range to be covered, because rewarming is a period of highest metabolic rate and hence production of reactive oxygen species. Considering the importance of PUFA for health our results may have important biomedical implications, as seasonal changes of T(b) and associated remodeling of membranes are not restricted to hibernators but presumably common among endothermic organisms.

  15. Regulation of glucokinase activity in liver of hibernating ground squirrel Spermophilus undulatus.

    PubMed

    Khu, L Ya; Storey, K B; Rubtsov, A M; Goncharova, N Yu

    2014-07-01

    The kinetic properties of glucokinase (GLK) from the liver of active and hibernating ground squirrels Spermophilus undulatus have been studied. Entrance of ground squirrels into hibernation from their active state is accompanied by a sharp decrease in blood glucose (Glc) level (from 14 to 2.9 mM) and with a significant (7-fold) decrease of GLK activity in the liver cytoplasm. Preparations of native GLK practically devoid of other molecular forms of hexokinase were obtained from the liver of active and hibernating ground squirrels. The dependence of GLK activity upon Glc concentration for the enzyme from active ground squirrel liver showed a pronounced sigmoid character (Hill coefficient, h=1.70 and S0.5=6.23 mM; the experiments were conducted at 25°C in the presence of enzyme stabilizers, K+ and DTT). The same dependence of enzyme activity on Glc concentration was found for GLK from rat liver. However, on decreasing the temperature to 2°C (simulation of hibernation conditions), this dependency became almost hyperbolic (h=1.16) and GLK affinity for substrate was reduced (S0.5=23 mM). These parameters for hibernating ground squirrels (body temperature 5°C) at 25°C were found to be practically equal to the corresponding values obtained for GLK from the liver of active animals (h=1.60, S0.5=9.0 mM, respectively); at 2°C sigmoid character was less expressed and affinity for Glc was drastically decreased (h=1.20, S0.5=45 mM). The calculations of GLK activity in the liver of hibernating ground squirrels based on enzyme kinetic characteristics and seasonal changes in blood Glc concentrations have shown that GLK activity in the liver of hibernating ground squirrels is decreased about 5500-fold.

  16. Hibernation in warm hibernacula by free-ranging Formosan leaf-nosed bats, Hipposideros terasensis, in subtropical Taiwan.

    PubMed

    Liu, Jian-Nan; Karasov, William H

    2011-01-01

    The subtropical Formosan leaf-nosed bats, Hipposideros terasensis (Hipposideridae), show little activity during winter. It has never been determined whether in winter they exhibit hibernation and multi-day periods of low body temperature. The objectives of this study were to understand the winter activity pattern of H. terasensis and to examine whether it enters hibernation during winter. We monitored the skin temperature (T (sk)) of nine free-ranging H. terasensis by attaching temperature-sensitive transmitters during the winters of 2007-2008 and 2008-2009. The results showed that H. terasensis entered hibernation from late December to early March. H. terasensis, however, differs from temperate hibernating bats in several ways: (1) it is capable of hibernation at roost temperature (T (r)) and T (sk) > 20°C; (2) hibernation at high T (r) and T (sk) does not lead to a relatively high arousal frequency; and (3) adults do not increase body mass in autumn prior to hibernation. To test the hypothesis that H. terasensis feeds frequently during the hibernation period to compensate for the high energetic demands of hibernating in warm hibernacula, we recorded the number and timing of bats that emerged from and entered into a hibernaculum, which contained more than 1,000 bats. From 30 December 2007 to 29 February 2008, an average of only 8.4 bats (<1%) per night (29 nights) emerged from the hibernaculum. Adult bats lost an average of 13-14% of body mass during an approximately 70-day hibernation period. We suggest that H. terasensis might have remarkably low torpid metabolic rates during hibernation.

  17. Adolescent neglect, juvenile delinquency and the risk of recidivism.

    PubMed

    Ryan, Joseph P; Williams, Abigail B; Courtney, Mark E

    2013-03-01

    Victims of child abuse and neglect are at an increased risk of involvement with the juvenile justice and adult correctional systems. Yet, little is known about the continuation and trajectories of offending beyond initial contact with law enforcement. Neglect likely plays a critical role in continued offending as parental monitoring, parental rejection and family relationships are instrumental in explaining juvenile conduct problems. This study sought to determine whether neglect is associated with recidivism for moderate and high risk juvenile offenders in Washington State. Statewide risk assessments and administrative records for child welfare, juvenile justice, and adult corrections were analyzed. The sample was diverse (24 % female, 13 % African American, 8 % Hispanic, 5 % Native American) and included all moderate and high risk juvenile offenders screened by juvenile probation between 2004 and 2007 (n = 19,833). Official records from child protection were used to identify juvenile offenders with a history of child neglect and to identify juvenile offenders with an ongoing case of neglect. Event history models were developed to estimate the risk of subsequent offending. Adolescents with an ongoing case neglect were significantly more likely to continue offending as compared with youth with no official history of neglect. These findings remain even after controlling for a wide range of family, peer, academic, mental health, and substance abuse covariates. Interrupting trajectories of offending is a primary focus of juvenile justice. The findings of the current study indicate that ongoing dependency issues play a critical role in explaining the outcomes achieved for adolescents in juvenile justice settings. The implications for improved collaboration between child welfare and juvenile justice are discussed.

  18. The Gendered Monitoring of Juvenile Delinquents: A Test of Power-Control Theory Using a Retrospective Cohort Study

    ERIC Educational Resources Information Center

    Schulze, Corina; Bryan, Valerie

    2017-01-01

    Through the framework of power-control theory (PCT), we provide a model of juvenile offending that places the gendered-raced treatment of juveniles central to the analysis. We test the theory using a unique sample that is predominately African American, poor, and composed entirely of juvenile offenders. Multivariate models compare the predictive…

  19. Cell proliferation and death in the brain of active and hibernating frogs

    PubMed Central

    Cerri, Silvia; Bottiroli, Giovanni; Bottone, Maria Grazia; Barni, Sergio; Bernocchi, Graziella

    2009-01-01

    ‘Binomial’ cell proliferation and cell death have been studied in only a few non-mammalian vertebrates, such as fish. We thought it of interest to map cell proliferation/apoptosis in the brain of the frog (Rana esculenta L.) as this animal species undergoes, during the annual cycle, physiological events that could be associated with central nervous system damage. Therefore, we compared the active period and the deep underground hibernation of the frog. Using western blot analysis for proliferating cell nuclear antigen (PCNA), we revealed a positive 36 kDa band in all samples and found higher optical density values in the hibernating frogs than in active frogs. In both active and hibernating frogs, we found regional differences in PCNA-immunoreactive cells and terminal transferase dUTP nick-end labelling apoptotic cells in the ventricular zones and parenchyma areas of the main encephalon subdivisions. During the active period of the frogs, the highest concentration of PCNA-immunoreactive cells was found in the ventricle dorsal zone of the cerebral hemispheres but only some of the cells were apoptotic. By contrast, the tectal and cerebellar ventricular zones had a small or medium amount of PCNA-immunoreactive cells, respectively, and a higher number of apoptotic cells. During hibernation, an increased PCNA-immunoreactive cell number was observed in both the brain ventricles and parenchyma compared with active frogs. This increase was primarily evident in the lateral ventricles, a region known to be a proliferation ‘hot spot’. Although differences existed among the brain areas, a general increase of apoptotic cell death was found in hibernating frogs, with the highest number of apoptotic cells being detected in the parenchyma of the cerebral hemispheres and optic tectum. In particular, the increased number of apoptotic cells in the hibernating frogs compared with active frogs in the parenchyma of these brain areas occurred when cell proliferation was higher in

  20. Fine-scale transition to lower bacterial diversity and altered community composition precedes shell disease in laboratory-reared juvenile American lobster.

    PubMed

    Feinman, Sarah G; Unzueta Martínez, Andrea; Bowen, Jennifer L; Tlusty, Michael F

    2017-03-30

    The American lobster Homarus americanus supports a valuable commercial fishery in the Northeastern USA and Maritime Canada; however, stocks in the southern portion of the lobster's range have shown declines, in part due to the emergence of shell disease. Epizootic shell disease is a bacterially induced cuticular erosion that renders even mildly affected lobsters unmarketable because of their appearance, and in more severe cases can cause mortality. Despite the importance of this disease, the associated bacterial communities have not yet been fully characterized. We sampled 2 yr old, laboratory-reared lobsters that displayed signs of shell disease at the site of disease as well as at 0.5, 1, and 1.5 cm away from the site of disease to determine how the bacterial community changed over this fine spatial scale. Illumina sequencing of the 16S rRNA gene revealed a distinct bacterial community at the site of disease, with significant reductions in bacterial diversity and richness compared to more distant sampling locations. The bacterial community composition 0.5 cm from the site of disease was also altered, and there was an observable decrease in bacterial diversity and richness, even though there were no signs of disease at that location. Given the distinctiveness of the bacterial community at the site of disease and 0.5 cm from the site of disease, we refer to these communities as affected and transitionary, and suggest that these bacteria, including the previously proposed causative agent, Aquimarina 'homaria', are important for the initiation and progression of this laboratory model of shell disease.

  1. Neuronal UCP1 expression suggests a mechanism for local thermogenesis during hibernation.

    PubMed

    Laursen, Willem J; Mastrotto, Marco; Pesta, Dominik; Funk, Owen H; Goodman, Jena B; Merriman, Dana K; Ingolia, Nicholas; Shulman, Gerald I; Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2015-02-03

    Hibernating mammals possess a unique ability to reduce their body temperature to ambient levels, which can be as low as -2.9 °C, by active down-regulation of metabolism. Despite such a depressed physiologic phenotype, hibernators still maintain activity in their nervous systems, as evidenced by their continued sensitivity to auditory, tactile, and thermal stimulation. The molecular mechanisms that underlie this adaptation remain unknown. We report, using differential transcriptomics alongside immunohistologic and biochemical analyses, that neurons from thirteen-lined ground squirrels (Ictidomys tridecemlineatus) express mitochondrial uncoupling protein 1 (UCP1). The expression changes seasonally, with higher expression during hibernation compared with the summer active state. Functional and pharmacologic analyses show that squirrel UCP1 acts as the typical thermogenic protein in vitro. Accordingly, we found that mitochondria isolated from torpid squirrel brain show a high level of palmitate-induced uncoupling. Furthermore, torpid squirrels during the hibernation season keep their brain temperature significantly elevated above ambient temperature and that of the rest of the body, including brown adipose tissue. Together, our findings suggest that UCP1 contributes to local thermogenesis in the squirrel brain, and thus supports nervous tissue function at low body temperature during hibernation.

  2. Neuronal UCP1 expression suggests a mechanism for local thermogenesis during hibernation

    PubMed Central

    Laursen, Willem J.; Mastrotto, Marco; Pesta, Dominik; Funk, Owen H.; Goodman, Jena B.; Merriman, Dana K.; Ingolia, Nicholas; Shulman, Gerald I.; Bagriantsev, Sviatoslav N.; Gracheva, Elena O.

    2015-01-01

    Hibernating mammals possess a unique ability to reduce their body temperature to ambient levels, which can be as low as −2.9 °C, by active down-regulation of metabolism. Despite such a depressed physiologic phenotype, hibernators still maintain activity in their nervous systems, as evidenced by their continued sensitivity to auditory, tactile, and thermal stimulation. The molecular mechanisms that underlie this adaptation remain unknown. We report, using differential transcriptomics alongside immunohistologic and biochemical analyses, that neurons from thirteen-lined ground squirrels (Ictidomys tridecemlineatus) express mitochondrial uncoupling protein 1 (UCP1). The expression changes seasonally, with higher expression during hibernation compared with the summer active state. Functional and pharmacologic analyses show that squirrel UCP1 acts as the typical thermogenic protein in vitro. Accordingly, we found that mitochondria isolated from torpid squirrel brain show a high level of palmitate-induced uncoupling. Furthermore, torpid squirrels during the hibernation season keep their brain temperature significantly elevated above ambient temperature and that of the rest of the body, including brown adipose tissue. Together, our findings suggest that UCP1 contributes to local thermogenesis in the squirrel brain, and thus supports nervous tissue function at low body temperature during hibernation. PMID:25605929

  3. Changes in the Golgi Apparatus of Neocortical and Hippocampal Neurons in the Hibernating Hamster.

    PubMed

    Antón-Fernández, Alejandro; León-Espinosa, Gonzalo; DeFelipe, Javier; Muñoz, Alberto

    2015-01-01

    Hibernating animals have been used as models to study several aspects of the plastic changes that occur in the metabolism and physiology of neurons. These models are also of interest in the study of Alzheimer's disease because the microtubule-associated protein tau is hyperphosphorylated during the hibernation state known as torpor, similar to the pretangle stage of Alzheimer's disease. Hibernating animals undergo torpor periods with drops in body temperature and metabolic rate, and a virtual cessation of neural activity. These processes are accompanied by morphological and neurochemical changes in neurons, which reverse a few hours after coming out of the torpor state. Since tau has been implicated in the structural regulation of the neuronal Golgi apparatus (GA) we have used Western Blot and immunocytochemistry to analyze whether the GA is modified in cortical neurons of the Syrian hamster at different hibernation stages. The results show that, during the hibernation cycle, the GA undergo important structural changes along with differential modifications in expression levels and distribution patterns of Golgi structural proteins. These changes were accompanied by significant transitory reductions in the volume and surface area of the GA elements during torpor and arousal stages as compared with euthermic animals.

  4. Changes in the Golgi Apparatus of Neocortical and Hippocampal Neurons in the Hibernating Hamster

    PubMed Central

    Antón-Fernández, Alejandro; León-Espinosa, Gonzalo; DeFelipe, Javier; Muñoz, Alberto

    2015-01-01

    Hibernating animals have been used as models to study several aspects of the plastic changes that occur in the metabolism and physiology of neurons. These models are also of interest in the study of Alzheimer's disease because the microtubule-associated protein tau is hyperphosphorylated during the hibernation state known as torpor, similar to the pretangle stage of Alzheimer's disease. Hibernating animals undergo torpor periods with drops in body temperature and metabolic rate, and a virtual cessation of neural activity. These processes are accompanied by morphological and neurochemical changes in neurons, which reverse a few hours after coming out of the torpor state. Since tau has been implicated in the structural regulation of the neuronal Golgi apparatus (GA) we have used Western Blot and immunocytochemistry to analyze whether the GA is modified in cortical neurons of the Syrian hamster at different hibernation stages. The results show that, during the hibernation cycle, the GA undergo important structural changes along with differential modifications in expression levels and distribution patterns of Golgi structural proteins. These changes were accompanied by significant transitory reductions in the volume and surface area of the GA elements during torpor and arousal stages as compared with euthermic animals. PMID:26696838

  5. Hibernation as a Far-Reaching Programme for Cell Nucleus Activity Modulation

    NASA Astrophysics Data System (ADS)

    Malatesta, M.; Biggiogera, M.; Zancanaro, C.

    Maintaining part of the crew under hypometabolic conditions could help with the problems associated with long-term space missions. In the natural world, hibernators represent the most suitable model for a hypometabolic state. These animals are, in fact, able to drastically reduce all metabolic and physiological activities under adverse environmental conditions, but they can rapidly leave the depressed metabolic state as soon as the environment becomes favourable. Hibernators' cellular machinery must therefore undergo adaptive morpho-functional modifications to allow survival. Our studies on tissues of hibernating dormice revealed that the cell nucleus undergoes an important structural reorganisation during the hypometabolic period. Interestingly, despite the drastic reduction in pre-mRNA transcriptional and processing rate, cell nuclei of hibernating dormice never showed features typical of quiescence. Recent analyses revealed that pre-mRNA processing factors undergo an intranuclear redistribution which varies in different tissues. This suggests a programmed intranuclear reorganization of such molecules aimed to an efficient and rapid restoration of pre-mRNA processing upon arousal. Natural hibernation therefore appears as a highly programmed hypometabolic state rather than a simple fall of metabolic and physiological functions.

  6. Differential regulation of uncoupling protein gene homologues in multiple tissues of hibernating ground squirrels.

    PubMed

    Boyer, B B; Barnes, B M; Lowell, B B; Grujic, D

    1998-10-01

    Nonshivering thermogenesis in brown adipose tissue (BAT) provides heat through activation of a mitochondrial uncoupling protein (UCP1), which causes futile electron transport cycles without the production of ATP. Recent discovery of two molecular homologues, UCP2, expressed in multiple tissues, and UCP3, expressed in muscle, has resulted in investigation of their roles in thermoregulatory physiology and energy balance. To determine the expression pattern of Ucp homologues in hibernating mammals, we compared relative mRNA levels of Ucp1, -2, and -3 in BAT, white adipose tissue (WAT), and skeletal muscle of arctic ground squirrels (Spermophilus parryii) hibernating at different ambient and body temperatures, with levels determined in tissues from ground squirrels not in hibernation. Here we report significant increases in mRNA levels for Ucp2 in WAT (1. 6-fold) and Ucp3 in skeletal muscle (3-fold) during hibernation. These results indicate the potential for a role of UCP2 and UCP3 in thermal homeostasis during hibernation and indicate that parallel mechanisms and multiple tissues could be important for nonshivering thermoregulation in mammals.

  7. Reversible depression of oxygen consumption in isolated liver mitochondria during hibernation.

    PubMed

    Martin, S L; Maniero, G D; Carey, C; Hand, S C

    1999-01-01

    The biochemical mechanisms by which hibernators cool as they enter torpor are not fully understood. In order to examine whether rates of substrate oxidation vary as a function of hibernation, liver mitochondria were isolated from telemetered ground squirrels (Spermophilus lateralis) in five phases of their annual hibernation cycle: summer active, and torpid, interbout aroused, entrance, and arousing hibernators. Rates of state 3 and state 4 respiration were measured in vitro at 25 degrees C. Relative to mitochondria from summer-active animals, rates of state 3 respiration were significantly depressed in mitochondria from torpid animals yet fully restored during interbout arousals. These findings indicate that a depression of ADP-dependent respiration in liver mitochondria occurs during torpor and is reversed during the interbout arousals to euthermia. Because this inhibition was determined to be temporally independent of entrance and arousal, it is unlikely that active suppression of state 3 respiration causes entrance into torpor by facilitating metabolic depression. In contrast to the observed depression of state 3 respiration in torpid animals, state 4 respiration did not differ significantly among any of the five groups, suggesting that alterations in proton leak are not contributing appreciably to downregulation of respiration in hibernation.

  8. Seasonal restructuring of the ground squirrel gut microbiota over the annual hibernation cycle.

    PubMed

    Carey, Hannah V; Walters, William A; Knight, Rob

    2013-01-01

    Many hibernating mammals suspend food intake during winter, relying solely on stored lipids to fuel metabolism. Winter fasting in these species eliminates a major source of degradable substrates to support growth of gut microbes, which may affect microbial community structure and host-microbial interactions. We explored the effect of the annual hibernation cycle on gut microbiotas using deep sequencing of 16S rRNA genes from ground squirrel cecal contents. Squirrel microbiotas were dominated by members of the phyla Bacteroidetes, Firmicutes, and Verrucomicrobia. UniFrac analysis showed that microbiotas clustered strongly by season, and maternal influences, diet history, host age, and host body temperature had minimal effects. Phylogenetic diversity and numbers of operational taxonomic units were lowest in late winter and highest in the spring after a 2-wk period of refeeding. Hibernation increased relative abundance of Bacteroidetes and Verrucomicrobia, phyla that contain species capable of surviving on host-derived substrates such as mucins, and reduced relative abundance of Firmicutes, many of which prefer dietary polysaccharides. Hibernation reduced cecal short-chain fatty acid and ammonia concentrations, and increased and decreased concentrations of acetate and butyrate, respectively. These results indicate that the ground squirrel microbiota is restructured each year in a manner that reflects differences in microbial preferences for dietary vs. host-derived substrates, and thus the competitive abilities of different taxa to survive in the altered environment in the hibernator gut.

  9. Mammal survival at the Cretaceous–Palaeogene boundary: metabolic homeostasis in prolonged tropical hibernation in tenrecs

    PubMed Central

    Lovegrove, Barry G.; Lobban, Kerileigh D.; Levesque, Danielle L.

    2014-01-01

    Free-ranging common tenrecs, Tenrec ecaudatus, from sub-tropical Madagascar, displayed long-term (nine months) hibernation which lacked any evidence of periodic interbout arousals (IBAs). IBAs are the dominant feature of the mammalian hibernation phenotype and are thought to periodically restore long-term ischaemia damage and/or metabolic imbalances (depletions and accumulations). However, the lack of IBAs in tenrecs suggests no such pathology at hibernation Tbs > 22°C. The long period of tropical hibernation that we report might explain how the ancestral placental mammal survived the global devastation that drove the dinosaurs and many other vertebrates to extinction at the Cretaceous–Palaeogene boundary following a meteorite impact. The genetics and biochemistry of IBAs are of immense interest to biomedical researchers and space exploration scientists, in the latter case, those envisioning a hibernating state in astronauts for deep space travel. Unravelling the physiological thresholds and temperature dependence of IBAs will provide new impetus to these research quests. PMID:25339721

  10. Mammal survival at the Cretaceous-Palaeogene boundary: metabolic homeostasis in prolonged tropical hibernation in tenrecs.

    PubMed

    Lovegrove, Barry G; Lobban, Kerileigh D; Levesque, Danielle L

    2014-12-07

    Free-ranging common tenrecs, Tenrec ecaudatus, from sub-tropical Madagascar, displayed long-term (nine months) hibernation which lacked any evidence of periodic interbout arousals (IBAs). IBAs are the dominant feature of the mammalian hibernation phenotype and are thought to periodically restore long-term ischaemia damage and/or metabolic imbalances (depletions and accumulations). However, the lack of IBAs in tenrecs suggests no such pathology at hibernation Tbs > 22°C. The long period of tropical hibernation that we report might explain how the ancestral placental mammal survived the global devastation that drove the dinosaurs and many other vertebrates to extinction at the Cretaceous-Palaeogene boundary following a meteorite impact. The genetics and biochemistry of IBAs are of immense interest to biomedical researchers and space exploration scientists, in the latter case, those envisioning a hibernating state in astronauts for deep space travel. Unravelling the physiological thresholds and temperature dependence of IBAs will provide new impetus to these research quests.

  11. Brain gangliosides in hibernating dormice (Glis glis) and cold-exposed laboratory mice.

    PubMed

    Mühleisen, M; Hilbig, R; Rahmann, H

    1984-01-01

    The concentration of proteins, sialo-glycoproteins and gangliosides and the ganglioside composition of 8 brain regions from normothermic and hibernating fat dormice (Glis glis) and from laboratory mice being acclimated to 6, 22 and 28 degrees C were investigated. During hibernation the concentration of sialo-glycoproteins and gangliosides decreased significantly in brain of dormice; the protein content remained uninfluenced. Cold-exposure of laboratory mice yielded generally a slightly decreased sialo-glycoprotein concentration in brain; the data on ganglioside concentration in the CNS were not uniform. The ganglioside composition of brain of laboratory mice being kept at different environmental temperatures did not show any alterations. The brain gangliosides of hibernating dormice in contrast to their normothermic counterparts are more polar (higher amount of GTlb and GQlb.). Most striking is the complete absence of a distinct ganglioside fraction (O-acetylated-GTlb) during hibernation. Brain gangliosides of normothermic dormice were found to be more sensitive against neuraminidase treatment than those of hibernating animals. The results are discussed with regard to modulatory functions of neuronal gangliosides for the process of synaptic transmission during seasonal adaptation.

  12. Comparison of hibernation, estivation and daily torpor in the edible dormouse, Glis glis.

    PubMed

    Wilz, M; Heldmaier, G

    2000-11-01

    Three major forms of dormancy in mammals have been classified: hibernation in endotherms is characterised by reduced metabolic rate (MR) and body temperature (Tb) near ambient temperature (Ta) over prolonged times in the winter. Estivation is a similar form of dormancy in a dry and hot environment during summertime. Daily torpor is defined as reduced MR and Tb lower than 32 degrees C, limited to a duration of less than 24 h. The edible dormouse (Glis glis) is capable for all three distinct forms of dormancy. During periods of food restriction and/or low Ta, daily torpor is displayed throughout the year, alternating with hibernation and estivation in winter and summer respectively. We recorded Tb, O2-consumption and CO2-production in unrestrained dormice at different Ta's for periods of up to several months. Cooling rate and rate of metabolic depression during entrance into the torpid state was identical in all three forms of dormancy. The same was true for thermal conductance, maximum heat production, duration of arousal and cost of an arousal. The only difference between hibernation and daily torpor was found in the bout duration. A daily torpor bout lasted 3-21 h, a hibernation bout 39-768 h. As a consequence of prolonged duration, MR, Tb and also the Tb - Ta gradient decreased to lower values during hibernation bouts when compared to daily torpor bouts. Our findings suggest that all three forms of dormancy are based on the same physiological mechanism of thermal and metabolic regulation.

  13. Ischemia/reperfusion injury resistance in hibernators is more than an effect of reduced body temperature or winter season.

    PubMed

    Bogren, Lori K; Drew, Kelly L

    2014-01-01

    Hibernating mammals are resistant to injury following cardiac arrest. The basis of this protection has been proposed to be due to their ability to lower body temperature or metabolic rate in a seasonally-dependent manner. However, recent studies have shown that neither reduced body temperature nor hibernation season are components this protection.

  14. Preservation of bone mass and structure in hibernating black bears (Ursus americanus) through elevated expression of anabolic genes.

    PubMed

    Fedorov, Vadim B; Goropashnaya, Anna V; Tøien, Øivind; Stewart, Nathan C; Chang, Celia; Wang, Haifang; Yan, Jun; Showe, Louise C; Showe, Michael K; Donahue, Seth W; Barnes, Brian M

    2012-06-01

    Physical inactivity reduces mechanical load on the skeleton, which leads to losses of bone mass and strength in non-hibernating mammalian species. Although bears are largely inactive during hibernation, they show no loss in bone mass and strength. To obtain insight into molecular mechanisms preventing disuse bone loss, we conducted a large-scale screen of transcriptional changes in trabecular bone comparing winter hibernating and summer non-hibernating black bears using a custom 12,800 probe cDNA microarray. A total of 241 genes were differentially expressed (P < 0.01 and fold change >1.4) in the ilium bone of bears between winter and summer. The Gene Ontology and Gene Set Enrichment Analysis showed an elevated proportion in hibernating bears of overexpressed genes in six functional sets of genes involved in anabolic processes of tissue morphogenesis and development including skeletal development, cartilage development, and bone biosynthesis. Apoptosis genes demonstrated a tendency for downregulation during hibernation. No coordinated directional changes were detected for genes involved in bone resorption, although some genes responsible for osteoclast formation and differentiation (Ostf1, Rab9a, and c-Fos) were significantly underexpressed in bone of hibernating bears. Elevated expression of multiple anabolic genes without induction of bone resorption genes, and the down regulation of apoptosis-related genes, likely contribute to the adaptive mechanism that preserves bone mass and structure through prolonged periods of immobility during hibernation.

  15. Black bears with longer disuse (hibernation) periods have lower femoral osteon population density and greater mineralization and intracortical porosity.

    PubMed

    Wojda, Samantha J; Weyland, David R; Gray, Sarah K; McGee-Lawrence, Meghan E; Drummer, Thomas D; Donahue, Seth W

    2013-08-01

    Intracortical bone remodeling is persistent throughout life, leading to age related increases in osteon population density (OPD). Intracortical porosity also increases with age in many mammals including humans, contributing to bone fragility and fracture risk. Unbalanced bone resorption and formation during disuse (e.g., physical inactivity) also increases intracortical porosity. In contrast, hibernating bears are a naturally occurring model for the prevention of both age-related and disuse osteoporoses. Intracortical bone remodeling is decreased during hibernation, but resorption and formation remain balanced. Black bears spend 0.25-7 months in hibernation annually depending on climate and food availability. We found longer hibernating bears demonstrate lower OPD and higher cortical bone mineralization than bears with shorter hibernation durations, but we surprisingly found longer hibernating bears had higher intracortical porosity. However, bears from three different latitudes showed age-related decreases in intracortical porosity, indicating that regardless of hibernation duration, black bears do not show the disuse- or age-related increases in intracortical porosity which is typical of other animals. This ability to prevent increases in intracortical porosity likely contributes to their ability to maintain bone strength during prolonged periods of physical inactivity and throughout life. Improving our understanding of the unique bone metabolism in hibernating bears will potentially increase our ability to develop treatments for age- and disuse-related osteoporoses in humans.

  16. Distribution of endocrine cells in the digestive tract of Alligator sinensis during the active and hibernating period.

    PubMed

    Wang, Huan; Zhang, Shengzhou; Zhou, Naizhen; Wang, Chaolin; Wu, Xiaobing

    2014-10-01

    The digestive tract is the largest endocrine organ in the body; the distribution pattern of endocrine cells varies with different pathological and physiological states. The aim of the present study was to investigate the distributed density of 5-hydroxytryptamine (5-HT), gastrin (GAS), somatostatin (SS) and vasoactive intestinal peptide (VIP) immunoreactive (IR) cells in the digestive tract of Alligator sinensis during the active and hibernating period by immunohistochemical (IHC) method. The results indicated that 5-HT-IR cells were distributed throughout the entire digestive tract, which were most predominant in duodenum and jejunum. The density increased significantly in stomach and duodenum during hibernation. GAS-IR cells were limited in small stomach and small intestine. The density decreased significantly in small stomach during hibernation, while increased in duodenum. What's more, most of the endocrine cells in duodenum were generally spindle shaped with long cytoplasmic processes ending in the lumen during hibernation. SS-IR cells were limited in stomach and small stomach. The density increased in stomach while decreased in small stomach during hibernation, meanwhile, fewer IR cells occurred in small intestine. VIP-IR cells occurred in stomach and small stomach. The density decreased in small stomach, while increased in stomach during hibernation. These results indicated that the endocrine cells in different parts of digestive tract varied differently during hibernation, their changes were adaptive response to the hibernation.

  17. Preservation of bone mass and structure in hibernating black bears (Ursus americanus) through elevated expression of anabolic genes

    PubMed Central

    Goropashnaya, Anna V.; Tøien, Øivind; Stewart, Nathan C.; Chang, Celia; Wang, Haifang; Yan, Jun; Showe, Louise C.; Showe, Michael K.; Donahue, Seth W.; Barnes, Brian M.

    2015-01-01

    Physical inactivity reduces mechanical load on the skeleton, which leads to losses of bone mass and strength in non-hibernating mammalian species. Although bears are largely inactive during hibernation, they show no loss in bone mass and strength. To obtain insight into molecular mechanisms preventing disuse bone loss, we conducted a large-scale screen of transcriptional changes in trabecular bone comparing winter hibernating and summer non-hibernating black bears using a custom 12,800 probe cDNA microarray. A total of 241 genes were differentially expressed (P<0.01 and fold change >1.4) in the ilium bone of bears between winter and summer. The Gene Ontology and Gene Set Enrichment Analysis showed an elevated proportion in hibernating bears of overexpressed genes in six functional sets of genes involved in anabolic processes of tissue morphogenesis and development including skeletal development, cartilage development, and bone biosynthesis. Apoptosis genes demonstrated a tendency for downregulation during hibernation. No coordinated directional changes were detected for genes involved in bone resorption, although some genes responsible for osteoclast formation and differentiation (Ostf1, Rab9a, and c-Fos) were significantly underexpressed in bone of hibernating bears. Elevated expression of multiple anabolic genes without induction of bone resorption genes, and the down regulation of apoptosis-related genes, likely contribute to the adaptive mechanism that preserves bone mass and structure through prolonged periods of immobility during hibernation. PMID:22351243

  18. Weights and hematology of wild black bears during hibernation

    USGS Publications Warehouse

    DelGiudice, Glenn D.; Rogers, Lynn L.; Allen, Arthur W.; Seal, U.S.

    1991-01-01

    We compared weights and hematological profiles of adult (greater than 3-yr-old) female black bears (Ursus americanus) during hibernation (after 8 January). We handled 28 bears one to four times (total of 47) over 4 yr of varying mast and berry production. Mean weight of lactating bears was greater (P less than 0.0001) than that of non-lactating females. White blood cells (P less than 0.05) and mean corpuscular volume (P = 0.005) also differed between lactating and non-lactating bears. Hemoglobin (P = 0.006) and mean corpuscular hemoglobin concentration (P = 0.02) varied among years; values were lowest during 1975, following decreased precipitation and the occurrence of a second year of mast and berry crop shortages in a three-year period. Significant (P less than 0.05) interaction between reproductive status (lactating versus non-lactating) and study year for hemoglobin, red blood cells, and packed cell volume, and increased mean corpuscular volume, suggested a greater nutritional challenge for lactating females compared to non-lactating females during the 1975 denning season. Our data suggest that hematological characteristics of denning bears may be more sensitive than weights as indicators of annual changes in nutritional status; however, other influential factors, in addition to mast and berry crop production, remain to be examined.

  19. The physiology of hibernation in common map turtles (Graptemys geographica).

    PubMed

    Reese, S A; Crocker, C E; Carwile, M E; Jackson, D C; Ultsch, G R

    2001-09-01

    Map turtles from Wisconsin were submerged at 3 degrees C in normoxic and anoxic water to simulate extremes of potential respiratory microenvironments while hibernating under ice. In predive turtles, and in turtles submerged for up to 150 days, plasma PO2, PCO2) pH, [Cl-], [Na+], [K+], total Mg, total Ca, lactate, glucose, and osmolality were measured; hematocrit and body mass were determined, and plasma [HCO3-] was calculated. Turtles in anoxic water developed a severe metabolic acidosis, accumulating lactate from a predive value of 1.7 to 116 mmol/l at 50 days, associated with a fall in pH from 8.010 to 7.128. To buffer lactate increase, total calcium and magnesium rose from 3.5 and 2.0 to 25.7 and 7.6 mmol/l, respectively. Plasma [HCO3-] was titrated from 44.7 to 4.3 mmol/l in turtles in anoxic water. Turtles in normoxic water had only minor disturbances of their acid-base status and ionic statuses; there was a marked increase in hematocrit from 31.1 to 51.9%. This study and field studies suggest that map turtles have an obligatory requirement for a hibernaculum that provides well-oxygenated water (e.g. rivers and large lakes rather than small ponds and swamps) and that this requirement is a major factor in determining their microdistribution.

  20. Ribosome hibernation factor promotes Staphylococcal survival and differentially represses translation

    PubMed Central

    Basu, Arnab; Yap, Mee-Ngan F.

    2016-01-01

    In opportunistic Gram-positive Staphylococcus aureus, a small protein called hibernation-promoting factor (HPFSa) is sufficient to dimerize 2.5-MDa 70S ribosomes into a translationally inactive 100S complex. Although the 100S dimer is observed in only the stationary phase in Gram-negative gammaproteobacteria, it is ubiquitous throughout all growth phases in S. aureus. The biological significance of the 100S ribosome is poorly understood. Here, we reveal an important role of HPFSa in preserving ribosome integrity and poising cells for translational restart, a process that has significant clinical implications for relapsed staphylococcal infections. We found that the hpf null strain is severely impaired in long-term viability concomitant with a dramatic loss of intact ribosomes. Genome-wide ribosome profiling shows that eliminating HPFSa drastically increased ribosome occupancy at the 5′ end of specific mRNAs under nutrient-limited conditions, suggesting that HPFSa may suppress translation initiation. The protective function of HPFSa on ribosomes resides at the N-terminal conserved basic residues and the extended C-terminal segment, which are critical for dimerization and ribosome binding, respectively. These data provide significant insight into the functional consequences of 100S ribosome loss for protein synthesis and stress adaptation. PMID:27001516

  1. Cold hibernated elastic memory foams for endovascular interventions.

    PubMed

    Metcalfe, Annick; Desfaits, Anne-Cécile; Salazkin, Igor; Yahia, L'Hocine; Sokolowski, Witold M; Raymond, Jean

    2003-02-01

    Cold hibernated elastic memory (CHEM) polyurethane-based foam is a new shape memory polymeric self-deployable structure. Standard cytotoxicity and mutagenicity tests were conducted on CHEM in vitro, to ensure biocompatibility before studying potential medical applications. In vivo, lateral wall aneurysms were constructed on both carotid arteries of eight dogs. Aneurysms were occluded per-operatively with CHEM blocks. In two dogs, CHEM embolization was compared with gelatin sponge fragment embolization. Internal maxillary arteries (Imax) were also occluded with CHEM using a 6F transcatheter technique. Angiography and pathology were used to study the evolution of aneurysms and Imax at 3 and 12 weeks. Imax embolized with CHEM foam remained occluded at 3 weeks. Most aneurysms embolized with CHEM showed a small residual crescent of opacification at initial angiography, but angiographic scores were significantly better at 3 weeks. Thick neointima formation over the CHEM at the neck of aneurysms was demonstrated at pathology. The foamy nature of CHEM favours the ingrowth of cells involved in neointima formation. New devices for endovascular interventions could be designed using CHEM's unique physical properties.

  2. Protection against fat cell hyperplasia in a hibernator, Glis glis.

    PubMed

    Mrosovsky, N; Nash, P; Faust, I M

    1987-10-01

    Dormice, Glis glis, were fed a high-fat diet for 11 mo in one experiment: in another experiment they were fed a high-fat diet for 5 mo, either at room temperature (21.5 degrees C) or in a warm room (27 degrees C). Only in the latter group did adipocyte hyperplasia occur; this was significant in all the fat depots studied (inguinal, retroperitoneal, and gonadal). In the other groups there was no evidence of fat cell hyperplasia, despite weight gains from approximately 160 g (peaks on chow diet) to approximately 250 g (maximums on high-fat diet). Instead, fat cell size, assessed from biopsies of the inguinal area, became considerably enlarged. Taken together with earlier data from other species, the results suggest that hibernators are protected against fat cell hyperplasia. In dormice this protection appears to be present at all phases of their seasonal weight cycles. For species that experience several cycles of weight gain and loss in their lives, it may be adaptive to avoid increases in adipocyte number.

  3. Daily rhythmicity and hibernation in the Anatolian ground squirrel under natural and laboratory conditions.

    PubMed

    Kart Gür, Mutlu; Refinetti, Roberto; Gür, Hakan

    2009-02-01

    We studied daily rhythmicity of body temperature (T(b)) before and during hibernation in Anatolian ground squirrels (Spermophilus xanthoprymnus) under natural and laboratory conditions using surgically implanted temperature loggers. Under both conditions, robust daily T(b) rhythmicity with parameters comparable to those of other ground squirrel species was observed before but not during hibernation. Euthermic animals had robust daily T(b) rhythms with a mean of 37.0 degrees C and a range of excursion of approximately 4 degrees C. No T(b) rhythm was detected during torpor bouts, either because T(b) rhythmicity was absent or because the daily range of excursion was smaller than 0.2 degrees C. The general patterns of hibernation that we observed in Anatolian ground squirrels were similar to those previously observed by other investigators in other species of ground squirrels.

