Zipf exponent of trajectory distribution in the hidden Markov model
NASA Astrophysics Data System (ADS)
Bochkarev, V. V.; Lerner, E. Yu
2014-03-01
This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different.
El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar
2014-11-01
Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data.
Machine learning in sentiment reconstruction of the simulated stock market
NASA Astrophysics Data System (ADS)
Goykhman, Mikhail; Teimouri, Ali
2018-02-01
In this paper we continue the study of the simulated stock market framework defined by the driving sentiment processes. We focus on the market environment driven by the buy/sell trading sentiment process of the Markov chain type. We apply the methodology of the Hidden Markov Models and the Recurrent Neural Networks to reconstruct the transition probabilities matrix of the Markov sentiment process and recover the underlying sentiment states from the observed stock price behavior. We demonstrate that the Hidden Markov Model can successfully recover the transition probabilities matrix for the hidden sentiment process of the Markov Chain type. We also demonstrate that the Recurrent Neural Network can successfully recover the hidden sentiment states from the observed simulated stock price time series.
Building Simple Hidden Markov Models. Classroom Notes
ERIC Educational Resources Information Center
Ching, Wai-Ki; Ng, Michael K.
2004-01-01
Hidden Markov models (HMMs) are widely used in bioinformatics, speech recognition and many other areas. This note presents HMMs via the framework of classical Markov chain models. A simple example is given to illustrate the model. An estimation method for the transition probabilities of the hidden states is also discussed.
Filtering Using Nonlinear Expectations
2016-04-16
gives a solution to estimating a Markov chain observed in Gaussian noise when the variance of the noise is unkown. This paper is accepted for the IEEE...Optimization, an A* journal. A short third paper discusses how to estimate a change in the transition dynamics of a noisily observed Markov chain ...The change point time is hidden in a hidden Markov chain , so a second level of discovery is involved. This paper is accepted for Communications in
Sebastian, Tunny; Jeyaseelan, Visalakshi; Jeyaseelan, Lakshmanan; Anandan, Shalini; George, Sebastian; Bangdiwala, Shrikant I
2018-01-01
Hidden Markov models are stochastic models in which the observations are assumed to follow a mixture distribution, but the parameters of the components are governed by a Markov chain which is unobservable. The issues related to the estimation of Poisson-hidden Markov models in which the observations are coming from mixture of Poisson distributions and the parameters of the component Poisson distributions are governed by an m-state Markov chain with an unknown transition probability matrix are explained here. These methods were applied to the data on Vibrio cholerae counts reported every month for 11-year span at Christian Medical College, Vellore, India. Using Viterbi algorithm, the best estimate of the state sequence was obtained and hence the transition probability matrix. The mean passage time between the states were estimated. The 95% confidence interval for the mean passage time was estimated via Monte Carlo simulation. The three hidden states of the estimated Markov chain are labelled as 'Low', 'Moderate' and 'High' with the mean counts of 1.4, 6.6 and 20.2 and the estimated average duration of stay of 3, 3 and 4 months, respectively. Environmental risk factors were studied using Markov ordinal logistic regression analysis. No significant association was found between disease severity levels and climate components.
Under-reported data analysis with INAR-hidden Markov chains.
Fernández-Fontelo, Amanda; Cabaña, Alejandra; Puig, Pedro; Moriña, David
2016-11-20
In this work, we deal with correlated under-reported data through INAR(1)-hidden Markov chain models. These models are very flexible and can be identified through its autocorrelation function, which has a very simple form. A naïve method of parameter estimation is proposed, jointly with the maximum likelihood method based on a revised version of the forward algorithm. The most-probable unobserved time series is reconstructed by means of the Viterbi algorithm. Several examples of application in the field of public health are discussed illustrating the utility of the models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Multivariate longitudinal data analysis with mixed effects hidden Markov models.
Raffa, Jesse D; Dubin, Joel A
2015-09-01
Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies. © 2015, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Birkel, C.; Paroli, R.; Spezia, L.; Tetzlaff, D.; Soulsby, C.
2012-12-01
In this paper we present a novel model framework using the class of Markov Switching Autoregressive Models (MSARMs) to examine catchments as complex stochastic systems that exhibit non-stationary, non-linear and non-Normal rainfall-runoff and solute dynamics. Hereby, MSARMs are pairs of stochastic processes, one observed and one unobserved, or hidden. We model the unobserved process as a finite state Markov chain and assume that the observed process, given the hidden Markov chain, is conditionally autoregressive, which means that the current observation depends on its recent past (system memory). The model is fully embedded in a Bayesian analysis based on Markov Chain Monte Carlo (MCMC) algorithms for model selection and uncertainty assessment. Hereby, the autoregressive order and the dimension of the hidden Markov chain state-space are essentially self-selected. The hidden states of the Markov chain represent unobserved levels of variability in the observed process that may result from complex interactions of hydroclimatic variability on the one hand and catchment characteristics affecting water and solute storage on the other. To deal with non-stationarity, additional meteorological and hydrological time series along with a periodic component can be included in the MSARMs as covariates. This extension allows identification of potential underlying drivers of temporal rainfall-runoff and solute dynamics. We applied the MSAR model framework to streamflow and conservative tracer (deuterium and oxygen-18) time series from an intensively monitored 2.3 km2 experimental catchment in eastern Scotland. Statistical time series analysis, in the form of MSARMs, suggested that the streamflow and isotope tracer time series are not controlled by simple linear rules. MSARMs showed that the dependence of current observations on past inputs observed by transport models often in form of the long-tailing of travel time and residence time distributions can be efficiently explained by non-stationarity either of the system input (climatic variability) and/or the complexity of catchment storage characteristics. The statistical model is also capable of reproducing short (event) and longer-term (inter-event) and wet and dry dynamical "hydrological states". These reflect the non-linear transport mechanisms of flow pathways induced by transient climatic and hydrological variables and modified by catchment characteristics. We conclude that MSARMs are a powerful tool to analyze the temporal dynamics of hydrological data, allowing for explicit integration of non-stationary, non-linear and non-Normal characteristics.
An information hidden model holding cover distributions
NASA Astrophysics Data System (ADS)
Fu, Min; Cai, Chao; Dai, Zuxu
2018-03-01
The goal of steganography is to embed secret data into a cover so no one apart from the sender and intended recipients can find the secret data. Usually, the way the cover changing was decided by a hidden function. There were no existing model could be used to find an optimal function which can greatly reduce the distortion the cover suffered. This paper considers the cover carrying secret message as a random Markov chain, taking the advantages of a deterministic relation between initial distributions and transferring matrix of the Markov chain, and takes the transferring matrix as a constriction to decrease statistical distortion the cover suffered in the process of information hiding. Furthermore, a hidden function is designed and the transferring matrix is also presented to be a matrix from the original cover to the stego cover. Experiment results show that the new model preserves a consistent statistical characterizations of original and stego cover.
Efficient Learning of Continuous-Time Hidden Markov Models for Disease Progression
Liu, Yu-Ying; Li, Shuang; Li, Fuxin; Song, Le; Rehg, James M.
2016-01-01
The Continuous-Time Hidden Markov Model (CT-HMM) is an attractive approach to modeling disease progression due to its ability to describe noisy observations arriving irregularly in time. However, the lack of an efficient parameter learning algorithm for CT-HMM restricts its use to very small models or requires unrealistic constraints on the state transitions. In this paper, we present the first complete characterization of efficient EM-based learning methods for CT-HMM models. We demonstrate that the learning problem consists of two challenges: the estimation of posterior state probabilities and the computation of end-state conditioned statistics. We solve the first challenge by reformulating the estimation problem in terms of an equivalent discrete time-inhomogeneous hidden Markov model. The second challenge is addressed by adapting three approaches from the continuous time Markov chain literature to the CT-HMM domain. We demonstrate the use of CT-HMMs with more than 100 states to visualize and predict disease progression using a glaucoma dataset and an Alzheimer’s disease dataset. PMID:27019571
Fuzzy Markov random fields versus chains for multispectral image segmentation.
Salzenstein, Fabien; Collet, Christophe
2006-11-01
This paper deals with a comparison of recent statistical models based on fuzzy Markov random fields and chains for multispectral image segmentation. The fuzzy scheme takes into account discrete and continuous classes which model the imprecision of the hidden data. In this framework, we assume the dependence between bands and we express the general model for the covariance matrix. A fuzzy Markov chain model is developed in an unsupervised way. This method is compared with the fuzzy Markovian field model previously proposed by one of the authors. The segmentation task is processed with Bayesian tools, such as the well-known MPM (Mode of Posterior Marginals) criterion. Our goal is to compare the robustness and rapidity for both methods (fuzzy Markov fields versus fuzzy Markov chains). Indeed, such fuzzy-based procedures seem to be a good answer, e.g., for astronomical observations when the patterns present diffuse structures. Moreover, these approaches allow us to process missing data in one or several spectral bands which correspond to specific situations in astronomy. To validate both models, we perform and compare the segmentation on synthetic images and raw multispectral astronomical data.
Self-Organizing Hidden Markov Model Map (SOHMMM).
Ferles, Christos; Stafylopatis, Andreas
2013-12-01
A hybrid approach combining the Self-Organizing Map (SOM) and the Hidden Markov Model (HMM) is presented. The Self-Organizing Hidden Markov Model Map (SOHMMM) establishes a cross-section between the theoretic foundations and algorithmic realizations of its constituents. The respective architectures and learning methodologies are fused in an attempt to meet the increasing requirements imposed by the properties of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein chain molecules. The fusion and synergy of the SOM unsupervised training and the HMM dynamic programming algorithms bring forth a novel on-line gradient descent unsupervised learning algorithm, which is fully integrated into the SOHMMM. Since the SOHMMM carries out probabilistic sequence analysis with little or no prior knowledge, it can have a variety of applications in clustering, dimensionality reduction and visualization of large-scale sequence spaces, and also, in sequence discrimination, search and classification. Two series of experiments based on artificial sequence data and splice junction gene sequences demonstrate the SOHMMM's characteristics and capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Markov Chain Monte Carlo in the Analysis of Single-Molecule Experimental Data
NASA Astrophysics Data System (ADS)
Kou, S. C.; Xie, X. Sunney; Liu, Jun S.
2003-11-01
This article provides a Bayesian analysis of the single-molecule fluorescence lifetime experiment designed to probe the conformational dynamics of a single DNA hairpin molecule. The DNA hairpin's conformational change is initially modeled as a two-state Markov chain, which is not observable and has to be indirectly inferred. The Brownian diffusion of the single molecule, in addition to the hidden Markov structure, further complicates the matter. We show that the analytical form of the likelihood function can be obtained in the simplest case and a Metropolis-Hastings algorithm can be designed to sample from the posterior distribution of the parameters of interest and to compute desired estiamtes. To cope with the molecular diffusion process and the potentially oscillating energy barrier between the two states of the DNA hairpin, we introduce a data augmentation technique to handle both the Brownian diffusion and the hidden Ornstein-Uhlenbeck process associated with the fluctuating energy barrier, and design a more sophisticated Metropolis-type algorithm. Our method not only increases the estimating resolution by several folds but also proves to be successful for model discrimination.
Parsing Social Network Survey Data from Hidden Populations Using Stochastic Context-Free Grammars
Poon, Art F. Y.; Brouwer, Kimberly C.; Strathdee, Steffanie A.; Firestone-Cruz, Michelle; Lozada, Remedios M.; Kosakovsky Pond, Sergei L.; Heckathorn, Douglas D.; Frost, Simon D. W.
2009-01-01
Background Human populations are structured by social networks, in which individuals tend to form relationships based on shared attributes. Certain attributes that are ambiguous, stigmatized or illegal can create a ÔhiddenÕ population, so-called because its members are difficult to identify. Many hidden populations are also at an elevated risk of exposure to infectious diseases. Consequently, public health agencies are presently adopting modern survey techniques that traverse social networks in hidden populations by soliciting individuals to recruit their peers, e.g., respondent-driven sampling (RDS). The concomitant accumulation of network-based epidemiological data, however, is rapidly outpacing the development of computational methods for analysis. Moreover, current analytical models rely on unrealistic assumptions, e.g., that the traversal of social networks can be modeled by a Markov chain rather than a branching process. Methodology/Principal Findings Here, we develop a new methodology based on stochastic context-free grammars (SCFGs), which are well-suited to modeling tree-like structure of the RDS recruitment process. We apply this methodology to an RDS case study of injection drug users (IDUs) in Tijuana, México, a hidden population at high risk of blood-borne and sexually-transmitted infections (i.e., HIV, hepatitis C virus, syphilis). Survey data were encoded as text strings that were parsed using our custom implementation of the inside-outside algorithm in a publicly-available software package (HyPhy), which uses either expectation maximization or direct optimization methods and permits constraints on model parameters for hypothesis testing. We identified significant latent variability in the recruitment process that violates assumptions of Markov chain-based methods for RDS analysis: firstly, IDUs tended to emulate the recruitment behavior of their own recruiter; and secondly, the recruitment of like peers (homophily) was dependent on the number of recruits. Conclusions SCFGs provide a rich probabilistic language that can articulate complex latent structure in survey data derived from the traversal of social networks. Such structure that has no representation in Markov chain-based models can interfere with the estimation of the composition of hidden populations if left unaccounted for, raising critical implications for the prevention and control of infectious disease epidemics. PMID:19738904
Ciampi, Antonio; Dyachenko, Alina; Cole, Martin; McCusker, Jane
2011-12-01
The study of mental disorders in the elderly presents substantial challenges due to population heterogeneity, coexistence of different mental disorders, and diagnostic uncertainty. While reliable tools have been developed to collect relevant data, new approaches to study design and analysis are needed. We focus on a new analytic approach. Our framework is based on latent class analysis and hidden Markov chains. From repeated measurements of a multivariate disease index, we extract the notion of underlying state of a patient at a time point. The course of the disorder is then a sequence of transitions among states. States and transitions are not observable; however, the probability of being in a state at a time point, and the transition probabilities from one state to another over time can be estimated. Data from 444 patients with and without diagnosis of delirium and dementia were available from a previous study. The Delirium Index was measured at diagnosis, and at 2 and 6 months from diagnosis. Four latent classes were identified: fairly healthy, moderately ill, clearly sick, and very sick. Dementia and delirium could not be separated on the basis of these data alone. Indeed, as the probability of delirium increased, so did the probability of decline of mental functions. Eight most probable courses were identified, including good and poor stable courses, and courses exhibiting various patterns of improvement. Latent class analysis and hidden Markov chains offer a promising tool for studying mental disorders in the elderly. Its use may show its full potential as new data become available.
Using hidden Markov models to align multiple sequences.
Mount, David W
2009-07-01
A hidden Markov model (HMM) is a probabilistic model of a multiple sequence alignment (msa) of proteins. In the model, each column of symbols in the alignment is represented by a frequency distribution of the symbols (called a "state"), and insertions and deletions are represented by other states. One moves through the model along a particular path from state to state in a Markov chain (i.e., random choice of next move), trying to match a given sequence. The next matching symbol is chosen from each state, recording its probability (frequency) and also the probability of going to that state from a previous one (the transition probability). State and transition probabilities are multiplied to obtain a probability of the given sequence. The hidden nature of the HMM is due to the lack of information about the value of a specific state, which is instead represented by a probability distribution over all possible values. This article discusses the advantages and disadvantages of HMMs in msa and presents algorithms for calculating an HMM and the conditions for producing the best HMM.
Constructing 1/omegaalpha noise from reversible Markov chains.
Erland, Sveinung; Greenwood, Priscilla E
2007-09-01
This paper gives sufficient conditions for the output of 1/omegaalpha noise from reversible Markov chains on finite state spaces. We construct several examples exhibiting this behavior in a specified range of frequencies. We apply simple representations of the covariance function and the spectral density in terms of the eigendecomposition of the probability transition matrix. The results extend to hidden Markov chains. We generalize the results for aggregations of AR1-processes of C. W. J. Granger [J. Econometrics 14, 227 (1980)]. Given the eigenvalue function, there is a variety of ways to assign values to the states such that the 1/omegaalpha condition is satisfied. We show that a random walk on a certain state space is complementary to the point process model of 1/omega noise of B. Kaulakys and T. Meskauskas [Phys. Rev. E 58, 7013 (1998)]. Passing to a continuous state space, we construct 1/omegaalpha noise which also has a long memory.
Constructing 1/ωα noise from reversible Markov chains
NASA Astrophysics Data System (ADS)
Erland, Sveinung; Greenwood, Priscilla E.
2007-09-01
This paper gives sufficient conditions for the output of 1/ωα noise from reversible Markov chains on finite state spaces. We construct several examples exhibiting this behavior in a specified range of frequencies. We apply simple representations of the covariance function and the spectral density in terms of the eigendecomposition of the probability transition matrix. The results extend to hidden Markov chains. We generalize the results for aggregations of AR1-processes of C. W. J. Granger [J. Econometrics 14, 227 (1980)]. Given the eigenvalue function, there is a variety of ways to assign values to the states such that the 1/ωα condition is satisfied. We show that a random walk on a certain state space is complementary to the point process model of 1/ω noise of B. Kaulakys and T. Meskauskas [Phys. Rev. E 58, 7013 (1998)]. Passing to a continuous state space, we construct 1/ωα noise which also has a long memory.
a Probability Model for Drought Prediction Using Fusion of Markov Chain and SAX Methods
NASA Astrophysics Data System (ADS)
Jouybari-Moghaddam, Y.; Saradjian, M. R.; Forati, A. M.
2017-09-01
Drought is one of the most powerful natural disasters which are affected on different aspects of the environment. Most of the time this phenomenon is immense in the arid and semi-arid area. Monitoring and prediction the severity of the drought can be useful in the management of the natural disaster caused by drought. Many indices were used in predicting droughts such as SPI, VCI, and TVX. In this paper, based on three data sets (rainfall, NDVI, and land surface temperature) which are acquired from MODIS satellite imagery, time series of SPI, VCI, and TVX in time limited between winters 2000 to summer 2015 for the east region of Isfahan province were created. Using these indices and fusion of symbolic aggregation approximation and hidden Markov chain drought was predicted for fall 2015. For this purpose, at first, each time series was transformed into the set of quality data based on the state of drought (5 group) by using SAX algorithm then the probability matrix for the future state was created by using Markov hidden chain. The fall drought severity was predicted by fusion the probability matrix and state of drought severity in summer 2015. The prediction based on the likelihood for each state of drought includes severe drought, middle drought, normal drought, severe wet and middle wet. The analysis and experimental result from proposed algorithm show that the product of this algorithm is acceptable and the proposed algorithm is appropriate and efficient for predicting drought using remote sensor data.
Driving style recognition method using braking characteristics based on hidden Markov model
Wu, Chaozhong; Lyu, Nengchao; Huang, Zhen
2017-01-01
Since the advantage of hidden Markov model in dealing with time series data and for the sake of identifying driving style, three driving style (aggressive, moderate and mild) are modeled reasonably through hidden Markov model based on driver braking characteristics to achieve efficient driving style. Firstly, braking impulse and the maximum braking unit area of vacuum booster within a certain time are collected from braking operation, and then general braking and emergency braking characteristics are extracted to code the braking characteristics. Secondly, the braking behavior observation sequence is used to describe the initial parameters of hidden Markov model, and the generation of the hidden Markov model for differentiating and an observation sequence which is trained and judged by the driving style is introduced. Thirdly, the maximum likelihood logarithm could be implied from the observable parameters. The recognition accuracy of algorithm is verified through experiments and two common pattern recognition algorithms. The results showed that the driving style discrimination based on hidden Markov model algorithm could realize effective discriminant of driving style. PMID:28837580
Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET.
Hatt, M; Lamare, F; Boussion, N; Turzo, A; Collet, C; Salzenstein, F; Roux, C; Jarritt, P; Carson, K; Cheze-Le Rest, C; Visvikis, D
2007-06-21
Accurate volume of interest (VOI) estimation in PET is crucial in different oncology applications such as response to therapy evaluation and radiotherapy treatment planning. The objective of our study was to evaluate the performance of the proposed algorithm for automatic lesion volume delineation; namely the fuzzy hidden Markov chains (FHMC), with that of current state of the art in clinical practice threshold based techniques. As the classical hidden Markov chain (HMC) algorithm, FHMC takes into account noise, voxel intensity and spatial correlation, in order to classify a voxel as background or functional VOI. However the novelty of the fuzzy model consists of the inclusion of an estimation of imprecision, which should subsequently lead to a better modelling of the 'fuzzy' nature of the object of interest boundaries in emission tomography data. The performance of the algorithms has been assessed on both simulated and acquired datasets of the IEC phantom, covering a large range of spherical lesion sizes (from 10 to 37 mm), contrast ratios (4:1 and 8:1) and image noise levels. Both lesion activity recovery and VOI determination tasks were assessed in reconstructed images using two different voxel sizes (8 mm3 and 64 mm3). In order to account for both the functional volume location and its size, the concept of % classification errors was introduced in the evaluation of volume segmentation using the simulated datasets. Results reveal that FHMC performs substantially better than the threshold based methodology for functional volume determination or activity concentration recovery considering a contrast ratio of 4:1 and lesion sizes of <28 mm. Furthermore differences between classification and volume estimation errors evaluated were smaller for the segmented volumes provided by the FHMC algorithm. Finally, the performance of the automatic algorithms was less susceptible to image noise levels in comparison to the threshold based techniques. The analysis of both simulated and acquired datasets led to similar results and conclusions as far as the performance of segmentation algorithms under evaluation is concerned.
Detecting targets hidden in random forests
NASA Astrophysics Data System (ADS)
Kouritzin, Michael A.; Luo, Dandan; Newton, Fraser; Wu, Biao
2009-05-01
Military tanks, cargo or troop carriers, missile carriers or rocket launchers often hide themselves from detection in the forests. This plagues the detection problem of locating these hidden targets. An electro-optic camera mounted on a surveillance aircraft or unmanned aerial vehicle is used to capture the images of the forests with possible hidden targets, e.g., rocket launchers. We consider random forests of longitudinal and latitudinal correlations. Specifically, foliage coverage is encoded with a binary representation (i.e., foliage or no foliage), and is correlated in adjacent regions. We address the detection problem of camouflaged targets hidden in random forests by building memory into the observations. In particular, we propose an efficient algorithm to generate random forests, ground, and camouflage of hidden targets with two dimensional correlations. The observations are a sequence of snapshots consisting of foliage-obscured ground or target. Theoretically, detection is possible because there are subtle differences in the correlations of the ground and camouflage of the rocket launcher. However, these differences are well beyond human perception. To detect the presence of hidden targets automatically, we develop a Markov representation for these sequences and modify the classical filtering equations to allow the Markov chain observation. Particle filters are used to estimate the position of the targets in combination with a novel random weighting technique. Furthermore, we give positive proof-of-concept simulations.
DL-ADR: a novel deep learning model for classifying genomic variants into adverse drug reactions.
Liang, Zhaohui; Huang, Jimmy Xiangji; Zeng, Xing; Zhang, Gang
2016-08-10
Genomic variations are associated with the metabolism and the occurrence of adverse reactions of many therapeutic agents. The polymorphisms on over 2000 locations of cytochrome P450 enzymes (CYP) due to many factors such as ethnicity, mutations, and inheritance attribute to the diversity of response and side effects of various drugs. The associations of the single nucleotide polymorphisms (SNPs), the internal pharmacokinetic patterns and the vulnerability of specific adverse reactions become one of the research interests of pharmacogenomics. The conventional genomewide association studies (GWAS) mainly focuses on the relation of single or multiple SNPs to a specific risk factors which are a one-to-many relation. However, there are no robust methods to establish a many-to-many network which can combine the direct and indirect associations between multiple SNPs and a serial of events (e.g. adverse reactions, metabolic patterns, prognostic factors etc.). In this paper, we present a novel deep learning model based on generative stochastic networks and hidden Markov chain to classify the observed samples with SNPs on five loci of two genes (CYP2D6 and CYP1A2) respectively to the vulnerable population of 14 types of adverse reactions. A supervised deep learning model is proposed in this study. The revised generative stochastic networks (GSN) model with transited by the hidden Markov chain is used. The data of the training set are collected from clinical observation. The training set is composed of 83 observations of blood samples with the genotypes respectively on CYP2D6*2, *10, *14 and CYP1A2*1C, *1 F. The samples are genotyped by the polymerase chain reaction (PCR) method. A hidden Markov chain is used as the transition operator to simulate the probabilistic distribution. The model can perform learning at lower cost compared to the conventional maximal likelihood method because the transition distribution is conditional on the previous state of the hidden Markov chain. A least square loss (LASSO) algorithm and a k-Nearest Neighbors (kNN) algorithm are used as the baselines for comparison and to evaluate the performance of our proposed deep learning model. There are 53 adverse reactions reported during the observation. They are assigned to 14 categories. In the comparison of classification accuracy, the deep learning model shows superiority over the LASSO and kNN model with a rate over 80 %. In the comparison of reliability, the deep learning model shows the best stability among the three models. Machine learning provides a new method to explore the complex associations among genomic variations and multiple events in pharmacogenomics studies. The new deep learning algorithm is capable of classifying various SNPs to the corresponding adverse reactions. We expect that as more genomic variations are added as features and more observations are made, the deep learning model can improve its performance and can act as a black-box but reliable verifier for other GWAS studies.
Analysis and Design of Complex Networks
2014-12-02
systems. 08-NOV-10, . : , Barlas Oguz, Venkat Anantharam. Long range dependent Markov chains with applications , Information Theory and Applications ...JUL-12, . : , Michael Krishnan, Ehsan Haghani, Avideh Zakhor. Packet Length Adaptation in WLANs with Hidden Nodes and Time-Varying Channels, IEEE... WLAN networks with multi-antenna beam-forming nodes. VII. Use of busy/idle signals for discovering optimum AP association VIII
Probability, statistics, and computational science.
Beerenwinkel, Niko; Siebourg, Juliane
2012-01-01
In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters.
Rueda, Oscar M; Diaz-Uriarte, Ramon
2007-10-16
Yu et al. (BMC Bioinformatics 2007,8: 145+) have recently compared the performance of several methods for the detection of genomic amplification and deletion breakpoints using data from high-density single nucleotide polymorphism arrays. One of the methods compared is our non-homogenous Hidden Markov Model approach. Our approach uses Markov Chain Monte Carlo for inference, but Yu et al. ran the sampler for a severely insufficient number of iterations for a Markov Chain Monte Carlo-based method. Moreover, they did not use the appropriate reference level for the non-altered state. We rerun the analysis in Yu et al. using appropriate settings for both the Markov Chain Monte Carlo iterations and the reference level. Additionally, to show how easy it is to obtain answers to additional specific questions, we have added a new analysis targeted specifically to the detection of breakpoints. The reanalysis shows that the performance of our method is comparable to that of the other methods analyzed. In addition, we can provide probabilities of a given spot being a breakpoint, something unique among the methods examined. Markov Chain Monte Carlo methods require using a sufficient number of iterations before they can be assumed to yield samples from the distribution of interest. Running our method with too small a number of iterations cannot be representative of its performance. Moreover, our analysis shows how our original approach can be easily adapted to answer specific additional questions (e.g., identify edges).
Image segmentation using hidden Markov Gauss mixture models.
Pyun, Kyungsuk; Lim, Johan; Won, Chee Sun; Gray, Robert M
2007-07-01
Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM.
Zhao, Zhibiao
2011-06-01
We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise.
Infinite hidden conditional random fields for human behavior analysis.
Bousmalis, Konstantinos; Zafeiriou, Stefanos; Morency, Louis-Philippe; Pantic, Maja
2013-01-01
Hidden conditional random fields (HCRFs) are discriminative latent variable models that have been shown to successfully learn the hidden structure of a given classification problem (provided an appropriate validation of the number of hidden states). In this brief, we present the infinite HCRF (iHCRF), which is a nonparametric model based on hierarchical Dirichlet processes and is capable of automatically learning the optimal number of hidden states for a classification task. We show how we learn the model hyperparameters with an effective Markov-chain Monte Carlo sampling technique, and we explain the process that underlines our iHCRF model with the Restaurant Franchise Rating Agencies analogy. We show that the iHCRF is able to converge to a correct number of represented hidden states, and outperforms the best finite HCRFs--chosen via cross-validation--for the difficult tasks of recognizing instances of agreement, disagreement, and pain. Moreover, the iHCRF manages to achieve this performance in significantly less total training, validation, and testing time.
Modeling the coupled return-spread high frequency dynamics of large tick assets
NASA Astrophysics Data System (ADS)
Curato, Gianbiagio; Lillo, Fabrizio
2015-01-01
Large tick assets, i.e. assets where one tick movement is a significant fraction of the price and bid-ask spread is almost always equal to one tick, display a dynamics in which price changes and spread are strongly coupled. We present an approach based on the hidden Markov model, also known in econometrics as the Markov switching model, for the dynamics of price changes, where the latent Markov process is described by the transitions between spreads. We then use a finite Markov mixture of logit regressions on past squared price changes to describe temporal dependencies in the dynamics of price changes. The model can thus be seen as a double chain Markov model. We show that the model describes the shape of the price change distribution at different time scales, volatility clustering, and the anomalous decrease of kurtosis. We calibrate our models based on Nasdaq stocks and we show that this model reproduces remarkably well the statistical properties of real data.
Lu, Ji; Pan, Junhao; Zhang, Qiang; Dubé, Laurette; Ip, Edward H
2015-01-01
With intensively collected longitudinal data, recent advances in the experience-sampling method (ESM) benefit social science empirical research, but also pose important methodological challenges. As traditional statistical models are not generally well equipped to analyze a system of variables that contain feedback loops, this paper proposes the utility of an extended hidden Markov model to model reciprocal the relationship between momentary emotion and eating behavior. This paper revisited an ESM data set (Lu, Huet, & Dube, 2011) that observed 160 participants' food consumption and momentary emotions 6 times per day in 10 days. Focusing on the analyses on feedback loop between mood and meal-healthiness decision, the proposed reciprocal Markov model (RMM) can accommodate both hidden ("general" emotional states: positive vs. negative state) and observed states (meal: healthier, same or less healthy than usual) without presuming independence between observations and smooth trajectories of mood or behavior changes. The results of RMM analyses illustrated the reciprocal chains of meal consumption and mood as well as the effect of contextual factors that moderate the interrelationship between eating and emotion. A simulation experiment that generated data consistent with the empirical study further demonstrated that the procedure is promising in terms of recovering the parameters.
Nonparametric model validations for hidden Markov models with applications in financial econometrics
Zhao, Zhibiao
2011-01-01
We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise. PMID:21750601
RESPONDENT-DRIVEN SAMPLING AS MARKOV CHAIN MONTE CARLO
GOEL, SHARAD; SALGANIK, MATTHEW J.
2013-01-01
Respondent-driven sampling (RDS) is a recently introduced, and now widely used, technique for estimating disease prevalence in hidden populations. RDS data are collected through a snowball mechanism, in which current sample members recruit future sample members. In this paper we present respondent-driven sampling as Markov chain Monte Carlo (MCMC) importance sampling, and we examine the effects of community structure and the recruitment procedure on the variance of RDS estimates. Past work has assumed that the variance of RDS estimates is primarily affected by segregation between healthy and infected individuals. We examine an illustrative model to show that this is not necessarily the case, and that bottlenecks anywhere in the networks can substantially affect estimates. We also show that variance is inflated by a common design feature in which sample members are encouraged to recruit multiple future sample members. The paper concludes with suggestions for implementing and evaluating respondent-driven sampling studies. PMID:19572381
Respondent-driven sampling as Markov chain Monte Carlo.
Goel, Sharad; Salganik, Matthew J
2009-07-30
Respondent-driven sampling (RDS) is a recently introduced, and now widely used, technique for estimating disease prevalence in hidden populations. RDS data are collected through a snowball mechanism, in which current sample members recruit future sample members. In this paper we present RDS as Markov chain Monte Carlo importance sampling, and we examine the effects of community structure and the recruitment procedure on the variance of RDS estimates. Past work has assumed that the variance of RDS estimates is primarily affected by segregation between healthy and infected individuals. We examine an illustrative model to show that this is not necessarily the case, and that bottlenecks anywhere in the networks can substantially affect estimates. We also show that variance is inflated by a common design feature in which the sample members are encouraged to recruit multiple future sample members. The paper concludes with suggestions for implementing and evaluating RDS studies.
Lu, Ji; Pan, Junhao; Zhang, Qiang; Dubé, Laurette; Ip, Edward H.
2015-01-01
With intensively collected longitudinal data, recent advances in Experience Sampling Method (ESM) benefit social science empirical research, but also pose important methodological challenges. As traditional statistical models are not generally well-equipped to analyze a system of variables that contain feedback loops, this paper proposes the utility of an extended hidden Markov model to model reciprocal relationship between momentary emotion and eating behavior. This paper revisited an ESM data set (Lu, Huet & Dube, 2011) that observed 160 participants’ food consumption and momentary emotions six times per day in 10 days. Focusing on the analyses on feedback loop between mood and meal healthiness decision, the proposed Reciprocal Markov Model (RMM) can accommodate both hidden (“general” emotional states: positive vs. negative state) and observed states (meal: healthier, same or less healthy than usual) without presuming independence between observations and smooth trajectories of mood or behavior changes. The results of RMM analyses illustrated the reciprocal chains of meal consumption and mood as well as the effect of contextual factors that moderate the interrelationship between eating and emotion. A simulation experiment that generated data consistent to the empirical study further demonstrated that the procedure is promising in terms of recovering the parameters. PMID:26717120
Modeling carbachol-induced hippocampal network synchronization using hidden Markov models
NASA Astrophysics Data System (ADS)
Dragomir, Andrei; Akay, Yasemin M.; Akay, Metin
2010-10-01
In this work we studied the neural state transitions undergone by the hippocampal neural network using a hidden Markov model (HMM) framework. We first employed a measure based on the Lempel-Ziv (LZ) estimator to characterize the changes in the hippocampal oscillation patterns in terms of their complexity. These oscillations correspond to different modes of hippocampal network synchronization induced by the cholinergic agonist carbachol in the CA1 region of mice hippocampus. HMMs are then used to model the dynamics of the LZ-derived complexity signals as first-order Markov chains. Consequently, the signals corresponding to our oscillation recordings can be segmented into a sequence of statistically discriminated hidden states. The segmentation is used for detecting transitions in neural synchronization modes in data recorded from wild-type and triple transgenic mice models (3xTG) of Alzheimer's disease (AD). Our data suggest that transition from low-frequency (delta range) continuous oscillation mode into high-frequency (theta range) oscillation, exhibiting repeated burst-type patterns, occurs always through a mode resembling a mixture of the two patterns, continuous with burst. The relatively random patterns of oscillation during this mode may reflect the fact that the neuronal network undergoes re-organization. Further insight into the time durations of these modes (retrieved via the HMM segmentation of the LZ-derived signals) reveals that the mixed mode lasts significantly longer (p < 10-4) in 3xTG AD mice. These findings, coupled with the documented cholinergic neurotransmission deficits in the 3xTG mice model, may be highly relevant for the case of AD.
How hidden are hidden processes? A primer on crypticity and entropy convergence
NASA Astrophysics Data System (ADS)
Mahoney, John R.; Ellison, Christopher J.; James, Ryan G.; Crutchfield, James P.
2011-09-01
We investigate a stationary process's crypticity—a measure of the difference between its hidden state information and its observed information—using the causal states of computational mechanics. Here, we motivate crypticity and cryptic order as physically meaningful quantities that monitor how hidden a hidden process is. This is done by recasting previous results on the convergence of block entropy and block-state entropy in a geometric setting, one that is more intuitive and that leads to a number of new results. For example, we connect crypticity to how an observer synchronizes to a process. We show that the block-causal-state entropy is a convex function of block length. We give a complete analysis of spin chains. We present a classification scheme that surveys stationary processes in terms of their possible cryptic and Markov orders. We illustrate related entropy convergence behaviors using a new form of foliated information diagram. Finally, along the way, we provide a variety of interpretations of crypticity and cryptic order to establish their naturalness and pervasiveness. This is also a first step in developing applications in spatially extended and network dynamical systems.
Daily Rainfall Simulation Using Climate Variables and Nonhomogeneous Hidden Markov Model
NASA Astrophysics Data System (ADS)
Jung, J.; Kim, H. S.; Joo, H. J.; Han, D.
2017-12-01
Markov chain is an easy method to handle when we compare it with other ones for the rainfall simulation. However, it also has limitations in reflecting seasonal variability of rainfall or change on rainfall patterns caused by climate change. This study applied a Nonhomogeneous Hidden Markov Model(NHMM) to consider these problems. The NHMM compared with a Hidden Markov Model(HMM) for the evaluation of a goodness of the model. First, we chose Gum river basin in Korea to apply the models and collected daily rainfall data from the stations. Also, the climate variables of geopotential height, temperature, zonal wind, and meridional wind date were collected from NCEP/NCAR reanalysis data to consider external factors affecting the rainfall event. We conducted a correlation analysis between rainfall and climate variables then developed a linear regression equation using the climate variables which have high correlation with rainfall. The monthly rainfall was obtained by the regression equation and it became input data of NHMM. Finally, the daily rainfall by NHMM was simulated and we evaluated the goodness of fit and prediction capability of NHMM by comparing with those of HMM. As a result of simulation by HMM, the correlation coefficient and root mean square error of daily/monthly rainfall were 0.2076 and 10.8243/131.1304mm each. In case of NHMM, the correlation coefficient and root mean square error of daily/monthly rainfall were 0.6652 and 10.5112/100.9865mm each. We could verify that the error of daily and monthly rainfall simulated by NHMM was improved by 2.89% and 22.99% compared with HMM. Therefore, it is expected that the results of the study could provide more accurate data for hydrologic analysis. Acknowledgements This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(2017R1A2B3005695)
Hidden Markov models and other machine learning approaches in computational molecular biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldi, P.
1995-12-31
This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Computational tools are increasingly needed to process the massive amounts of data, to organize and classify sequences, to detect weak similarities, to separate coding from non-coding regions, and reconstruct the underlying evolutionary history. The fundamental problem in machine learning is the same as in scientific reasoning in general, as well as statistical modeling: to come up with a good model for the data. In thismore » tutorial four classes of models are reviewed. They are: Hidden Markov models; artificial Neural Networks; Belief Networks; and Stochastic Grammars. When dealing with DNA and protein primary sequences, Hidden Markov models are one of the most flexible and powerful alignments and data base searches. In this tutorial, attention is focused on the theory of Hidden Markov Models, and how to apply them to problems in molecular biology.« less
HIPPI: highly accurate protein family classification with ensembles of HMMs.
Nguyen, Nam-Phuong; Nute, Michael; Mirarab, Siavash; Warnow, Tandy
2016-11-11
Given a new biological sequence, detecting membership in a known family is a basic step in many bioinformatics analyses, with applications to protein structure and function prediction and metagenomic taxon identification and abundance profiling, among others. Yet family identification of sequences that are distantly related to sequences in public databases or that are fragmentary remains one of the more difficult analytical problems in bioinformatics. We present a new technique for family identification called HIPPI (Hierarchical Profile Hidden Markov Models for Protein family Identification). HIPPI uses a novel technique to represent a multiple sequence alignment for a given protein family or superfamily by an ensemble of profile hidden Markov models computed using HMMER. An evaluation of HIPPI on the Pfam database shows that HIPPI has better overall precision and recall than blastp, HMMER, and pipelines based on HHsearch, and maintains good accuracy even for fragmentary query sequences and for protein families with low average pairwise sequence identity, both conditions where other methods degrade in accuracy. HIPPI provides accurate protein family identification and is robust to difficult model conditions. Our results, combined with observations from previous studies, show that ensembles of profile Hidden Markov models can better represent multiple sequence alignments than a single profile Hidden Markov model, and thus can improve downstream analyses for various bioinformatic tasks. Further research is needed to determine the best practices for building the ensemble of profile Hidden Markov models. HIPPI is available on GitHub at https://github.com/smirarab/sepp .
Punzo, Antonio; Ingrassia, Salvatore; Maruotti, Antonello
2018-04-22
A time-varying latent variable model is proposed to jointly analyze multivariate mixed-support longitudinal data. The proposal can be viewed as an extension of hidden Markov regression models with fixed covariates (HMRMFCs), which is the state of the art for modelling longitudinal data, with a special focus on the underlying clustering structure. HMRMFCs are inadequate for applications in which a clustering structure can be identified in the distribution of the covariates, as the clustering is independent from the covariates distribution. Here, hidden Markov regression models with random covariates are introduced by explicitly specifying state-specific distributions for the covariates, with the aim of improving the recovering of the clusters in the data with respect to a fixed covariates paradigm. The hidden Markov regression models with random covariates class is defined focusing on the exponential family, in a generalized linear model framework. Model identifiability conditions are sketched, an expectation-maximization algorithm is outlined for parameter estimation, and various implementation and operational issues are discussed. Properties of the estimators of the regression coefficients, as well as of the hidden path parameters, are evaluated through simulation experiments and compared with those of HMRMFCs. The method is applied to physical activity data. Copyright © 2018 John Wiley & Sons, Ltd.
Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms
ERIC Educational Resources Information Center
Anderson, John R.
2012-01-01
Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application…
ERIC Educational Resources Information Center
Wang, Shiyu; Yang, Yan; Culpepper, Steven Andrew; Douglas, Jeffrey A.
2018-01-01
A family of learning models that integrates a cognitive diagnostic model and a higher-order, hidden Markov model in one framework is proposed. This new framework includes covariates to model skill transition in the learning environment. A Bayesian formulation is adopted to estimate parameters from a learning model. The developed methods are…
Jung, Minsoo
2015-01-01
When there is no sampling frame within a certain group or the group is concerned that making its population public would bring social stigma, we say the population is hidden. It is difficult to approach this kind of population survey-methodologically because the response rate is low and its members are not quite honest with their responses when probability sampling is used. The only alternative known to address the problems caused by previous methods such as snowball sampling is respondent-driven sampling (RDS), which was developed by Heckathorn and his colleagues. RDS is based on a Markov chain, and uses the social network information of the respondent. This characteristic allows for probability sampling when we survey a hidden population. We verified through computer simulation whether RDS can be used on a hidden population of cancer survivors. According to the simulation results of this thesis, the chain-referral sampling of RDS tends to minimize as the sample gets bigger, and it becomes stabilized as the wave progresses. Therefore, it shows that the final sample information can be completely independent from the initial seeds if a certain level of sample size is secured even if the initial seeds were selected through convenient sampling. Thus, RDS can be considered as an alternative which can improve upon both key informant sampling and ethnographic surveys, and it needs to be utilized for various cases domestically as well.
On the Mathematical Consequences of Binning Spike Trains.
Cessac, Bruno; Le Ny, Arnaud; Löcherbach, Eva
2017-01-01
We initiate a mathematical analysis of hidden effects induced by binning spike trains of neurons. Assuming that the original spike train has been generated by a discrete Markov process, we show that binning generates a stochastic process that is no longer Markov but is instead a variable-length Markov chain (VLMC) with unbounded memory. We also show that the law of the binned raster is a Gibbs measure in the DLR (Dobrushin-Lanford-Ruelle) sense coined in mathematical statistical mechanics. This allows the derivation of several important consequences on statistical properties of binned spike trains. In particular, we introduce the DLR framework as a natural setting to mathematically formalize anticipation, that is, to tell "how good" our nervous system is at making predictions. In a probabilistic sense, this corresponds to condition a process by its future, and we discuss how binning may affect our conclusions on this ability. We finally comment on the possible consequences of binning in the detection of spurious phase transitions or in the detection of incorrect evidence of criticality.
NASA Astrophysics Data System (ADS)
Turner, Sean; Galelli, Stefano; Wilcox, Karen
2015-04-01
Water reservoir systems are often affected by recurring large-scale ocean-atmospheric anomalies, known as teleconnections, that cause prolonged periods of climatological drought. Accurate forecasts of these events -- at lead times in the order of weeks and months -- may enable reservoir operators to take more effective release decisions to improve the performance of their systems. In practice this might mean a more reliable water supply system, a more profitable hydropower plant or a more sustainable environmental release policy. To this end, climate indices, which represent the oscillation of the ocean-atmospheric system, might be gainfully employed within reservoir operating models that adapt the reservoir operation as a function of the climate condition. This study develops a Stochastic Dynamic Programming (SDP) approach that can incorporate climate indices using a Hidden Markov Model. The model simulates the climatic regime as a hidden state following a Markov chain, with the state transitions driven by variation in climatic indices, such as the Southern Oscillation Index. Time series analysis of recorded streamflow data reveals the parameters of separate autoregressive models that describe the inflow to the reservoir under three representative climate states ("normal", "wet", "dry"). These models then define inflow transition probabilities for use in a classic SDP approach. The key advantage of the Hidden Markov Model is that it allows conditioning the operating policy not only on the reservoir storage and the antecedent inflow, but also on the climate condition, thus potentially allowing adaptability to a broader range of climate conditions. In practice, the reservoir operator would effect a water release tailored to a specific climate state based on available teleconnection data and forecasts. The approach is demonstrated on the operation of a realistic, stylised water reservoir with carry-over capacity in South-East Australia. Here teleconnections relating to both the El Niño Southern Oscillation and the Indian Ocean Dipole influence local hydro-meteorological processes; statistically significant lag correlations have already been established. Simulation of the derived operating policies, which are benchmarked against standard policies conditioned on the reservoir storage and the antecedent inflow, demonstrates the potential of the proposed approach. Future research will further develop the model for sensitivity analysis and regional studies examining the economic value of incorporating long range forecasts into reservoir operation.