  4. Analysis of the hibernation cycle using LC-MS-based metabolomics in ground squirrel liver.

    PubMed

    Nelson, Clark J; Otis, Jessica P; Martin, Sandra L; Carey, Hannah V

    2009-03-03

    A hallmark of hibernation in mammals is metabolic flexibility, which is typified by reversible bouts of metabolic depression (torpor) and the seasonal shift from predominantly carbohydrate to lipid metabolism from summer to winter. To provide new insight into the control and consequences of hibernation, we used LC/MS-based metabolomics to measure differences in small molecules in ground squirrel liver in five activity states: summer, entering torpor, late torpor, arousing from torpor, and interbout arousal. There were significant alterations both seasonally and within torpor-arousal cycles in enzyme cofactor metabolism, amino acid catabolism, and purine and pyrimidine metabolism, with observed metabolites reduced during torpor and increased upon arousal. Multiple lipids also changed, including 1-oleoyllysophosphatidylcholine, cholesterol sulfate, and sphingosine, which tended to be lowest during torpor, and hexadecanedioic acid, which accumulated during a torpor bout. The results reveal the dramatic alterations that occur in several classes of metabolites, highlighting the value of metabolomic analyses in deciphering the hibernation phenotype.

  5. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    PubMed

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-05

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition.

  6. Purification and properties of glycerol-3-phosphate dehydrogenase from the liver of the hibernating ground squirrel, Urocitellus richardsonii.

    PubMed

    Ruberto, Anthony A; Childers, Christine L; Storey, Kenneth B

    2016-12-01

    Cytosolic glycerol-3-phosphate dehydrogenase (G3PDH, EC 1.1.1.8) is an important branch point enzyme connecting lipid metabolism and carbohydrate metabolism. We investigated the dynamic nature of G3PDH by purifying the enzyme from the liver of Richardson's ground squirrel (Urocitellus richardsonii), a hibernating species, and analyzing its structural and functional changes during hibernation. Kinetic parameters of purified G3PDH from ground squirrel liver were characterized at 37, 22 and 5°C and compared between euthermic and hibernating states. Relative to euthermic liver G3PDH, hibernator liver G3PDH had a decreased affinity for its substrate, glycerol-3-phosphate (G3P), at 37°C and 22°C. However, at 5°C, there was a significant increase in the affinity for G3P in the hibernating form of the enzyme, relative to the euthermic form. Furthermore, the structure of G3PDH in the species' hibernating state showed greater thermal stability compared to its structure in the euthermic state. Western blot analysis revealed greater tyrosine phosphorylation in hibernator G3PDH as compared to euthermic G3PDH. In addition, using the protein sequence of the hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and bioinformatics tools, a three-dimensional model of G3PDH was built to identify the potential phosphorylation site ((83)Tyr) responsible for the differential phosphorylation between euthermic and hibernator G3PDH. The structural and functional changes in G3PDH support the enzyme's function at a low core body temperature experienced during the species hibernating season.

  7. Winter hibernation and UCHL1-p34cdc2 association in toad oocyte maturation competence.

    PubMed

    Kuang, Zhichao; Yao, Yuwei; Shi, Yan; Gu, Zheng; Sun, Zhaogui; Tso, Jiake

    2013-01-01

    Currently, it is believed that toad oocyte maturation is dependent on the physiological conditions of winter hibernation. Previous antibody-blocking experiments have demonstrated that toad ubiquitin carboxyl-terminal hydrolase L1 (tUCHL1) is necessary for germinal vesicle breakdown during toad oocyte maturation. In this paper, we first supply evidence that tUCHL1 is highly evolutionarily conserved. Then, we exclude protein availability and ubiquitin carboxyl-terminal hydrolase enzyme activity as factors in the response of oocytes to winter hibernation. In the context of MPF (maturation promoting factor) controlling oocyte maturation and to further understand the role of UCHL1 in oocyte maturation, we performed adsorption and co-immunoprecipitation experiments using toad oocyte protein extracts and determined that tUCHL1 is associated with MPF in toad oocytes. Recombinant tUCHL1 absorbed p34(cdc2), a component of MPF, in obviously larger quantities from mature oocytes than from immature oocytes, and p13(suc1) was isolated from tUCHL1 with a dependence on the ATP regeneration system, suggesting that still other functions may be involved in their association that require phosphorylation. In oocytes from hibernation-interrupted toads, the p34(cdc2) protein level was significantly lower than in oocytes from toads in artificial hibernation, providing an explanation for the different quantities isolated by recombinant tUCHL1 pull-down and, more importantly, identifying a mechanism involved in the toad oocyte's dependence on a low environmental temperature during winter hibernation. Therefore, in toads, tUCHL1 binds p34(cdc2) and plays a role in oocyte maturation. However, neither tUCHL1 nor cyclin B1 respond to low temperatures to facilitate oocyte maturation competence during winter hibernation.

  8. The hibernating mobile phone: Dead storage as a barrier to efficient electronic waste recovery.

    PubMed

    Wilson, Garrath T; Smalley, Grace; Suckling, James R; Lilley, Debra; Lee, Jacquetta; Mawle, Richard

    2017-02-01

    Hibernation, the dead storage period when a mobile phone is still retained by the user at its end-of-life, is both a common and a significant barrier to the effective flow of time-sensitive stock value within a circular economic model. In this paper we present the findings of a survey of 181 mobile phone owners, aged between 18-25years old, living and studying in the UK, which explored mobile phone ownership, reasons for hibernation, and replacement motives. This paper also outlines and implements a novel mechanism for quantifying the mean hibernation period based on the survey findings. The results show that only 33.70% of previously owned mobile phones were returned back into the system. The average duration of ownership of mobile phones kept and still in hibernation was 4years 11months, with average use and hibernation durations of 1year 11months, and 3years respectively; on average, mobile phones that are kept by the user are hibernated for longer than they are ever actually used as primary devices. The results also indicate that mobile phone replacement is driven primarily by physical (technological, functional and absolute) obsolescence, with economic obsolescence, partly in response to the notion of being 'due an upgrade', also featuring significantly. We also identify in this paper the concept of a secondary phone, a recently replaced phone that holds a different function for the user than their primary phone but is still valued and intentionally retained by the user, and which, we conclude, should be accounted for in any reverse logistics strategy.

  9. Skeletal muscles of hibernating brown bears are unusually resistant to effects of denervation.

    PubMed

    Lin, David C; Hershey, John D; Mattoon, John S; Robbins, Charles T

    2012-06-15

    Hibernating bears retain most of their skeletal muscle strength despite drastically reduced weight-bearing activity. Regular neural activation of muscles is a potential mechanism by which muscle atrophy could be limited. However, both mechanical loading and neural activity are usually necessary to maintain muscle size. An alternative mechanism is that the signaling pathways related to the regulation of muscle size could be altered so that neither mechanical nor neural inputs are needed for retaining strength. More specifically, we hypothesized that muscles in hibernating bears are resistant to a severe reduction in neural activation. To test this hypothesis, we unilaterally transected the common peroneal nerve, which innervates ankle flexor muscles, in hibernating and summer-active brown bears (Ursus arctos). In hibernating bears, the long digital extensor (LDE) and cranial tibial (CT) musculotendon masses on the denervated side decreased after 11 weeks post-surgery by 18 ± 11 and 25 ± 10%, respectively, compared with those in the intact side. In contrast, decreases in musculotendon masses of summer-active bears after denervation were 61 ± 4 and 58 ± 5% in the LDE and CT, respectively, and significantly different from those of hibernating bears. The decrease due to denervation in summer-active bears was comparable to that occurring in other mammals. Whole-muscle cross-sectional areas (CSAs) measured from ultrasound images and myofiber CSAs measured from biopsies decreased similarly to musculotendon mass. Thus, hibernating bears alter skeletal muscle catabolic pathways regulated by neural activity, and exploration of these pathways may offer potential solutions for disuse atrophy of muscles.

  10. Warming up and shipping out: arousal and emergence timing in hibernating little brown bats (Myotis lucifugus).

    PubMed

    Czenze, Zenon J; Willis, Craig K R

    2015-07-01

    Phenology refers to the timing of events in the annual cycle of organisms. For temperate-zone mammals, hibernation is one such event, but little is known about its phenology. Hibernation consists of energy-saving torpor bouts interspersed with energetically expensive arousals to normothermic Tb, and hibernators should benefit from mechanisms which reduce arousal costs and help them time arousals to coincide with foraging opportunities. In a previous study, we showed that, in contrast to hibernating bats from warmer climates, little brown bats (Myotis lucifugus) from central Canada abandon a circadian pattern to arousal in the middle of winter when there is no chance of feeding. Here, we used temperature telemetry to test whether they would re-synchronize arousals with normal foraging time (i.e. sunset) during late winter as the chance of foraging or emergence opportunities improves, and whether they would synchronize arousals with conspecifics, possibly to exploit social thermoregulation. We also used passive transponders to test whether energy reserves and/or sex differences in reproductive timing influence phenology and the sensitivity of emergence timing to environmental cues. In contrast to patterns in mid-winter, after 7 April 2013, bats synchronized arousals with sunset and with conspecifics. Females emerged earlier than males, and females in the best condition emerged first while body condition had no influence on male emergence timing. Both male and female bats appeared to time emergence with falling barometric pressure, a cue that predicts favourable foraging conditions for bats but which, unlike outside temperature, would have been readily detectable by bats inside the hibernaculum. Our results highlight hibernation traits associated with extreme winter energy limitation for insect-eating bats in cold climates and illustrate the influence of reproductive timing and environmental conditions on hibernation energetics and phenology.

  11. The effect of hibernation on protein phosphatases from ground squirrel organs.

    PubMed

    MacDonald, Justin A; Storey, Kenneth B

    2007-12-15

    Protein phosphorylation has been identified as a reversible mechanism for the regulated suppression of metabolism and thermogenesis during mammalian hibernation. The effects of hibernation on the activity of serine/threonine and tyrosine protein phosphatases (PP1, PP2A, PP2C and PTPs) were assessed in five organs of Richardson's ground squirrel. Each phosphatase subfamily responded differently during torpor, and each showed organ-specific patterns of activity changes. The distribution of PP1 catalytic subunit (PP1c) isoforms (alpha, delta, gamma1) was assessed in five organs, and changes in the subcellular distribution of PP1 were observed during hibernation in liver and muscle. For example, in muscle, cytosolic PP1 content increased and myofibril-associated PP1 decreased during torpor. PP1c from ground squirrel liver was purified to homogeneity and characterized; temperature effects on PP1c maximal activity suggested that temperature had little or no effect on relative dephosphorylation potential at low temperatures. However, nucleotide inhibition of PP1c by ATP, ADP and AMP was much weaker at 5 degrees C compared with 37 degrees C assay temperatures. PP2A activity decreased in three organs (brown adipose, kidney, brain) during hibernation whereas PP2C activity was increased in liver and brain. PTPs were assessed using both a general substrate (ENDpYINASL) and a substrate (DADEpYLIPQQG) specific for PTPs containing the SH2-binding site; both revealed hibernation-associated changes in PTP activities. Changes in protein phosphatase activities suggest the relative importance of these modules in controlling metabolic function and cellular processes during mammalian hibernation.

  12. Genomic analysis of miRNAs in an extreme mammalian hibernator, the Arctic ground squirrel.

    PubMed

    Liu, Yuting; Hu, Wenchao; Wang, Haifang; Lu, Minghua; Shao, Chunxuan; Menzel, Corinna; Yan, Zheng; Li, Ying; Zhao, Sen; Khaitovich, Philipp; Liu, Mofang; Chen, Wei; Barnes, Brian M; Yan, Jun

    2010-09-01

    MicroRNAs (miRNAs) are 19- to 25-nucleotide-long small and noncoding RNAs now well-known for their regulatory roles in gene expression through posttranscriptional and translational controls. Mammalian hibernation is a physiological process involving profound changes in set-points for food consumption, body mass and growth, body temperature, and metabolic rate in which miRNAs may play important regulatory roles. In an initial study, we analyzed miRNAs in the liver of an extreme hibernating species, the Arctic ground squirrel (Spermophilus parryii), using massively parallel Illumina sequencing technology. We identified >200 ground squirrel miRNAs, including 18 novel miRNAs specific to ground squirrel and mir-506 that is fast evolving in the ground squirrel lineage. Comparing animals sampled after at least 8 days of continuous torpor (late torpid), within 5 h of a spontaneous arousal episode (early aroused), and 1-2 mo after hibernation had ended (nonhibernating), we identified differentially expressed miRNAs during hibernation, which are also compared with the results from two other miRNA profiling methods: Agilent miRNA microarray and real-time PCR. Among the most significant miRNAs, miR-320 and miR-378 were significantly underexpressed during both stages of hibernation compared with nonhibernating animals, whereas miR-486 and miR-451 were overexpressed in late torpor but returned in early arousal to the levels similar to those in nonhibernating animals. Analyses of their putative target genes suggest that these miRNAs could play an important role in suppressing tumor progression and cell growth during hibernation. High-throughput sequencing data and microarray data have been submitted to GEO database with accession: GSE19808.

  13. [Seasonal changes in phosphorylation of myosin regulatory light chains and C-protein in myocardium of hibernating ground squirrel Citellus undulatus].

    PubMed

    Malyshev, S L; Osipova, D A; Vikhliantsev, I M; Podlubnaia, Z A

    2006-01-01

    A comparative study concerning the extent of phosphorylation of myosin regulatory light chains and C-protein from the left ventricle of hibernating ground squirrel Citellus undulatus during the periods of hibernation and activity was carried out. During hibernation, regulatory light chains of ground squirrel were found to be completely dephosphorylated. In active animals, the share of phosphorylated light chains averages 40-45% of their total amount. The extent of phosphorylation of the cardiac C-protein during hibernation is about two times higher than that in the active state. Seasonal differences in phosphorylation of the two proteins of ground squirrel myocardium are discussed in the context of adaptation to hibernation.

  14. Fatty acids and cholesterol in the liver cell nuclei of hibernating Yakutian ground squirrels.

    PubMed

    Kolomiytseva, I K; Lakhina, A A; Markevich, L N; Fesenko, E E

    2016-09-01

    The content of neutral lipids in tissue homogenates and liver cell nuclei of hibernating Yakutian ground squirrels was studied. In homogenates, hibernation increases the content of fatty acids and reduces the content of glycerides and cholesterol. When studying the liver cell nuclei of torpid winter ground squirrels, we detected a twofold increase in the content of fatty acids, cholesterol, and monoglycerides as compared to the "summer" ground squirrels. In the active "winter" ground squirrels, as compared to the torpid winter ones, the content of cholesterol did not change, whereas the content of fatty acids, monoglycerides, and diglycerides decreased but remained higher than in the "summer" ground squirrels.

  15. Intermediary metabolism during brief and prolonged low tissue temperature. [mammalian thermoregulation during hibernation and hypothermia

    NASA Technical Reports Server (NTRS)

    Enteman, C.

    1973-01-01

    The intermediary metabolism of the depressed metabolic state in the hypothermic hamster and the hibernating ground squirrel was studied by observing acetate and palmitic acid metabolisms in their tissues. The oxidative metabolism seemed to be dominant in the depressed state although synthetic reactions such as fat synthesis proceeded in some cases at a faster rate than normothermic metabolism for the same tissues. Fat syntheses proceeded in all tissues with brown fat and liver especially active. Enzymes for the synthesis of cholesterol seemed to be more temperature sensitive than enzymes for fatty acid synthesis. It was concluded that there are no great differences between metabolisms in hypothermic and hibernating animals.

  16. Responses to preoptic temperature manipulation in the awake and hibernating marmot

    NASA Technical Reports Server (NTRS)

    South, F. E.; Hartner, W. C.; Luecke, R. H.

    1975-01-01

    Responses of normothermic and hibernating marmots to manipulations of the preoptic-hypothalamic temperature (T-PO) were experimentally investigated. An exponential increase in open-loop gain (OLG) occurred with decreases in temperature; it is concluded that this response can be explained by recruitment of cold-sensitive neurons brought about by low-temperature inactivation of inhibitory neurons. Marmots not only seek out the hibernating state, but also utilize all the thermoregulatory means they possess to remain in it for a given period of time.

  17. Evidence-Based Interventions for Juvenile Offenders and Juvenile Justice Policies that Support Them. Social Policy Report. Volume 25, Number 1

    ERIC Educational Resources Information Center

    Henggeler, Scott W.; Schoenwald, Sonja K.

    2011-01-01

    In a context where more than 1,000,000 American adolescents are processed by juvenile courts annually and approximately 160,000 are sent to residential placements, this paper examines "what works" and "what doesn't work" in reducing the criminal behavior of juvenile offenders and presents examples of government initiatives that have successfully…

  18. Renewing Juvenile Justice

    ERIC Educational Resources Information Center

    Macallair, Daniel; Males, Mike; Enty, Dinky Manek; Vinakor, Natasha

    2011-01-01

    The Center on Juvenile and Criminal Justice (CJCJ) was commissioned by Sierra Health Foundation to critically examine California's juvenile justice system and consider the potential role of foundations in promoting systemic reform. The information gathered by CJCJ researchers for this report suggests that foundations can perform a key leadership…

  19. Juvenile Delinquency Intervention.

    ERIC Educational Resources Information Center

    Lipsey, Mark W.

    1988-01-01

    Three meta-analyses by C. J. Garrett (1984, 1985), P. Kaufman (1985), and W. S. Davidson and others (1984) of juvenile delinquency interventions are summarized. This systematic literature review indicates that interventions to reduce juvenile delinquency may have small, but meaningful, impacts. Promising avenues for future research are suggested.…

  20. Juvenile Confinement in Context

    ERIC Educational Resources Information Center

    Mendel, Richard A.

    2012-01-01

    For more than a century, the predominant strategy for the treatment and punishment of serious and sometimes not-so-serious juvenile offenders in the United States has been placement into large juvenile corrections institutions, alternatively known as training schools, reformatories, or youth corrections centers. America's heavy reliance on…

  1. Distinguishing juvenile homicide from violent juvenile offending.

    PubMed

    DiCataldo, Frank; Everett, Meghan

    2008-04-01

    Juvenile homicide is a social problem that has remained a central focus within juvenile justice research in recent years. The term juvenile murderer describes a legal category, but it is purported to have significant scientific meaning. Research has attempted to conceptualize adolescent murderers as a clinical category that can be reliably distinguished from their nonhomicidal counterparts. This study examined 33 adolescents adjudicated delinquent or awaiting trial for murder and 38 adolescents who committed violent, nonhomicidal offenses to determine whether the two groups differed significantly on family history, early development, delinquency history, mental health, and weapon possession variables. The nonhomicide group proved more problematic on many of these measures. Two key factors did distinguish the homicide group: These adolescents endorsed the greater availability of guns and substance abuse at the time of their commitment offenses. The significance of this finding is discussed, and the implications for risk management and policy are reviewed.

  2. The effects of day length, hibernation, and ambient temperature on incisor dentin in the Turkish hamster (Mesocricetus brandti).

    PubMed

    Batavia, Mariska; Nguyen, George; Zucker, Irving

    2013-05-01

    Dentin is deposited on a circadian basis, and daily layers manifest as bands on the medial surfaces of rodent incisors. Hibernation alters dentin deposition, and a distinct hibernation mark has been described on incisor surfaces of several rodent species; the factors that influence the morphology of this mark are poorly understood. We tested the effects of day length, torpor expression, and ambient temperature on incisor surface morphology in Turkish hamsters housed in one of four conditions: long days (LDs) at 22 °C, short days (SDs) at 22 °C, SDs at 5 °C, and SDs at 13 °C. Body temperature was monitored continuously with implanted radio transmitters, and teeth examined postmortem. Teeth of SD hamsters had narrower, less distinct circadian increments than those of LD hamsters, but the width of ultradian increments was similar in both photoperiods. Hibernation at both 5 and 13 °C was associated in most specimens with very narrow, sharply defined dentin increments and increased tooth heterogeneity. Hamsters in SDs at 5 °C that did not hibernate lacked characteristic hibernation increments. At 5 °C, but not 13 °C, the number and cumulative width of hibernation increments were related to number and cumulative duration of periodic arousals. Our results suggest that incremental deposition of dentin in rodent incisors may be a useful trait for characterizing hibernation behavior in both evolutionary and historical contexts.

  3. Hormones and hibernation: possible links between hormone systems, winter energy balance and white-nose syndrome in bats.

    PubMed

    Willis, Craig K R; Wilcox, Alana

    2014-06-01

    This article is part of a Special Issue "Energy Balance". Hibernation allows mammals to survive in cold climates and during times of reduced food availability. Drastic physiological changes are required to maintain the energy savings that characterize hibernation. These changes presumably enable adjustments in endocrine activity that control metabolism and body temperature, and ultimately influence expression of torpor and periodic arousals. Despite challenges that exist when examining hormonal pathways in small-bodied hibernators, bats represent a potential model taxon for comparative neuroendocrinological studies of hibernation due to their diversity of species and the reliance of many species on heterothermy. Understanding physiological mechanisms underlying hibernation in bats is also important from a conservation physiology perspective due to white-nose syndrome, an emerging infectious disease causing catastrophic mortality among hibernating bats in eastern North America. Here we review the potential influence of three key hormonal mechanisms--leptin, melatonin and glucocorticoids--on hibernation in mammals with an emphasis on bats. We propose testable hypotheses about potential effects of WNS on these systems and their evolution.

  4. Thermoregulatory changes anticipate hibernation onset by 45 days: data from free-living arctic ground squirrels.

    PubMed

    Sheriff, Michael J; Williams, Cory T; Kenagy, G J; Buck, C Loren; Barnes, Brian M

    2012-08-01

    Hibernation is a strategy of reducing energy expenditure, body temperature (T(b)) and activity used by endotherms to escape unpredictable or seasonally reduced food availability. Despite extensive research on thermoregulatory adjustments during hibernation, less is known about transitions in thermoregulatory state, particularly under natural conditions. Laboratory studies on hibernating ground squirrels have demonstrated that thermoregulatory adjustments may occur over short intervals when animals undergo several brief, preliminary torpor bouts prior to entering multiday torpor. These short torpor bouts have been suggested to reflect a resetting of hypothalamic regions that control T(b) or to precondition animals before they undergo deep, multiday torpor. Here, we examined continuous records of T(b) in 240 arctic ground squirrels (Urocitellus parryii) prior to hibernation in the wild and in captivity. In free-living squirrels, T(b) began to decline 45 days prior to hibernation, and average T(b) had decreased 4.28 °C at the onset of torpor. Further, we found that 75 % of free-living squirrels and 35 % of captive squirrels entered bouts of multiday torpor with a single T(b) decline and without previously showing short preliminary bouts. This study provides evidence that adjustments in the thermoregulatory component of hibernation begin far earlier than previously demonstrated. The gradual reduction in T(b) is likely a component of the suite of metabolic and behavioral adjustments, controlled by an endogenous, circannual rhythm, that vary seasonally in hibernating ground squirrels.

  5. Hibernation-associated changes in persistent organic pollutant (POP) levels and patterns in British Columbia grizzly bears (ursus arctos horribilis).

    PubMed

    Christensen, Jennie R; MacDuffee, Misty; Yunker, Mark B; Ross, Peter S

    2007-03-15

    We hypothesized that depleted fat reserves in grizzly bears (Ursus arctos horribilis) following annual hibernation would reveal increases in persistent organic pollutant (POP) concentrations compared to those present in the fall. We obtained fat and hair from British Columbia grizzly bears in early spring 2004 to compare with those collected in fall 2003, with the two tissue types providing contaminant and dietary information, respectively. By correcting for the individual feeding habits of grizzlies using a stable isotope-based approach, we found that polychlorinated biphenyls (sigmaPCBs) increased by 2.21x, polybrominated diphenylethers (sigmaPBDEs) increased by 1.58x, and chlordanes (sigmaCHL) by 1.49x in fat following hibernation. Interestingly, individual POPs elicited a wide range of hibernation-associated concentration effects (e.g., CB-153, 2.25x vs CB-169, 0.00x), resulting in POP pattern convergence in a PCA model of two distinct fall feeding groups (salmon-eating vs non-salmon-eating) into a single spring (post-hibernation) group. Our results suggest that diet dictates contaminant patterns during a feeding phase, while metabolism drives patterns during a fasting phase. This work suggests a duality of POP-associated health risks to hibernating grizzly bears: (1) increased concentrations of some POPs during hibernation; and (2) a potentially prolonged accumulation of water-soluble, highly reactive POP metabolites, since grizzly bears do not excrete during hibernation.

  6. Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A(1) receptors.

    PubMed

    Jinka, Tulasi R; Tøien, Øivind; Drew, Kelly L

    2011-07-27

    Torpor in hibernating mammals defines the nadir in mammalian metabolic demand and body temperature that accommodates seasonal periods of reduced energy availability. The mechanism of metabolic suppression during torpor onset is unknown, although the CNS is a key regulator of torpor. Seasonal hibernators, such as the arctic ground squirrel (AGS), display torpor only during the winter, hibernation season. The seasonal character of hibernation thus provides a clue to its regulation. In the present study, we delivered adenosine receptor agonists and antagonists into the lateral ventricle of AGSs at different times of the year while monitoring the rate of O(2) consumption and core body temperature as indicators of torpor. The A(1) antagonist cyclopentyltheophylline reversed spontaneous entrance into torpor. The adenosine A(1) receptor agonist N(6)-cyclohexyladenosine (CHA) induced torpor in six of six AGSs tested during the mid-hibernation season, two of six AGSs tested early in the hibernation season, and none of the six AGSs tested during the summer, off-season. CHA-induced torpor within the hibernation season was specific to A(1)AR activation; the A(3)AR agonist 2-Cl-IB MECA failed to induce torpor, and the A(2a)R antagonist MSX-3 failed to reverse spontaneous onset of torpor. CHA-induced torpor was similar to spontaneous entrance into torpor. These results show that metabolic suppression during torpor onset is regulated within the CNS via A(1)AR activation and requires a seasonal switch in the sensitivity of purinergic signaling.

  7. Metabolic hormone FGF21 is induced in ground squirrels during hibernation but its overexpression is not sufficient to cause torpor.

    PubMed

    Nelson, Bethany T; Ding, Xunshan; Boney-Montoya, Jamie; Gerard, Robert D; Kliewer, Steven A; Andrews, Matthew T

    2013-01-01

    Hibernation is a natural adaptation that allows certain mammals to survive physiological extremes that are lethal to humans. Near freezing body temperatures, heart rates of 3-10 beats per minute, absence of food consumption, and depressed metabolism are characteristic of hibernation torpor bouts that are periodically interrupted by brief interbout arousals (IBAs). The molecular basis of torpor induction is unknown, however starved mice overexpressing the metabolic hormone fibroblast growth factor 21 (FGF21) promote fat utilization, reduce body temperature, and readily enter torpor-all hallmarks of mammalian hibernation. In this study we cloned FGF21 from the naturally hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and found that levels of FGF21 mRNA in liver and FGF21 protein in serum are elevated during hibernation torpor bouts and significantly elevated during IBAs compared to summer active animals. The effects of artificially elevating circulating FGF21 concentrations 50 to 100-fold via adenoviral-mediated overexpression were examined at three different times of the year. This is the first time that a transgenic approach has been used in a natural hibernator to examine mechanistic aspects of hibernation. Surgically implanted transmitters measured various metrics of the hibernation phenotype over a 7-day period including changes in motor activity, heart rate and core body temperature. In April fed-state animals, FGF21 overexpression decreased blood insulin and free fatty acid concentrations, effects similar to those seen in obese mice. However, elevated FGF21 concentrations did not cause torpor in these fed-state animals nor did they cause torpor or affect metabolic parameters in fasted-state animals in March/April, August or October. We conclude that FGF21 is strongly regulated during torpor and IBA but that its overexpression is not sufficient to cause torpor in naturally hibernating ground squirrels.

  8. Increased thermogenic capacity of brown adipose tissue under low temperature and its contribution to arousal from hibernation in Syrian hamsters.

    PubMed

    Kitao, Naoya; Hashimoto, Masaaki

    2012-01-01

    Brown adipose tissue (BAT) is thought to play a significant physiological role during arousal when body temperature rises from the extremely low body temperature that occurs during hibernation. The dominant pathway of BAT thermogenesis occurs through the β(3)-adrenergic receptor. In this study, we investigated the role of the β(3)-adrenergic system in BAT thermogenesis during arousal from hibernation both in vitro and in vivo. Syrian hamsters in the hibernation group contained BAT that was significantly greater in overall mass, total protein, and thermogenic uncoupling protein-1 than BAT from the warm-acclimated group. Although the ability of the β(3)-agonist CL316,243 to induce BAT thermogenesis at 36°C was no different between the hibernation and warm-acclimated groups, its maximum ratio over the basal value at 12°C in the hibernation group was significantly larger than that in the warm-acclimated group. Forskolin stimulation at 12°C produced equivalent BAT responses in these two groups. In vivo thermogenesis was assessed with the arousal time determined by the time course of BAT temperature or heart rate. Stimulation of BAT by CL316,243 significantly shortened the time of arousal from hibernation compared with that induced by vehicle alone, and it also induced arousal in deep hibernating animals. The β(3)-antagonist SR59230A inhibited arousal from hibernation either in part or completely. These results suggest that BAT in hibernating animals has potent thermogenic activity with a highly effective β(3)-receptor mechanism at lower temperatures.

  9. [Morpho-functional changes in small intestine epithelium of frog Rana temporaria during hibernation].

    PubMed

    Seliverstova, E V; Prutskova, N P

    2012-01-01

    Structure and function of small intestinal epithelium were studied in overwintering frogs Rana temporaria at various stages of hibernation. In the process of testing of absorption of arginine vasotocin (AVT) in experiments in vitro it is established that at the period of hibernation there is preserved the capability of the epithelium for absorption of this nonapeptide without hydrolysis. However, as compared with October-December, in January-February and later, a decrease of the AVT absorption takes place, which is the most pronounced in March-April. Changes in epithelial structures appear by the middle of winter and are progressing by spring. In April-May, as compared with the beginning of hibernation, the height of enterocytes, the length of microvilli, and the number of microvilli decrease by 33 %, 40 %, and 57 %, respectively. The absence of features of destruction indicates an adaptive character of the observed changes. Dynamics of the studied parameters indicates morphological plasticity of the small intestine epithelium of R. temporaria at the period of hibernation.

  10. Torpor in the Patagonian opossum ( Lestodelphys halli): implications for the evolution of daily torpor and hibernation

    NASA Astrophysics Data System (ADS)

    Geiser, Fritz; Martin, Gabriel M.

    2013-10-01

    Hibernation and daily torpor are two distinct forms of torpor, and although they are related, it is not known how and in which sequence they evolved. As the pattern of torpor expressed by the oldest marsupial order the opossums (Didelphimorphia) may provide insights into the evolution of torpor, we aimed to provide the first quantitative data on the thermal biology and torpor expression of the rare Patagonian opossum ( Lestodelphys halli). It is the opossum with the southernmost distribution, has a propensity of autumnal fattening, and therefore, is likely to hibernate. We captured two male Lestodelphys, which while in captivity displayed strong daily fluctuations of body temperatures (Tb) measured with implanted miniature data loggers even when they remained normothermic. In autumn and early winter, torpor was expressed occasionally when food was available, but cold exposure and food withdrawal increased torpor use. The mean Tb throughout the study was 32.2 ± 1.4 °C, the minimum Tb measured in torpid Lestodelphys was 7.7 °C, average torpor bout duration was 10.3 h, and the maximum torpor bout duration was 42.5 h. Thus, the pattern of torpor expressed by Lestodelphys was intermediate between that of daily heterotherms and hibernators suggesting that it may represent an ancestral opportunistic torpor pattern from which the derived patterns of daily torpor and seasonal hibernation diverged.

  11. Torpor in the Patagonian opossum (Lestodelphys halli): implications for the evolution of daily torpor and hibernation.

    PubMed

    Geiser, Fritz; Martin, Gabriel M

    2013-10-01

    Hibernation and daily torpor are two distinct forms of torpor, and although they are related, it is not known how and in which sequence they evolved. As the pattern of torpor expressed by the oldest marsupial order the opossums (Didelphimorphia) may provide insights into the evolution of torpor, we aimed to provide the first quantitative data on the thermal biology and torpor expression of the rare Patagonian opossum (Lestodelphys halli). It is the opossum with the southernmost distribution, has a propensity of autumnal fattening, and therefore, is likely to hibernate. We captured two male Lestodelphys, which while in captivity displayed strong daily fluctuations of body temperatures (Tb) measured with implanted miniature data loggers even when they remained normothermic. In autumn and early winter, torpor was expressed occasionally when food was available, but cold exposure and food withdrawal increased torpor use. The mean Tb throughout the study was 32.2 ± 1.4 °C, the minimum Tb measured in torpid Lestodelphys was 7.7 °C, average torpor bout duration was 10.3 h, and the maximum torpor bout duration was 42.5 h. Thus, the pattern of torpor expressed by Lestodelphys was intermediate between that of daily heterotherms and hibernators suggesting that it may represent an ancestral opportunistic torpor pattern from which the derived patterns of daily torpor and seasonal hibernation diverged.

  12. Comfortably Numb and Back: Plasma Metabolomics Reveals Biochemical Adaptations in the Hibernating 13-Lined Ground Squirrel.

    PubMed

    D'Alessandro, Angelo; Nemkov, Travis; Bogren, Lori K; Martin, Sandra L; Hansen, Kirk C

    2017-02-03

    Hibernation is an evolutionary adaptation that affords some mammals the ability to exploit the cold to achieve extreme metabolic depression (torpor) while avoiding ischemia/reperfusion or hemorrhagic shock injuries. Hibernators cycle periodically out of torpor, restoring high metabolic activity. If understood at the molecular level, the adaptations underlying torpor-arousal cycles may be leveraged for translational applications in critical fields such as intensive care medicine. Here, we monitored 266 metabolites to investigate the metabolic adaptations to hibernation in plasma from 13-lined ground squirrels (57 animals, 9 time points). Results indicate that the periodic arousals foster the removal of potentially toxic oxidative stress-related metabolites, which accumulate in plasma during torpor while replenishing reservoirs of circulating catabolic substrates (free fatty acids and amino acids). Specifically, we identified metabolic fluctuations of basic amino acids lysine and arginine, one-carbon metabolism intermediates, and sulfur-containing metabolites methionine, cysteine, and cystathionine. Conversely, reperfusion injury markers such as succinate/fumarate remained relatively stable across cycles. Considering the cycles of these metabolites with the hibernator's cycling metabolic activity together with their well-established role as substrates for the production of hydrogen sulfide (H2S), we hypothesize that these metabolic fluctuations function as a biological clock regulating torpor to arousal transitions and resistance to reperfusion during arousal.

  13. Regulation of Akt during torpor in the hibernating ground squirrel, Ictidomys tridecemlineatus.

    PubMed

    McMullen, David C; Hallenbeck, John M

    2010-08-01

    The 13-lined ground squirrel (Ictidomys tridecemlineatus) is capable of entering into extended periods of torpor during winter hibernation. The state of torpor represents a hypometabolic shift wherein the rate of oxygen consuming processes are strongly repressed in an effort to maintain cellular homeostasis as the availability of food energy becomes limited. We are interested in studying hibernation/torpor because of the robust state of tolerance to constrained oxygen delivery, oligemia, and hypothermia achieved by the tissues of hibernating mammals. The role of the serine/threonine kinase Akt (also known as PKB) has been examined in torpor in previous studies. However, this is the first study that examines the level of Akt phosphorylation in the liver during the two transition phases of the hibernation cycle: entrance into torpor, and the subsequent arousal from torpor. Our results indicate that Akt is activated in the squirrel liver by phosphorylation of two key residues (Thr(308) and Ser(473)) during entrance into torpor and arousal from torpor. Moreover, we observed increased phosphorylation of key substrates of Akt during the two transition stages of torpor. Finally, this study reports the novel finding that PRAS40, a component of the TORC1 multi-protein complex and a potentially important modulator of metabolism, is regulated during torpor.

  14. BASEBALL IN AMERICAN FICTION.

    ERIC Educational Resources Information Center

    GRABER, RALPH S.

    BASEBALL FICTION HAS MOVED FROM THE JUVENILE STORIES OF THE TURN OF THE CENTURY TO ADULT FICTION IN WHICH THE GAME IS EXAMINED FOR THE LIGHT IT SHEDS ON THE PARADOXES OF AMERICAN LIFE. EARLY BASEBALL FICTION WAS DIRECTED TOWARD THE DIME-NOVEL AUDIENCE, BUT AFTER WORLD WAR I, SUCH WRITERS AS HEYWOOD BROUN AND RING LARDNER AIMED FOR ADULT READERS…

  15. Extension of time until cardiac arrest after injection of a lethal dose of pentobarbital in the hibernating Syrian hamster.

    PubMed

    Miyazawa, Seiji; Shiina, Takahiko; Takewaki, Tadashi; Shimizu, Yasutake

    2009-03-01

    The aim of the present study was to examine whether entry of peripherally injected drugs into the central nervous system is reduced during hibernation. When a lethal dose of pentobarbital was injected intraperitoneally, the time until cardiac arrest was significantly longer in hibernating hamsters than in active controls. The time difference was not a consequence of low body temperature or diminished circulation, because mimicking these parameters in artificial hypothermia did not prolong the time. In contrast, there was no difference in the time until cardiac arrest after intracerebroventricular injection of the anesthetic. These results indicate that entry of peripherally injected anesthetics into the central nervous system may be suppressed during hibernation.

  16. Hormonal changes and energy substrate availability during the hibernation cycle of Syrian hamsters.

    PubMed

    Weitten, Mathieu; Robin, Jean-Patrice; Oudart, Hugues; Pévet, Paul; Habold, Caroline

    2013-09-01

    Animals have to adapt to seasonal variations in food resources and temperature. Hibernation is one of the most efficient means used by animals to cope with harsh winter conditions, wherein survival is achieved through a significant decrease in energy expenditure. The hibernation period is constituted by a succession of torpor bouts (hypometabolism and decrease in body temperature) and periodic arousals (eumetabolism and euthermia). Some species feed during these periodic arousals, and thus show different metabolic adaptations to fat-storing species that fast throughout the hibernation period. Our study aims to define these metabolic adaptations, including hormone (insulin, glucagon, leptin, adiponectin, GLP-1, GiP) and metabolite (glucose, free fatty acids, triglycerides, urea) profiles together with body composition adjustments. Syrian hamsters were exposed to varied photoperiod and temperature conditions mimicking different phases of the hibernation cycle: a long photoperiod at 20 °C (LP20 group), a short photoperiod at 20 °C (SP20 group), and a short photoperiod at 8 °C (SP8). SP8 animals were sampled either at the beginning of a torpor bout (Torpor group) or at the beginning of a periodic arousal (Arousal group). We show that fat store mobilization in hamsters during torpor bouts is associated with decreased circulating levels of glucagon, insulin, leptin, and an increase in adiponectin. Refeeding during periodic arousals results in a decreased free fatty acid plasma concentration and an increase in glycemia and plasma incretin concentrations. Reduced incretin and increased adiponectin levels are therefore in accordance with the changes in nutrient availability and feeding behavior observed during the hibernation cycle of Syrian hamsters.

  17. Cholecystokinin activation of central satiety centers changes seasonally in a mammalian hibernator.

    PubMed

    Otis, Jessica P; Raybould, Helen E; Carey, Hannah V

    2011-05-01

    Hibernators that rely on lipids during winter exhibit profound changes in food intake over the annual cycle. The mechanisms that regulate appetite changes in seasonal hibernators remain unclear, but likely consist of complex interactions between gut hormones, adipokines, and central processing centers. We hypothesized that seasonal changes in the sensitivity of neurons in the nucleus tractus solitarius (NTS) to the gut hormone cholecystokinin (CCK) may contribute to appetite regulation in ground squirrels. Spring (SPR), late summer (SUM), and winter euthermic hibernating (HIB) 13-lined ground squirrels (Ictidomys tridecemlineatus) were treated with intraperitoneal CCK (100 μg/kg) or vehicle (CON) for 3h and Fos expression in the NTS was quantified. In CON squirrels, numbers of Fos-positive neurons in HIB were low compared to SPR and SUM. CCK treatment increased Fos-positive neurons in the NTS at the levels of the area postrema (AP) and pre AP during all seasons and at the level of the rostral AP in HIB squirrels. The highest absolute levels of Fos-positive neurons were found in SPR CCK squirrels, but the highest relative increase from CON was found in HIB CCK squirrels. Fold-changes in Fos-positive neurons in SUM were intermediate between SPR and HIB. Thus, CCK sensitivity falls from SPR to SUM suggesting that seasonal changes in sensitivity of NTS neurons to vagally-derived CCK may influence appetite in the active phase of the annual cycle in hibernating squirrels. Enhanced sensitivity to CCK signaling in NTS neurons of hibernators indicates that changes in gut-brain signaling may contribute to seasonal changes in food intake during the annual cycle.

  18. Lessons from mammalian hibernators: molecular insights into striated muscle plasticity and remodeling.

    PubMed

    Tessier, Shannon N; Storey, Kenneth B

    2016-05-01

    Striated muscle shows an amazing ability to adapt its structural apparatus based on contractile activity, loading conditions, fuel supply, or environmental factors. Studies with mammalian hibernators have identified a variety of molecular pathways which are strategically regulated and allow animals to endure multiple stresses associated with the hibernating season. Of particular interest is the observation that hibernators show little skeletal muscle atrophy despite the profound metabolic rate depression and mechanical unloading that they experience during long weeks of torpor. Additionally, the cardiac muscle of hibernators must adjust to low temperature and reduced perfusion, while the strength of contraction increases in order to pump cold, viscous blood. Consequently, hibernators hold a wealth of knowledge as it pertains to understanding the natural capacity of myocytes to alter structural, contractile and metabolic properties in response to environmental stimuli. The present review outlines the molecular and biochemical mechanisms which play a role in muscular atrophy, hypertrophy, and remodeling. In this capacity, four main networks are highlighted: (1) antioxidant defenses, (2) the regulation of structural, contractile and metabolic proteins, (3) ubiquitin proteosomal machinery, and (4) macroautophagy pathways. Subsequently, we discuss the role of transcription factors nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Myocyte enhancer factor 2 (MEF2), and Forkhead box (FOXO) and their associated posttranslational modifications as it pertains to regulating each of these networks. Finally, we propose that comparing and contrasting these concepts to data collected from model organisms able to withstand dramatic changes in muscular function without injury will allow researchers to delineate physiological versus pathological responses.

  19. Seasonal proteomic changes reveal molecular adaptations to preserve and replenish liver proteins during ground squirrel hibernation.

    PubMed

    Epperson, L Elaine; Rose, James C; Carey, Hannah V; Martin, Sandra L

    2010-02-01

    Hibernators are unique among mammals in their ability to survive extended periods of time with core body temperatures near freezing and with dramatically reduced heart, respiratory, and metabolic rates in a state known as torpor. To gain insight into the molecular events underlying this remarkable physiological phenotype, we applied a proteomic screening approach to identify liver proteins that differ between the summer active (SA) and the entrance (Ent) phase of winter hibernation in 13-lined ground squirrels. The relative abundance of 1,600 protein spots separated on two-dimensional gels was quantitatively determined using fluorescence difference gel electrophoresis, and 74 unique proteins exhibiting significant differences between the two states were identified using liquid chromatography followed by tandem mass spectrometry (LC-MS/MS). Proteins elevated in Ent hibernators included liver fatty acid-binding protein, fatty acid transporter, and 3-hydroxy-3-methylglutaryl-CoA synthase, which support the known metabolic fuel switch to lipid and ketone body utilization in winter. Several proteins involved in protein stability and protein folding were also elevated in the Ent phase, consistent with previous findings. In contrast to transcript screening results, there was a surprising increase in the abundance of proteins involved in protein synthesis during Ent hibernation, including several initiation and elongation factors. This finding, coupled with decreased abundance of numerous proteins involved in amino acid and nitrogen metabolism, supports the intriguing hypothesis that the mechanism of protein preservation and resynthesis is used by hibernating ground squirrels to help avoid nitrogen toxicity and ensure preservation of essential amino acids throughout the long winter fast.

  20. The Link: Connecting Juvenile Justice and Child Welfare. Volume 7, Number 2, Winter 2009

    ERIC Educational Resources Information Center

    Williams, Meghan, Ed.; Price, Jennifer M., Ed.

    2009-01-01

    This issue of "The Link" newsletter contains the following articles: (1) Understanding the Commercial Sexual Exploitation of Children (Lisa Goldblatt Grace); (2) Native American Juvenile Rights: Who Cares? (Terry L. Cross and Kathleen A. Fox); and (3) Strong Juvenile Justice Legislation Passes Senate Committee: Includes Expanded Coordination of…

  1. Differences between Juvenile Offenders with and without Intellectual Disability in Offense Type and Risk Factors

    ERIC Educational Resources Information Center

    Asscher, Jessica J.; van der Put, Claudia E.; Stams, Geert Jan J. M.

    2012-01-01

    The present study aimed to examine differences between American juvenile offenders with and without intellectual disability (ID) in offense type and risk factors. The sample consisted of adolescents with ID (n = 102) and without ID (n = 526) who appeared before the courts for a criminal act and for whom the Washington State Juvenile Court…

  2. First direct evidence of hibernation in an eastern dwarf lemur species (Cheirogaleus crossleyi) from the high-altitude forest of Tsinjoarivo, central-eastern Madagascar.

    PubMed

    Blanco, Marina B; Rahalinarivo, Vololonirina

    2010-10-01

    The nocturnal dwarf lemurs of Madagascar (genus Cheirogaleus) are the only primates known to be obligate hibernators. Although the physiology of hibernation has been studied widely in the western, small-bodied species, Cheirogaleus medius, no direct evidence of hibernation, i.e., body temperature recordings, has been reported for any of the three recognized eastern dwarf lemur species. We present skin temperature data collected by external collar transmitters from two eastern dwarf lemur individuals (Cheirogaleus crossleyi) captured in the high-altitude forest of Tsinjoarivo, central-eastern Madagascar. Our study species is larger in body size than western dwarf lemurs and inhabits much colder environments. We present the first evidence of hibernation in an eastern dwarf lemur species, and we compare the results with data available for the western species. Although the hibernation period is shorter in dwarf lemurs from Tsinjoarivo, minimum body temperatures are lower than those reported for C. medius. Both individuals at Tsinjoarivo showed limited passive and extended deep hibernation during which they did not track ambient temperature as observed in most western dwarf lemurs. Because ambient temperatures at Tsinjoarivo never exceed 30°C, dwarf lemurs have to experience arousals to maintain homeostasis during periods of hibernation. We show that large dwarf lemurs (>400 g) are capable of undergoing deep hibernation and suggest that cold, high-altitude forests may render hibernation highly advantageous during periods of food scarcity. This study has implications for understanding the physiology of hibernation in small-bodied lemurs.

  3. Hibernation-specific alternative splicing of the mRNA encoding cold-inducible RNA-binding protein in the hearts of hamsters.

    PubMed

    Sano, Yuuki; Shiina, Takahiko; Naitou, Kiyotada; Nakamori, Hiroyuki; Shimizu, Yasutake

    2015-07-10

    The hearts of hibernating animals are capable of maintaining constant beating despite a decrease in body temperature to less than 10 °C during hibernation, suggesting that the hearts of hibernators are highly tolerant to a cold temperature. In the present study, we examined the expression pattern of cold-inducible RNA-binding protein (CIRP) in the hearts of hibernating hamsters, since CIRP plays important roles in protection of various types of cells against harmful effects of cold temperature. RT-PCR analysis revealed that CIRP mRNA is constitutively expressed in the heart of a non-hibernating euthermic hamster with several different forms probably due to alternative splicing. The short product contained the complete open reading frame for full-length CIRP. On the other hand, the long product had inserted sequences containing a stop codon, suggesting production of a C-terminal deletion isoform of CIRP. In contrast to non-hibernating hamsters, only the short product was amplified in hibernating animals. Induction of artificial hypothermia in non-hibernating hamsters did not completely mimic the splicing patterns observed in hibernating animals, although a partial shift from long form mRNA to short form was observed. Our results indicate that CIRP expression in the hamster heart is regulated at the level of alternative splicing, which would permit a rapid increment of functional CIRP when entering hibernation.

  4. First direct evidence of hibernation in an eastern dwarf lemur species ( Cheirogaleus crossleyi) from the high-altitude forest of Tsinjoarivo, central-eastern Madagascar

    NASA Astrophysics Data System (ADS)

    Blanco, Marina B.; Rahalinarivo, Vololonirina

    2010-10-01

    The nocturnal dwarf lemurs of Madagascar (genus Cheirogaleus) are the only primates known to be obligate hibernators. Although the physiology of hibernation has been studied widely in the western, small-bodied species, Cheirogaleus medius, no direct evidence of hibernation, i.e., body temperature recordings, has been reported for any of the three recognized eastern dwarf lemur species. We present skin temperature data collected by external collar transmitters from two eastern dwarf lemur individuals ( Cheirogaleus crossleyi) captured in the high-altitude forest of Tsinjoarivo, central-eastern Madagascar. Our study species is larger in body size than western dwarf lemurs and inhabits much colder environments. We present the first evidence of hibernation in an eastern dwarf lemur species, and we compare the results with data available for the western species. Although the hibernation period is shorter in dwarf lemurs from Tsinjoarivo, minimum body temperatures are lower than those reported for C. medius. Both individuals at Tsinjoarivo showed limited passive and extended deep hibernation during which they did not track ambient temperature as observed in most western dwarf lemurs. Because ambient temperatures at Tsinjoarivo never exceed 30°C, dwarf lemurs have to experience arousals to maintain homeostasis during periods of hibernation. We show that large dwarf lemurs (>400 g) are capable of undergoing deep hibernation and suggest that cold, high-altitude forests may render hibernation highly advantageous during periods of food scarcity. This study has implications for understanding the physiology of hibernation in small-bodied lemurs.

  5. Juvenile Idiopathic Arthritis

    MedlinePlus

    ... rule out other conditions or infections, such as Lyme disease , that may cause similar symptoms or occur along ... ESR) Bones, Muscles, and Joints Evaluate Your Child's Lyme Disease Risk Word! Arthritis Arthritis Lupus Juvenile Idiopathic Arthritis ( ...

  6. Juvenile Sex Offenders.

    PubMed

    Ryan, Eileen P; Otonichar, Joseph M

    2016-07-01

    Sexual offending by juveniles accounts for a sizable percentage of sexual offenses, especially against young children. In this article, recent research on female juvenile sex offenders (JSOs), risk factors for offending in juveniles, treatment, and the ways in which these youth may differ from general delinquents will be reviewed. Most JSOs do not go on to develop paraphilic disorders or to commit sex offenses during adulthood, and as a group, they are more similar to nonsexual offending juvenile delinquents than to adult sex offenders. Recent research has elucidated some differences between youth who commit sex offenses and general delinquents in the areas of atypical sexual interests, the use of pornography, and early sexual victimization during childhood.

  7. Do burn centers provide juvenile firesetter intervention?

    PubMed

    Ahrns-Klas, Karla S; Wahl, Wendy L; Hemmila, Mark R; Wang, Stewart C

    2012-01-01

    Juvenile firesetting activity accounts for a significant number of annual injuries and property damage, yet there is sparse information on intervention in the burn literature. To quantify juvenile firesetting intervention (JFSI) in burn centers, a 23-question survey was sent to all directors listed in the American Burn Association Burn Care Facilities Directory.Sixty-four out of 112 (57%) surveys were returned. This represents responses from 79% of currently verified burn centers. When queried on interventions provided to a juvenile firesetter admitted to their unit, 38% report having their own JFSI program and 38% refer the child to fire services. Two thirds of units without a JFSI program treat pediatric patients. Units that previously had a JFSI program report lack of staffing and funding as most common reasons for program discontinuation. Almost all (95%) stated that a visual tool demonstrating legal, financial, social, future, and career ramifications associated with juvenile firesetting would be beneficial to their unit. Many burn units that treat pediatric patients do not have JFSI and rely on external programs operated by fire services. Existing JFSI programs vary greatly in structure and method of delivery. Burn centers should be involved in JFSI, and most units would benefit from a new video toolkit to assist in providing appropriate JFSI. Study results highlight a need for burn centers to collaborate on evaluating effectiveness of JFSI programs and providing consistent intervention materials based on outcomes research.

  8. Biochemical Foundations of Health and Energy Conservation in Hibernating Free-ranging Subadult Brown Bear Ursus arctos.

    PubMed

    Welinder, Karen Gjesing; Hansen, Rasmus; Overgaard, Michael Toft; Brohus, Malene; Sønderkær, Mads; von Bergen, Martin; Rolle-Kampczyk, Ulrike; Otto, Wolfgang; Lindahl, Tomas L; Arinell, Karin; Evans, Alina L; Swenson, Jon E; Revsbech, Inge G; Frøbert, Ole

    2016-10-21

    Brown bears (Ursus arctos) hibernate for 5-7 months without eating, drinking, urinating, and defecating at a metabolic rate of only 25% of the summer activity rate. Nonetheless, they emerge healthy and alert in spring. We quantified the biochemical adaptations for hibernation by comparing the proteome, metabolome, and hematological features of blood from hibernating and active free-ranging subadult brown bears with a focus on conservation of health and energy. We found that total plasma protein concentration increased during hibernation, even though the concentrations of most individual plasma proteins decreased, as did the white blood cell types. Strikingly, antimicrobial defense proteins increased in concentration. Central functions in hibernation involving the coagulation response and protease inhibition, as well as lipid transport and metabolism, were upheld by increased levels of very few key or broad specificity proteins. The changes in coagulation factor levels matched the changes in activity measurements. A dramatic 45-fold increase in sex hormone-binding globulin levels during hibernation draws, for the first time, attention to its significant but unknown role in maintaining hibernation physiology. We propose that energy for the costly protein synthesis is reduced by three mechanisms as follows: (i) dehydration, which increases protein concentration without de novo synthesis; (ii) reduced protein degradation rates due to a 6 °C reduction in body temperature and decreased protease activity; and (iii) a marked redistribution of energy resources only increasing de novo synthesis of a few key proteins. The comprehensive global data identified novel biochemical strategies for bear adaptations to the extreme condition of hibernation and have implications for our understanding of physiology in general.

  9. EFFECT OF ACUTE STRESS ON PLASMA B-CORTICOSTERONE, ESTRADIOL-17B AND TESTOSTERONE CONCENTRATIONS IN JUVENILE AMERICAN ALLIGATORS COLLECTED FROM THREE SITES WITHIN THE KISSIMMEE-EVERGLADES DRAINAGE BASIN IN FLORIDA (USA)

    EPA Science Inventory

    The effect of acute stress on plasma b-corticosterone (B), testosterone (T) and estradiol-17b (E2), concentrations in juvenile alligators collected from sites with varying sediment contaminants was examined in this study. Dramatic increases in plasma B concentrations were observe...

  10. Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance.

    PubMed

    Wu, C-W; Biggar, K K; Storey, K B

    2013-01-01

    An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans.

  11. Hibernation is associated with depression of T-cell independent humoral immune responses in the 13-lined ground squirrel.

    PubMed

    Bouma, Hjalmar R; Henning, Robert H; Kroese, Frans G M; Carey, Hannah V

    2013-03-01

    Mammalian hibernation consists of periods of low metabolism and body temperature (torpor), interspersed by euthermic arousal periods. The function of both the innate and adaptive immune system is suppressed during hibernation. In this study, we analyzed the humoral adaptive immune response to a T-cell independent (TI-2) and a T-cell dependent (TD) antigen. Thirteen-lined ground squirrels were immunized in summer or during hibernation with either a TI-2 or TD antigen on day 0 and day 14. Blood was drawn on day 0, 7, 14, 21 and 28. Both types of antigens induced a significant rise in antibody titer in summer animals. Much to our surprise, however, only immunization with the TD antigen, and not with the TI-2 antigen induced a humoral response in hibernators. Flow cytometric analysis of CD4 (helper T-lymphocytes), CD8 (cytotoxic T-lymphocytes) and CD45RA (B-lymphocytes) in blood, spleen and lymph nodes ruled out massive apoptosis as explanation of the absent TI humoral response during hibernation. Rather, reduced TI-2 stimulation of B-lymphocytes, possibly due to lowered serum complement during torpor, may explain the reduced antibody production in response to a TI-2 antigen. These results demonstrate that hibernation diminishes the capacity to induce a TI-2 humoral immune response, while the capacity to induce a humoral response to a TD antigen is maintained.

  12. Identification of ischemic and hibernating myocardium: feasibility of post-exercise F-18 deoxyglucose positron emission tomography

    SciTech Connect

    Marwick, T.H.; MacIntyre, W.J.; Salcedo, E.E.; Go, R.T.; Saha, G.; Beachler, A. )

    1991-02-01

    The identification of ischemic and hibernating myocardium facilitates the selection of patients most likely to benefit from revascularization. This study examined the feasibility of metabolic imaging, using post-exercise F-18 deoxyglucose positron emission tomography (FDG-PET) for the diagnosis of both ischemia and hibernation in 27 patients with known coronary anatomy. Normal post-exercise FDG uptake was defined in each patient by reference to normal resting perfusion and normal coronary supply. Abnormal elevation of FDG (ischemia or hibernation) was compared in 13 myocardial segments in each patient, with the results of dipyridamole stress perfusion imaging performed by rubidium-82 positron emission tomography (Rb-PET). Myocardial ischemia was diagnosed by either FDG-PET or Rb-PET in 34 segments subtended by significant local coronary stenoses. Increased FDG uptake was present in 32/34 (94%) and a reversible perfusion defect was identified by Rb-PET in 22/34 (65%, p less than .01). In 3 patients, ischemia was identified by metabolic imaging alone. In 16 patients with previous myocardial infarction, perfusion defects were present at rest in 89 regions, 30 of which (34%) demonstrated increased FDG uptake, consistent with the presence of hibernation. Increased post-exercise FDG uptake appears to be a sensitive indicator of ischemia and myocardial hibernation. Increased post-exercise FDG uptake, appears to be a sensitive indicator of ischemia and myocardial hibernation. This test may be useful in selecting post-infarction patients for revascularization.

  13. Development of a noncontact and long-term respiration monitoring system using microwave radar for hibernating black bear.

    PubMed

    Suzuki, Satoshi; Matsui, Takemi; Kawahara, Hiroshi; Gotoh, Shinji

    2009-05-01

    The aim of this study is to develop a prototype system for noncontact, noninvasive and unconstrained vital sign monitoring using microwave radar and to use the system to measure the respiratory rate of a Japanese black bear (Ursus thibetanus japonicus) during hibernation for ensuring the bear's safety. Ueno Zoological Gardens in Tokyo planned to help the Japanese black bear (female, approximately 2 years of age) going into hibernation. The prototype system has a microwave Doppler radar antenna (10-GHz frequency, approximately 7 mW output power) for measuring motion of the body surface caused by respiratory activity without making contact with the body. Monitoring using this system was conducted from December 2006 to April 2007. As a result, from December 18, 2006, to March 17, 2007, similar behaviors reported by earlier studies were observed, such as sleeping with curled up posture and not eating, urinating or defecating. During this hibernation period and also around the time of hibernation, the prototype system continuously measured cyclic oscillations. The presence of cyclic vibrations at 8-sec intervals (about 7 bpm) was confirmed by the system before she entered hibernation on December 3, 2006. The respiratory rate gradually decreased, and during the hibernation period the respiratory rate was extremely low at approximately 2 bpm with almost no change. The results show that motion on the body surface caused by respiratory activity can be measured without touching the animal's body. Thus, the microwave radar employed here can be utilized as an aid in observing vital signs of animals.

  14. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    PubMed

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.

  15. Vocational Teachers' Role in Serving Juvenile Offenders.

    ERIC Educational Resources Information Center

    Meers, Gary D.

    1983-01-01

    Educators need to understand the juvenile justice system to understand what juvenile offenders go through while completing their sentences. This article reviews cases and juvenile charge classifications, and presents a model for alternative sentencing options for juveniles. (JOW)

  16. Law-Related Education Programs in Juvenile Justice Settings.

    ERIC Educational Resources Information Center

    American Bar Association, Chicago, IL. Special Committee on Youth Education for Citizenship.

    This documents consists of a list by state of programs sponsored by the American Bar Association to teach law related education in correctional institutions and other juvenile justice settings. The directory lists 14 programs in institutional schools and diversion programs in 17 states. Under the diversion programs, first time or misdemeanor…

  17. Increased oxidative stress and decreased activities of Ca2+/Mg2+-ATPase and Na+/K+-ATPase in the red blood cells of the hibernating black bear

    USGS Publications Warehouse

    Chauhan, V.P.S.; Tsiouris, J.A.; Chauhan, A.; Sheikh, A.M.; Brown, W. Ted; Vaughan, M.

    2002-01-01

    During hibernation, animals undergo metabolic changes that result in reduced utilization of glucose and oxygen. Fat is known to be the preferential source of energy for hibernating animals. Malonyldialdehyde (MDA) is an end product of fatty acid oxidation, and is generally used as an index of lipid peroxidation. We report here that peroxidation of lipids is increased in the plasma and in the membranes of red blood cells in black bears during hibernation. The plasma MDA content was about four fold higher during hibernation as compared to that during the active, non-hibernating state (P < 0.0001). Similarly, MDA content of erythrocyte membranes was significantly increased during hibernation (P < 0.025). The activity of Ca2+/Mg2+-ATPase in the erythrocyte membrane was significantly decreased in the hibernating state as compared to the active state. Na+/K+-ATPase activity was also decreased, though not significant, during hibernation. These results suggest that during hibernation, the bears are under increased oxidative stress, and have reduced activities of membrane-bound enzymes such as Ca2+/Mg2+-ATPase and Na+/K+-ATPase. These changes can be considered part of the adaptive for survival process of metabolic depression. ?? 2002 Elsevier Science Inc. All rights reserved.

  18. How to spend the summer? Free-living dormice (Glis glis) can hibernate for 11 months in non-reproductive years.

    PubMed

    Hoelzl, Franz; Bieber, Claudia; Cornils, Jessica S; Gerritsmann, Hanno; Stalder, Gabrielle L; Walzer, Chris; Ruf, Thomas

    2015-12-01

    Edible dormice are arboreal rodents adapted to yearly fluctuations in seed production of European beech, a major food source for this species. In years of low beech seed abundance, dormice skip reproduction and non-reproductive dormice fed ad libitum in captivity can display summer dormancy in addition to winter hibernation. To test whether summer dormancy, that is, a very early onset of hibernation, actually occurs in free-living dormice, we monitored core body temperature (Tb) over ~12 months in 17 animals during a year of beech seeding failure in the Vienna Woods. We found that 8 out of 17 dormice indeed re-entered hibernation as early as in June/July, with five of them having extreme hibernation durations of 11 months or more (total range: 7.8-11.4 months). Thus, we show for the first time that a free-living mammal relying on natural food resources can continuously hibernate for >11 months. Early onset of hibernation was associated with high body mass in the spring, but the distribution of hibernation onset was bimodal with prolonged hibernation starting either early (prior to July 28) or late (after August 30). This could not be explained by differences in body mass alone. Animals with a late hibernation onset continued to maintain high nocturnal Tb's throughout summer but used short, shallow torpor bouts (mean duration 7.44 ± 0.9 h), as well as occasional multiday torpor for up to 161 h.

  19. Juvenile Incarceration and Health.

    PubMed

    Barnert, Elizabeth S; Perry, Raymond; Morris, Robert E

    2016-03-01

    Addressing the health status and needs of incarcerated youth represents an issue at the nexus of juvenile justice reform and health care reform. Incarcerated youth face disproportionately higher morbidity and higher mortality compared to the general adolescent population. Dental health, reproductive health, and mental health needs are particularly high, likely as a result of lower access to care, engagement in high-risk behaviors, and underlying health disparities. Violence exposure and injury also contribute to the health disparities seen in this population. Further, juvenile incarceration itself is an important determinant of health. Juvenile incarceration likely correlates with worse health and social functioning across the life course. Correctional health care facilities allow time for providers to address the unmet physical and mental health needs seen in this population. Yet substantial challenges to care delivery in detention facilities exist and quality of care in detention facilities varies widely. Community-based pediatricians can serve a vital role in ensuring continuity of care in the postdetention period and linking youth to services that can potentially prevent juvenile offending. Pediatricians who succeed in understanding and addressing the underlying social contexts of their patients' lives can have tremendous impact in improving the life trajectories of these vulnerable youth. Opportunities exist in clinical care, research, medical education, policy, and advocacy for pediatricians to lead change and improve the health status of youth involved in the juvenile justice system.

  20. Hibernation storage testing of a reaction wheel for the Rosetta programme

    NASA Astrophysics Data System (ADS)

    McMahon, Paul

    2001-09-01

    During the course of the Rosetta mission as the spacecraft approaches the orbit of Jupiter it will be subjected to an 18 month hibernation period to conserve energy. During this phase, the Reaction Wheels will see very low temperatures and as part of the qualification programme for the Rosetta mission an existing life test wheel was frozen at -35°C for 30 days to demonstrate that a mechanical wheel could survive this condition and be recovered to an operational state for the main observational period of the mission. A life test wheel, which had been on test since mid 1996, was tested prior to being frozen, immediately after hibernation and again 14 months later, just prior to the exactly on schedule delivery of the flight hardware. Development of the recovery procedure was also seen as an important part of this programme to assist with the development of the inorbit operational procedures for this part of the mission.

  1. Nervous system ganglioside composition of normothermic and hibernating dormice (Glis glis).

    PubMed

    Sonnino, S; Ghidoni, R; Malesci, A; Tettamanti, G; Marx, J; Hilbig, R; Rahmann, H

    1984-01-01

    The ganglioside pattern of seven different regions, olfactory bulb, forebrain cortex, midbrain (corpora quadrigemina), cerebellum, brain stem, pons and spinal cord, of nervous system of normothermic and hibernating dormice (Glis glis) were investigated by two dimensional thin layer chromatography and densitometric quantification. Up to thirty different ganglioside spots were resolved, fifteen of which belonging to alkali labile species. Alkali labile gangliosides were present in all the regions obtained from normothermic animals, and their content, expressed as percentage of total ganglioside-bound sialic acid, ranged from a minimum of 10.2% in olfactory bulb, to a maximum of 30.1% in spinal cord. The most abundant alkali labile gangliosides were O-Ac-GT1b, O-Ac-GQ1b and an unidentified one, we coded I3. Alkali labile gangliosides were practically undetectable in hibernating dormice. They could be recognized only in brain stem, 3.3% and olfactory bulb, 0.6%.

  2. Research on Ajax and Hibernate technology in the development of E-shop system

    NASA Astrophysics Data System (ADS)

    Yin, Luo

    2011-12-01

    Hibernate is a object relational mapping framework of open source code, which conducts light-weighted object encapsulation of JDBC to let Java programmers use the concept of object-oriented programming to manipulate database at will. The appearence of the concept of Ajax (asynchronous JavaScript and XML technology) begins the time prelude of page partial refresh so that developers can develop web application programs with stronger interaction. The paper illustrates the concrete application of Ajax and Hibernate to the development of E-shop in details and adopts them to design to divide the entire program code into relatively independent parts which can cooperate with one another as well. In this way, it is easier for the entire program to maintain and expand.

  3. Hibernation and circadian rhythms of body temperature in free-living Arctic ground squirrels.

    PubMed

    Williams, Cory T; Barnes, Brian M; Richter, Melanie; Buck, C Loren

    2012-01-01

    In mammals, the circadian master clock generates daily rhythms of body temperature (T(b)) that act to entrain rhythms in peripheral circadian oscillators. The persistence and function of circadian rhythms during mammalian hibernation is contentious, and the factors that contribute to the reestablishment of rhythms after hibernation are unclear. We collected regular measures of core T(b) (every 34 min) and ambient light conditions (every 30 s) before, during, and following hibernation in free-living male arctic ground squirrels. Free-running circadian T(b) rhythms at euthermic levels of T(b) persisted for up to 10 d in constant darkness after animals became sequestered in their hibernacula in fall. During steady state torpor, T(b) was constant and arrhythmic for up to 13 d (within the 0.19°C resolution of loggers). In spring, males ended heterothermy but remained in their burrows at euthermic levels of T(b) for 22-26 d; patterns of T(b) were arrhythmic for the first 10 d of euthermia. One of four squirrels exhibited a significant free-running T(b) rhythm (τ = 22.1 h) before emergence; this squirrel had been briefly exposed to low-amplitude light before emergence. In all animals, diurnal T(b) rhythms were immediately reestablished coincident with emergence to the surface and the resumption of surface activity. Our results support the hypothesis that clock function is inhibited during hibernation and reactivated by exposure to light, although resumption of extended surface activity does not appear to be necessary to reinitiate T(b) cycles.

  4. Global DNA modifications suppress transcription in brown adipose tissue during hibernation.

    PubMed

    Biggar, Yulia; Storey, Kenneth B

    2014-10-01

    Hibernation is crucial to winter survival for many small mammals and is characterized by prolonged periods of torpor during which strong global controls are applied to suppress energy-expensive cellular processes. We hypothesized that one strategy of energy conservation is a global reduction in gene transcription imparted by reversible modifications to DNA and to proteins involved in chromatin packing. Transcriptional regulation during hibernation was examined over euthermic control groups and five stages of the torpor/arousal cycle in brown adipose tissue of thirteen-lined ground squirrels (Ictidomys tridecemlineatus). Brown adipose is crucial to hibernation success because it is responsible for the non-shivering thermogenesis that rewarms animals during arousal. A direct modification of DNA during torpor was revealed by a 1.7-fold increase in global DNA methylation during long term torpor as compared with euthermic controls. Acetylation of histone H3 (on Lys23) was reduced by about 50% when squirrels entered torpor, which would result in increased chromatin packing (and transcriptional repression). This was accompanied by strong increases in histone deacetylase protein levels during torpor; e.g. HDAC1 and HDAC4 levels rose by 1.5- and 6-fold, respectively. Protein levels of two co-repressors of transcription, MBD1 and HP1, also increased by 1.9- and 1.5-fold, respectively, in long-term torpor and remained high during early arousal. MBD1, HP1 and HDACs all returned to near control values during interbout indicating a reversal of their inhibitory actions. Overall, the data presents strong evidence for a global suppression of transcription during torpor via the action of epigenetic regulatory mechanisms in brown adipose tissue of hibernating thirteen-lined ground squirrels.

  5. White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host

    USGS Publications Warehouse

    Verant, Michelle L.; Meteyer, Carol; Speakman, John R.; Cryan, Paul M.; Lorch, Jeffrey M.; Blehert, David S.

    2014-01-01

    Integrating these novel findings on the physiological changes that occur in early-stage WNS with those previously documented in late-stage infections, we propose a multi-stage disease progression model that mechanistically describes the pathologic and physiologic effects underlying mortality of WNS in hibernating bats. This model identifies testable hypotheses for better understanding this disease, knowledge that will be critical for defining effective disease mitigation strategies aimed at reducing morbidity and mortality that results from WNS.

  6. Transcriptomic Analysis of Brown Adipose Tissue across the Physiological Extremes of Natural Hibernation

    PubMed Central

    Hampton, Marshall; Melvin, Richard G.; Andrews, Matthew T.

    2013-01-01

    We used RNAseq to generate a comprehensive transcriptome of Brown Adipose Tissue (BAT) over the course of a year in the naturally hibernating thirteen-lined ground squirrel, Ictidomys tridecemlineatus. During hibernation ground squirrels do not feed and use fat stored in White Adipose Tissue (WAT) as their primary source of fuel. Stored lipid is consumed at high rates by BAT to generate heat at specific points during the hibernation season. The highest rate of BAT activity occurs during periodic arousals from hypothermic torpor bouts, referred to as Interbout Arousals (IBAs). IBAs are characterized by whole body re-warming (from 5 to 37 °C) in 2-3 hours, and provide a unique opportunity to determine the genes responsible for the highly efficient lipid oxidation and heat generation that drives the arousal process. Illumina HighSeq sequencing identified 14,573 distinct BAT mRNAs and quantified their levels at four points: active ground squirrels in April and October, and hibernating animals during both torpor and IBA. Based on significant changes in mRNA levels across the four collection points, 2,083 genes were shown to be differentially expressed. In addition to providing detail on the expression of nuclear genes encoding mitochondrial proteins, and genes involved in beta-adrenergic and lipolytic pathways, we identified differentially expressed genes encoding various transcription factors and other regulatory proteins which may play critical roles in high efficiency fat catabolism, non-shivering thermogenesis, and transitions into and out of the torpid state. PMID:24386461

  7. Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal

    PubMed Central

    Vermillion, Katie L.; Anderson, Kyle J.; Hampton, Marshall

    2015-01-01

    Throughout the hibernation season, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) experiences extreme fluctuations in heart rate, metabolism, oxygen consumption, and body temperature, along with prolonged fasting and immobility. These conditions necessitate different functional requirements for the heart, which maintains contractile function throughout hibernation, and the skeletal muscle, which remains largely inactive. The adaptations used to maintain these contractile organs under such variable conditions serves as a natural model to study a variety of medically relevant conditions including heart failure and disuse atrophy. To better understand how two different muscle tissues maintain function throughout the extreme fluctuations of hibernation we performed Illumina HiSeq 2000 sequencing of cDNAs to compare the transcriptome of heart and skeletal muscle across the circannual cycle. This analysis resulted in the identification of 1,076 and 1,466 differentially expressed genes in heart and skeletal muscle, respectively. In both heart and skeletal muscle we identified a distinct cold-tolerant mechanism utilizing peroxisomal metabolism to make use of elevated levels of unsaturated depot fats. The skeletal muscle transcriptome also shows an early increase in oxidative capacity necessary for the altered fuel utilization and increased oxygen demand of shivering. Expression of the fetal gene expression profile is used to maintain cardiac tissue, either through increasing myocyte size or proliferation of resident cardiomyocytes, while skeletal muscle function and mass are protected through transcriptional regulation of pathways involved in protein turnover. This study provides insight into how two functionally distinct muscles maintain function under the extreme conditions of mammalian hibernation. PMID:25572546

  8. Extending juvenility in grasses

    DOEpatents

    Kaeppler, Shawn; de Leon Gatti, Natalia; Foerster, Jillian

    2017-04-11

    The present invention relates to compositions and methods for modulating the juvenile to adult developmental growth transition in plants, such as grasses (e.g. maize). In particular, the invention provides methods for enhancing agronomic properties in plants by modulating expression of GRMZM2G362718, GRMZM2G096016, or homologs thereof. Modulation of expression of one or more additional genes which affect juvenile to adult developmental growth transition such as Glossy15 or Cg1, in conjunction with such modulation of expression is also contemplated. Nucleic acid constructs for down-regulation of GRMZM2G362718 and/or GRMZM2G096016 are also contemplated, as are transgenic plants and products produced there from, that demonstrate altered, such as extended juvenile growth, and display associated phenotypes such as enhanced yield, improved digestibility, and increased disease resistance. Plants described herein may be used, for example, as improved forage or feed crops or in biofuel production.

  9. The evolution of mammalian hibernation: lessons from comparative acid-base physiology.

    PubMed

    Malan, André

    2014-09-01

    The conquest of land has endowed air-breathers with the capability to utilize ventilation not only to acquire oxygen but also to control blood and intracellular acid-base state. Hypercapnic acidosis (resulting from ventilatory control and/or behavioral choice), thus, has become a universal component of hypometabolic states in air-breathers, with inhibitory and/or protective roles. Here, special emphasis is placed on the understanding of alterations of acid-base state associated with changes in temperature. Hypercapnic acidosis in connection with hypometabolism has been found in a variety of air-breathing clades, from snails to mammals through lungfish, amphibians, and reptiles. The discovery of the plesiomorphic character of mammalian hibernation has made the transfer to hibernation biology of the experience gained in the application of hypercapnic acidosis (the so-called "pH-stat" procedure) relevant to acid-base control in clinical artificial hypothermia. This paves the way for mutual benefits from such reciprocal exchange of information between hibernation biology and clinical applications.

  10. Serum markers of bone metabolism show bone loss in hibernating bears

    USGS Publications Warehouse

    Donahue, S.W.; Vaughan, M.R.; Demers, L.M.; Donahue, H.J.

    2003-01-01

    Disuse osteopenia was studied in hibernating black bears (Ursus americanus) using serum markers of bone metabolism. Blood samples were collected from male and female, wild black bears during winter denning and active summer periods. Radioimmunoassays were done to determine serum concentrations of cortisol, the carboxy-terminal cross-linked telopeptide, and the carboxy-terminal propeptide of Type I procollagen, which are markers of hone resorption and formation, respectively. The bone resorption marker was significantly higher during winter hibernation than it was in the active summer months, but the bone formation marker was unchanged, suggesting an imbalance in bone remodeling and a net bone loss during disuse. Serum cortisol was significantly correlated with the bone resorption marker, but not with the bone formation marker. The bone formation marker was four- to fivefold higher in an adolescent and a 17-year-old bear early in the remobilization period compared with the later summer months. These findings raise the possibility that hibernating black bears may minimize bone loss during disuse by maintaining osteoblastic function and have a more efficient compensatory mechanism for recovering immobilization-induced bone loss than that of humans or other animals.