Hidden Markov models for character recognition.
Vlontzos, J A; Kung, S Y
1992-01-01
A hierarchical system for character recognition with hidden Markov model knowledge sources which solve both the context sensitivity problem and the character instantiation problem is presented. The system achieves 97-99% accuracy using a two-level architecture and has been implemented using a systolic array, thus permitting real-time (1 ms per character) multifont and multisize printed character recognition as well as handwriting recognition.
STDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov Model Learning
Kappel, David; Nessler, Bernhard; Maass, Wolfgang
2014-01-01
In order to cross a street without being run over, we need to be able to extract very fast hidden causes of dynamically changing multi-modal sensory stimuli, and to predict their future evolution. We show here that a generic cortical microcircuit motif, pyramidal cells with lateral excitation and inhibition, provides the basis for this difficult but all-important information processing capability. This capability emerges in the presence of noise automatically through effects of STDP on connections between pyramidal cells in Winner-Take-All circuits with lateral excitation. In fact, one can show that these motifs endow cortical microcircuits with functional properties of a hidden Markov model, a generic model for solving such tasks through probabilistic inference. Whereas in engineering applications this model is adapted to specific tasks through offline learning, we show here that a major portion of the functionality of hidden Markov models arises already from online applications of STDP, without any supervision or rewards. We demonstrate the emergent computing capabilities of the model through several computer simulations. The full power of hidden Markov model learning can be attained through reward-gated STDP. This is due to the fact that these mechanisms enable a rejection sampling approximation to theoretically optimal learning. We investigate the possible performance gain that can be achieved with this more accurate learning method for an artificial grammar task. PMID:24675787
ERIC Educational Resources Information Center
Stifter, Cynthia A.; Rovine, Michael
2015-01-01
The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at 2 and 6?months of age, used hidden Markov modelling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a…
Sand, Andreas; Kristiansen, Martin; Pedersen, Christian N S; Mailund, Thomas
2013-11-22
Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models.Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/.
A coupled hidden Markov model for disease interactions
Sherlock, Chris; Xifara, Tatiana; Telfer, Sandra; Begon, Mike
2013-01-01
To investigate interactions between parasite species in a host, a population of field voles was studied longitudinally, with presence or absence of six different parasites measured repeatedly. Although trapping sessions were regular, a different set of voles was caught at each session, leading to incomplete profiles for all subjects. We use a discrete time hidden Markov model for each disease with transition probabilities dependent on covariates via a set of logistic regressions. For each disease the hidden states for each of the other diseases at a given time point form part of the covariate set for the Markov transition probabilities from that time point. This allows us to gauge the influence of each parasite species on the transition probabilities for each of the other parasite species. Inference is performed via a Gibbs sampler, which cycles through each of the diseases, first using an adaptive Metropolis–Hastings step to sample from the conditional posterior of the covariate parameters for that particular disease given the hidden states for all other diseases and then sampling from the hidden states for that disease given the parameters. We find evidence for interactions between several pairs of parasites and of an acquired immune response for two of the parasites. PMID:24223436
A method of hidden Markov model optimization for use with geophysical data sets
NASA Technical Reports Server (NTRS)
Granat, R. A.
2003-01-01
Geophysics research has been faced with a growing need for automated techniques with which to process large quantities of data. A successful tool must meet a number of requirements: it should be consistent, require minimal parameter tuning, and produce scientifically meaningful results in reasonable time. We introduce a hidden Markov model (HMM)-based method for analysis of geophysical data sets that attempts to address these issues.
Three Dimensional Object Recognition Using a Complex Autoregressive Model
1993-12-01
3.4.2 Template Matching Algorithm ...................... 3-16 3.4.3 K-Nearest-Neighbor ( KNN ) Techniques ................. 3-25 3.4.4 Hidden Markov Model...Neighbor ( KNN ) Test Results ...................... 4-13 4.2.1 Single-Look 1-NN Testing .......................... 4-14 4.2.2 Multiple-Look 1-NN Testing...4-15 4.2.3 Discussion of KNN Test Results ...................... 4-15 4.3 Hidden Markov Model (HMM) Test Results
Intelligent classifier for dynamic fault patterns based on hidden Markov model
NASA Astrophysics Data System (ADS)
Xu, Bo; Feng, Yuguang; Yu, Jinsong
2006-11-01
It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.
Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains.
Bricq, S; Collet, Ch; Armspach, J P
2008-12-01
In the frame of 3D medical imaging, accurate segmentation of multimodal brain MR images is of interest for many brain disorders. However, due to several factors such as noise, imaging artifacts, intrinsic tissue variation and partial volume effects, tissue classification remains a challenging task. In this paper, we present a unifying framework for unsupervised segmentation of multimodal brain MR images including partial volume effect, bias field correction, and information given by a probabilistic atlas. Here-proposed method takes into account neighborhood information using a Hidden Markov Chain (HMC) model. Due to the limited resolution of imaging devices, voxels may be composed of a mixture of different tissue types, this partial volume effect is included to achieve an accurate segmentation of brain tissues. Instead of assigning each voxel to a single tissue class (i.e., hard classification), we compute the relative amount of each pure tissue class in each voxel (mixture estimation). Further, a bias field estimation step is added to the proposed algorithm to correct intensity inhomogeneities. Furthermore, atlas priors were incorporated using probabilistic brain atlas containing prior expectations about the spatial localization of different tissue classes. This atlas is considered as a complementary sensor and the proposed method is extended to multimodal brain MRI without any user-tunable parameter (unsupervised algorithm). To validate this new unifying framework, we present experimental results on both synthetic and real brain images, for which the ground truth is available. Comparison with other often used techniques demonstrates the accuracy and the robustness of this new Markovian segmentation scheme.
Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium.
Kapfer, Sebastian C; Krauth, Werner
2017-12-15
We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and by a faster variant (lifted TASEP) that we propose here. We discuss how our irreversible hard-sphere Markov chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.
Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium
NASA Astrophysics Data System (ADS)
Kapfer, Sebastian C.; Krauth, Werner
2017-12-01
We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and by a faster variant (lifted TASEP) that we propose here. We discuss how our irreversible hard-sphere Markov chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.
QRS complex detection based on continuous density hidden Markov models using univariate observations
NASA Astrophysics Data System (ADS)
Sotelo, S.; Arenas, W.; Altuve, M.
2018-04-01
In the electrocardiogram (ECG), the detection of QRS complexes is a fundamental step in the ECG signal processing chain since it allows the determination of other characteristics waves of the ECG and provides information about heart rate variability. In this work, an automatic QRS complex detector based on continuous density hidden Markov models (HMM) is proposed. HMM were trained using univariate observation sequences taken either from QRS complexes or their derivatives. The detection approach is based on the log-likelihood comparison of the observation sequence with a fixed threshold. A sliding window was used to obtain the observation sequence to be evaluated by the model. The threshold was optimized by receiver operating characteristic curves. Sensitivity (Sen), specificity (Spc) and F1 score were used to evaluate the detection performance. The approach was validated using ECG recordings from the MIT-BIH Arrhythmia database. A 6-fold cross-validation shows that the best detection performance was achieved with 2 states HMM trained with QRS complexes sequences (Sen = 0.668, Spc = 0.360 and F1 = 0.309). We concluded that these univariate sequences provide enough information to characterize the QRS complex dynamics from HMM. Future works are directed to the use of multivariate observations to increase the detection performance.
Hidden Markov model approach for identifying the modular framework of the protein backbone.
Camproux, A C; Tuffery, P; Chevrolat, J P; Boisvieux, J F; Hazout, S
1999-12-01
The hidden Markov model (HMM) was used to identify recurrent short 3D structural building blocks (SBBs) describing protein backbones, independently of any a priori knowledge. Polypeptide chains are decomposed into a series of short segments defined by their inter-alpha-carbon distances. Basically, the model takes into account the sequentiality of the observed segments and assumes that each one corresponds to one of several possible SBBs. Fitting the model to a database of non-redundant proteins allowed us to decode proteins in terms of 12 distinct SBBs with different roles in protein structure. Some SBBs correspond to classical regular secondary structures. Others correspond to a significant subdivision of their bounding regions previously considered to be a single pattern. The major contribution of the HMM is that this model implicitly takes into account the sequential connections between SBBs and thus describes the most probable pathways by which the blocks are connected to form the framework of the protein structures. Validation of the SBBs code was performed by extracting SBB series repeated in recoding proteins and examining their structural similarities. Preliminary results on the sequence specificity of SBBs suggest promising perspectives for the prediction of SBBs or series of SBBs from the protein sequences.
Dynamic Alignment Models for Neural Coding
Kollmorgen, Sepp; Hahnloser, Richard H. R.
2014-01-01
Recently, there have been remarkable advances in modeling the relationships between the sensory environment, neuronal responses, and behavior. However, most models cannot encompass variable stimulus-response relationships such as varying response latencies and state or context dependence of the neural code. Here, we consider response modeling as a dynamic alignment problem and model stimulus and response jointly by a mixed pair hidden Markov model (MPH). In MPHs, multiple stimulus-response relationships (e.g., receptive fields) are represented by different states or groups of states in a Markov chain. Each stimulus-response relationship features temporal flexibility, allowing modeling of variable response latencies, including noisy ones. We derive algorithms for learning of MPH parameters and for inference of spike response probabilities. We show that some linear-nonlinear Poisson cascade (LNP) models are a special case of MPHs. We demonstrate the efficiency and usefulness of MPHs in simulations of both jittered and switching spike responses to white noise and natural stimuli. Furthermore, we apply MPHs to extracellular single and multi-unit data recorded in cortical brain areas of singing birds to showcase a novel method for estimating response lag distributions. MPHs allow simultaneous estimation of receptive fields, latency statistics, and hidden state dynamics and so can help to uncover complex stimulus response relationships that are subject to variable timing and involve diverse neural codes. PMID:24625448
Structure and Randomness of Continuous-Time, Discrete-Event Processes
NASA Astrophysics Data System (ADS)
Marzen, Sarah E.; Crutchfield, James P.
2017-10-01
Loosely speaking, the Shannon entropy rate is used to gauge a stochastic process' intrinsic randomness; the statistical complexity gives the cost of predicting the process. We calculate, for the first time, the entropy rate and statistical complexity of stochastic processes generated by finite unifilar hidden semi-Markov models—memoryful, state-dependent versions of renewal processes. Calculating these quantities requires introducing novel mathematical objects (ɛ -machines of hidden semi-Markov processes) and new information-theoretic methods to stochastic processes.
Heuristic algorithm for optical character recognition of Arabic script
NASA Astrophysics Data System (ADS)
Yarman-Vural, Fatos T.; Atici, A.
1996-02-01
In this paper, a heuristic method is developed for segmentation, feature extraction and recognition of the Arabic script. The study is part of a large project for the transcription of the documents in Ottoman Archives. A geometrical and topological feature analysis method is developed for segmentation and feature extraction stages. Chain code transformation is applied to main strokes of the characters which are then classified by the hidden Markov model (HMM) in the recognition stage. Experimental results indicate that the performance of the proposed method is impressive, provided that the thinning process does not yield spurious branches.
Multiscale hidden Markov models for photon-limited imaging
NASA Astrophysics Data System (ADS)
Nowak, Robert D.
1999-06-01
Photon-limited image analysis is often hindered by low signal-to-noise ratios. A novel Bayesian multiscale modeling and analysis method is developed in this paper to assist in these challenging situations. In addition to providing a very natural and useful framework for modeling an d processing images, Bayesian multiscale analysis is often much less computationally demanding compared to classical Markov random field models. This paper focuses on a probabilistic graph model called the multiscale hidden Markov model (MHMM), which captures the key inter-scale dependencies present in natural image intensities. The MHMM framework presented here is specifically designed for photon-limited imagin applications involving Poisson statistics, and applications to image intensity analysis are examined.
On a Result for Finite Markov Chains
ERIC Educational Resources Information Center
Kulathinal, Sangita; Ghosh, Lagnojita
2006-01-01
In an undergraduate course on stochastic processes, Markov chains are discussed in great detail. Textbooks on stochastic processes provide interesting properties of finite Markov chains. This note discusses one such property regarding the number of steps in which a state is reachable or accessible from another state in a finite Markov chain with M…
Robertson, Colin; Sawford, Kate; Gunawardana, Walimunige S. N.; Nelson, Trisalyn A.; Nathoo, Farouk; Stephen, Craig
2011-01-01
Surveillance systems tracking health patterns in animals have potential for early warning of infectious disease in humans, yet there are many challenges that remain before this can be realized. Specifically, there remains the challenge of detecting early warning signals for diseases that are not known or are not part of routine surveillance for named diseases. This paper reports on the development of a hidden Markov model for analysis of frontline veterinary sentinel surveillance data from Sri Lanka. Field veterinarians collected data on syndromes and diagnoses using mobile phones. A model for submission patterns accounts for both sentinel-related and disease-related variability. Models for commonly reported cattle diagnoses were estimated separately. Region-specific weekly average prevalence was estimated for each diagnoses and partitioned into normal and abnormal periods. Visualization of state probabilities was used to indicate areas and times of unusual disease prevalence. The analysis suggests that hidden Markov modelling is a useful approach for surveillance datasets from novel populations and/or having little historical baselines. PMID:21949763
NASA Astrophysics Data System (ADS)
Leviandier, Thierry; Alber, A.; Le Ber, F.; Piégay, H.
2012-02-01
Seven methods designed to delineate homogeneous river segments, belonging to four families, namely — tests of homogeneity, contrast enhancing, spatially constrained classification, and hidden Markov models — are compared, firstly on their principles, then on a case study, and on theoretical templates. These templates contain patterns found in the case study but not considered in the standard assumptions of statistical methods, such as gradients and curvilinear structures. The influence of data resolution, noise and weak satisfaction of the assumptions underlying the methods is investigated. The control of the number of reaches obtained in order to achieve meaningful comparisons is discussed. No method is found that outperforms all the others on all trials. However, the methods with sequential algorithms (keeping at order n + 1 all breakpoints found at order n) fail more often than those running complete optimisation at any order. The Hubert-Kehagias method and Hidden Markov Models are the most successful at identifying subpatterns encapsulated within the templates. Ergodic Hidden Markov Models are, moreover, liable to exhibit transition areas.
Monitoring volcano activity through Hidden Markov Model
NASA Astrophysics Data System (ADS)
Cassisi, C.; Montalto, P.; Prestifilippo, M.; Aliotta, M.; Cannata, A.; Patanè, D.
2013-12-01
During 2011-2013, Mt. Etna was mainly characterized by cyclic occurrences of lava fountains, totaling to 38 episodes. During this time interval Etna volcano's states (QUIET, PRE-FOUNTAIN, FOUNTAIN, POST-FOUNTAIN), whose automatic recognition is very useful for monitoring purposes, turned out to be strongly related to the trend of RMS (Root Mean Square) of the seismic signal recorded by stations close to the summit area. Since RMS time series behavior is considered to be stochastic, we can try to model the system generating its values, assuming to be a Markov process, by using Hidden Markov models (HMMs). HMMs are a powerful tool in modeling any time-varying series. HMMs analysis seeks to recover the sequence of hidden states from the observed emissions. In our framework, observed emissions are characters generated by the SAX (Symbolic Aggregate approXimation) technique, which maps RMS time series values with discrete literal emissions. The experiments show how it is possible to guess volcano states by means of HMMs and SAX.
A TWO-STATE MIXED HIDDEN MARKOV MODEL FOR RISKY TEENAGE DRIVING BEHAVIOR
Jackson, John C.; Albert, Paul S.; Zhang, Zhiwei
2016-01-01
This paper proposes a joint model for longitudinal binary and count outcomes. We apply the model to a unique longitudinal study of teen driving where risky driving behavior and the occurrence of crashes or near crashes are measured prospectively over the first 18 months of licensure. Of scientific interest is relating the two processes and predicting crash and near crash outcomes. We propose a two-state mixed hidden Markov model whereby the hidden state characterizes the mean for the joint longitudinal crash/near crash outcomes and elevated g-force events which are a proxy for risky driving. Heterogeneity is introduced in both the conditional model for the count outcomes and the hidden process using a shared random effect. An estimation procedure is presented using the forward–backward algorithm along with adaptive Gaussian quadrature to perform numerical integration. The estimation procedure readily yields hidden state probabilities as well as providing for a broad class of predictors. PMID:27766124
Representing Lumped Markov Chains by Minimal Polynomials over Field GF(q)
NASA Astrophysics Data System (ADS)
Zakharov, V. M.; Shalagin, S. V.; Eminov, B. F.
2018-05-01
A method has been proposed to represent lumped Markov chains by minimal polynomials over a finite field. The accuracy of representing lumped stochastic matrices, the law of lumped Markov chains depends linearly on the minimum degree of polynomials over field GF(q). The method allows constructing the realizations of lumped Markov chains on linear shift registers with a pre-defined “linear complexity”.
(abstract) Modeling Protein Families and Human Genes: Hidden Markov Models and a Little Beyond
NASA Technical Reports Server (NTRS)
Baldi, Pierre
1994-01-01
We will first give a brief overview of Hidden Markov Models (HMMs) and their use in Computational Molecular Biology. In particular, we will describe a detailed application of HMMs to the G-Protein-Coupled-Receptor Superfamily. We will also describe a number of analytical results on HMMs that can be used in discrimination tests and database mining. We will then discuss the limitations of HMMs and some new directions of research. We will conclude with some recent results on the application of HMMs to human gene modeling and parsing.
Detecting critical state before phase transition of complex systems by hidden Markov model
NASA Astrophysics Data System (ADS)
Liu, Rui; Chen, Pei; Li, Yongjun; Chen, Luonan
Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e., before-transition state, pre-transition state, and after-transition state, which can be considered as three different Markov processes. Thus, based on this dynamical feature, we present a novel computational method, i.e., hidden Markov model (HMM), to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e., the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin, and HCV-induced dysplasia and hepatocellular carcinoma.
Probability distributions for Markov chain based quantum walks
NASA Astrophysics Data System (ADS)
Balu, Radhakrishnan; Liu, Chaobin; Venegas-Andraca, Salvador E.
2018-01-01
We analyze the probability distributions of the quantum walks induced from Markov chains by Szegedy (2004). The first part of this paper is devoted to the quantum walks induced from finite state Markov chains. It is shown that the probability distribution on the states of the underlying Markov chain is always convergent in the Cesaro sense. In particular, we deduce that the limiting distribution is uniform if the transition matrix is symmetric. In the case of a non-symmetric Markov chain, we exemplify that the limiting distribution of the quantum walk is not necessarily identical with the stationary distribution of the underlying irreducible Markov chain. The Szegedy scheme can be extended to infinite state Markov chains (random walks). In the second part, we formulate the quantum walk induced from a lazy random walk on the line. We then obtain the weak limit of the quantum walk. It is noted that the current quantum walk appears to spread faster than its counterpart-quantum walk on the line driven by the Grover coin discussed in literature. The paper closes with an outlook on possible future directions.
Generalized species sampling priors with latent Beta reinforcements
Airoldi, Edoardo M.; Costa, Thiago; Bassetti, Federico; Leisen, Fabrizio; Guindani, Michele
2014-01-01
Many popular Bayesian nonparametric priors can be characterized in terms of exchangeable species sampling sequences. However, in some applications, exchangeability may not be appropriate. We introduce a novel and probabilistically coherent family of non-exchangeable species sampling sequences characterized by a tractable predictive probability function with weights driven by a sequence of independent Beta random variables. We compare their theoretical clustering properties with those of the Dirichlet Process and the two parameters Poisson-Dirichlet process. The proposed construction provides a complete characterization of the joint process, differently from existing work. We then propose the use of such process as prior distribution in a hierarchical Bayes modeling framework, and we describe a Markov Chain Monte Carlo sampler for posterior inference. We evaluate the performance of the prior and the robustness of the resulting inference in a simulation study, providing a comparison with popular Dirichlet Processes mixtures and Hidden Markov Models. Finally, we develop an application to the detection of chromosomal aberrations in breast cancer by leveraging array CGH data. PMID:25870462
Regenerative Simulation of Harris Recurrent Markov Chains.
1982-07-01
Sutijle) S. TYPE OF REPORT A PERIOD COVERED REGENERATIVE SIMULATION OF HARRIS RECURRENT Technical Report MARKOV CHAINS 14. PERFORMING ORG. REPORT NUMBER...7 AD-Ag 251 STANFORD UNIV CA DEPT OF OPERATIONS RESEARCH /s i2/ REGENERATIVE SIMULATION OF HARRIS RECURRENT MARKOV CHAINS,(U) JUL 82 P W GLYNN N0001...76-C-0578 UNtLASSIFIED TR-62 NL EhhhIhEEEEEEI EEEEEIIIIIII REGENERATIVE SIMULATION OF HARRIS RECURRENT MARKOV CHAINS by Peter W. Glynn TECHNICAL
Stifter, Cynthia A; Rovine, Michael
2015-01-01
The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at two and six months of age, used hidden Markov modeling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a 4-state model for the dyadic responses to a two-month inoculation whereas a 6-state model best described the dyadic process at six months. Two of the states at two months and three of the states at six months suggested a progression from high intensity crying to no crying with parents using vestibular and auditory soothing methods. The use of feeding and/or pacifying to soothe the infant characterized one two-month state and two six-month states. These data indicate that with maturation and experience, the mother-infant dyad is becoming more organized around the soothing interaction. Using hidden Markov modeling to describe individual differences, as well as normative processes, is also presented and discussed.
Stifter, Cynthia A.; Rovine, Michael
2016-01-01
The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at two and six months of age, used hidden Markov modeling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a 4-state model for the dyadic responses to a two-month inoculation whereas a 6-state model best described the dyadic process at six months. Two of the states at two months and three of the states at six months suggested a progression from high intensity crying to no crying with parents using vestibular and auditory soothing methods. The use of feeding and/or pacifying to soothe the infant characterized one two-month state and two six-month states. These data indicate that with maturation and experience, the mother-infant dyad is becoming more organized around the soothing interaction. Using hidden Markov modeling to describe individual differences, as well as normative processes, is also presented and discussed. PMID:27284272
Hideen Markov Models and Neural Networks for Fault Detection in Dynamic Systems
NASA Technical Reports Server (NTRS)
Smyth, Padhraic
1994-01-01
None given. (From conclusion): Neural networks plus Hidden Markov Models(HMM)can provide excellene detection and false alarm rate performance in fault detection applications. Modified models allow for novelty detection. Also covers some key contributions of neural network model, and application status.
NASA Astrophysics Data System (ADS)
Naseri Kouzehgarani, Asal
2009-12-01
Most models of aircraft trajectories are non-linear and stochastic in nature; and their internal parameters are often poorly defined. The ability to model, simulate and analyze realistic air traffic management conflict detection scenarios in a scalable, composable, multi-aircraft fashion is an extremely difficult endeavor. Accurate techniques for aircraft mode detection are critical in order to enable the precise projection of aircraft conflicts, and for the enactment of altitude separation resolution strategies. Conflict detection is an inherently probabilistic endeavor; our ability to detect conflicts in a timely and accurate manner over a fixed time horizon is traded off against the increased human workload created by false alarms---that is, situations that would not develop into an actual conflict, or would resolve naturally in the appropriate time horizon-thereby introducing a measure of probabilistic uncertainty in any decision aid fashioned to assist air traffic controllers. The interaction of the continuous dynamics of the aircraft, used for prediction purposes, with the discrete conflict detection logic gives rise to the hybrid nature of the overall system. The introduction of the probabilistic element, common to decision alerting and aiding devices, places the conflict detection and resolution problem in the domain of probabilistic hybrid phenomena. A hidden Markov model (HMM) has two stochastic components: a finite-state Markov chain and a finite set of output probability distributions. In other words an unobservable stochastic process (hidden) that can only be observed through another set of stochastic processes that generate the sequence of observations. The problem of self separation in distributed air traffic management reduces to the ability of aircraft to communicate state information to neighboring aircraft, as well as model the evolution of aircraft trajectories between communications, in the presence of probabilistic uncertain dynamics as well as partially observable and uncertain data. We introduce the Hybrid Hidden Markov Modeling (HHMM) formalism to enable the prediction of the stochastic aircraft states (and thus, potential conflicts), by combining elements of the probabilistic timed input output automaton and the partially observable Markov decision process frameworks, along with the novel addition of a Markovian scheduler to remove the non-deterministic elements arising from the enabling of several actions simultaneously. Comparisons of aircraft in level, climbing/descending and turning flight are performed, and unknown flight track data is evaluated probabilistically against the tuned model in order to assess the effectiveness of the model in detecting the switch between multiple flight modes for a given aircraft. This also allows for the generation of probabilistic distribution over the execution traces of the hybrid hidden Markov model, which then enables the prediction of the states of aircraft based on partially observable and uncertain data. Based on the composition properties of the HHMM, we study a decentralized air traffic system where aircraft are moving along streams and can perform cruise, accelerate, climb and turn maneuvers. We develop a common decentralized policy for conflict avoidance with spatially distributed agents (aircraft in the sky) and assure its safety properties via correctness proofs.
LECTURES ON GAME THEORY, MARKOV CHAINS, AND RELATED TOPICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, G L
1958-03-01
Notes on nine lectures delivered at Sandin Corporation in August 1957 are given. Part one contains the manuscript of a paper concerning a judging problem. Part two is concerned with finite Markov-chain theory amd discusses regular Markov chains, absorbing Markov chains, the classification of states, application to the Leontief input-output model, and semimartingales. Part three contains notes on game theory and covers matrix games, the effect of psychological attitudes on the outcomes of games, extensive games, amd matrix theory applied to mathematical economics. (auth)
Markov chains: computing limit existence and approximations with DNA.
Cardona, M; Colomer, M A; Conde, J; Miret, J M; Miró, J; Zaragoza, A
2005-09-01
We present two algorithms to perform computations over Markov chains. The first one determines whether the sequence of powers of the transition matrix of a Markov chain converges or not to a limit matrix. If it does converge, the second algorithm enables us to estimate this limit. The combination of these algorithms allows the computation of a limit using DNA computing. In this sense, we have encoded the states and the transition probabilities using strands of DNA for generating paths of the Markov chain.
Behavioral and Temporal Pattern Detection Within Financial Data With Hidden Information
2012-02-01
probabilistic pattern detector to monitor the pattern. 15. SUBJECT TERMS Runtime verification, Hidden data, Hidden Markov models, Formal specifications...sequences in many other fields besides financial systems [L, TV, LC, LZ ]. Rather, the technique suggested in this paper is positioned as a hybrid...operation of the pattern detector . Section 7 describes the operation of the probabilistic pattern-matching monitor, and section 8 describes three
Guédon, Yann; d'Aubenton-Carafa, Yves; Thermes, Claude
2006-03-01
The most commonly used models for analysing local dependencies in DNA sequences are (high-order) Markov chains. Incorporating knowledge relative to the possible grouping of the nucleotides enables to define dedicated sub-classes of Markov chains. The problem of formulating lumpability hypotheses for a Markov chain is therefore addressed. In the classical approach to lumpability, this problem can be formulated as the determination of an appropriate state space (smaller than the original state space) such that the lumped chain defined on this state space retains the Markov property. We propose a different perspective on lumpability where the state space is fixed and the partitioning of this state space is represented by a one-to-many probabilistic function within a two-level stochastic process. Three nested classes of lumped processes can be defined in this way as sub-classes of first-order Markov chains. These lumped processes enable parsimonious reparameterizations of Markov chains that help to reveal relevant partitions of the state space. Characterizations of the lumped processes on the original transition probability matrix are derived. Different model selection methods relying either on hypothesis testing or on penalized log-likelihood criteria are presented as well as extensions to lumped processes constructed from high-order Markov chains. The relevance of the proposed approach to lumpability is illustrated by the analysis of DNA sequences. In particular, the use of lumped processes enables to highlight differences between intronic sequences and gene untranslated region sequences.
An Overview of Markov Chain Methods for the Study of Stage-Sequential Developmental Processes
ERIC Educational Resources Information Center
Kapland, David
2008-01-01
This article presents an overview of quantitative methodologies for the study of stage-sequential development based on extensions of Markov chain modeling. Four methods are presented that exemplify the flexibility of this approach: the manifest Markov model, the latent Markov model, latent transition analysis, and the mixture latent Markov model.…
Using Games to Teach Markov Chains
ERIC Educational Resources Information Center
Johnson, Roger W.
2003-01-01
Games are promoted as examples for classroom discussion of stationary Markov chains. In a game context Markov chain terminology and results are made concrete, interesting, and entertaining. Game length for several-player games such as "Hi Ho! Cherry-O" and "Chutes and Ladders" is investigated and new, simple formulas are given. Slight…
Sampling rare fluctuations of discrete-time Markov chains
NASA Astrophysics Data System (ADS)
Whitelam, Stephen
2018-03-01
We describe a simple method that can be used to sample the rare fluctuations of discrete-time Markov chains. We focus on the case of Markov chains with well-defined steady-state measures, and derive expressions for the large-deviation rate functions (and upper bounds on such functions) for dynamical quantities extensive in the length of the Markov chain. We illustrate the method using a series of simple examples, and use it to study the fluctuations of a lattice-based model of active matter that can undergo motility-induced phase separation.
Sampling rare fluctuations of discrete-time Markov chains.
Whitelam, Stephen
2018-03-01
We describe a simple method that can be used to sample the rare fluctuations of discrete-time Markov chains. We focus on the case of Markov chains with well-defined steady-state measures, and derive expressions for the large-deviation rate functions (and upper bounds on such functions) for dynamical quantities extensive in the length of the Markov chain. We illustrate the method using a series of simple examples, and use it to study the fluctuations of a lattice-based model of active matter that can undergo motility-induced phase separation.
NASA Astrophysics Data System (ADS)
Jamaluddin, Fadhilah; Rahim, Rahela Abdul
2015-12-01
Markov Chain has been introduced since the 1913 for the purpose of studying the flow of data for a consecutive number of years of the data and also forecasting. The important feature in Markov Chain is obtaining the accurate Transition Probability Matrix (TPM). However to obtain the suitable TPM is hard especially in involving long-term modeling due to unavailability of data. This paper aims to enhance the classical Markov Chain by introducing Exponential Smoothing technique in developing the appropriate TPM.
A hidden markov model derived structural alphabet for proteins.
Camproux, A C; Gautier, R; Tufféry, P
2004-06-04
Understanding and predicting protein structures depends on the complexity and the accuracy of the models used to represent them. We have set up a hidden Markov model that discretizes protein backbone conformation as series of overlapping fragments (states) of four residues length. This approach learns simultaneously the geometry of the states and their connections. We obtain, using a statistical criterion, an optimal systematic decomposition of the conformational variability of the protein peptidic chain in 27 states with strong connection logic. This result is stable over different protein sets. Our model fits well the previous knowledge related to protein architecture organisation and seems able to grab some subtle details of protein organisation, such as helix sub-level organisation schemes. Taking into account the dependence between the states results in a description of local protein structure of low complexity. On an average, the model makes use of only 8.3 states among 27 to describe each position of a protein structure. Although we use short fragments, the learning process on entire protein conformations captures the logic of the assembly on a larger scale. Using such a model, the structure of proteins can be reconstructed with an average accuracy close to 1.1A root-mean-square deviation and for a complexity of only 3. Finally, we also observe that sequence specificity increases with the number of states of the structural alphabet. Such models can constitute a very relevant approach to the analysis of protein architecture in particular for protein structure prediction.
Statistical Analysis of Notational AFL Data Using Continuous Time Markov Chains
Meyer, Denny; Forbes, Don; Clarke, Stephen R.
2006-01-01
Animal biologists commonly use continuous time Markov chain models to describe patterns of animal behaviour. In this paper we consider the use of these models for describing AFL football. In particular we test the assumptions for continuous time Markov chain models (CTMCs), with time, distance and speed values associated with each transition. Using a simple event categorisation it is found that a semi-Markov chain model is appropriate for this data. This validates the use of Markov Chains for future studies in which the outcomes of AFL matches are simulated. Key Points A comparison of four AFL matches suggests similarity in terms of transition probabilities for events and the mean times, distances and speeds associated with each transition. The Markov assumption appears to be valid. However, the speed, time and distance distributions associated with each transition are not exponential suggesting that semi-Markov model can be used to model and simulate play. Team identified events and directions associated with transitions are required to develop the model into a tool for the prediction of match outcomes. PMID:24357946
Statistical Analysis of Notational AFL Data Using Continuous Time Markov Chains.
Meyer, Denny; Forbes, Don; Clarke, Stephen R
2006-01-01
Animal biologists commonly use continuous time Markov chain models to describe patterns of animal behaviour. In this paper we consider the use of these models for describing AFL football. In particular we test the assumptions for continuous time Markov chain models (CTMCs), with time, distance and speed values associated with each transition. Using a simple event categorisation it is found that a semi-Markov chain model is appropriate for this data. This validates the use of Markov Chains for future studies in which the outcomes of AFL matches are simulated. Key PointsA comparison of four AFL matches suggests similarity in terms of transition probabilities for events and the mean times, distances and speeds associated with each transition.The Markov assumption appears to be valid.However, the speed, time and distance distributions associated with each transition are not exponential suggesting that semi-Markov model can be used to model and simulate play.Team identified events and directions associated with transitions are required to develop the model into a tool for the prediction of match outcomes.
Memetic Approaches for Optimizing Hidden Markov Models: A Case Study in Time Series Prediction
NASA Astrophysics Data System (ADS)
Bui, Lam Thu; Barlow, Michael
We propose a methodology for employing memetics (local search) within the framework of evolutionary algorithms to optimize parameters of hidden markov models. With this proposal, the rate and frequency of using local search are automatically changed over time either at a population or individual level. At the population level, we allow the rate of using local search to decay over time to zero (at the final generation). At the individual level, each individual is equipped with information of when it will do local search and for how long. This information evolves over time alongside the main elements of the chromosome representing the individual.
Hidden Markov models of biological primary sequence information.
Baldi, P; Chauvin, Y; Hunkapiller, T; McClure, M A
1994-01-01
Hidden Markov model (HMM) techniques are used to model families of biological sequences. A smooth and convergent algorithm is introduced to iteratively adapt the transition and emission parameters of the models from the examples in a given family. The HMM approach is applied to three protein families: globins, immunoglobulins, and kinases. In all cases, the models derived capture the important statistical characteristics of the family and can be used for a number of tasks, including multiple alignments, motif detection, and classification. For K sequences of average length N, this approach yields an effective multiple-alignment algorithm which requires O(KN2) operations, linear in the number of sequences. PMID:8302831
Ferles, Christos; Beaufort, William-Scott; Ferle, Vanessa
2017-01-01
The present study devises mapping methodologies and projection techniques that visualize and demonstrate biological sequence data clustering results. The Sequence Data Density Display (SDDD) and Sequence Likelihood Projection (SLP) visualizations represent the input symbolical sequences in a lower-dimensional space in such a way that the clusters and relations of data elements are depicted graphically. Both operate in combination/synergy with the Self-Organizing Hidden Markov Model Map (SOHMMM). The resulting unified framework is in position to analyze automatically and directly raw sequence data. This analysis is carried out with little, or even complete absence of, prior information/domain knowledge.
Modeling Driver Behavior near Intersections in Hidden Markov Model
Li, Juan; He, Qinglian; Zhou, Hang; Guan, Yunlin; Dai, Wei
2016-01-01
Intersections are one of the major locations where safety is a big concern to drivers. Inappropriate driver behaviors in response to frequent changes when approaching intersections often lead to intersection-related crashes or collisions. Thus to better understand driver behaviors at intersections, especially in the dilemma zone, a Hidden Markov Model (HMM) is utilized in this study. With the discrete data processing, the observed dynamic data of vehicles are used for the inference of the Hidden Markov Model. The Baum-Welch (B-W) estimation algorithm is applied to calculate the vehicle state transition probability matrix and the observation probability matrix. When combined with the Forward algorithm, the most likely state of the driver can be obtained. Thus the model can be used to measure the stability and risk of driver behavior. It is found that drivers’ behaviors in the dilemma zone are of lower stability and higher risk compared with those in other regions around intersections. In addition to the B-W estimation algorithm, the Viterbi Algorithm is utilized to predict the potential dangers of vehicles. The results can be applied to driving assistance systems to warn drivers to avoid possible accidents. PMID:28009838
Hidden markov model for the prediction of transmembrane proteins using MATLAB.
Chaturvedi, Navaneet; Shanker, Sudhanshu; Singh, Vinay Kumar; Sinha, Dhiraj; Pandey, Paras Nath
2011-01-01
Since membranous proteins play a key role in drug targeting therefore transmembrane proteins prediction is active and challenging area of biological sciences. Location based prediction of transmembrane proteins are significant for functional annotation of protein sequences. Hidden markov model based method was widely applied for transmembrane topology prediction. Here we have presented a revised and a better understanding model than an existing one for transmembrane protein prediction. Scripting on MATLAB was built and compiled for parameter estimation of model and applied this model on amino acid sequence to know the transmembrane and its adjacent locations. Estimated model of transmembrane topology was based on TMHMM model architecture. Only 7 super states are defined in the given dataset, which were converted to 96 states on the basis of their length in sequence. Accuracy of the prediction of model was observed about 74 %, is a good enough in the area of transmembrane topology prediction. Therefore we have concluded the hidden markov model plays crucial role in transmembrane helices prediction on MATLAB platform and it could also be useful for drug discovery strategy. The database is available for free at bioinfonavneet@gmail.comvinaysingh@bhu.ac.in.
Yang, Sejung; Lee, Byung-Uk
2015-01-01
In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as a combination of Poisson and Gaussian probability distributions to construct a more accurate model and adopt the contourlet transform which provides a sparse representation of the directional components in images. We also apply hidden Markov models with a framework that neatly describes the spatial and interscale dependencies which are the properties of transformation coefficients of natural images. In this paper, an effective denoising algorithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Markov models and noise estimation in the transform domain. We supplement the algorithm by cycle spinning and Wiener filtering for further improvements. We finally show experimental results with simulations and fluorescence microscopy images which demonstrate the improved performance of the proposed approach. PMID:26352138
Exact solution of the hidden Markov processes.
Saakian, David B
2017-11-01
We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M-1.
Exact solution of the hidden Markov processes
NASA Astrophysics Data System (ADS)
Saakian, David B.
2017-11-01
We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .
Bayesian Inference and Online Learning in Poisson Neuronal Networks.
Huang, Yanping; Rao, Rajesh P N
2016-08-01
Motivated by the growing evidence for Bayesian computation in the brain, we show how a two-layer recurrent network of Poisson neurons can perform both approximate Bayesian inference and learning for any hidden Markov model. The lower-layer sensory neurons receive noisy measurements of hidden world states. The higher-layer neurons infer a posterior distribution over world states via Bayesian inference from inputs generated by sensory neurons. We demonstrate how such a neuronal network with synaptic plasticity can implement a form of Bayesian inference similar to Monte Carlo methods such as particle filtering. Each spike in a higher-layer neuron represents a sample of a particular hidden world state. The spiking activity across the neural population approximates the posterior distribution over hidden states. In this model, variability in spiking is regarded not as a nuisance but as an integral feature that provides the variability necessary for sampling during inference. We demonstrate how the network can learn the likelihood model, as well as the transition probabilities underlying the dynamics, using a Hebbian learning rule. We present results illustrating the ability of the network to perform inference and learning for arbitrary hidden Markov models.
Statistical Inference in Hidden Markov Models Using k-Segment Constraints
Titsias, Michalis K.; Holmes, Christopher C.; Yau, Christopher
2016-01-01
Hidden Markov models (HMMs) are one of the most widely used statistical methods for analyzing sequence data. However, the reporting of output from HMMs has largely been restricted to the presentation of the most-probable (MAP) hidden state sequence, found via the Viterbi algorithm, or the sequence of most probable marginals using the forward–backward algorithm. In this article, we expand the amount of information we could obtain from the posterior distribution of an HMM by introducing linear-time dynamic programming recursions that, conditional on a user-specified constraint in the number of segments, allow us to (i) find MAP sequences, (ii) compute posterior probabilities, and (iii) simulate sample paths. We collectively call these recursions k-segment algorithms and illustrate their utility using simulated and real examples. We also highlight the prospective and retrospective use of k-segment constraints for fitting HMMs or exploring existing model fits. Supplementary materials for this article are available online. PMID:27226674
Fast-slow asymptotics for a Markov chain model of fast sodium current
NASA Astrophysics Data System (ADS)
Starý, Tomáš; Biktashev, Vadim N.
2017-09-01
We explore the feasibility of using fast-slow asymptotics to eliminate the computational stiffness of discrete-state, continuous-time deterministic Markov chain models of ionic channels underlying cardiac excitability. We focus on a Markov chain model of fast sodium current, and investigate its asymptotic behaviour with respect to small parameters identified in different ways.
Modelisation de l'historique d'operation de groupes turbine-alternateur
NASA Astrophysics Data System (ADS)
Szczota, Mickael
Because of their ageing fleet, the utility managers are increasingly in needs of tools that can help them to plan efficiently maintenance operations. Hydro-Quebec started a project that aim to foresee the degradation of their hydroelectric runner, and use that information to classify the generating unit. That classification will help to know which generating unit is more at risk to undergo a major failure. Cracks linked to the fatigue phenomenon are a predominant degradation mode and the loading sequences applied to the runner is a parameter impacting the crack growth. So, the aim of this memoir is to create a generator able to generate synthetic loading sequences that are statistically equivalent to the observed history. Those simulated sequences will be used as input in a life assessment model. At first, we describe how the generating units are operated by Hydro-Quebec and analyse the available data, the analysis shows that the data are non-stationnary. Then, we review modelisation and validation methods. In the following chapter a particular attention is given to a precise description of the validation and comparison procedure. Then, we present the comparison of three kind of model : Discrete Time Markov Chains, Discrete Time Semi-Markov Chains and the Moving Block Bootstrap. For the first two models, we describe how to take account for the non-stationnarity. Finally, we show that the Markov Chain is not adapted for our case, and that the Semi-Markov chains are better when they include the non-stationnarity. The final choice between Semi-Markov Chains and the Moving Block Bootstrap depends of the user. But, with a long term vision we recommend the use of Semi-Markov chains for their flexibility. Keywords: Stochastic models, Models validation, Reliability, Semi-Markov Chains, Markov Chains, Bootstrap
Saccade selection when reward probability is dynamically manipulated using Markov chains
Lovejoy, Lee P.; Krauzlis, Richard J.
2012-01-01
Markov chains (stochastic processes where probabilities are assigned based on the previous outcome) are commonly used to examine the transitions between behavioral states, such as those that occur during foraging or social interactions. However, relatively little is known about how well primates can incorporate knowledge about Markov chains into their behavior. Saccadic eye movements are an example of a simple behavior influenced by information about probability, and thus are good candidates for testing whether subjects can learn Markov chains. In addition, when investigating the influence of probability on saccade target selection, the use of Markov chains could provide an alternative method that avoids confounds present in other task designs. To investigate these possibilities, we evaluated human behavior on a task in which stimulus reward probabilities were assigned using a Markov chain. On each trial, the subject selected one of four identical stimuli by saccade; after selection, feedback indicated the rewarded stimulus. Each session consisted of 200–600 trials, and on some sessions, the reward magnitude varied. On sessions with a uniform reward, subjects (n = 6) learned to select stimuli at a frequency close to reward probability, which is similar to human behavior on matching or probability classification tasks. When informed that a Markov chain assigned reward probabilities, subjects (n = 3) learned to select the greatest reward probability more often, bringing them close to behavior that maximizes reward. On sessions where reward magnitude varied across stimuli, subjects (n = 6) demonstrated preferences for both greater reward probability and greater reward magnitude, resulting in a preference for greater expected value (the product of reward probability and magnitude). These results demonstrate that Markov chains can be used to dynamically assign probabilities that are rapidly exploited by human subjects during saccade target selection. PMID:18330552
Saccade selection when reward probability is dynamically manipulated using Markov chains.
Nummela, Samuel U; Lovejoy, Lee P; Krauzlis, Richard J
2008-05-01
Markov chains (stochastic processes where probabilities are assigned based on the previous outcome) are commonly used to examine the transitions between behavioral states, such as those that occur during foraging or social interactions. However, relatively little is known about how well primates can incorporate knowledge about Markov chains into their behavior. Saccadic eye movements are an example of a simple behavior influenced by information about probability, and thus are good candidates for testing whether subjects can learn Markov chains. In addition, when investigating the influence of probability on saccade target selection, the use of Markov chains could provide an alternative method that avoids confounds present in other task designs. To investigate these possibilities, we evaluated human behavior on a task in which stimulus reward probabilities were assigned using a Markov chain. On each trial, the subject selected one of four identical stimuli by saccade; after selection, feedback indicated the rewarded stimulus. Each session consisted of 200-600 trials, and on some sessions, the reward magnitude varied. On sessions with a uniform reward, subjects (n = 6) learned to select stimuli at a frequency close to reward probability, which is similar to human behavior on matching or probability classification tasks. When informed that a Markov chain assigned reward probabilities, subjects (n = 3) learned to select the greatest reward probability more often, bringing them close to behavior that maximizes reward. On sessions where reward magnitude varied across stimuli, subjects (n = 6) demonstrated preferences for both greater reward probability and greater reward magnitude, resulting in a preference for greater expected value (the product of reward probability and magnitude). These results demonstrate that Markov chains can be used to dynamically assign probabilities that are rapidly exploited by human subjects during saccade target selection.