  11. Subtropical mouse-tailed bats use geothermally heated caves for winter hibernation.

    PubMed

    Levin, Eran; Plotnik, Brit; Amichai, Eran; Braulke, Luzie J; Landau, Shmulik; Yom-Tov, Yoram; Kronfeld-Schor, Noga

    2015-04-07

    We report that two species of mouse-tailed bats (Rhinopoma microphyllum and R. cystops) hibernate for five months during winter in geothermally heated caves with stable high temperature (20°C). While hibernating, these bats do not feed or drink, even on warm nights when other bat species are active. We used thermo-sensitive transmitters to measure the bats' skin temperature in the natural hibernacula and open flow respirometry to measure torpid metabolic rate at different ambient temperatures (Ta, 16-35°C) and evaporative water loss (EWL) in the laboratory. Bats average skin temperature at the natural hibernacula was 21.7 ± 0.8°C, and no arousals were recorded. Both species reached the lowest metabolic rates around natural hibernacula temperatures (20°C, average of 0.14 ± 0.01 and 0.16 ± 0.04 ml O2 g(-1) h(-1) for R. microphyllum and R. cystops, respectively) and aroused from torpor when Ta fell below 16°C. During torpor the bats performed long apnoeas (14 ± 1.6 and 16 ± 1.5 min, respectively) and had a very low EWL. We hypothesize that the particular diet of these bats is an adaptation to hibernation at high temperatures and that caves featuring high temperature and humidity during winter enable these species to survive this season on the northern edge of their world distribution.

  12. A systems-level approach to understanding transcriptional regulation by p53 during mammalian hibernation.

    PubMed

    Pan, Peipei; Treat, Michael D; van Breukelen, Frank

    2014-07-15

    Presumably to conserve energy, many mammals enter into hibernation during the winter. Homeostatic processes such as transcription and translation are virtually arrested. To further elucidate transcriptional regulation during hibernation, we studied the transcription factor p53. Here, we demonstrate that changes in liver mRNA and protein concentrations of known regulators of p53 are consistent with activation. p53 mRNA and protein concentrations are unrelated. Importantly, p53 protein concentration is increased ~2-fold during the interbout arousal that punctuates bouts of torpor. As a result, both the interbout arousal and the torpid state are characterized by high levels of nuclear-localized p53. Chromatin immunoprecipitation assays indicate that p53 binds DNA during the winter. Furthermore, p53 recruits RNA polymerase II, as indicated by nuclear run-on data. However, and consistent with previous data indicating an arrest of transcriptional elongation during torpor, p53 'activity' does not result in expected changes in target gene transcripts. These data demonstrate the importance of using a systems level-approach in understanding a complex phenotype such as mammalian hibernation. Relying on interpretations of data that are based on steady-state regulation in other systems may be misleading in the context of non-steady-state conditions such as torpor.

  13. Subtropical mouse-tailed bats use geothermally heated caves for winter hibernation

    PubMed Central

    Levin, Eran; Plotnik, Brit; Amichai, Eran; Braulke, Luzie J.; Landau, Shmulik; Yom-Tov, Yoram; Kronfeld-Schor, Noga

    2015-01-01

    We report that two species of mouse-tailed bats (Rhinopoma microphyllum and R. cystops) hibernate for five months during winter in geothermally heated caves with stable high temperature (20°C). While hibernating, these bats do not feed or drink, even on warm nights when other bat species are active. We used thermo-sensitive transmitters to measure the bats’ skin temperature in the natural hibernacula and open flow respirometry to measure torpid metabolic rate at different ambient temperatures (Ta, 16–35°C) and evaporative water loss (EWL) in the laboratory. Bats average skin temperature at the natural hibernacula was 21.7 ± 0.8°C, and no arousals were recorded. Both species reached the lowest metabolic rates around natural hibernacula temperatures (20°C, average of 0.14 ± 0.01 and 0.16 ± 0.04 ml O2 g−1 h−1 for R. microphyllum and R. cystops, respectively) and aroused from torpor when Ta fell below 16°C. During torpor the bats performed long apnoeas (14 ± 1.6 and 16 ± 1.5 min, respectively) and had a very low EWL. We hypothesize that the particular diet of these bats is an adaptation to hibernation at high temperatures and that caves featuring high temperature and humidity during winter enable these species to survive this season on the northern edge of their world distribution. PMID:25740890

  14. Hibernation Site Philopatry in Northern Pine Snakes (Pituophis melanoleucus) in New Jersey.

    PubMed

    Burger, Joanna; Zappalorti, Robert

    2015-06-01

    Northern Pine Snakes (Pituophis melanoleucus) are one of the few snakes that spend the winter in underground hibernacula that they excavate. We report the use of hibernacula by Pine Snakes from 1986 to 2012 in the New Jersey Pine Barrens. We determined whether philopatry to a specific hibernaculum varied as a function of age, sex, and location of the hibernaculum. Three hibernacula were occupied nearly continuously for 27 yr by 1 to 27 snakes each year. With known-age snakes (N = 120), captured mainly as hatchlings and 2-yr-olds, we found that 23% were always philopatric. Philopatry was related to age of last capture, sex, and capture location. Philopatry was higher for 1) females compared with males, 2) snakes at two solitary hibernacula compared with a hibernaculum complex, and 3) snakes 6 yr old or younger, compared with older snakes. Of hatchlings found hibernating, 24% used the same hibernation site the next year, and 38% were located at year 4 or later. The number of snakes that always used the same hibernation site declined with the age of last capture. Snakes that entered hibernacula as hatchlings were found more often than those that entered as 2-yr-olds. For the seven snakes that were 14 yr or older, females were found 64- 86 % of the time, whereas males were found 15 to 50% of the time. Understanding the behavior and habitat requirements of snakes during different seasons is central to life-history analysis and for conserving viable populations.

  15. Hibernation Site Philopatry in Northern Pine Snakes (Pituophis melanoleucus) in New Jersey

    PubMed Central

    Burger, Joanna; Zappalorti, Robert

    2015-01-01

    Northern Pine Snakes (Pituophis melanoleucus) are one of the few snakes that spend the winter in underground hibernacula that they excavate. We report the use of hibernacula by Pine Snakes from 1986 to 2012 in the New Jersey Pine Barrens. We determined whether philopatry to a specific hibernaculum varied as a function of age, sex, and location of the hibernaculum. Three hibernacula were occupied nearly continuously for 27 yr by 1 to 27 snakes each year. With known-age snakes (N = 120), captured mainly as hatchlings and 2-yr-olds, we found that 23% were always philopatric. Philopatry was related to age of last capture, sex, and capture location. Philopatry was higher for 1) females compared with males, 2) snakes at two solitary hibernacula compared with a hibernaculum complex, and 3) snakes 6 yr old or younger, compared with older snakes. Of hatchlings found hibernating, 24% used the same hibernation site the next year, and 38% were located at year 4 or later. The number of snakes that always used the same hibernation site declined with the age of last capture. Snakes that entered hibernacula as hatchlings were found more often than those that entered as 2-yr-olds. For the seven snakes that were 14 yr or older, females were found 64– 86 % of the time, whereas males were found 15 to 50% of the time. Understanding the behavior and habitat requirements of snakes during different seasons is central to life-history analysis and for conserving viable populations. PMID:27011392

  16. Hibernation patterns of Turkish hamsters: influence of sex and ambient temperature.

    PubMed

    Batavia, Mariska; Nguyen, George; Harman, Kristine; Zucker, Irving

    2013-02-01

    Turkish hamsters (Mesocricetus brandti) are a model organism for studies of hibernation, yet a detailed account of their torpor characteristics has not been undertaken. This study employed continuous telemetric monitoring of body temperature (T(b)) in hibernating male and female Turkish hamsters at ambient temperatures (T(a)s) of 5 and 13 °C to precisely characterize torpor bout depth, duration, and frequency, as well as rates of entry into and arousal from torpor. Hamsters generated brief intervals of short (<12 h), shallow test bouts (T(b) > 20 °C), followed by deep torpor bouts lasting 4-6 days at T(a) = 5 °C and 2-3 days at T(a) = 13 °C. Females at T(a) = 5 °C had longer bouts than males, but maintained higher torpor T(b); there were no sex differences at T(a) = 13 °C. Neither body mass loss nor food intake differed between the two T(a)s. Hamsters entered torpor primarily during the scotophase (subjective night), but timing of arousals was highly variable. Hamsters at both T (a)s generated short, shallow torpor bouts between deep bouts, suggesting that this species may be capable of both hibernation and daily torpor.

  17. The effect of metabolic depression on proton leak rate in mitochondria from hibernating frogs.

    PubMed

    St-Pierre, J; Brand, M D; Boutilier, R G

    2000-05-01

    Futile cycling of protons across the mitochondrial inner membrane accounts for 20 % or more of the total standard metabolic rate of a rat. Approximately 15 % of this total is due to proton leakage inside the skeletal muscle alone. This study examined whether the rate of proton leak is down-regulated as a part of a coordinated response to energy conservation during metabolic depression in cold-submerged frogs. We compared the proton leak rate of skeletal muscle mitochondria isolated from frogs at different stages of hibernation (control, 1 month and 4 months of submergence in normoxia and hypoxia). The kinetics of mitochondrial proton leak rate was unaltered throughout normoxic and hypoxic submergence. The state 4 respiration rates did not differ between control animals and frogs hibernating in normoxia. In contrast, the state 4 respiration rates obtained from frogs submerged in hypoxic water for 4 months were half those of control animals. This 50 % reduction in respiration rate in hypoxic hibernation was due to a reduction in electron transport chain activity and consequent decrease in mitochondrial membrane potential. We conclude that proton leak rate is reduced during metabolic depression as a secondary result of a decrease in electron transport chain activity, but that the proton conductance is unchanged. In addition, we show that the rate of proton leakage and the activity of the electron transport chain are lower in frogs than in rats, strengthening the observation that mitochondria from ectotherms have a lower proton conductance than mitochondria from endotherms.

  18. Maintenance of biological rhythms during hibernation in Eastern woodchucks (Marmota monax).

    PubMed

    Zervanos, Stam M; Salsbury, Carmen M; Brown, June K

    2009-05-01

    We undertook a study to determine presence of circadian rhythms during woodchuck hibernation using continuously monitored body temperatures. Males had shorter torpor and longer euthermic periods than females. Circular statistics revealed a significant mean vector for males entering into torpor (10:21 h), but not for females. No significant mean vector was found for male or female arousal from torpor. A contingency test was applied to the torpor bout durations. All 7 males tested had significant tau's between 24 and 26 h, while 6 of the 13 females tested had significant tau's with a range of 22-27 h. These results implicate a free-running circadian clock during torpor bouts. Overall, the data support the existence of biological rhythms during hibernation in woodchucks, especially for males during arousals. Since entries into torpor appear to be synchronized for males, arousal periods may be used to resynchronize their circadian system. The persistence of biological rhythms during hibernation may help to insure successful mating in the spring after emergence.

  19. Insulin secretion in the hibernating edible dormouse (Glis glis): in vivo and in vitro studies.

    PubMed

    Castex, C; Tahri, A; Hoo-Paris, R; Sutter, B C

    1984-01-01

    Plasma glucose and insulin have been studied during lethargy and spontaneous arousal of hibernating edible dormouse. During lethargy blood glucose was low while plasma insulin remained at the same level as in other seasons. Plasma glucose and insulin did not fluctuate along the phase of lethargy. During spontaneous arousal plasma insulin rose strongly from the 17 degrees C stage, reaching the higher values at 26 degrees C while blood glucose was only 85 mg/100 ml, then decreased at 37 degrees C. The effect of glucose and temperature on insulin secretion was studied using perfused pancreas preparation from hibernating edible dormice. During the rewarming of the edible dormouse pancreas the insulin release did not occur in response to the absolute extracellular glucose level but occurred in response to a B cell membrane phenomenon which was dependent on the changing rate of glucose level. The effect of glucose and temperature on insulin secretion from perfused pancreas was compared between edible dormouse and homeotherm permanent, the rat. The B cell response to glucose of the dormouse pancreas increased up to 15 degrees C whereas that of the rat only from 25 degrees C. The dormouse insulin secretion reached a peak value at the 30 degrees C of temperature, whereas that of the rat progressively increased until 37 degrees C. These results showed that some biochemical adjustment or process of acclimatization took place in the B cells of the hibernators.

  20. Using a functional enzyme model to understand the chemistry behind hydrogen sulfide induced hibernation.

    PubMed

    Collman, James P; Ghosh, Somdatta; Dey, Abhishek; Decréau, Richard A

    2009-12-29

    The toxic gas H(2)S is produced by enzymes in the body. At moderate concentrations, H(2)S elicits physiological effects similar to hibernation. Herein, we describe experiments that imply that the phenomenon probably results from reversible inhibition of the enzyme cytochrome c oxidase (CcO), which reduces oxygen during respiration. A functional model of the oxygen-reducing site in CcO was used to explore the effects of H(2)S during respiration. Spectroscopic analyses showed that the model binds two molecules of H2S. The electro-catalytic reduction of oxygen is reversibly inhibited by H(2)S concentrations similar to those that induce hibernation. This phenomenon derives from a weak, reversible binding of H(2)S to the Fe(II) porphyrin, which mimics heme a(3) in CcO's active site. No inhibition of CcO is detected at lower H(2)S concentrations. Nevertheless, at lower concentrations, H(2)S could have other biological effects on CcO. For example, H(2)S rapidly reduces Fe(III) and Cu(II) in both the oxidized form of this functional model and in CcO itself. H(2)S also reduces CcO's biological reductant, cytochrome c, which normally derives its reducing equivalents from food metabolism. Consequently, it is speculated that H(2)S might also serve as a source of electrons during periods of hibernation when food supplies are low.

  1. Chilled frogs are hot: hibernation and reproduction of the Endangered mountain yellow-legged frog Rana muscosa

    USGS Publications Warehouse

    Santana, Frank E.; Swaisgood, Ronald R.; Lemm, Jeffrey M.; Fisher, Robert N.; Clark, Rulon W.

    2015-01-01

    In the face of the sixth great extinction crisis, it is imperative to establish effective breeding protocols for amphibian conservation breeding programs. Captive efforts should not proceed by trial and error, nor should they jump prematurely to assisted reproduction techniques, which can be invasive, difficult, costly, and, at times, counterproductive. Instead, conservation practitioners should first look to nature for guidance, and replicate key conditions found in nature in the captive environment, according to the ecological and behavioral requirements of the species. We tested the effect of a natural hibernation regime on reproductive behaviors and body condition in the Endangered mountain yellow-legged frog Rana muscosa. Hibernation had a clear positive effect on reproductive behavior, manifesting in vocal advertisement signaling, female receptivity, amplexus, and oviposition. These behaviors are critical components of courtship that lead to successful reproduction. Our main finding was that captive R. muscosa require a hibernation period for successful reproduction, as only hibernated females produced eggs and only hibernated males successfully fertilized eggs. Although hibernation also resulted in a reduced body condition, the reduction appeared to be minimal with no associated mortality. The importance of hibernation for reproduction is not surprising, since it is a major component of the conditions that R. muscosa experiences in the wild. Other amphibian conservation breeding programs can also benefit from a scientific approach that tests the effect of natural ecological conditions on reproduction. This will ensure that captive colonies maximize their role in providing genetic reservoirs for assurance and reintroduction efforts.

  2. Telomere dynamics in free-living edible dormice (Glis glis): the impact of hibernation and food supply

    PubMed Central

    Cornils, Jessica S.; Smith, Steve; Moodley, Yoshan; Ruf, Thomas

    2016-01-01

    ABSTRACT We studied the impact of hibernation and food supply on relative telomere length (RTL), an indicator for aging and somatic maintenance, in free-living edible dormice. Small hibernators such as dormice have ∼50% higher maximum longevity than non-hibernators. Increased longevity could theoretically be due to prolonged torpor directly slowing cellular damage and RTL shortening. However, although mitosis is arrested in mammals at low body temperatures, recent evidence points to accelerated RTL shortening during periodic re-warming (arousal) from torpor. Therefore, we hypothesized that these arousals during hibernation should have a negative effect on RTL. Here, we show that RTL was shortened in all animals over the course of ∼1 year, during which dormice hibernated for 7.5–11.4 months. The rate of periodic arousals, rather than the time spent euthermic during the hibernation season, was the best predictor of RTL shortening. This finding points to negative effects on RTL of the transition from low torpor to high euthermic body temperature and metabolic rate during arousals, possibly because of increased oxidative stress. The animals were, however, able to elongate their telomeres during the active season, when food availability was increased by supplemental feeding in a year of low natural food abundance. We conclude that in addition to their energetic costs, periodic arousals also lead to accelerated cellular damage in terms of RTL shortening. Although dormice are able to counteract and even over-compensate for the negative effects of hibernation, restoration of RTL appears to be energetically costly. PMID:27535986

  3. Telomere dynamics in free-living edible dormice (Glis glis): the impact of hibernation and food supply.

    PubMed

    Hoelzl, Franz; Cornils, Jessica S; Smith, Steve; Moodley, Yoshan; Ruf, Thomas

    2016-08-15

    We studied the impact of hibernation and food supply on relative telomere length (RTL), an indicator for aging and somatic maintenance, in free-living edible dormice. Small hibernators such as dormice have ∼50% higher maximum longevity than non-hibernators. Increased longevity could theoretically be due to prolonged torpor directly slowing cellular damage and RTL shortening. However, although mitosis is arrested in mammals at low body temperatures, recent evidence points to accelerated RTL shortening during periodic re-warming (arousal) from torpor. Therefore, we hypothesized that these arousals during hibernation should have a negative effect on RTL. Here, we show that RTL was shortened in all animals over the course of ∼1 year, during which dormice hibernated for 7.5-11.4 months. The rate of periodic arousals, rather than the time spent euthermic during the hibernation season, was the best predictor of RTL shortening. This finding points to negative effects on RTL of the transition from low torpor to high euthermic body temperature and metabolic rate during arousals, possibly because of increased oxidative stress. The animals were, however, able to elongate their telomeres during the active season, when food availability was increased by supplemental feeding in a year of low natural food abundance. We conclude that in addition to their energetic costs, periodic arousals also lead to accelerated cellular damage in terms of RTL shortening. Although dormice are able to counteract and even over-compensate for the negative effects of hibernation, restoration of RTL appears to be energetically costly.

  4. It takes two to tango: Phagocyte and lymphocyte numbers in a small mammalian hibernator.

    PubMed

    Havenstein, Nadine; Langer, Franz; Stefanski, Volker; Fietz, Joanna

    2016-02-01

    Immunity is energetically costly and competes for resources with other physiological body functions, which may result in trade-offs that impair fitness during demanding situations. Endocrine mediators, particularly stress hormones, play a central role in these relationships and directly impact leukocyte differentials. To determine the effects of external stressors, energetic restraints and competing physiological functions on immune parameters and their relevance for fitness, we investigated leukocyte profiles during the active season of a small obligate hibernator, the edible dormouse (Glis glis), in five different study sites in south-western Germany. The highly synchronized yearly cycle of this species and the close adaptation of its life history to the irregular abundance of food resources provide a natural experiment to elucidate mechanisms underlying variations in fitness parameters. In contrast to previous studies on hibernators, that showed an immediate recovery of all leukocyte subtypes upon emergence, our study revealed that hibernation results in depleted phagocyte (neutrophils and monocytes) stores that recovered only slowly. As the phenomenon of low phagocyte counts was even more pronounced at the beginning of a low food year and primarily immature neutrophils were present in the blood upon emergence, preparatory mechanisms seem to determine the regeneration of phagocytes before hibernation is terminated. Surprisingly, the recovery of phagocytes thereafter took several weeks, presumably due to energetic restrictions. This impaired first line of defense coincides with lowest survival probabilities during the annual cycle of our study species. Reduced survival could furthermore be linked to drastic increases in the P/L ratio (phagocytes/lymphocytes), an indicator of physiological stress, during reproduction. On the other hand, moderate augmentations in the P/L ratio occurred during periods of low food availability and were associated with increased

  5. Gypsy moths and American dog ticks: Space partners

    NASA Technical Reports Server (NTRS)

    Hayes, D. K.; Morgan, N. O.; Webb, R. E.; Goans, M. D.

    1984-01-01

    An experiment intended for the space shuttle and designed to investigate the effects of weightlessness and total darkness on gypsy moth eggs and engorged American dog ticks is described. The objectives are: (1) to reevaluate the effects of zero gravity on the termination of diapause/hibernation of embryonated gypsy moth eggs, (2) to determine the effect of zero gravity on the ovipositions and subsequent hatch from engorged female American dog ticks that have been induced to diapause in the laboratory, and (3) to determine whether morphological or biochemical changes occur in the insects under examination. Results will be compared with those from a similar experiment conducted on Skylab 4.

  6. Treating the Juvenile Offender

    ERIC Educational Resources Information Center

    Hoge, Robert D., Ed.; Guerra, Nancy G., Ed.; Boxer, Paul, Ed.

    2008-01-01

    This authoritative, highly readable reference and text is grounded in the latest knowledge on how antisocial and criminal behavior develops in youth and how it can effectively be treated. Contributors describe proven ways to reduce juvenile delinquency by targeting specific risk factors and strengthening young people's personal, family, and…

  7. What Is Juvenile Arthritis?

    MedlinePlus

    ... the possible causes of juvenile arthritis. They are studying genetic and environmental factors that they think are involved. They are also trying to improve current treatments and find new medicines that will work better with fewer side effects. Research supported by ...

  8. Response of the JAK-STAT pathway to mammalian hibernation in 13-lined ground squirrel striated muscle.

    PubMed

    Logan, Samantha M; Tessier, Shannon N; Tye, Joann; Storey, Kenneth B

    2016-03-01

    Over the course of the torpor-arousal cycle, hibernators must make behavioral, physiological, and molecular rearrangements in order to keep a very low metabolic rate and retain organ viability. 13-lined ground squirrels (Ictidomys tridecemlineatus) remain immobile during hibernation, and although the mechanisms of skeletal muscle survival are largely unknown, studies have shown minimal muscle loss in hibernating organisms. Additionally, the ground squirrel heart undergoes cold-stress, reversible cardiac hypertrophy, and ischemia-reperfusion without experiencing fatal impairment. This study examines the role of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway in the regulation of cell stress in cardiac and skeletal muscles, comparing euthermic and hibernating ground squirrels. Immunoblots showed a fivefold decrease in JAK3 expression during torpor in skeletal muscle, along with increases in STAT3 and 5 phosphorylation and suppressors of cytokine signaling-1 (SOCS1) protein levels. Immunoblots also showed coordinated increases in STAT1, 3 and 5 phosphorylation and STAT1 inhibitor protein expression in cardiac muscle during torpor. PCR analysis revealed that the activation of these pro-survival signaling cascades did not result in coordinate changes in downstream genes such as anti-apoptotic B-cell lymphoma-2 (Bcl-2) family gene expression. Overall, these results indicate activation of the JAK-STAT pathway in both cardiac and skeletal muscles, suggesting a response to cellular stress during hibernation.

  9. Brown bears (Ursus arctos) seem resistant to atherosclerosis despite highly elevated plasma lipids during hibernation and active state.

    PubMed

    Arinell, Karin; Sahdo, Berolla; Evans, Alina L; Arnemo, Jon M; Baandrup, Ulrik; Fröbert, Ole

    2012-06-01

    Hibernation is an extreme physiological challenge for the brown bear (Ursus arctos) in which metabolism is based mainly on lipids. The study objective was to compare plasma lipids in hibernating and active free-ranging brown bears and relate them to arterial histopathology. Blood was drawn from seven immobilized free-ranging brown bears (three females, 2-3 years old) during hibernation in February and from the same bears while active in June and analyzed by enzymatic and automated hematology methods within 48 hours of sampling. Left anterior descending coronary arteries and aortic arches from 12 bears (six females, 1.5-12 years old) killed in hunting were examined by histopathology. Total plasma cholesterol decreased from hibernation to the active period (11.08 ± 1.04 mmol/L vs. 7.89 ± 1.96 mmol/L, P= 0.0028) as did triglyceride (3.16 ± 0.62 mmol/L vs. 1.44 ± 0.27 mmol/L, P= 0.00012) and LDL cholesterol (4.30 ± 0.71 mmol/L vs. 2.02 ± 1.03 mmol/L, P= 0.0075), whereas HDL cholesterol was unchanged. No atherosclerosis, fatty streaks, foam cell infiltration, or inflammation were seen in any arterial samples. Brown bears tolerate elevated cholesterol levels, obesity, physical inactivity, and circulatory slow flow during hibernation without signs of -atherosclerosis. This species might serve as a reverse translational model for atherosclerosis resistance.

  10. Ultrastruct of the hypothalamic neurosecretory nuclei of the dormouse (Eliomys quercinus L.) in the awakening and hibernating states.

    PubMed Central

    Machín-Santamaría, C

    1978-01-01

    The ultrastructure of the chief neurosecretory nuclei, supraoptic, (SON), parventricular, (PVN) and infundibular (IN), of the dormouse (Eliomys quercinus L.) has been studied during active and hibernating states. In the active state all three nuclei contained light, dark and intermediate type neurons. In hibernation the SON showed only a single light type which differed from the light neurons of the active state; the endoplasmic reticulum was vacuolized and sometimes grouped in 'honey-comb' structures; the cytoplasm contained accumulations of filamentous 'crystalline' material. None of these features occurred in the active state neurons. In the PVN and IN during hibernation both a light and a dark type neuron were present. 'Honey-comb' structures were seen in neurons of the PVN during hibernation, but never in those of the IN. Thus specific morphological features in the SON and PVN appear to be associated with the physiological changes of hibernation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Figs. 5-6 Fig. 9 Fig. 10 PMID:721686

  11. Repeated functional convergent effects of NaV1.7 on acid insensitivity in hibernating mammals.

    PubMed

    Liu, Zhen; Wang, Wei; Zhang, Tong-Zuo; Li, Gong-Hua; He, Kai; Huang, Jing-Fei; Jiang, Xue-Long; Murphy, Robert W; Shi, Peng

    2014-02-07

    Hibernating mammals need to be insensitive to acid in order to cope with conditions of high CO2; however, the molecular basis of acid tolerance remains largely unknown. The African naked mole-rat (Heterocephalus glaber) and hibernating mammals share similar environments and physiological features. In the naked mole-rat, acid insensitivity has been shown to be conferred by the functional motif of the sodium ion channel NaV1.7. There is now an opportunity to evaluate acid insensitivity in other taxa. In this study, we tested for functional convergence of NaV1.7 in 71 species of mammals, including 22 species that hibernate. Our analyses revealed a functional convergence of amino acid sequences, which occurred at least six times independently in mammals that hibernate. Evolutionary analyses determined that the convergence results from both parallel and divergent evolution of residues in the functional motif. Our findings not only identify the functional molecules responsible for acid insensitivity in hibernating mammals, but also open new avenues to elucidate the molecular underpinnings of acid insensitivity in mammals.

  12. Repeated functional convergent effects of NaV1.7 on acid insensitivity in hibernating mammals

    PubMed Central

    Liu, Zhen; Wang, Wei; Zhang, Tong-Zuo; Li, Gong-Hua; He, Kai; Huang, Jing-Fei; Jiang, Xue-Long; Murphy, Robert W.; Shi, Peng

    2014-01-01

    Hibernating mammals need to be insensitive to acid in order to cope with conditions of high CO2; however, the molecular basis of acid tolerance remains largely unknown. The African naked mole-rat (Heterocephalus glaber) and hibernating mammals share similar environments and physiological features. In the naked mole-rat, acid insensitivity has been shown to be conferred by the functional motif of the sodium ion channel NaV1.7. There is now an opportunity to evaluate acid insensitivity in other taxa. In this study, we tested for functional convergence of NaV1.7 in 71 species of mammals, including 22 species that hibernate. Our analyses revealed a functional convergence of amino acid sequences, which occurred at least six times independently in mammals that hibernate. Evolutionary analyses determined that the convergence results from both parallel and divergent evolution of residues in the functional motif. Our findings not only identify the functional molecules responsible for acid insensitivity in hibernating mammals, but also open new avenues to elucidate the molecular underpinnings of acid insensitivity in mammals. PMID:24352952

  13. Two alternative juvenile life history types for fall Chinook salmon in the Snake River basin

    USGS Publications Warehouse

    Connor, W.P.; Sneva, J.G.; Tiffan, K.F.; Steinhorst, R.K.; Ross, D.

    2005-01-01

    Fall Chinook salmon Oncorhynchus tshawytscha in the Snake River basin were listed under the Endangered Species Act in 1992. At the time of listing, it was assumed that fall Chinook salmon juveniles in the Snake River basin adhered strictly to an ocean-type life history characterized by saltwater entry at age 0 and first-year wintering in the ocean. Research showed, however, that some fall Chinook salmon juveniles in the Snake River basin spent their first winter in a reservoir and resumed seaward movement the following spring at age 1 (hereafter, reservoir-type juveniles). We collected wild and hatchery ocean-type fall Chinook salmon juveniles in 1997 and wild and hatchery reservoir-type juveniles in 1998 to assess the condition of the reservoir-type juveniles at the onset of seaward movement. The ocean-type juveniles averaged 112-139 mm fork length, and the reservoir-type juveniles averaged 222-224 mm fork length. The large size of the reservoir-type juveniles suggested a high potential for survival to salt water and subsequent return to freshwater. Scale pattern analyses of the fall Chinook salmon spawners we collected during 1998-2003 supported this point. Of the spawners sampled, an overall average of 41% of the wild fish and 51% of the hatchery fish had been reservoir-type juveniles. Males that had been reservoir-type juveniles often returned as small "minijacks" (wild, 16% of total; hatchery, 40% of total), but 84% of the wild males, 60% of the hatchery males, and 100% of the wild and hatchery females that had been reservoir-type juveniles returned at ages and fork lengths commonly observed in populations of Chinook salmon. We conclude that fall Chinook salmon in the Snake River basin exhibit two alternative juvenile life histories, namely ocean-type and reservoir-type. ?? Copyright by the American Fisheries Society 2005.

  14. Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation.

    PubMed

    Revsbech, Inge G; Shen, Xinggui; Chakravarti, Ritu; Jensen, Frank B; Thiel, Bonnie; Evans, Alina L; Kindberg, Jonas; Fröbert, Ole; Stuehr, Dennis J; Kevil, Christopher G; Fago, Angela

    2014-08-01

    During winter hibernation, brown bears (Ursus arctos) lie in dens for half a year without eating while their basal metabolism is largely suppressed. To understand the underlying mechanisms of metabolic depression in hibernation, we measured type and content of blood metabolites of two ubiquitous inhibitors of mitochondrial respiration, hydrogen sulfide (H2S) and nitric oxide (NO), in winter-hibernating and summer-active free-ranging Scandinavian brown bears. We found that levels of sulfide metabolites were overall similar in summer-active and hibernating bears but their composition in the plasma differed significantly, with a decrease in bound sulfane sulfur in hibernation. High levels of unbound free sulfide correlated with high levels of cysteine (Cys) and with low levels of bound sulfane sulfur, indicating that during hibernation H2S, in addition to being formed enzymatically from the substrate Cys, may also be regenerated from its oxidation products, including thiosulfate and polysulfides. In the absence of any dietary intake, this shift in the mode of H2S synthesis would help preserve free Cys for synthesis of glutathione (GSH), a major antioxidant found at high levels in the red blood cells of hibernating bears. In contrast, circulating nitrite and erythrocytic S-nitrosation of glyceraldehyde-3-phosphate dehydrogenase, taken as markers of NO metabolism, did not change appreciably. Our findings reveal that remodeling of H2S metabolism and enhanced intracellular GSH levels are hallmarks of the aerobic metabolic suppression of hibernating bears.

  15. Activity of Ca2+-dependent neutral proteases in tissues of ground squirrel during hibernation and during self-warming after induced awakening.

    PubMed

    Nurmagomedova, P M; Abasova, M M; Emirbekov, E Z

    2011-09-01

    Cyclic changes in activity of Ca2+-dependent neutral protease occur during preparation for hibernation, with an increase in September and November and decrease in October and December. During hibernation proteolytic enzyme activity decreased, while during self-warming after induced awakening, the role of Ca2+-dependent processes in the tissues of ground squirrels increased according to the body temperature.

  16. American shad in the Columbia River

    USGS Publications Warehouse

    Petersen, J.H.; Hinrichsen, R.A.; Gadomski, D.M.; Feil, D.H.; Rondorf, D.W.

    2003-01-01

    American shad Alosa sapidissima from the Hudson River, New York, were introduced into the Sacramento River, California, in 1871 and were first observed in the Columbia River in 1876. American shad returns to the Columbia River increased greatly between 1960 and 1990, and recently 2-4 million adults have been counted per year at Bonneville Dam, Oregon and Washington State (river kilometer 235). The total return of American shad is likely much higher than this dam count. Returning adults migrate as far as 600 km up the Columbia and Snake rivers, passing as many as eight large hydroelectric dams. Spawning occurs primarily in the lower river and in several large reservoirs. A small sample found returning adults were 2-6 years old and about one-third of adults were repeat spawners. Larval American shad are abundant in plankton and in the nearshore zone. Juvenile American shad occur throughout the water column during night, but school near the bottom or inshore during day. Juveniles consume a variety of zooplankton, but cyclopoid copepods were 86% of the diet by mass. Juveniles emigrate from the river from August through December. Annual exploitation of American shad by commercial and recreational fisheries combined is near 9% of the total count at Bonneville Dam. The success of American shad in the Columbia River is likely related to successful passage at dams, good spawning and rearing habitats, and low exploitation. The role of American shad within the aquatic community is poorly understood. We speculate that juveniles could alter the zooplankton community and may supplement the diet of resident predators. Data, however, are lacking or sparse in some areas, and more information is needed on the role of larval and juvenile American shad in the food web, factors limiting adult returns, ocean distribution of adults, and interactions between American shad and endangered or threatened salmonids throughout the river. ?? 2003 by the American Fisheries Society.

  17. Regulatory mechanism of body temperature in the central nervous system during the maintenance phase of hibernation in Syrian hamsters: involvement of β-endorphin.

    PubMed

    Tamura, Yutaka; Shintani, Mitsuteru; Inoue, Hirofumi; Monden, Mayuko; Shiomi, Hirohito

    2012-04-11

    We have shown previously that intracerebroventricular (icv) injection of naloxone (a non-selective opioid receptor antagonist) or naloxonazine (a selective μ1-opioid receptor antagonist) at the maintenance phase of hibernation arouses Syrian hamsters from hibernation. This study was designed to clarify the role of β-endorphin (an endogenous μ-opioid receptor ligand) on regulation of body temperature (T(b)) during the maintenance phase of hibernation. The number of c-Fos-positive cells and β-endorphin-like immunoreactivity increased in the arcuate nucleus (ARC) after hibernation onset. In contrast, endomorphin-1 (an endogenous μ-opioid receptor ligand)-like immunoreactivity observed on the anterior hypothalamus decreased after hibernation onset. In addition, hibernation was interrupted by icv injection of anti-β-endorphin antiserum at the maintenance phase of hibernation. The mRNA expression level of proopiomelanocortin (a precursor of β-endorphin) on ARC did not change throughout the hibernation phase. However, the mRNA expression level of prohormone convertase-1 increased after hibernation onset. [D-Ala2,N-MePhe4,Gly-ol5] enkephalin (DAMGO, a selective μ-opioid receptor agonist) microinjection into the dorsomedial hypothalamus (DMH) elicited the most marked T(b) decrease than other sites such as the preoptic area (PO), anterior hypothalamus (AH), lateral hypothalamus (LH), ventromedial hypothalamus and posterior hypothalamus (PH). However, microinjected DAMGO into the medial septum indicated negligible changes in T(b). These results suggest that β-endorphin which synthesizes in ARC neurons regulates T(b) during the maintenance phase of hibernation by activating μ-opioid receptors in PO, AH, VMH, DMH and PH.

  18. The impact of cold acclimation and hibernation on antioxidant defenses in the ground squirrel (Spermophilus citellus): an update.

    PubMed

    Vucetic, Milica; Stancic, Ana; Otasevic, Vesna; Jankovic, Aleksandra; Korac, Aleksandra; Markelic, Milica; Velickovic, Ksenija; Golic, Igor; Buzadzic, Biljana; Storey, Kenneth B; Korac, Bato

    2013-12-01

    Any alteration in oxidative metabolism is coupled with a corresponding response by an antioxidant defense (AD) in appropriate subcellular compartments. Seasonal hibernators pass through circannual metabolic adaptations that allow them to either maintain euthermy (cold acclimation) or enter winter torpor with body temperature falling to low values. The present study aimed to investigate the corresponding pattern of AD enzyme protein expressions associated with these strategies in the main tissues involved in whole animal energy homeostasis: brown and white adipose tissues (BAT and WAT, respectively), liver, and skeletal muscle. European ground squirrels (Spermophilus citellus) were exposed to low temperature (4 ± 1 °C) and then divided into two groups: (1) animals fell into torpor (hibernating group) and (2) animals stayed active and euthermic for 1, 3, 7, 12, or 21 days (cold-exposed group). We examined the effects of cold acclimation and hibernation on the tissue-dependent protein expression of four enzymes which catalyze the two-step detoxification of superoxide to water: superoxide dismutase 1 and 2 (SOD 1 and 2), catalase (CAT), and glutathione peroxidase (GSH-Px). The results showed that hibernation induced an increase of AD enzyme protein expressions in BAT and skeletal muscle. However, AD enzyme contents in liver were largely unaffected during torpor. Under these conditions, different WAT depots responded by elevating the amounts of specific enzymes, as follows: SOD 1 in retroperitoneal WAT, GSH-Px in gonadal WAT, and CAT in subcutaneous WAT. Similar perturbations of AD enzymes contents were seen in all tissues during cold acclimation, often in a time-dependent manner. It can be concluded that BAT and muscle AD capacity undergo the most dramatic changes during both cold acclimation and hibernation, while liver is relatively unaffected by either condition. Additionally, this study provides a basis for further metabolic study that will illuminate the causes

  19. Water-fat MRI in a hibernator reveals seasonal growth of white and brown adipose tissue without cold exposure.

    PubMed

    MacCannell, Amanda; Sinclair, Kevin; Friesen-Waldner, Lannette; McKenzie, Charles A; Staples, James F

    2017-03-21

    Obligate hibernators, such as ground squirrels, display circannual patterns which persist even under constant laboratory conditions, suggesting that they are regulated by endogenous rhythms. Brown adipose tissue (BAT) is important for thermogenesis during periodic arousals from hibernation when core body temperature rises spontaneously from 5 to 37 °C. In most small eutherians BAT growth requires several weeks of cold exposure. We hypothesized that in the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), a hibernator, BAT growth is regulated, in part, by an endogenous rhythm and we predicted that this growth would precede the hibernation season without cold exposure. We tested this prediction using repeated water-fat magnetic resonance imaging over a year, including the hibernation season. Thoracic BAT depots increased in volume from spring through autumn even though animals were housed at ~22 °C. Subsequent cold exposure (5 °C) enlarged the thoracic BAT further. The fat fraction of this tissue fell significantly during the period of peak growth, indicating relative increases in non-triglyceride components, perhaps mitochondria or vasculature. We also found that the proportion of the body consisting of white adipose tissue (WAT) increased steadily from spring through autumn, and fell throughout hibernation, mirroring changes in body mass. Unlike BAT, WAT fat fractions remained constant (near 90%) throughout the year. Future studies will evaluate the significance of photoperiod and cold exposure on the growth of these tissues. We also found tissue with a fat fraction characteristic of BAT in the head near the eyes, a potentially novel discovery that requires further confirmation.