Intelligent data analysis to model and understand live cell time-lapse sequences.
Paterson, Allan; Ashtari, M; Ribé, D; Stenbeck, G; Tucker, A
2012-01-01
One important aspect of cellular function, which is at the basis of tissue homeostasis, is the delivery of proteins to their correct destinations. Significant advances in live cell microscopy have allowed tracking of these pathways by following the dynamics of fluorescently labelled proteins in living cells. This paper explores intelligent data analysis techniques to model the dynamic behavior of proteins in living cells as well as to classify different experimental conditions. We use a combination of decision tree classification and hidden Markov models. In particular, we introduce a novel approach to "align" hidden Markov models so that hidden states from different models can be cross-compared. Our models capture the dynamics of two experimental conditions accurately with a stable hidden state for control data and multiple (less stable) states for the experimental data recapitulating the behaviour of particle trajectories within live cell time-lapse data. In addition to having successfully developed an automated framework for the classification of protein transport dynamics from live cell time-lapse data our model allows us to understand the dynamics of a complex trafficking pathway in living cells in culture.
The spectral method and the central limit theorem for general Markov chains
NASA Astrophysics Data System (ADS)
Nagaev, S. V.
2017-12-01
We consider Markov chains with an arbitrary phase space and develop a modification of the spectral method that enables us to prove the central limit theorem (CLT) for non-uniformly ergodic Markov chains. The conditions imposed on the transition function are more general than those by Athreya-Ney and Nummelin. Our proof of the CLT is purely analytical.
Hidden Markov models and neural networks for fault detection in dynamic systems
NASA Technical Reports Server (NTRS)
Smyth, Padhraic
1994-01-01
Neural networks plus hidden Markov models (HMM) can provide excellent detection and false alarm rate performance in fault detection applications, as shown in this viewgraph presentation. Modified models allow for novelty detection. Key contributions of neural network models are: (1) excellent nonparametric discrimination capability; (2) a good estimator of posterior state probabilities, even in high dimensions, and thus can be embedded within overall probabilistic model (HMM); and (3) simple to implement compared to other nonparametric models. Neural network/HMM monitoring model is currently being integrated with the new Deep Space Network (DSN) antenna controller software and will be on-line monitoring a new DSN 34-m antenna (DSS-24) by July, 1994.
Post processing of optically recognized text via second order hidden Markov model
NASA Astrophysics Data System (ADS)
Poudel, Srijana
In this thesis, we describe a postprocessing system on Optical Character Recognition(OCR) generated text. Second Order Hidden Markov Model (HMM) approach is used to detect and correct the OCR related errors. The reason for choosing the 2nd order HMM is to keep track of the bigrams so that the model can represent the system more accurately. Based on experiments with training data of 159,733 characters and testing of 5,688 characters, the model was able to correct 43.38 % of the errors with a precision of 75.34 %. However, the precision value indicates that the model introduced some new errors, decreasing the correction percentage to 26.4%.
Assessing significance in a Markov chain without mixing.
Chikina, Maria; Frieze, Alan; Pegden, Wesley
2017-03-14
We present a statistical test to detect that a presented state of a reversible Markov chain was not chosen from a stationary distribution. In particular, given a value function for the states of the Markov chain, we would like to show rigorously that the presented state is an outlier with respect to the values, by establishing a [Formula: see text] value under the null hypothesis that it was chosen from a stationary distribution of the chain. A simple heuristic used in practice is to sample ranks of states from long random trajectories on the Markov chain and compare these with the rank of the presented state; if the presented state is a [Formula: see text] outlier compared with the sampled ranks (its rank is in the bottom [Formula: see text] of sampled ranks), then this observation should correspond to a [Formula: see text] value of [Formula: see text] This significance is not rigorous, however, without good bounds on the mixing time of the Markov chain. Our test is the following: Given the presented state in the Markov chain, take a random walk from the presented state for any number of steps. We prove that observing that the presented state is an [Formula: see text]-outlier on the walk is significant at [Formula: see text] under the null hypothesis that the state was chosen from a stationary distribution. We assume nothing about the Markov chain beyond reversibility and show that significance at [Formula: see text] is best possible in general. We illustrate the use of our test with a potential application to the rigorous detection of gerrymandering in Congressional districting.
Assessing significance in a Markov chain without mixing
Chikina, Maria; Frieze, Alan; Pegden, Wesley
2017-01-01
We present a statistical test to detect that a presented state of a reversible Markov chain was not chosen from a stationary distribution. In particular, given a value function for the states of the Markov chain, we would like to show rigorously that the presented state is an outlier with respect to the values, by establishing a p value under the null hypothesis that it was chosen from a stationary distribution of the chain. A simple heuristic used in practice is to sample ranks of states from long random trajectories on the Markov chain and compare these with the rank of the presented state; if the presented state is a 0.1% outlier compared with the sampled ranks (its rank is in the bottom 0.1% of sampled ranks), then this observation should correspond to a p value of 0.001. This significance is not rigorous, however, without good bounds on the mixing time of the Markov chain. Our test is the following: Given the presented state in the Markov chain, take a random walk from the presented state for any number of steps. We prove that observing that the presented state is an ε-outlier on the walk is significant at p=2ε under the null hypothesis that the state was chosen from a stationary distribution. We assume nothing about the Markov chain beyond reversibility and show that significance at p≈ε is best possible in general. We illustrate the use of our test with a potential application to the rigorous detection of gerrymandering in Congressional districting. PMID:28246331
Thompson, Steven K
2006-12-01
A flexible class of adaptive sampling designs is introduced for sampling in network and spatial settings. In the designs, selections are made sequentially with a mixture distribution based on an active set that changes as the sampling progresses, using network or spatial relationships as well as sample values. The new designs have certain advantages compared with previously existing adaptive and link-tracing designs, including control over sample sizes and of the proportion of effort allocated to adaptive selections. Efficient inference involves averaging over sample paths consistent with the minimal sufficient statistic. A Markov chain resampling method makes the inference computationally feasible. The designs are evaluated in network and spatial settings using two empirical populations: a hidden human population at high risk for HIV/AIDS and an unevenly distributed bird population.
Colonoscopy video quality assessment using hidden Markov random fields
NASA Astrophysics Data System (ADS)
Park, Sun Young; Sargent, Dusty; Spofford, Inbar; Vosburgh, Kirby
2011-03-01
With colonoscopy becoming a common procedure for individuals aged 50 or more who are at risk of developing colorectal cancer (CRC), colon video data is being accumulated at an ever increasing rate. However, the clinically valuable information contained in these videos is not being maximally exploited to improve patient care and accelerate the development of new screening methods. One of the well-known difficulties in colonoscopy video analysis is the abundance of frames with no diagnostic information. Approximately 40% - 50% of the frames in a colonoscopy video are contaminated by noise, acquisition errors, glare, blur, and uneven illumination. Therefore, filtering out low quality frames containing no diagnostic information can significantly improve the efficiency of colonoscopy video analysis. To address this challenge, we present a quality assessment algorithm to detect and remove low quality, uninformative frames. The goal of our algorithm is to discard low quality frames while retaining all diagnostically relevant information. Our algorithm is based on a hidden Markov model (HMM) in combination with two measures of data quality to filter out uninformative frames. Furthermore, we present a two-level framework based on an embedded hidden Markov model (EHHM) to incorporate the proposed quality assessment algorithm into a complete, automated diagnostic image analysis system for colonoscopy video.
A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings
Liu, Jie; Hu, Youmin; Wu, Bo; Wang, Yan; Xie, Fengyun
2017-01-01
The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD). Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features’ information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components. PMID:28524088
Algorithms for Hidden Markov Models Restricted to Occurrences of Regular Expressions
Tataru, Paula; Sand, Andreas; Hobolth, Asger; Mailund, Thomas; Pedersen, Christian N. S.
2013-01-01
Hidden Markov Models (HMMs) are widely used probabilistic models, particularly for annotating sequential data with an underlying hidden structure. Patterns in the annotation are often more relevant to study than the hidden structure itself. A typical HMM analysis consists of annotating the observed data using a decoding algorithm and analyzing the annotation to study patterns of interest. For example, given an HMM modeling genes in DNA sequences, the focus is on occurrences of genes in the annotation. In this paper, we define a pattern through a regular expression and present a restriction of three classical algorithms to take the number of occurrences of the pattern in the hidden sequence into account. We present a new algorithm to compute the distribution of the number of pattern occurrences, and we extend the two most widely used existing decoding algorithms to employ information from this distribution. We show experimentally that the expectation of the distribution of the number of pattern occurrences gives a highly accurate estimate, while the typical procedure can be biased in the sense that the identified number of pattern occurrences does not correspond to the true number. We furthermore show that using this distribution in the decoding algorithms improves the predictive power of the model. PMID:24833225
NASA Technical Reports Server (NTRS)
Leutenegger, Scott T.; Horton, Graham
1994-01-01
Recently the Multi-Level algorithm was introduced as a general purpose solver for the solution of steady state Markov chains. In this paper, we consider the performance of the Multi-Level algorithm for solving Nearly Completely Decomposable (NCD) Markov chains, for which special-purpose iteractive aggregation/disaggregation algorithms such as the Koury-McAllister-Stewart (KMS) method have been developed that can exploit the decomposability of the the Markov chain. We present experimental results indicating that the general-purpose Multi-Level algorithm is competitive, and can be significantly faster than the special-purpose KMS algorithm when Gauss-Seidel and Gaussian Elimination are used for solving the individual blocks.
Berlow, Noah; Pal, Ranadip
2011-01-01
Genetic Regulatory Networks (GRNs) are frequently modeled as Markov Chains providing the transition probabilities of moving from one state of the network to another. The inverse problem of inference of the Markov Chain from noisy and limited experimental data is an ill posed problem and often generates multiple model possibilities instead of a unique one. In this article, we address the issue of intervention in a genetic regulatory network represented by a family of Markov Chains. The purpose of intervention is to alter the steady state probability distribution of the GRN as the steady states are considered to be representative of the phenotypes. We consider robust stationary control policies with best expected behavior. The extreme computational complexity involved in search of robust stationary control policies is mitigated by using a sequential approach to control policy generation and utilizing computationally efficient techniques for updating the stationary probability distribution of a Markov chain following a rank one perturbation.
Handling target obscuration through Markov chain observations
NASA Astrophysics Data System (ADS)
Kouritzin, Michael A.; Wu, Biao
2008-04-01
Target Obscuration, including foliage or building obscuration of ground targets and landscape or horizon obscuration of airborne targets, plagues many real world filtering problems. In particular, ground moving target identification Doppler radar, mounted on a surveillance aircraft or unattended airborne vehicle, is used to detect motion consistent with targets of interest. However, these targets try to obscure themselves (at least partially) by, for example, traveling along the edge of a forest or around buildings. This has the effect of creating random blockages in the Doppler radar image that move dynamically and somewhat randomly through this image. Herein, we address tracking problems with target obscuration by building memory into the observations, eschewing the usual corrupted, distorted partial measurement assumptions of filtering in favor of dynamic Markov chain assumptions. In particular, we assume the observations are a Markov chain whose transition probabilities depend upon the signal. The state of the observation Markov chain attempts to depict the current obscuration and the Markov chain dynamics are used to handle the evolution of the partially obscured radar image. Modifications of the classical filtering equations that allow observation memory (in the form of a Markov chain) are given. We use particle filters to estimate the position of the moving targets. Moreover, positive proof-of-concept simulations are included.
Metrics for Labeled Markov Systems
NASA Technical Reports Server (NTRS)
Desharnais, Josee; Jagadeesan, Radha; Gupta, Vineet; Panangaden, Prakash
1999-01-01
Partial Labeled Markov Chains are simultaneously generalizations of process algebra and of traditional Markov chains. They provide a foundation for interacting discrete probabilistic systems, the interaction being synchronization on labels as in process algebra. Existing notions of process equivalence are too sensitive to the exact probabilities of various transitions. This paper addresses contextual reasoning principles for reasoning about more robust notions of "approximate" equivalence between concurrent interacting probabilistic systems. The present results indicate that:We develop a family of metrics between partial labeled Markov chains to formalize the notion of distance between processes. We show that processes at distance zero are bisimilar. We describe a decision procedure to compute the distance between two processes. We show that reasoning about approximate equivalence can be done compositionally by showing that process combinators do not increase distance. We introduce an asymptotic metric to capture asymptotic properties of Markov chains; and show that parallel composition does not increase asymptotic distance.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sabyasachi; Das, Nandan K.; Kurmi, Indrajit; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.
2017-10-01
We report the application of a hidden Markov model (HMM) on multifractal tissue optical properties derived via the Born approximation-based inverse light scattering method for effective discrimination of precancerous human cervical tissue sites from the normal ones. Two global fractal parameters, generalized Hurst exponent and the corresponding singularity spectrum width, computed by multifractal detrended fluctuation analysis (MFDFA), are used here as potential biomarkers. We develop a methodology that makes use of these multifractal parameters by integrating with different statistical classifiers like the HMM and support vector machine (SVM). It is shown that the MFDFA-HMM integrated model achieves significantly better discrimination between normal and different grades of cancer as compared to the MFDFA-SVM integrated model.
Analysis of single ion channel data incorporating time-interval omission and sampling
The, Yu-Kai; Timmer, Jens
2005-01-01
Hidden Markov models are widely used to describe single channel currents from patch-clamp experiments. The inevitable anti-aliasing filter limits the time resolution of the measurements and therefore the standard hidden Markov model is not adequate anymore. The notion of time-interval omission has been introduced where brief events are not detected. The developed, exact solutions to this problem do not take into account that the measured intervals are limited by the sampling time. In this case the dead-time that specifies the minimal detectable interval length is not defined unambiguously. We show that a wrong choice of the dead-time leads to considerably biased estimates and present the appropriate equations to describe sampled data. PMID:16849220
Parametric inference for biological sequence analysis.
Pachter, Lior; Sturmfels, Bernd
2004-11-16
One of the major successes in computational biology has been the unification, by using the graphical model formalism, of a multitude of algorithms for annotating and comparing biological sequences. Graphical models that have been applied to these problems include hidden Markov models for annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single algorithm, the sum-product algorithm, solves many of the inference problems that are associated with different statistical models. This article introduces the polytope propagation algorithm for computing the Newton polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference calculations for graphical models.
Hidden Markov model analysis of force/torque information in telemanipulation
NASA Technical Reports Server (NTRS)
Hannaford, Blake; Lee, Paul
1991-01-01
A model for the prediction and analysis of sensor information recorded during robotic performance of telemanipulation tasks is presented. The model uses the hidden Markov model to describe the task structure, the operator's or intelligent controller's goal structure, and the sensor signals. A methodology for constructing the model parameters based on engineering knowledge of the task is described. It is concluded that the model and its optimal state estimation algorithm, the Viterbi algorithm, are very succesful at the task of segmenting the data record into phases corresponding to subgoals of the task. The model provides a rich modeling structure within a statistical framework, which enables it to represent complex systems and be robust to real-world sensory signals.
Adaptive partially hidden Markov models with application to bilevel image coding.
Forchhammer, S; Rasmussen, T S
1999-01-01
Partially hidden Markov models (PHMMs) have previously been introduced. The transition and emission/output probabilities from hidden states, as known from the HMMs, are conditioned on the past. This way, the HMM may be applied to images introducing the dependencies of the second dimension by conditioning. In this paper, the PHMM is extended to multiple sequences with a multiple token version and adaptive versions of PHMM coding are presented. The different versions of the PHMM are applied to lossless bilevel image coding. To reduce and optimize the model cost and size, the contexts are organized in trees and effective quantization of the parameters is introduced. The new coding methods achieve results that are better than the JBIG standard on selected test images, although at the cost of increased complexity. By the minimum description length principle, the methods presented for optimizing the code length may apply as guidance for training (P)HMMs for, e.g., segmentation or recognition purposes. Thereby, the PHMM models provide a new approach to image modeling.
Markov chains for testing redundant software
NASA Technical Reports Server (NTRS)
White, Allan L.; Sjogren, Jon A.
1988-01-01
A preliminary design for a validation experiment has been developed that addresses several problems unique to assuring the extremely high quality of multiple-version programs in process-control software. The procedure uses Markov chains to model the error states of the multiple version programs. The programs are observed during simulated process-control testing, and estimates are obtained for the transition probabilities between the states of the Markov chain. The experimental Markov chain model is then expanded into a reliability model that takes into account the inertia of the system being controlled. The reliability of the multiple version software is computed from this reliability model at a given confidence level using confidence intervals obtained for the transition probabilities during the experiment. An example demonstrating the method is provided.
Bayesian analysis of non-homogeneous Markov chains: application to mental health data.
Sung, Minje; Soyer, Refik; Nhan, Nguyen
2007-07-10
In this paper we present a formal treatment of non-homogeneous Markov chains by introducing a hierarchical Bayesian framework. Our work is motivated by the analysis of correlated categorical data which arise in assessment of psychiatric treatment programs. In our development, we introduce a Markovian structure to describe the non-homogeneity of transition patterns. In doing so, we introduce a logistic regression set-up for Markov chains and incorporate covariates in our model. We present a Bayesian model using Markov chain Monte Carlo methods and develop inference procedures to address issues encountered in the analyses of data from psychiatric treatment programs. Our model and inference procedures are implemented to some real data from a psychiatric treatment study. Copyright 2006 John Wiley & Sons, Ltd.
Counting of oligomers in sequences generated by markov chains for DNA motif discovery.
Shan, Gao; Zheng, Wei-Mou
2009-02-01
By means of the technique of the imbedded Markov chain, an efficient algorithm is proposed to exactly calculate first, second moments of word counts and the probability for a word to occur at least once in random texts generated by a Markov chain. A generating function is introduced directly from the imbedded Markov chain to derive asymptotic approximations for the problem. Two Z-scores, one based on the number of sequences with hits and the other on the total number of word hits in a set of sequences, are examined for discovery of motifs on a set of promoter sequences extracted from A. thaliana genome. Source code is available at http://www.itp.ac.cn/zheng/oligo.c.
Optimal choice of word length when comparing two Markov sequences using a χ 2-statistic.
Bai, Xin; Tang, Kujin; Ren, Jie; Waterman, Michael; Sun, Fengzhu
2017-10-03
Alignment-free sequence comparison using counts of word patterns (grams, k-tuples) has become an active research topic due to the large amount of sequence data from the new sequencing technologies. Genome sequences are frequently modelled by Markov chains and the likelihood ratio test or the corresponding approximate χ 2 -statistic has been suggested to compare two sequences. However, it is not known how to best choose the word length k in such studies. We develop an optimal strategy to choose k by maximizing the statistical power of detecting differences between two sequences. Let the orders of the Markov chains for the two sequences be r 1 and r 2 , respectively. We show through both simulations and theoretical studies that the optimal k= max(r 1 ,r 2 )+1 for both long sequences and next generation sequencing (NGS) read data. The orders of the Markov chains may be unknown and several methods have been developed to estimate the orders of Markov chains based on both long sequences and NGS reads. We study the power loss of the statistics when the estimated orders are used. It is shown that the power loss is minimal for some of the estimators of the orders of Markov chains. Our studies provide guidelines on choosing the optimal word length for the comparison of Markov sequences.
Complex Sequencing Rules of Birdsong Can be Explained by Simple Hidden Markov Processes
Katahira, Kentaro; Suzuki, Kenta; Okanoya, Kazuo; Okada, Masato
2011-01-01
Complex sequencing rules observed in birdsongs provide an opportunity to investigate the neural mechanism for generating complex sequential behaviors. To relate the findings from studying birdsongs to other sequential behaviors such as human speech and musical performance, it is crucial to characterize the statistical properties of the sequencing rules in birdsongs. However, the properties of the sequencing rules in birdsongs have not yet been fully addressed. In this study, we investigate the statistical properties of the complex birdsong of the Bengalese finch (Lonchura striata var. domestica). Based on manual-annotated syllable labeles, we first show that there are significant higher-order context dependencies in Bengalese finch songs, that is, which syllable appears next depends on more than one previous syllable. We then analyze acoustic features of the song and show that higher-order context dependencies can be explained using first-order hidden state transition dynamics with redundant hidden states. This model corresponds to hidden Markov models (HMMs), well known statistical models with a large range of application for time series modeling. The song annotation with these models with first-order hidden state dynamics agreed well with manual annotation, the score was comparable to that of a second-order HMM, and surpassed the zeroth-order model (the Gaussian mixture model; GMM), which does not use context information. Our results imply that the hierarchical representation with hidden state dynamics may underlie the neural implementation for generating complex behavioral sequences with higher-order dependencies. PMID:21915345
Wu, Xiao-Lin; Sun, Chuanyu; Beissinger, Timothy M; Rosa, Guilherme Jm; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel
2012-09-25
Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs.
2012-01-01
Background Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Results Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Conclusions Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs. PMID:23009363
Markov chains and semi-Markov models in time-to-event analysis.
Abner, Erin L; Charnigo, Richard J; Kryscio, Richard J
2013-10-25
A variety of statistical methods are available to investigators for analysis of time-to-event data, often referred to as survival analysis. Kaplan-Meier estimation and Cox proportional hazards regression are commonly employed tools but are not appropriate for all studies, particularly in the presence of competing risks and when multiple or recurrent outcomes are of interest. Markov chain models can accommodate censored data, competing risks (informative censoring), multiple outcomes, recurrent outcomes, frailty, and non-constant survival probabilities. Markov chain models, though often overlooked by investigators in time-to-event analysis, have long been used in clinical studies and have widespread application in other fields.
Markov chains and semi-Markov models in time-to-event analysis
Abner, Erin L.; Charnigo, Richard J.; Kryscio, Richard J.
2014-01-01
A variety of statistical methods are available to investigators for analysis of time-to-event data, often referred to as survival analysis. Kaplan-Meier estimation and Cox proportional hazards regression are commonly employed tools but are not appropriate for all studies, particularly in the presence of competing risks and when multiple or recurrent outcomes are of interest. Markov chain models can accommodate censored data, competing risks (informative censoring), multiple outcomes, recurrent outcomes, frailty, and non-constant survival probabilities. Markov chain models, though often overlooked by investigators in time-to-event analysis, have long been used in clinical studies and have widespread application in other fields. PMID:24818062
Decomposition of conditional probability for high-order symbolic Markov chains.
Melnik, S S; Usatenko, O V
2017-07-01
The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.
Herbei, Radu; Kubatko, Laura
2013-03-26
Markov chains are widely used for modeling in many areas of molecular biology and genetics. As the complexity of such models advances, it becomes increasingly important to assess the rate at which a Markov chain converges to its stationary distribution in order to carry out accurate inference. A common measure of convergence to the stationary distribution is the total variation distance, but this measure can be difficult to compute when the state space of the chain is large. We propose a Monte Carlo method to estimate the total variation distance that can be applied in this situation, and we demonstrate how the method can be efficiently implemented by taking advantage of GPU computing techniques. We apply the method to two Markov chains on the space of phylogenetic trees, and discuss the implications of our findings for the development of algorithms for phylogenetic inference.
Decomposition of conditional probability for high-order symbolic Markov chains
NASA Astrophysics Data System (ADS)
Melnik, S. S.; Usatenko, O. V.
2017-07-01
The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.
Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes
Nakamura, Tomoaki; Nagai, Takayuki; Mochihashi, Daichi; Kobayashi, Ichiro; Asoh, Hideki; Kaneko, Masahide
2017-01-01
Humans divide perceived continuous information into segments to facilitate recognition. For example, humans can segment speech waves into recognizable morphemes. Analogously, continuous motions are segmented into recognizable unit actions. People can divide continuous information into segments without using explicit segment points. This capacity for unsupervised segmentation is also useful for robots, because it enables them to flexibly learn languages, gestures, and actions. In this paper, we propose a Gaussian process-hidden semi-Markov model (GP-HSMM) that can divide continuous time series data into segments in an unsupervised manner. Our proposed method consists of a generative model based on the hidden semi-Markov model (HSMM), the emission distributions of which are Gaussian processes (GPs). Continuous time series data is generated by connecting segments generated by the GP. Segmentation can be achieved by using forward filtering-backward sampling to estimate the model's parameters, including the lengths and classes of the segments. In an experiment using the CMU motion capture dataset, we tested GP-HSMM with motion capture data containing simple exercise motions; the results of this experiment showed that the proposed GP-HSMM was comparable with other methods. We also conducted an experiment using karate motion capture data, which is more complex than exercise motion capture data; in this experiment, the segmentation accuracy of GP-HSMM was 0.92, which outperformed other methods. PMID:29311889
Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field.
Nie, Jingxin; Xue, Zhong; Liu, Tianming; Young, Geoffrey S; Setayesh, Kian; Guo, Lei; Wong, Stephen T C
2009-09-01
A variety of algorithms have been proposed for brain tumor segmentation from multi-channel sequences, however, most of them require isotropic or pseudo-isotropic resolution of the MR images. Although co-registration and interpolation of low-resolution sequences, such as T2-weighted images, onto the space of the high-resolution image, such as T1-weighted image, can be performed prior to the segmentation, the results are usually limited by partial volume effects due to interpolation of low-resolution images. To improve the quality of tumor segmentation in clinical applications where low-resolution sequences are commonly used together with high-resolution images, we propose the algorithm based on Spatial accuracy-weighted Hidden Markov random field and Expectation maximization (SHE) approach for both automated tumor and enhanced-tumor segmentation. SHE incorporates the spatial interpolation accuracy of low-resolution images into the optimization procedure of the Hidden Markov Random Field (HMRF) to segment tumor using multi-channel MR images with different resolutions, e.g., high-resolution T1-weighted and low-resolution T2-weighted images. In experiments, we evaluated this algorithm using a set of simulated multi-channel brain MR images with known ground-truth tissue segmentation and also applied it to a dataset of MR images obtained during clinical trials of brain tumor chemotherapy. The results show that more accurate tumor segmentation results can be obtained by comparing with conventional multi-channel segmentation algorithms.
Dfam: a database of repetitive DNA based on profile hidden Markov models.
Wheeler, Travis J; Clements, Jody; Eddy, Sean R; Hubley, Robert; Jones, Thomas A; Jurka, Jerzy; Smit, Arian F A; Finn, Robert D
2013-01-01
We present a database of repetitive DNA elements, called Dfam (http://dfam.janelia.org). Many genomes contain a large fraction of repetitive DNA, much of which is made up of remnants of transposable elements (TEs). Accurate annotation of TEs enables research into their biology and can shed light on the evolutionary processes that shape genomes. Identification and masking of TEs can also greatly simplify many downstream genome annotation and sequence analysis tasks. The commonly used TE annotation tools RepeatMasker and Censor depend on sequence homology search tools such as cross_match and BLAST variants, as well as Repbase, a collection of known TE families each represented by a single consensus sequence. Dfam contains entries corresponding to all Repbase TE entries for which instances have been found in the human genome. Each Dfam entry is represented by a profile hidden Markov model, built from alignments generated using RepeatMasker and Repbase. When used in conjunction with the hidden Markov model search tool nhmmer, Dfam produces a 2.9% increase in coverage over consensus sequence search methods on a large human benchmark, while maintaining low false discovery rates, and coverage of the full human genome is 54.5%. The website provides a collection of tools and data views to support improved TE curation and annotation efforts. Dfam is also available for download in flat file format or in the form of MySQL table dumps.
NASA Astrophysics Data System (ADS)
Cassisi, Carmelo; Prestifilippo, Michele; Cannata, Andrea; Montalto, Placido; Patanè, Domenico; Privitera, Eugenio
2016-07-01
From January 2011 to December 2015, Mt. Etna was mainly characterized by a cyclic eruptive behavior with more than 40 lava fountains from New South-East Crater. Using the RMS (Root Mean Square) of the seismic signal recorded by stations close to the summit area, an automatic recognition of the different states of volcanic activity (QUIET, PRE-FOUNTAIN, FOUNTAIN, POST-FOUNTAIN) has been applied for monitoring purposes. Since values of the RMS time series calculated on the seismic signal are generated from a stochastic process, we can try to model the system generating its sampled values, assumed to be a Markov process, using Hidden Markov Models (HMMs). HMMs analysis seeks to recover the sequence of hidden states from the observations. In our framework, observations are characters generated by the Symbolic Aggregate approXimation (SAX) technique, which maps RMS time series values with symbols of a pre-defined alphabet. The main advantages of the proposed framework, based on HMMs and SAX, with respect to other automatic systems applied on seismic signals at Mt. Etna, are the use of multiple stations and static thresholds to well characterize the volcano states. Its application on a wide seismic dataset of Etna volcano shows the possibility to guess the volcano states. The experimental results show that, in most of the cases, we detected lava fountains in advance.
2014-01-01
Background Logos are commonly used in molecular biology to provide a compact graphical representation of the conservation pattern of a set of sequences. They render the information contained in sequence alignments or profile hidden Markov models by drawing a stack of letters for each position, where the height of the stack corresponds to the conservation at that position, and the height of each letter within a stack depends on the frequency of that letter at that position. Results We present a new tool and web server, called Skylign, which provides a unified framework for creating logos for both sequence alignments and profile hidden Markov models. In addition to static image files, Skylign creates a novel interactive logo plot for inclusion in web pages. These interactive logos enable scrolling, zooming, and inspection of underlying values. Skylign can avoid sampling bias in sequence alignments by down-weighting redundant sequences and by combining observed counts with informed priors. It also simplifies the representation of gap parameters, and can optionally scale letter heights based on alternate calculations of the conservation of a position. Conclusion Skylign is available as a website, a scriptable web service with a RESTful interface, and as a software package for download. Skylign’s interactive logos are easily incorporated into a web page with just a few lines of HTML markup. Skylign may be found at http://skylign.org. PMID:24410852
Estimating Density and Temperature Dependence of Juvenile Vital Rates Using a Hidden Markov Model
McElderry, Robert M.
2017-01-01
Organisms in the wild have cryptic life stages that are sensitive to changing environmental conditions and can be difficult to survey. In this study, I used mark-recapture methods to repeatedly survey Anaea aidea (Nymphalidae) caterpillars in nature, then modeled caterpillar demography as a hidden Markov process to assess if temporal variability in temperature and density influence the survival and growth of A. aidea over time. Individual encounter histories result from the joint likelihood of being alive and observed in a particular stage, and I have included hidden states by separating demography and observations into parallel and independent processes. I constructed a demographic matrix containing the probabilities of all possible fates for each stage, including hidden states, e.g., eggs and pupae. I observed both dead and live caterpillars with high probability. Peak caterpillar abundance attracted multiple predators, and survival of fifth instars declined as per capita predation rate increased through spring. A time lag between predator and prey abundance was likely the cause of improved fifth instar survival estimated at high density. Growth rates showed an increase with temperature, but the preferred model did not include temperature. This work illustrates how state-space models can include unobservable stages and hidden state processes to evaluate how environmental factors influence vital rates of cryptic life stages in the wild. PMID:28505138
Transition records of stationary Markov chains.
Naudts, Jan; Van der Straeten, Erik
2006-10-01
In any Markov chain with finite state space the distribution of transition records always belongs to the exponential family. This observation is used to prove a fluctuation theorem, and to show that the dynamical entropy of a stationary Markov chain is linear in the number of steps. Three applications are discussed. A known result about entropy production is reproduced. A thermodynamic relation is derived for equilibrium systems with Metropolis dynamics. Finally, a link is made with recent results concerning a one-dimensional polymer model.
Maximum Kolmogorov-Sinai Entropy Versus Minimum Mixing Time in Markov Chains
NASA Astrophysics Data System (ADS)
Mihelich, M.; Dubrulle, B.; Paillard, D.; Kral, Q.; Faranda, D.
2018-01-01
We establish a link between the maximization of Kolmogorov Sinai entropy (KSE) and the minimization of the mixing time for general Markov chains. Since the maximisation of KSE is analytical and easier to compute in general than mixing time, this link provides a new faster method to approximate the minimum mixing time dynamics. It could be interesting in computer sciences and statistical physics, for computations that use random walks on graphs that can be represented as Markov chains.
Simplification of irreversible Markov chains by removal of states with fast leaving rates.
Jia, Chen
2016-07-07
In the recent work of Ullah et al. (2012a), the authors developed an effective method to simplify reversible Markov chains by removal of states with low equilibrium occupancies. In this paper, we extend this result to irreversible Markov chains. We show that an irreversible chain can be simplified by removal of states with fast leaving rates. Moreover, we reveal that the irreversibility of the chain will always decrease after model simplification. This suggests that although model simplification can retain almost all the dynamic information of the chain, it will lose some thermodynamic information as a trade-off. Examples from biology are also given to illustrate the main results of this paper. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jia, Chen
2017-09-01
Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.
NASA Astrophysics Data System (ADS)
Jia, Chen
2017-09-01
Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.
2016-01-01
Identifying the hidden state is important for solving problems with hidden state. We prove any deterministic partially observable Markov decision processes (POMDP) can be represented by a minimal, looping hidden state transition model and propose a heuristic state transition model constructing algorithm. A new spatiotemporal associative memory network (STAMN) is proposed to realize the minimal, looping hidden state transition model. STAMN utilizes the neuroactivity decay to realize the short-term memory, connection weights between different nodes to represent long-term memory, presynaptic potentials, and synchronized activation mechanism to complete identifying and recalling simultaneously. Finally, we give the empirical illustrations of the STAMN and compare the performance of the STAMN model with that of other methods. PMID:27891146
Mixture Hidden Markov Models in Finance Research
NASA Astrophysics Data System (ADS)
Dias, José G.; Vermunt, Jeroen K.; Ramos, Sofia
Finite mixture models have proven to be a powerful framework whenever unobserved heterogeneity cannot be ignored. We introduce in finance research the Mixture Hidden Markov Model (MHMM) that takes into account time and space heterogeneity simultaneously. This approach is flexible in the sense that it can deal with the specific features of financial time series data, such as asymmetry, kurtosis, and unobserved heterogeneity. This methodology is applied to model simultaneously 12 time series of Asian stock markets indexes. Because we selected a heterogeneous sample of countries including both developed and emerging countries, we expect that heterogeneity in market returns due to country idiosyncrasies will show up in the results. The best fitting model was the one with two clusters at country level with different dynamics between the two regimes.
A simplified parsimonious higher order multivariate Markov chain model
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, a simplified parsimonious higher-order multivariate Markov chain model (SPHOMMCM) is presented. Moreover, parameter estimation method of TPHOMMCM is give. Numerical experiments shows the effectiveness of TPHOMMCM.
Derivation of Markov processes that violate detailed balance
NASA Astrophysics Data System (ADS)
Lee, Julian
2018-03-01
Time-reversal symmetry of the microscopic laws dictates that the equilibrium distribution of a stochastic process must obey the condition of detailed balance. However, cyclic Markov processes that do not admit equilibrium distributions with detailed balance are often used to model systems driven out of equilibrium by external agents. I show that for a Markov model without detailed balance, an extended Markov model can be constructed, which explicitly includes the degrees of freedom for the driving agent and satisfies the detailed balance condition. The original cyclic Markov model for the driven system is then recovered as an approximation at early times by summing over the degrees of freedom for the driving agent. I also show that the widely accepted expression for the entropy production in a cyclic Markov model is actually a time derivative of an entropy component in the extended model. Further, I present an analytic expression for the entropy component that is hidden in the cyclic Markov model.
A tridiagonal parsimonious higher order multivariate Markov chain model
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, we present a tridiagonal parsimonious higher-order multivariate Markov chain model (TPHOMMCM). Moreover, estimation method of the parameters in TPHOMMCM is give. Numerical experiments illustrate the effectiveness of TPHOMMCM.
Rakhimberdiev, Eldar; Winkler, David W; Bridge, Eli; Seavy, Nathaniel E; Sheldon, Daniel; Piersma, Theunis; Saveliev, Anatoly
2015-01-01
Solar archival tags (henceforth called geolocators) are tracking devices deployed on animals to reconstruct their long-distance movements on the basis of locations inferred post hoc with reference to the geographical and seasonal variations in the timing and speeds of sunrise and sunset. The increased use of geolocators has created a need for analytical tools to produce accurate and objective estimates of migration routes that are explicit in their uncertainty about the position estimates. We developed a hidden Markov chain model for the analysis of geolocator data. This model estimates tracks for animals with complex migratory behaviour by combining: (1) a shading-insensitive, template-fit physical model, (2) an uncorrelated random walk movement model that includes migratory and sedentary behavioural states, and (3) spatially explicit behavioural masks. The model is implemented in a specially developed open source R package FLightR. We used the particle filter (PF) algorithm to provide relatively fast model posterior computation. We illustrate our modelling approach with analysis of simulated data for stationary tags and of real tracks of both a tree swallow Tachycineta bicolor migrating along the east and a golden-crowned sparrow Zonotrichia atricapilla migrating along the west coast of North America. We provide a model that increases accuracy in analyses of noisy data and movements of animals with complicated migration behaviour. It provides posterior distributions for the positions of animals, their behavioural states (e.g., migrating or sedentary), and distance and direction of movement. Our approach allows biologists to estimate locations of animals with complex migratory behaviour based on raw light data. This model advances the current methods for estimating migration tracks from solar geolocation, and will benefit a fast-growing number of tracking studies with this technology.
ERIC Educational Resources Information Center
Kayser, Brian D.
The fit of educational aspirations of Illinois rural high school youths to 3 related one-parameter mathematical models was investigated. The models used were the continuous-time Markov chain model, the discrete-time Markov chain, and the Poisson distribution. The sample of 635 students responded to questionnaires from 1966 to 1969 as part of an…
Markov chain model for demersal fish catch analysis in Indonesia
NASA Astrophysics Data System (ADS)
Firdaniza; Gusriani, N.
2018-03-01
As an archipelagic country, Indonesia has considerable potential fishery resources. One of the fish resources that has high economic value is demersal fish. Demersal fish is a fish with a habitat in the muddy seabed. Demersal fish scattered throughout the Indonesian seas. Demersal fish production in each Indonesia’s Fisheries Management Area (FMA) varies each year. In this paper we have discussed the Markov chain model for demersal fish yield analysis throughout all Indonesia’s Fisheries Management Area. Data of demersal fish catch in every FMA in 2005-2014 was obtained from Directorate of Capture Fisheries. From this data a transition probability matrix is determined by the number of transitions from the catch that lie below the median or above the median. The Markov chain model of demersal fish catch data was an ergodic Markov chain model, so that the limiting probability of the Markov chain model can be determined. The predictive value of demersal fishing yields was obtained by calculating the combination of limiting probability with average catch results below the median and above the median. The results showed that for 2018 and long-term demersal fishing results in most of FMA were below the median value.
Analysis and design of a second-order digital phase-locked loop
NASA Technical Reports Server (NTRS)
Blasche, P. R.
1979-01-01
A specific second-order digital phase-locked loop (DPLL) was modeled as a first-order Markov chain with alternatives. From the matrix of transition probabilities of the Markov chain, the steady-state phase error of the DPLL was determined. In a similar manner the loop's response was calculated for a fading input. Additionally, a hardware DPLL was constructed and tested to provide a comparison to the results obtained from the Markov chain model. In all cases tested, good agreement was found between the theoretical predictions and the experimental data.
Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains
NASA Astrophysics Data System (ADS)
Cofré, Rodrigo; Maldonado, Cesar
2018-01-01
We consider the maximum entropy Markov chain inference approach to characterize the collective statistics of neuronal spike trains, focusing on the statistical properties of the inferred model. We review large deviations techniques useful in this context to describe properties of accuracy and convergence in terms of sampling size. We use these results to study the statistical fluctuation of correlations, distinguishability and irreversibility of maximum entropy Markov chains. We illustrate these applications using simple examples where the large deviation rate function is explicitly obtained for maximum entropy models of relevance in this field.
Chauvin, C; Clement, C; Bruneau, M; Pommeret, D
2007-07-16
This article describes the use of Markov chains to explore the time-patterns of antimicrobial exposure in broiler poultry. The transition in antimicrobial exposure status (exposed/not exposed to an antimicrobial, with a distinction between exposures to the different antimicrobial classes) in extensive data collected in broiler chicken flocks from November 2003 onwards, was investigated. All Markov chains were first-order chains. Mortality rate, geographical location and slaughter semester were sources of heterogeneity between transition matrices. Transitions towards a 'no antimicrobial' exposure state were highly predominant, whatever the initial state. From a 'no antimicrobial' exposure state, the transition to beta-lactams was predominant among transitions to an antimicrobial exposure state. Transitions between antimicrobial classes were rare and variable. Switches between antimicrobial classes and repeats of a particular class were both observed. Application of Markov chains analysis to the database of the nation-wide antimicrobial resistance monitoring programme pointed out that transition probabilities between antimicrobial exposure states increased with the number of resistances in Escherichia coli strains.
Indexed semi-Markov process for wind speed modeling.
NASA Astrophysics Data System (ADS)
Petroni, F.; D'Amico, G.; Prattico, F.
2012-04-01
The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. In a previous work we proposed different semi-Markov models, showing their ability to reproduce the autocorrelation structures of wind speed data. In that paper we showed also that the autocorrelation is higher with respect to the Markov model. Unfortunately this autocorrelation was still too small compared to the empirical one. In order to overcome the problem of low autocorrelation, in this paper we propose an indexed semi-Markov model. More precisely we assume that wind speed is described by a discrete time homogeneous semi-Markov process. We introduce a memory index which takes into account the periods of different wind activities. With this model the statistical characteristics of wind speed are faithfully reproduced. The wind is a very unstable phenomenon characterized by a sequence of lulls and sustained speeds, and a good wind generator must be able to reproduce such sequences. To check the validity of the predictive semi-Markovian model, the persistence of synthetic winds were calculated, then averaged and computed. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy 28 (2003) 1787-1802.
Influence of credit scoring on the dynamics of Markov chain
NASA Astrophysics Data System (ADS)
Galina, Timofeeva
2015-11-01
Markov processes are widely used to model the dynamics of a credit portfolio and forecast the portfolio risk and profitability. In the Markov chain model the loan portfolio is divided into several groups with different quality, which determined by presence of indebtedness and its terms. It is proposed that dynamics of portfolio shares is described by a multistage controlled system. The article outlines mathematical formalization of controls which reflect the actions of the bank's management in order to improve the loan portfolio quality. The most important control is the organization of approval procedure of loan applications. The credit scoring is studied as a control affecting to the dynamic system. Different formalizations of "good" and "bad" consumers are proposed in connection with the Markov chain model.
Marathon: An Open Source Software Library for the Analysis of Markov-Chain Monte Carlo Algorithms
Rechner, Steffen; Berger, Annabell
2016-01-01
We present the software library marathon, which is designed to support the analysis of sampling algorithms that are based on the Markov-Chain Monte Carlo principle. The main application of this library is the computation of properties of so-called state graphs, which represent the structure of Markov chains. We demonstrate applications and the usefulness of marathon by investigating the quality of several bounding methods on four well-known Markov chains for sampling perfect matchings and bipartite graphs. In a set of experiments, we compute the total mixing time and several of its bounds for a large number of input instances. We find that the upper bound gained by the famous canonical path method is often several magnitudes larger than the total mixing time and deteriorates with growing input size. In contrast, the spectral bound is found to be a precise approximation of the total mixing time. PMID:26824442
Peng, Zhihang; Bao, Changjun; Zhao, Yang; Yi, Honggang; Xia, Letian; Yu, Hao; Shen, Hongbing; Chen, Feng
2010-01-01
This paper first applies the sequential cluster method to set up the classification standard of infectious disease incidence state based on the fact that there are many uncertainty characteristics in the incidence course. Then the paper presents a weighted Markov chain, a method which is used to predict the future incidence state. This method assumes the standardized self-coefficients as weights based on the special characteristics of infectious disease incidence being a dependent stochastic variable. It also analyzes the characteristics of infectious diseases incidence via the Markov chain Monte Carlo method to make the long-term benefit of decision optimal. Our method is successfully validated using existing incidents data of infectious diseases in Jiangsu Province. In summation, this paper proposes ways to improve the accuracy of the weighted Markov chain, specifically in the field of infection epidemiology. PMID:23554632
Peng, Zhihang; Bao, Changjun; Zhao, Yang; Yi, Honggang; Xia, Letian; Yu, Hao; Shen, Hongbing; Chen, Feng
2010-05-01
This paper first applies the sequential cluster method to set up the classification standard of infectious disease incidence state based on the fact that there are many uncertainty characteristics in the incidence course. Then the paper presents a weighted Markov chain, a method which is used to predict the future incidence state. This method assumes the standardized self-coefficients as weights based on the special characteristics of infectious disease incidence being a dependent stochastic variable. It also analyzes the characteristics of infectious diseases incidence via the Markov chain Monte Carlo method to make the long-term benefit of decision optimal. Our method is successfully validated using existing incidents data of infectious diseases in Jiangsu Province. In summation, this paper proposes ways to improve the accuracy of the weighted Markov chain, specifically in the field of infection epidemiology.
Canonical Structure and Orthogonality of Forces and Currents in Irreversible Markov Chains
NASA Astrophysics Data System (ADS)
Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes
2018-03-01
We discuss a canonical structure that provides a unifying description of dynamical large deviations for irreversible finite state Markov chains (continuous time), Onsager theory, and Macroscopic Fluctuation Theory (MFT). For Markov chains, this theory involves a non-linear relation between probability currents and their conjugate forces. Within this framework, we show how the forces can be split into two components, which are orthogonal to each other, in a generalised sense. This splitting allows a decomposition of the pathwise rate function into three terms, which have physical interpretations in terms of dissipation and convergence to equilibrium. Similar decompositions hold for rate functions at level 2 and level 2.5. These results clarify how bounds on entropy production and fluctuation theorems emerge from the underlying dynamical rules. We discuss how these results for Markov chains are related to similar structures within MFT, which describes hydrodynamic limits of such microscopic models.
Semantic Context Detection Using Audio Event Fusion
NASA Astrophysics Data System (ADS)
Chu, Wei-Ta; Cheng, Wen-Huang; Wu, Ja-Ling
2006-12-01
Semantic-level content analysis is a crucial issue in achieving efficient content retrieval and management. We propose a hierarchical approach that models audio events over a time series in order to accomplish semantic context detection. Two levels of modeling, audio event and semantic context modeling, are devised to bridge the gap between physical audio features and semantic concepts. In this work, hidden Markov models (HMMs) are used to model four representative audio events, that is, gunshot, explosion, engine, and car braking, in action movies. At the semantic context level, generative (ergodic hidden Markov model) and discriminative (support vector machine (SVM)) approaches are investigated to fuse the characteristics and correlations among audio events, which provide cues for detecting gunplay and car-chasing scenes. The experimental results demonstrate the effectiveness of the proposed approaches and provide a preliminary framework for information mining by using audio characteristics.
Stylistic gait synthesis based on hidden Markov models
NASA Astrophysics Data System (ADS)
Tilmanne, Joëlle; Moinet, Alexis; Dutoit, Thierry
2012-12-01
In this work we present an expressive gait synthesis system based on hidden Markov models (HMMs), following and modifying a procedure originally developed for speaking style adaptation, in speech synthesis. A large database of neutral motion capture walk sequences was used to train an HMM of average walk. The model was then used for automatic adaptation to a particular style of walk using only a small amount of training data from the target style. The open source toolkit that we adapted for motion modeling also enabled us to take into account the dynamics of the data and to model accurately the duration of each HMM state. We also address the assessment issue and propose a procedure for qualitative user evaluation of the synthesized sequences. Our tests show that the style of these sequences can easily be recognized and look natural to the evaluators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smyth, Padhraic
2013-07-22
This is the final report for a DOE-funded research project describing the outcome of research on non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. The main results consist of extensive development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies ofmore » climate variability in terms of the dynamics of atmospheric flow regimes.« less
Hidden Markov models for fault detection in dynamic systems
NASA Technical Reports Server (NTRS)
Smyth, Padhraic J. (Inventor)
1995-01-01
The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) (vertical bar)/x), 1 less than or equal to i isless than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.
Hidden Markov models for fault detection in dynamic systems
NASA Technical Reports Server (NTRS)
Smyth, Padhraic J. (Inventor)
1993-01-01
The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) perpendicular to x), 1 less than or equal to i is less than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.
Fiske, Ian J.; Royle, J. Andrew; Gross, Kevin
2014-01-01
Ecologists and wildlife biologists increasingly use latent variable models to study patterns of species occurrence when detection is imperfect. These models have recently been generalized to accommodate both a more expansive description of state than simple presence or absence, and Markovian dynamics in the latent state over successive sampling seasons. In this paper, we write these multi-season, multi-state models as hidden Markov models to find both maximum likelihood estimates of model parameters and finite-sample estimators of the trajectory of the latent state over time. These estimators are especially useful for characterizing population trends in species of conservation concern. We also develop parametric bootstrap procedures that allow formal inference about latent trend. We examine model behavior through simulation, and we apply the model to data from the North American Amphibian Monitoring Program.
A hidden Markov model approach to neuron firing patterns.
Camproux, A C; Saunier, F; Chouvet, G; Thalabard, J C; Thomas, G
1996-11-01
Analysis and characterization of neuronal discharge patterns are of interest to neurophysiologists and neuropharmacologists. In this paper we present a hidden Markov model approach to modeling single neuron electrical activity. Basically the model assumes that each interspike interval corresponds to one of several possible states of the neuron. Fitting the model to experimental series of interspike intervals by maximum likelihood allows estimation of the number of possible underlying neuron states, the probability density functions of interspike intervals corresponding to each state, and the transition probabilities between states. We present an application to the analysis of recordings of a locus coeruleus neuron under three pharmacological conditions. The model distinguishes two states during halothane anesthesia and during recovery from halothane anesthesia, and four states after administration of clonidine. The transition probabilities yield additional insights into the mechanisms of neuron firing.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Almoubayyed, H.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Etienne, Z. B.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Suvorova, S.; Moran, W.; Evans, R. J.; LIGO Scientific Collaboration; Virgo Collaboration
2017-06-01
Results are presented from a semicoherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run. The search combines a frequency domain matched filter (Bessel-weighted F -statistic) with a hidden Markov model to track wandering of the neutron star spin frequency. No evidence of gravitational waves is found in the frequency range 60-650 Hz. Frequentist 95% confidence strain upper limits, h095 %=4.0 ×1 0-25, 8.3 ×1 0-25, and 3.0 ×1 0-25 for electromagnetically restricted source orientation, unknown polarization, and circular polarization, respectively, are reported at 106 Hz. They are ≤10 times higher than the theoretical torque-balance limit at 106 Hz.
NASA Astrophysics Data System (ADS)
Sun, Wei; Ding, Wei; Yan, Huifang; Duan, Shunli
2018-06-01
Shoe-mounted pedestrian navigation systems based on micro inertial sensors rely on zero velocity updates to correct their positioning errors in time, which effectively makes determining the zero velocity interval play a key role during normal walking. However, as walking gaits are complicated, and vary from person to person, it is difficult to detect walking gaits with a fixed threshold method. This paper proposes a pedestrian gait classification method based on a hidden Markov model. Pedestrian gait data are collected with a micro inertial measurement unit installed at the instep. On the basis of analyzing the characteristics of the pedestrian walk, a single direction angular rate gyro output is used to classify gait features. The angular rate data are modeled into a univariate Gaussian mixture model with three components, and a four-state left–right continuous hidden Markov model (CHMM) is designed to classify the normal walking gait. The model parameters are trained and optimized using the Baum–Welch algorithm and then the sliding window Viterbi algorithm is used to decode the gait. Walking data are collected through eight subjects walking along the same route at three different speeds; the leave-one-subject-out cross validation method is conducted to test the model. Experimental results show that the proposed algorithm can accurately detect different walking gaits of zero velocity interval. The location experiment shows that the precision of CHMM-based pedestrian navigation improved by 40% when compared to the angular rate threshold method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghil, M.; Kravtsov, S.; Robertson, A. W.
2008-10-14
This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influencemore » large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.« less
Biaz, A; Uwingabiye, J; Rachid, A; Dami, A; Bouhsain, S; Ouzzif, Z; Idrissi, S El Machtani
2018-06-01
We report a case of immunoglobulin (Ig) D myeloma with hidden lambda light chains in a patient whose immunofixation test was very difficult to interpret: the IgD reacts with the anti-δ heavy chain antiserum but does not react with anti-lambda antiserum. The band in the D heavy chain lane is unmatched in light chain lanes and the band in lambda light chain lane migrates higher. To distinguish between heavy chain disease and immunoglobulin with "hidden" light chains, the sample was exposed to a very high concentration of anti-lambda and anti-kappa antisera for 48 hours. The serum immunofixation test of the sample treated with anti-lambda showed a decrease in the intensity of the band corresponding to D heavy chain lane as well as the modification of its mobility confirming the presence of IgD with the hidden lambda light chains. The IgD myeloma with hidden light chains remains a rare entity, hence the interest of sensitizing health professionals to be vigilant and ensure a good diagnosis. The proposed technique is useful, simple, reliable, and less laborious than those previous reported in the literature. Medical laboratories using Sebia-Hydrasys® system should be aware of the described phenomenon in order to avoid identifying an IgD myeloma as a delta heavy chain disease.
Markov Chain Estimation of Avian Seasonal Fecundity
To explore the consequences of modeling decisions on inference about avian seasonal fecundity we generalize previous Markov chain (MC) models of avian nest success to formulate two different MC models of avian seasonal fecundity that represent two different ways to model renestin...
MC3: Multi-core Markov-chain Monte Carlo code
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Harrington, Joseph; Lust, Nate; Foster, AJ; Stemm, Madison; Loredo, Tom; Stevenson, Kevin; Campo, Chris; Hardin, Matt; Hardy, Ryan
2016-10-01
MC3 (Multi-core Markov-chain Monte Carlo) is a Bayesian statistics tool that can be executed from the shell prompt or interactively through the Python interpreter with single- or multiple-CPU parallel computing. It offers Markov-chain Monte Carlo (MCMC) posterior-distribution sampling for several algorithms, Levenberg-Marquardt least-squares optimization, and uniform non-informative, Jeffreys non-informative, or Gaussian-informative priors. MC3 can share the same value among multiple parameters and fix the value of parameters to constant values, and offers Gelman-Rubin convergence testing and correlated-noise estimation with time-averaging or wavelet-based likelihood estimation methods.
Markov Chain Model with Catastrophe to Determine Mean Time to Default of Credit Risky Assets
NASA Astrophysics Data System (ADS)
Dharmaraja, Selvamuthu; Pasricha, Puneet; Tardelli, Paola
2017-11-01
This article deals with the problem of probabilistic prediction of the time distance to default for a firm. To model the credit risk, the dynamics of an asset is described as a function of a homogeneous discrete time Markov chain subject to a catastrophe, the default. The behaviour of the Markov chain is investigated and the mean time to the default is expressed in a closed form. The methodology to estimate the parameters is given. Numerical results are provided to illustrate the applicability of the proposed model on real data and their analysis is discussed.
NASA Astrophysics Data System (ADS)
Li, Xuesong; Northrop, William F.
2016-04-01
This paper describes a quantitative approach to approximate multiple scattering through an isotropic turbid slab based on Markov Chain theorem. There is an increasing need to utilize multiple scattering for optical diagnostic purposes; however, existing methods are either inaccurate or computationally expensive. Here, we develop a novel Markov Chain approximation approach to solve multiple scattering angular distribution (AD) that can accurately calculate AD while significantly reducing computational cost compared to Monte Carlo simulation. We expect this work to stimulate ongoing multiple scattering research and deterministic reconstruction algorithm development with AD measurements.
Exact goodness-of-fit tests for Markov chains.
Besag, J; Mondal, D
2013-06-01
Goodness-of-fit tests are useful in assessing whether a statistical model is consistent with available data. However, the usual χ² asymptotics often fail, either because of the paucity of the data or because a nonstandard test statistic is of interest. In this article, we describe exact goodness-of-fit tests for first- and higher order Markov chains, with particular attention given to time-reversible ones. The tests are obtained by conditioning on the sufficient statistics for the transition probabilities and are implemented by simple Monte Carlo sampling or by Markov chain Monte Carlo. They apply both to single and to multiple sequences and allow a free choice of test statistic. Three examples are given. The first concerns multiple sequences of dry and wet January days for the years 1948-1983 at Snoqualmie Falls, Washington State, and suggests that standard analysis may be misleading. The second one is for a four-state DNA sequence and lends support to the original conclusion that a second-order Markov chain provides an adequate fit to the data. The last one is six-state atomistic data arising in molecular conformational dynamics simulation of solvated alanine dipeptide and points to strong evidence against a first-order reversible Markov chain at 6 picosecond time steps. © 2013, The International Biometric Society.
Molitor, John
2012-03-01
Bayesian methods have seen an increase in popularity in a wide variety of scientific fields, including epidemiology. One of the main reasons for their widespread application is the power of the Markov chain Monte Carlo (MCMC) techniques generally used to fit these models. As a result, researchers often implicitly associate Bayesian models with MCMC estimation procedures. However, Bayesian models do not always require Markov-chain-based methods for parameter estimation. This is important, as MCMC estimation methods, while generally quite powerful, are complex and computationally expensive and suffer from convergence problems related to the manner in which they generate correlated samples used to estimate probability distributions for parameters of interest. In this issue of the Journal, Cole et al. (Am J Epidemiol. 2012;175(5):368-375) present an interesting paper that discusses non-Markov-chain-based approaches to fitting Bayesian models. These methods, though limited, can overcome some of the problems associated with MCMC techniques and promise to provide simpler approaches to fitting Bayesian models. Applied researchers will find these estimation approaches intuitively appealing and will gain a deeper understanding of Bayesian models through their use. However, readers should be aware that other non-Markov-chain-based methods are currently in active development and have been widely published in other fields.
First and second order semi-Markov chains for wind speed modeling
NASA Astrophysics Data System (ADS)
Prattico, F.; Petroni, F.; D'Amico, G.
2012-04-01
The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [3] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [1], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. Semi-Markov processes (SMP) are a wide class of stochastic processes which generalize at the same time both Markov chains and renewal processes. Their main advantage is that of using whatever type of waiting time distribution for modeling the time to have a transition from one state to another one. This major flexibility has a price to pay: availability of data to estimate the parameters of the model which are more numerous. Data availability is not an issue in wind speed studies, therefore, semi-Markov models can be used in a statistical efficient way. In this work we present three different semi-Markov chain models: the first one is a first-order SMP where the transition probabilities from two speed states (at time Tn and Tn-1) depend on the initial state (the state at Tn-1), final state (the state at Tn) and on the waiting time (given by t=Tn-Tn-1), the second model is a second order SMP where we consider the transition probabilities as depending also on the state the wind speed was before the initial state (which is the state at Tn-2) and the last one is still a second order SMP where the transition probabilities depends on the three states at Tn-2,Tn-1 and Tn and on the waiting times t_1=Tn-1-Tn-2 and t_2=Tn-Tn-1. The three models are used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy, 28/2003 1787-1802. [2] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30/2005 693-708. [3] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29/2004, 1407-1418.
Sub-seasonal-to-seasonal Reservoir Inflow Forecast using Bayesian Hierarchical Hidden Markov Model
NASA Astrophysics Data System (ADS)
Mukhopadhyay, S.; Arumugam, S.
2017-12-01
Sub-seasonal-to-seasonal (S2S) (15-90 days) streamflow forecasting is an emerging area of research that provides seamless information for reservoir operation from weather time scales to seasonal time scales. From an operational perspective, sub-seasonal inflow forecasts are highly valuable as these enable water managers to decide short-term releases (15-30 days), while holding water for seasonal needs (e.g., irrigation and municipal supply) and to meet end-of-the-season target storage at a desired level. We propose a Bayesian Hierarchical Hidden Markov Model (BHHMM) to develop S2S inflow forecasts for the Tennessee Valley Area (TVA) reservoir system. Here, the hidden states are predicted by relevant indices that influence the inflows at S2S time scale. The hidden Markov model also captures the both spatial and temporal hierarchy in predictors that operate at S2S time scale with model parameters being estimated as a posterior distribution using a Bayesian framework. We present our work in two steps, namely single site model and multi-site model. For proof of concept, we consider inflows to Douglas Dam, Tennessee, in the single site model. For multisite model we consider reservoirs in the upper Tennessee valley. Streamflow forecasts are issued and updated continuously every day at S2S time scale. We considered precipitation forecasts obtained from NOAA Climate Forecast System (CFSv2) GCM as predictors for developing S2S streamflow forecasts along with relevant indices for predicting hidden states. Spatial dependence of the inflow series of reservoirs are also preserved in the multi-site model. To circumvent the non-normality of the data, we consider the HMM in a Generalized Linear Model setting. Skill of the proposed approach is tested using split sample validation against a traditional multi-site canonical correlation model developed using the same set of predictors. From the posterior distribution of the inflow forecasts, we also highlight different system behavior under varied global and local scale climatic influences from the developed BHMM.
NASA Astrophysics Data System (ADS)
Figueiredo, Danilo Zucolli; Costa, Oswaldo Luiz do Valle
2017-10-01
This paper deals with the H2 optimal control problem of discrete-time Markov jump linear systems (MJLS) considering the case in which the Markov chain takes values in a general Borel space ?. It is assumed that the controller has access only to an output variable and to the jump parameter. The goal, in this case, is to design a dynamic Markov jump controller such that the H2-norm of the closed-loop system is minimised. It is shown that the H2-norm can be written as the sum of two H2-norms, such that one of them does not depend on the control, and the other one is obtained from the optimal filter for an infinite-horizon filtering problem. This result can be seen as a separation principle for MJLS with Markov chain in a Borel space ? considering the infinite time horizon case.
Adaptation of hidden Markov models for recognizing speech of reduced frame rate.
Lee, Lee-Min; Jean, Fu-Rong
2013-12-01
The frame rate of the observation sequence in distributed speech recognition applications may be reduced to suit a resource-limited front-end device. In order to use models trained using full-frame-rate data in the recognition of reduced frame-rate (RFR) data, we propose a method for adapting the transition probabilities of hidden Markov models (HMMs) to match the frame rate of the observation. Experiments on the recognition of clean and noisy connected digits are conducted to evaluate the proposed method. Experimental results show that the proposed method can effectively compensate for the frame-rate mismatch between the training and the test data. Using our adapted model to recognize the RFR speech data, one can significantly reduce the computation time and achieve the same level of accuracy as that of a method, which restores the frame rate using data interpolation.
Lee, Jong-Seok; Park, Cheol Hoon
2010-08-01
We propose a novel stochastic optimization algorithm, hybrid simulated annealing (SA), to train hidden Markov models (HMMs) for visual speech recognition. In our algorithm, SA is combined with a local optimization operator that substitutes a better solution for the current one to improve the convergence speed and the quality of solutions. We mathematically prove that the sequence of the objective values converges in probability to the global optimum in the algorithm. The algorithm is applied to train HMMs that are used as visual speech recognizers. While the popular training method of HMMs, the expectation-maximization algorithm, achieves only local optima in the parameter space, the proposed method can perform global optimization of the parameters of HMMs and thereby obtain solutions yielding improved recognition performance. The superiority of the proposed algorithm to the conventional ones is demonstrated via isolated word recognition experiments.
Passive Acoustic Leak Detection for Sodium Cooled Fast Reactors Using Hidden Markov Models
NASA Astrophysics Data System (ADS)
Marklund, A. Riber; Kishore, S.; Prakash, V.; Rajan, K. K.; Michel, F.
2016-06-01
Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970s and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), the proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control.
Damage evaluation by a guided wave-hidden Markov model based method
NASA Astrophysics Data System (ADS)
Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin
2016-02-01
Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.
Automated Cough Assessment on a Mobile Platform
2014-01-01
The development of an Automated System for Asthma Monitoring (ADAM) is described. This consists of a consumer electronics mobile platform running a custom application. The application acquires an audio signal from an external user-worn microphone connected to the device analog-to-digital converter (microphone input). This signal is processed to determine the presence or absence of cough sounds. Symptom tallies and raw audio waveforms are recorded and made easily accessible for later review by a healthcare provider. The symptom detection algorithm is based upon standard speech recognition and machine learning paradigms and consists of an audio feature extraction step followed by a Hidden Markov Model based Viterbi decoder that has been trained on a large database of audio examples from a variety of subjects. Multiple Hidden Markov Model topologies and orders are studied. Performance of the recognizer is presented in terms of the sensitivity and the rate of false alarm as determined in a cross-validation test. PMID:25506590
Hidden Markov model tracking of continuous gravitational waves from young supernova remnants
NASA Astrophysics Data System (ADS)
Sun, L.; Melatos, A.; Suvorova, S.; Moran, W.; Evans, R. J.
2018-02-01
Searches for persistent gravitational radiation from nonpulsating neutron stars in young supernova remnants are computationally challenging because of rapid stellar braking. We describe a practical, efficient, semicoherent search based on a hidden Markov model tracking scheme, solved by the Viterbi algorithm, combined with a maximum likelihood matched filter, the F statistic. The scheme is well suited to analyzing data from advanced detectors like the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). It can track rapid phase evolution from secular stellar braking and stochastic timing noise torques simultaneously without searching second- and higher-order derivatives of the signal frequency, providing an economical alternative to stack-slide-based semicoherent algorithms. One implementation tracks the signal frequency alone. A second implementation tracks the signal frequency and its first time derivative. It improves the sensitivity by a factor of a few upon the first implementation, but the cost increases by 2 to 3 orders of magnitude.
Hidden Markov Item Response Theory Models for Responses and Response Times.
Molenaar, Dylan; Oberski, Daniel; Vermunt, Jeroen; De Boeck, Paul
2016-01-01
Current approaches to model responses and response times to psychometric tests solely focus on between-subject differences in speed and ability. Within subjects, speed and ability are assumed to be constants. Violations of this assumption are generally absorbed in the residual of the model. As a result, within-subject departures from the between-subject speed and ability level remain undetected. These departures may be of interest to the researcher as they reflect differences in the response processes adopted on the items of a test. In this article, we propose a dynamic approach for responses and response times based on hidden Markov modeling to account for within-subject differences in responses and response times. A simulation study is conducted to demonstrate acceptable parameter recovery and acceptable performance of various fit indices in distinguishing between different models. In addition, both a confirmatory and an exploratory application are presented to demonstrate the practical value of the modeling approach.
ECG signal analysis through hidden Markov models.
Andreão, Rodrigo V; Dorizzi, Bernadette; Boudy, Jérôme
2006-08-01
This paper presents an original hidden Markov model (HMM) approach for online beat segmentation and classification of electrocardiograms. The HMM framework has been visited because of its ability of beat detection, segmentation and classification, highly suitable to the electrocardiogram (ECG) problem. Our approach addresses a large panel of topics some of them never studied before in other HMM related works: waveforms modeling, multichannel beat segmentation and classification, and unsupervised adaptation to the patient's ECG. The performance was evaluated on the two-channel QT database in terms of waveform segmentation precision, beat detection and classification. Our waveform segmentation results compare favorably to other systems in the literature. We also obtained high beat detection performance with sensitivity of 99.79% and a positive predictivity of 99.96%, using a test set of 59 recordings. Moreover, premature ventricular contraction beats were detected using an original classification strategy. The results obtained validate our approach for real world application.
Failure monitoring in dynamic systems: Model construction without fault training data
NASA Technical Reports Server (NTRS)
Smyth, P.; Mellstrom, J.
1993-01-01
Advances in the use of autoregressive models, pattern recognition methods, and hidden Markov models for on-line health monitoring of dynamic systems (such as DSN antennas) have recently been reported. However, the algorithms described in previous work have the significant drawback that data acquired under fault conditions are assumed to be available in order to train the model used for monitoring the system under observation. This article reports that this assumption can be relaxed and that hidden Markov monitoring models can be constructed using only data acquired under normal conditions and prior knowledge of the system characteristics being measured. The method is described and evaluated on data from the DSS 13 34-m beam wave guide antenna. The primary conclusion from the experimental results is that the method is indeed practical and holds considerable promise for application at the 70-m antenna sites where acquisition of fault data under controlled conditions is not realistic.
Integrating hidden Markov model and PRAAT: a toolbox for robust automatic speech transcription
NASA Astrophysics Data System (ADS)
Kabir, A.; Barker, J.; Giurgiu, M.
2010-09-01
An automatic time-aligned phone transcription toolbox of English speech corpora has been developed. Especially the toolbox would be very useful to generate robust automatic transcription and able to produce phone level transcription using speaker independent models as well as speaker dependent models without manual intervention. The system is based on standard Hidden Markov Models (HMM) approach and it was successfully experimented over a large audiovisual speech corpus namely GRID corpus. One of the most powerful features of the toolbox is the increased flexibility in speech processing where the speech community would be able to import the automatic transcription generated by HMM Toolkit (HTK) into a popular transcription software, PRAAT, and vice-versa. The toolbox has been evaluated through statistical analysis on GRID data which shows that automatic transcription deviates by an average of 20 ms with respect to manual transcription.
Bidargaddi, Niranjan P; Chetty, Madhu; Kamruzzaman, Joarder
2008-06-01
Profile hidden Markov models (HMMs) based on classical HMMs have been widely applied for protein sequence identification. The formulation of the forward and backward variables in profile HMMs is made under statistical independence assumption of the probability theory. We propose a fuzzy profile HMM to overcome the limitations of that assumption and to achieve an improved alignment for protein sequences belonging to a given family. The proposed model fuzzifies the forward and backward variables by incorporating Sugeno fuzzy measures and Choquet integrals, thus further extends the generalized HMM. Based on the fuzzified forward and backward variables, we propose a fuzzy Baum-Welch parameter estimation algorithm for profiles. The strong correlations and the sequence preference involved in the protein structures make this fuzzy architecture based model as a suitable candidate for building profiles of a given family, since the fuzzy set can handle uncertainties better than classical methods.
Tracking problem solving by multivariate pattern analysis and Hidden Markov Model algorithms.
Anderson, John R
2012-03-01
Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application involves using fMRI activity to track what students are doing as they solve a sequence of algebra problems. The methodology achieves considerable accuracy at determining both what problem-solving step the students are taking and whether they are performing that step correctly. The second "model discovery" application involves using statistical model evaluation to determine how many substates are involved in performing a step of algebraic problem solving. This research indicates that different steps involve different numbers of substates and these substates are associated with different fluency in algebra problem solving. Copyright © 2011 Elsevier Ltd. All rights reserved.
Multi-category micro-milling tool wear monitoring with continuous hidden Markov models
NASA Astrophysics Data System (ADS)
Zhu, Kunpeng; Wong, Yoke San; Hong, Geok Soon
2009-02-01
In-process monitoring of tool conditions is important in micro-machining due to the high precision requirement and high tool wear rate. Tool condition monitoring in micro-machining poses new challenges compared to conventional machining. In this paper, a multi-category classification approach is proposed for tool flank wear state identification in micro-milling. Continuous Hidden Markov models (HMMs) are adapted for modeling of the tool wear process in micro-milling, and estimation of the tool wear state given the cutting force features. For a noise-robust approach, the HMM outputs are connected via a medium filter to minimize the tool state before entry into the next state due to high noise level. A detailed study on the selection of HMM structures for tool condition monitoring (TCM) is presented. Case studies on the tool state estimation in the micro-milling of pure copper and steel demonstrate the effectiveness and potential of these methods.
A hidden Markov model approach to neuron firing patterns.
Camproux, A C; Saunier, F; Chouvet, G; Thalabard, J C; Thomas, G
1996-01-01
Analysis and characterization of neuronal discharge patterns are of interest to neurophysiologists and neuropharmacologists. In this paper we present a hidden Markov model approach to modeling single neuron electrical activity. Basically the model assumes that each interspike interval corresponds to one of several possible states of the neuron. Fitting the model to experimental series of interspike intervals by maximum likelihood allows estimation of the number of possible underlying neuron states, the probability density functions of interspike intervals corresponding to each state, and the transition probabilities between states. We present an application to the analysis of recordings of a locus coeruleus neuron under three pharmacological conditions. The model distinguishes two states during halothane anesthesia and during recovery from halothane anesthesia, and four states after administration of clonidine. The transition probabilities yield additional insights into the mechanisms of neuron firing. Images FIGURE 3 PMID:8913581
Camproux, A C; Tufféry, P
2005-08-05
Understanding and predicting protein structures depend on the complexity and the accuracy of the models used to represent them. We have recently set up a Hidden Markov Model to optimally compress protein three-dimensional conformations into a one-dimensional series of letters of a structural alphabet. Such a model learns simultaneously the shape of representative structural letters describing the local conformation and the logic of their connections, i.e. the transition matrix between the letters. Here, we move one step further and report some evidence that such a model of protein local architecture also captures some accurate amino acid features. All the letters have specific and distinct amino acid distributions. Moreover, we show that words of amino acids can have significant propensities for some letters. Perspectives point towards the prediction of the series of letters describing the structure of a protein from its amino acid sequence.
Offline Signature Verification Using the Discrete Radon Transform and a Hidden Markov Model
NASA Astrophysics Data System (ADS)
Coetzer, J.; Herbst, B. M.; du Preez, J. A.
2004-12-01
We developed a system that automatically authenticates offline handwritten signatures using the discrete Radon transform (DRT) and a hidden Markov model (HMM). Given the robustness of our algorithm and the fact that only global features are considered, satisfactory results are obtained. Using a database of 924 signatures from 22 writers, our system achieves an equal error rate (EER) of 18% when only high-quality forgeries (skilled forgeries) are considered and an EER of 4.5% in the case of only casual forgeries. These signatures were originally captured offline. Using another database of 4800 signatures from 51 writers, our system achieves an EER of 12.2% when only skilled forgeries are considered. These signatures were originally captured online and then digitally converted into static signature images. These results compare well with the results of other algorithms that consider only global features.
Understanding eye movements in face recognition using hidden Markov models.
Chuk, Tim; Chan, Antoni B; Hsiao, Janet H
2014-09-16
We use a hidden Markov model (HMM) based approach to analyze eye movement data in face recognition. HMMs are statistical models that are specialized in handling time-series data. We conducted a face recognition task with Asian participants, and model each participant's eye movement pattern with an HMM, which summarized the participant's scan paths in face recognition with both regions of interest and the transition probabilities among them. By clustering these HMMs, we showed that participants' eye movements could be categorized into holistic or analytic patterns, demonstrating significant individual differences even within the same culture. Participants with the analytic pattern had longer response times, but did not differ significantly in recognition accuracy from those with the holistic pattern. We also found that correct and wrong recognitions were associated with distinctive eye movement patterns; the difference between the two patterns lies in the transitions rather than locations of the fixations alone. © 2014 ARVO.
Giehr, Pascal; Kyriakopoulos, Charalampos; Ficz, Gabriella; Wolf, Verena; Walter, Jörn
2016-05-01
DNA methylation and demethylation are opposing processes that when in balance create stable patterns of epigenetic memory. The control of DNA methylation pattern formation by replication dependent and independent demethylation processes has been suggested to be influenced by Tet mediated oxidation of 5mC. Several alternative mechanisms have been proposed suggesting that 5hmC influences either replication dependent maintenance of DNA methylation or replication independent processes of active demethylation. Using high resolution hairpin oxidative bisulfite sequencing data, we precisely determine the amount of 5mC and 5hmC and model the contribution of 5hmC to processes of demethylation in mouse ESCs. We develop an extended hidden Markov model capable of accurately describing the regional contribution of 5hmC to demethylation dynamics. Our analysis shows that 5hmC has a strong impact on replication dependent demethylation, mainly by impairing methylation maintenance.
A Hybrid of Deep Network and Hidden Markov Model for MCI Identification with Resting-State fMRI.
Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang
2015-10-01
In this paper, we propose a novel method for modelling functional dynamics in resting-state fMRI (rs-fMRI) for Mild Cognitive Impairment (MCI) identification. Specifically, we devise a hybrid architecture by combining Deep Auto-Encoder (DAE) and Hidden Markov Model (HMM). The roles of DAE and HMM are, respectively, to discover hierarchical non-linear relations among features, by which we transform the original features into a lower dimension space, and to model dynamic characteristics inherent in rs-fMRI, i.e. , internal state changes. By building a generative model with HMMs for each class individually, we estimate the data likelihood of a test subject as MCI or normal healthy control, based on which we identify the clinical label. In our experiments, we achieved the maximal accuracy of 81.08% with the proposed method, outperforming state-of-the-art methods in the literature.
NASA Astrophysics Data System (ADS)
Yuan, Y.; Meng, Y.; Chen, Y. X.; Jiang, C.; Yue, A. Z.
2018-04-01
In this study, we proposed a method to map urban encroachment onto farmland using satellite image time series (SITS) based on the hierarchical hidden Markov model (HHMM). In this method, the farmland change process is decomposed into three hierarchical levels, i.e., the land cover level, the vegetation phenology level, and the SITS level. Then a three-level HHMM is constructed to model the multi-level semantic structure of farmland change process. Once the HHMM is established, a change from farmland to built-up could be detected by inferring the underlying state sequence that is most likely to generate the input time series. The performance of the method is evaluated on MODIS time series in Beijing. Results on both simulated and real datasets demonstrate that our method improves the change detection accuracy compared with the HMM-based method.
A Hybrid of Deep Network and Hidden Markov Model for MCI Identification with Resting-State fMRI
Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang
2015-01-01
In this paper, we propose a novel method for modelling functional dynamics in resting-state fMRI (rs-fMRI) for Mild Cognitive Impairment (MCI) identification. Specifically, we devise a hybrid architecture by combining Deep Auto-Encoder (DAE) and Hidden Markov Model (HMM). The roles of DAE and HMM are, respectively, to discover hierarchical non-linear relations among features, by which we transform the original features into a lower dimension space, and to model dynamic characteristics inherent in rs-fMRI, i.e., internal state changes. By building a generative model with HMMs for each class individually, we estimate the data likelihood of a test subject as MCI or normal healthy control, based on which we identify the clinical label. In our experiments, we achieved the maximal accuracy of 81.08% with the proposed method, outperforming state-of-the-art methods in the literature. PMID:27054199
Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression
Wiedenhoeft, John; Brugel, Eric; Schliep, Alexander
2016-01-01
By integrating Haar wavelets with Hidden Markov Models, we achieve drastically reduced running times for Bayesian inference using Forward-Backward Gibbs sampling. We show that this improves detection of genomic copy number variants (CNV) in array CGH experiments compared to the state-of-the-art, including standard Gibbs sampling. The method concentrates computational effort on chromosomal segments which are difficult to call, by dynamically and adaptively recomputing consecutive blocks of observations likely to share a copy number. This makes routine diagnostic use and re-analysis of legacy data collections feasible; to this end, we also propose an effective automatic prior. An open source software implementation of our method is available at http://schlieplab.org/Software/HaMMLET/ (DOI: 10.5281/zenodo.46262). This paper was selected for oral presentation at RECOMB 2016, and an abstract is published in the conference proceedings. PMID:27177143
Analyzing Single-Molecule Protein Transportation Experiments via Hierarchical Hidden Markov Models
Chen, Yang; Shen, Kuang
2017-01-01
To maintain proper cellular functions, over 50% of proteins encoded in the genome need to be transported to cellular membranes. The molecular mechanism behind such a process, often referred to as protein targeting, is not well understood. Single-molecule experiments are designed to unveil the detailed mechanisms and reveal the functions of different molecular machineries involved in the process. The experimental data consist of hundreds of stochastic time traces from the fluorescence recordings of the experimental system. We introduce a Bayesian hierarchical model on top of hidden Markov models (HMMs) to analyze these data and use the statistical results to answer the biological questions. In addition to resolving the biological puzzles and delineating the regulating roles of different molecular complexes, our statistical results enable us to propose a more detailed mechanism for the late stages of the protein targeting process. PMID:28943680
Global-constrained hidden Markov model applied on wireless capsule endoscopy video segmentation
NASA Astrophysics Data System (ADS)
Wan, Yiwen; Duraisamy, Prakash; Alam, Mohammad S.; Buckles, Bill
2012-06-01
Accurate analysis of wireless capsule endoscopy (WCE) videos is vital but tedious. Automatic image analysis can expedite this task. Video segmentation of WCE into the four parts of the gastrointestinal tract is one way to assist a physician. The segmentation approach described in this paper integrates pattern recognition with statiscal analysis. Iniatially, a support vector machine is applied to classify video frames into four classes using a combination of multiple color and texture features as the feature vector. A Poisson cumulative distribution, for which the parameter depends on the length of segments, models a prior knowledge. A priori knowledge together with inter-frame difference serves as the global constraints driven by the underlying observation of each WCE video, which is fitted by Gaussian distribution to constrain the transition probability of hidden Markov model.Experimental results demonstrated effectiveness of the approach.
Metastates in Mean-Field Models with Random External Fields Generated by Markov Chains
NASA Astrophysics Data System (ADS)
Formentin, M.; Külske, C.; Reichenbachs, A.
2012-01-01
We extend the construction by Külske and Iacobelli of metastates in finite-state mean-field models in independent disorder to situations where the local disorder terms are a sample of an external ergodic Markov chain in equilibrium. We show that for non-degenerate Markov chains, the structure of the theorems is analogous to the case of i.i.d. variables when the limiting weights in the metastate are expressed with the aid of a CLT for the occupation time measure of the chain. As a new phenomenon we also show in a Potts example that for a degenerate non-reversible chain this CLT approximation is not enough, and that the metastate can have less symmetry than the symmetry of the interaction and a Gaussian approximation of disorder fluctuations would suggest.
Technical manual for basic version of the Markov chain nest productivity model (MCnest)
The Markov Chain Nest Productivity Model (or MCnest) integrates existing toxicity information from three standardized avian toxicity tests with information on species life history and the timing of pesticide applications relative to the timing of avian breeding seasons to quantit...
User’s manual for basic version of MCnest Markov chain nest productivity model
The Markov Chain Nest Productivity Model (or MCnest) integrates existing toxicity information from three standardized avian toxicity tests with information on species life history and the timing of pesticide applications relative to the timing of avian breeding seasons to quantit...
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, we present a simplified parsimonious higher-order multivariate Markov chain model with new convergence condition. (TPHOMMCM-NCC). Moreover, estimation method of the parameters in TPHOMMCM-NCC is give. Numerical experiments illustrate the effectiveness of TPHOMMCM-NCC.
NASA Astrophysics Data System (ADS)
Gudder, Stanley
2008-07-01
A new approach to quantum Markov chains is presented. We first define a transition operation matrix (TOM) as a matrix whose entries are completely positive maps whose column sums form a quantum operation. A quantum Markov chain is defined to be a pair (G,E) where G is a directed graph and E =[Eij] is a TOM whose entry Eij labels the edge from vertex j to vertex i. We think of the vertices of G as sites that a quantum system can occupy and Eij is the transition operation from site j to site i in one time step. The discrete dynamics of the system is obtained by iterating the TOM E. We next consider a special type of TOM called a transition effect matrix. In this case, there are two types of dynamics, a state dynamics and an operator dynamics. Although these two types are not identical, they are statistically equivalent. We next give examples that illustrate various properties of quantum Markov chains. We conclude by showing that our formalism generalizes the usual framework for quantum random walks.
Open Markov Processes and Reaction Networks
ERIC Educational Resources Information Center
Swistock Pollard, Blake Stephen
2017-01-01
We begin by defining the concept of "open" Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain "boundary" states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow…
Markovian prediction of future values for food grains in the economic survey
NASA Astrophysics Data System (ADS)
Sathish, S.; Khadar Babu, S. K.
2017-11-01
Now-a-days prediction and forecasting are plays a vital role in research. For prediction, regression is useful to predict the future value and current value on production process. In this paper, we assume food grain production exhibit Markov chain dependency and time homogeneity. The economic generative performance evaluation the balance time artificial fertilization different level in Estrusdetection using a daily Markov chain model. Finally, Markov process prediction gives better performance compare with Regression model.
Harnessing graphical structure in Markov chain Monte Carlo learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolorz, P.E.; Chew P.C.
1996-12-31
The Monte Carlo method is recognized as a useful tool in learning and probabilistic inference methods common to many datamining problems. Generalized Hidden Markov Models and Bayes nets are especially popular applications. However, the presence of multiple modes in many relevant integrands and summands often renders the method slow and cumbersome. Recent mean field alternatives designed to speed things up have been inspired by experience gleaned from physics. The current work adopts an approach very similar to this in spirit, but focusses instead upon dynamic programming notions as a basis for producing systematic Monte Carlo improvements. The idea is tomore » approximate a given model by a dynamic programming-style decomposition, which then forms a scaffold upon which to build successively more accurate Monte Carlo approximations. Dynamic programming ideas alone fail to account for non-local structure, while standard Monte Carlo methods essentially ignore all structure. However, suitably-crafted hybrids can successfully exploit the strengths of each method, resulting in algorithms that combine speed with accuracy. The approach relies on the presence of significant {open_quotes}local{close_quotes} information in the problem at hand. This turns out to be a plausible assumption for many important applications. Example calculations are presented, and the overall strengths and weaknesses of the approach are discussed.« less
Tracking the visual focus of attention for a varying number of wandering people.
Smith, Kevin; Ba, Sileye O; Odobez, Jean-Marc; Gatica-Perez, Daniel
2008-07-01
We define and address the problem of finding the visual focus of attention for a varying number of wandering people (VFOA-W), determining where the people's movement is unconstrained. VFOA-W estimation is a new and important problem with mplications for behavior understanding and cognitive science, as well as real-world applications. One such application, which we present in this article, monitors the attention passers-by pay to an outdoor advertisement. Our approach to the VFOA-W problem proposes a multi-person tracking solution based on a dynamic Bayesian network that simultaneously infers the (variable) number of people in a scene, their body locations, their head locations, and their head pose. For efficient inference in the resulting large variable-dimensional state-space we propose a Reversible Jump Markov Chain Monte Carlo (RJMCMC) sampling scheme, as well as a novel global observation model which determines the number of people in the scene and localizes them. We propose a Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM)-based VFOA-W model which use head pose and location information to determine people's focus state. Our models are evaluated for tracking performance and ability to recognize people looking at an outdoor advertisement, with results indicating good performance on sequences where a moderate number of people pass in front of an advertisement.
Schmandt, Nicolaus T; Galán, Roberto F
2012-09-14
Markov chains provide realistic models of numerous stochastic processes in nature. We demonstrate that in any Markov chain, the change in occupation number in state A is correlated to the change in occupation number in state B if and only if A and B are directly connected. This implies that if we are only interested in state A, fluctuations in B may be replaced with their mean if state B is not directly connected to A, which shortens computing time considerably. We show the accuracy and efficacy of our approximation theoretically and in simulations of stochastic ion-channel gating in neurons.
Bayesian structural inference for hidden processes.
Strelioff, Christopher C; Crutchfield, James P
2014-04-01
We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological ε-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be ε-machines, irrespective of estimated transition probabilities. Properties of ε-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.
Bayesian structural inference for hidden processes
NASA Astrophysics Data System (ADS)
Strelioff, Christopher C.; Crutchfield, James P.
2014-04-01
We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological ɛ-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be ɛ-machines, irrespective of estimated transition probabilities. Properties of ɛ-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.
Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin
2016-01-01
With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability. PMID:27618053
Das, Raibatak; Cairo, Christopher W.; Coombs, Daniel
2009-01-01
The extraction of hidden information from complex trajectories is a continuing problem in single-particle and single-molecule experiments. Particle trajectories are the result of multiple phenomena, and new methods for revealing changes in molecular processes are needed. We have developed a practical technique that is capable of identifying multiple states of diffusion within experimental trajectories. We model single particle tracks for a membrane-associated protein interacting with a homogeneously distributed binding partner and show that, with certain simplifying assumptions, particle trajectories can be regarded as the outcome of a two-state hidden Markov model. Using simulated trajectories, we demonstrate that this model can be used to identify the key biophysical parameters for such a system, namely the diffusion coefficients of the underlying states, and the rates of transition between them. We use a stochastic optimization scheme to compute maximum likelihood estimates of these parameters. We have applied this analysis to single-particle trajectories of the integrin receptor lymphocyte function-associated antigen-1 (LFA-1) on live T cells. Our analysis reveals that the diffusion of LFA-1 is indeed approximately two-state, and is characterized by large changes in cytoskeletal interactions upon cellular activation. PMID:19893741
User's Manual MCnest - Markov Chain Nest Productivity Model Version 2.0
The Markov chain nest productivity model, or MCnest, is a set of algorithms for integrating the results of avian toxicity tests with reproductive life-history data to project the relative magnitude of chemical effects on avian reproduction. The mathematical foundation of MCnest i...
Document Ranking Based upon Markov Chains.
ERIC Educational Resources Information Center
Danilowicz, Czeslaw; Balinski, Jaroslaw
2001-01-01
Considers how the order of documents in information retrieval responses are determined and introduces a method that uses a probabilistic model of a document set where documents are regarded as states of a Markov chain and where transition probabilities are directly proportional to similarities between documents. (Author/LRW)
Using Markov Chain Analyses in Counselor Education Research
ERIC Educational Resources Information Center
Duys, David K.; Headrick, Todd C.
2004-01-01
This study examined the efficacy of an infrequently used statistical analysis in counselor education research. A Markov chain analysis was used to examine hypothesized differences between students' use of counseling skills in an introductory course. Thirty graduate students participated in the study. Independent raters identified the microskills…
Bayesian analysis of experimental epidemics of foot-and-mouth disease.
Streftaris, George; Gibson, Gavin J.
2004-01-01
We investigate the transmission dynamics of a certain type of foot-and-mouth disease (FMD) virus under experimental conditions. Previous analyses of experimental data from FMD outbreaks in non-homogeneously mixing populations of sheep have suggested a decline in viraemic level through serial passage of the virus, but these do not take into account possible variation in the length of the chain of viral transmission for each animal, which is implicit in the non-observed transmission process. We consider a susceptible-exposed-infectious-removed non-Markovian compartmental model for partially observed epidemic processes, and we employ powerful methodology (Markov chain Monte Carlo) for statistical inference, to address epidemiological issues under a Bayesian framework that accounts for all available information and associated uncertainty in a coherent approach. The analysis allows us to investigate the posterior distribution of the hidden transmission history of the epidemic, and thus to determine the effect of the length of the infection chain on the recorded viraemic levels, based on the posterior distribution of a p-value. Parameter estimates of the epidemiological characteristics of the disease are also obtained. The results reveal a possible decline in viraemia in one of the two experimental outbreaks. Our model also suggests that individual infectivity is related to the level of viraemia. PMID:15306359
Diagonal couplings of quantum Markov chains
NASA Astrophysics Data System (ADS)
Kümmerer, Burkhard; Schwieger, Kay
2016-05-01
In this paper we extend the coupling method from classical probability theory to quantum Markov chains on atomic von Neumann algebras. In particular, we establish a coupling inequality, which allow us to estimate convergence rates by analyzing couplings. For a given tensor dilation we construct a self-coupling of a Markov operator. It turns out that the coupling is a dual version of the extended dual transition operator studied by Gohm et al. We deduce that this coupling is successful if and only if the dilation is asymptotically complete.