  20. Membrane phospholipid fatty acid composition regulates cardiac SERCA activity in a hibernator, the Syrian hamster (Mesocricetus auratus).

    PubMed

    Giroud, Sylvain; Frare, Carla; Strijkstra, Arjen; Boerema, Ate; Arnold, Walter; Ruf, Thomas

    2013-01-01

    Polyunsaturated fatty acids (PUFA) have strong effects on hibernation and daily torpor. Increased dietary uptake of PUFA of the n-6 class, particularly of Linoleic acid (LA, C18:2 n-6) lengthens torpor bout duration and enables animals to reach lower body temperatures (T(b)) and metabolic rates. As previously hypothesized, this well-known influence of PUFA may be mediated via effects of the membrane fatty acid composition on sarcoplasmic reticulum (SR) Ca(2+-)ATPase 2a (SERCA) in the heart of hibernators. We tested the hypotheses that high proportions of n-6 PUFA in general, or specifically high proportions of LA (C18:2 n-6) in SR phospholipids (PL) should be associated with increased cardiac SERCA activity, and should allow animals to reach lower minimum T(b) in torpor. We measured activity of SERCA from hearts of hibernating and non-hibernating Syrian hamsters (Mesocricetus auratus) in vitro at 35 °C. Further, we determined the PL fatty acid composition of the SR membrane of these hearts. We found that SERCA activity strongly increased as the proportion of LA in SR PL increased but was negatively affected by the content of Docosahexaenoic acid (DHA; C22:6 n-3). SR PL from hibernating hamsters were characterized by high proportions of LA and low proportions of DHA. As a result, SERCA activity was significantly higher during entrance into torpor and in torpor compared to inter-bout arousal. Also, animals with increased SERCA activity reached lower T(b) during torpor. Interestingly, a subgroup of hamsters which never entered torpor but remained euthermic throughout winter displayed a phenotype similar to animals in summer. This was characterized by lower proportions of LA and increased proportions of DHA in SR membranes, which is apparently incompatible with torpor. We conclude that the PUFA composition of SR membranes affects cardiac function via modulating SERCA activity, and hence determines the minimum T(b) tolerated by hibernators.

  1. Selective mobilization of saturated fatty acids in isolated adipocytes of hibernating 13-lined ground squirrels Ictidomys tridecemlineatus.

    PubMed

    Price, Edwin R; Armstrong, Christopher; Guglielmo, Christopher G; Staples, James F

    2013-01-01

    Fatty acids are not mobilized from adipocyte triacylglycerols uniformly but rather some are preferentially mobilized while others are preferentially retained. In many vertebrate species, the pattern of differential mobilization is determined by the physical and chemical properties of each fatty acid. Fatty acids with shorter chains and more double bonds tend to be more readily mobilized than others, a pattern observed both in whole-animal studies and in isolated adipocytes. Several hibernating species seem to break this pattern, however, and retain 18:2ω6 (linoleic acid) while mobilizing saturated fatty acids such as 18:0. We sought to confirm this pattern in adipocytes of a hibernator, the 13-lined ground squirrel Ictidomys tridecemlineatus, and to investigate mobilization patterns for the first time at hibernation temperature. We isolated adipocytes from summer active and winter torpid squirrels and incubated them with 1 μM norepinephrine at 4°C (7 h) and 37°C (90 min). We measured the proportion of each fatty acid in the adipose tissue and in the buffer at the end of incubation. Patterns of mobilization were similar in both seasons and incubation temperatures. Saturated fatty acids (18:0 and 16:0) were highly mobilized relative to the average, while some unsaturated fatty acids (notably, 18:1ω9 and 18:2ω6) were retained. We conclude that hibernators have unique mechanisms at the level of adipose tissue that preferentially mobilize saturated fatty acids. Additionally, we found that adipocytes from hibernating squirrels produced more glycerol than those from summer squirrels (regardless of temperature), indicating a higher lipolytic capacity in hibernating squirrels.

  2. The effects of hibernation and forced disuse (neurectomy) on bone properties in arctic ground squirrels.

    PubMed

    Bogren, Lori K; Johnston, Erin L; Barati, Zeinab; Martin, Paula A; Wojda, Samantha J; Van Tets, Ian G; LeBlanc, Adrian D; Donahue, Seth W; Drew, Kelly L

    2016-05-01

    Bone loss is a well-known medical consequence of disuse such as in long-term space flight. Immobilization in many animals mimics the effects of space flight on bone mineral density. Decreases in metabolism are also thought to contribute to a loss of skeletal mass. Hibernating mammals provide a natural model of disuse and metabolic suppression. Hibernating ground squirrels have been shown to maintain bone strength despite long periods of disuse and decreased metabolism during torpor. This study examined if the lack of bone loss during torpor was a result of the decrease in metabolic rate during torpor or an evolutionary change in these animals affording protection against disuse. We delineated changes in bone density during natural disuse (torpor) and forced disuse (sciatic neurectomy) in the hind limbs of the arctic ground squirrel (AGS) over an entire year. We hypothesized that the animals would be resistant to bone loss due to immobilization and disuse during the winter hibernation season when metabolism is depressed but not the summer active season. This hypothesis was not supported. The animals maintained bone density (dual-energy X-ray absorptiometry) and most bone structural and mechanical properties in both seasons. This was observed in both natural and forced disuse, regardless of the known metabolic rate increase during the summer. However, trabecular bone volume fraction (microcomputed tomography) in the distal femur was lower in neurectomized AGS at the study endpoint. These results demonstrate a need to better understand the relationship between skeletal load (use) and bone density that may lead to therapeutics or strategies to maintain bone density in disuse conditions.

  3. Pre-hibernation performances of the OSIRIS cameras onboard the Rosetta spacecraft

    NASA Astrophysics Data System (ADS)

    Magrin, S.; La Forgia, F.; Da Deppo, V.; Lazzarin, M.; Bertini, I.; Ferri, F.; Pajola, M.; Barbieri, M.; Naletto, G.; Barbieri, C.; Tubiana, C.; Küppers, M.; Fornasier, S.; Jorda, L.; Sierks, H.

    2015-02-01

    Context. The ESA cometary mission Rosetta was launched in 2004. In the past years and until the spacecraft hibernation in June 2011, the two cameras of the OSIRIS imaging system (Narrow Angle and Wide Angle Camera, NAC and WAC) observed many different sources. On 20 January 2014 the spacecraft successfully exited hibernation to start observing the primary scientific target of the mission, comet 67P/Churyumov-Gerasimenko. Aims: A study of the past performances of the cameras is now mandatory to be able to determine whether the system has been stable through the time and to derive, if necessary, additional analysis methods for the future precise calibration of the cometary data. Methods: The instrumental responses and filter passbands were used to estimate the efficiency of the system. A comparison with acquired images of specific calibration stars was made, and a refined photometric calibration was computed, both for the absolute flux and for the reflectivity of small bodies of the solar system. Results: We found a stability of the instrumental performances within ±1.5% from 2007 to 2010, with no evidence of an aging effect on the optics or detectors. The efficiency of the instrumentation is found to be as expected in the visible range, but lower than expected in the UV and IR range. A photometric calibration implementation was discussed for the two cameras. Conclusions: The calibration derived from pre-hibernation phases of the mission will be checked as soon as possible after the awakening of OSIRIS and will be continuously monitored until the end of the mission in December 2015. A list of additional calibration sources has been determined that are to be observed during the forthcoming phases of the mission to ensure a better coverage across the wavelength range of the cameras and to study the possible dust contamination of the optics.

  4. Leptin regulates energy intake but fails to facilitate hibernation in fattening Daurian ground squirrels (Spermophilus dauricus).

    PubMed

    Xing, Xin; Tang, Gang-Bin; Sun, Ming-Yue; Yu, Chao; Song, Shi-Yi; Liu, Xin-Yu; Yang, Ming; Wang, De-Hua

    2016-04-01

    Body fat storage before hibernation affects the timing of immergence in Daurian ground squirrels (Spermophilus dauricus). Leptin is an adipose signal and plays vital role in energy homeostasis mainly by action in brain. To test the hypothesis that leptin plays a role in facilitating the process of hibernation, squirrels were administrated with recombinant murine leptin (1μg/day) through intracerebroventricular (ICV) injection for 12 days during fattening. From day 7 to 12, animals were moved into a cold room (5±1°C) with constant darkness which functioned as hibernaculum. Energy intake, body mass and core body temperature (Tb) were continuously monitored throughout the course of experiment. Resting metabolic rate (RMR) was measured under both warm and cold conditions. At the end of leptin administration, we measured the serum concentration of hormones related to energy regulation, mRNA expression of hypothalamic neuropeptides and uncoupling protein 1 (UCP1) levels in brown adipose tissue (BAT). Our results showed that during leptin administration, the cumulative food intake and increase of body mass were suppressed while Tb and RMR were unaltered. The proportion of torpid squirrels was not different between two groups. At the end of leptin administration, the expressions of hypothalamic neuropeptide Y and agouti gene-related protein were suppressed. There were no differences in UCP1 mRNA expression or protein content in BAT between groups. Our data suggest that leptin can affect energy intake via hypothalamic neuropeptides, but is not involved in the initiation of hibernation in fattening Daurian ground squirrels.

  5. Conspecific disturbance contributes to altered hibernation patterns in bats with white-nose syndrome.

    PubMed

    Turner, James M; Warnecke, Lisa; Wilcox, Alana; Baloun, Dylan; Bollinger, Trent K; Misra, Vikram; Willis, Craig K R

    2015-03-01

    The emerging wildlife disease white-nose syndrome (WNS) affects both physiology and behaviour of hibernating bats. Infection with the fungal pathogen Pseudogymnoascus destructans (Pd), the first pathogen known to target torpid animals, causes an increase in arousal frequency during hibernation, and therefore premature depletion of energy stores. Infected bats also show a dramatic decrease in clustering behaviour over the winter. To investigate the interaction between disease progression and torpor expression we quantified physiological (i.e., timing of arousal, rewarming rate) and behavioural (i.e., arousal synchronisation, clustering) aspects of rewarming events over four months in little brown bats (Myotis lucifugus) experimentally inoculated with Pd. We tested two competing hypotheses: 1) Bats adjust arousal physiology adaptively to help compensate for an increase in energetically expensive arousals. This hypothesis predicts that infected bats should increase synchronisation of arousals with colony mates to benefit from social thermoregulation and/or that solitary bats will exhibit faster rewarming rates than clustered individuals because rewarming costs fall as rewarming rate increases. 2) As for the increase in arousal frequency, changes in arousal physiology and clustering behaviour are maladaptive consequences of infection. This hypothesis predicts no effect of infection or clustering behaviour on rewarming rate and that disturbance by normothermic bats contributes to the overall increase in arousal frequency. We found that arousals of infected bats became more synchronised than those of controls as hibernation progressed but the pattern was not consistent with social thermoregulation. When a bat rewarmed from torpor, it was often followed in sequence by up to seven other bats in an arousal "cascade". Moreover, rewarming rate did not differ between infected and uninfected bats, was not affected by clustering and did not change over time. Our results support

  6. Functional recovery of hibernating myocardium after coronary bypass surgery: Does it coincide with improvement in perfusion

    SciTech Connect

    Takeishi, Y.; Tono-oka, I.; Kubota, I.; Ikeda, K.; Masakane, I.; Chiba, J.; Abe, S.; Tsuiki, K.; Komatani, A.; Yamaguchi, I. )

    1991-09-01

    To determine the relationship between functional recovery and improvement in perfusion after coronary artery bypass graft surgery (CABG), 49 patients were studied. Radionuclide angiography was performed before, 1 month after, and 6 to 12 months after CABG to evaluate regional wall motion. Exercise thallium-201 myocardial perfusion imaging was done before and 1 month after CABG to assess regional perfusion. Preoperative asynergy was observed in 108 segments, and 74 of them showed an improvement in wall motion 1 month after CABG (segment A). Sixty-six of these segments (89%) were associated with an improvement in perfusion. Eight segments that had not improved 1 month after CABG demonstrated a delayed recovery of wall motion 6 to 12 months after CABG (segment B). However, seven of eight segments (88%) already showed an improvement in perfusion 1 month after CABG. A total of 82 segments exhibited functional recovery after CABG and were considered hibernating segments. In the preoperative study segment B more frequently had areas of akinesis or dyskinesis than segment A (75% vs 34%, p less than 0.05). The mean percent thallium-201 uptake in segment B was lower than that in segment A (74% {plus minus} 9% vs 83% {plus minus} 8%, p less than 0.05). Functional recovery of hibernating myocardium usually coincided with an improvement in perfusion. However, delayed functional recovery after reperfusion was observed in some instances. Severe asynergy and severe thallium-201 defects were more frequently observed in these segments with delayed recovery. Hibernating myocardium might remain stunned during those recovery periods.

  7. Characterization of adipocyte stress response pathways during hibernation in thirteen-lined ground squirrels.

    PubMed

    Rouble, Andrew N; Tessier, Shannon N; Storey, Kenneth B

    2014-08-01

    To avoid the harsh conditions of winter climates, hibernating mammals undergo a systematic depression of physiological function by reducing their metabolic rate. During this process, hibernators are exposed to significant stresses (e.g., low body temperature, ischemia-reperfusion) that must be dealt with appropriately to avoid irreversible tissue damage. Consequently, we investigated the contribution of stress-responsive antioxidant enzymes, heat shock proteins, signal transduction pathways (e.g., mitogen-activated protein kinases, MAPK), and transcription factors for their role in conferring tolerance to stress in the hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus). Using a combination of multiplex protein panels and traditional immunoblotting procedures, we have focused on these stress factors in brown adipose tissue (BAT) and white adipose tissue (WAT) over cycles of torpor-arousal since they provide the means for heat production as a result of non-shivering thermogenesis and the mobilization of critical energy reserves, respectively. We show the differential and tissue-specific regulation of stress factors including a unified upregulation of the antioxidant enzyme Thioredoxin 1 in both tissues, an upregulation of superoxide dismutase (SOD1 and SOD2) in WAT, and an increase in heat shock proteins during the transitory periods of the torpor-arousal cycle (HSP90α in BAT and HSP60 in WAT). Additionally, an upregulation of the active form of ERK1/2 and p38 in BAT and select transcription factors (e.g., CREB-1 and ELK-1) in both tissues were identified. These data provide us with greater insight into the molecular mechanisms responsible for this animal's natural stress tolerance and outline molecular signatures which define stress resistance.

  8. Comparative analysis of the kinetic characteristics of L-type calcium channels in cardiac cells of hibernators.

    PubMed Central

    Alekseev, A E; Markevich, N I; Korystova, A F; Terzic, A; Kokoz, Y M

    1996-01-01

    An undefined property of L-type Ca2+ channels is believed to underlie the unique phenotype of hibernating hearts. Therefore, L-type Ca2+ channels in single cardiomyocytes isolated from hibernating versus awake ground-squirrels (Citellus undulatus) were compared using the perforated mode of the patch-clamp technique, and interpreted by way of a kinetic model of Ca2+ channel behavior based upon the concept of independence of the activation and inactivation processes. We find that, in hibernating ground-squirrels, the cardiac L-type Ca2+ current is lower in magnitude when compared to awake animals. Both in the awake or hibernating states, kinetics of L-type Ca2+ channels could be described by a d2f1(2)f2 model with an activation and two inactivation processes. The activation (or d) process relates to the movement of the gating charge. The slow (or f1) inactivation is associated with movement of gating charge and is current-dependent. The rapid (or f2) inactivation is a complex process which cannot be represented as a single-step conformational transition induced by the gating charge movement, and is regulated by beta-adrenoceptor stimulation. When compared to awake animals, the kinetic properties of Ca2+ channels from hibernating ground-squirrels differed in the following parameters: (1) pronounced shift (15-20 mV) toward depolarization in the normalized conductance of both inactivation components, and moderate shift in the activation component; (2) 1.5-2-fold greater time constants; and (3) two-fold greater activation gating charge. Thus, L-type Ca2+ channels apparently switch their phenotype during the hibernating transition. Stimulation of beta-adrenoceptors by isoproterenol, reversed the hibernating kinetic- (but not amplitude-) phenotype toward the awake type. Therefore, an aberrance in the beta-adrenergic system can not fully explain the observed changes in the L-type Ca2+ current. This suggests that during hibernation additional mechanisms may reduce the single

  9. Telepsychiatry in juvenile justice settings.

    PubMed

    Kaliebe, Kristopher E; Heneghan, James; Kim, Thomas J

    2011-01-01

    Telepsychiatry is emerging as a valuable means of providing mental health care in juvenile justice settings. Youth in the juvenile justice system have high levels of psychiatric morbidity. State and local juvenile justice systems frequently struggle to provide specialized psychiatric care, as these systems have limited resources and often operate in remote locations. Case studies in the use of telepsychiatry to provide improved care in juvenile corrections in 4 states are described, along with a review of advantages and disadvantages of telepsychiatry in these settings.

  10. Genetics Home Reference: juvenile primary osteoporosis

    MedlinePlus

    ... Home Health Conditions juvenile primary osteoporosis juvenile primary osteoporosis Enable Javascript to view the expand/collapse boxes. ... PDF Open All Close All Description Juvenile primary osteoporosis is a skeletal disorder characterized by thinning of ...

  11. Juvenile Mentoring Program: A Progress Review. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Novotney, Laurence C.; Mertinko, Elizabeth; Lange, James; Baker, Tara Kelley

    The greatest support offered by the Office of Juvenile Justice and Delinquency Prevention for youth mentoring has been through the Juvenile Mentoring Program (JUMP), which provides one-to-one mentoring for youth at risk of delinquency, gang involvement, educational failure, or dropping out of school. Information on JUMP has been collected through…

  12. Improving Literacy Skills of Juvenile Detainees. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Hodges, Jane; And Others

    The Office of Juvenile and Delinquency Prevention funded a model designed to improve the literacy level of youth in juvenile detention and correctional facilities. The model specified training language arts teachers and relevant staff and volunteers in direct instruction methods for rapid improvement of students' comprehension, particularly for…

  13. Changes in expression of hepatic genes involved in energy metabolism during hibernation in captive, adult, female Japanese black bears (Ursus thibetanus japonicus).

    PubMed

    Shimozuru, Michito; Kamine, Akari; Tsubota, Toshio

    2012-10-01

    Hibernating bears survive up to 6 months without feeding by utilizing stored body fat as fuel. To investigate how bears maintain energy homeostasis during hibernation, we analyzed changes in mRNA expression of hepatic genes involved in energy metabolism throughout the hibernation period in captive, adult, female Japanese black bears (Ursus thibetanus japonicus). Real-time PCR analysis revealed down-regulation of glycolysis- (e.g., glucokinase), amino acid catabolism- (e.g., alanine aminotransferase) and de novo lipogenesis-related genes (e.g., acetyl-CoA carboxylase 1), and up-regulation of gluconeogensis- (e.g., pyruvate carboxylase), β-oxidation- (i.e., uncoupling protein 2) and ketogenesis-related genes (i.e., 3-hydroxy-3-methylglutary-CoA synthase 2), during hibernation, compared to the active period (June). In addition, we found that glycolysis-related genes (i.e., glucokinase and pyruvate kinase) were more suppressed in the early phase of hibernation (January) compared to the late phase (March). One week after the commencement of feeding in April, expression levels of most genes returned to levels comparable to those seen in June, but β-oxidation-related genes were still up-regulated during this period. These results suggest that the modulation of gene expression is not static, but changes throughout the hibernation period. The transcriptional modulation during hibernation represents a unique physiological adaptation to prolonged fasting in bears.

  14. Similarities in acute phase protein response during hibernation in black bears and major depression in humans: A response to underlying metabolic depression?

    USGS Publications Warehouse

    Tsiouris, J.A.; Chauhan, V.P.S.; Sheikh, A.M.; Chauhan, A.; Malik, M.; Vaughan, M.R.

    2004-01-01

    This study investigated the effects of hibernation with mild hypothermia and the stress of captivity on levels of six acute-phase proteins (APPs) in serial samples of serum from 11 wild and 6 captive black bears (Ursus americanus Pallas, 1780) during active and hibernating states. We hypothesize that during hibernation with mild hypothermia, bears would show an APP response similar to that observed in major depression. Enzyme-linked immunoabsorbent assay was used to measure alpha2-macroglobulin and C-reactive protein, and a nephelometer to measure alpha1-antitrypsin, haptoglobin, ceruloplasmin, and transferrin. Levels of all other proteins except ceruloplasmin were significantly elevated during hibernation in both wild and captive bears at the p < 0.05 to p < 0.001 level. Alpha 2-macroglobulin and C-reactive-protein levels were increased in captive versus wild bears in both active and hibernating states at the p < 0.01 to p < 0.0001 level. During hibernation with mild hypothermia, black bears do not show immunosuppression, but show an increased APP response similar to that in patients with major depression. This APP response is explained as an adaptive response to the underlying metabolic depression in both conditions. Metabolic depression in hibernating bears is suggested as a natural model for research to explain the neurobiology of depression.

  15. Immunoreactivities of IL-1β and IL-1R in oviduct of Chinese brown frog (Rana dybowskii) during pre-hibernation and the breeding period.

    PubMed

    Hu, Ruiqi; Liu, Yuning; Deng, Yu; Ma, Sihui; Sheng, Xia; Weng, Qiang; Xu, Meiyu

    2016-03-01

    The Chinese brown frog (Rana dybowskii) has one special physiological phenomenon, which is that its oviduct goes through expansion prior to hibernation instead of during the breeding period. In this study, we investigated the localization and expression level of interleukin-1 (IL-1β) and its functional membrane receptor type I (IL1R1) proteins in the oviduct of R. dybowskii during pre-hibernation and the breeding period. There were significant differences in both oviductal weight and pipe diameter, with values markedly higher in pre-hibernation than in the breeding period. Histologically, epithelium cells, glandular cells and tubule lumen were identified in the oviduct during pre-hibernation and the breeding period, while sizes of both cell types are larger in the pre-hibernation than those of the breeding period. IL-1β was immunolocalized in the cytoplasm of epithelial and glandular cells in both periods, whereas IL-1R1 was observed in the membrane of epithelial and glandular cells in the breeding period, whereas only in epithelial cells during pre-hibernation. Consistently, the protein levels of IL-1β and IL-1R1 were higher in pre-hibernation as compared to the breeding period. These results suggested that IL-1β may play an important autocrine or paracrine role in oviductal cell proliferation and differentiation of R. dybowskii.

  16. Recovery of Syrian hamster hippocampal signaling following its depression during oxygen-glucose deprivation is enhanced by cold temperatures and by hibernation.

    PubMed

    Mikhailova, Alexandra; Mack, Jacob; Vitagliano, Nicholas; Hamilton, Jock S; Horowitz, John M; Horwitz, Barbara A

    2016-05-16

    Signal transmission over a hippocampal network of CA3 and CA1 neurons in Syrian hamsters (Mesocricetus auratus), facultative hibernators, has not been fully characterized in response to oxygen-glucose deprivation (OGD). We hypothesized that during OGD, hippocampal signal transmission fails first at the synapse between CA3 and CA1 pyramidal neurons and that recovery of signal processing following OGD is more robust in hippocampal slices at cold temperature, from hamsters vs. rats, and from hibernating vs. non-hibernating hamsters. To test these hypotheses, we recorded fEPSPs and population spikes of CA1 neurons at 25°C, 30°C, and 35°C in 400μm slices over a 15min control period with the slice in oxygenated aCSF containing glucose (control solution), a 10min treatment period (OGD insult) where oxygen was replaced by nitrogen in aCSF lacking glucose, and a 30min recovery period with the slice in the control solution. The initial site of transmission failure during OGD occurred at the CA3-CA1 synapse, and recovery of signal transmission was at least, if not more (depending on temperature), complete in slices from hibernating vs. non-hibernating hamsters, and from non-hibernating hamsters vs. rats. Thus, hamster neuroprotective mechanisms supporting functional recovery were enhanced by cold temperatures and by hibernation.

  17. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    PubMed

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  18. Kill Them Before They Grow. Misdiagnosis of African American Boys in American Classrooms.

    ERIC Educational Resources Information Center

    Porter, Michael

    This book contends that the American public education system has made "black male" synonymous with "disabled" through the creation of the labels "Behavior Disorders" and "Emotional Disorders." These labels, which say that African American boys cannot behave without special treatment, juvenile probation, and,…

  19. Torpor and hibernation in a basal placental mammal, the Lesser Hedgehog Tenrec Echinops telfairi.

    PubMed

    Lovegrove, Barry G; Génin, Fabien

    2008-08-01

    The patterns of heterothermy were measured in Lesser Hedgehog Tenrecs, Echinops telfairi, under semi-natural conditions in an outdoor enclosure during the austral mid-winter in southwestern Madagascar. The animals were implanted with miniaturized body temperature (Tb) loggers (iButtons) that measured body temperature every 42 min for 2 months (May and June). The tenrecs entered daily torpor on all 60 consecutive days of measurement, that is, on 100% of animal days, with body temperature closely tracking ambient temperature (Ta) during the ambient heating phase. The mean minimum daily Tb of the tenrecs was 18.44 +/- 0.50 degrees C (n = 174, N = 3), and never exceeded 25 degrees C whereas, apart from a few hibernation bouts in one animal, the mean maximum daily Tb was 30.73 +/- 0.15 degrees C (n = 167, N = 3). Thus during winter, tenrecs display the lowest normothermic Tb of all placental mammals. E. telfairi showed afternoon and early evening arousals, but entered torpor before midnight and remained in torpor for 12-18 h each day. One animal hibernated on two occasions for periods of 2-4 days. We consider E. telfairi to be a protoendotherm, and discuss the relevance and potential of these data for testing models on the evolution of endothermy.

  20. Delayed phenology and reduced fitness associated with climate change in a wild hibernator.

    PubMed

    Lane, Jeffrey E; Kruuk, Loeske E B; Charmantier, Anne; Murie, Jan O; Dobson, F Stephen

    2012-09-27

    The most commonly reported ecological effects of climate change are shifts in phenologies, in particular of warmer spring temperatures leading to earlier timing of key events. Among animals, however, these reports have been heavily biased towards avian phenologies, whereas we still know comparatively little about other seasonal adaptations, such as mammalian hibernation. Here we show a significant delay (0.47 days per year, over a 20-year period) in the hibernation emergence date of adult females in a wild population of Columbian ground squirrels in Alberta, Canada. This finding was related to the climatic conditions at our study location: owing to within-individual phenotypic plasticity, females emerged later during years of lower spring temperature and delayed snowmelt. Although there has not been a significant annual trend in spring temperature, the date of snowmelt has become progressively later owing to an increasing prevalence of late-season snowstorms. Importantly, years of later emergence were also associated with decreased individual fitness. There has consequently been a decline in mean fitness (that is, population growth rate) across the past two decades. Our results show that plastic responses to climate change may be driven by climatic trends other than increasing temperature, and may be associated with declines in individual fitness and, hence, population viability.

  1. Stimulation of movement in a quiescent, hibernation-like form of Caenorhabditis elegans by dopamine signaling.

    PubMed

    Gaglia, Marta Maria; Kenyon, Cynthia

    2009-06-03

    One of the characteristics of animals in hibernation is reduced behavioral activity. The Caenorhabditis elegans dauer state is a hibernation-like state of diapause that displays a dramatic reduction in spontaneous locomotion. A similar dauer-like quiescent state is produced in adults by relatively strong mutations in the insulin/IGF-1 receptor homolog daf-2. In this study, we show that mutations affecting the neurotransmitter dopamine, which regulates voluntary movement in many organisms, can stimulate movement in dauers and dauer-like quiescent adults. Surprisingly, the movement of quiescent animals is stimulated by conditions that reduce dopamine signaling and also by conditions predicted to increase dopamine signaling. Reducing dopamine signaling is likely to stimulate movement by activating a foraging response also seen in nondauers after withdrawal of food. In contrast, the stimulation of movement by increased dopamine is much more pronounced in quiescent daf-2(-) dauer and dauer-like adult animals than in nondauaer animals. This altered response to dopamine is primarily attributable to activity of the FOXO (forkhead box O) transcription factor DAF-16 in neurons. We suggest that dauers and dauer-like quiescent adults may have underlying changes in the dopamine system that enable them to respond differently to environmental stimulation.

  2. Insights from the Den: How Hibernating Bears May Help Us Understand and Treat Human Disease.

    PubMed

    Berg von Linde, Maria; Arevström, Lilith; Fröbert, Ole

    2015-10-01

    Hibernating brown bears (Ursus arctos) and black bears (Ursus americanus) spend half of the year in a physically inactive state inside their winter dens without food intake and defecating and no or little urination. Under similar extreme conditions, humans would suffer from loss of lean body mass, heart failure, thrombosis, azotemia, osteoporosis, and more. However, bears exit the den in the spring strong without organ injuries. Translational animal models are used in human medicine but traditional experimental animals have several shortcomings; thus, we believe that it is time to systematically explore new models. In this review paper, we describe physiological adaptations of hibernating bears and how similar adaptations in humans could theoretically alleviate medical conditions. The bear has solved most of the health challenges faced by humans, including heart and kidney disease, atherosclerosis and thrombosis, and muscle wasting and osteoporosis. Understanding and applying this library of information could lead to a number of major discoveries that could have implications for the understanding and treatment of human disease.

  3. Delayed effect of pinealectomy on hibernation of the golden-mantled ground squirrel

    NASA Astrophysics Data System (ADS)

    Ralph, C. L.; Harlow, H. J.; Phillips, J. A.

    1982-12-01

    Pinealectomy or radical sham pinealectomy were performed on adult golden-mantled ground squirrels, Spermophilus (=Citellus) lateralis, approximately 1 month prior to the date of normal winter emergence. The first hibernatory period and subsequent active season were not different in either of the operated groups from intact animals. However, although the initiation of the second hibernatory period was not affected in the pinealectomized animals, this group failed to show the progressive increase in the length of heterothermic bouts that is characteristic of normal hibernation. Also, terminal arousal occurred approximately 6 weeks earlier in the second year after pinealectomy. Male squirrels showed a corresponding time compression in their annual gonadal cycle, as was assessed by testicular state. These results suggest that the pineal gland of the golden-mantled ground squirrel is involved in the expression of the annual hibernatory cycle. In the absence of the pineal gland the adult of this species is unable to sustain the normal depth and duration of hibernation in the second over-wintering period following pinealectomy. We have carried out additional experiments with young, laboratory-born S. lateralis and with field-caught, adult S. richardsonii. The results of these studies also are described in this paper.

  4. The hibernating 13-lined ground squirrel as a model organism for potential cold storage of platelets.

    PubMed

    Cooper, Scott T; Richters, Karl E; Melin, Travis E; Liu, Zhi-jian; Hordyk, Peter J; Benrud, Ryan R; Geiser, Lauren R; Cash, Steve E; Simon Shelley, C; Howard, David R; Ereth, Mark H; Sola-Visner, Martha C

    2012-05-15

    Hibernating mammals have developed many physiological adaptations to extreme environments. During hibernation, 13-lined ground squirrels (Ictidomys tridecemlineatus) must suppress hemostasis to survive prolonged body temperatures of 4-8°C and 3-5 heartbeats per minute without forming lethal clots. Upon arousal in the spring, these ground squirrels must be able to quickly restore normal clotting activity to avoid bleeding. Here we show that ground squirrel platelets stored in vivo at 4-8°C were released back into the blood within 2 h of arousal in the spring with a body temperature of 37°C but were not rapidly cleared from circulation. These released platelets were capable of forming stable clots and remained in circulation for at least 2 days before newly synthesized platelets were detected. Transfusion of autologous platelets stored at 4°C or 37°C showed the same clearance rates in ground squirrels, whereas rat platelets stored in the cold had a 140-fold increase in clearance rate. Our results demonstrate that ground squirrel platelets appear to be resistant to the platelet cold storage lesions observed in other mammals, allowing prolonged storage in cold stasis and preventing rapid clearance upon spring arousal. Elucidating these adaptations could lead to the development of methods to store human platelets in the cold, extending their shelf life.

  5. Annual plasma testosterone and thyroxine cycles in relation to hibernation in the edible dormouse Glis glis.

    PubMed

    Jallageas, M; Assenmacher, I

    1983-06-01

    Twelve male edible dormice, captured in the autumn of 1979, were studied for 2 years under natural lighting in an animal enclosure with permanently open windows, at Montpellier, in Southern France (latitude 43 degrees 50' N). Ambient temperature fluctuated annually between +4 and 27 degrees, and the photoperiod between 10L:14D and 16L:8D. Another group of 26 animals, captured in the autumn of 1980, was observed under the same conditions for 1 year. Body weight and plasma testosterone and thyroxine concentrations were measured at monthly intervals under standardized conditions. Hibernation generally extended from October to February but lasted till May in a few cases, and the critical temperature for dormancy varied between 13 and 16 degrees in November and 23 degrees in May. Body weight fluctuated annually according to a biphasic pattern, with two maxima, respectively, in spring and autumn (prehibernation), and two minima, in summer and winter. However, plasma testosterone and thyroxine concentrations displayed clearly monophasic annual cycles, closely correlated, both to each other and to the ambient temperature and photoperiod. Both the testosterone and thyroxine cycles culminated in June-July. Interestingly, the annual ascending phase for both hormonal cycles never preceded the terminal arousal of the animal. Further, whatever the season, 30 degrees was clearly the critical minimal body temperature required for a seasonal increase to occur in plasma testosterone. These annual cycles are discussed in the light of the data acquired recently for hibernators other than the dormouse.

  6. Organ protective mechanisms common to extremes of physiology: a window through hibernation biology.

    PubMed

    Quinones, Quintin J; Ma, Qing; Zhang, Zhiquan; Barnes, Brian M; Podgoreanu, Mihai V

    2014-09-01

    Supply and demand relationships govern survival of animals in the wild and are also key determinants of clinical outcomes in critically ill patients. Most animals' survival strategies focus on the supply side of the equation by pursuing territory and resources, but hibernators are able to anticipate declining availability of nutrients by reducing their energetic needs through the seasonal use of torpor, a reversible state of suppressed metabolic demand and decreased body temperature. Similarly, in clinical medicine the majority of therapeutic interventions to care for critically ill or trauma patients remain focused on elevating physiologic supply above critical thresholds by increasing the main determinants of delivery of oxygen to the tissues (cardiac output, perfusion pressure, hemoglobin concentrations, and oxygen saturation), as well as increasing nutritional support, maintaining euthermia, and other general supportive measures. Techniques, such as induced hypothermia and preconditioning, aimed at diminishing a patient's physiologic requirements as a short-term strategy to match reduced supply and to stabilize their condition, are few and underutilized in clinical settings. Consequently, comparative approaches to understand the mechanistic adaptations that suppress metabolic demand and alter metabolic use of fuel as well as the application of concepts gleaned from studies of hibernation, to the care of critically ill and injured patients could create novel opportunities to improve outcomes in intensive care and perioperative medicine.

  7. Changes in ventral respiratory column GABAaR ε- and δ-subunits during hibernation mediate resistance to depression by EtOH and pentobarbital.

    PubMed

    Hengen, K B; Gomez, T M; Stang, K M; Johnson, S M; Behan, M

    2011-02-01

    During hibernation in the 13-lined ground squirrel, Ictidomys tridecemlineatus, the cerebral cortex is electrically silent, yet the brainstem continues to regulate cardiorespiratory function. Previous work showed that neurons in slices through the medullary ventral respiratory column (VRC) but not the cortex are insensitive to high doses of pentobarbital during hibernation, leading to the hypothesis that GABA(A) receptors (GABA(A)R) in the VRC undergo a seasonal modification in subunit composition. To test whether alteration of GABA(A)R subunits are responsible for hibernation-associated pentobarbital insensitivity, we examined an array of subunits using RT-PCR and Western blots and identified changes in ε- and δ-subunits in the medulla but not the cortex. Using immunohistochemistry, we confirmed that during hibernation, the expression of ε-subunit-containing GABA(A)Rs nearly doubles in the VRC. We also identified a population of δ-subunit-containing GABA(A)Rs adjacent to the VRC that were differentially expressed during hibernation. As δ-subunit-containing GABA(A)Rs are particularly sensitive to ethanol (EtOH), multichannel electrodes were inserted in slices of medulla and cortex from hibernating squirrels and EtOH was applied. EtOH, which normally inhibits neuronal activity, excited VRC but not cortical neurons during hibernation. This excitation was prevented by bicuculline pretreatment, indicating the involvement of GABA(A)Rs. We propose that neuronal activity in the VRC during hibernation is unaffected by pentobarbital due to upregulation of ε-subunit-containing GABA(A)Rs on VRC neurons. Synaptic input from adjacent inhibitory interneurons that express δ-subunit-containing GABA(A)Rs is responsible for the excitatory effects of EtOH on VRC neurons during hibernation.

  8. [Familial juvenile hyperuricemic nephropathy].

    PubMed

    Hummel, Aurélie

    2012-04-01

    Familial juvenile hyperuricemic nephropathy is a rare autosomal dominant disease. It is characterized by abnormal handling of urate responsible for hyperuricaemia often complicated of gouty arthritis. Renal failure is due to tubulointerstitial nephritis. Ultrasonography sometimes finds renal cysts of variable size and number. Renal histology, although not specific, shows interstitial fibrosis, atrophic tubules, sometimes enlarged and with irregular membrane thickening. Renal failure progresses to end stage between 30 and 60 years of age. Allopurinol treatment is recommended at the early stages of the disease, its efficacy on slowing down the progression of the disease is however not proven. There is genetic heterogeneity in familial juvenile hyperuricemic nephropathy. Uromodulin encoding Tamm-Horsfall protein is the only gene to date identified, responsible in less than half of the families. The described mutations most often concern a cystein and are clustering in exon 4. These mutations result in abnormal retention of the protein in endoplasmic reticulum of Henle loop cells and in reduction of its urinary excretion. The pathophysiology of the disease is however still dubious. Indeed, Tamm-Horsfall protein functions are not well known (anti-infectious role, cristallisation inhibition, immunomodulating role). Knock-out mice do not develop renal phenotype but are more prone to E. coli urinary infections. Uromodulin gene mutations have also been described in medullary cystic kidney disease, an autosomal dominant tubulointerstitial nephropathy, considered at first as a distinct disorder. Genetic progress allowed us to consider familial juvenile hyperuricemic nephropathy and medullary cystic kidney disease as the two facets of a same disease, we should call uromodulin associated kidney diseases. At least two other genes have been implicated in similar clinical presentation: TCF2 and the gene encoding renin.