Modelling proteins' hidden conformations to predict antibiotic resistance
NASA Astrophysics Data System (ADS)
Hart, Kathryn M.; Ho, Chris M. W.; Dutta, Supratik; Gross, Michael L.; Bowman, Gregory R.
2016-10-01
TEM β-lactamase confers bacteria with resistance to many antibiotics and rapidly evolves activity against new drugs. However, functional changes are not easily explained by differences in crystal structures. We employ Markov state models to identify hidden conformations and explore their role in determining TEM's specificity. We integrate these models with existing drug-design tools to create a new technique, called Boltzmann docking, which better predicts TEM specificity by accounting for conformational heterogeneity. Using our MSMs, we identify hidden states whose populations correlate with activity against cefotaxime. To experimentally detect our predicted hidden states, we use rapid mass spectrometric footprinting and confirm our models' prediction that increased cefotaxime activity correlates with reduced Ω-loop flexibility. Finally, we design novel variants to stabilize the hidden cefotaximase states, and find their populations predict activity against cefotaxime in vitro and in vivo. Therefore, we expect this framework to have numerous applications in drug and protein design.
Modelling proteins’ hidden conformations to predict antibiotic resistance
Hart, Kathryn M.; Ho, Chris M. W.; Dutta, Supratik; Gross, Michael L.; Bowman, Gregory R.
2016-01-01
TEM β-lactamase confers bacteria with resistance to many antibiotics and rapidly evolves activity against new drugs. However, functional changes are not easily explained by differences in crystal structures. We employ Markov state models to identify hidden conformations and explore their role in determining TEM’s specificity. We integrate these models with existing drug-design tools to create a new technique, called Boltzmann docking, which better predicts TEM specificity by accounting for conformational heterogeneity. Using our MSMs, we identify hidden states whose populations correlate with activity against cefotaxime. To experimentally detect our predicted hidden states, we use rapid mass spectrometric footprinting and confirm our models’ prediction that increased cefotaxime activity correlates with reduced Ω-loop flexibility. Finally, we design novel variants to stabilize the hidden cefotaximase states, and find their populations predict activity against cefotaxime in vitro and in vivo. Therefore, we expect this framework to have numerous applications in drug and protein design. PMID:27708258
Avian life history profiles for use in the Markov chain nest productivity model (MCnest)
The Markov Chain nest productivity model, or MCnest, quantitatively estimates the effects of pesticides or other toxic chemicals on annual reproductive success of avian species (Bennett and Etterson 2013, Etterson and Bennett 2013). The Basic Version of MCnest was developed as a...
Exploring Mass Perception with Markov Chain Monte Carlo
ERIC Educational Resources Information Center
Cohen, Andrew L.; Ross, Michael G.
2009-01-01
Several previous studies have examined the ability to judge the relative mass of objects in idealized collisions. With a newly developed technique of psychological Markov chain Monte Carlo sampling (A. N. Sanborn & T. L. Griffiths, 2008), this work explores participants; perceptions of different collision mass ratios. The results reveal…
Hidden Markov models for estimating animal mortality from anthropogenic hazards
Carcasses searches are a common method for studying the risk of anthropogenic hazards to wildlife, including non-target poisoning and collisions with anthropogenic structures. Typically, numbers of carcasses found must be corrected for scavenging rates and imperfect detection. ...
Nested Fork-Join Queuing Networks and Their Application to Mobility Airfield Operations Analysis.
1997-03-01
shortest queue length. Setia , Squillante, and Tripathi [109] extend Makowski and Nelson’s work by performing a quantitative assessment of a range of...Markov chains." Numerical Solution of Markov Chains, edited by W. J. Stewart, 63- 88. Basel: Marcel Dekker, 1991. [109] Setia , S. K., and others
Teaching Markov Chain Monte Carlo: Revealing the Basic Ideas behind the Algorithm
ERIC Educational Resources Information Center
Stewart, Wayne; Stewart, Sepideh
2014-01-01
For many scientists, researchers and students Markov chain Monte Carlo (MCMC) simulation is an important and necessary tool to perform Bayesian analyses. The simulation is often presented as a mathematical algorithm and then translated into an appropriate computer program. However, this can result in overlooking the fundamental and deeper…
Modelling Faculty Replacement Strategies Using a Time-Dependent Finite Markov-Chain Process.
ERIC Educational Resources Information Center
Hackett, E. Raymond; Magg, Alexander A.; Carrigan, Sarah D.
1999-01-01
Describes the use of a time-dependent Markov-chain model to develop faculty-replacement strategies within a college at a research university. The study suggests that a stochastic modelling approach can provide valuable insight when planning for personnel needs in the immediate (five-to-ten year) future. (MSE)
Asteroid mass estimation with Markov-chain Monte Carlo
NASA Astrophysics Data System (ADS)
Siltala, L.; Granvik, M.
2017-09-01
We have developed a new Markov-chain Monte Carlo-based algorithm for asteroid mass estimation based on mutual encounters and tested it for several different asteroids. Our results are in line with previous literature values but suggest that uncertainties of prior estimates may be misleading as a consequence of using linearized methods.
Building Higher-Order Markov Chain Models with EXCEL
ERIC Educational Resources Information Center
Ching, Wai-Ki; Fung, Eric S.; Ng, Michael K.
2004-01-01
Categorical data sequences occur in many applications such as forecasting, data mining and bioinformatics. In this note, we present higher-order Markov chain models for modelling categorical data sequences with an efficient algorithm for solving the model parameters. The algorithm can be implemented easily in a Microsoft EXCEL worksheet. We give a…
UMAP Modules-Units 105, 107-109, 111-112, 158-162.
ERIC Educational Resources Information Center
Keller, Mary K.; And Others
This collection of materials includes six units dealing with applications of matrix methods. These are: 105-Food Service Management; 107-Markov Chains; 108-Electrical Circuits; 109-Food Service and Dietary Requirements; 111-Fixed Point and Absorbing Markov Chains; and 112-Analysis of Linear Circuits. The units contain exercises and model exams,…
Predicting hepatitis B monthly incidence rates using weighted Markov chains and time series methods.
Shahdoust, Maryam; Sadeghifar, Majid; Poorolajal, Jalal; Javanrooh, Niloofar; Amini, Payam
2015-01-01
Hepatitis B (HB) is a major global mortality. Accurately predicting the trend of the disease can provide an appropriate view to make health policy disease prevention. This paper aimed to apply three different to predict monthly incidence rates of HB. This historical cohort study was conducted on the HB incidence data of Hamadan Province, the west of Iran, from 2004 to 2012. Weighted Markov Chain (WMC) method based on Markov chain theory and two time series models including Holt Exponential Smoothing (HES) and SARIMA were applied on the data. The results of different applied methods were compared to correct percentages of predicted incidence rates. The monthly incidence rates were clustered into two clusters as state of Markov chain. The correct predicted percentage of the first and second clusters for WMC, HES and SARIMA methods was (100, 0), (84, 67) and (79, 47) respectively. The overall incidence rate of HBV is estimated to decrease over time. The comparison of results of the three models indicated that in respect to existing seasonality trend and non-stationarity, the HES had the most accurate prediction of the incidence rates.
Operations and support cost modeling using Markov chains
NASA Technical Reports Server (NTRS)
Unal, Resit
1989-01-01
Systems for future missions will be selected with life cycle costs (LCC) as a primary evaluation criterion. This reflects the current realization that only systems which are considered affordable will be built in the future due to the national budget constaints. Such an environment calls for innovative cost modeling techniques which address all of the phases a space system goes through during its life cycle, namely: design and development, fabrication, operations and support; and retirement. A significant portion of the LCC for reusable systems are generated during the operations and support phase (OS). Typically, OS costs can account for 60 to 80 percent of the total LCC. Clearly, OS costs are wholly determined or at least strongly influenced by decisions made during the design and development phases of the project. As a result OS costs need to be considered and estimated early in the conceptual phase. To be effective, an OS cost estimating model needs to account for actual instead of ideal processes by associating cost elements with probabilities. One approach that may be suitable for OS cost modeling is the use of the Markov Chain Process. Markov chains are an important method of probabilistic analysis for operations research analysts but they are rarely used for life cycle cost analysis. This research effort evaluates the use of Markov Chains in LCC analysis by developing OS cost model for a hypothetical reusable space transportation vehicle (HSTV) and suggests further uses of the Markov Chain process as a design-aid tool.
A reward semi-Markov process with memory for wind speed modeling
NASA Astrophysics Data System (ADS)
Petroni, F.; D'Amico, G.; Prattico, F.
2012-04-01
The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. The primary goal of this analysis is the study of the time history of the wind in order to assess its reliability as a source of power and to determine the associated storage levels required. In order to assess this issue we use a probabilistic model based on indexed semi-Markov process [4] to which a reward structure is attached. Our model is used to calculate the expected energy produced by a given turbine and its variability expressed by the variance of the process. Our results can be used to compare different wind farms based on their reward and also on the risk of missed production due to the intrinsic variability of the wind speed process. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and backtesting procedure is used to compare results on first and second oder moments of rewards between real and synthetic data. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic gen- eration of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Re- newable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribu- tion, Renewable Energy 28 (2003) 1787-1802. [4]F. Petroni, G. D'Amico, F. Prattico, Indexed semi-Markov process for wind speed modeling. To be submitted.
2012-01-01
Background Short-chain dehydrogenases/reductases (SDRs) form one of the largest and oldest NAD(P)(H) dependent oxidoreductase families. Despite a conserved ‘Rossmann-fold’ structure, members of the SDR superfamily exhibit low sequence similarities, which constituted a bottleneck in terms of identification. Recent classification methods, relying on hidden-Markov models (HMMs), improved identification and enabled the construction of a nomenclature. However, functional annotations of plant SDRs remain scarce. Results Wide-scale analyses were performed on ten plant genomes. The combination of hidden Markov model (HMM) based analyses and similarity searches led to the construction of an exhaustive inventory of plant SDR. With 68 to 315 members found in each analysed genome, the inventory confirmed the over-representation of SDRs in plants compared to animals, fungi and prokaryotes. The plant SDRs were first classified into three major types — ‘classical’, ‘extended’ and ‘divergent’ — but a minority (10% of the predicted SDRs) could not be classified into these general types (‘unknown’ or ‘atypical’ types). In a second step, we could categorize the vast majority of land plant SDRs into a set of 49 families. Out of these 49 families, 35 appeared early during evolution since they are commonly found through all the Green Lineage. Yet, some SDR families — tropinone reductase-like proteins (SDR65C), ‘ABA2-like’-NAD dehydrogenase (SDR110C), ‘salutaridine/menthone-reductase-like’ proteins (SDR114C), ‘dihydroflavonol 4-reductase’-like proteins (SDR108E) and ‘isoflavone-reductase-like’ (SDR460A) proteins — have undergone significant functional diversification within vascular plants since they diverged from Bryophytes. Interestingly, these diversified families are either involved in the secondary metabolism routes (terpenoids, alkaloids, phenolics) or participate in developmental processes (hormone biosynthesis or catabolism, flower development), in opposition to SDR families involved in primary metabolism which are poorly diversified. Conclusion The application of HMMs to plant genomes enabled us to identify 49 families that encompass all Angiosperms (‘higher plants’) SDRs, each family being sufficiently conserved to enable simpler analyses based only on overall sequence similarity. The multiplicity of SDRs in plant kingdom is mainly explained by the diversification of large families involved in different secondary metabolism pathways, suggesting that the chemical diversification that accompanied the emergence of vascular plants acted as a driving force for SDR evolution. PMID:23167570
Observation uncertainty in reversible Markov chains.
Metzner, Philipp; Weber, Marcus; Schütte, Christof
2010-09-01
In many applications one is interested in finding a simplified model which captures the essential dynamical behavior of a real life process. If the essential dynamics can be assumed to be (approximately) memoryless then a reasonable choice for a model is a Markov model whose parameters are estimated by means of Bayesian inference from an observed time series. We propose an efficient Monte Carlo Markov chain framework to assess the uncertainty of the Markov model and related observables. The derived Gibbs sampler allows for sampling distributions of transition matrices subject to reversibility and/or sparsity constraints. The performance of the suggested sampling scheme is demonstrated and discussed for a variety of model examples. The uncertainty analysis of functions of the Markov model under investigation is discussed in application to the identification of conformations of the trialanine molecule via Robust Perron Cluster Analysis (PCCA+) .
Applications of geostatistics and Markov models for logo recognition
NASA Astrophysics Data System (ADS)
Pham, Tuan
2003-01-01
Spatial covariances based on geostatistics are extracted as representative features of logo or trademark images. These spatial covariances are different from other statistical features for image analysis in that the structural information of an image is independent of the pixel locations and represented in terms of spatial series. We then design a classifier in the sense of hidden Markov models to make use of these geostatistical sequential data to recognize the logos. High recognition rates are obtained from testing the method against a public-domain logo database.
Deep Space Network Antenna Monitoring Using Adaptive Time Series Methods and Hidden Markov Models
NASA Technical Reports Server (NTRS)
Smyth, Padhraic; Mellstrom, Jeff
1993-01-01
The Deep Space Network (DSN)(designed and operated by the Jet Propulsion Laboratory for the National Aeronautics and Space Administration (NASA) provides end-to-end telecommunication capabilities between earth and various interplanetary spacecraft throughout the solar system.
Electronic health record analysis via deep poisson factor models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henao, Ricardo; Lu, James T.; Lucas, Joseph E.
Electronic Health Record (EHR) phenotyping utilizes patient data captured through normal medical practice, to identify features that may represent computational medical phenotypes. These features may be used to identify at-risk patients and improve prediction of patient morbidity and mortality. We present a novel deep multi-modality architecture for EHR analysis (applicable to joint analysis of multiple forms of EHR data), based on Poisson Factor Analysis (PFA) modules. Each modality, composed of observed counts, is represented as a Poisson distribution, parameterized in terms of hidden binary units. In-formation from different modalities is shared via a deep hierarchy of common hidden units. Activationmore » of these binary units occurs with probability characterized as Bernoulli-Poisson link functions, instead of more traditional logistic link functions. In addition, we demon-strate that PFA modules can be adapted to discriminative modalities. To compute model parameters, we derive efficient Markov Chain Monte Carlo (MCMC) inference that scales efficiently, with significant computational gains when compared to related models based on logistic link functions. To explore the utility of these models, we apply them to a subset of patients from the Duke-Durham patient cohort. We identified a cohort of over 12,000 patients with Type 2 Diabetes Mellitus (T2DM) based on diagnosis codes and laboratory tests out of our patient population of over 240,000. Examining the common hidden units uniting the PFA modules, we identify patient features that represent medical concepts. Experiments indicate that our learned features are better able to predict mortality and morbidity than clinical features identified previously in a large-scale clinical trial.« less
Electronic health record analysis via deep poisson factor models
Henao, Ricardo; Lu, James T.; Lucas, Joseph E.; ...
2016-01-01
Electronic Health Record (EHR) phenotyping utilizes patient data captured through normal medical practice, to identify features that may represent computational medical phenotypes. These features may be used to identify at-risk patients and improve prediction of patient morbidity and mortality. We present a novel deep multi-modality architecture for EHR analysis (applicable to joint analysis of multiple forms of EHR data), based on Poisson Factor Analysis (PFA) modules. Each modality, composed of observed counts, is represented as a Poisson distribution, parameterized in terms of hidden binary units. In-formation from different modalities is shared via a deep hierarchy of common hidden units. Activationmore » of these binary units occurs with probability characterized as Bernoulli-Poisson link functions, instead of more traditional logistic link functions. In addition, we demon-strate that PFA modules can be adapted to discriminative modalities. To compute model parameters, we derive efficient Markov Chain Monte Carlo (MCMC) inference that scales efficiently, with significant computational gains when compared to related models based on logistic link functions. To explore the utility of these models, we apply them to a subset of patients from the Duke-Durham patient cohort. We identified a cohort of over 12,000 patients with Type 2 Diabetes Mellitus (T2DM) based on diagnosis codes and laboratory tests out of our patient population of over 240,000. Examining the common hidden units uniting the PFA modules, we identify patient features that represent medical concepts. Experiments indicate that our learned features are better able to predict mortality and morbidity than clinical features identified previously in a large-scale clinical trial.« less
Time series segmentation: a new approach based on Genetic Algorithm and Hidden Markov Model
NASA Astrophysics Data System (ADS)
Toreti, A.; Kuglitsch, F. G.; Xoplaki, E.; Luterbacher, J.
2009-04-01
The subdivision of a time series into homogeneous segments has been performed using various methods applied to different disciplines. In climatology, for example, it is accompanied by the well-known homogenization problem and the detection of artificial change points. In this context, we present a new method (GAMM) based on Hidden Markov Model (HMM) and Genetic Algorithm (GA), applicable to series of independent observations (and easily adaptable to autoregressive processes). A left-to-right hidden Markov model, estimating the parameters and the best-state sequence, respectively, with the Baum-Welch and Viterbi algorithms, was applied. In order to avoid the well-known dependence of the Baum-Welch algorithm on the initial condition, a Genetic Algorithm was developed. This algorithm is characterized by mutation, elitism and a crossover procedure implemented with some restrictive rules. Moreover the function to be minimized was derived following the approach of Kehagias (2004), i.e. it is the so-called complete log-likelihood. The number of states was determined applying a two-fold cross-validation procedure (Celeux and Durand, 2008). Being aware that the last issue is complex, and it influences all the analysis, a Multi Response Permutation Procedure (MRPP; Mielke et al., 1981) was inserted. It tests the model with K+1 states (where K is the state number of the best model) if its likelihood is close to K-state model. Finally, an evaluation of the GAMM performances, applied as a break detection method in the field of climate time series homogenization, is shown. 1. G. Celeux and J.B. Durand, Comput Stat 2008. 2. A. Kehagias, Stoch Envir Res 2004. 3. P.W. Mielke, K.J. Berry, G.W. Brier, Monthly Wea Rev 1981.
McKim, James M.; Hartung, Thomas; Kleensang, Andre; Sá-Rocha, Vanessa
2016-01-01
Supervised learning methods promise to improve integrated testing strategies (ITS), but must be adjusted to handle high dimensionality and dose–response data. ITS approaches are currently fueled by the increasing mechanistic understanding of adverse outcome pathways (AOP) and the development of tests reflecting these mechanisms. Simple approaches to combine skin sensitization data sets, such as weight of evidence, fail due to problems in information redundancy and high dimension-ality. The problem is further amplified when potency information (dose/response) of hazards would be estimated. Skin sensitization currently serves as the foster child for AOP and ITS development, as legislative pressures combined with a very good mechanistic understanding of contact dermatitis have led to test development and relatively large high-quality data sets. We curated such a data set and combined a recursive variable selection algorithm to evaluate the information available through in silico, in chemico and in vitro assays. Chemical similarity alone could not cluster chemicals’ potency, and in vitro models consistently ranked high in recursive feature elimination. This allows reducing the number of tests included in an ITS. Next, we analyzed with a hidden Markov model that takes advantage of an intrinsic inter-relationship among the local lymph node assay classes, i.e. the monotonous connection between local lymph node assay and dose. The dose-informed random forest/hidden Markov model was superior to the dose-naive random forest model on all data sets. Although balanced accuracy improvement may seem small, this obscures the actual improvement in misclassifications as the dose-informed hidden Markov model strongly reduced "false-negatives" (i.e. extreme sensitizers as non-sensitizer) on all data sets. PMID:26046447
Luechtefeld, Thomas; Maertens, Alexandra; McKim, James M; Hartung, Thomas; Kleensang, Andre; Sá-Rocha, Vanessa
2015-11-01
Supervised learning methods promise to improve integrated testing strategies (ITS), but must be adjusted to handle high dimensionality and dose-response data. ITS approaches are currently fueled by the increasing mechanistic understanding of adverse outcome pathways (AOP) and the development of tests reflecting these mechanisms. Simple approaches to combine skin sensitization data sets, such as weight of evidence, fail due to problems in information redundancy and high dimensionality. The problem is further amplified when potency information (dose/response) of hazards would be estimated. Skin sensitization currently serves as the foster child for AOP and ITS development, as legislative pressures combined with a very good mechanistic understanding of contact dermatitis have led to test development and relatively large high-quality data sets. We curated such a data set and combined a recursive variable selection algorithm to evaluate the information available through in silico, in chemico and in vitro assays. Chemical similarity alone could not cluster chemicals' potency, and in vitro models consistently ranked high in recursive feature elimination. This allows reducing the number of tests included in an ITS. Next, we analyzed with a hidden Markov model that takes advantage of an intrinsic inter-relationship among the local lymph node assay classes, i.e. the monotonous connection between local lymph node assay and dose. The dose-informed random forest/hidden Markov model was superior to the dose-naive random forest model on all data sets. Although balanced accuracy improvement may seem small, this obscures the actual improvement in misclassifications as the dose-informed hidden Markov model strongly reduced " false-negatives" (i.e. extreme sensitizers as non-sensitizer) on all data sets. Copyright © 2015 John Wiley & Sons, Ltd.
Markov-modulated Markov chains and the covarion process of molecular evolution.
Galtier, N; Jean-Marie, A
2004-01-01
The covarion (or site specific rate variation, SSRV) process of biological sequence evolution is a process by which the evolutionary rate of a nucleotide/amino acid/codon position can change in time. In this paper, we introduce time-continuous, space-discrete, Markov-modulated Markov chains as a model for representing SSRV processes, generalizing existing theory to any model of rate change. We propose a fast algorithm for diagonalizing the generator matrix of relevant Markov-modulated Markov processes. This algorithm makes phylogeny likelihood calculation tractable even for a large number of rate classes and a large number of states, so that SSRV models become applicable to amino acid or codon sequence datasets. Using this algorithm, we investigate the accuracy of the discrete approximation to the Gamma distribution of evolutionary rates, widely used in molecular phylogeny. We show that a relatively large number of classes is required to achieve accurate approximation of the exact likelihood when the number of analyzed sequences exceeds 20, both under the SSRV and among site rate variation (ASRV) models.
The cutoff phenomenon in finite Markov chains.
Diaconis, P
1996-01-01
Natural mixing processes modeled by Markov chains often show a sharp cutoff in their convergence to long-time behavior. This paper presents problems where the cutoff can be proved (card shuffling, the Ehrenfests' urn). It shows that chains with polynomial growth (drunkard's walk) do not show cutoffs. The best general understanding of such cutoffs (high multiplicity of second eigenvalues due to symmetry) is explored. Examples are given where the symmetry is broken but the cutoff phenomenon persists. PMID:11607633
Experiences with Markov Chain Monte Carlo Convergence Assessment in Two Psychometric Examples
ERIC Educational Resources Information Center
Sinharay, Sandip
2004-01-01
There is an increasing use of Markov chain Monte Carlo (MCMC) algorithms for fitting statistical models in psychometrics, especially in situations where the traditional estimation techniques are very difficult to apply. One of the disadvantages of using an MCMC algorithm is that it is not straightforward to determine the convergence of the…
A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis
ERIC Educational Resources Information Center
Edwards, Michael C.
2010-01-01
Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show…
Markov Chain Monte Carlo Estimation of Item Parameters for the Generalized Graded Unfolding Model
ERIC Educational Resources Information Center
de la Torre, Jimmy; Stark, Stephen; Chernyshenko, Oleksandr S.
2006-01-01
The authors present a Markov Chain Monte Carlo (MCMC) parameter estimation procedure for the generalized graded unfolding model (GGUM) and compare it to the marginal maximum likelihood (MML) approach implemented in the GGUM2000 computer program, using simulated and real personality data. In the simulation study, test length, number of response…
ERIC Educational Resources Information Center
Kieftenbeld, Vincent; Natesan, Prathiba
2012-01-01
Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…
Chutes and Ladders for the Impatient
ERIC Educational Resources Information Center
Cheteyan, Leslie A.; Hengeveld, Stewart; Jones, Michael A.
2011-01-01
In this paper, we review the rules and game board for "Chutes and Ladders", define a Markov chain to model the game regardless of the spinner range, and describe how properties of Markov chains are used to determine that an optimal spinner range of 15 minimizes the expected number of turns for a player to complete the game. Because the Markov…
Students' Progress throughout Examination Process as a Markov Chain
ERIC Educational Resources Information Center
Hlavatý, Robert; Dömeová, Ludmila
2014-01-01
The paper is focused on students of Mathematical methods in economics at the Czech university of life sciences (CULS) in Prague. The idea is to create a model of students' progress throughout the whole course using the Markov chain approach. Each student has to go through various stages of the course requirements where his success depends on the…
NASA Astrophysics Data System (ADS)
Julie, Hongki; Pasaribu, Udjianna S.; Pancoro, Adi
2015-12-01
This paper will allow Markov Chain's application in genome shared identical by descent by two individual at full sibs model. The full sibs model was a continuous time Markov Chain with three state. In the full sibs model, we look for the cumulative distribution function of the number of sub segment which have 2 IBD haplotypes from a segment of the chromosome which the length is t Morgan and the cumulative distribution function of the number of sub segment which have at least 1 IBD haplotypes from a segment of the chromosome which the length is t Morgan. This cumulative distribution function will be developed by the moment generating function.
Network Security Risk Assessment System Based on Attack Graph and Markov Chain
NASA Astrophysics Data System (ADS)
Sun, Fuxiong; Pi, Juntao; Lv, Jin; Cao, Tian
2017-10-01
Network security risk assessment technology can be found in advance of the network problems and related vulnerabilities, it has become an important means to solve the problem of network security. Based on attack graph and Markov chain, this paper provides a Network Security Risk Assessment Model (NSRAM). Based on the network infiltration tests, NSRAM generates the attack graph by the breadth traversal algorithm. Combines with the international standard CVSS, the attack probability of atomic nodes are counted, and then the attack transition probabilities of ones are calculated by Markov chain. NSRAM selects the optimal attack path after comprehensive measurement to assessment network security risk. The simulation results show that NSRAM can reflect the actual situation of network security objectively.
An 'adding' algorithm for the Markov chain formalism for radiation transfer
NASA Technical Reports Server (NTRS)
Esposito, L. W.
1979-01-01
An adding algorithm is presented, that extends the Markov chain method and considers a preceding calculation as a single state of a new Markov chain. This method takes advantage of the description of the radiation transport as a stochastic process. Successive application of this procedure makes calculation possible for any optical depth without increasing the size of the linear system used. It is determined that the time required for the algorithm is comparable to that for a doubling calculation for homogeneous atmospheres. For an inhomogeneous atmosphere the new method is considerably faster than the standard adding routine. It is concluded that the algorithm is efficient, accurate, and suitable for smaller computers in calculating the diffuse intensity scattered by an inhomogeneous planetary atmosphere.
Metastable Distributions of Markov Chains with Rare Transitions
NASA Astrophysics Data System (ADS)
Freidlin, M.; Koralov, L.
2017-06-01
In this paper we consider Markov chains X^\\varepsilon _t with transition rates that depend on a small parameter \\varepsilon . We are interested in the long time behavior of X^\\varepsilon _t at various \\varepsilon -dependent time scales t = t(\\varepsilon ). The asymptotic behavior depends on how the point (1/\\varepsilon , t(\\varepsilon )) approaches infinity. We introduce a general notion of complete asymptotic regularity (a certain asymptotic relation between the ratios of transition rates), which ensures the existence of the metastable distribution for each initial point and a given time scale t(\\varepsilon ). The technique of i-graphs allows one to describe the metastable distribution explicitly. The result may be viewed as a generalization of the ergodic theorem to the case of parameter-dependent Markov chains.
NASA Astrophysics Data System (ADS)
Faizrahnemoon, Mahsa; Schlote, Arieh; Maggi, Lorenzo; Crisostomi, Emanuele; Shorten, Robert
2015-11-01
This paper describes a Markov-chain-based approach to modelling multi-modal transportation networks. An advantage of the model is the ability to accommodate complex dynamics and handle huge amounts of data. The transition matrix of the Markov chain is built and the model is validated using the data extracted from a traffic simulator. A realistic test-case using multi-modal data from the city of London is given to further support the ability of the proposed methodology to handle big quantities of data. Then, we use the Markov chain as a control tool to improve the overall efficiency of a transportation network, and some practical examples are described to illustrate the potentials of the approach.
A Hidden Markov Model for Urban-Scale Traffic Estimation Using Floating Car Data.
Wang, Xiaomeng; Peng, Ling; Chi, Tianhe; Li, Mengzhu; Yao, Xiaojing; Shao, Jing
2015-01-01
Urban-scale traffic monitoring plays a vital role in reducing traffic congestion. Owing to its low cost and wide coverage, floating car data (FCD) serves as a novel approach to collecting traffic data. However, sparse probe data represents the vast majority of the data available on arterial roads in most urban environments. In order to overcome the problem of data sparseness, this paper proposes a hidden Markov model (HMM)-based traffic estimation model, in which the traffic condition on a road segment is considered as a hidden state that can be estimated according to the conditions of road segments having similar traffic characteristics. An algorithm based on clustering and pattern mining rather than on adjacency relationships is proposed to find clusters with road segments having similar traffic characteristics. A multi-clustering strategy is adopted to achieve a trade-off between clustering accuracy and coverage. Finally, the proposed model is designed and implemented on the basis of a real-time algorithm. Results of experiments based on real FCD confirm the applicability, accuracy, and efficiency of the model. In addition, the results indicate that the model is practicable for traffic estimation on urban arterials and works well even when more than 70% of the probe data are missing.
Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks
NASA Astrophysics Data System (ADS)
Zhu, Shijia; Wang, Yadong
2015-12-01
Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.
Hidden Markov Models as a tool to measure pilot attention switching during simulated ILS approaches
DOT National Transportation Integrated Search
2003-04-14
The pilot's instrument scanning data contain information about not only the pilot's eye movements, but also the pilot's : cognitive process during flight. However, it is often difficult to interpret the scanning data at the cognitive level : because:...
Fischer, Carlos N; Campos, Victor De A; Barella, Victor H
2018-05-01
Profile hidden Markov models (pHMMs) have been used to search for transposable elements (TEs) in genomes. For the learning of pHMMs aimed to search for TEs of the retrotransposon class, the conventional protocol is to use the whole internal nucleotide portions of these elements as representative sequences. To further explore the potential of pHMMs in such a search, we propose five alternative ways to obtain the sets of representative sequences of TEs other than the conventional protocol. In this study, we are interested in Bel-PAO, Copia, Gypsy, and DIRS superfamilies from the retrotransposon class. We compared the pHMMs of all six protocols. The test results show that, for each TE superfamily, the pHMMs of at least two of the proposed protocols performed better than the conventional one and that the number of correct predictions provided by the latter can be improved by considering together the results of one or more of the alternative protocols.
EMG-based speech recognition using hidden markov models with global control variables.
Lee, Ki-Seung
2008-03-01
It is well known that a strong relationship exists between human voices and the movement of articulatory facial muscles. In this paper, we utilize this knowledge to implement an automatic speech recognition scheme which uses solely surface electromyogram (EMG) signals. The sequence of EMG signals for each word is modelled by a hidden Markov model (HMM) framework. The main objective of the work involves building a model for state observation density when multichannel observation sequences are given. The proposed model reflects the dependencies between each of the EMG signals, which are described by introducing a global control variable. We also develop an efficient model training method, based on a maximum likelihood criterion. In a preliminary study, 60 isolated words were used as recognition variables. EMG signals were acquired from three articulatory facial muscles. The findings indicate that such a system may have the capacity to recognize speech signals with an accuracy of up to 87.07%, which is superior to the independent probabilistic model.
Ito, Sosuke
2016-01-01
The transfer entropy is a well-established measure of information flow, which quantifies directed influence between two stochastic time series and has been shown to be useful in a variety fields of science. Here we introduce the transfer entropy of the backward time series called the backward transfer entropy, and show that the backward transfer entropy quantifies how far it is from dynamics to a hidden Markov model. Furthermore, we discuss physical interpretations of the backward transfer entropy in completely different settings of thermodynamics for information processing and the gambling with side information. In both settings of thermodynamics and the gambling, the backward transfer entropy characterizes a possible loss of some benefit, where the conventional transfer entropy characterizes a possible benefit. Our result implies the deep connection between thermodynamics and the gambling in the presence of information flow, and that the backward transfer entropy would be useful as a novel measure of information flow in nonequilibrium thermodynamics, biochemical sciences, economics and statistics. PMID:27833120
Monthly streamflow forecasting based on hidden Markov model and Gaussian Mixture Regression
NASA Astrophysics Data System (ADS)
Liu, Yongqi; Ye, Lei; Qin, Hui; Hong, Xiaofeng; Ye, Jiajun; Yin, Xingli
2018-06-01
Reliable streamflow forecasts can be highly valuable for water resources planning and management. In this study, we combined a hidden Markov model (HMM) and Gaussian Mixture Regression (GMR) for probabilistic monthly streamflow forecasting. The HMM is initialized using a kernelized K-medoids clustering method, and the Baum-Welch algorithm is then executed to learn the model parameters. GMR derives a conditional probability distribution for the predictand given covariate information, including the antecedent flow at a local station and two surrounding stations. The performance of HMM-GMR was verified based on the mean square error and continuous ranked probability score skill scores. The reliability of the forecasts was assessed by examining the uniformity of the probability integral transform values. The results show that HMM-GMR obtained reasonably high skill scores and the uncertainty spread was appropriate. Different HMM states were assumed to be different climate conditions, which would lead to different types of observed values. We demonstrated that the HMM-GMR approach can handle multimodal and heteroscedastic data.
Multi-scale chromatin state annotation using a hierarchical hidden Markov model
NASA Astrophysics Data System (ADS)
Marco, Eugenio; Meuleman, Wouter; Huang, Jialiang; Glass, Kimberly; Pinello, Luca; Wang, Jianrong; Kellis, Manolis; Yuan, Guo-Cheng
2017-04-01
Chromatin-state analysis is widely applied in the studies of development and diseases. However, existing methods operate at a single length scale, and therefore cannot distinguish large domains from isolated elements of the same type. To overcome this limitation, we present a hierarchical hidden Markov model, diHMM, to systematically annotate chromatin states at multiple length scales. We apply diHMM to analyse a public ChIP-seq data set. diHMM not only accurately captures nucleosome-level information, but identifies domain-level states that vary in nucleosome-level state composition, spatial distribution and functionality. The domain-level states recapitulate known patterns such as super-enhancers, bivalent promoters and Polycomb repressed regions, and identify additional patterns whose biological functions are not yet characterized. By integrating chromatin-state information with gene expression and Hi-C data, we identify context-dependent functions of nucleosome-level states. Thus, diHMM provides a powerful tool for investigating the role of higher-order chromatin structure in gene regulation.
NASA Astrophysics Data System (ADS)
Ito, Sosuke
2016-11-01
The transfer entropy is a well-established measure of information flow, which quantifies directed influence between two stochastic time series and has been shown to be useful in a variety fields of science. Here we introduce the transfer entropy of the backward time series called the backward transfer entropy, and show that the backward transfer entropy quantifies how far it is from dynamics to a hidden Markov model. Furthermore, we discuss physical interpretations of the backward transfer entropy in completely different settings of thermodynamics for information processing and the gambling with side information. In both settings of thermodynamics and the gambling, the backward transfer entropy characterizes a possible loss of some benefit, where the conventional transfer entropy characterizes a possible benefit. Our result implies the deep connection between thermodynamics and the gambling in the presence of information flow, and that the backward transfer entropy would be useful as a novel measure of information flow in nonequilibrium thermodynamics, biochemical sciences, economics and statistics.
Hand gesture recognition in confined spaces with partial observability and occultation constraints
NASA Astrophysics Data System (ADS)
Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen
2016-05-01
Human activity detection and recognition capabilities have broad applications for military and homeland security. These tasks are very complicated, however, especially when multiple persons are performing concurrent activities in confined spaces that impose significant obstruction, occultation, and observability uncertainty. In this paper, our primary contribution is to present a dedicated taxonomy and kinematic ontology that are developed for in-vehicle group human activities (IVGA). Secondly, we describe a set of hand-observable patterns that represents certain IVGA examples. Thirdly, we propose two classifiers for hand gesture recognition and compare their performance individually and jointly. Finally, we present a variant of Hidden Markov Model for Bayesian tracking, recognition, and annotation of hand motions, which enables spatiotemporal inference to human group activity perception and understanding. To validate our approach, synthetic (graphical data from virtual environment) and real physical environment video imagery are employed to verify the performance of these hand gesture classifiers, while measuring their efficiency and effectiveness based on the proposed Hidden Markov Model for tracking and interpreting dynamic spatiotemporal IVGA scenarios.
Naive scoring of human sleep based on a hidden Markov model of the electroencephalogram.
Yaghouby, Farid; Modur, Pradeep; Sunderam, Sridhar
2014-01-01
Clinical sleep scoring involves tedious visual review of overnight polysomnograms by a human expert. Many attempts have been made to automate the process by training computer algorithms such as support vector machines and hidden Markov models (HMMs) to replicate human scoring. Such supervised classifiers are typically trained on scored data and then validated on scored out-of-sample data. Here we describe a methodology based on HMMs for scoring an overnight sleep recording without the benefit of a trained initial model. The number of states in the data is not known a priori and is optimized using a Bayes information criterion. When tested on a 22-subject database, this unsupervised classifier agreed well with human scores (mean of Cohen's kappa > 0.7). The HMM also outperformed other unsupervised classifiers (Gaussian mixture models, k-means, and linkage trees), that are capable of naive classification but do not model dynamics, by a significant margin (p < 0.05).
A classification of marked hijaiyah letters' pronunciation using hidden Markov model
NASA Astrophysics Data System (ADS)
Wisesty, Untari N.; Mubarok, M. Syahrul; Adiwijaya
2017-08-01
Hijaiyah letters are the letters that arrange the words in Al Qur'an consisting of 28 letters. They symbolize the consonant sounds. On the other hand, the vowel sounds are symbolized by harokat/marks. Speech recognition system is a system used to process the sound signal to be data so that it can be recognized by computer. To build the system, some stages are needed i.e characteristics/feature extraction and classification. In this research, LPC and MFCC extraction method, K-Means Quantization vector and Hidden Markov Model classification are used. The data used are the 28 letters and 6 harakat with the total class of 168. After several are testing done, it can be concluded that the system can recognize the pronunciation pattern of marked hijaiyah letter very well in the training data with its highest accuracy of 96.1% using the feature of LPC extraction and 94% using the MFCC. Meanwhile, when testing system is used, the accuracy decreases up to 41%.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Jiang, Ling; Han, Lei
2018-04-01
Convective storm nowcasting refers to the prediction of the convective weather initiation, development, and decay in a very short term (typically 0 2 h) .Despite marked progress over the past years, severe convective storm nowcasting still remains a challenge. With the boom of machine learning, it has been well applied in various fields, especially convolutional neural network (CNN). In this paper, we build a servere convective weather nowcasting system based on CNN and hidden Markov model (HMM) using reanalysis meteorological data. The goal of convective storm nowcasting is to predict if there is a convective storm in 30min. In this paper, we compress the VDRAS reanalysis data to low-dimensional data by CNN as the observation vector of HMM, then obtain the development trend of strong convective weather in the form of time series. It shows that, our method can extract robust features without any artificial selection of features, and can capture the development trend of strong convective storm.
Prestat, Emmanuel; David, Maude M.; Hultman, Jenni; ...
2014-09-26
A new functional gene database, FOAM (Functional Ontology Assignments for Metagenomes), was developed to screen environmental metagenomic sequence datasets. FOAM provides a new functional ontology dedicated to classify gene functions relevant to environmental microorganisms based on Hidden Markov Models (HMMs). Sets of aligned protein sequences (i.e. ‘profiles’) were tailored to a large group of target KEGG Orthologs (KOs) from which HMMs were trained. The alignments were checked and curated to make them specific to the targeted KO. Within this process, sequence profiles were enriched with the most abundant sequences available to maximize the yield of accurate classifier models. An associatedmore » functional ontology was built to describe the functional groups and hierarchy. FOAM allows the user to select the target search space before HMM-based comparison steps and to easily organize the results into different functional categories and subcategories. FOAM is publicly available at http://portal.nersc.gov/project/m1317/FOAM/.« less
On equivalent parameter learning in simplified feature space based on Bayesian asymptotic analysis.
Yamazaki, Keisuke
2012-07-01
Parametric models for sequential data, such as hidden Markov models, stochastic context-free grammars, and linear dynamical systems, are widely used in time-series analysis and structural data analysis. Computation of the likelihood function is one of primary considerations in many learning methods. Iterative calculation of the likelihood such as the model selection is still time-consuming though there are effective algorithms based on dynamic programming. The present paper studies parameter learning in a simplified feature space to reduce the computational cost. Simplifying data is a common technique seen in feature selection and dimension reduction though an oversimplified space causes adverse learning results. Therefore, we mathematically investigate a condition of the feature map to have an asymptotically equivalent convergence point of estimated parameters, referred to as the vicarious map. As a demonstration to find vicarious maps, we consider the feature space, which limits the length of data, and derive a necessary length for parameter learning in hidden Markov models. Copyright © 2012 Elsevier Ltd. All rights reserved.
Griffin, William A.; Li, Xun
2016-01-01
Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects—some good and some bad—on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social processes connected to the varied outcomes remain enigmatic. Using extant data we developed a method of classifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM). Our findings indicate that several key aspects of existing models of marital interaction are inadequate: affect state emissions and their durations, along with the expected variability differences between distressed and nondistressed couples are present but highly nuanced; and most surprisingly, heterogeneity among highly satisfied couples necessitate that they be divided into subgroups. We review how this unsupervised learning technique generates plausible dyadic sequences that are sensitive to relationship quality and provide a natural mechanism for computational models of behavioral and affective micro-social processes. PMID:27187319
Hidden Markov Model-Based CNV Detection Algorithms for Illumina Genotyping Microarrays.
Seiser, Eric L; Innocenti, Federico
2014-01-01
Somatic alterations in DNA copy number have been well studied in numerous malignancies, yet the role of germline DNA copy number variation in cancer is still emerging. Genotyping microarrays generate allele-specific signal intensities to determine genotype, but may also be used to infer DNA copy number using additional computational approaches. Numerous tools have been developed to analyze Illumina genotype microarray data for copy number variant (CNV) discovery, although commonly utilized algorithms freely available to the public employ approaches based upon the use of hidden Markov models (HMMs). QuantiSNP, PennCNV, and GenoCN utilize HMMs with six copy number states but vary in how transition and emission probabilities are calculated. Performance of these CNV detection algorithms has been shown to be variable between both genotyping platforms and data sets, although HMM approaches generally outperform other current methods. Low sensitivity is prevalent with HMM-based algorithms, suggesting the need for continued improvement in CNV detection methodologies.
Utterance independent bimodal emotion recognition in spontaneous communication
NASA Astrophysics Data System (ADS)
Tao, Jianhua; Pan, Shifeng; Yang, Minghao; Li, Ya; Mu, Kaihui; Che, Jianfeng
2011-12-01
Emotion expressions sometimes are mixed with the utterance expression in spontaneous face-to-face communication, which makes difficulties for emotion recognition. This article introduces the methods of reducing the utterance influences in visual parameters for the audio-visual-based emotion recognition. The audio and visual channels are first combined under a Multistream Hidden Markov Model (MHMM). Then, the utterance reduction is finished by finding the residual between the real visual parameters and the outputs of the utterance related visual parameters. This article introduces the Fused Hidden Markov Model Inversion method which is trained in the neutral expressed audio-visual corpus to solve the problem. To reduce the computing complexity the inversion model is further simplified to a Gaussian Mixture Model (GMM) mapping. Compared with traditional bimodal emotion recognition methods (e.g., SVM, CART, Boosting), the utterance reduction method can give better results of emotion recognition. The experiments also show the effectiveness of our emotion recognition system when it was used in a live environment.
NASA Astrophysics Data System (ADS)
Attaluri, Pavan K.; Chen, Zhengxin; Weerakoon, Aruna M.; Lu, Guoqing
Multiple criteria decision making (MCDM) has significant impact in bioinformatics. In the research reported here, we explore the integration of decision tree (DT) and Hidden Markov Model (HMM) for subtype prediction of human influenza A virus. Infection with influenza viruses continues to be an important public health problem. Viral strains of subtype H3N2 and H1N1 circulates in humans at least twice annually. The subtype detection depends mainly on the antigenic assay, which is time-consuming and not fully accurate. We have developed a Web system for accurate subtype detection of human influenza virus sequences. The preliminary experiment showed that this system is easy-to-use and powerful in identifying human influenza subtypes. Our next step is to examine the informative positions at the protein level and extend its current functionality to detect more subtypes. The web functions can be accessed at http://glee.ist.unomaha.edu/.
Enhancing speech recognition using improved particle swarm optimization based hidden Markov model.
Selvaraj, Lokesh; Ganesan, Balakrishnan
2014-01-01
Enhancing speech recognition is the primary intention of this work. In this paper a novel speech recognition method based on vector quantization and improved particle swarm optimization (IPSO) is suggested. The suggested methodology contains four stages, namely, (i) denoising, (ii) feature mining (iii), vector quantization, and (iv) IPSO based hidden Markov model (HMM) technique (IP-HMM). At first, the speech signals are denoised using median filter. Next, characteristics such as peak, pitch spectrum, Mel frequency Cepstral coefficients (MFCC), mean, standard deviation, and minimum and maximum of the signal are extorted from the denoised signal. Following that, to accomplish the training process, the extracted characteristics are given to genetic algorithm based codebook generation in vector quantization. The initial populations are created by selecting random code vectors from the training set for the codebooks for the genetic algorithm process and IP-HMM helps in doing the recognition. At this point the creativeness will be done in terms of one of the genetic operation crossovers. The proposed speech recognition technique offers 97.14% accuracy.
Passive acoustic leak detection for sodium cooled fast reactors using hidden Markov models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riber Marklund, A.; Kishore, S.; Prakash, V.
2015-07-01
Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970's and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), themore » proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control. (authors)« less
Castillo-Barnes, Diego; Peis, Ignacio; Martínez-Murcia, Francisco J.; Segovia, Fermín; Illán, Ignacio A.; Górriz, Juan M.; Ramírez, Javier; Salas-Gonzalez, Diego
2017-01-01
A wide range of segmentation approaches assumes that intensity histograms extracted from magnetic resonance images (MRI) have a distribution for each brain tissue that can be modeled by a Gaussian distribution or a mixture of them. Nevertheless, intensity histograms of White Matter and Gray Matter are not symmetric and they exhibit heavy tails. In this work, we present a hidden Markov random field model with expectation maximization (EM-HMRF) modeling the components using the α-stable distribution. The proposed model is a generalization of the widely used EM-HMRF algorithm with Gaussian distributions. We test the α-stable EM-HMRF model in synthetic data and brain MRI data. The proposed methodology presents two main advantages: Firstly, it is more robust to outliers. Secondly, we obtain similar results than using Gaussian when the Gaussian assumption holds. This approach is able to model the spatial dependence between neighboring voxels in tomographic brain MRI. PMID:29209194
Identifying bubble collapse in a hydrothermal system using hidden Markov models
Dawson, P.B.; Benitez, M.C.; Lowenstern, J. B.; Chouet, B.A.
2012-01-01
Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ???100 m of the station, and produced ???3500-5500 events per hour with mean durations of ???0.35-0.45s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates. copyright 2012 by the American Geophysical Union.
Modeling haplotype block variation using Markov chains.
Greenspan, G; Geiger, D
2006-04-01
Models of background variation in genomic regions form the basis of linkage disequilibrium mapping methods. In this work we analyze a background model that groups SNPs into haplotype blocks and represents the dependencies between blocks by a Markov chain. We develop an error measure to compare the performance of this model against the common model that assumes that blocks are independent. By examining data from the International Haplotype Mapping project, we show how the Markov model over haplotype blocks is most accurate when representing blocks in strong linkage disequilibrium. This contrasts with the independent model, which is rendered less accurate by linkage disequilibrium. We provide a theoretical explanation for this surprising property of the Markov model and relate its behavior to allele diversity.
Modeling Haplotype Block Variation Using Markov Chains
Greenspan, G.; Geiger, D.
2006-01-01
Models of background variation in genomic regions form the basis of linkage disequilibrium mapping methods. In this work we analyze a background model that groups SNPs into haplotype blocks and represents the dependencies between blocks by a Markov chain. We develop an error measure to compare the performance of this model against the common model that assumes that blocks are independent. By examining data from the International Haplotype Mapping project, we show how the Markov model over haplotype blocks is most accurate when representing blocks in strong linkage disequilibrium. This contrasts with the independent model, which is rendered less accurate by linkage disequilibrium. We provide a theoretical explanation for this surprising property of the Markov model and relate its behavior to allele diversity. PMID:16361244
Variable context Markov chains for HIV protease cleavage site prediction.
Oğul, Hasan
2009-06-01
Deciphering the knowledge of HIV protease specificity and developing computational tools for detecting its cleavage sites in protein polypeptide chain are very desirable for designing efficient and specific chemical inhibitors to prevent acquired immunodeficiency syndrome. In this study, we developed a generative model based on a generalization of variable order Markov chains (VOMC) for peptide sequences and adapted the model for prediction of their cleavability by certain proteases. The new method, called variable context Markov chains (VCMC), attempts to identify the context equivalence based on the evolutionary similarities between individual amino acids. It was applied for HIV-1 protease cleavage site prediction problem and shown to outperform existing methods in terms of prediction accuracy on a common dataset. In general, the method is a promising tool for prediction of cleavage sites of all proteases and encouraged to be used for any kind of peptide classification problem as well.
Classification of customer lifetime value models using Markov chain
NASA Astrophysics Data System (ADS)
Permana, Dony; Pasaribu, Udjianna S.; Indratno, Sapto W.; Suprayogi
2017-10-01
A firm’s potential reward in future time from a customer can be determined by customer lifetime value (CLV). There are some mathematic methods to calculate it. One method is using Markov chain stochastic model. Here, a customer is assumed through some states. Transition inter the states follow Markovian properties. If we are given some states for a customer and the relationships inter states, then we can make some Markov models to describe the properties of the customer. As Markov models, CLV is defined as a vector contains CLV for a customer in the first state. In this paper we make a classification of Markov Models to calculate CLV. Start from two states of customer model, we make develop in many states models. The development a model is based on weaknesses in previous model. Some last models can be expected to describe how real characters of customers in a firm.
Hidden Markov models for evolution and comparative genomics analysis.
Bykova, Nadezda A; Favorov, Alexander V; Mironov, Andrey A
2013-01-01
The problem of reconstruction of ancestral states given a phylogeny and data from extant species arises in a wide range of biological studies. The continuous-time Markov model for the discrete states evolution is generally used for the reconstruction of ancestral states. We modify this model to account for a case when the states of the extant species are uncertain. This situation appears, for example, if the states for extant species are predicted by some program and thus are known only with some level of reliability; it is common for bioinformatics field. The main idea is formulation of the problem as a hidden Markov model on a tree (tree HMM, tHMM), where the basic continuous-time Markov model is expanded with the introduction of emission probabilities of observed data (e.g. prediction scores) for each underlying discrete state. Our tHMM decoding algorithm allows us to predict states at the ancestral nodes as well as to refine states at the leaves on the basis of quantitative comparative genomics. The test on the simulated data shows that the tHMM approach applied to the continuous variable reflecting the probabilities of the states (i.e. prediction score) appears to be more accurate then the reconstruction from the discrete states assignment defined by the best score threshold. We provide examples of applying our model to the evolutionary analysis of N-terminal signal peptides and transcription factor binding sites in bacteria. The program is freely available at http://bioinf.fbb.msu.ru/~nadya/tHMM and via web-service at http://bioinf.fbb.msu.ru/treehmmweb.
Density Control of Multi-Agent Systems with Safety Constraints: A Markov Chain Approach
NASA Astrophysics Data System (ADS)
Demirer, Nazli
The control of systems with autonomous mobile agents has been a point of interest recently, with many applications like surveillance, coverage, searching over an area with probabilistic target locations or exploring an area. In all of these applications, the main goal of the swarm is to distribute itself over an operational space to achieve mission objectives specified by the density of swarm. This research focuses on the problem of controlling the distribution of multi-agent systems considering a hierarchical control structure where the whole swarm coordination is achieved at the high-level and individual vehicle/agent control is managed at the low-level. High-level coordination algorithms uses macroscopic models that describes the collective behavior of the whole swarm and specify the agent motion commands, whose execution will lead to the desired swarm behavior. The low-level control laws execute the motion to follow these commands at the agent level. The main objective of this research is to develop high-level decision control policies and algorithms to achieve physically realizable commanding of the agents by imposing mission constraints on the distribution. We also make some connections with decentralized low-level motion control. This dissertation proposes a Markov chain based method to control the density distribution of the whole system where the implementation can be achieved in a decentralized manner with no communication between agents since establishing communication with large number of agents is highly challenging. The ultimate goal is to guide the overall density distribution of the system to a prescribed steady-state desired distribution while satisfying desired transition and safety constraints. Here, the desired distribution is determined based on the mission requirements, for example in the application of area search, the desired distribution should match closely with the probabilistic target locations. The proposed method is applicable for both systems with a single agent and systems with large number of agents due to the probabilistic nature, where the probability distribution of each agent's state evolves according to a finite-state and discrete-time Markov chain (MC). Hence, designing proper decision control policies requires numerically tractable solution methods for the synthesis of Markov chains. The synthesis problem has the form of a Linear Matrix Inequality Problem (LMI), with LMI formulation of the constraints. To this end, we propose convex necessary and sufficient conditions for safety constraints in Markov chains, which is a novel result in the Markov chain literature. In addition to LMI-based, offline, Markov matrix synthesis method, we also propose a QP-based, online, method to compute a time-varying Markov matrix based on the real-time density feedback. Both problems are convex optimization problems that can be solved in a reliable and tractable way, utilizing existing tools in the literature. A Low Earth Orbit (LEO) swarm simulations are presented to validate the effectiveness of the proposed algorithms. Another problem tackled as a part of this research is the generalization of the density control problem to autonomous mobile agents with two control modes: ON and OFF. Here, each mode consists of a (possibly overlapping) finite set of actions, that is, there exist a set of actions for the ON mode and another set for the OFF mode. We give formulation for a new Markov chain synthesis problem, with additional measurements for the state transitions, where a policy is designed to ensure desired safety and convergence properties for the underlying Markov chain.
Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators
NASA Astrophysics Data System (ADS)
Hilker, Timon A.; Salomon, Guillaume; Grusdt, Fabian; Omran, Ahmed; Boll, Martin; Demler, Eugene; Bloch, Immanuel; Gross, Christian
2017-08-01
Topological phases, like the Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, nonlocal string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems owing to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of nonlocal spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique, which measures nonlocal order directly, can be readily extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.
An Evaluation of a Markov Chain Monte Carlo Method for the Two-Parameter Logistic Model.
ERIC Educational Resources Information Center
Kim, Seock-Ho; Cohen, Allan S.
The accuracy of the Markov Chain Monte Carlo (MCMC) procedure Gibbs sampling was considered for estimation of item parameters of the two-parameter logistic model. Data for the Law School Admission Test (LSAT) Section 6 were analyzed to illustrate the MCMC procedure. In addition, simulated data sets were analyzed using the MCMC, marginal Bayesian…
ERIC Educational Resources Information Center
Helbock, Richard W.; Marker, Gordon
This study concerns the feasibility of a Markov chain model for projecting housing values and racial mixes. Such projections could be used in planning the layout of school districts to achieve desired levels of socioeconomic heterogeneity. Based upon the concepts and assumptions underlying a Markov chain model, it is concluded that such a model is…
ERIC Educational Resources Information Center
Wollack, James A.; Bolt, Daniel M.; Cohen, Allan S.; Lee, Young-Sun
2002-01-01
Compared the quality of item parameter estimates for marginal maximum likelihood (MML) and Markov Chain Monte Carlo (MCMC) with the nominal response model using simulation. The quality of item parameter recovery was nearly identical for MML and MCMC, and both methods tended to produce good estimates. (SLD)
ERIC Educational Resources Information Center
Kim, Jee-Seon; Bolt, Daniel M.
2007-01-01
The purpose of this ITEMS module is to provide an introduction to Markov chain Monte Carlo (MCMC) estimation for item response models. A brief description of Bayesian inference is followed by an overview of the various facets of MCMC algorithms, including discussion of prior specification, sampling procedures, and methods for evaluating chain…
Detecting structure of haplotypes and local ancestry
USDA-ARS?s Scientific Manuscript database
We present a two-layer hidden Markov model to detect the structure of haplotypes for unrelated individuals. This allows us to model two scales of linkage disequilibrium (one within a group of haplotypes and one between groups), thereby taking advantage of rich haplotype information to infer local an...
Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations.
Neuwald, Andrew F; Altschul, Stephen F
2016-12-01
Over evolutionary time, members of a superfamily of homologous proteins sharing a common structural core diverge into subgroups filling various functional niches. At the sequence level, such divergence appears as correlations that arise from residue patterns distinct to each subgroup. Such a superfamily may be viewed as a population of sequences corresponding to a complex, high-dimensional probability distribution. Here we model this distribution as hierarchical interrelated hidden Markov models (hiHMMs), which describe these sequence correlations implicitly. By characterizing such correlations one may hope to obtain information regarding functionally-relevant properties that have thus far evaded detection. To do so, we infer a hiHMM distribution from sequence data using Bayes' theorem and Markov chain Monte Carlo (MCMC) sampling, which is widely recognized as the most effective approach for characterizing a complex, high dimensional distribution. Other routines then map correlated residue patterns to available structures with a view to hypothesis generation. When applied to N-acetyltransferases, this reveals sequence and structural features indicative of functionally important, yet generally unknown biochemical properties. Even for sets of proteins for which nothing is known beyond unannotated sequences and structures, this can lead to helpful insights. We describe, for example, a putative coenzyme-A-induced-fit substrate binding mechanism mediated by arginine residue switching between salt bridge and π-π stacking interactions. A suite of programs implementing this approach is available (psed.igs.umaryland.edu).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrier, C.; Holcman, D., E-mail: david.holcman@ens.fr; Mathematical Institute, Oxford OX2 6GG, Newton Institute
The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationallymore » greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.« less
BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC
Satija, Rahul; Novák, Ádám; Miklós, István; Lyngsø, Rune; Hein, Jotun
2009-01-01
Background We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. Results We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the α-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. Conclusion BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from PMID:19715598
BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC.
Satija, Rahul; Novák, Adám; Miklós, István; Lyngsø, Rune; Hein, Jotun
2009-08-28
We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the alpha-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from http://www.stats.ox.ac.uk/~satija/BigFoot/
Guerrier, Claire; Holcman, David
2016-10-18
Binding of molecules, ions or proteins to small target sites is a generic step of cell activation. This process relies on rare stochastic events where a particle located in a large bulk has to find small and often hidden targets. We present here a hybrid discrete-continuum model that takes into account a stochastic regime governed by rare events and a continuous regime in the bulk. The rare discrete binding events are modeled by a Markov chain for the encounter of small targets by few Brownian particles, for which the arrival time is Poissonian. The large ensemble of particles is described by mass action laws. We use this novel model to predict the time distribution of vesicular release at neuronal synapses. Vesicular release is triggered by the binding of few calcium ions that can originate either from the synaptic bulk or from the entry through calcium channels. We report here that the distribution of release time is bimodal although it is triggered by a single fast action potential. While the first peak follows a stimulation, the second corresponds to the random arrival over much longer time of ions located in the synaptic terminal to small binding vesicular targets. To conclude, the present multiscale stochastic modeling approach allows studying cellular events based on integrating discrete molecular events over several time scales.
Predictive Rate-Distortion for Infinite-Order Markov Processes
NASA Astrophysics Data System (ADS)
Marzen, Sarah E.; Crutchfield, James P.
2016-06-01
Predictive rate-distortion analysis suffers from the curse of dimensionality: clustering arbitrarily long pasts to retain information about arbitrarily long futures requires resources that typically grow exponentially with length. The challenge is compounded for infinite-order Markov processes, since conditioning on finite sequences cannot capture all of their past dependencies. Spectral arguments confirm a popular intuition: algorithms that cluster finite-length sequences fail dramatically when the underlying process has long-range temporal correlations and can fail even for processes generated by finite-memory hidden Markov models. We circumvent the curse of dimensionality in rate-distortion analysis of finite- and infinite-order processes by casting predictive rate-distortion objective functions in terms of the forward- and reverse-time causal states of computational mechanics. Examples demonstrate that the resulting algorithms yield substantial improvements.
Strelioff, Christopher C; Crutchfield, James P; Hübler, Alfred W
2007-07-01
Markov chains are a natural and well understood tool for describing one-dimensional patterns in time or space. We show how to infer kth order Markov chains, for arbitrary k , from finite data by applying Bayesian methods to both parameter estimation and model-order selection. Extending existing results for multinomial models of discrete data, we connect inference to statistical mechanics through information-theoretic (type theory) techniques. We establish a direct relationship between Bayesian evidence and the partition function which allows for straightforward calculation of the expectation and variance of the conditional relative entropy and the source entropy rate. Finally, we introduce a method that uses finite data-size scaling with model-order comparison to infer the structure of out-of-class processes.
Hidden chiral symmetries in BDI multichannel Kitaev chains
NASA Astrophysics Data System (ADS)
Manesco, Antônio L. R.; Weber, Gabriel; Rodrigues, Durval, Jr.
2018-05-01
Realistic implementations of the Kitaev chain require, in general, the introduction of extra internal degrees of freedom. In the present work, we discuss the presence of hidden BDI symmetries for free Hamiltonians describing systems with an arbitrary number of internal degrees of freedom. We generalize results of a spinfull Kitaev chain to construct a Hamiltonian with n internal degrees of freedom and obtain the corresponding hidden chiral symmetry. As an explicit application of this generalized result, we exploit by analytical and numerical calculations the case of a spinful two-band Kitaev chain, which can host up to four Majorana bound states. We also observe the appearence of minigap states, when chiral symmetry is broken.
Steele, James S; Bush, Keith; Stowe, Zachary N; James, George A; Smitherman, Sonet; Kilts, Clint D; Cisler, Josh
2018-01-01
Numerous data demonstrate that distracting emotional stimuli cause behavioral slowing (i.e. emotional conflict) and that behavior dynamically adapts to such distractors. However, the cognitive and neural mechanisms that mediate these behavioral findings are poorly understood. Several theoretical models have been developed that attempt to explain these phenomena, but these models have not been directly tested on human behavior nor compared. A potential tool to overcome this limitation is Hidden Markov Modeling (HMM), which is a computational approach to modeling indirectly observed systems. Here, we administered an emotional Stroop task to a sample of healthy adolescent girls (N = 24) during fMRI and used HMM to implement theoretical behavioral models. We then compared the model fits and tested for neural representations of the hidden states of the most supported model. We found that a modified variant of the model posited by Mathews et al. (1998) was most concordant with observed behavior and that brain activity was related to the model-based hidden states. Particularly, while the valences of the stimuli themselves were encoded primarily in the ventral visual cortex, the model-based detection of threatening targets was associated with increased activity in the bilateral anterior insula, while task effort (i.e. adaptation) was associated with reduction in the activity of these areas. These findings suggest that emotional target detection and adaptation are accomplished partly through increases and decreases, respectively, in the perceived immediate relevance of threatening cues and also demonstrate the efficacy of using HMM to apply theoretical models to human behavior.
Bush, Keith; Stowe, Zachary N.; James, George A.; Smitherman, Sonet; Kilts, Clint D.; Cisler, Josh
2018-01-01
Numerous data demonstrate that distracting emotional stimuli cause behavioral slowing (i.e. emotional conflict) and that behavior dynamically adapts to such distractors. However, the cognitive and neural mechanisms that mediate these behavioral findings are poorly understood. Several theoretical models have been developed that attempt to explain these phenomena, but these models have not been directly tested on human behavior nor compared. A potential tool to overcome this limitation is Hidden Markov Modeling (HMM), which is a computational approach to modeling indirectly observed systems. Here, we administered an emotional Stroop task to a sample of healthy adolescent girls (N = 24) during fMRI and used HMM to implement theoretical behavioral models. We then compared the model fits and tested for neural representations of the hidden states of the most supported model. We found that a modified variant of the model posited by Mathews et al. (1998) was most concordant with observed behavior and that brain activity was related to the model-based hidden states. Particularly, while the valences of the stimuli themselves were encoded primarily in the ventral visual cortex, the model-based detection of threatening targets was associated with increased activity in the bilateral anterior insula, while task effort (i.e. adaptation) was associated with reduction in the activity of these areas. These findings suggest that emotional target detection and adaptation are accomplished partly through increases and decreases, respectively, in the perceived immediate relevance of threatening cues and also demonstrate the efficacy of using HMM to apply theoretical models to human behavior. PMID:29489856
Singer, Philipp; Helic, Denis; Taraghi, Behnam; Strohmaier, Markus
2014-01-01
One of the most frequently used models for understanding human navigation on the Web is the Markov chain model, where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another. Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in numerous applications such as Google's PageRank algorithm and others. Recently, new studies suggested that human navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a topical level, where we abstract away from specific page transitions to transitions between topics, we find that the memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two types of navigational datasets (goal-oriented vs. free form) and observe interesting structural differences that make a strong argument for more contextual studies of human navigation in future work.
Singer, Philipp; Helic, Denis; Taraghi, Behnam; Strohmaier, Markus
2014-01-01
One of the most frequently used models for understanding human navigation on the Web is the Markov chain model, where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another. Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in numerous applications such as Google's PageRank algorithm and others. Recently, new studies suggested that human navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a topical level, where we abstract away from specific page transitions to transitions between topics, we find that the memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two types of navigational datasets (goal-oriented vs. free form) and observe interesting structural differences that make a strong argument for more contextual studies of human navigation in future work. PMID:25013937
Discovering the Sequential Structure of Thought
ERIC Educational Resources Information Center
Anderson, John R.; Fincham, Jon M.
2014-01-01
Multi-voxel pattern recognition techniques combined with Hidden Markov models can be used to discover the mental states that people go through in performing a task. The combined method identifies both the mental states and how their durations vary with experimental conditions. We apply this method to a task where participants solve novel…
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sabyasachi; Kurmi, Indrajit; Pratiher, Sawon; Mukherjee, Sukanya; Barman, Ritwik; Ghosh, Nirmalya; Panigrahi, Prasanta K.
2018-02-01
In this paper, a comparative study between SVM and HMM has been carried out for multiclass classification of cervical healthy and cancerous tissues. In our study, the HMM methodology is more promising to produce higher accuracy in classification.
Human Behavior Drift Detection in a Smart Home Environment.
Masciadri, Andrea; Trofimova, Anna A; Matteucci, Matteo; Salice, Fabio
2017-01-01
The proposed system aims at elderly people independent living by providing an early indicator of habits changes which might be relevant for a diagnosis of diseases. It relies on Hidden Markov Model to describe the behavior observing sensors data, while Likelihood Ratio Test gives the variation within different time periods.
NASA Astrophysics Data System (ADS)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura
2017-12-01
In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated - reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.
Limiting Distributions of Functionals of Markov Chains.
1984-08-01
limiting distributions; periodic * nonhomoger.,!ous Poisson processes . 19 ANS? MACY IConuui oe nonoe’ee if necorglooy and edern thty by block numbers...homogeneous Poisson processes is of interest in itself. The problem considered in this paper is of interest in the theory of partially observable...where we obtain the limiting distribution of the interevent times. Key Words: Markov Chains, Limiting Distributions, Periodic Nonhomogeneous Poisson
Steen Magnussen
2009-01-01
Areas burned annually in 29 Canadian forest fire regions show a patchy and irregular correlation structure that significantly influences the distribution of annual totals for Canada and for groups of regions. A binary Monte Carlo Markov Chain (MCMC) is constructed for the purpose of joint simulation of regional areas burned in forest fires. For each year the MCMC...
Multi-chain Markov chain Monte Carlo methods for computationally expensive models
NASA Astrophysics Data System (ADS)
Huang, M.; Ray, J.; Ren, H.; Hou, Z.; Bao, J.
2017-12-01
Markov chain Monte Carlo (MCMC) methods are used to infer model parameters from observational data. The parameters are inferred as probability densities, thus capturing estimation error due to sparsity of the data, and the shortcomings of the model. Multiple communicating chains executing the MCMC method have the potential to explore the parameter space better, and conceivably accelerate the convergence to the final distribution. We present results from tests conducted with the multi-chain method to show how the acceleration occurs i.e., for loose convergence tolerances, the multiple chains do not make much of a difference. The ensemble of chains also seems to have the ability to accelerate the convergence of a few chains that might start from suboptimal starting points. Finally, we show the performance of the chains in the estimation of O(10) parameters using computationally expensive forward models such as the Community Land Model, where the sampling burden is distributed over multiple chains.
Estimating parameters of hidden Markov models based on marked individuals: use of robust design data
Kendall, William L.; White, Gary C.; Hines, James E.; Langtimm, Catherine A.; Yoshizaki, Jun
2012-01-01
Development and use of multistate mark-recapture models, which provide estimates of parameters of Markov processes in the face of imperfect detection, have become common over the last twenty years. Recently, estimating parameters of hidden Markov models, where the state of an individual can be uncertain even when it is detected, has received attention. Previous work has shown that ignoring state uncertainty biases estimates of survival and state transition probabilities, thereby reducing the power to detect effects. Efforts to adjust for state uncertainty have included special cases and a general framework for a single sample per period of interest. We provide a flexible framework for adjusting for state uncertainty in multistate models, while utilizing multiple sampling occasions per period of interest to increase precision and remove parameter redundancy. These models also produce direct estimates of state structure for each primary period, even for the case where there is just one sampling occasion. We apply our model to expected value data, and to data from a study of Florida manatees, to provide examples of the improvement in precision due to secondary capture occasions. We also provide user-friendly software to implement these models. This general framework could also be used by practitioners to consider constrained models of particular interest, or model the relationship between within-primary period parameters (e.g., state structure) and between-primary period parameters (e.g., state transition probabilities).
What is the Effect of Interannual Hydroclimatic Variability on Water Supply Reservoir Operations?
NASA Astrophysics Data System (ADS)
Galelli, S.; Turner, S. W. D.
2015-12-01
Rather than deriving from a single distribution and uniform persistence structure, hydroclimatic data exhibit significant trends and shifts in their mean, variance, and lagged correlation through time. Consequentially, observed and reconstructed streamflow records are often characterized by features of interannual variability, including long-term persistence and prolonged droughts. This study examines the effect of these features on the operating performance of water supply reservoirs. We develop a Stochastic Dynamic Programming (SDP) model that can incorporate a regime-shifting climate variable. We then compare the performance of operating policies—designed with and without climate variable—to quantify the contribution of interannual variability to standard policy sub-optimality. The approach uses a discrete-time Markov chain to partition the reservoir inflow time series into small number of 'hidden' climate states. Each state defines a distinct set of inflow transition probability matrices, which are used by the SDP model to condition the release decisions on the reservoir storage, current-period inflow and hidden climate state. The experimental analysis is carried out on 99 hypothetical water supply reservoirs fed from pristine catchments in Australia—all impacted by the Millennium drought. Results show that interannual hydroclimatic variability is a major cause of sub-optimal hedging decisions. The practical import is that conventional optimization methods may misguide operators, particularly in regions susceptible to multi-year droughts.
Markov Chain Ontology Analysis (MCOA)
2012-01-01
Background Biomedical ontologies have become an increasingly critical lens through which researchers analyze the genomic, clinical and bibliographic data that fuels scientific research. Of particular relevance are methods, such as enrichment analysis, that quantify the importance of ontology classes relative to a collection of domain data. Current analytical techniques, however, remain limited in their ability to handle many important types of structural complexity encountered in real biological systems including class overlaps, continuously valued data, inter-instance relationships, non-hierarchical relationships between classes, semantic distance and sparse data. Results In this paper, we describe a methodology called Markov Chain Ontology Analysis (MCOA) and illustrate its use through a MCOA-based enrichment analysis application based on a generative model of gene activation. MCOA models the classes in an ontology, the instances from an associated dataset and all directional inter-class, class-to-instance and inter-instance relationships as a single finite ergodic Markov chain. The adjusted transition probability matrix for this Markov chain enables the calculation of eigenvector values that quantify the importance of each ontology class relative to other classes and the associated data set members. On both controlled Gene Ontology (GO) data sets created with Escherichia coli, Drosophila melanogaster and Homo sapiens annotations and real gene expression data extracted from the Gene Expression Omnibus (GEO), the MCOA enrichment analysis approach provides the best performance of comparable state-of-the-art methods. Conclusion A methodology based on Markov chain models and network analytic metrics can help detect the relevant signal within large, highly interdependent and noisy data sets and, for applications such as enrichment analysis, has been shown to generate superior performance on both real and simulated data relative to existing state-of-the-art approaches. PMID:22300537
Markov Chain Ontology Analysis (MCOA).
Frost, H Robert; McCray, Alexa T
2012-02-03
Biomedical ontologies have become an increasingly critical lens through which researchers analyze the genomic, clinical and bibliographic data that fuels scientific research. Of particular relevance are methods, such as enrichment analysis, that quantify the importance of ontology classes relative to a collection of domain data. Current analytical techniques, however, remain limited in their ability to handle many important types of structural complexity encountered in real biological systems including class overlaps, continuously valued data, inter-instance relationships, non-hierarchical relationships between classes, semantic distance and sparse data. In this paper, we describe a methodology called Markov Chain Ontology Analysis (MCOA) and illustrate its use through a MCOA-based enrichment analysis application based on a generative model of gene activation. MCOA models the classes in an ontology, the instances from an associated dataset and all directional inter-class, class-to-instance and inter-instance relationships as a single finite ergodic Markov chain. The adjusted transition probability matrix for this Markov chain enables the calculation of eigenvector values that quantify the importance of each ontology class relative to other classes and the associated data set members. On both controlled Gene Ontology (GO) data sets created with Escherichia coli, Drosophila melanogaster and Homo sapiens annotations and real gene expression data extracted from the Gene Expression Omnibus (GEO), the MCOA enrichment analysis approach provides the best performance of comparable state-of-the-art methods. A methodology based on Markov chain models and network analytic metrics can help detect the relevant signal within large, highly interdependent and noisy data sets and, for applications such as enrichment analysis, has been shown to generate superior performance on both real and simulated data relative to existing state-of-the-art approaches.
Extreme event statistics in a drifting Markov chain
NASA Astrophysics Data System (ADS)
Kindermann, Farina; Hohmann, Michael; Lausch, Tobias; Mayer, Daniel; Schmidt, Felix; Widera, Artur
2017-07-01
We analyze extreme event statistics of experimentally realized Markov chains with various drifts. Our Markov chains are individual trajectories of a single atom diffusing in a one-dimensional periodic potential. Based on more than 500 individual atomic traces we verify the applicability of the Sparre Andersen theorem to our system despite the presence of a drift. We present detailed analysis of four different rare-event statistics for our system: the distributions of extreme values, of record values, of extreme value occurrence in the chain, and of the number of records in the chain. We observe that, for our data, the shape of the extreme event distributions is dominated by the underlying exponential distance distribution extracted from the atomic traces. Furthermore, we find that even small drifts influence the statistics of extreme events and record values, which is supported by numerical simulations, and we identify cases in which the drift can be determined without information about the underlying random variable distributions. Our results facilitate the use of extreme event statistics as a signal for small drifts in correlated trajectories.
NASA Astrophysics Data System (ADS)
Baek, Sangkyu; Choi, Bong Dae
We investigate power consumption of a mobile station with the power saving class of type 1 in the IEEE 802.16e. We deal with stochastic behavior of mobile station during not only sleep mode period but also awake mode period with both downlink and uplink traffics. Our methods for investigating the power saving class of type 1 are to construct the embedded Markov chain and the semi-Markov chain generated by the embedded Markov chain. To see the effect of the sleep mode, we obtain the average power consumption of a mobile station and the mean queueing delay of a message. Numerical results show that the larger size of the sleep window makes the power consumption of a mobile station smaller and the queueing delay of a downlink message longer.
Markov chain Monte Carlo estimation of quantum states
NASA Astrophysics Data System (ADS)
Diguglielmo, James; Messenger, Chris; Fiurášek, Jaromír; Hage, Boris; Samblowski, Aiko; Schmidt, Tabea; Schnabel, Roman
2009-03-01
We apply a Bayesian data analysis scheme known as the Markov chain Monte Carlo to the tomographic reconstruction of quantum states. This method yields a vector, known as the Markov chain, which contains the full statistical information concerning all reconstruction parameters including their statistical correlations with no a priori assumptions as to the form of the distribution from which it has been obtained. From this vector we can derive, e.g., the marginal distributions and uncertainties of all model parameters, and also of other quantities such as the purity of the reconstructed state. We demonstrate the utility of this scheme by reconstructing the Wigner function of phase-diffused squeezed states. These states possess non-Gaussian statistics and therefore represent a nontrivial case of tomographic reconstruction. We compare our results to those obtained through pure maximum-likelihood and Fisher information approaches.
Hey, Jody; Nielsen, Rasmus
2007-01-01
In 1988, Felsenstein described a framework for assessing the likelihood of a genetic data set in which all of the possible genealogical histories of the data are considered, each in proportion to their probability. Although not analytically solvable, several approaches, including Markov chain Monte Carlo methods, have been developed to find approximate solutions. Here, we describe an approach in which Markov chain Monte Carlo simulations are used to integrate over the space of genealogies, whereas other parameters are integrated out analytically. The result is an approximation to the full joint posterior density of the model parameters. For many purposes, this function can be treated as a likelihood, thereby permitting likelihood-based analyses, including likelihood ratio tests of nested models. Several examples, including an application to the divergence of chimpanzee subspecies, are provided. PMID:17301231
Statistical significance test for transition matrices of atmospheric Markov chains
NASA Technical Reports Server (NTRS)
Vautard, Robert; Mo, Kingtse C.; Ghil, Michael
1990-01-01
Low-frequency variability of large-scale atmospheric dynamics can be represented schematically by a Markov chain of multiple flow regimes. This Markov chain contains useful information for the long-range forecaster, provided that the statistical significance of the associated transition matrix can be reliably tested. Monte Carlo simulation yields a very reliable significance test for the elements of this matrix. The results of this test agree with previously used empirical formulae when each cluster of maps identified as a distinct flow regime is sufficiently large and when they all contain a comparable number of maps. Monte Carlo simulation provides a more reliable way to test the statistical significance of transitions to and from small clusters. It can determine the most likely transitions, as well as the most unlikely ones, with a prescribed level of statistical significance.
Overshoot in biological systems modelled by Markov chains: a non-equilibrium dynamic phenomenon.
Jia, Chen; Qian, Minping; Jiang, Daquan
2014-08-01
A number of biological systems can be modelled by Markov chains. Recently, there has been an increasing concern about when biological systems modelled by Markov chains will perform a dynamic phenomenon called overshoot. In this study, the authors found that the steady-state behaviour of the system will have a great effect on the occurrence of overshoot. They showed that overshoot in general cannot occur in systems that will finally approach an equilibrium steady state. They further classified overshoot into two types, named as simple overshoot and oscillating overshoot. They showed that except for extreme cases, oscillating overshoot will occur if the system is far from equilibrium. All these results clearly show that overshoot is a non-equilibrium dynamic phenomenon with energy consumption. In addition, the main result in this study is validated with real experimental data.
Deviney, Frank A.; Rice, Karen; Brown, Donald E.
2012-01-01
Natural resource managers require information concerning the frequency, duration, and long-term probability of occurrence of water-quality indicator (WQI) violations of defined thresholds. The timing of these threshold crossings often is hidden from the observer, who is restricted to relatively infrequent observations. Here, a model for the hidden process is linked with a model for the observations, and the parameters describing duration, return period, and long-term probability of occurrence are estimated using Bayesian methods. A simulation experiment is performed to evaluate the approach under scenarios based on the equivalent of a total monitoring period of 5-30 years and an observation frequency of 1-50 observations per year. Given constant threshold crossing rate, accuracy and precision of parameter estimates increased with longer total monitoring period and more-frequent observations. Given fixed monitoring period and observation frequency, accuracy and precision of parameter estimates increased with longer times between threshold crossings. For most cases where the long-term probability of being in violation is greater than 0.10, it was determined that at least 600 observations are needed to achieve precise estimates. An application of the approach is presented using 22 years of quasi-weekly observations of acid-neutralizing capacity from Deep Run, a stream in Shenandoah National Park, Virginia. The time series also was sub-sampled to simulate monthly and semi-monthly sampling protocols. Estimates of the long-term probability of violation were unbiased despite sampling frequency; however, the expected duration and return period were over-estimated using the sub-sampled time series with respect to the full quasi-weekly time series.
Finding exact constants in a Markov model of Zipfs law generation
NASA Astrophysics Data System (ADS)
Bochkarev, V. V.; Lerner, E. Yu.; Nikiforov, A. A.; Pismenskiy, A. A.
2017-12-01
According to the classical Zipfs law, the word frequency is a power function of the word rank with an exponent -1. The objective of this work is to find multiplicative constant in a Markov model of word generation. Previously, the case of independent letters was mathematically strictly investigated in [Bochkarev V V and Lerner E Yu 2017 International Journal of Mathematics and Mathematical Sciences Article ID 914374]. Unfortunately, the methods used in this paper cannot be generalized in case of Markov chains. The search of the correct formulation of the Markov generalization of this results was performed using experiments with different ergodic matrices of transition probability P. Combinatory technique allowed taking into account all the words with probability of more than e -300 in case of 2 by 2 matrices. It was experimentally proved that the required constant in the limit is equal to the value reciprocal to conditional entropy of matrix row P with weights presenting the elements of the vector π of the stationary distribution of the Markov chain.
NASA Astrophysics Data System (ADS)
Yu, Jianbo
2017-01-01
This study proposes an adaptive-learning-based method for machine faulty detection and health degradation monitoring. The kernel of the proposed method is an "evolving" model that uses an unsupervised online learning scheme, in which an adaptive hidden Markov model (AHMM) is used for online learning the dynamic health changes of machines in their full life. A statistical index is developed for recognizing the new health states in the machines. Those new health states are then described online by adding of new hidden states in AHMM. Furthermore, the health degradations in machines are quantified online by an AHMM-based health index (HI) that measures the similarity between two density distributions that describe the historic and current health states, respectively. When necessary, the proposed method characterizes the distinct operating modes of the machine and can learn online both abrupt as well as gradual health changes. Our method overcomes some drawbacks of the HIs (e.g., relatively low comprehensibility and applicability) based on fixed monitoring models constructed in the offline phase. Results from its application in a bearing life test reveal that the proposed method is effective in online detection and adaptive assessment of machine health degradation. This study provides a useful guide for developing a condition-based maintenance (CBM) system that uses an online learning method without considerable human intervention.
Markov Chain Models for Stochastic Behavior in Resonance Overlap Regions
NASA Astrophysics Data System (ADS)
McCarthy, Morgan; Quillen, Alice
2018-01-01
We aim to predict lifetimes of particles in chaotic zoneswhere resonances overlap. A continuous-time Markov chain model isconstructed using mean motion resonance libration timescales toestimate transition times between resonances. The model is applied todiffusion in the co-rotation region of a planet. For particles begunat low eccentricity, the model is effective for early diffusion, butnot at later time when particles experience close encounters to the planet.
Numerical methods in Markov chain modeling
NASA Technical Reports Server (NTRS)
Philippe, Bernard; Saad, Youcef; Stewart, William J.
1989-01-01
Several methods for computing stationary probability distributions of Markov chains are described and compared. The main linear algebra problem consists of computing an eigenvector of a sparse, usually nonsymmetric, matrix associated with a known eigenvalue. It can also be cast as a problem of solving a homogeneous singular linear system. Several methods based on combinations of Krylov subspace techniques are presented. The performance of these methods on some realistic problems are compared.
ERIC Educational Resources Information Center
Nicholls, Miles G.
2007-01-01
In this paper, absorbing markov chains are used to analyse the flows of higher degree by research candidates (doctoral and master) within an Australian faculty of business. The candidates are analysed according to whether they are full time or part time. The need for such analysis stemmed from what appeared to be a rather poor completion rate (as…
Bayesian clustering of DNA sequences using Markov chains and a stochastic partition model.
Jääskinen, Väinö; Parkkinen, Ville; Cheng, Lu; Corander, Jukka
2014-02-01
In many biological applications it is necessary to cluster DNA sequences into groups that represent underlying organismal units, such as named species or genera. In metagenomics this grouping needs typically to be achieved on the basis of relatively short sequences which contain different types of errors, making the use of a statistical modeling approach desirable. Here we introduce a novel method for this purpose by developing a stochastic partition model that clusters Markov chains of a given order. The model is based on a Dirichlet process prior and we use conjugate priors for the Markov chain parameters which enables an analytical expression for comparing the marginal likelihoods of any two partitions. To find a good candidate for the posterior mode in the partition space, we use a hybrid computational approach which combines the EM-algorithm with a greedy search. This is demonstrated to be faster and yield highly accurate results compared to earlier suggested clustering methods for the metagenomics application. Our model is fairly generic and could also be used for clustering of other types of sequence data for which Markov chains provide a reasonable way to compress information, as illustrated by experiments on shotgun sequence type data from an Escherichia coli strain.
Temperature scaling method for Markov chains.
Crosby, Lonnie D; Windus, Theresa L
2009-01-22
The use of ab initio potentials in Monte Carlo simulations aimed at investigating the nucleation kinetics of water clusters is complicated by the computational expense of the potential energy determinations. Furthermore, the common desire to investigate the temperature dependence of kinetic properties leads to an urgent need to reduce the expense of performing simulations at many different temperatures. A method is detailed that allows a Markov chain (obtained via Monte Carlo) at one temperature to be scaled to other temperatures of interest without the need to perform additional large simulations. This Markov chain temperature-scaling (TeS) can be generally applied to simulations geared for numerous applications. This paper shows the quality of results which can be obtained by TeS and the possible quantities which may be extracted from scaled Markov chains. Results are obtained for a 1-D analytical potential for which the exact solutions are known. Also, this method is applied to water clusters consisting of between 2 and 5 monomers, using Dynamical Nucleation Theory to determine the evaporation rate constant for monomer loss. Although ab initio potentials are not utilized in this paper, the benefit of this method is made apparent by using the Dang-Chang polarizable classical potential for water to obtain statistical properties at various temperatures.
Xu, Jason; Minin, Vladimir N
2015-07-01
Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes.
Xu, Jason; Minin, Vladimir N.
2016-01-01
Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes. PMID:26949377
Revisiting Temporal Markov Chains for Continuum modeling of Transport in Porous Media
NASA Astrophysics Data System (ADS)
Delgoshaie, A. H.; Jenny, P.; Tchelepi, H.
2017-12-01
The transport of fluids in porous media is dominated by flow-field heterogeneity resulting from the underlying permeability field. Due to the high uncertainty in the permeability field, many realizations of the reference geological model are used to describe the statistics of the transport phenomena in a Monte Carlo (MC) framework. There has been strong interest in working with stochastic formulations of the transport that are different from the standard MC approach. Several stochastic models based on a velocity process for tracer particle trajectories have been proposed. Previous studies have shown that for high variances of the log-conductivity, the stochastic models need to account for correlations between consecutive velocity transitions to predict dispersion accurately. The correlated velocity models proposed in the literature can be divided into two general classes of temporal and spatial Markov models. Temporal Markov models have been applied successfully to tracer transport in both the longitudinal and transverse directions. These temporal models are Stochastic Differential Equations (SDEs) with very specific drift and diffusion terms tailored for a specific permeability correlation structure. The drift and diffusion functions devised for a certain setup would not necessarily be suitable for a different scenario, (e.g., a different permeability correlation structure). The spatial Markov models are simple discrete Markov chains that do not require case specific assumptions. However, transverse spreading of contaminant plumes has not been successfully modeled with the available correlated spatial models. Here, we propose a temporal discrete Markov chain to model both the longitudinal and transverse dispersion in a two-dimensional domain. We demonstrate that these temporal Markov models are valid for different correlation structures without modification. Similar to the temporal SDEs, the proposed model respects the limited asymptotic transverse spreading of the plume in two-dimensional problems.
An adaptive Hidden Markov Model for activity recognition based on a wearable multi-sensor device
USDA-ARS?s Scientific Manuscript database
Human activity recognition is important in the study of personal health, wellness and lifestyle. In order to acquire human activity information from the personal space, many wearable multi-sensor devices have been developed. In this paper, a novel technique for automatic activity recognition based o...
Properties of the Bayesian Knowledge Tracing Model
ERIC Educational Resources Information Center
van de Sande, Brett
2013-01-01
Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…
Xylose utilization in recombinant Zymomonas
Kahsay, Robel Y; Qi, Min; Tao, Luan; Viitanen, Paul V; Yang, Jianjun
2013-01-07
Zymomonas expressing xylose isomerase from A. missouriensis was found to have improved xylose utilization, growth, and ethanol production when grown in media containing xylose. Xylose isomerases related to that of A. missouriensis were identified structurally through molecular phylogenetic and Profile Hidden Markov Model analyses, providing xylose isomerases that may be used to improve xylose utilization.