  9. Transcriptional activation of muscle atrophy promotes cardiac muscle remodeling during mammalian hibernation

    PubMed Central

    Zhang, Yichi; Aguilar, Oscar A.

    2016-01-01

    Background. Mammalian hibernation in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is characterized by dramatic changes on a physiological and molecular level. During hibernation, mammalian hearts show a propensity to hypertrophy due to the need for increasing contractility to pump colder and more viscous blood. While cardiac hypertrophy is quite often a process characterized by decompensation, the ground squirrel studied is an excellent model of cardiac plasticity and cardioprotection under conditions of hypothermia and ischemia. The forkhead box O (Foxo) family of proteins and myogenin (MyoG) are transcription factors that control protein degradation and muscle atrophy by regulating the expression of the E3 ubiquitin ligases, MAFbx and MuRF1. These ligases are part of the ubiquitin proteasome system by transferring ubiquitin to proteins and targeting these proteins for degradation. Regulation of Foxo1 and 3a occurs through phosphorylation at different residues. The threonine-24 (Thr-24) and serine-319 (Ser-319) residues on Foxo1, and the Thr-32 residue on Foxo3a are phosphorylated by Akt, leading to cytoplasmic localization of Foxo. We propose that the described mechanism contributes to the changes taking place in cardiac muscle throughout hibernation. Methods. Total and phosphorylated protein levels of Foxo1 and Foxo3a, as well as total protein levels of MyoG, MAFbx, and MuRF1, were studied using immunoblotting. Results. Immunoblotting results demonstrated upregulations in Foxo1 and Foxo3a total protein levels (1.3- and 4.5-fold increases relative to euthermic control, for Foxo1 and 3a respectively) during late torpor, and protein levels remained elevated throughout the rest of torpor and at interbout arousal. We also observed decreases in inactive, phosphorylated Foxo1 and 3a proteins during throughout torpor, where levels of p-Foxo1 Ser319 and Thr24, as well as p-Foxo3a Thr32 decreased by at least 45% throughout torpor. MyoG was upregulated only

  10. Managing anabolic steroids in pre-hibernating Arctic ground squirrels: obtaining their benefits and avoiding their costs

    PubMed Central

    Boonstra, Rudy; Mo, Kaiguo; Monks, Douglas Ashley

    2014-01-01

    Androgens have benefits, such as promoting muscle growth, but also significant costs, including suppression of immune function. In many species, these trade-offs in androgen action are reflected in regulated androgen production, which is typically highest only in reproductive males. However, all non-reproductive Arctic ground squirrels, irrespective of age and sex, have high levels of androgens prior to hibernating at sub-zero temperatures. Androgens appear to be required to make muscle in summer, which, together with lipid, is then catabolized during overwinter. By contrast, most hibernating mammals catabolize only lipid. We tested the hypothesis that androgen action is selectively enhanced in Arctic ground squirrel muscle because of an upregulation of androgen receptors (ARs). Using Western blot analysis, we found that Arctic ground squirrels have AR in skeletal muscle more than four times that of Columbian ground squirrels, a related southern species that overwinters at approximately 0°C and has low pre-hibernation androgen levels. By contrast, AR in lymph nodes was equivalent in both species. Brain AR was also modestly but significantly increased in Arctic ground squirrel relative to Columbian ground squirrel. These results are consistent with the hypothesis that tissue-specific AR regulation prior to hibernation provides a mechanism whereby Arctic ground squirrels obtain the life-history benefits and mitigate the costs associated with high androgen production. PMID:25376801

  11. Liver and kidney structure and iron content in romanian brown bears (Ursus arctos) before and after hibernation.

    PubMed

    Prunescu, Carol- Constantin; Serban-Parau, Nicolae; Brock, Jeremy H; Vaughan, Diane M; Prunescu, Paula

    2003-01-01

    The annual cycle of the brown bear (Ursus arctos) in the Carpathian Mountains (Romania) consists of an active period from April to November, and an inactive period (hibernation) of approximately 4-5 months between November and March. During hibernation, the brown bears sleep continually and do not feed or drink water. Analyses of liver and kidney of male brown bears showed that liver iron content was 3 times higher in bears at the end of hibernation than at the end of the active period. A possible trend towards a decrease in iron content was noted for the kidney. The presence of iron in the liver was confirmed by the presence of the Perls-positive granules in the cytoplasm of Kupffer cells, in other non-parenchymal cells and also in some hepatocytes. The hepatic veins of the bear liver samples obtained in early spring showed narrower lumens with pleated walls, compared to the normal outline of the hepatic veins in the liver from the bears sampled during autumn. Also in the early spring bears, the renal glomeruli were partially fibrosed. Renal glomerular fibrosis was sometimes observed in samples from the prehibernation period. The tissue iron values from the livers and kidneys of brown bears in early spring or autumn might provide useful data on iron metabolism under conditions of hibernation and accompanying starvation.

  12. Hypophosphorylation of Ribosomal Protein S6 is a Molecular Mechanism Underlying Ischemic Tolerance Induced by either Hibernation or Preconditioning

    PubMed Central

    Miyake, Shin-ichi; Wakita, Hideaki; Bernstock, Joshua D.; Castri, Paola; Ruetzler, Christl; Miyake, Junko; Lee, Yang-ja; Hallenbeck, John M.

    2015-01-01

    Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) have an extraordinary capacity to withstand prolonged and profound reductions of blood flow and oxygen delivery to brain without incurring any cellular damage. As such, the hibernation torpor of I. tridecemlineatus provides a valuable model of tolerance to ischemic stress. Herein, we report that during hibernation torpor, a marked reduction in the phosphorylation of the ribosomal protein S6 (rpS6) occurs within the brains of I. tridecemlineatus. Of note, rpS6 phosphorylation was shown to increase in the brains of rats that underwent an occlusion of the middle cerebral artery. However, such an increase was attenuated after the implementation of an ischemic preconditioning paradigm. In addition, cultured cortical neurons treated with the rpS6 kinase (S6K) inhibitors, D-glucosamine or PF4708671, displayed a decrease in rpS6 phosphorylation and a subsequent increase in tolerance to oxygen/glucose deprivation, an in vitro model of ischemic stroke. Collectively, such evidence suggests that the down regulation of rpS6 signal transduction may account for a substantial part of the observed increase in cellular tolerance to brain ischemia that occurs during hibernation torpor and after ischemic preconditioning. Further identification and characterization of the mechanisms used by hibernating species to increase ischemic tolerance may eventually clarify how the loss of homeostatic control that occurs during and after cerebral ischemia in the clinic can ultimately be minimized and/or prevented. PMID:26375300

  13. Managing anabolic steroids in pre-hibernating Arctic ground squirrels: obtaining their benefits and avoiding their costs.

    PubMed

    Boonstra, Rudy; Mo, Kaiguo; Monks, Douglas Ashley

    2014-11-01

    Androgens have benefits, such as promoting muscle growth, but also significant costs, including suppression of immune function. In many species, these trade-offs in androgen action are reflected in regulated androgen production, which is typically highest only in reproductive males. However, all non-reproductive Arctic ground squirrels, irrespective of age and sex, have high levels of androgens prior to hibernating at sub-zero temperatures. Androgens appear to be required to make muscle in summer, which, together with lipid, is then catabolized during overwinter. By contrast, most hibernating mammals catabolize only lipid. We tested the hypothesis that androgen action is selectively enhanced in Arctic ground squirrel muscle because of an upregulation of androgen receptors (ARs). Using Western blot analysis, we found that Arctic ground squirrels have AR in skeletal muscle more than four times that of Columbian ground squirrels, a related southern species that overwinters at approximately 0°C and has low pre-hibernation androgen levels. By contrast, AR in lymph nodes was equivalent in both species. Brain AR was also modestly but significantly increased in Arctic ground squirrel relative to Columbian ground squirrel. These results are consistent with the hypothesis that tissue-specific AR regulation prior to hibernation provides a mechanism whereby Arctic ground squirrels obtain the life-history benefits and mitigate the costs associated with high androgen production.

  14. Juvenile Justice in Rural America.

    ERIC Educational Resources Information Center

    Jankovic, Joanne, Ed.; And Others

    Producing a much-needed organized body of literature about rural juvenile justice, 14 papers (largely from the 1979 National Symposium on Rural Justice) are organized to identify current issues, identify forces causing changes in current systems, review programs responding to rural juvenile justice problems, and provide planning models to aid…

  15. Iatrogenic Effect of Juvenile Justice

    ERIC Educational Resources Information Center

    Gatti, Uberto; Tremblay, Richard E.; Vitaro, Frank

    2009-01-01

    Background: The present study uses data from a community sample of 779 low-SES boys to investigate whether intervention by the juvenile justice system is determined, at least in part, by particular individual, familial and social conditions, and whether intervention by the juvenile courts during adolescence increases involvement in adult crime.…

  16. Juvenile Crime. Opposing Viewpoints Series.

    ERIC Educational Resources Information Center

    Sadler, A. E., Ed.

    Books in the Opposing Viewpoints Series present debates about current issues that can be used to teach critical reading and thinking skills. The variety of opinions expressed in this collection of articles and book excerpts explores many aspects of juvenile crime. It is a commonly held view that the number of crimes committed by juveniles is…

  17. Juvenile Courts- Terms To Know.

    ERIC Educational Resources Information Center

    Update on Law-Related Education, 2000

    2000-01-01

    Offers a crossword puzzle that focuses on terms learned in this edition of "Update on Law-Related Education." Explains that the letters in the boxes spell the answer to this question: what do juvenile courts try to offer juveniles? Provides the clues and answers to the puzzle. (CMK)

  18. Hypophosphorylation of ribosomal protein S6 is a molecular mechanism underlying ischemic tolerance induced by either hibernation or preconditioning.

    PubMed

    Miyake, Shin-ichi; Wakita, Hideaki; Bernstock, Joshua D; Castri, Paola; Ruetzler, Christl; Miyake, Junko; Lee, Yang-Ja; Hallenbeck, John M

    2015-12-01

    Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) have an extraordinary capacity to withstand prolonged and profound reductions in blood flow and oxygen delivery to the brain without incurring any cellular damage. As such, the hibernation torpor of I. tridecemlineatus provides a valuable model of tolerance to ischemic stress. Herein, we report that during hibernation torpor, a marked reduction in the phosphorylation of the ribosomal protein S6 (rpS6) occurs within the brains of I. tridecemlineatus. Of note, rpS6 phosphorylation was shown to increase in the brains of rats that underwent an occlusion of the middle cerebral artery. However, such an increase was attenuated after the implementation of an ischemic preconditioning paradigm. In addition, cultured cortical neurons treated with the rpS6 kinase (S6K) inhibitors, D-glucosamine or PF4708671, displayed a decrease in rpS6 phosphorylation and a subsequent increase in tolerance to oxygen/glucose deprivation, an in vitro model of ischemic stroke. Collectively, such evidence suggests that the down-regulation of rpS6 signal transduction may account for a substantial part of the observed increase in cellular tolerance to brain ischemia that occurs during hibernation torpor and after ischemic preconditioning. Further identification and characterization of the mechanisms used by hibernating species to increase ischemic tolerance may eventually clarify how the loss of homeostatic control that occurs during and after cerebral ischemia in the clinic can ultimately be minimized and/or prevented. Mammalian hibernation provides a valuable model of tolerance to ischemic stress. Herein, we demonstrate that marked reductions in the phosphorylation of ribosomal protein S6 (rpS6), extracellular signal-regulated kinase family of mitogen-activated protein (MAP) kinase p44/42 (p44/42MAPK) and ribosomal protein S6 kinase (S6K) occur within the brains of both hibernating squirrels and rats, which have undergone an ischemic

  19. Thermoregulation and energetics in hibernating black bears: metabolic rate and the mystery of multi-day body temperature cycles.

    PubMed

    Tøien, Øivind; Blake, John; Barnes, Brian M

    2015-05-01

    Black bears overwintering in outdoor hibernacula in Alaska decrease metabolism to as low as 25 % basal rates, while core body temperature (T(b)) decreases from 37 to 38 °C to a mid-hibernation average of 33 °C. T b develops cycles of 1.6-7.3 days length within a 30-36 °C range, with no circadian component. We do not know the mechanism or function underlying behind the T(b) cycles, although bears avoid T(b) of <30 °C and shorter cycles are predicted from higher rates of heat loss in colder conditions. To test this we manipulated den temperatures (T(den)) of 12 hibernating bears with body mass (BM) from 35.5 to 116.5 kg while recording T(b), metabolic rate (M), and shivering. T b cycle length (0.8-11.2 days) shortened as T den decreased (partial R(2) = 0.490, p < 0.001). Large bears with low thermal conductance (TC) showed more variation in T b cycle length with changes in T(den) than did smaller bears with high TC. Minimum T b across cycles was not consistent. At low T(den) bears shivered both during rising and decreasing phases of T(b) cycles, with minimum shivering during the fastest drop in T(b). At higher T den the T b pattern was more irregular. Mean M through T(b) cycles was negatively correlated to T den below lower critical temperatures (1.4-10.4 °C). Minimum M (0.3509 W/kg ± 0.0121 SE) during mid-hibernation scaled to BM [M (W) = 1.217 × BM (kg)(0.6979), R(2) = 0.855, p < 0.001]. Hibernating thermal conductance (TC) was negatively correlated to BM (R(2) = 0.721, p < 0.001); bears with high TC had the same T(b) cycle length as bears with low TC except at high T(den), thus not supporting the hypothesis that cooling rate alone determines T(b) cycle length. We conclude that T(b) cycling is effected by control of thermoregulatory heat production, and T(b) cycling may not be present when hibernating bears use passive thermoregulation. More intense shivering in the rising phase of cycles may contribute to the prevention of muscle disuse atrophy. Bears

  20. Mental Illness and Juvenile Offenders

    PubMed Central

    Underwood, Lee A.; Washington, Aryssa

    2016-01-01

    Within the past decade, reliance on the juvenile justice system to meet the needs of juvenile offenders with mental health concerns has increased. Due to this tendency, research has been conducted on the effectiveness of various intervention and treatment programs/approaches with varied success. Recent literature suggests that because of interrelated problems involved for youth in the juvenile justice system with mental health issues, a dynamic system of care that extends beyond mere treatment within the juvenile justice system is the most promising. The authors provide a brief overview of the extent to which delinquency and mental illness co-occur; why treatment for these individuals requires a system of care; intervention models; and the juvenile justice systems role in providing mental health services to delinquent youth. Current and future advancements and implications for practitioners are provided. PMID:26901213

  1. Mental Illness and Juvenile Offenders.

    PubMed

    Underwood, Lee A; Washington, Aryssa

    2016-02-18

    Within the past decade, reliance on the juvenile justice system to meet the needs of juvenile offenders with mental health concerns has increased. Due to this tendency, research has been conducted on the effectiveness of various intervention and treatment programs/approaches with varied success. Recent literature suggests that because of interrelated problems involved for youth in the juvenile justice system with mental health issues, a dynamic system of care that extends beyond mere treatment within the juvenile justice system is the most promising. The authors provide a brief overview of the extent to which delinquency and mental illness co-occur; why treatment for these individuals requires a system of care; intervention models; and the juvenile justice systems role in providing mental health services to delinquent youth. Current and future advancements and implications for practitioners are provided.

  2. Juvenile 'Perinasal' Angiofibroma.

    PubMed

    Mishra, Anupam; Verma, Veerendra; Mishra, Subhash Chandra

    2017-03-01

    The extranasopharyngeal angiofibroma is a separate clinical entity but those involving infratemporal fossa and cheek resemble juvenile nasopharyngeal angiofibroma (JNA) and hence have been labelled as juvenile perinasal angiofibroma (JPA) in this paper. This paper presents a 7th case of JPA and attempts to review the world literature on JPA, along with a proposal of staging the disease. A 16 year male presented with a painless compressible facial swelling since 7 months without any epistaxis or nasal obstruction. Initially a vascular lesion was suspected but JNA without nasal extension was strongly suspected on imaging. A deep trucut biopsy confirmed the histopathology. The vascular enhancement was significant and the tumour was excised through open approach (Weber Fergusson). JPA that can be regarded as a variant of JNA that fails to extend medially. Imaging demonstrates classical JNA findings with a clear nose/nasopharynx. A deep trucut biopsy under control in inpatient settings may sometimes help. JPA presents most commonly in Stage II where an open facial approach preferably following selective preoperative embolization is indicated. Hence with painless compressible (or non-compressible) cheek swelling suspected to be of a vascular etiology, a high degree of clinical suspicion for JPA needs to maintained in order to prevent a misdiagnosis.

  3. To be or not to be: the regulation of mRNA fate as a survival strategy during mammalian hibernation.

    PubMed

    Tessier, Shannon N; Storey, Kenneth B

    2014-11-01

    Mammalian hibernators undergo profound behavioral, physiological, and biochemical changes in order to cope with hypothermia, ischemia-reperfusion, and finite fuel reserves over days or weeks of continuous torpor. Against a backdrop of global reductions in energy-expensive processes such as transcription and translation, a subset of genes/proteins are strategically upregulated in order to meet challenges associated with hibernation. Consequently, hibernation involves substantial transcriptional and posttranscriptional regulatory mechanisms and provides a phenomenon with which to understand how a set of common genes/proteins can be differentially regulated in order to enhance stress tolerance beyond that which is possible for nonhibernators. The present review focuses on the involvement of messenger RNA (mRNA) interacting factors that play a role in the regulation of gene/protein expression programs that define the hibernating phenotype. These include proteins involved in mRNA processing (i.e., capping, splicing, and polyadenylation) and the possible role of alternative splicing as a means of enhancing protein diversity. Since the total pool of mRNA remains constant throughout torpor, mechanisms which enhance mRNA stability are discussed in the context of RNA binding proteins and mRNA decay pathways. Furthermore, mechanisms which control the global reduction of cap-dependent translation and the involvement of internal ribosome entry sites in mRNAs encoding stress response proteins are also discussed. Finally, the concept of regulating each of these factors in discrete subcellular compartments for enhanced efficiency is addressed. The analysis draws on recent research from several well-studied mammalian hibernators including ground squirrels, bats, and bears.

  4. The involvement of mRNA processing factors TIA-1, TIAR, and PABP-1 during mammalian hibernation.

    PubMed

    Tessier, Shannon N; Audas, Timothy E; Wu, Cheng-Wei; Lee, Stephen; Storey, Kenneth B

    2014-11-01

    Mammalian hibernators survive low body temperatures, ischemia-reperfusion, and restricted nutritional resources via global reductions in energy-expensive cellular processes and selective increases in stress pathways. Consequently, studies that analyze hibernation uncover mechanisms which balance metabolism and support survival by enhancing stress tolerance. We hypothesized processing factors that influence messenger ribonucleic acid (mRNA) maturation and translation may play significant roles in hibernation. We characterized the amino acid sequences of three RNA processing proteins (T cell intracellular antigen 1 (TIA-1), TIA1-related (TIAR), and poly(A)-binding proteins (PABP-1)) from thirteen-lined ground squirrels (Ictidomys tridecemlineatus), which all displayed a high degree of sequence identity with other mammals. Alternate Tia-1 and TiaR gene variants were found in the liver with higher expression of isoform b versus a in both cases. The localization of RNA-binding proteins to subnuclear structures was assessed by immunohistochemistry and confirmed by subcellular fractionation; TIA-1 was identified as a major component of subnuclear structures with up to a sevenfold increase in relative protein levels in the nucleus during hibernation. By contrast, there was no significant difference in the relative protein levels of TIARa/TIARb in the nucleus, and a decrease was observed for TIAR isoforms in cytoplasmic fractions of torpid animals. Finally, we used solubility tests to analyze the formation of reversible aggregates that are associated with TIA-1/R function during stress; a shift towards the soluble fraction (TIA-1a, TIA-1b) was observed during hibernation suggesting enhanced protein aggregation was not present during torpor. The present study identifies novel posttranscriptional regulatory mechanisms that may play a role in reducing translational rates and/or mRNA processing under unfavorable environmental conditions.

  5. Temporal relationships of blood pressure, heart rate, baroreflex function, and body temperature change over a hibernation bout in Syrian hamsters.

    PubMed

    Horwitz, Barbara A; Chau, Sat M; Hamilton, Jock S; Song, Christine; Gorgone, Julia; Saenz, Marissa; Horowitz, John M; Chen, Chao-Yin

    2013-10-01

    Hibernating mammals undergo torpor during which blood pressure (BP), heart rate (HR), metabolic rate, and core temperature (TC) dramatically decrease, conserving energy. While the cardiovascular system remains functional, temporal changes in BP, HR, and baroreceptor-HR reflex sensitivity (BRS) over complete hibernation bouts and their relation to TC are unknown. We implanted BP/temperature telemetry transmitters into Syrian hamsters to test three hypotheses: H-1) BP, HR, and BRS decrease concurrently during entry into hibernation and increase concurrently during arousal; H-2) these changes occur before changes in TC; and H-3) the pattern of changes is consistent over successive bouts. We found: 1) upon hibernation entry, BP and HR declined before TC and BRS, suggesting baroreflex control of HR continues to regulate BP as the BP set point decreases; 2) during the later phase of entry, BRS decreased rapidly whereas BP and TC fell gradually, suggesting the importance of TC in further BP declines; 3) during torpor, BP slowly increased (but remained relatively low) without changes in HR or BRS or increased TC, suggesting minimal baroreflex or temperature influence; 4) during arousal, increased TC and BRS significantly lagged increases in BP and HR, consistent with establishment of tissue perfusion before increased TC/metabolism; and 5) the temporal pattern of these changes was similar over successive bouts in all hamsters. These results negate H-1, support H-2 with respect to BP and HR, support H-3, and indicate that the baroreflex contributes to cardiovascular regulation over a hibernation bout, albeit operating in a fundamentally different manner during entry vs. arousal.

  6. Identification of qRT-PCR reference genes for analysis of opioid gene expression in a hibernator.

    PubMed

    Otis, Jessica P; Ackermann, Laynez W; Denning, Gerene M; Carey, Hannah V

    2010-04-01

    Previous work has suggested that central and peripheral opioid signaling are involved in regulating torpor behavior and tissue protection associated with the hibernation phenotype. We used quantitative real-time PCR (qRT-PCR) to measure mRNA levels of opioid peptide precursors and receptors in the brain and heart of summer ground squirrels (Ictidomys tridecemlineatus) and winter hibernating squirrels in the torpid or interbout arousal states. The use of appropriate reference genes for normalization of qRT-PCR gene expression data can have profound effects on the analysis and interpretation of results. This may be particularly important when experimental subjects, such as hibernating animals, undergo significant morphological and/or functional changes during the study. Therefore, an additional goal of this study was to identify stable reference genes for use in qRT-PCR studies of the 13-lined ground squirrel. Expression levels of 10 potential reference genes were measured in the small intestine, liver, brain, and heart, and the optimal combinations of the most stable reference genes were identified by the GeNorm Excel applet. Based on this analysis, we provide recommendations for reference genes to use in each tissue that would be suitable for comparative studies among different activity states. When appropriate normalization of mRNA levels was used, there were no changes in opioid-related genes in heart among the three activity states; in brain, DOR expression was highest during torpor, lowest in interbout arousal and intermediate in summer. The results support the idea that changes in DOR expression may regulate the level of neuronal activity in brain during the annual hibernation cycle and may contribute to hibernation-associated tissue protection.

  7. The Listeria monocytogenes Hibernation-Promoting Factor Is Required for the Formation of 100S Ribosomes, Optimal Fitness, and Pathogenesis

    PubMed Central

    Kline, Benjamin C.; McKay, Susannah L.; Tang, William W.

    2014-01-01

    During exposure to certain stresses, bacteria dimerize pairs of 70S ribosomes into translationally silent 100S particles in a process called ribosome hibernation. Although the biological roles of ribosome hibernation are not completely understood, this process appears to represent a conserved and adaptive response that contributes to optimal survival during stress and post-exponential-phase growth. Hibernating ribosomes are formed by the activity of one or more highly conserved proteins; gammaproteobacteria produce two relevant proteins, ribosome modulation factor (RMF) and hibernation promoting factor (HPF), while most Gram-positive bacteria produce a single, longer HPF protein. Here, we report the formation of 100S ribosomes by an HPF homolog in Listeria monocytogenes. L. monocytogenes 100S ribosomes were observed by sucrose density gradient centrifugation of bacterial extracts during mid-logarithmic phase, peaked at the transition to stationary phase, and persisted at lower levels during post-exponential-phase growth. 100S ribosomes were undetectable in bacteria carrying an hpf::Himar1 transposon insertion, indicating that HPF is required for ribosome hibernation in L. monocytogenes. Additionally, epitope-tagged HPF cosedimented with 100S ribosomes, supporting its previously described direct role in 100S formation. We examined hpf mRNA by quantitative PCR (qPCR) and identified several conditions that upregulated its expression, including carbon starvation, heat shock, and exposure to high concentrations of salt or ethanol. Survival of HPF-deficient bacteria was impaired under certain conditions both in vitro and during animal infection, providing evidence for the biological relevance of 100S ribosome formation. PMID:25422304

  8. The Listeria monocytogenes hibernation-promoting factor is required for the formation of 100S ribosomes, optimal fitness, and pathogenesis.

    PubMed

    Kline, Benjamin C; McKay, Susannah L; Tang, William W; Portnoy, Daniel A

    2015-02-01

    During exposure to certain stresses, bacteria dimerize pairs of 70S ribosomes into translationally silent 100S particles in a process called ribosome hibernation. Although the biological roles of ribosome hibernation are not completely understood, this process appears to represent a conserved and adaptive response that contributes to optimal survival during stress and post-exponential-phase growth. Hibernating ribosomes are formed by the activity of one or more highly conserved proteins; gammaproteobacteria produce two relevant proteins, ribosome modulation factor (RMF) and hibernation promoting factor (HPF), while most Gram-positive bacteria produce a single, longer HPF protein. Here, we report the formation of 100S ribosomes by an HPF homolog in Listeria monocytogenes. L. monocytogenes 100S ribosomes were observed by sucrose density gradient centrifugation of bacterial extracts during mid-logarithmic phase, peaked at the transition to stationary phase, and persisted at lower levels during post-exponential-phase growth. 100S ribosomes were undetectable in bacteria carrying an hpf::Himar1 transposon insertion, indicating that HPF is required for ribosome hibernation in L. monocytogenes. Additionally, epitope-tagged HPF cosedimented with 100S ribosomes, supporting its previously described direct role in 100S formation. We examined hpf mRNA by quantitative PCR (qPCR) and identified several conditions that upregulated its expression, including carbon starvation, heat shock, and exposure to high concentrations of salt or ethanol. Survival of HPF-deficient bacteria was impaired under certain conditions both in vitro and during animal infection, providing evidence for the biological relevance of 100S ribosome formation.

  9. Psychiatric Disorders in Youth in Juvenile Detention

    PubMed Central

    Teplin, Linda A.; Abram, Karen M.; McClelland, Gary M.; Dulcan, Mina K.; Mericle, Amy A.

    2010-01-01

    Background Given the growth of juvenile detainee populations, epidemiologic data on their psychiatric disorders are increasingly important. Yet, there are few empirical studies. Until we have better epidemiologic data, we cannot know how best to use the system’s scarce mental health resources. Methods Using the Diagnostic Interview Schedule for Children (DISC 2.3), interviewers assessed a randomly selected, stratified sample of 1829 African American, non-Hispanic white, and Hispanic youth (1172 males, 657 females, ages 10–18) arrested and detained in Cook County, Illinois (which includes Chicago and surrounding suburbs). We present six-month prevalence estimates by demographic subgroups (gender, race/ethnicity, and age) for the following disorders: affective disorders (major depressive episode, dysthymia, manic episode), anxiety (panic, separation anxiety, overanxious, generalized anxiety, and obsessive-compulsive disorders), psychosis, attention deficit hyperactivity disorder (ADHD), disruptive behavior disorders (oppositional defiant disorder, conduct disorder) and substance use disorders (alcohol and drug). Results Nearly two thirds of males and nearly three quarters of females met diagnostic criteria for one or more psychiatric disorders. Excluding conduct disorder (common among detained youth), nearly 60% of males and over two thirds of females met diagnostic criteria and had diagnosis-specific impairment for one or more psychiatric disorders. One half of males and almost one half of females had a substance use disorder, and over 40% of males and females met criteria for disruptive behavior disorders. Affective disorders were also prevalent, especially among females; 20% of females met criteria for a major depressive episode. Rates of many disorders were higher among females, non-Hispanic whites, and older adolescents. Conclusion These results suggest substantial psychiatric morbidity among juvenile detainees. Youth with psychiatric disorders pose a

  10. Juvenile justice mental health services.

    PubMed

    Thomas, Christopher R; Penn, Joseph V

    2002-10-01

    As the second century of partnership begins, child psychiatry and juvenile justice face continuing challenges in meeting the mental health needs of delinquents. The modern juvenile justice system is marked by a significantly higher volume of cases, with increasingly complicated multiproblem youths and families with comorbid medical, psychiatric, substance abuse disorders, multiple family and psychosocial adversities, and shrinking community resources and alternatives to confinement. The family court is faced with shrinking financial resources to support court-ordered placement and treatment programs in efforts to treat and rehabilitate youths. The recognition of high rates of mental disorders for incarcerated youth has prompted several recommendations for improvement and calls for reform [56,57]. In their 2000 annual report, the Coalition for Juvenile Justice advocated increased access to mental health services that provide a continuum of care tailored to the specific problems of incarcerated youth [58]. The specific recommendations of the report for mental health providers include the need for wraparound services, improved planning and coordination between agencies, and further research. The Department of Justice, Office of Juvenile Justice and Delinquency Prevention has set three priorities in dealing with the mental health needs of delinquents: further research on the prevalence of mental illness among juvenile offenders, development of mental health screening assessment protocols, and improved mental health services [59]. Other programs have called for earlier detection and diversion of troubled youth from juvenile justice to mental health systems [31,56]. Most recently, many juvenile and family courts have developed innovative programs to address specific problems such as truancy or substance use and diversionary or alternative sentencing programs to deal with first-time or nonviolent delinquents. All youths who come in contact with the juvenile justice system

  11. Capture, anesthesia, and disturbance of free-ranging brown bears (Ursus arctos) during hibernation.

    PubMed

    Evans, Alina L; Sahlén, Veronica; Støen, Ole-Gunnar; Fahlman, Åsa; Brunberg, Sven; Madslien, Knut; Fröbert, Ole; Swenson, Jon E; Arnemo, Jon M

    2012-01-01

    We conducted thirteen immobilizations of previously collared hibernating two- to four-year-old brown bears (Ursus arctos) weighing 21-66 kg in central Sweden in winter 2010 and 2011 for comparative physiology research. Here we report, for the first time, an effective protocol for the capture and anesthesia of free-ranging brown bears during hibernation and an assessment of the disturbance the captures caused. Bears were darted in anthill, soil, or uprooted tree dens on eleven occasions, but two bears in rock dens fled and were darted outside the den. We used medetomidine at 0.02-0.06 mg/kg and zolazepam-tiletamine at 0.9-2.8 mg/kg for anesthesia. In addition, ketamine at 1.5 mg/kg was hand-injected intramuscularly in four bears and in six it was included in the dart at 1.1-3.0 mg/kg. Once anesthetized, bears were removed from the dens. In nine bears, arterial blood samples were analyzed immediately with a portable blood gas analyzer. We corrected hypoxemia in seven bears (PaO(2) 57-74 mmHg) with supplemental oxygen. We placed the bears back into the dens and antagonized the effect of medetomidine with atipamezole. Capturing bears in the den significantly increased the risk of den abandonment. One of twelve collared bears that were captured remained at the original den until spring, and eleven, left their dens (mean ± standard deviation) 3.2±3.6 (range 0.5-10.5) days after capture. They used 1.9±0.9 intermediate resting sites, during 6.2±7.8 days before entering a new permanent den. The eleven new permanent dens were located 730±589 m from the original dens. We documented that it was feasible and safe to capture hibernating brown bears, although they behaved differently than black bears. When doing so, researchers should use 25% of the doses used for helicopter darting during the active period and should consider increased energetic costs associated with den abandonment.

  12. Miranda Rights: Implications for Juveniles with Disabilities

    ERIC Educational Resources Information Center

    Katsiyannis, Antonis; Barrett, David E.; Losinski, Mickey L.

    2011-01-01

    Juvenile delinquency in the United States has been a persistent concern for decades. Consequently, because more juveniles have been referred to juvenile court and the arrest rate of preteen offenders has increased to almost three times that of older youth, the persistent and often controversial issue of the capacity of juvenile offenders to waive…

  13. 2016 Classification Criteria for Macrophage Activation Syndrome Complicating Systemic Juvenile Idiopathic Arthritis: A European League Against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative.

    PubMed

    Ravelli, Angelo; Minoia, Francesca; Davì, Sergio; Horne, AnnaCarin; Bovis, Francesca; Pistorio, Angela; Aricò, Maurizio; Avcin, Tadej; Behrens, Edward M; De Benedetti, Fabrizio; Filipovic, Lisa; Grom, Alexei A; Henter, Jan-Inge; Ilowite, Norman T; Jordan, Michael B; Khubchandani, Raju; Kitoh, Toshiyuki; Lehmberg, Kai; Lovell, Daniel J; Miettunen, Paivi; Nichols, Kim E; Ozen, Seza; Pachlopnik Schmid, Jana; Ramanan, Athimalaipet V; Russo, Ricardo; Schneider, Rayfel; Sterba, Gary; Uziel, Yosef; Wallace, Carol; Wouters, Carine; Wulffraat, Nico; Demirkaya, Erkan; Brunner, Hermine I; Martini, Alberto; Ruperto, Nicolino; Cron, Randy Q

    2016-03-01

    To develop criteria for the classification of macrophage activation syndrome (MAS) in patients with systemic juvenile idiopathic arthritis (JIA). A multistep process, based on a combination of expert consensus and analysis of real patient data, was conducted. A panel of 28 experts was first asked to classify 428 patient profiles as having or not having MAS, based on clinical and laboratory features at the time of disease onset. The 428 profiles comprised 161 patients with systemic JIA-associated MAS and 267 patients with a condition that could potentially be confused with MAS (active systemic JIA without evidence of MAS, or systemic infection). Next, the ability of candidate criteria to classify individual patients as having MAS or not having MAS was assessed by evaluating the agreement between the classification yielded using the criteria and the consensus classification of the experts. The final criteria were selected in a consensus conference. Experts achieved consensus on the classification of 391 of the 428 patient profiles (91.4%). A total of 982 candidate criteria were tested statistically. The 37 best-performing criteria and 8 criteria obtained from the literature were evaluated at the consensus conference. During the conference, 82% consensus among experts was reached on the final MAS classification criteria. In validation analyses, these criteria had a sensitivity of 0.73 and a specificity of 0.99. Agreement between the classification (MAS or not MAS) obtained using the criteria and the original diagnosis made by the treating physician was high (κ=0.76). We have developed a set of classification criteria for MAS complicating systemic JIA and provided preliminary evidence of its validity. Use of these criteria will potentially improve understanding of MAS in systemic JIA and enhance efforts to discover effective therapies, by ensuring appropriate patient enrollment in studies.

  14. Juvenile nasopharyngeal angiofibroma

    PubMed Central

    Makhasana, Jashika Adil Shroff; Kulkarni, Meena A; Vaze, Suhas; Shroff, Adil Sarosh

    2016-01-01

    Juvenile nasopharyngeal angiofibroma (JNA) is a rare benign tumor arising predominantly in the nasopharynx of adolescent males. It is an aggressive neoplasm and shows a propensity for destructive local spread often extending to the base of the skull and into the cranium. Clinically, however, it is obscure with painless, progressive unilateral nasal obstruction being the common presenting symptom with or without epistaxis and rhinorrhea. Diagnosis of JNA is made by complete history, clinical examination, radiography, nasal endoscopy and by using specialized imaging techniques such as arteriography, computer tomography and magnetic resonance imaging. Histopathology reveals a fibrocellular stroma with spindle cells and haphazard arrangement of collagen interspersed with an irregular vascular pattern. A case report of JNA with rare intra-oral manifestation in a 17-year-old male patient is presented in the article. JNA being an aggressive tumor may recur posttreatment. Thus, early diagnosis, accurate staging, and adequate treatment are essential in the management of this lesion. PMID:27601836

  15. Juvenile chronic arthritis.

    PubMed

    Southwood, T R; Woo, P

    1995-05-01

    The nomenclature and classification criteria for arthritis in children should be dealt with initially as separate issues, although they are undoubtedly intertwined. The classification criteria should aim to delineate homogeneous patient populations, yet should be flexible enough to incorporate advances in disease knowledge. It should be recognized that arriving at an international consensus for classification criteria will merely provide a set of operational definitions to facilitate research, and not a set of diagnostic criteria. Indeed the only point to obtaining consensus is to begin a process of systematic ongoing review of the criteria. The labels attached to any of these diseases should facilitate accurate communication. In view of the heterogeneous nature of childhood arthritis, consideration should be given to using a broad umbrella term such as juvenile or childhood arthritis only for communicating with the lay public. Medical nomenclature should be formulated to reflect accurately homogeneous subgroups of arthritis, and should not artificially proscribe a relationship between paediatric and adult disease.

  16. Recidivism of juvenile homicide offenders.

    PubMed

    Vries, Anne M; Liem, Marieke

    2011-01-01

    Serious offenses against persons perpetrated by juveniles raise fundamental questions about the background, causes, and prevention of future crime. The current study addresses the potential of future crime of all juvenile homicide offenders (JHOs) in the Netherlands in the period 1992-2007. In contrast to former research on recidivism of JHOs, which has been merely descriptive, the present study integrates theoretical perspectives as to why some of these juveniles turn back to crime, while others do not. To this end, relationships are investigated between recidivism behavior and risk factors. Results indicate that male JHOs, and JHOs who maintain relationships with delinquents, run a greater risk of reoffending.

  17. Juvenile homosexual homicide.

    PubMed

    Myers, Wade C; Chan, Heng Choon Oliver

    2012-01-01

    Limited information exists on juvenile homosexual homicide (JHH), that is, youths who perpetrate sexual homicides against same-sex victims. Only a handful of cases from the United States and internationally have been described in the literature. This study, the first of its kind, examines the epidemiology, victimology, victim-offender relationship, and weapon-use patterns in JHH offenders using a large U.S. database on homicide spanning three decades. The data for this study were derived from the Federal Bureau of Investigation's Supplementary Homicide Reports (SHRs) for the years 1976 through 2005. A total of 93 cases of JHH were identified. On average, three of these crimes occurred annually in the U.S., and there was a marked decline in its incidence over the study period. Ninety-five percent were male offender-male victim cases and 5% were female offender-female victim cases. JHH offenders were over-represented amongst all juvenile sexual murderers, similar to their adult counterparts. The majority of these boys were aged 16 or 17 and killed adult victims. They were significantly more likely to kill adult victims than other age groups, to be friends or acquaintances of the victims, and to use contact/edged weapons or firearms. Most offenders killed same-race victims, although Black offenders were significantly more likely than White offenders to kill interracially. A case report is provided to illustrate JHH. Further research is needed to promote our understanding of the pathogenesis, etiology, and associated risk factors for this aberrant form of murder by children.