ERIC Educational Resources Information Center
Boyer, Kristy Elizabeth; Phillips, Robert; Ingram, Amy; Ha, Eun Young; Wallis, Michael; Vouk, Mladen; Lester, James
2011-01-01
Identifying effective tutorial dialogue strategies is a key issue for intelligent tutoring systems research. Human-human tutoring offers a valuable model for identifying effective tutorial strategies, but extracting them is a challenge because of the richness of human dialogue. This article addresses that challenge through a machine learning…
A Multimedia English Learning System Using HMMs to Improve Phonemic Awareness for English Learning
ERIC Educational Resources Information Center
Lai, Yen-Shou; Tsai, Hung-Hsu; Yu, Pao-Ta
2009-01-01
This paper proposes a multimedia English learning (MEL) system, based on Hidden Markov Models (HMMs) and mastery theory strategy, for teaching students with the aim of enhancing their English phonetic awareness and pronunciation. It can analyze phonetic structures, identify and capture pronunciation errors to provide students with targeted advice…
Son, Junbo; Brennan, Patricia Flatley; Zhou, Shiyu
2017-05-10
Asthma is a very common chronic disease that affects a large portion of population in many nations. Driven by the fast development in sensor and mobile communication technology, a smart asthma management system has become available to continuously monitor the key health indicators of asthma patients. Such data provides opportunities for healthcare practitioners to examine patients not only in the clinic (on-site) but also outside of the clinic (off-site) in their daily life. In this paper, taking advantage from this data availability, we propose a correlated gamma-based hidden Markov model framework, which can reveal and highlight useful information from the rescue inhaler-usage profiles of individual patients for practitioners. The proposed method can provide diagnostic information about the asthma control status of individual patients and can help practitioners to make more informed therapeutic decisions accordingly. The proposed method is validated through both numerical study and case study based on real world data. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
A proposed OB-fold with a protein-interaction surface in Candida albicans telomerase protein Est3
Yu, Eun Young; Wang, Feng; Lei, Ming; Lue, Neal F
2008-01-01
Ever shorter telomeres 3 (Est3) is an essential telomerase regulatory subunit thought to be unique to budding yeasts. Here we use multiple sequence alignment and hidden Markov model–hidden Markov model (HMM-HMM) comparison to uncover potential similarities between Est3 and the mammalian telomeric protein Tpp1. Analysis of site-specific mutants of Candida albicans Est3 revealed functional distinctions between residues that are conserved between Est3 and Tpp1 and those that are unique to Est3. Although both types of residues are important for telomere maintenance in vivo, only the former contributes to telomerase activity in vitro and facilitates the association of Est3 with telomerase core components. Consistent with a function in protein-protein interaction, the residues common to Est3 and Tpp1 map to one face of an OB-fold model structure, away from the canonical nucleic acid binding surface. We propose that Est3 and the OB-fold domain of Tpp1 mediate a conserved function in telomerase regulation. PMID:19172753
Development of a Fault Monitoring Technique for Wind Turbines Using a Hidden Markov Model.
Shin, Sung-Hwan; Kim, SangRyul; Seo, Yun-Ho
2018-06-02
Regular inspection for the maintenance of the wind turbines is difficult because of their remote locations. For this reason, condition monitoring systems (CMSs) are typically installed to monitor their health condition. The purpose of this study is to propose a fault detection algorithm for the mechanical parts of the wind turbine. To this end, long-term vibration data were collected over two years by a CMS installed on a 3 MW wind turbine. The vibration distribution at a specific rotating speed of main shaft is approximated by the Weibull distribution and its cumulative distribution function is utilized for determining the threshold levels that indicate impending failure of mechanical parts. A Hidden Markov model (HMM) is employed to propose the statistical fault detection algorithm in the time domain and the method whereby the input sequence for HMM is extracted is also introduced by considering the threshold levels and the correlation between the signals. Finally, it was demonstrated that the proposed HMM algorithm achieved a greater than 95% detection success rate by using the long-term signals.
Adaptive hidden Markov model with anomaly States for price manipulation detection.
Cao, Yi; Li, Yuhua; Coleman, Sonya; Belatreche, Ammar; McGinnity, Thomas Martin
2015-02-01
Price manipulation refers to the activities of those traders who use carefully designed trading behaviors to manually push up or down the underlying equity prices for making profits. With increasing volumes and frequency of trading, price manipulation can be extremely damaging to the proper functioning and integrity of capital markets. The existing literature focuses on either empirical studies of market abuse cases or analysis of particular manipulation types based on certain assumptions. Effective approaches for analyzing and detecting price manipulation in real time are yet to be developed. This paper proposes a novel approach, called adaptive hidden Markov model with anomaly states (AHMMAS) for modeling and detecting price manipulation activities. Together with wavelet transformations and gradients as the feature extraction methods, the AHMMAS model caters to price manipulation detection and basic manipulation type recognition. The evaluation experiments conducted on seven stock tick data from NASDAQ and the London Stock Exchange and 10 simulated stock prices by stochastic differential equation show that the proposed AHMMAS model can effectively detect price manipulation patterns and outperforms the selected benchmark models.
Hypovigilance Detection for UCAV Operators Based on a Hidden Markov Model
Kwon, Namyeon; Shin, Yongwook; Ryo, Chuh Yeop; Park, Jonghun
2014-01-01
With the advance of military technology, the number of unmanned combat aerial vehicles (UCAVs) has rapidly increased. However, it has been reported that the accident rate of UCAVs is much higher than that of manned combat aerial vehicles. One of the main reasons for the high accident rate of UCAVs is the hypovigilance problem which refers to the decrease in vigilance levels of UCAV operators while maneuvering. In this paper, we propose hypovigilance detection models for UCAV operators based on EEG signal to minimize the number of occurrences of hypovigilance. To enable detection, we have applied hidden Markov models (HMMs), two of which are used to indicate the operators' dual states, normal vigilance and hypovigilance, and, for each operator, the HMMs are trained as a detection model. To evaluate the efficacy and effectiveness of the proposed models, we conducted two experiments on the real-world data obtained by using EEG-signal acquisition devices, and they yielded satisfactory results. By utilizing the proposed detection models, the problem of hypovigilance of UCAV operators and the problem of high accident rate of UCAVs can be addressed. PMID:24963338
Characterizing and Differentiating Brain State Dynamics via Hidden Markov Models
Ou, Jinli; Xie, Li; Jin, Changfeng; Li, Xiang; Zhu, Dajiang; Jiang, Rongxin; Chen, Yaowu
2014-01-01
Functional connectivity measured from resting state fMRI (R-fMRI) data has been widely used to examine the brain’s functional activities and has been recently used to characterize and differentiate brain conditions. However, the dynamical transition patterns of the brain’s functional states have been less explored. In this work, we propose a novel computational framework to quantitatively characterize the brain state dynamics via hidden Markov models (HMMs) learned from the observations of temporally dynamic functional connectomics, denoted as functional connectome states. The framework has been applied to the R-fMRI dataset including 44 post-traumatic stress disorder (PTSD) patients and 51 normal control (NC) subjects. Experimental results show that both PTSD and NC brains were undergoing remarkable changes in resting state and mainly transiting amongst a few brain states. Interestingly, further prediction with the best-matched HMM demonstrates that PTSD would enter into, but could not disengage from, a negative mood state. Importantly, 84 % of PTSD patients and 86 % of NC subjects are successfully classified via multiple HMMs using majority voting. PMID:25331991
Hidden Markov model for dependent mark loss and survival estimation
Laake, Jeffrey L.; Johnson, Devin S.; Diefenbach, Duane R.; Ternent, Mark A.
2014-01-01
Mark-recapture estimators assume no loss of marks to provide unbiased estimates of population parameters. We describe a hidden Markov model (HMM) framework that integrates a mark loss model with a Cormack–Jolly–Seber model for survival estimation. Mark loss can be estimated with single-marked animals as long as a sub-sample of animals has a permanent mark. Double-marking provides an estimate of mark loss assuming independence but dependence can be modeled with a permanently marked sub-sample. We use a log-linear approach to include covariates for mark loss and dependence which is more flexible than existing published methods for integrated models. The HMM approach is demonstrated with a dataset of black bears (Ursus americanus) with two ear tags and a subset of which were permanently marked with tattoos. The data were analyzed with and without the tattoo. Dropping the tattoos resulted in estimates of survival that were reduced by 0.005–0.035 due to tag loss dependence that could not be modeled. We also analyzed the data with and without the tattoo using a single tag. By not using.
Taghvaei, Sajjad; Jahanandish, Mohammad Hasan; Kosuge, Kazuhiro
2017-01-01
Population aging of the societies requires providing the elderly with safe and dependable assistive technologies in daily life activities. Improving the fall detection algorithms can play a major role in achieving this goal. This article proposes a real-time fall prediction algorithm based on the acquired visual data of a user with walking assistive system from a depth sensor. In the lack of a coupled dynamic model of the human and the assistive walker a hybrid "system identification-machine learning" approach is used. An autoregressive-moving-average (ARMA) model is fitted on the time-series walking data to forecast the upcoming states, and a hidden Markov model (HMM) based classifier is built on the top of the ARMA model to predict falling in the upcoming time frames. The performance of the algorithm is evaluated through experiments with four subjects including an experienced physiotherapist while using a walker robot in five different falling scenarios; namely, fall forward, fall down, fall back, fall left, and fall right. The algorithm successfully predicts the fall with a rate of 84.72%.
NASA Astrophysics Data System (ADS)
Kang, Seung-Ho; Lee, Sang-Hee; Chon, Tae-Soo
2012-02-01
In recent decades, the behavior of Caenorhabditis elegans ( C. elegans) has been extensively studied to understand the respective roles of neural control and biomechanics. Thus far, however, only a few studies on the simulation modeling of C. elegans swimming behavior have been conducted because it is mathematically difficult to describe its complicated behavior. In this study, we built two hidden Markov models (HMMs), corresponding to the movements of C. elegans in a controlled environment with no chemical treatment and in a formaldehyde-treated environment (0.1 ppm), respectively. The movement was characterized by a series of shape patterns of the organism, taken every 0.25 s for 40 min. All shape patterns were quantified by branch length similarity (BLS) entropy and classified into seven patterns by using the self-organizing map (SOM) and the k-means clustering algorithm. The HMM coupled with the SOM was successful in accurately explaining the organism's behavior. In addition, we briefly discussed the possibility of using the HMM together with BLS entropy to develop bio-monitoring systems for real-time applications to determine water quality.
Reverse engineering a social agent-based hidden markov model--visage.
Chen, Hung-Ching Justin; Goldberg, Mark; Magdon-Ismail, Malik; Wallace, William A
2008-12-01
We present a machine learning approach to discover the agent dynamics that drives the evolution of the social groups in a community. We set up the problem by introducing an agent-based hidden Markov model for the agent dynamics: an agent's actions are determined by micro-laws. Nonetheless, We learn the agent dynamics from the observed communications without knowing state transitions. Our approach is to identify the appropriate micro-laws corresponding to an identification of the appropriate parameters in the model. The model identification problem is then formulated as a mixed optimization problem. To solve the problem, we develop a multistage learning process for determining the group structure, the group evolution, and the micro-laws of a community based on the observed set of communications among actors, without knowing the semantic contents. Finally, to test the quality of our approximations and the feasibility of the approach, we present the results of extensive experiments on synthetic data as well as the results on real communities, such as Enron email and Movie newsgroups. Insight into agent dynamics helps us understand the driving forces behind social evolution.
Optimizing Likelihood Models for Particle Trajectory Segmentation in Multi-State Systems.
Young, Dylan Christopher; Scrimgeour, Jan
2018-06-19
Particle tracking offers significant insight into the molecular mechanics that govern the behav- ior of living cells. The analysis of molecular trajectories that transition between different motive states, such as diffusive, driven and tethered modes, is of considerable importance, with even single trajectories containing significant amounts of information about a molecule's environment and its interactions with cellular structures. Hidden Markov models (HMM) have been widely adopted to perform the segmentation of such complex tracks. In this paper, we show that extensive analysis of hidden Markov model outputs using data derived from multi-state Brownian dynamics simulations can be used both for the optimization of the likelihood models used to describe the states of the system and for characterization of the technique's failure mechanisms. This analysis was made pos- sible by the implementation of parallelized adaptive direct search algorithm on a Nvidia graphics processing unit. This approach provides critical information for the visualization of HMM failure and successful design of particle tracking experiments where trajectories contain multiple mobile states. © 2018 IOP Publishing Ltd.
Recognition of surgical skills using hidden Markov models
NASA Astrophysics Data System (ADS)
Speidel, Stefanie; Zentek, Tom; Sudra, Gunther; Gehrig, Tobias; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger
2009-02-01
Minimally invasive surgery is a highly complex medical discipline and can be regarded as a major breakthrough in surgical technique. A minimally invasive intervention requires enhanced motor skills to deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To recognize and analyze the current situation for context-aware assistance, we need intraoperative sensor data and a model of the intervention. Characteristics of a situation are the performed activity, the used instruments, the surgical objects and the anatomical structures. Important information about the surgical activity can be acquired by recognizing the surgical gesture performed. Surgical gestures in minimally invasive surgery like cutting, knot-tying or suturing are here referred to as surgical skills. We use the motion data from the endoscopic instruments to classify and analyze the performed skill and even use it for skill evaluation in a training scenario. The system uses Hidden Markov Models (HMM) to model and recognize a specific surgical skill like knot-tying or suturing with an average recognition rate of 92%.
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; ...
2017-10-17
In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan
In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less
Markov chain decision model for urinary incontinence procedures.
Kumar, Sameer; Ghildayal, Nidhi; Ghildayal, Neha
2017-03-13
Purpose Urinary incontinence (UI) is a common chronic health condition, a problem specifically among elderly women that impacts quality of life negatively. However, UI is usually viewed as likely result of old age, and as such is generally not evaluated or even managed appropriately. Many treatments are available to manage incontinence, such as bladder training and numerous surgical procedures such as Burch colposuspension and Sling for UI which have high success rates. The purpose of this paper is to analyze which of these popular surgical procedures for UI is effective. Design/methodology/approach This research employs randomized, prospective studies to obtain robust cost and utility data used in the Markov chain decision model for examining which of these surgical interventions is more effective in treating women with stress UI based on two measures: number of quality adjusted life years (QALY) and cost per QALY. Treeage Pro Healthcare software was employed in Markov decision analysis. Findings Results showed the Sling procedure is a more effective surgical intervention than the Burch. However, if a utility greater than certain utility value, for which both procedures are equally effective, is assigned to persistent incontinence, the Burch procedure is more effective than the Sling procedure. Originality/value This paper demonstrates the efficacy of a Markov chain decision modeling approach to study the comparative effectiveness analysis of available treatments for patients with UI, an important public health issue, widely prevalent among elderly women in developed and developing countries. This research also improves upon other analyses using a Markov chain decision modeling process to analyze various strategies for treating UI.
Tropical geometry of statistical models.
Pachter, Lior; Sturmfels, Bernd
2004-11-16
This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.
Earl, David J; Deem, Michael W
2005-04-14
Adaptive Monte Carlo methods can be viewed as implementations of Markov chains with infinite memory. We derive a general condition for the convergence of a Monte Carlo method whose history dependence is contained within the simulated density distribution. In convergent cases, our result implies that the balance condition need only be satisfied asymptotically. As an example, we show that the adaptive integration method converges.
NASA Astrophysics Data System (ADS)
Gbedo, Yémalin Gabin; Mangin-Brinet, Mariane
2017-07-01
We present a new procedure to determine parton distribution functions (PDFs), based on Markov chain Monte Carlo (MCMC) methods. The aim of this paper is to show that we can replace the standard χ2 minimization by procedures grounded on statistical methods, and on Bayesian inference in particular, thus offering additional insight into the rich field of PDFs determination. After a basic introduction to these techniques, we introduce the algorithm we have chosen to implement—namely Hybrid (or Hamiltonian) Monte Carlo. This algorithm, initially developed for Lattice QCD, turns out to be very interesting when applied to PDFs determination by global analyses; we show that it allows us to circumvent the difficulties due to the high dimensionality of the problem, in particular concerning the acceptance. A first feasibility study is performed and presented, which indicates that Markov chain Monte Carlo can successfully be applied to the extraction of PDFs and of their uncertainties.
Honest Importance Sampling with Multiple Markov Chains
Tan, Aixin; Doss, Hani; Hobert, James P.
2017-01-01
Importance sampling is a classical Monte Carlo technique in which a random sample from one probability density, π1, is used to estimate an expectation with respect to another, π. The importance sampling estimator is strongly consistent and, as long as two simple moment conditions are satisfied, it obeys a central limit theorem (CLT). Moreover, there is a simple consistent estimator for the asymptotic variance in the CLT, which makes for routine computation of standard errors. Importance sampling can also be used in the Markov chain Monte Carlo (MCMC) context. Indeed, if the random sample from π1 is replaced by a Harris ergodic Markov chain with invariant density π1, then the resulting estimator remains strongly consistent. There is a price to be paid however, as the computation of standard errors becomes more complicated. First, the two simple moment conditions that guarantee a CLT in the iid case are not enough in the MCMC context. Second, even when a CLT does hold, the asymptotic variance has a complex form and is difficult to estimate consistently. In this paper, we explain how to use regenerative simulation to overcome these problems. Actually, we consider a more general set up, where we assume that Markov chain samples from several probability densities, π1, …, πk, are available. We construct multiple-chain importance sampling estimators for which we obtain a CLT based on regeneration. We show that if the Markov chains converge to their respective target distributions at a geometric rate, then under moment conditions similar to those required in the iid case, the MCMC-based importance sampling estimator obeys a CLT. Furthermore, because the CLT is based on a regenerative process, there is a simple consistent estimator of the asymptotic variance. We illustrate the method with two applications in Bayesian sensitivity analysis. The first concerns one-way random effects models under different priors. The second involves Bayesian variable selection in linear regression, and for this application, importance sampling based on multiple chains enables an empirical Bayes approach to variable selection. PMID:28701855
Honest Importance Sampling with Multiple Markov Chains.
Tan, Aixin; Doss, Hani; Hobert, James P
2015-01-01
Importance sampling is a classical Monte Carlo technique in which a random sample from one probability density, π 1 , is used to estimate an expectation with respect to another, π . The importance sampling estimator is strongly consistent and, as long as two simple moment conditions are satisfied, it obeys a central limit theorem (CLT). Moreover, there is a simple consistent estimator for the asymptotic variance in the CLT, which makes for routine computation of standard errors. Importance sampling can also be used in the Markov chain Monte Carlo (MCMC) context. Indeed, if the random sample from π 1 is replaced by a Harris ergodic Markov chain with invariant density π 1 , then the resulting estimator remains strongly consistent. There is a price to be paid however, as the computation of standard errors becomes more complicated. First, the two simple moment conditions that guarantee a CLT in the iid case are not enough in the MCMC context. Second, even when a CLT does hold, the asymptotic variance has a complex form and is difficult to estimate consistently. In this paper, we explain how to use regenerative simulation to overcome these problems. Actually, we consider a more general set up, where we assume that Markov chain samples from several probability densities, π 1 , …, π k , are available. We construct multiple-chain importance sampling estimators for which we obtain a CLT based on regeneration. We show that if the Markov chains converge to their respective target distributions at a geometric rate, then under moment conditions similar to those required in the iid case, the MCMC-based importance sampling estimator obeys a CLT. Furthermore, because the CLT is based on a regenerative process, there is a simple consistent estimator of the asymptotic variance. We illustrate the method with two applications in Bayesian sensitivity analysis. The first concerns one-way random effects models under different priors. The second involves Bayesian variable selection in linear regression, and for this application, importance sampling based on multiple chains enables an empirical Bayes approach to variable selection.
NASA Astrophysics Data System (ADS)
Lopes, Artur O.; Neumann, Adriana
2015-05-01
In the present paper, we consider a family of continuous time symmetric random walks indexed by , . For each the matching random walk take values in the finite set of states ; notice that is a subset of , where is the unitary circle. The infinitesimal generator of such chain is denoted by . The stationary probability for such process converges to the uniform distribution on the circle, when . Here we want to study other natural measures, obtained via a limit on , that are concentrated on some points of . We will disturb this process by a potential and study for each the perturbed stationary measures of this new process when . We disturb the system considering a fixed potential and we will denote by the restriction of to . Then, we define a non-stochastic semigroup generated by the matrix , where is the infinifesimal generator of . From the continuous time Perron's Theorem one can normalized such semigroup, and, then we get another stochastic semigroup which generates a continuous time Markov Chain taking values on . This new chain is called the continuous time Gibbs state associated to the potential , see (Lopes et al. in J Stat Phys 152:894-933, 2013). The stationary probability vector for such Markov Chain is denoted by . We assume that the maximum of is attained in a unique point of , and from this will follow that . Thus, here, our main goal is to analyze the large deviation principle for the family , when . The deviation function , which is defined on , will be obtained from a procedure based on fixed points of the Lax-Oleinik operator and Aubry-Mather theory. In order to obtain the associated Lax-Oleinik operator we use the Varadhan's Lemma for the process . For a careful analysis of the problem we present full details of the proof of the Large Deviation Principle, in the Skorohod space, for such family of Markov Chains, when . Finally, we compute the entropy of the invariant probabilities on the Skorohod space associated to the Markov Chains we analyze.
Hidden Semi-Markov Models and Their Application
NASA Astrophysics Data System (ADS)
Beyreuther, M.; Wassermann, J.
2008-12-01
In the framework of detection and classification of seismic signals there are several different approaches. Our choice for a more robust detection and classification algorithm is to adopt Hidden Markov Models (HMM), a technique showing major success in speech recognition. HMM provide a powerful tool to describe highly variable time series based on a double stochastic model and therefore allow for a broader class description than e.g. template based pattern matching techniques. Being a fully probabilistic model, HMM directly provide a confidence measure of an estimated classification. Furthermore and in contrast to classic artificial neuronal networks or support vector machines, HMM are incorporating the time dependence explicitly in the models thus providing a adequate representation of the seismic signal. As the majority of detection algorithms, HMM are not based on the time and amplitude dependent seismogram itself but on features estimated from the seismogram which characterize the different classes. Features, or in other words characteristic functions, are e.g. the sonogram bands, instantaneous frequency, instantaneous bandwidth or centroid time. In this study we apply continuous Hidden Semi-Markov Models (HSMM), an extension of continuous HMM. The duration probability of a HMM is an exponentially decaying function of the time, which is not a realistic representation of the duration of an earthquake. In contrast HSMM use Gaussians as duration probabilities, which results in an more adequate model. The HSMM detection and classification system is running online as an EARTHWORM module at the Bavarian Earthquake Service. Here the signals that are to be classified simply differ in epicentral distance. This makes it possible to easily decide whether a classification is correct or wrong and thus allows to better evaluate the advantages and disadvantages of the proposed algorithm. The evaluation is based on several month long continuous data and the results are additionally compared to the previously published discrete HMM, continuous HMM and a classic STA/LTA. The intermediate evaluation results are very promising.
A high-fidelity weather time series generator using the Markov Chain process on a piecewise level
NASA Astrophysics Data System (ADS)
Hersvik, K.; Endrerud, O.-E. V.
2017-12-01
A method is developed for generating a set of unique weather time-series based on an existing weather series. The method allows statistically valid weather variations to take place within repeated simulations of offshore operations. The numerous generated time series need to share the same statistical qualities as the original time series. Statistical qualities here refer mainly to the distribution of weather windows available for work, including durations and frequencies of such weather windows, and seasonal characteristics. The method is based on the Markov chain process. The core new development lies in how the Markov Process is used, specifically by joining small pieces of random length time series together rather than joining individual weather states, each from a single time step, which is a common solution found in the literature. This new Markov model shows favorable characteristics with respect to the requirements set forth and all aspects of the validation performed.
NASA Astrophysics Data System (ADS)
Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan
2017-04-01
Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the underlying heterogeneities in spatial domain and finite Gaussian mixture models are adopted to quantitatively describe the statistical patterns in terms of center vectors and covariance matrices in feature space. A recently developed parallel stochastic clustering algorithm is adopted to implement the HMRF models and the Markov chain Monte Carlo based Bayesian inference. Certain spatial patterns such as buried paleo-river channels covered by shallow sediments are investigated as typical examples. The results indicate that the geometric patterns of the subsurface heterogeneity can be represented and quantitatively characterized by HMRF. Furthermore, the statistical patterns of the NDVI and the EMI data from the soil/vegetation-continuum system can be inferred and analyzed in a quantitative manner.
NASA Astrophysics Data System (ADS)
Zamani, Pooria; Kayvanrad, Mohammad; Soltanian-Zadeh, Hamid
2012-12-01
This article presents a compressive sensing approach for reducing data acquisition time in cardiac cine magnetic resonance imaging (MRI). In cardiac cine MRI, several images are acquired throughout the cardiac cycle, each of which is reconstructed from the raw data acquired in the Fourier transform domain, traditionally called k-space. In the proposed approach, a majority, e.g., 62.5%, of the k-space lines (trajectories) are acquired at the odd time points and a minority, e.g., 37.5%, of the k-space lines are acquired at the even time points of the cardiac cycle. Optimal data acquisition at the even time points is learned from the data acquired at the odd time points. To this end, statistical features of the k-space data at the odd time points are clustered by fuzzy c-means and the results are considered as the states of Markov chains. The resulting data is used to train hidden Markov models and find their transition matrices. Then, the trajectories corresponding to transition matrices far from an identity matrix are selected for data acquisition. At the end, an iterative thresholding algorithm is used to reconstruct the images from the under-sampled k-space datasets. The proposed approaches for selecting the k-space trajectories and reconstructing the images generate more accurate images compared to alternative methods. The proposed under-sampling approach achieves an acceleration factor of 2 for cardiac cine MRI.
NASA Astrophysics Data System (ADS)
Frost, Andrew J.; Thyer, Mark A.; Srikanthan, R.; Kuczera, George
2007-07-01
SummaryMulti-site simulation of hydrological data are required for drought risk assessment of large multi-reservoir water supply systems. In this paper, a general Bayesian framework is presented for the calibration and evaluation of multi-site hydrological data at annual timescales. Models included within this framework are the hidden Markov model (HMM) and the widely used lag-1 autoregressive (AR(1)) model. These models are extended by the inclusion of a Box-Cox transformation and a spatial correlation function in a multi-site setting. Parameter uncertainty is evaluated using Markov chain Monte Carlo techniques. Models are evaluated by their ability to reproduce a range of important extreme statistics and compared using Bayesian model selection techniques which evaluate model probabilities. The case study, using multi-site annual rainfall data situated within catchments which contribute to Sydney's main water supply, provided the following results: Firstly, in terms of model probabilities and diagnostics, the inclusion of the Box-Cox transformation was preferred. Secondly the AR(1) and HMM performed similarly, while some other proposed AR(1)/HMM models with regionally pooled parameters had greater posterior probability than these two models. The practical significance of parameter and model uncertainty was illustrated using a case study involving drought security analysis for urban water supply. It was shown that ignoring parameter uncertainty resulted in a significant overestimate of reservoir yield and an underestimation of system vulnerability to severe drought.
Space system operations and support cost analysis using Markov chains
NASA Technical Reports Server (NTRS)
Unal, Resit; Dean, Edwin B.; Moore, Arlene A.; Fairbairn, Robert E.
1990-01-01
This paper evaluates the use of Markov chain process in probabilistic life cycle cost analysis and suggests further uses of the process as a design aid tool. A methodology is developed for estimating operations and support cost and expected life for reusable space transportation systems. Application of the methodology is demonstrated for the case of a hypothetical space transportation vehicle. A sensitivity analysis is carried out to explore the effects of uncertainty in key model inputs.
Covariate adjustment of event histories estimated from Markov chains: the additive approach.
Aalen, O O; Borgan, O; Fekjaer, H
2001-12-01
Markov chain models are frequently used for studying event histories that include transitions between several states. An empirical transition matrix for nonhomogeneous Markov chains has previously been developed, including a detailed statistical theory based on counting processes and martingales. In this article, we show how to estimate transition probabilities dependent on covariates. This technique may, e.g., be used for making estimates of individual prognosis in epidemiological or clinical studies. The covariates are included through nonparametric additive models on the transition intensities of the Markov chain. The additive model allows for estimation of covariate-dependent transition intensities, and again a detailed theory exists based on counting processes. The martingale setting now allows for a very natural combination of the empirical transition matrix and the additive model, resulting in estimates that can be expressed as stochastic integrals, and hence their properties are easily evaluated. Two medical examples will be given. In the first example, we study how the lung cancer mortality of uranium miners depends on smoking and radon exposure. In the second example, we study how the probability of being in response depends on patient group and prophylactic treatment for leukemia patients who have had a bone marrow transplantation. A program in R and S-PLUS that can carry out the analyses described here has been developed and is freely available on the Internet.
NASA Astrophysics Data System (ADS)
Widyawan, A.; Pasaribu, U. S.; Henintyas, Permana, D.
2015-12-01
Nowadays some firms, including insurer firms, think that customer-centric services are better than product-centric ones in terms of marketing. Insurance firms will try to attract as many new customer as possible while maintaining existing customer. This causes the Customer Lifetime Value (CLV) becomes a very important thing. CLV are able to put customer into different segments and calculate the present value of a firm's relationship with its customer. Insurance customer will depend on the last service he or she can get. So if the service is bad now, then customer will not renew his contract though the service is very good at an erlier time. Because of this situation one suitable mathematical model for modeling customer's relationships and calculating their lifetime value is Markov Chain. In addition, the advantages of using Markov Chain Modeling is its high degree of flexibility. In 2000, Pfeifer and Carraway states that Markov Chain Modeling can be used for customer retention situation. In this situation, Markov Chain Modeling requires only two states, which are present customer and former ones. This paper calculates customer lifetime value in an insurance firm with two distinctive interest rates; the constant interest rate and uniform distribution of interest rates. The result shows that loyal customer and the customer who increase their contract value have the highest CLV.
Quantitative risk stratification in Markov chains with limiting conditional distributions.
Chan, David C; Pollett, Philip K; Weinstein, Milton C
2009-01-01
Many clinical decisions require patient risk stratification. The authors introduce the concept of limiting conditional distributions, which describe the equilibrium proportion of surviving patients occupying each disease state in a Markov chain with death. Such distributions can quantitatively describe risk stratification. The authors first establish conditions for the existence of a positive limiting conditional distribution in a general Markov chain and describe a framework for risk stratification using the limiting conditional distribution. They then apply their framework to a clinical example of a treatment indicated for high-risk patients, first to infer the risk of patients selected for treatment in clinical trials and then to predict the outcomes of expanding treatment to other populations of risk. For the general chain, a positive limiting conditional distribution exists only if patients in the earliest state have the lowest combined risk of progression or death. The authors show that in their general framework, outcomes and population risk are interchangeable. For the clinical example, they estimate that previous clinical trials have selected the upper quintile of patient risk for this treatment, but they also show that expanded treatment would weakly dominate this degree of targeted treatment, and universal treatment may be cost-effective. Limiting conditional distributions exist in most Markov models of progressive diseases and are well suited to represent risk stratification quantitatively. This framework can characterize patient risk in clinical trials and predict outcomes for other populations of risk.
Generalization bounds of ERM-based learning processes for continuous-time Markov chains.
Zhang, Chao; Tao, Dacheng
2012-12-01
Many existing results on statistical learning theory are based on the assumption that samples are independently and identically distributed (i.i.d.). However, the assumption of i.i.d. samples is not suitable for practical application to problems in which samples are time dependent. In this paper, we are mainly concerned with the empirical risk minimization (ERM) based learning process for time-dependent samples drawn from a continuous-time Markov chain. This learning process covers many kinds of practical applications, e.g., the prediction for a time series and the estimation of channel state information. Thus, it is significant to study its theoretical properties including the generalization bound, the asymptotic convergence, and the rate of convergence. It is noteworthy that, since samples are time dependent in this learning process, the concerns of this paper cannot (at least straightforwardly) be addressed by existing methods developed under the sample i.i.d. assumption. We first develop a deviation inequality for a sequence of time-dependent samples drawn from a continuous-time Markov chain and present a symmetrization inequality for such a sequence. By using the resultant deviation inequality and symmetrization inequality, we then obtain the generalization bounds of the ERM-based learning process for time-dependent samples drawn from a continuous-time Markov chain. Finally, based on the resultant generalization bounds, we analyze the asymptotic convergence and the rate of convergence of the learning process.
Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu
2016-11-23
The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com.
Copula-based prediction of economic movements
NASA Astrophysics Data System (ADS)
García, J. E.; González-López, V. A.; Hirsh, I. D.
2016-06-01
In this paper we model the discretized returns of two paired time series BM&FBOVESPA Dividend Index and BM&FBOVESPA Public Utilities Index using multivariate Markov models. The discretization corresponds to three categories, high losses, high profits and the complementary periods of the series. In technical terms, the maximal memory that can be considered for a Markov model, can be derived from the size of the alphabet and dataset. The number of parameters needed to specify a discrete multivariate Markov chain grows exponentially with the order and dimension of the chain. In this case the size of the database is not large enough for a consistent estimation of the model. We apply a strategy to estimate a multivariate process with an order greater than the order achieved using standard procedures. The new strategy consist on obtaining a partition of the state space which is constructed from a combination, of the partitions corresponding to the two marginal processes and the partition corresponding to the multivariate Markov chain. In order to estimate the transition probabilities, all the partitions are linked using a copula. In our application this strategy provides a significant improvement in the movement predictions.
Modeling MOOC Student Behavior with Two-Layer Hidden Markov Models
ERIC Educational Resources Information Center
Geigle, Chase; Zhai, ChengXiang
2017-01-01
Massive open online courses (MOOCs) provide educators with an abundance of data describing how students interact with the platform, but this data is highly underutilized today. This is in part due to the lack of sophisticated tools to provide interpretable and actionable summaries of huge amounts of MOOC activity present in log data. To address…
Accounting for Slipping and Other False Negatives in Logistic Models of Student Learning
ERIC Educational Resources Information Center
MacLellan, Christopher J.; Liu, Ran; Koedinger, Kenneth R.
2015-01-01
Additive Factors Model (AFM) and Performance Factors Analysis (PFA) are two popular models of student learning that employ logistic regression to estimate parameters and predict performance. This is in contrast to Bayesian Knowledge Tracing (BKT) which uses a Hidden Markov Model formalism. While all three models tend to make similar predictions,…
ERIC Educational Resources Information Center
Li, Dingcheng
2011-01-01
Coreference resolution (CR) and entity relation detection (ERD) aim at finding predefined relations between pairs of entities in text. CR focuses on resolving identity relations while ERD focuses on detecting non-identity relations. Both CR and ERD are important as they can potentially improve other natural language processing (NLP) related tasks…
ERIC Educational Resources Information Center
Wedel, Michel; Pieters, Rik; Liechty, John
2008-01-01
Eye movements across advertisements express a temporal pattern of bursts of respectively relatively short and long saccades, and this pattern is systematically influenced by activated scene perception goals. This was revealed by a continuous-time hidden Markov model applied to eye movements of 220 participants exposed to 17 ads under a…
A Markovian model of evolving world input-output network
Isacchini, Giulio
2017-01-01
The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money. PMID:29065145
Logofet, D O; Evstigneev, O I; Aleĭnikov, A A; Morozova, A O
2014-01-01
A homogeneous Markov chain of three aggregated states "pond--swamp--wood" is proposed as a model of cyclic zoogenic successions caused by beaver (Castor fiber L.) life activity in a forest biogeocoenosis. To calibrate the chain transition matrix, the data have appeared sufficient that were gained from field studies undertaken in "Bryanskii Les" Reserve in the years of 2002-2008. Major outcomes of the calibrated model ensue from the formulae of finite homogeneous Markov chain theory: the stationary probability distribution of states, thematrix (T) of mean first passage times, and the mean durations (M(j)) of succession stages. The former illustrates the distribution of relative areas under succession stages if the current trends and transition rates of succession are conserved in the long-term--it has appeared close to the observed distribution. Matrix T provides for quantitative characteristics of the cyclic process, specifying the ranges the experts proposed for the duration of stages in the conceptual scheme of succession. The calculated values of M(j) detect potential discrepancies between empirical data, the expert knowledge that summarizes the data, and the postulates accepted in the mathematical model. The calculated M2 value falls outside the expert range, which gives a reason to doubt the validity of expert estimation proposed, the aggregation mode chosen for chain states, or/and the accuracy-of data available, i.e., to draw certain "lessons" from partially successful calibration. Refusal to postulate the time homogeneity or the Markov property of the chain is also discussed among possible ways to improve the model.
DNA motif alignment by evolving a population of Markov chains.
Bi, Chengpeng
2009-01-30
Deciphering cis-regulatory elements or de novo motif-finding in genomes still remains elusive although much algorithmic effort has been expended. The Markov chain Monte Carlo (MCMC) method such as Gibbs motif samplers has been widely employed to solve the de novo motif-finding problem through sequence local alignment. Nonetheless, the MCMC-based motif samplers still suffer from local maxima like EM. Therefore, as a prerequisite for finding good local alignments, these motif algorithms are often independently run a multitude of times, but without information exchange between different chains. Hence it would be worth a new algorithm design enabling such information exchange. This paper presents a novel motif-finding algorithm by evolving a population of Markov chains with information exchange (PMC), each of which is initialized as a random alignment and run by the Metropolis-Hastings sampler (MHS). It is progressively updated through a series of local alignments stochastically sampled. Explicitly, the PMC motif algorithm performs stochastic sampling as specified by a population-based proposal distribution rather than individual ones, and adaptively evolves the population as a whole towards a global maximum. The alignment information exchange is accomplished by taking advantage of the pooled motif site distributions. A distinct method for running multiple independent Markov chains (IMC) without information exchange, or dubbed as the IMC motif algorithm, is also devised to compare with its PMC counterpart. Experimental studies demonstrate that the performance could be improved if pooled information were used to run a population of motif samplers. The new PMC algorithm was able to improve the convergence and outperformed other popular algorithms tested using simulated and biological motif sequences.
NASA Astrophysics Data System (ADS)
Lismawati, Eka; Respatiwulan; Widyaningsih, Purnami
2017-06-01
The SIS epidemic model describes the pattern of disease spread with characteristics that recovered individuals can be infected more than once. The number of susceptible and infected individuals every time follows the discrete time Markov process. It can be represented by the discrete time Markov chains (DTMC) SIS. The DTMC SIS epidemic model can be developed for two pathogens in two patches. The aims of this paper are to reconstruct and to apply the DTMC SIS epidemic model with two pathogens in two patches. The model was presented as transition probabilities. The application of the model obtain that the number of susceptible individuals decreases while the number of infected individuals increases for each pathogen in each patch.
Decentralized learning in Markov games.
Vrancx, Peter; Verbeeck, Katja; Nowé, Ann
2008-08-01
Learning automata (LA) were recently shown to be valuable tools for designing multiagent reinforcement learning algorithms. One of the principal contributions of the LA theory is that a set of decentralized independent LA is able to control a finite Markov chain with unknown transition probabilities and rewards. In this paper, we propose to extend this algorithm to Markov games--a straightforward extension of single-agent Markov decision problems to distributed multiagent decision problems. We show that under the same ergodic assumptions of the original theorem, the extended algorithm will converge to a pure equilibrium point between agent policies.
Characterizing Quality Factor of Niobium Resonators Using a Markov Chain Monte Carlo Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu Thakur, Ritoban; Tang, Qing Yang; McGeehan, Ryan
The next generation of radiation detectors in high precision Cosmology, Astronomy, and particle-astrophysics experiments will rely heavily on superconducting microwave resonators and kinetic inductance devices. Understanding the physics of energy loss in these devices, in particular at low temperatures and powers, is vital. We present a comprehensive analysis framework, using Markov Chain Monte Carlo methods, to characterize loss due to two-level system in concert with quasi-particle dynamics in thin-film Nb resonators in the GHz range.
Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.
Serebrinsky, Santiago A
2011-03-01
We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.
Parallel algorithms for simulating continuous time Markov chains
NASA Technical Reports Server (NTRS)
Nicol, David M.; Heidelberger, Philip
1992-01-01
We have previously shown that the mathematical technique of uniformization can serve as the basis of synchronization for the parallel simulation of continuous-time Markov chains. This paper reviews the basic method and compares five different methods based on uniformization, evaluating their strengths and weaknesses as a function of problem characteristics. The methods vary in their use of optimism, logical aggregation, communication management, and adaptivity. Performance evaluation is conducted on the Intel Touchstone Delta multiprocessor, using up to 256 processors.
Noise can speed convergence in Markov chains.
Franzke, Brandon; Kosko, Bart
2011-10-01
A new theorem shows that noise can speed convergence to equilibrium in discrete finite-state Markov chains. The noise applies to the state density and helps the Markov chain explore improbable regions of the state space. The theorem ensures that a stochastic-resonance noise benefit exists for states that obey a vector-norm inequality. Such noise leads to faster convergence because the noise reduces the norm components. A corollary shows that a noise benefit still occurs if the system states obey an alternate norm inequality. This leads to a noise-benefit algorithm that requires knowledge of the steady state. An alternative blind algorithm uses only past state information to achieve a weaker noise benefit. Simulations illustrate the predicted noise benefits in three well-known Markov models. The first model is a two-parameter Ehrenfest diffusion model that shows how noise benefits can occur in the class of birth-death processes. The second model is a Wright-Fisher model of genotype drift in population genetics. The third model is a chemical reaction network of zeolite crystallization. A fourth simulation shows a convergence rate increase of 64% for states that satisfy the theorem and an increase of 53% for states that satisfy the corollary. A final simulation shows that even suboptimal noise can speed convergence if the noise applies over successive time cycles. Noise benefits tend to be sharpest in Markov models that do not converge quickly and that do not have strong absorbing states.
spMC: an R-package for 3D lithological reconstructions based on spatial Markov chains
NASA Astrophysics Data System (ADS)
Sartore, Luca; Fabbri, Paolo; Gaetan, Carlo
2016-09-01
The paper presents the spatial Markov Chains (spMC) R-package and a case study of subsoil simulation/prediction located in a plain site of Northeastern Italy. spMC is a quite complete collection of advanced methods for data inspection, besides spMC implements Markov Chain models to estimate experimental transition probabilities of categorical lithological data. Furthermore, simulation methods based on most known prediction methods (as indicator Kriging and CoKriging) were implemented in spMC package. Moreover, other more advanced methods are available for simulations, e.g. path methods and Bayesian procedures, that exploit the maximum entropy. Since the spMC package was developed for intensive geostatistical computations, part of the code is implemented for parallel computations via the OpenMP constructs. A final analysis of this computational efficiency compares the simulation/prediction algorithms by using different numbers of CPU cores, and considering the example data set of the case study included in the package.
NASA Astrophysics Data System (ADS)
Esquível, Manuel L.; Fernandes, José Moniz; Guerreiro, Gracinda R.
2016-06-01
We introduce a schematic formalism for the time evolution of a random population entering some set of classes and such that each member of the population evolves among these classes according to a scheme based on a Markov chain model. We consider that the flow of incoming members is modeled by a time series and we detail the time series structure of the elements in each of the classes. We present a practical application to data from a credit portfolio of a Cape Verdian bank; after modeling the entering population in two different ways - namely as an ARIMA process and as a deterministic sigmoid type trend plus a SARMA process for the residues - we simulate the behavior of the population and compare the results. We get that the second method is more accurate in describing the behavior of the populations when compared to the observed values in a direct simulation of the Markov chain.
Weber, Juliane; Zachow, Christopher; Witthaut, Dirk
2018-03-01
Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.
Motif finding in DNA sequences based on skipping nonconserved positions in background Markov chains.
Zhao, Xiaoyan; Sze, Sing-Hoi
2011-05-01
One strategy to identify transcription factor binding sites is through motif finding in upstream DNA sequences of potentially co-regulated genes. Despite extensive efforts, none of the existing algorithms perform very well. We consider a string representation that allows arbitrary ignored positions within the nonconserved portion of single motifs, and use O(2(l)) Markov chains to model the background distributions of motifs of length l while skipping these positions within each Markov chain. By focusing initially on positions that have fixed nucleotides to define core occurrences, we develop an algorithm to identify motifs of moderate lengths. We compare the performance of our algorithm to other motif finding algorithms on a few benchmark data sets, and show that significant improvement in accuracy can be obtained when the sites are sufficiently conserved within a given sample, while comparable performance is obtained when the site conservation rate is low. A software program (PosMotif ) and detailed results are available online at http://faculty.cse.tamu.edu/shsze/posmotif.
NASA Astrophysics Data System (ADS)
Weber, Juliane; Zachow, Christopher; Witthaut, Dirk
2018-03-01
Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.
Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems
NASA Astrophysics Data System (ADS)
Antown, Fadi; Dragičević, Davor; Froyland, Gary
2018-03-01
The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.
Surface Connectivity and Interocean Exchanges From Drifter-Based Transition Matrices
NASA Astrophysics Data System (ADS)
McAdam, Ronan; van Sebille, Erik
2018-01-01
Global surface transport in the ocean can be represented by using the observed trajectories of drifters to calculate probability distribution functions. The oceanographic applications of the Markov Chain approach to modeling include tracking of floating debris and water masses, globally and on yearly-to-centennial time scales. Here we analyze the error inherent with mapping trajectories onto a grid and the consequences for ocean transport modeling and detection of accumulation structures. A sensitivity analysis of Markov Chain parameters is performed in an idealized Stommel gyre and western boundary current as well as with observed ocean drifters, complementing previous studies on widespread floating debris accumulation. Focusing on two key areas of interocean exchange—the Agulhas system and the North Atlantic intergyre transport barrier—we assess the capacity of the Markov Chain methodology to detect surface connectivity and dynamic transport barriers. Finally, we extend the methodology's functionality to separate the geostrophic and nongeostrophic contributions to interocean exchange in these key regions.
Duan, Jinli; Jiao, Feng; Zhang, Qishan; Lin, Zhibin
2017-08-06
The sharp increase of the aging population has raised the pressure on the current limited medical resources in China. To better allocate resources, a more accurate prediction on medical service demand is very urgently needed. This study aims to improve the prediction on medical services demand in China. To achieve this aim, the study combines Taylor Approximation into the Grey Markov Chain model, and develops a new model named Taylor-Markov Chain GM (1,1) (T-MCGM (1,1)). The new model has been tested by adopting the historical data, which includes the medical service on treatment of diabetes, heart disease, and cerebrovascular disease from 1997 to 2015 in China. The model provides a predication on medical service demand of these three types of disease up to 2022. The results reveal an enormous growth of urban medical service demand in the future. The findings provide practical implications for the Health Administrative Department to allocate medical resources, and help hospitals to manage investments on medical facilities.