  18. Juvenile Offenders' Alcohol and Marijuana Trajectories: Risk and Protective Factor Effects in the Context of Time in a Supervised Facility

    ERIC Educational Resources Information Center

    Mauricio, Anne M.; Little, Michelle; Chassin, Laurie; Knight, George P.; Piquero, Alex R.; Losoya, Sandra H.; Vargas-Chanes, Delfino

    2009-01-01

    The current study modeled trajectories of substance use from ages 15 to 20 among 1,095 male serious juvenile offenders (M age = 16.54; 42% African-American, 34% Latino, 20% European-American, and 4% other ethnic/racial backgrounds) and prospectively predicted trajectories from risk and protective factors before and after controlling for time spent…

  19. INFLUENCE OF GENERAL CHILLING AND HIBERNATION ON THE RESTORATION OF VITAL FUNCTIONS IN ANIMALS AFTER CLINICAL DEATH DUE TO ACUTE LOSS OF BLOOD,

    DTIC Science & Technology

    effectiveness of arterial blood infusion on development of the terminal state under the conditions of hibernation can be accounted for by inactivation...of the nervous mechanisms regulating the cardiovascular system under the influence of the neuroplegic preparations. The detrimental effect of the...hibernation mixture might also be linked to an aggravating effect of the lytic preparations on the profound inhibition of the central and vegetative

  20. Evidence for hibernation from a statistical analysis of nova eruption amplitudes

    SciTech Connect

    Vogt, N. )

    1990-06-01

    This study is based on a sample of 97 well-observed galactic novae. First, a linear relation between eruption amplitude and decay time was determined. The residuals from this relation were analyzed for variations of the luminosities of old novae as a function of the time interval between eruption and observation in quiescence. Between 35 and 10 yr before eruption, a marginal increase in brightness may be present. However, in the last decade, four novae were found in an extremely faint low state. During the first 130 yr after the eruption, galactic novae show a slow decrease in brightness with a slope of 2.1 + or - 0.6 mag per century. The results are interpreted in terms of secular variations of the mass transfer rate as expected from the hibernation model. 20 refs.

  1. Hibernating bears (Ursidae): metabolic magicians of definite interest for the nephrologist.

    PubMed

    Stenvinkel, Peter; Jani, Alkesh H; Johnson, Richard J

    2013-02-01

    Muscle loss, osteoporosis, and vascular disease are common in subjects with reduced renal function. Despite intensive research of the underlying risk factors and mechanisms driving these phenotypes, we still lack effective treatment strategies for this underserved patient group. Thus, new approaches are needed to identify effective treatments. We believe that nephrologists could learn much from biomimicry; i.e., studies of nature's models to solve complicated physiological problems and then imitate these fascinating solutions to develop novel interventions. The hibernating bear (Ursidae) should be of specific interest to the nephrologist as they ingest no food or water for months, remaining anuric and immobile, only to awaken with low blood urea nitrogen levels, healthy lean body mass, strong bones, and without evidence for thrombotic complications. Identifying the mechanisms by which bears prevent the development of azotemia, sarcopenia, osteoporosis, and atherosclerosis despite being inactive and anuric could lead to novel interventions for both prevention and treatment of patients with chronic kidney disease.

  2. Johannes Hevelius, nova CK Vulpeculae (1670) and the "hibernation" model of cataclysmic variables.

    NASA Astrophysics Data System (ADS)

    Smak, J.

    The author reviews the basic properties of cataclysmic variables and the thermonuclear runaway (TNR) theory of the outbursts of novae, including the "hibernation" model of cataclysmic variables. The TNR theory, while remarkably successful in explaining a number of observational properties of novae, met also with some difficulties related to (1) excessive mass-transfer rates in old novae, and (2) conflicting estimates of their space density. Both are estimated from absolute magnitudes of novae as observed within decades before, or after, their outbursts. Nova CK Vulpeculae (1670), the oldest recorded nova, was observed in 1670 - 1672 by Hevelius, whose observations - together with those by Anthelme and Cassini - were sufficiently numerous and accurate to permit a modern reconstruction of the light curve and its classification as a very slow nova.

  3. Suspension of mitotic activity in dentate gyrus of the hibernating ground squirrel.

    PubMed

    Popov, Victor I; Kraev, Igor V; Ignat'ev, Dmitri A; Stewart, Michael G

    2011-01-01

    Neurogenesis occurs in the adult mammalian hippocampus, a region of the brain important for learning and memory. Hibernation in Siberian ground squirrels provides a natural model to study mitosis as the rapid fall in body temperature in 24 h (from 35-36°C to +4-6°C) permits accumulation of mitotic cells at different stages of the cell cycle. Histological methods used to study adult neurogenesis are limited largely to fixed tissue, and the mitotic state elucidated depends on the specific phase of mitosis at the time of day. However, using an immunohistochemical study of doublecortin (DCX) and BrdU-labelled neurons, we demonstrate that the dentate gyrus of the ground squirrel hippocampus contains a population of immature cells which appear to possess mitotic activity. Our data suggest that doublecortin-labelled immature cells exist in a mitotic state and may represent a renewable pool for generation of new neurons within the dentate gyrus.

  4. Can hibernators sense and evade fires? Olfactory acuity and locomotor performance during deep torpor

    NASA Astrophysics Data System (ADS)

    Nowack, Julia; Delesalle, Marine; Stawski, Clare; Geiser, Fritz

    2016-10-01

    Increased habitat fragmentation, global warming and other human activities have caused a rise in the frequency of wildfires worldwide. To reduce the risks of uncontrollable fires, prescribed burns are generally conducted during the colder months of the year, a time when in many mammals torpor is expressed regularly. Torpor is crucial for energy conservation, but the low body temperatures ( T b) are associated with a decreased responsiveness and torpid animals might therefore face an increased mortality risk during fires. We tested whether hibernators in deep torpor (a) can respond to the smell of smoke and (b) can climb to avoid fires at T bs below normothermic levels. Our data show that torpid eastern pygmy-possums ( Cercartetus nanus) are able to detect smoke and also can climb. All males aroused from torpor when the smoke stimulus was presented at an ambient temperature ( T a) of 15 °C ( T b ˜18 °C), whereas females only raised their heads. The responses were less pronounced at T a 10 °C. The first coordinated movement of possums along a branch was observed at a mean T b of 15.6 °C, and animals were even able to climb their prehensile tail when they reached a mean T b of 24.4 °C. Our study shows that hibernators can sense smoke and move at low T b. However, our data also illustrate that at T b ≤13 °C, C. nanus show decreased responsiveness and locomotor performance and highlight that prescribed burns during winter should be avoided on very cold days to allow torpid animals enough time to respond.

  5. Expression of myocyte enhancer factor-2 and downstream genes in ground squirrel skeletal muscle during hibernation.

    PubMed

    Tessier, Shannon N; Storey, Kenneth B

    2010-11-01

    Myocyte enhancer factor-2 (MEF2) transcription factors regulate the expression of a variety of genes encoding contractile proteins and other proteins associated with muscle performance. We proposed that changes in MEF2 levels and expression of selected downstream targets would aid the skeletal muscle of thirteen-lined ground squirrels (Spermophilus tridecemlineatus) in meeting metabolic challenges associated with winter hibernation; e.g., cycles of torpor-arousal, body temperature that can fall to near 0°C, long periods of inactivity that could lead to atrophy. MEF2A protein levels were significantly elevated when animals were in torpor (maximally 2.8-fold higher than in active squirrels) and the amount of phosphorylated active MEF2A Thr312 increased during entrance into torpor. MEF2C levels also rose significantly during entrance and torpor as did the amount of phosphorylated MEF2C Ser387. Furthermore, both MEF2 members showed elevated amounts in the nuclear fraction during torpor as well as enhanced binding to DNA indicating that MEF2-mediated gene expression was up-regulated in torpid animals. Indeed, the protein products of two MEF2 downstream gene targets increased in muscle during torpor (glucose transporter isoforms 4; GLUT4) or early arousal (myogenic differentiation; MyoD). Significant increases in Glut4 and MyoD mRNA transcript levels correlated with the rise in protein product levels and provided further support for the activation of MEF2-mediated gene expression in the hibernator. Transcript levels of Mef2a and Mef2c also showed time-dependent patterns with levels of both being highest during arousal from torpor. The data suggest a significant role for MEF2-mediated gene transcription in the selective adjustment of muscle protein complement over the course of torpor-arousal cycles.

  6. Activation of stress signaling molecules in bat brain during arousal from hibernation.

    PubMed

    Lee, Moonyong; Choi, Inho; Park, Kyoungsook

    2002-08-01

    Induction of glucose-regulated proteins (GRPs) is a ubiquitous intracellular response to stresses such as hypoxia, glucose starvation and acidosis. The induction of GRPs offers some protection against these stresses in vitro, but the specific role of GRPs in vivo remains unclear. Hibernating bats present a good in vivo model to address this question. The bats must overcome local high oxygen demand in tissue by severe metabolic stress during arousal thermogenesis. We used brain tissue of a temperate bat Rhinolopus ferrumequinum to investigate GRP induction by high metabolic oxygen demand and to identify associated signaling molecules. We found that during 30 min of arousal, oxygen consumption increased from nearly zero to 11.9/kg/h, which was about 8.7-fold higher than its active resting metabolic rate. During this time, body temperature rose from 7 degrees C to 35 degrees C, and levels of TNF-alpha and lactate in brain tissue increased 2-2.5-fold, indicating a high risk of oxygen shortage. Concomitantly, levels of GRP75, GRP78 and GRP94 increased 1.5-1.7-fold. At the same time, c-Jun N-terminal protein kinase (JNK) activity increased 6.4-fold, and extracellular signal-regulated protein kinase (ERK) activity decreased to a similar degree (6.1-fold). p38 MAPK activity was very low and remained unchanged during arousal. In addition, survival signaling molecules protein kinase B (Akt) and protein kinase C (PKC) were activated 3- and 5-fold, respectively, during arousal. Taken together, our results showed that bat brain undergoes high oxygen demand during arousal from hibernation. Up-regulation of GRP proteins and activation of JNK, PKCgamma and Akt may be critical for neuroprotection and the survival of bats during the repeated process.

  7. Effect of starvation and hibernation on the values of five biomarkers of general and specific stress using the land snail Eobania vermiculata.

    PubMed

    Moschovaki-Filippidou, F; Itziou, A; Dimitriadis, V K

    2013-08-01

    Values of five biomarkers related to cell stress or pollution were evaluated in tissues of the land snail Eobania vermiculata under starvation or hibernation conditions. The biomarkers applied were lysosomal membrane stability in digestive gland cells (LMS) or in haemocytes (neutral red retention assay (NRR)), acetylcholinesterase activity (AchE; EC 3.1.1.7), metallothionein content (MTs), and cyclic AMP content (cAMP). Three groups of snails were studied that were kept under starvation, hibernation and normal conditions, respectively. The results indicated statistically lower values of LMS and NRR in snails kept under starvation or hibernation compared to control ones. Higher values of AChE activity were measured in snails under hibernation compared to controls. MT contents were statistically higher in snails under starvation compared to controls. Measurement of cAMP contents showed no significant differences among the tested groups. The values of the first four biomarkers may be affected by factors other than pollution, such as starvation or hibernation. Therefore, these factors should be taken into consideration when biomonitoring studies are performed in time intervals of hibernation or starvation.

  8. Structure and hibernation-associated expression of the transient receptor potential vanilloid 4 channel (TRPV4) mRNA in the Japanese grass lizard (Takydromus tachydromoides).

    PubMed

    Nagai, Kazuya; Saitoh, Yasushi; Saito, Shigeru; Tsutsumi, Ken-ichi

    2012-03-01

    Animals possess systems for sensing environmental temperature using temperature-sensitive ion channels called transient receptor potential channels (TRPs). Various TRPs have been identified and characterized in mammals. However, those of ectotherms, such as reptiles, are less well studied. Here, we identify the V subfamily of TRP (TRPV) in two reptile species: Japanese grass lizard (Takydromus tachydromoides) and Japanese four-lined ratsnake (Elaphe quadrivirgata). Phylogenetic analysis of TRPVs indicated that ectothermic reptilian TRPVs are more similar to those of endothermic chicken and mammals, than to other ectotherms, such as frog and fish. Expression analysis of TRPV4 mRNA in the lizard showed that its expression in tissues and organs is specifically controlled in cold environments and hibernation. The mRNA was ubiquitously expressed in seven tissues/organs examined. Both cold-treatment and hibernation lowered TRPV4 expression, but in a tissue/organ-specific manner. Cold-treatment reduced TRPV4 expression in tongue and muscle, while in hibernation it was reduced more widely in brain, tongue, heart, lung, and muscle. Interestingly, however, levels of TRPV4 mRNA in the skin remained unaffected after entering hibernation and cold-treatment, implying that TRPV4 in the skin may act as an environmental temperature sensor throughout the reptilian life cycle, including hibernation. This is the first report, to our knowledge, to describe reptilian TRPV4 in relation to hibernation.

  9. Intracellular antioxidant enzymes are not globally upregulated during hibernation in the major oxidative tissues of the 13-lined ground squirrel Spermophilus tridecemlineatus.

    PubMed

    Page, Melissa M; Peters, Craig W; Staples, James F; Stuart, Jeffrey A

    2009-01-01

    Hibernating mammals exhibit oxidative stress resistance in brain, liver and other tissues. In many animals, cellular oxidative stress resistance is associated with enhanced expression of intracellular antioxidant enzymes. Intracellular antioxidant capacity may be upregulated during hibernation to protect against oxidative damage associated with the ischemia-reperfusion that occurs during transitions between torpor and arousal. We tested the hypothesis that the 13-lined ground squirrel (Spermophilus tridecemlineatus), upregulates intracellular antioxidant enzymes in major oxidative tissues during hibernation. The two major intracellular isoforms of superoxide dismutase (MnSOD and CuZnSOD), which catalyze the first step in superoxide detoxification, were quantified in heart, brain and liver tissue using immunodetection and an in-gel activity assay. However, no differences in SOD protein expression or activity were found between active and hibernating squirrels. Measurements of glutathione peroxidase and glutathione reductase, which catalyze hydrogen peroxide removal, were not broadly upregulated during hibernation. The activity of catalase, which catalyzes an alternative hydrogen peroxide detoxification pathway, was higher in heart and brain of torpid squirrels, but lower in liver. Taken together, these data do not support the hypothesis that hibernation is associated with enhanced oxidative stress resistance due to an upregulation of intracellular antioxidant enzymes in the major oxidative tissues.

  10. TEMPORAL AND SPATIAL VARIATION IN PLASMA THYROXINE (T4) CONCENTRATIONS IN JUVENILE ALLIGATORS COLLECTED FROM LAKE OKEECHOBEE AND THE NORTHERN EVERGLADES, FLORIDA, USA

    EPA Science Inventory

    We examined variation in plasma thyroxine (T4) in juvenile American alligators (Alligator mississippiensis) collected from three sites within the Kissimmee River drainage basin (FL, USA). Based on historical sediment data, Moonshine Bay served as the low contaminant exposure site...

  11. POSTTRAUMATIC STRESS DISORDER AND TRAUMA IN YOUTH IN JUVENILE DETENTION

    PubMed Central

    Abram, Karen M.; Teplin, Linda A.; Charles, Devon R.; Longworth, Sandra L.; McClelland, Gary M.; Dulcan, Mina K.

    2010-01-01

    Objective To determine prevalence estimates of exposure to trauma and 12-month rates of posttraumatic stress disorder (PTSD) among juvenile detainees by demographic subgroups (sex, race/ethnicity, and age). Design Epidemiologic study of juvenile detainees. Master’s level clinical research interviewers administered the posttraumatic stress disorder module of the Diagnostic Interview Schedule for Children (DISC-IV) to randomly selected detainees. Setting A large, temporary detention center for juveniles in Cook County, Illinois (which includes Chicago and surrounding suburbs). Participants Randomly selected, stratified sample of 898 African American, non-Hispanic white, and Hispanic youth (532 males, 366 females, ages 10–18) arrested and newly detained. Main Outcome Measures Diagnostic Interview Schedule for Children (DISC-IV). Results Most participants (92.5%) had experienced one or more traumas (mean = 14.6 incidents, median = 6 incidents). Significantly more males (93.2%) than females (84.0%) reported at least one traumatic experience; 11.2% of the sample met criteria for PTSD in the past year. Over half of the participants with PTSD reported witnessing violence as the precipitating trauma. Conclusion Trauma and PTSD appear to be more prevalent among juvenile detainees than in community samples. We recommend directions for research and discuss implications for mental health policy. PMID:15066899

  12. Juvenile onset spondyloarthropathies: therapeutic aspects

    PubMed Central

    Burgos-Vargas, R

    2002-01-01

    Juvenile onset spondyloarthropathy (SpA) is a term that refers to a group of human leucocyte antigen (HLA)-B27 associated inflammatory disorders affecting children under the age of 16 years, producing a continuum of clinical symptoms through adulthood. This disease is characterised by enthesopathy and arthropathy affecting the joints of the lower extremities and seronegativity for IgM rheumatoid factor and antinuclear antibodies. Children usually present with undifferentiated SpA and progress to differentiated forms over time. Except for the prevalence of some clinical features at onset, the pathogenic and clinical aspects of juvenile onset SpAs resemble those of the adult disease. Thus application of the same or similar therapeutic measures for both juvenile and adult onset SpAs seems logical. Current treatments for juvenile onset SpA provide symptomatic improvement, but do not alter disease progression. The increased expression of tumour necrosis factor alpha (TNFα) in synovial tissue of patients with adult and juvenile onset SpA and its correlation with infiltration of inflammatory mediators into the synovia suggest a significant pathogenic role of this cytokine. Clinical trials of anti-TNFα antibody (infliximab) therapy in patients with adult onset SpA have demonstrated significant clinical improvement in inflammatory pain, function, disease activity, and quality of life in correlation with histological and immunohistochemical evidence of modulation of synovial inflammatory processes. These promising findings suggest that anti-TNFα therapy may confer similar benefits in patients with juvenile onset SpA. PMID:12381509

  13. Juvenile subsistence effort, activity levels, and growth patterns. Middle childhood among Pumé foragers.

    PubMed

    Kramer, Karen L; Greaves, Russell D

    2011-09-01

    Attention has been given to cross-cultural differences in adolescent growth, but far less is known about developmental variability during juvenility (ages 3-10). Previous research among the Pumé, a group of South American foragers, found that girls achieve a greater proportion of their adult stature during juvenility compared with normative growth expectations. To explain rapid juvenile growth, in this paper we consider girls' activity levels and energy expended in subsistence effort. Results show that Pumé girls spend far less time in subsistence tasks in proportion to their body size compared with adults, and they have lower physical activity levels compared with many juveniles cross-culturally. Low activity levels help to explain where the extra energy comes from to support rapid growth in a challenging environment. We suggest that activity levels are important to account for the variation of resource and labor transfers in mediating energy availability.

  14. Oxidative stress biomarkers, cholinesterase activity and biotransformation enzymes in the liver of dice snake (Natrix tessellata Laurenti) during pre-hibernation and post-hibernation: A possible correlation with heavy metals in the environment.

    PubMed

    Gavrić, Jelena; Anđelković, Marko; Tomović, Ljiljana; Prokić, Marko; Despotović, Svetlana; Gavrilović, Branka; Radovanović, Tijana; Borković-Mitić, Slavica; Pavlović, Slađan; Saičić, Zorica

    2017-04-01

    We investigated in the liver of dice snakes during pre- and post-hibernation changes in the following antioxidant parameters: total, manganese and copper zinc containing superoxide dismutases (Tot SOD, MnSOD, CuZn SOD, respectively), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and the concentrations of total glutathione (GSH) and sulfhydryl groups (-SH). In addition, we examined the expression of phase I biotransformation enzyme cytochrome P4501A (CYP1A) and the activity of phase II biotransformation enzyme glutathioneS-transferase (GST), the level of lipid peroxidation (by measuring the thiobarbituric acid-reactive substances (TBARS)), cholinesterase activity (ChE) and metallothionein expression (MT). We also measured the concentrations of heavy metals, including Al, Cd, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn in the water and snake liver during both periods. During the post-hibernation period, the activities of Tot SOD, CuZn SOD and GST and the concentration of GSH were significantly decreased, while GSH-Px and GR activities, the concentrations of -SH groups and TBARS were significantly increased. The activities of Mn SOD, CAT and ChE, and the relative amounts of CYP1A and MT did not significantly change during the investigated periods. The observed differences in the examined parameters probably represent adaptive physiological responses to sudden changes in tissue oxygenation during arousal from hibernation. Our findings also indicate that the accumulated metals modulated the responses of the examined parameters during the investigated periods.

  15. Enhanced stability and polyadenylation of select mRNAs support rapid thermogenesis in the brown fat of a hibernator.

    PubMed

    Grabek, Katharine R; Diniz Behn, Cecilia; Barsh, Gregory S; Hesselberth, Jay R; Martin, Sandra L

    2015-01-27

    During hibernation, animals cycle between torpor and arousal. These cycles involve dramatic but poorly understood mechanisms of dynamic physiological regulation at the level of gene expression. Each cycle, Brown Adipose Tissue (BAT) drives periodic arousal from torpor by generating essential heat. We applied digital transcriptome analysis to precisely timed samples to identify molecular pathways that underlie the intense activity cycles of hibernator BAT. A cohort of transcripts increased during torpor, paradoxical because transcription effectively ceases at these low temperatures. We show that this increase occurs not by elevated transcription but rather by enhanced stabilization associated with maintenance and/or extension of long poly(A) tails. Mathematical modeling further supports a temperature-sensitive mechanism to protect a subset of transcripts from ongoing bulk degradation instead of increased transcription. This subset was enriched in a C-rich motif and genes required for BAT activation, suggesting a model and mechanism to prioritize translation of key proteins for thermogenesis.

  16. Managing juvenile Huntington's disease.

    PubMed

    Quarrell, Oliver W J; Nance, Martha A; Nopoulos, Peggy; Paulsen, Jane S; Smith, Jonathan A; Squitieri, Ferdinando

    2013-06-01

    Huntington's disease (HD) is a well-recognized progressive neurodegenerative disorder that follows an autosomal dominant pattern of inheritance. Onset is insidious and can occur at almost any age, but most commonly the diagnosis is made between the ages of 35 and 55 years. Onset ≤20 years of age is classified as juvenile HD (JHD). This age-based definition is arbitrary but remains convenient. There is overlap between the clinical pathological and genetic features seen in JHD and more traditional adult-onset HD. Nonetheless, the frequent predominance of bradykinesia and dystonia early in the course of the illness, more frequent occurrence of epilepsy and myoclonus, more widespread pathology, and larger genetic lesion means that the distinction is still relevant. In addition, the relative rarity of JHD means that the clinician managing the patient is often doing so for the first time. Management is, at best, symptomatic and supportive with few or no evidence-based guidelines. In this article, the authors will review what is known of the condition and present some suggestions based on their experience.

  17. Data logging of body temperatures provides precise information on phenology of reproductive events in a free-living arctic hibernator

    USGS Publications Warehouse

    Williams, C.T.; Sheriff, M.J.; Schmutz, J.A.; Kohl, F.; Toien, O.; Buck, C.L.; Barnes, B.M.

    2011-01-01

    Precise measures of phenology are critical to understanding how animals organize their annual cycles and how individuals and populations respond to climate-induced changes in physical and ecological stressors. We show that patterns of core body temperature (T b) can be used to precisely determine the timing of key seasonal events including hibernation, mating and parturition, and immergence and emergence from the hibernacula in free-living arctic ground squirrels (Urocitellus parryii). Using temperature loggers that recorded T b every 20 min for up to 18 months, we monitored core T b from three females that subsequently gave birth in captivity and from 66 female and 57 male ground squirrels free-living in the northern foothills of the Brooks Range Alaska. In addition, dates of emergence from hibernation were visually confirmed for four free-living male squirrels. Average T b in captive females decreased by 0.5–1.0°C during gestation and abruptly increased by 1–1.5°C on the day of parturition. In free-living females, similar shifts in T b were observed in 78% (n = 9) of yearlings and 94% (n = 31) of adults; females without the shift are assumed not to have given birth. Three of four ground squirrels for which dates of emergence from hibernation were visually confirmed did not exhibit obvious diurnal rhythms in T b until they first emerged onto the surface when T b patterns became diurnal. In free-living males undergoing reproductive maturation, this pre-emergence euthermic interval averaged 20.4 days (n = 56). T b-loggers represent a cost-effective and logistically feasible method to precisely investigate the phenology of reproduction and hibernation in ground squirrels.

  18. Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome

    USGS Publications Warehouse

    Reeder, DeeAnn M.; Frank, Craig L.; Turner, Gregory G.; Meteyer, Carol U.; Kurta, Allen; Britzke, Eric R.; Vodzak, Megan E.; Darling, Scott R.; Stihler, Craig W.; Hicks, Alan C.; Jacob, Roymon; Grieneisen, Laura E.; Brownlee, Sarah A.; Muller, Laura K.; Blehert, David S.

    2012-01-01

    White-nose syndrome (WNS), an emerging infectious disease that has killed over 5.5 million hibernating bats, is named for the causative agent, a white fungus (Geomyces destructans (Gd)) that invades the skin of torpid bats. During hibernation, arousals to warm (euthermic) body temperatures are normal but deplete fat stores. Temperature-sensitive dataloggers were attached to the backs of 504 free-ranging little brown bats (Myotis lucifugus) in hibernacula located throughout the northeastern USA. Dataloggers were retrieved at the end of the hibernation season and complete profiles of skin temperature data were available from 83 bats, which were categorized as: (1) unaffected, (2) WNS-affected but alive at time of datalogger removal, or (3) WNS-affected but found dead at time of datalogger removal. Histological confirmation of WNS severity (as indexed by degree of fungal infection) as well as confirmation of presence/absence of DNA from Gd by PCR was determined for 26 animals. We demonstrated that WNS-affected bats aroused to euthermic body temperatures more frequently than unaffected bats, likely contributing to subsequent mortality. Within the subset of WNS-affected bats that were found dead at the time of datalogger removal, the number of arousal bouts since datalogger attachment significantly predicted date of death. Additionally, the severity of cutaneous Gd infection correlated with the number of arousal episodes from torpor during hibernation. Thus, increased frequency of arousal from torpor likely contributes to WNS-associated mortality, but the question of how Gd infection induces increased arousals remains unanswered.

  19. Identification and localization of gastrointestinal hormones in the skin of the bullfrog Rana catesbeiana during periods of activity and hibernation.

    PubMed

    Wang, Huan; Zhou, Naizhen; Zhang, Rui; Wu, Yuanyuan; Zhang, Ruidong; Zhang, Shengzhou

    2014-10-01

    Amphibian skin and its secretions contain a wide variety of biogenic amines and biologically active peptides, some of which are either identical or highly homologous to gastrointestinal hormones (GHs) of higher vertebrates. This study investigated the distribution density and immunoreactive (IR) intensity of 5-hydroxytryptamine (5-HT), gastrin (GAS), somatostatin (SS), pancreatic polypeptide (PP), neuropeptide Y (NPY) and glucagon (GLU) IR cells in the skin of the bullfrog Rana catesbeiana during periods of activity and hibernation. The results indicated that the six types of GHs were all present in the bullfrog skin and were most predominant in the epidermis and mucous glands. In dorsal skin, the density of the GHs-IR cells in mucous glands was higher than that in epidermis except for GAS-IR cells. In ventral skin, the density of 5-HT, PP and NPY-IR cells in mucous glands was also higher than that in the epidermis. During hibernation, the density of the six types of GHs-IR cells and the IR intensity of GAS, SS, NPY and GLU-IR cells in the epidermis of dorsal skin increased significantly. The IR intensity of SS, PP and NPY-IR cells in granular glands of ventral skin also increased significantly during hibernation. These results suggested that multiple types of GHs-IR cells present in the skin of R. catesbeiana, may play important roles in the regulation of the physiological functions of skin. Also, adaptive changes in the density and IR intensity of GHs-IR cells occurred during hibernation.

  20. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels.

    PubMed

    Hindle, Allyson G; Martin, Sandra L

    2013-01-01

    13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy - wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins dihydropyrimidinase

  1. Predictive value of dobutamine echocardiography and positron emission tomography in identifying hibernating myocardium in patients with postischaemic heart failure

    PubMed Central

    Pagano, D; Bonser, R; Townend, J; Ordoubadi, F; Lorenzoni, R; Camici, P

    1998-01-01

    Objective—To compare the predictive value of dobutamine echocardiography (DE) and positron emission tomography (PET) in identifying reversible chronic left ventricular (LV) dysfunction (hibernating myocardium) in patients with coronary artery disease (CAD) and overt heart failure.
Patients—30 patients (four women) with CAD and heart failure undergoing coronary artery bypass grafting (CABG).
Methods—Myocardial viability was assessed with DE (5 and 10 µg/kg/min) and PET with [18F] 2-fluoro-2-deoxy-D-glucose (FDG) under hyperinsulinaemic euglycaemic clamp. Regional (echo) and global LV function (MUGA) were assessed at baseline and six months after CABG.
Results—192 of the 336 (57%) dysfunctional LV segments improved function following CABG (hibernating) and the LV ejection fraction (EF) increased from 23(7) to 32(9)% (p < 0.0001) (in 17 patients > 5%). DE and PET had similar positive predictive values (68% and 66%) in the identification of hibernating myocardium, but DE had a significantly lower negative predictive value than PET (54% v 96%; p < 0.0001). A significant linear correlation was found between the number of PET viable segments and the changes in EF following CABG (r = 0.65; p = 0.0001). Stepwise logistic regression identified the number of PET viable segments as an independent predictor of improvement in EF > 5%, whereas the number of DE viable segments, the baseline LVEF, and wall motion were not.
Conclusions—DE has a higher false negative rate than PET in identifying recoverable LV dysfunction in patients with severe postischaemic heart failure. The amount of PET viable myocardium correlates with the functional outcome following CABG.

 Keywords: dobutamine echocardiography;  positron emission tomography;  coronary artery disease;  heart failure;  hibernating myocardium PMID:9602663

  2. Muscle plasticity in hibernating ground squirrels (Spermophilus lateralis) is induced by seasonal, but not low-temperature, mechanisms.

    PubMed

    Nowell, Megan M; Choi, Hyung; Rourke, Bryan C

    2011-01-01

    During hibernation, ground squirrels (Spermophilus lateralis) show unusually altered expression of skeletal muscle myosin heavy-chains. Some muscle groups show transitions from fast to slower myosin isoforms despite atrophy, which are not predicted from other mammalian studies of inactivity. We measure myosin protein and mRNA expression, and the mRNA expression of genes important in atrophy and metabolism in a time-course of muscle plasticity prior to, and during extended hibernation. We also investigate the role of strictly low-temperature processes by comparing torpid individuals at 20 and 4°C. Shifts in myosin isoform expression happen at both temperatures, before the onset of torpor, or within the first month of torpor, in all muscles demonstrating isoform remodeling. Skeletal muscle atrophy is greatly attenuated in this hibernating species, and even may be absent in some muscles. When present, atrophy develops early in hibernation, and does not progress in the final 3 months of torpor. Myostatin mRNA is down-regulated 50-75% in the soleus and diaphragm, two important muscles that are spared of atrophy. The transcription factor FOXO1, which spurs proteolytic degradation of contractile proteins through regulation of the ubiquitin ligase MAFbx, is also generally down-regulated, and may contribute to reduced atrophy. Hypoxia-inducible factor (HIF-1α) mRNA expression was reduced 50% in some muscles, while elevated more than 300% in others. Our collective findings most strongly support early, seasonal, phenotype changes in skeletal muscles which are not uniquely confined to, or prompted by, torpor at 4°C. Such seasonal control of myosin would be a novel mechanism in mammalian skeletal muscle, which otherwise is most susceptible to mechanical loading and limb-activity patterns.

  3. Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome.

    PubMed

    Reeder, DeeAnn M; Frank, Craig L; Turner, Gregory G; Meteyer, Carol U; Kurta, Allen; Britzke, Eric R; Vodzak, Megan E; Darling, Scott R; Stihler, Craig W; Hicks, Alan C; Jacob, Roymon; Grieneisen, Laura E; Brownlee, Sarah A; Muller, Laura K; Blehert, David S

    2012-01-01

    White-nose syndrome (WNS), an emerging infectious disease that has killed over 5.5 million hibernating bats, is named for the causative agent, a white fungus (Geomyces destructans (Gd)) that invades the skin of torpid bats. During hibernation, arousals to warm (euthermic) body temperatures are normal but deplete fat stores. Temperature-sensitive dataloggers were attached to the backs of 504 free-ranging little brown bats (Myotis lucifugus) in hibernacula located throughout the northeastern USA. Dataloggers were retrieved at the end of the hibernation season and complete profiles of skin temperature data were available from 83 bats, which were categorized as: (1) unaffected, (2) WNS-affected but alive at time of datalogger removal, or (3) WNS-affected but found dead at time of datalogger removal. Histological confirmation of WNS severity (as indexed by degree of fungal infection) as well as confirmation of presence/absence of DNA from Gd by PCR was determined for 26 animals. We demonstrated that WNS-affected bats aroused to euthermic body temperatures more frequently than unaffected bats, likely contributing to subsequent mortality. Within the subset of WNS-affected bats that were found dead at the time of datalogger removal, the number of arousal bouts since datalogger attachment significantly predicted date of death. Additionally, the severity of cutaneous Gd infection correlated with the number of arousal episodes from torpor during hibernation. Thus, increased frequency of arousal from torpor likely contributes to WNS-associated mortality, but the question of how Gd infection induces increased arousals remains unanswered.

  4. Opposing activity changes in AMP deaminase and AMP-activated protein kinase in the hibernating ground squirrel.

    PubMed

    Lanaspa, Miguel A; Epperson, L Elaine; Li, Nanxing; Cicerchi, Christina; Garcia, Gabriela E; Roncal-Jimenez, Carlos A; Trostel, Jessica; Jain, Swati; Mant, Colin T; Rivard, Christopher J; Ishimoto, Takuji; Shimada, Michiko; Sanchez-Lozada, Laura Gabriela; Nakagawa, Takahiko; Jani, Alkesh; Stenvinkel, Peter; Martin, Sandra L; Johnson, Richard J

    2015-01-01

    Hibernating animals develop fatty liver when active in summertime and undergo a switch to a fat oxidation state in the winter. We hypothesized that this switch might be determined by AMP and the dominance of opposing effects: metabolism through AMP deaminase (AMPD2) (summer) and activation of AMP-activated protein kinase (AMPK) (winter). Liver samples were obtained from 13-lined ground squirrels at different times during the year, including summer and multiples stages of winter hibernation, and fat synthesis and β-fatty acid oxidation were evaluated. Changes in fat metabolism were correlated with changes in AMPD2 activity and intrahepatic uric acid (downstream product of AMPD2), as well as changes in AMPK and intrahepatic β-hydroxybutyrate (a marker of fat oxidation). Hepatic fat accumulation occurred during the summer with relatively increased enzymes associated with fat synthesis (FAS, ACL and ACC) and decreased enoyl CoA hydratase (ECH1) and carnitine palmitoyltransferase 1A (CPT1A), rate limiting enzymes of fat oxidation. In summer, AMPD2 activity and intrahepatic uric acid levels were high and hepatic AMPK activity was low. In contrast, the active phosphorylated form of AMPK and β-hydroxybutyrate both increased during winter hibernation. Therefore, changes in AMPD2 and AMPK activity were paralleled with changes in fat synthesis and fat oxidation rates during the summer-winter cycle. These data illuminate the opposing forces of metabolism of AMP by AMPD2 and its availability to activate AMPK as a switch that governs fat metabolism in the liver of hibernating ground squirrel.

  5. Balancing of lipid, protein, and carbohydrate intake in a predatory beetle following hibernation, and consequences for lipid restoration.

    PubMed

    Noreika, Norbertas; Madsen, Natalia E L; Jensen, Kim; Toft, Søren

    2016-05-01

    Carnivorous animals are known to balance their consumption of lipid and protein, and recent studies indicate that some mammalian carnivores also regulate their intake of carbohydrate. We investigated macronutrient balancing and lipid restoration following hibernation in the ground beetle Anchomenus dorsalis, hypothesizing that carbohydrates might be important energy sources upon hibernation when predator lipid stores are exhausted and prey are equally lean. We recorded the consumption of lipid, protein, and carbohydrate over nine days following hibernation, as the beetles foraged to refill their lipid stores. Each beetle was given the opportunity to regulate consumption from two semi-artificial foods differing in the proportion of two of the three macronutrients, while the third macronutrient was kept constant. When analyzing consumption of the three macronutrients on an energetic basis, it became apparent that the beetles regulated lipid and carbohydrate energy interchangeably and balanced the combined energy intake from the two macronutrients against protein intake. Restoration of lipid stores was independent of the availability of any specific macronutrient. However, the energetic consumption required to refill lipid stores was higher when a low proportion of lipids was ingested, suggesting that lipids were readily converted into lipid stores while there were energetic costs associated with converting carbohydrate and protein into stored lipids. Our experiment demonstrates that carbohydrates are consumed and regulated as a non-protein energy source by A. dorsalis despite an expectedly low occurrence of carbohydrates in their natural diet. Perhaps carbohydrates are in fact an overlooked supplementary energy source in the diet of carnivorous arthropods.

  6. Identification of bovine hibernation-specific protein complex and evidence of its regulation in fasting and aging.

    PubMed

    Fujita, Satoshi; Okamoto, Ryuji; Taniguchi, Masaya; Ban-Tokuda, Tomomi; Konishi, Katsuhisa; Goto, Itaru; Yamamoto, Yasunari; Sugimoto, Kazushi; Takamatsu, Nobuhiko; Nakamura, Mashio; Shiraki, Katsuya; Buechler, Christa; Ito, Masaaki

    2013-05-01

    Hibernation-specific protein (HP) is a plasma protein that regulates hibernation in chipmunks. The HP complex (HP20c) consists of three homologous proteins, HP20, HP25 and HP27, all produced by liver and belonging to the C1q family. To date, HP20c has not been identified in any mammalian species except chipmunk and ground squirrel hibernators. Here, we report a bovine HP20 gene isolated from liver tissue and aortic endothelial cells. Total homology between bovine and chipmunk variants was 63% at the amino acid level. Gene expression was highest in the liver. Western blot revealed HP20 protein in foetal, newborn, calf and adult serum, with highest concentrations in the adult. Similar proteins were detected in sera of other ruminants but not in humans, bears, mice or rats. Bovine HP20 protein was found mainly in ovaries, stomach, heart, kidneys, lungs, testes and prostate, but not in the skeletal muscle. Native HP20 was purified from bovine adult serum as a complex containing 25 and 27 kDa proteins. Mass spectrometry revealed that these proteins are orthologues of chipmunk HP25 and HP27, respectively. Interestingly, bovine HP20 was highly expressed in cattle serum after fasting. Native bovine HP20c may be a useful tool for investigating HP function.

  7. How maize monoculture and increasing winter rainfall have brought the hibernating European hamster to the verge of extinction

    NASA Astrophysics Data System (ADS)

    Tissier, Mathilde L.; Handrich, Yves; Robin, Jean-Patrice; Weitten, Mathieu; Pevet, Paul; Kourkgy, Charlotte; Habold, Caroline

    2016-05-01

    Over the last decades, climate change and agricultural intensification have been identified as two major phenomena negatively affecting biodiversity. However, little is known about their effects on the life-history traits of hibernating species living in agro-ecosystems. The European hamster (Cricetus cricetus), once a common rodent on agricultural land, is now on the verge of extinction in France. Despite the implemented measures for its protection, populations are still in sharp decline but the reasons for it remain unclear. To investigate how environmental change has affected this hibernating rodent, we used a data set based on 1468 recordings of hamster body mass at emergence from hibernation from 1937 to 2014. We reveal the adverse effects of increasing winter rainfall and maize monoculture intensification on the body mass of wild hamsters. Given the links that exist between body mass, reproductive success and population dynamics in mammals, these results are of particular importance to understand the decline of this species. In view of the rates of maize monoculture intensification and the predicted increase in winter rainfall, it is of the utmost importance to improve land management in Western Europe to avoid the extinction of this species.

  8. Inhibition of NMDA-type glutamate receptors induces arousal from torpor in hibernating arctic ground squirrels (Urocitellus parryii).

    PubMed

    Jinka, Tulasi R; Rasley, Brian T; Drew, Kelly L

    2012-09-01

    Hibernation is an adaptation to overcome periods of resource limitation often associated with extreme climatic conditions. The hibernation season consists of prolonged bouts of torpor that are interrupted by brief interbout arousals. Physiological mechanisms regulating spontaneous arousals are poorly understood, but may be related to a need for gluconeogenesis or elimination of metabolic wastes. Glutamate is derived from glutamine through the glutamate-glutamine cycle and from glucose via the pyruvate carboxylase pathway when nitrogen balance favors formation of glutamine. This study tests the hypothesis that activation of NMDA-type glutamate receptors (NMDAR) maintains torpor in arctic ground squirrel (arctic ground squirrel (AGS); Urocitellus parryii). Administration of NMDAR antagonists MK-801 (5 mg/kg, i.p.) that crosses the blood-brain barrier and AP5 (5 mg/kg, i.p.) that does not cross the blood-brain barrier induced arousal in AGS. Central administration of MK-801 (0.2, 2, 20 or 200 μg; icv) to hibernating AGS failed to induce arousal. Results suggest that activation of NMDAR at a peripheral or circumventricular site is necessary to maintain prolonged torpor and that a decrease in glutamate at these sites may contribute to spontaneous arousal in AGS.

  9. How maize monoculture and increasing winter rainfall have brought the hibernating European hamster to the verge of extinction

    PubMed Central

    Tissier, Mathilde L.; Handrich, Yves; Robin, Jean-Patrice; Weitten, Mathieu; Pevet, Paul; Kourkgy, Charlotte; Habold, Caroline

    2016-01-01

    Over the last decades, climate change and agricultural intensification have been identified as two major phenomena negatively affecting biodiversity. However, little is known about their effects on the life-history traits of hibernating species living in agro-ecosystems. The European hamster (Cricetus cricetus), once a common rodent on agricultural land, is now on the verge of extinction in France. Despite the implemented measures for its protection, populations are still in sharp decline but the reasons for it remain unclear. To investigate how environmental change has affected this hibernating rodent, we used a data set based on 1468 recordings of hamster body mass at emergence from hibernation from 1937 to 2014. We reveal the adverse effects of increasing winter rainfall and maize monoculture intensification on the body mass of wild hamsters. Given the links that exist between body mass, reproductive success and population dynamics in mammals, these results are of particular importance to understand the decline of this species. In view of the rates of maize monoculture intensification and the predicted increase in winter rainfall, it is of the utmost importance to improve land management in Western Europe to avoid the extinction of this species. PMID:27150008

  10. Planning Project in Juvenile Delinquency: Prevention and Control of Delinquency Among Indian Youth in Wyoming.

    ERIC Educational Resources Information Center

    Forslund, Morris A.; Meyers, Ralph E.

    The study was conducted in an effort to ascertain the magnitude and dimensions of the delinquency problem among the American Indian youths from the Wind River Reservation (Wyoming). During the summer of 1971 data were obtained from the records of the Court of Indian Offenses, the Tribal police, the juvenile officer on the reservation, the Riverton…

  11. Seasonal variation in plasma thyroxine concentrations in juvenile alligators (Alligators mississippiensis) from three Florida Lakes.

    PubMed

    Bermudez, Dieldrich S; Milnes, Matthew R; Bryan, Teresa A; Gunderson, Mark P; Tubbs, Christopher; Woodward, Allan R; Guillette, Louis J

    2005-05-01

    Circulating concentrations of thyroxine (T(4)) vary seasonally in many vertebrates. This study examined the seasonal variation in plasma concentrations of T(4) in juvenile American alligators (Alligator mississippiensis) from three populations in central Florida, USA. One site, Lake Woodruff National Wildlife Refuge, is considered a reference site whereas the other two lakes, Lake Apopka and Orange Lake, are significantly impacted by human activity. Juvenile American alligators ranging from 75-150 cm in total length were hand-captured at night from November 2000-April 2002. Plasma thyroxine concentrations were analyzed using a radioimmunoassay (RIA) previously validated for alligator plasma. Juvenile American alligators display seasonal variation in circulating T(4) concentrations. Plasma T(4) concentrations decrease from August/September to November and then begin a slow rise until April, at which point they plateau. Sex of juveniles influenced plasma concentrations of T(4) in some months but did not appear to alter the pattern in seasonal variation. The pattern we observed in plasma T(4) concentrations is not directly related to an environmental factor such as ambient temperature but is similar to that seen in plasma sex steroid concentrations during the reproductive cycle of adult alligators. Although the pattern and plasma concentration of T(4) exhibits significant variation among the three lakes studied, the pattern in seasonal variation appears similar. Comparing the seasonal pattern in plasma T(4) with plasma concentrations of sex steroids (testosterone and estradiol-17beta) or corticosterone could provide important information on the peripubescent life stage of the American alligator.

  12. Race Differences in Mental Health Service Access in a Secure Male Juvenile Justice Facility

    ERIC Educational Resources Information Center

    Dalton, Richard F.; Evans, Lisa J.; Cruise, Keith R.; Feinstein, Ronald A.; Kendrick, Rhonda F.

    2009-01-01

    This study examined whether African American and Caucasian male youths had similar rates of referral to mental health services in a juvenile justice secure facility when controlling for differences obtained in the initial screening and assessment process. Data from the Massachusetts Youth Screening Instrument-2 (MAYSI-2), Initial Health Care…

  13. The Link: Connecting Juvenile Justice and Child Welfare. Volume 7, Number 1, Summer 2008

    ERIC Educational Resources Information Center

    Williams, Meghan, Ed.; Price, Jennifer M., Ed.

    2008-01-01

    This issue of "The Link" newsletter contains the following articles: (1) Convention on the Rights of the Child and Juvenile Justice (Jenni Gainborough and Elisabeth Lean); and (2) ABA (American Bar Association) Policy and Report on Crossover and Dual Jurisdiction Youth. Director's Message, Policy Update information and News/Resources are…

  14. Library Outreach to Juvenile Offenders in Intensive Supervision Probation Programs (Community Centered House Arrest)

    ERIC Educational Resources Information Center

    Brumfield, Elizabeth Jean

    2008-01-01

    The American Library Association encourages public libraries to extend their services to people in jails and detention centers, but there is little research that shows exactly how many libraries do so. Research shows that 54% of juveniles arrested are not sent to residential facilities but instead receive court ordered probation into an Intensive…

  15. Temperatures and Locations Used by Hibernating Bats, Including Myotis sodalis (Indiana Bat), in a Limestone Mine: Implications for Conservation and Management

    NASA Astrophysics Data System (ADS)

    Brack, Virgil

    2007-11-01

    Understanding temperatures used by hibernating bats will aid conservation and management efforts for many species. A limestone mine with 71 km of passages, used as a hibernaculum by approximately 30,000 bats, was visited four times during a 6-year period. The mine had been surveyed and mapped; therefore, bats could be precisely located and temperatures ( T s) of the entire hibernaculum ceiling accurately mapped. It was predicted that bats should hibernate between 5 and 10°C to (1) use temperatures that allow a near minimal metabolic rate, (2) maximize the duration of hibernation bouts, (3) avoid more frequent and prolonged arousal at higher temperatures, (4) avoid cold and freezing temperatures that require an increase in metabolism and a decrease in duration of hibernation bouts or that could cause death, and (5) balance benefits of a reduced metabolic rate and costs of metabolic depression. The distribution of each species was not random for location ( P < 0.000) or T s ( P < 0.000). Myotis sodalis (Indiana bat) was most restricted in areas occupied, hibernating in thermally stable yet cold areas ( {bar X} = 8.4 ± 1.7°C); 99% associated with cement block walls and sheltered alcoves, which perhaps dampened air movement and temperature fluctuations. Myotis lucifugus (little brown myotis) hibernated in colder, more variable areas ( {bar X} = 7.2 ± 2.6°C). Myotis septentrionalis (northern myotis), Pipistrellus subflavus (eastern pipistrelle), and Eptesicus fuscus (big brown bat) typically hibernated in warm, thermally stable areas ( {bar X} = 9.1 ± 0.2°C, {bar X} = 9.6 ± 1.9°C, and {bar X} = 9.5 ± 1.5°C, respectively). These data do not indicate that hibernacula for M. sodalis, an endangered species, should be manipulated to cool below 5°C.

  16. Juveniles tried as adults: the age of the juvenile matters.

    PubMed

    Semple, Jaclyn K; Woody, William Douglas

    2011-08-01

    Serious juvenile crimes require evaluation of a child as a criminal defendant in adult court. In such cases, it is crucial to understand jurors' attitudes, biases, and ability to follow legal instructions and maintain fairness. 308 undergraduate psychology students served as mock jurors, were randomly separated into four groups, and each group read the same realistic summary of a trial with the defendant's age presented as 13, 15, 17, or 21 years. Participants were asked to render guilty or not guilty verdicts and, if guilty, to suggest sentences. Chi-squared analysis indicated 13- and 15-year-old defendants were convicted less often than 17- and 21-year-old defendants, showing that jurors distinguished between juvenile defendants of different ages, but not minors and adults as defined by law. Additional analysis showed that age did not affect sentencing recommendations. Decision processes jurors use for juveniles tried as adults are discussed.

  17. Forensic aspects of juvenile violence.

    PubMed

    Haller, L H

    2000-10-01

    The juvenile justice system was created because it was recognized that youthful offenders needed to be managed differently from adults. They were to receive habilitation services instead of punishment. It is now more than a century since the creation of the first juvenile court. After 67 years, the US Supreme Court, in Kent v United States stated that the model was not working because juveniles in the criminal justice system received no treatment and they had no rights. Because the issue that had been appealed was the lack of rights (not lack of treatment), the Court mandated that juveniles, like adults, be given certain rights. The following year, in In re Gault, the Court expanded these rights. Subsequent Supreme Court cases have dealt with these kinds of issues--that is, whether juvenile offenders are entitled to the same rights as adults and subject to the same penalties. The Supreme Court has never heard a "right to treatment" case, which is the other part of the juvenile court system. Cases have been brought in lower courts (e.g., Nelson v. Heyne, 1972) alleging inadequate treatment services, but no national impact has resulted. Thus, in general, children in the juvenile court system do not have an enforceable right to treatment and can obtain only what services are available in their jurisdictions. The services often are woefully inadequate. Sentencing a youth to probation, with the requirement that he or she participate in counseling or mental health treatment, is meaningless if services are not available. Community-based, model programs that provide effective treatment do exist. They are, as yet, the rare exception rather than the norm and, therefore, are not available to most youthful offenders. Incarcerated juveniles, obviously, cannot avail themselves of community programs. Litigation to give these youth the same rights as adults in penal institutions is not the answer because incarcerated adults don't have a right to treatment, only a right to be free

  18. The Impact of Modernization on American Children.

    ERIC Educational Resources Information Center

    Hawes, Joseph M.

    The impact of urbanization, industrialization, and immigration on American children from the 1850's to the 1920's is examined. Specifically, child labor, schooling, growing up female in the industrial age, the juvenile justice system, and dependent children are discussed. Before 1900, child protection in all its manifestations was an informal…

  19. The Planning of Lander Science Observations after ROSETTA Deep Space Hibernation

    NASA Astrophysics Data System (ADS)

    Barthelemy, Maud; Ulamec, Stephan; Gaudon, Philippe; Biele, Jens; Pätz, Brigitte; Ashman, Mike

    2014-05-01

    After 10 years of its interplanetary journey, Rosetta has woken up from hibernation to meet Churyumov-Gerasimenko comet in the second term of 2014. The Rosetta spacecraft is composed of an Orbiter and a Lander part. The spacecraft will deliver the Lander, named Philae, to land on the surface of the comet in November 2014. During the Cruise Phase, the Lander, attached to the Orbiter, participated in several commissioning and payload checkout observations. In April 2014, after almost 3 years of hibernation, the Lander and the Orbiter will enter a commissioning phase to check the health of all instruments. Then, from May to November, Prelanding science activities can be planned, although the priority will go to those observations that help to select the landing site. The Lander project has, in much the same way as the Orbiter, its own ground segment: the Rosetta Lander Ground Segment (RLGS). The RLGS is composed of the Science Operations and Navigation Center - SONC - at CNES in Toulouse and the Lander Control Center - LCC - at DLR in Cologne. There are 10 instruments on board of Philae trying to conduct science observations during the life of the Lander. As the comet travels closer to the sun the temperature will eventually become too hot for Philae. The Orbiter, however, is planned to operate for much longer, until end of 2015, passing perihelion. Each of the 10 instruments is represented by a principal investigator. The Lander project also has Lead Scientists, who make sure that the science objectives of the Lander are fulfilled and are on hand to solve any eventual conflicts in this regard. To plan their observations, the Lander team listed their science objectives and ranked them. From these objectives, Specific On-Comet Operation Plan (SOCOP) documents are written by LCC describing the proposed observations. Then, at SONC, the MOST (Mission Operation Scheduling Tool) is used to generate a science experiment plan. This plan is confirmed by the PIs and the Lead

  20. 1H–NMR Metabolomic Biomarkers of Poor Outcome after Hemorrhagic Shock are Absent in Hibernators

    PubMed Central

    Bogren, Lori K.; Murphy, Carl J.; Johnston, Erin L.; Sinha, Neeraj; Serkova, Natalie J.; Drew, Kelly L.

    2014-01-01

    Background Hemorrhagic shock (HS) following trauma is a leading cause of death among persons under the age of 40. During HS the body undergoes systemic warm ischemia followed by reperfusion during medical intervention. Ischemia/reperfusion (I/R) results in a disruption of cellular metabolic processes that ultimately lead to tissue and organ dysfunction or failure. Resistance to I/R injury is a characteristic of hibernating mammals. The present study sought to identify circulating metabolites in the rat as biomarkers for metabolic alterations associated with poor outcome after HS. Arctic ground squirrels (AGS), a hibernating species that resists I/R injury independent of decreased body temperature (warm I/R), was used as a negative control. Methodology/principal findings Male Sprague-Dawley rats and AGS were subject to HS by withdrawing blood to a mean arterial pressure (MAP) of 35 mmHg and maintaining the low MAP for 20 min before reperfusing with Ringers. The animals’ temperature was maintained at 37±0.5°C for the duration of the experiment. Plasma samples were taken immediately before hemorrhage and three hours after reperfusion. Hydrophilic and lipid metabolites from plasma were then analyzed via 1H–NMR from unprocessed plasma and lipid extracts, respectively. Rats, susceptible to I/R injury, had a qualitative shift in their hydrophilic metabolic fingerprint including differential activation of glucose and anaerobic metabolism and had alterations in several metabolites during I/R indicative of metabolic adjustments and organ damage. In contrast, I/R injury resistant AGS, regardless of season or body temperature, maintained a stable metabolic homeostasis revealed by a qualitative 1H–NMR metabolic profile with few changes in quantified metabolites during HS-induced global I/R. Conclusions/significance An increase in circulating metabolites indicative of anaerobic metabolism and activation of glycolytic pathways is associated with poor prognosis after HS in

  1. Genetics Home Reference: juvenile polyposis syndrome

    MedlinePlus

    ... and symptoms of the disorder. Juvenile polyposis of infancy is characterized by polyps that occur throughout the gastrointestinal tract during infancy. Juvenile polyposis of infancy is the most severe ...

  2. Comparative bacteriology of juvenile periodontitis.

    PubMed Central

    Moore, W E; Holdeman, L V; Cato, E P; Smibert, R M; Burmeister, J A; Palcanis, K G; Ranney, R R

    1985-01-01

    Statistical comparisons of the floras associated with juvenile periodontitis, severe periodontitis, and moderate periodontitis indicated that differences in the bacterial compositions of affected sites in these populations were not statistically significant. The subgingival flora of affected juvenile periodontitis sites was statistically significantly different from the adjacent supragingival flora and from the subgingival floras of people with healthy gingiva and of children with developing (experimental) gingivitis. However, the subgingival flora of affected juvenile periodontitis sites was not significantly different from the flora of sites with gingival index scores of 1 or 2 in adults with developing (experimental) gingivitis. Of 357 bacterial taxa among over 18,000 isolates, 54 non-treponemal species, 2 treponemal species, and mycoplasma were most associated with diseased periodontal sulci. These species comprised an increasing proportion of the flora during developing gingivitis and constituted over half of the cultivable flora of diseased sites. PMID:3988344

  3. Disability and Juvenile Delinquency: Issues and Trends

    ERIC Educational Resources Information Center

    Morris, Kimberly A.; Morris, Richard J.

    2006-01-01

    The US juvenile justice system has gone through many changes since its inception in the late 1890s. Even with these changes and more than 100 years of empirical research, there is a paucity of literature published on juvenile delinquents with disabilities. The present article focuses on juvenile delinquents with disabilities, addressing…

  4. Guidelines for Juvenile Information Sharing. OJJDP Report

    ERIC Educational Resources Information Center

    Mankey, Jennifer; Baca, Patricia; Rondenell, Stephanie; Webb, Marilyn; McHugh, Denise

    2006-01-01

    The juvenile information sharing (JIS) guidelines were prepared by the Center for Network Development (CND) for the Office of Juvenile Justice and Delinquency Prevention (OJJDP). The guidelines suggest a course of action for key agency and organization stakeholders involved in a state or local effort to implement and sustain juvenile information…

  5. Juvenile Myelomonocytic Leukemia (JMML) (For Parents)

    MedlinePlus

    ... Your 1- to 2-Year-Old Juvenile Myelomonocytic Leukemia (JMML) KidsHealth > For Parents > Juvenile Myelomonocytic Leukemia (JMML) ... Treatment Coping en español Leucemia mielomonocítica juvenil About Leukemia Leukemia is a type of cancer that affects ...

  6. School-Related Characteristics of Male Juveniles.

    ERIC Educational Resources Information Center

    Sapp, Gary L.; Abbott, Gypsy A.

    School-related characteristics of 256 male juveniles under the jurisdiction of a Family Court system were examined by perusing court records and conducting individual interviews with the juveniles. Results indicated that most juveniles last attended eighth grade, more than 81% had failed at least once, and more than half had fought frequently at…

  7. On the Prevention of Juvenile Crime

    ERIC Educational Resources Information Center

    Lelekov, V. A.; Kosheleva, E. V.

    2008-01-01

    Crimes committed by juveniles are among the most urgent social problems. Juvenile crime is as prevalent as crime itself is, and it has not been solved completely in any society and cannot be solved through law enforcement measures alone. In this article, the authors discuss the dynamics and structure of juvenile crime in Russia and present data…

  8. Do Juveniles Bully More than Young Offenders?

    ERIC Educational Resources Information Center

    Ireland, Jane L.

    2002-01-01

    Study compares bullying behavior among juvenile and young offenders. Ninety-five male juvenile and 196 male young offenders completed two questionnaires, measuring bullying directly and behaviors indicative of "being bullied" or of "bullying others". Juveniles perceived a higher extent of bullying and reported significantly…

  9. Intensive Reading Instruction in Juvenile Correctional Settings

    ERIC Educational Resources Information Center

    Williams, Jacob L.; Wexler, Jade; Roberts, Greg; Carpenter, Clint

    2011-01-01

    Despite 60 years of evidence linking juvenile illiteracy and delinquency, practitioners and policymakers have been painfully slow in the implementation of evidence-based reading interventions for incarcerated juveniles. We will present the Texas Juvenile Justice Tiered Instructional Model, an evidence-based reading program model created…

  10. Sex Differences in Attributions of Juvenile Delinquency.

    ERIC Educational Resources Information Center

    Sagatun, Inger J.

    This paper is an application of attribution theory to the processing of juvenile delinquents in an attempt to understand the differential treatment of female and male offenders within the juvenile justice system. The paper explores the attributions of juvenile delinquency both by male and female minors, by male and female parents, and by male and…

  11. The Juvenile Court: Changes and Challenges.

    ERIC Educational Resources Information Center

    Feld, Barry C.

    2000-01-01

    Explores the changes in the juvenile court system, in particular, the juvenile waiver and sentencing laws, as it transformed from a social welfare agency into a type of criminal court system for young offenders. Addresses whether states should create an integrated juvenile and criminal justice system. (CMK)

  12. Reforming Our Expectations about Juvenile Justice

    ERIC Educational Resources Information Center

    Rodriguez, Pamela F.; Baille, Daphne M.

    2010-01-01

    Typing the term "juvenile justice reform" into a Google[TM] search will result in 60 pages of entries. But what is meant by juvenile justice reform? What does it look like? How will one know when it is achieved? This article defines juvenile justice reform, discusses the principles of effective reform, and describes the practice of…

  13. Immunoreactivities of PPARγ2, leptin and leptin receptor in oviduct of Chinese brown frog during breeding period and pre-hibernation.

    PubMed

    Liu, Y; Weng, J; Huang, S; Shen, Y; Sheng, X; Han, Y; Xu, M; Weng, Q

    2014-09-09

    The Chinese brown frog (Rana dybowskii) is a special amphibian with one unique physiological phenomenon, which is that its oviduct expands prior to hibernation, instead of during the breeding period. In this study, we investigate the localization and expression level of PPARγ2, leptin and leptin receptor proteins in oviduct of Rana dybowskii during  breeding period and pre-hibernation. There were significant variations in oviductal weight and size, with values much lower in the breeding period than in pre-hibernation. PPARγ2 was observed in stromal and epithelial cells in both periods. Leptin was immunolocalized in epithelial cells in both periods, whereas leptin receptor was detected only in stromal cells. Consistently, the protein levels of PPARγ2, leptin and leptin receptor were higher in pre-hibernation as compared to the breeding period. These results suggested that oviduct was the target organ of leptin, which may play an important paracrine role in regulating the oviductal hypertrophy during pre-hibernation.

  14. The effects of hibernation on the contractile and biochemical properties of skeletal muscles in the thirteen-lined ground squirrel, Ictidomys tridecemlineatus.

    PubMed

    James, Rob S; Staples, James F; Brown, Jason C L; Tessier, Shannon N; Storey, Kenneth B

    2013-07-15

    Hibernation is a crucial strategy of winter survival used by many mammals. During hibernation, thirteen-lined ground squirrels, Ictidomys tridecemlineatus, cycle through a series of torpor bouts, each lasting more than a week, during which the animals are largely immobile. Previous hibernation studies have demonstrated that such natural models of skeletal muscle disuse cause limited or no change in either skeletal muscle size or contractile performance. However, work loop analysis of skeletal muscle, which provides a realistic assessment of in vivo power output, has not previously been undertaken in mammals that undergo prolonged torpor during hibernation. In the present study, our aim was to assess the effects of 3 months of hibernation on contractile performance (using the work loop technique) and several biochemical properties that may affect performance. There was no significant difference in soleus muscle power output-cycle frequency curves between winter (torpid) and summer (active) animals. Total antioxidant capacity of gastrocnemius muscle was 156% higher in torpid than in summer animals, suggesting one potential mechanism for maintenance of acute muscle performance. Soleus muscle fatigue resistance was significantly lower in torpid than in summer animals. Gastrocnemius muscle glycogen content was unchanged. However, state 3 and state 4 mitochondrial respiration rates were significantly suppressed, by 59% and 44%, respectively, in mixed hindlimb skeletal muscle from torpid animals compared with summer controls. These findings in hindlimb skeletal muscles suggest that, although maximal contractile power output is maintained in torpor, there is both suppression of ATP production capacity and reduced fatigue resistance.

  15. Fungi vectored by the bark beetle Ips typographus following hibernation under the bark of standing trees and in the forest litter.

    PubMed

    Persson, Ylva; Vasaitis, Rimvydas; Långström, Bo; Ohrn, Petter; Ihrmark, Katarina; Stenlid, Jan

    2009-10-01

    The bark beetle Ips typographus has different hibernation environments, under the bark of standing trees or in the forest litter, which is likely to affect the beetle-associated fungal flora. We isolated fungi from beetles, standing I. typographus-attacked trees, and forest litter below the attacked trees. Fungal identification was done using cultural and molecular methods. The results of the two methods in detecting fungal species were compared. Fungal communities associated with I. typographus differed considerably depending on the hibernation environment. In addition to seven taxa of known ophiostomoid I. typographus-associated fungi, we detected 18 ascomycetes and anamorphic fungi, five wood-decaying basidomycetes, 11 yeasts, and four zygomycetes. Of those, 14 fungal taxa were detected exclusively from beetles that hibernated under bark, and six taxa were detected exclusively from beetles hibernating in forest litter. The spruce pathogen, Ceratocystis polonica, was detected occasionally in bark, while another spruce pathogen, Grosmannia europhioides, was detected more often from beetles hibernating under the bark as compared to litter. The identification method had a significant impact on which taxa were detected. Rapidly growing fungal taxa, e.g. Penicillium, Trichoderma, and Ophiostoma, dominated pure culture isolations; while yeasts dominated the communities detected using molecular methods. The study also demonstrated low frequencies of tree pathogenic fungi carried by I. typographus during its outbreaks and that the beetle does not require them to successfully attack and kill trees.

  16. Hibernating above the permafrost: effects of ambient temperature and season on expression of metabolic genes in liver and brown adipose tissue of arctic ground squirrels.

    PubMed

    Williams, Cory T; Goropashnaya, Anna V; Buck, C Loren; Fedorov, Vadim B; Kohl, Franziska; Lee, Trixie N; Barnes, Brian M

    2011-04-15

    Hibernating arctic ground squirrels (Urocitellus parryii), overwintering in frozen soils, maintain large gradients between ambient temperature (T(a)) and body temperature (T(b)) by substantially increasing metabolic rate during torpor while maintaining a subzero T(b). We used quantitative reverse-transcription PCR (qRT-PCR) to determine how the expression of 56 metabolic genes was affected by season (active in summer vs hibernating), metabolic load during torpor (imposed by differences in T(a): +2 vs -10°C) and hibernation state (torpid vs after arousal). Compared with active ground squirrels sampled in summer, liver from hibernators showed increased expression of genes associated with fatty acid catabolism (CPT1A, FABP1 and ACAT1), ketogenesis (HMGCS2) and gluconeogenesis (PCK1) and decreased expression of genes associated with fatty acid synthesis (ACACB, SCD and ELOVL6), amino acid metabolism, the urea cycle (PAH, BCKDHA and OTC), glycolysis (PDK1 and PFKM) and lipid metabolism (ACAT2). Stage of hibernation (torpid vs aroused) had a much smaller effect, with only one gene associated with glycogen synthesis (GSY1) in liver showing consistent differences in expression levels between temperature treatments. Despite the more than eightfold increase in energetic demand associated with defending T(b) during torpor at a T(a) of -10 vs +2°C, transcript levels in liver and brown adipose tissue differed little. Our results are inconsistent with a hypothesized switch to use of non-lipid fuels when ambient temperatures drop below freezing.

  17. Gene expression profiling of human hibernating myocardium: increased expression of B-type natriuretic peptide and proenkephalin in hypocontractile vs normally-contracting regions of the heart.

    PubMed

    Prasad, Sanjay K; Clerk, Angela; Cullingford, Timothy E; Chen, Alexander W Y; Kemp, Timothy J; Cannell, Timothy M; Cowie, Martin R; Petrou, Mario

    2008-12-01

    A greater understanding of the molecular basis of hibernating myocardium may assist in identifying those patients who would most benefit from revascularization. Paired heart biopsies were taken from hypocontractile and normally-contracting myocardium (identified by cardiovascular magnetic resonance) from 6 patients with chronic stable angina scheduled for bypass grafting. Gene expression profiles of hypocontractile and normally-contracting samples were compared using Affymetrix microarrays. The data for patients with confirmed hibernating myocardium were analysed separately and a different, though overlapping, set (up to 380) of genes was identified which may constitute a molecular fingerprint for hibernating myocardium. The expression of B-type natriuretic peptide (BNP) was increased in hypocontractile relative to normally-contracting myocardium. The expression of BNP correlated most closely with the expression of proenkephalin and follistatin 3, which may constitute additional heart failure markers. Our data illustrate differential gene expression in hypocontractile and/hibernating myocardium relative to normally-contracting myocardium within individual human hearts. Changes in expression of these genes, including increased relative expression of natriuretic and other factors, may constitute a molecular signature for hypocontractile and/or hibernating myocardium.

  18. Special Education and the Juvenile Justice System. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Burrell, Sue; Warboys, Loren

    This bulletin summarizes provisions of federal law as they pertain to special education and juvenile justice. It discusses provisions of the Individuals with Disabilities Education Act 1997 including: the definition of disability; free appropriate public education; identification, referral, and evaluation; the individualized education program…

  19. Mobilizing Communities To Prevent Juvenile Crime. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Bownes, Donna; Ingersoll, Sarah

    Through Title V Incentive Grants for Local Delinquency Prevention Programs (Community Prevention Grants), the Office of Juvenile Justice and Delinquency Prevention (OJJDP) allocated $20 million in fiscal year 1997 to states to complement law enforcement and justice system efforts by helping local communities foster strong families and nurture…

  20. Prevention of Serious and Violent Juvenile Offending. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Wasserman, Gail A.; Miller, Laurie S.; Cothern, Lynn

    This bulletin explores the proximal risk factors for juvenile offending, reviews the early developmental precursors to violent offending, and summarizes approaches to prevention. It also discusses components of intervention programs, limitations of single-focus prevention, examples of multi systemic interventions, and limitations of prevention…

  1. Race as a Factor in Juvenile Arrests. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Pope, Carl E.; Snyder, Howard E.

    This bulletin examines the effect of race on police decisions to take juvenile offenders into custody. Analysis of 1997 and 1998 data on 17 states from the Federal Bureau of Investigation's National Incident-Based Reporting System indicates that there is no evidence to support the hypothesis that police are more likely to arrest nonwhite juvenile…

  2. How Hibernation Factors RMF, HPF, and YfiA Turn Off Protein Synthesis

    SciTech Connect

    Polikanov, Yury S.; Blaha, Gregor M.; Steitz, Thomas A.

    2013-04-08

    Eubacteria inactivate their ribosomes as 100S dimers or 70S monomers upon entry into stationary phase. In Escherichia coli, 100S dimer formation is mediated by ribosome modulation factor (RMF) and hibernation promoting factor (HPF), or alternatively, the YfiA protein inactivates ribosomes as 70S monomers. Here, we present high-resolution crystal structures of the Thermus thermophilus 70S ribosome in complex with each of these stationary-phase factors. The binding site of RMF overlaps with that of the messenger RNA (mRNA) Shine-Dalgarno sequence, which prevents the interaction between the mRNA and the 16S ribosomal RNA. The nearly identical binding sites of HPF and YfiA overlap with those of the mRNA, transfer RNA, and initiation factors, which prevents translation initiation. The binding of RMF and HPF, but not YfiA, to the ribosome induces a conformational change of the 30S head domain that promotes 100S dimer formation.

  3. Variability in brain ganglioside content and composition of endothermic mammals, heterothermic hibernators and ectothermic fishes.

    PubMed

    Kappel, T; Hilbig, R; Rahmann, H

    1993-06-01

    Content and composition of brain gangliosides were compared among endothermic mammals, heterothermic hibernators and ectothermic fishes from habitats with extreme ambient temperatures (tropic vs. antarctic waters). In general the content of brain gangliosides in fishes is significantly lower and exhibits a greater variability than in mammals. The composition of brain gangliosides was investigated using both one- and two-dimensional High Performance Thin Layer Chromatography (HPTLC). Both techniques showed a remarkable increase in the number of individual ganglioside fractions and an additional increase of higher polar fractions in fishes as compared with mammals. The 2D-HPTLC revealed a significant decrease in the relative proportion of alkali-labile gangliosides in the course of evolution from fish to mammals. Moreover this decrease in alkali-lability is correlated with the state of thermal adaptation (antarctic fishes, 53-66%; tropical cichlid fish, 35%). These results provide additional evidence for the notion that the extremely high polarity of brain gangliosides, especially of cold-blooded vertebrates, reflects a very efficient mechanism on the molecular level to keep the neuronal membrane functional under low temperature conditions.

  4. Urea loading enhances freezing survival and postfreeze recovery in a terrestrially hibernating frog.

    PubMed

    Costanzo, Jon P; Lee, Richard E

    2008-09-01

    We tested the hypothesis that urea, an osmolyte accumulated early in hibernation, functions as a cryoprotectant in the freeze-tolerant wood frog, Rana sylvatica. Relative to saline-treated, normouremic (10 micromol ml(-1)) frogs, individuals rendered hyperuremic (70 micromol ml(-1)) by administration of an aqueous urea solution exhibited significantly higher survival (100% versus 64%) following freezing at -4 degrees C, a potentially lethal temperature. Hyperuremic frogs also had lower plasma levels of intracellular proteins (lactate dehydrogenase, creatine kinase, hemoglobin), which presumably escaped from damaged cells, and more quickly recovered neurobehavioral functions following thawing. Experimental freezing-thawing did not alter tissue urea concentrations, but did elevate glucose levels in the blood and organs of all frogs. When measured 24 h after thawing commenced, glucose concentrations were markedly higher in urea-loaded frogs as compared to saline-treated ones, possibly because elevated urea retarded glucose clearance. Like other low-molecular-mass cryoprotectants, urea colligatively reduces both the amount of ice forming within the body and the osmotic dehydration of cells. In addition, by virtue of certain non-colligative properties, it may bestow additional protection from freeze-thaw damage not afforded by glucose.

  5. Two New Species of Sucking Lice (Phthiraptera: Anoplura: Polyplacidae) From Endangered, Hibernating Lemurs (Primates: Cheirogaleidae).

    PubMed

    Durden, Lance A; Blanco, Marina B; Seabolt, Matthew H

    2017-02-15

    Lemurpediculus robbinsi sp. nov. is described from Crossley's dwarf lemur, Cheirogaleus crossleyi A. Grandidier, and Lemurpediculus claytoni sp. nov. is described from Sibree's dwarf lemur, Cheirogaleus sibreei Forsyth Major, from Madagascar. Both sexes of each new louse species are illustrated and distinguished from the two previously known species of Lemurpediculus: L. verruculosus (Ward) and L. petterorum Paulian. With the addition of two new species to the genus, an amended description of Lemurpediculus is provided. The two hosts of the new louse species are morphologically similar, endangered, obligately hibernating lemurs. These two species of lemurs are sometimes sympatric in rainforests in eastern Madagascar. Despite the morphological similarity of the two host species, their lice are morphologically distinct and are easiest to identify based on the shape of the subgenital plate of the female and the shape of the genitalia in the male. Both new species of lice should be considered to be endangered because their hosts are endangered. It is not known if either of the new species of lice are vectors of pathogens or parasites to their hosts.

  6. Passive rewarming from torpor in hibernating bats: minimizing metabolic costs and cardiac demands.

    PubMed

    Currie, Shannon E; Noy, Kodie; Geiser, Fritz

    2015-01-01

    Endothermic arousal from torpor is an energetically costly process and imposes enormous demands on the cardiovascular system, particularly during early stage arousal from low body temperature (Tb). To minimize these costs many bats and other heterothermic endotherms rewarm passively from torpor using solar radiation or fluctuating ambient temperature (Ta). Because the heart plays a critical role in the arousal process in terms of blood distribution and as a source of heat production, it is desirable to understand how the function of this organ responds to passive rewarming and how this relates to changes in metabolism and Tb. We investigated heart rate (HR) in hibernating long-eared bats (Nyctophilus gouldi) and its relationship to oxygen consumption (V̇o₂) and subcutaneous temperature (Tsub) during exposure to increasing Ta compared with endogenous arousals at constant low Ta. During passive rewarming, HR and V̇o₂ remained low over a large Tsub range and increased concurrently with increasing Ta (Q₁₀ 2.4 and 2.5, respectively). Absolute values were higher than during steady-state torpor but below those measured during torpor entry. During active arousals, mean HR and V̇o₂ were substantially higher than during passive rewarming at corresponding Tsub. In addition, partial passive rewarming reduced the cost of arousal from torpor by 53% compared with entirely active arousal. Our data show that passive rewarming considerably reduces arousal costs and arousal time; we suggest this may also contribute to minimizing exposure to oxidative stresses as well as demands on the cardiovascular system.

  7. Surface Control of Cold Hibernated Elastic Memory Self-Deployable Structure

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold M.; Ghaffarian, Reza

    2006-01-01

    A new class of simple, reliable, lightweight, low packaging volume and cost, self-deployable structures has been developed for use in space and commercial applications. This technology called 'cold hibernated elastic memory' (CHEM) utilizes shape memory polymers (SMP)in open cellular (foam) structure or sandwich structures made of shape memory polymer foam cores and polymeric composite skins. Some of many potential CHEM space applications require a high precision deployment and surface accuracy during operation. However, a CHEM structure could be slightly distorted by the thermo-mechanical processing as well as by thermal space environment Therefore, the sensor system is desirable to monitor and correct the potential surface