NASA Astrophysics Data System (ADS)
Wan, Weibing; Yuan, Lingfeng; Zhao, Qunfei; Fang, Tao
2018-01-01
Saliency detection has been applied to the target acquisition case. This paper proposes a two-dimensional hidden Markov model (2D-HMM) that exploits the hidden semantic information of an image to detect its salient regions. A spatial pyramid histogram of oriented gradient descriptors is used to extract features. After encoding the image by a learned dictionary, the 2D-Viterbi algorithm is applied to infer the saliency map. This model can predict fixation of the targets and further creates robust and effective depictions of the targets' change in posture and viewpoint. To validate the model with a human visual search mechanism, two eyetrack experiments are employed to train our model directly from eye movement data. The results show that our model achieves better performance than visual attention. Moreover, it indicates the plausibility of utilizing visual track data to identify targets.
NASA Astrophysics Data System (ADS)
Nishiura, Takanobu; Nakamura, Satoshi
2003-10-01
Humans communicate with each other through speech by focusing on the target speech among environmental sounds in real acoustic environments. We can easily identify the target sound from other environmental sounds. For hands-free speech recognition, the identification of the target speech from environmental sounds is imperative. This mechanism may also be important for a self-moving robot to sense the acoustic environments and communicate with humans. Therefore, this paper first proposes hidden Markov model (HMM)-based environmental sound source identification. Environmental sounds are modeled by three states of HMMs and evaluated using 92 kinds of environmental sounds. The identification accuracy was 95.4%. This paper also proposes a new HMM composition method that composes speech HMMs and an HMM of categorized environmental sounds for robust environmental sound-added speech recognition. As a result of the evaluation experiments, we confirmed that the proposed HMM composition outperforms the conventional HMM composition with speech HMMs and a noise (environmental sound) HMM trained using noise periods prior to the target speech in a captured signal. [Work supported by Ministry of Public Management, Home Affairs, Posts and Telecommunications of Japan.
Dynamic Latent Trait Models with Mixed Hidden Markov Structure for Mixed Longitudinal Outcomes.
Zhang, Yue; Berhane, Kiros
2016-01-01
We propose a general Bayesian joint modeling approach to model mixed longitudinal outcomes from the exponential family for taking into account any differential misclassification that may exist among categorical outcomes. Under this framework, outcomes observed without measurement error are related to latent trait variables through generalized linear mixed effect models. The misclassified outcomes are related to the latent class variables, which represent unobserved real states, using mixed hidden Markov models (MHMM). In addition to enabling the estimation of parameters in prevalence, transition and misclassification probabilities, MHMMs capture cluster level heterogeneity. A transition modeling structure allows the latent trait and latent class variables to depend on observed predictors at the same time period and also on latent trait and latent class variables at previous time periods for each individual. Simulation studies are conducted to make comparisons with traditional models in order to illustrate the gains from the proposed approach. The new approach is applied to data from the Southern California Children Health Study (CHS) to jointly model questionnaire based asthma state and multiple lung function measurements in order to gain better insight about the underlying biological mechanism that governs the inter-relationship between asthma state and lung function development.
NASA Astrophysics Data System (ADS)
Power, Sarah D.; Falk, Tiago H.; Chau, Tom
2010-04-01
Near-infrared spectroscopy (NIRS) has recently been investigated as a non-invasive brain-computer interface (BCI). In particular, previous research has shown that NIRS signals recorded from the motor cortex during left- and right-hand imagery can be distinguished, providing a basis for a two-choice NIRS-BCI. In this study, we investigated the feasibility of an alternative two-choice NIRS-BCI paradigm based on the classification of prefrontal activity due to two cognitive tasks, specifically mental arithmetic and music imagery. Deploying a dual-wavelength frequency domain near-infrared spectrometer, we interrogated nine sites around the frontopolar locations (International 10-20 System) while ten able-bodied adults performed mental arithmetic and music imagery within a synchronous shape-matching paradigm. With the 18 filtered AC signals, we created task- and subject-specific maximum likelihood classifiers using hidden Markov models. Mental arithmetic and music imagery were classified with an average accuracy of 77.2% ± 7.0 across participants, with all participants significantly exceeding chance accuracies. The results suggest the potential of a two-choice NIRS-BCI based on cognitive rather than motor tasks.
Detection of cough signals in continuous audio recordings using hidden Markov models.
Matos, Sergio; Birring, Surinder S; Pavord, Ian D; Evans, David H
2006-06-01
Cough is a common symptom of many respiratory diseases. The evaluation of its intensity and frequency of occurrence could provide valuable clinical information in the assessment of patients with chronic cough. In this paper we propose the use of hidden Markov models (HMMs) to automatically detect cough sounds from continuous ambulatory recordings. The recording system consists of a digital sound recorder and a microphone attached to the patient's chest. The recognition algorithm follows a keyword-spotting approach, with cough sounds representing the keywords. It was trained on 821 min selected from 10 ambulatory recordings, including 2473 manually labeled cough events, and tested on a database of nine recordings from separate patients with a total recording time of 3060 min and comprising 2155 cough events. The average detection rate was 82% at a false alarm rate of seven events/h, when considering only events above an energy threshold relative to each recording's average energy. These results suggest that HMMs can be applied to the detection of cough sounds from ambulatory patients. A postprocessing stage to perform a more detailed analysis on the detected events is under development, and could allow the rejection of some of the incorrectly detected events.
Application of hidden Markov models to biological data mining: a case study
NASA Astrophysics Data System (ADS)
Yin, Michael M.; Wang, Jason T.
2000-04-01
In this paper we present an example of biological data mining: the detection of splicing junction acceptors in eukaryotic genes. Identification or prediction of transcribed sequences from within genomic DNA has been a major rate-limiting step in the pursuit of genes. Programs currently available are far from being powerful enough to elucidate the gene structure completely. Here we develop a hidden Markov model (HMM) to represent the degeneracy features of splicing junction acceptor sites in eukaryotic genes. The HMM system is fully trained using an expectation maximization (EM) algorithm and the system performance is evaluated using the 10-way cross- validation method. Experimental results show that our HMM system can correctly classify more than 94% of the candidate sequences (including true and false acceptor sites) into right categories. About 90% of the true acceptor sites and 96% of the false acceptor sites in the test data are classified correctly. These results are very promising considering that only the local information in DNA is used. The proposed model will be a very important component of an effective and accurate gene structure detection system currently being developed in our lab.
Hu, Weiming; Tian, Guodong; Kang, Yongxin; Yuan, Chunfeng; Maybank, Stephen
2017-09-25
In this paper, a new nonparametric Bayesian model called the dual sticky hierarchical Dirichlet process hidden Markov model (HDP-HMM) is proposed for mining activities from a collection of time series data such as trajectories. All the time series data are clustered. Each cluster of time series data, corresponding to a motion pattern, is modeled by an HMM. Our model postulates a set of HMMs that share a common set of states (topics in an analogy with topic models for document processing), but have unique transition distributions. For the application to motion trajectory modeling, topics correspond to motion activities. The learnt topics are clustered into atomic activities which are assigned predicates. We propose a Bayesian inference method to decompose a given trajectory into a sequence of atomic activities. On combining the learnt sources and sinks, semantic motion regions, and the learnt sequence of atomic activities, the action represented by the trajectory can be described in natural language in as automatic a way as possible. The effectiveness of our dual sticky HDP-HMM is validated on several trajectory datasets. The effectiveness of the natural language descriptions for motions is demonstrated on the vehicle trajectories extracted from a traffic scene.
NASA Astrophysics Data System (ADS)
Guerrout, EL-Hachemi; Ait-Aoudia, Samy; Michelucci, Dominique; Mahiou, Ramdane
2018-05-01
Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis and interpretation became a tedious task. Thus, automatic image segmentation became essential for diagnosis assistance. Segmentation consists in dividing the image into homogeneous and significant regions. We focus on hidden Markov random fields referred to as HMRF to model the problem of segmentation. This modelisation leads to a classical function minimisation problem. Broyden-Fletcher-Goldfarb-Shanno algorithm referred to as BFGS is one of the most powerful methods to solve unconstrained optimisation problem. In this paper, we investigate the combination of HMRF and BFGS algorithm to perform the segmentation operation. The proposed method shows very good segmentation results comparing with well-known approaches. The tests are conducted on brain magnetic resonance image databases (BrainWeb and IBSR) largely used to objectively confront the results obtained. The well-known Dice coefficient (DC) was used as similarity metric. The experimental results show that, in many cases, our proposed method approaches the perfect segmentation with a Dice Coefficient above .9. Moreover, it generally outperforms other methods in the tests conducted.
Hame, Yrjo; Angelini, Elsa D; Hoffman, Eric A; Barr, R Graham; Laine, Andrew F
2014-07-01
The extent of pulmonary emphysema is commonly estimated from CT scans by computing the proportional area of voxels below a predefined attenuation threshold. However, the reliability of this approach is limited by several factors that affect the CT intensity distributions in the lung. This work presents a novel method for emphysema quantification, based on parametric modeling of intensity distributions and a hidden Markov measure field model to segment emphysematous regions. The framework adapts to the characteristics of an image to ensure a robust quantification of emphysema under varying CT imaging protocols, and differences in parenchymal intensity distributions due to factors such as inspiration level. Compared to standard approaches, the presented model involves a larger number of parameters, most of which can be estimated from data, to handle the variability encountered in lung CT scans. The method was applied on a longitudinal data set with 87 subjects and a total of 365 scans acquired with varying imaging protocols. The resulting emphysema estimates had very high intra-subject correlation values. By reducing sensitivity to changes in imaging protocol, the method provides a more robust estimate than standard approaches. The generated emphysema delineations promise advantages for regional analysis of emphysema extent and progression.
NASA Astrophysics Data System (ADS)
Aliotta, M. A.; Cassisi, C.; Prestifilippo, M.; Cannata, A.; Montalto, P.; Patanè, D.
2014-12-01
During the last years, volcanic activity at Mt. Etna was often characterized by cyclic occurrences of fountains. In the period between January 2011 and June 2013, 38 episodes of lava fountains has been observed. Automatic recognition of the volcano's states related to lava fountain episodes (Quiet, Pre-Fountaining, Fountaining, Post-Fountaining) is very useful for monitoring purposes. We discovered that such states are strongly related to the trend of RMS (Root Mean Square) of the seismic signal recorded in the summit area. In the framework of the project PON SIGMA (Integrated Cloud-Sensor System for Advanced Multirisk Management) work, we tried to model the system generating its sampled values (assuming to be a Markov process and assuming that RMS time series is a stochastic process), by using Hidden Markov models (HMMs), that are a powerful tool for modeling any time-varying series. HMMs analysis seeks to discover the sequence of hidden states from the observed emissions. In our framework, observed emissions are characters generated by SAX (Symbolic Aggregate approXimation) technique. SAX is able to map RMS time series values with discrete literal emissions. Our experiments showed how to predict volcano states by means of SAX and HMMs.
A Stochastic Framework for Evaluating Seizure Prediction Algorithms Using Hidden Markov Models
Wong, Stephen; Gardner, Andrew B.; Krieger, Abba M.; Litt, Brian
2007-01-01
Responsive, implantable stimulation devices to treat epilepsy are now in clinical trials. New evidence suggests that these devices may be more effective when they deliver therapy before seizure onset. Despite years of effort, prospective seizure prediction, which could improve device performance, remains elusive. In large part, this is explained by lack of agreement on a statistical framework for modeling seizure generation and a method for validating algorithm performance. We present a novel stochastic framework based on a three-state hidden Markov model (HMM) (representing interictal, preictal, and seizure states) with the feature that periods of increased seizure probability can transition back to the interictal state. This notion reflects clinical experience and may enhance interpretation of published seizure prediction studies. Our model accommodates clipped EEG segments and formalizes intuitive notions regarding statistical validation. We derive equations for type I and type II errors as a function of the number of seizures, duration of interictal data, and prediction horizon length and we demonstrate the model’s utility with a novel seizure detection algorithm that appeared to predicted seizure onset. We propose this framework as a vital tool for designing and validating prediction algorithms and for facilitating collaborative research in this area. PMID:17021032
Clustering Multivariate Time Series Using Hidden Markov Models
Ghassempour, Shima; Girosi, Federico; Maeder, Anthony
2014-01-01
In this paper we describe an algorithm for clustering multivariate time series with variables taking both categorical and continuous values. Time series of this type are frequent in health care, where they represent the health trajectories of individuals. The problem is challenging because categorical variables make it difficult to define a meaningful distance between trajectories. We propose an approach based on Hidden Markov Models (HMMs), where we first map each trajectory into an HMM, then define a suitable distance between HMMs and finally proceed to cluster the HMMs with a method based on a distance matrix. We test our approach on a simulated, but realistic, data set of 1,255 trajectories of individuals of age 45 and over, on a synthetic validation set with known clustering structure, and on a smaller set of 268 trajectories extracted from the longitudinal Health and Retirement Survey. The proposed method can be implemented quite simply using standard packages in R and Matlab and may be a good candidate for solving the difficult problem of clustering multivariate time series with categorical variables using tools that do not require advanced statistic knowledge, and therefore are accessible to a wide range of researchers. PMID:24662996
Detection and diagnosis of bearing and cutting tool faults using hidden Markov models
NASA Astrophysics Data System (ADS)
Boutros, Tony; Liang, Ming
2011-08-01
Over the last few decades, the research for new fault detection and diagnosis techniques in machining processes and rotating machinery has attracted increasing interest worldwide. This development was mainly stimulated by the rapid advance in industrial technologies and the increase in complexity of machining and machinery systems. In this study, the discrete hidden Markov model (HMM) is applied to detect and diagnose mechanical faults. The technique is tested and validated successfully using two scenarios: tool wear/fracture and bearing faults. In the first case the model correctly detected the state of the tool (i.e., sharp, worn, or broken) whereas in the second application, the model classified the severity of the fault seeded in two different engine bearings. The success rate obtained in our tests for fault severity classification was above 95%. In addition to the fault severity, a location index was developed to determine the fault location. This index has been applied to determine the location (inner race, ball, or outer race) of a bearing fault with an average success rate of 96%. The training time required to develop the HMMs was less than 5 s in both the monitoring cases.
COACH: profile-profile alignment of protein families using hidden Markov models.
Edgar, Robert C; Sjölander, Kimmen
2004-05-22
Alignments of two multiple-sequence alignments, or statistical models of such alignments (profiles), have important applications in computational biology. The increased amount of information in a profile versus a single sequence can lead to more accurate alignments and more sensitive homolog detection in database searches. Several profile-profile alignment methods have been proposed and have been shown to improve sensitivity and alignment quality compared with sequence-sequence methods (such as BLAST) and profile-sequence methods (e.g. PSI-BLAST). Here we present a new approach to profile-profile alignment we call Comparison of Alignments by Constructing Hidden Markov Models (HMMs) (COACH). COACH aligns two multiple sequence alignments by constructing a profile HMM from one alignment and aligning the other to that HMM. We compare the alignment accuracy of COACH with two recently published methods: Yona and Levitt's prof_sim and Sadreyev and Grishin's COMPASS. On two sets of reference alignments selected from the FSSP database, we find that COACH is able, on average, to produce alignments giving the best coverage or the fewest errors, depending on the chosen parameter settings. COACH is freely available from www.drive5.com/lobster
Capturing the state transitions of seizure-like events using Hidden Markov models.
Guirgis, Mirna; Serletis, Demitre; Carlen, Peter L; Bardakjian, Berj L
2011-01-01
The purpose of this study was to investigate the number of states present in the progression of a seizure-like event (SLE). Of particular interest is to determine if there are more than two clearly defined states, as this would suggest that there is a distinct state preceding an SLE. Whole-intact hippocampus from C57/BL mice was used to model epileptiform activity induced by the perfusion of a low Mg(2+)/high K(+) solution while extracellular field potentials were recorded from CA3 pyramidal neurons. Hidden Markov models (HMM) were used to model the state transitions of the recorded SLEs by incorporating various features of the Hilbert transform into the training algorithm; specifically, 2- and 3-state HMMs were explored. Although the 2-state model was able to distinguish between SLE and nonSLE behavior, it provided no improvements compared to visual inspection alone. However, the 3-state model was able to capture two distinct nonSLE states that visual inspection failed to discriminate. Moreover, by developing an HMM based system a priori knowledge of the state transitions was not required making this an ideal platform for seizure prediction algorithms.
Extracting duration information in a picture category decoding task using hidden Markov Models
NASA Astrophysics Data System (ADS)
Pfeiffer, Tim; Heinze, Nicolai; Frysch, Robert; Deouell, Leon Y.; Schoenfeld, Mircea A.; Knight, Robert T.; Rose, Georg
2016-04-01
Objective. Adapting classifiers for the purpose of brain signal decoding is a major challenge in brain-computer-interface (BCI) research. In a previous study we showed in principle that hidden Markov models (HMM) are a suitable alternative to the well-studied static classifiers. However, since we investigated a rather straightforward task, advantages from modeling of the signal could not be assessed. Approach. Here, we investigate a more complex data set in order to find out to what extent HMMs, as a dynamic classifier, can provide useful additional information. We show for a visual decoding problem that besides category information, HMMs can simultaneously decode picture duration without an additional training required. This decoding is based on a strong correlation that we found between picture duration and the behavior of the Viterbi paths. Main results. Decoding accuracies of up to 80% could be obtained for category and duration decoding with a single classifier trained on category information only. Significance. The extraction of multiple types of information using a single classifier enables the processing of more complex problems, while preserving good training results even on small databases. Therefore, it provides a convenient framework for online real-life BCI utilizations.
A hidden Markov model for decoding and the analysis of replay in spike trains.
Box, Marc; Jones, Matt W; Whiteley, Nick
2016-12-01
We present a hidden Markov model that describes variation in an animal's position associated with varying levels of activity in action potential spike trains of individual place cell neurons. The model incorporates a coarse-graining of position, which we find to be a more parsimonious description of the system than other models. We use a sequential Monte Carlo algorithm for Bayesian inference of model parameters, including the state space dimension, and we explain how to estimate position from spike train observations (decoding). We obtain greater accuracy over other methods in the conditions of high temporal resolution and small neuronal sample size. We also present a novel, model-based approach to the study of replay: the expression of spike train activity related to behaviour during times of motionlessness or sleep, thought to be integral to the consolidation of long-term memories. We demonstrate how we can detect the time, information content and compression rate of replay events in simulated and real hippocampal data recorded from rats in two different environments, and verify the correlation between the times of detected replay events and of sharp wave/ripples in the local field potential.
Ma, Xiang; Schonfeld, Dan; Khokhar, Ashfaq A
2009-06-01
In this paper, we propose a novel solution to an arbitrary noncausal, multidimensional hidden Markov model (HMM) for image and video classification. First, we show that the noncausal model can be solved by splitting it into multiple causal HMMs and simultaneously solving each causal HMM using a fully synchronous distributed computing framework, therefore referred to as distributed HMMs. Next we present an approximate solution to the multiple causal HMMs that is based on an alternating updating scheme and assumes a realistic sequential computing framework. The parameters of the distributed causal HMMs are estimated by extending the classical 1-D training and classification algorithms to multiple dimensions. The proposed extension to arbitrary causal, multidimensional HMMs allows state transitions that are dependent on all causal neighbors. We, thus, extend three fundamental algorithms to multidimensional causal systems, i.e., 1) expectation-maximization (EM), 2) general forward-backward (GFB), and 3) Viterbi algorithms. In the simulations, we choose to limit ourselves to a noncausal 2-D model whose noncausality is along a single dimension, in order to significantly reduce the computational complexity. Simulation results demonstrate the superior performance, higher accuracy rate, and applicability of the proposed noncausal HMM framework to image and video classification.
Kogan, J A; Margoliash, D
1998-04-01
The performance of two techniques is compared for automated recognition of bird song units from continuous recordings. The advantages and limitations of dynamic time warping (DTW) and hidden Markov models (HMMs) are evaluated on a large database of male songs of zebra finches (Taeniopygia guttata) and indigo buntings (Passerina cyanea), which have different types of vocalizations and have been recorded under different laboratory conditions. Depending on the quality of recordings and complexity of song, the DTW-based technique gives excellent to satisfactory performance. Under challenging conditions such as noisy recordings or presence of confusing short-duration calls, good performance of the DTW-based technique requires careful selection of templates that may demand expert knowledge. Because HMMs are trained, equivalent or even better performance of HMMs can be achieved based only on segmentation and labeling of constituent vocalizations, albeit with many more training examples than DTW templates. One weakness in HMM performance is the misclassification of short-duration vocalizations or song units with more variable structure (e.g., some calls, and syllables of plastic songs). To address these and other limitations, new approaches for analyzing bird vocalizations are discussed.
Characterization of the rat exploratory behavior in the elevated plus-maze with Markov chains.
Tejada, Julián; Bosco, Geraldine G; Morato, Silvio; Roque, Antonio C
2010-11-30
The elevated plus-maze is an animal model of anxiety used to study the effect of different drugs on the behavior of the animal. It consists of a plus-shaped maze with two open and two closed arms elevated 50cm from the floor. The standard measures used to characterize exploratory behavior in the elevated plus-maze are the time spent and the number of entries in the open arms. In this work, we use Markov chains to characterize the exploratory behavior of the rat in the elevated plus-maze under three different conditions: normal and under the effects of anxiogenic and anxiolytic drugs. The spatial structure of the elevated plus-maze is divided into squares, which are associated with states of a Markov chain. By counting the frequencies of transitions between states during 5-min sessions in the elevated plus-maze, we constructed stochastic matrices for the three conditions studied. The stochastic matrices show specific patterns, which correspond to the observed behaviors of the rat under the three different conditions. For the control group, the stochastic matrix shows a clear preference for places in the closed arms. This preference is enhanced for the anxiogenic group. For the anxiolytic group, the stochastic matrix shows a pattern similar to a random walk. Our results suggest that Markov chains can be used together with the standard measures to characterize the rat behavior in the elevated plus-maze. Copyright © 2010 Elsevier B.V. All rights reserved.
Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.
Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine
2010-09-01
Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.
Animal vocal sequences: not the Markov chains we thought they were
Kershenbaum, Arik; Bowles, Ann E.; Freeberg, Todd M.; Jin, Dezhe Z.; Lameira, Adriano R.; Bohn, Kirsten
2014-01-01
Many animals produce vocal sequences that appear complex. Most researchers assume that these sequences are well characterized as Markov chains (i.e. that the probability of a particular vocal element can be calculated from the history of only a finite number of preceding elements). However, this assumption has never been explicitly tested. Furthermore, it is unclear how language could evolve in a single step from a Markovian origin, as is frequently assumed, as no intermediate forms have been found between animal communication and human language. Here, we assess whether animal taxa produce vocal sequences that are better described by Markov chains, or by non-Markovian dynamics such as the ‘renewal process’ (RP), characterized by a strong tendency to repeat elements. We examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orangutans Pongo spp. The vocal systems of most of these species are more consistent with a non-Markovian RP than with the Markovian models traditionally assumed. Our data suggest that non-Markovian vocal sequences may be more common than Markov sequences, which must be taken into account when evaluating alternative hypotheses for the evolution of signalling complexity, and perhaps human language origins. PMID:25143037
Inferring animal densities from tracking data using Markov chains.
Whitehead, Hal; Jonsen, Ian D
2013-01-01
The distributions and relative densities of species are keys to ecology. Large amounts of tracking data are being collected on a wide variety of animal species using several methods, especially electronic tags that record location. These tracking data are effectively used for many purposes, but generally provide biased measures of distribution, because the starts of the tracks are not randomly distributed among the locations used by the animals. We introduce a simple Markov-chain method that produces unbiased measures of relative density from tracking data. The density estimates can be over a geographical grid, and/or relative to environmental measures. The method assumes that the tracked animals are a random subset of the population in respect to how they move through the habitat cells, and that the movements of the animals among the habitat cells form a time-homogenous Markov chain. We illustrate the method using simulated data as well as real data on the movements of sperm whales. The simulations illustrate the bias introduced when the initial tracking locations are not randomly distributed, as well as the lack of bias when the Markov method is used. We believe that this method will be important in giving unbiased estimates of density from the growing corpus of animal tracking data.
SHARP ENTRYWISE PERTURBATION BOUNDS FOR MARKOV CHAINS.
Thiede, Erik; VAN Koten, Brian; Weare, Jonathan
For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature. Moreover, our bounds have a simple interpretation in terms of hitting times, which can be used to draw intuitive but rigorous conclusions about the sensitivity of a chain to various types of perturbations.
NASA Astrophysics Data System (ADS)
Bozhalkina, Yana
2017-12-01
Mathematical model of the loan portfolio structure change in the form of Markov chain is explored. This model considers in one scheme both the process of customers attraction, their selection based on the credit score, and loans repayment. The model describes the structure and volume of the loan portfolio dynamics, which allows to make medium-term forecasts of profitability and risk. Within the model corrective actions of bank management in order to increase lending volumes or to reduce the risk are formalized.
Metis: A Pure Metropolis Markov Chain Monte Carlo Bayesian Inference Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, Cameron Russell; Mckigney, Edward Allen
The use of Bayesian inference in data analysis has become the standard for large scienti c experiments [1, 2]. The Monte Carlo Codes Group(XCP-3) at Los Alamos has developed a simple set of algorithms currently implemented in C++ and Python to easily perform at-prior Markov Chain Monte Carlo Bayesian inference with pure Metropolis sampling. These implementations are designed to be user friendly and extensible for customization based on speci c application requirements. This document describes the algorithmic choices made and presents two use cases.
A Linear Regression and Markov Chain Model for the Arabian Horse Registry
1993-04-01
as a tax deduction? Yes No T-4367 68 26. Regardless of previous equine tax deductions, do you consider your current horse activities to be... (Mark one...E L T-4367 A Linear Regression and Markov Chain Model For the Arabian Horse Registry Accesion For NTIS CRA&I UT 7 4:iC=D 5 D-IC JA" LI J:13tjlC,3 lO...the Arabian Horse Registry, which needed to forecast its future registration of purebred Arabian horses . A linear regression model was utilized to
Matrix product representation of the stationary state of the open zero range process
NASA Astrophysics Data System (ADS)
Bertin, Eric; Vanicat, Matthieu
2018-06-01
Many one-dimensional lattice particle models with open boundaries, like the paradigmatic asymmetric simple exclusion process (ASEP), have their stationary states represented in the form of a matrix product, with matrices that do not explicitly depend on the lattice site. In contrast, the stationary state of the open 1D zero-range process (ZRP) takes an inhomogeneous factorized form, with site-dependent probability weights. We show that in spite of the absence of correlations, the stationary state of the open ZRP can also be represented in a matrix product form, where the matrices are site-independent, non-commuting and determined from algebraic relations resulting from the master equation. We recover the known distribution of the open ZRP in two different ways: first, using an explicit representation of the matrices and boundary vectors; second, from the sole knowledge of the algebraic relations satisfied by these matrices and vectors. Finally, an interpretation of the relation between the matrix product form and the inhomogeneous factorized form is proposed within the framework of hidden Markov chains.
OPTIMIZING OBSERVER EFFORT FOR FIELD DETECTION OF REPRODUCTIVE EFFECTS IN BIRDS
Avian nest survival is best viewed as a Markov process with two absorbing states, death and fledging. We present a column-stochastic Markov chain from which all major Mayfield formulations of daily nest-survival can be derived contingent upon the degree of observer knowledge of e...
Improving Markov Chain Models for Road Profiles Simulation via Definition of States
2012-04-01
wavelet transform in pavement profile analysis," Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, vol. 47, no. 4...34Estimating Markov Transition Probabilities from Micro -Unit Data," Journal of the Royal Statistical Society. Series C (Applied Statistics), pp. 355-371
Cover estimation and payload location using Markov random fields
NASA Astrophysics Data System (ADS)
Quach, Tu-Thach
2014-02-01
Payload location is an approach to find the message bits hidden in steganographic images, but not necessarily their logical order. Its success relies primarily on the accuracy of the underlying cover estimators and can be improved if more estimators are used. This paper presents an approach based on Markov random field to estimate the cover image given a stego image. It uses pairwise constraints to capture the natural two-dimensional statistics of cover images and forms a basis for more sophisticated models. Experimental results show that it is competitive against current state-of-the-art estimators and can locate payload embedded by simple LSB steganography and group-parity steganography. Furthermore, when combined with existing estimators, payload location accuracy improves significantly.
Multi-Observation Continuous Density Hidden Markov Models for Anomaly Detection in Full Motion Video
2012-06-01
response profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5 Method for measuring angular movement versus average direction...of movement 49 3.6 Method for calculating Angular Deviation, Θ . . . . . . . . . . . . . . . . . . 50 4.1 HMM produced by K Means Learning for agent H... Angular Deviation. A random variable, the difference in heading (in degrees) from the overall direction of movement over the sequence • S : Speed. A
Spatio-Temporal Pattern Recognition Using Hidden Markov Models
1994-06-01
Jersey, 1982. 5. H. B . Barlow and W. R. Levick . The mechanism of directionally selective units in rabbit’s retina. Journal of Physiology (London), 178:477...108 A.2.2 Re-estimate of .. .. ................... .110 A.2.3 Re-estimate of B ...... ................... 110 A.3 Logarithmic Form of the Baum-Welch...19 a0 Transition Probability from State i to State j ................ 19 B Observation Probability Matrix
Castro-Nallar, Eduardo; Valenzuela, Sandro L.; Baquedano, Sebastián; Sánchez, Carolina; Fernández, Fabiola
2017-01-01
ABSTRACT We present draft genome sequences of five Enterococcus species from patients suspected of Clostridium difficile infection. Genome completeness was confirmed by presence of bacterial orthologs (97%). Gene searches using Hidden-Markov models revealed that the isolates harbor between seven and 11 genes involved in antibiotic resistance to tetracyclines, beta-lactams, and vancomycin. PMID:28522725
On the Tradeoff Between Altruism and Selfishness in MANET Trust Management
2016-04-07
to discourage selfish behaviors, using a hidden Markov model (HMM) to quanti - tatively measure the trustworthiness of nodes. Adams et al. [18...based reliability metric to predict trust-based system survivability. Section 4 analyzes numerical results obtained through the evaluation of our SPN...concepts in MANETs, trust man- agement for MANETs should consider the following design features: trust metrics must be customizable, evaluation of
Ensemble Learning Method for Hidden Markov Models
2014-12-01
Ensemble HMM landmine detector Mine signatures vary according to the mine type, mine size , and burial depth. Similarly, clutter signatures vary with soil ...approaches for the di erent K groups depending on their size and homogeneity. In particular, we investigate the maximum likelihood (ML), the minimum...propose using and optimizing various training approaches for the different K groups depending on their size and homogeneity. In particular, we
Machine Learning for Biological Trajectory Classification Applications
NASA Technical Reports Server (NTRS)
Sbalzarini, Ivo F.; Theriot, Julie; Koumoutsakos, Petros
2002-01-01
Machine-learning techniques, including clustering algorithms, support vector machines and hidden Markov models, are applied to the task of classifying trajectories of moving keratocyte cells. The different algorithms axe compared to each other as well as to expert and non-expert test persons, using concepts from signal-detection theory. The algorithms performed very well as compared to humans, suggesting a robust tool for trajectory classification in biological applications.
Utilization of two web-based continuing education courses evaluated by Markov chain model.
Tian, Hao; Lin, Jin-Mann S; Reeves, William C
2012-01-01
To evaluate the web structure of two web-based continuing education courses, identify problems and assess the effects of web site modifications. Markov chain models were built from 2008 web usage data to evaluate the courses' web structure and navigation patterns. The web site was then modified to resolve identified design issues and the improvement in user activity over the subsequent 12 months was quantitatively evaluated. Web navigation paths were collected between 2008 and 2010. The probability of navigating from one web page to another was analyzed. The continuing education courses' sequential structure design was clearly reflected in the resulting actual web usage models, and none of the skip transitions provided was heavily used. The web navigation patterns of the two different continuing education courses were similar. Two possible design flaws were identified and fixed in only one of the two courses. Over the following 12 months, the drop-out rate in the modified course significantly decreased from 41% to 35%, but remained unchanged in the unmodified course. The web improvement effects were further verified via a second-order Markov chain model. The results imply that differences in web content have less impact than web structure design on how learners navigate through continuing education courses. Evaluation of user navigation can help identify web design flaws and guide modifications. This study showed that Markov chain models provide a valuable tool to evaluate web-based education courses. Both the results and techniques in this study would be very useful for public health education and research specialists.
Utilization of two web-based continuing education courses evaluated by Markov chain model
Lin, Jin-Mann S; Reeves, William C
2011-01-01
Objectives To evaluate the web structure of two web-based continuing education courses, identify problems and assess the effects of web site modifications. Design Markov chain models were built from 2008 web usage data to evaluate the courses' web structure and navigation patterns. The web site was then modified to resolve identified design issues and the improvement in user activity over the subsequent 12 months was quantitatively evaluated. Measurements Web navigation paths were collected between 2008 and 2010. The probability of navigating from one web page to another was analyzed. Results The continuing education courses' sequential structure design was clearly reflected in the resulting actual web usage models, and none of the skip transitions provided was heavily used. The web navigation patterns of the two different continuing education courses were similar. Two possible design flaws were identified and fixed in only one of the two courses. Over the following 12 months, the drop-out rate in the modified course significantly decreased from 41% to 35%, but remained unchanged in the unmodified course. The web improvement effects were further verified via a second-order Markov chain model. Conclusions The results imply that differences in web content have less impact than web structure design on how learners navigate through continuing education courses. Evaluation of user navigation can help identify web design flaws and guide modifications. This study showed that Markov chain models provide a valuable tool to evaluate web-based education courses. Both the results and techniques in this study would be very useful for public health education and research specialists. PMID:21976027
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.
Markov chain aggregation and its applications to combinatorial reaction networks.
Ganguly, Arnab; Petrov, Tatjana; Koeppl, Heinz
2014-09-01
We consider a continuous-time Markov chain (CTMC) whose state space is partitioned into aggregates, and each aggregate is assigned a probability measure. A sufficient condition for defining a CTMC over the aggregates is presented as a variant of weak lumpability, which also characterizes that the measure over the original process can be recovered from that of the aggregated one. We show how the applicability of de-aggregation depends on the initial distribution. The application section is devoted to illustrate how the developed theory aids in reducing CTMC models of biochemical systems particularly in connection to protein-protein interactions. We assume that the model is written by a biologist in form of site-graph-rewrite rules. Site-graph-rewrite rules compactly express that, often, only a local context of a protein (instead of a full molecular species) needs to be in a certain configuration in order to trigger a reaction event. This observation leads to suitable aggregate Markov chains with smaller state spaces, thereby providing sufficient reduction in computational complexity. This is further exemplified in two case studies: simple unbounded polymerization and early EGFR/insulin crosstalk.
A Markov chain model for reliability growth and decay
NASA Technical Reports Server (NTRS)
Siegrist, K.
1982-01-01
A mathematical model is developed to describe a complex system undergoing a sequence of trials in which there is interaction between the internal states of the system and the outcomes of the trials. For example, the model might describe a system undergoing testing that is redesigned after each failure. The basic assumptions for the model are that the state of the system after a trial depends probabilistically only on the state before the trial and on the outcome of the trial and that the outcome of a trial depends probabilistically only on the state of the system before the trial. It is shown that under these basic assumptions, the successive states form a Markov chain and the successive states and outcomes jointly form a Markov chain. General results are obtained for the transition probabilities, steady-state distributions, etc. A special case studied in detail describes a system that has two possible state ('repaired' and 'unrepaired') undergoing trials that have three possible outcomes ('inherent failure', 'assignable-cause' 'failure' and 'success'). For this model, the reliability function is computed explicitly and an optimal repair policy is obtained.
Radiative transfer calculated from a Markov chain formalism
NASA Technical Reports Server (NTRS)
Esposito, L. W.; House, L. L.
1978-01-01
The theory of Markov chains is used to formulate the radiative transport problem in a general way by modeling the successive interactions of a photon as a stochastic process. Under the minimal requirement that the stochastic process is a Markov chain, the determination of the diffuse reflection or transmission from a scattering atmosphere is equivalent to the solution of a system of linear equations. This treatment is mathematically equivalent to, and thus has many of the advantages of, Monte Carlo methods, but can be considerably more rapid than Monte Carlo algorithms for numerical calculations in particular applications. We have verified the speed and accuracy of this formalism for the standard problem of finding the intensity of scattered light from a homogeneous plane-parallel atmosphere with an arbitrary phase function for scattering. Accurate results over a wide range of parameters were obtained with computation times comparable to those of a standard 'doubling' routine. The generality of this formalism thus allows fast, direct solutions to problems that were previously soluble only by Monte Carlo methods. Some comparisons are made with respect to integral equation methods.
LD-SPatt: large deviations statistics for patterns on Markov chains.
Nuel, G
2004-01-01
Statistics on Markov chains are widely used for the study of patterns in biological sequences. Statistics on these models can be done through several approaches. Central limit theorem (CLT) producing Gaussian approximations are one of the most popular ones. Unfortunately, in order to find a pattern of interest, these methods have to deal with tail distribution events where CLT is especially bad. In this paper, we propose a new approach based on the large deviations theory to assess pattern statistics. We first recall theoretical results for empiric mean (level 1) as well as empiric distribution (level 2) large deviations on Markov chains. Then, we present the applications of these results focusing on numerical issues. LD-SPatt is the name of GPL software implementing these algorithms. We compare this approach to several existing ones in terms of complexity and reliability and show that the large deviations are more reliable than the Gaussian approximations in absolute values as well as in terms of ranking and are at least as reliable as compound Poisson approximations. We then finally discuss some further possible improvements and applications of this new method.
Dettmer, Jan; Dosso, Stan E
2012-10-01
This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, including interacting Markov chains to improve efficiency and an autoregressive model to account for correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion without assuming any particular parametrization by relaxing model specification to a range of plausible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter). Data errors are addressed by sampling statistical error-distribution parameters, including correlated errors (covariance), by applying a hierarchical autoregressive error model. The well-known difficulty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the hierarchical error model relax the degree of prior assumptions required in the inversion, resulting in substantially improved (more realistic) uncertainty estimates and a more automated algorithm. In particular, the approach gives seabed parameter uncertainty estimates that account for uncertainty due to prior model choice (layering and data error statistics). The approach is applied to data measured on a vertical array in the Mediterranean Sea.
Block-accelerated aggregation multigrid for Markov chains with application to PageRank problems
NASA Astrophysics Data System (ADS)
Shen, Zhao-Li; Huang, Ting-Zhu; Carpentieri, Bruno; Wen, Chun; Gu, Xian-Ming
2018-06-01
Recently, the adaptive algebraic aggregation multigrid method has been proposed for computing stationary distributions of Markov chains. This method updates aggregates on every iterative cycle to keep high accuracies of coarse-level corrections. Accordingly, its fast convergence rate is well guaranteed, but often a large proportion of time is cost by aggregation processes. In this paper, we show that the aggregates on each level in this method can be utilized to transfer the probability equation of that level into a block linear system. Then we propose a Block-Jacobi relaxation that deals with the block system on each level to smooth error. Some theoretical analysis of this technique is presented, meanwhile it is also adapted to solve PageRank problems. The purpose of this technique is to accelerate the adaptive aggregation multigrid method and its variants for solving Markov chains and PageRank problems. It also attempts to shed some light on new solutions for making aggregation processes more cost-effective for aggregation multigrid methods. Numerical experiments are presented to illustrate the effectiveness of this technique.
Adaptive relaxation for the steady-state analysis of Markov chains
NASA Technical Reports Server (NTRS)
Horton, Graham
1994-01-01
We consider a variant of the well-known Gauss-Seidel method for the solution of Markov chains in steady state. Whereas the standard algorithm visits each state exactly once per iteration in a predetermined order, the alternative approach uses a dynamic strategy. A set of states to be visited is maintained which can grow and shrink as the computation progresses. In this manner, we hope to concentrate the computational work in those areas of the chain in which maximum improvement in the solution can be achieved. We consider the adaptive approach both as a solver in its own right and as a relaxation method within the multi-level algorithm. Experimental results show significant computational savings in both cases.
A Test of the Need Hierarchy Concept by a Markov Model of Change in Need Strength.
ERIC Educational Resources Information Center
Rauschenberger, John; And Others
1980-01-01
In this study of 547 high school graduates, Alderfer's and Maslow's need hierarchy theories were expressed in Markov chain form and were subjected to empirical test. Both models were disconfirmed. Corroborative multiwave correlational analysis also failed to support the need hierarchy concept. (Author/IRT)
Towards early software reliability prediction for computer forensic tools (case study).
Abu Talib, Manar
2016-01-01
Versatility, flexibility and robustness are essential requirements for software forensic tools. Researchers and practitioners need to put more effort into assessing this type of tool. A Markov model is a robust means for analyzing and anticipating the functioning of an advanced component based system. It is used, for instance, to analyze the reliability of the state machines of real time reactive systems. This research extends the architecture-based software reliability prediction model for computer forensic tools, which is based on Markov chains and COSMIC-FFP. Basically, every part of the computer forensic tool is linked to a discrete time Markov chain. If this can be done, then a probabilistic analysis by Markov chains can be performed to analyze the reliability of the components and of the whole tool. The purposes of the proposed reliability assessment method are to evaluate the tool's reliability in the early phases of its development, to improve the reliability assessment process for large computer forensic tools over time, and to compare alternative tool designs. The reliability analysis can assist designers in choosing the most reliable topology for the components, which can maximize the reliability of the tool and meet the expected reliability level specified by the end-user. The approach of assessing component-based tool reliability in the COSMIC-FFP context is illustrated with the Forensic Toolkit Imager case study.
A Graph-Algorithmic Approach for the Study of Metastability in Markov Chains
NASA Astrophysics Data System (ADS)
Gan, Tingyue; Cameron, Maria
2017-06-01
Large continuous-time Markov chains with exponentially small transition rates arise in modeling complex systems in physics, chemistry, and biology. We propose a constructive graph-algorithmic approach to determine the sequence of critical timescales at which the qualitative behavior of a given Markov chain changes, and give an effective description of the dynamics on each of them. This approach is valid for both time-reversible and time-irreversible Markov processes, with or without symmetry. Central to this approach are two graph algorithms, Algorithm 1 and Algorithm 2, for obtaining the sequences of the critical timescales and the hierarchies of Typical Transition Graphs or T-graphs indicating the most likely transitions in the system without and with symmetry, respectively. The sequence of critical timescales includes the subsequence of the reciprocals of the real parts of eigenvalues. Under a certain assumption, we prove sharp asymptotic estimates for eigenvalues (including pre-factors) and show how one can extract them from the output of Algorithm 1. We discuss the relationship between Algorithms 1 and 2 and explain how one needs to interpret the output of Algorithm 1 if it is applied in the case with symmetry instead of Algorithm 2. Finally, we analyze an example motivated by R. D. Astumian's model of the dynamics of kinesin, a molecular motor, by means of Algorithm 2.
Animal vocal sequences: not the Markov chains we thought they were.
Kershenbaum, Arik; Bowles, Ann E; Freeberg, Todd M; Jin, Dezhe Z; Lameira, Adriano R; Bohn, Kirsten
2014-10-07
Many animals produce vocal sequences that appear complex. Most researchers assume that these sequences are well characterized as Markov chains (i.e. that the probability of a particular vocal element can be calculated from the history of only a finite number of preceding elements). However, this assumption has never been explicitly tested. Furthermore, it is unclear how language could evolve in a single step from a Markovian origin, as is frequently assumed, as no intermediate forms have been found between animal communication and human language. Here, we assess whether animal taxa produce vocal sequences that are better described by Markov chains, or by non-Markovian dynamics such as the 'renewal process' (RP), characterized by a strong tendency to repeat elements. We examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orangutans Pongo spp. The vocal systems of most of these species are more consistent with a non-Markovian RP than with the Markovian models traditionally assumed. Our data suggest that non-Markovian vocal sequences may be more common than Markov sequences, which must be taken into account when evaluating alternative hypotheses for the evolution of signalling complexity, and perhaps human language origins. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Markov Chain Monte Carlo Used in Parameter Inference of Magnetic Resonance Spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hock, Kiel; Earle, Keith
2016-02-06
In this paper, we use Boltzmann statistics and the maximum likelihood distribution derived from Bayes’ Theorem to infer parameter values for a Pake Doublet Spectrum, a lineshape of historical significance and contemporary relevance for determining distances between interacting magnetic dipoles. A Metropolis Hastings Markov Chain Monte Carlo algorithm is implemented and designed to find the optimum parameter set and to estimate parameter uncertainties. In conclusion, the posterior distribution allows us to define a metric on parameter space that induces a geometry with negative curvature that affects the parameter uncertainty estimates, particularly for spectra with low signal to noise.
Markov Chain Analysis of Musical Dice Games
NASA Astrophysics Data System (ADS)
Volchenkov, D.; Dawin, J. R.
2012-07-01
A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.
NASA Astrophysics Data System (ADS)
Volchenkov, Dima; Dawin, Jean René
A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.
A Markov chain technique for determining the acquisition behavior of a digital tracking loop
NASA Technical Reports Server (NTRS)
Chadwick, H. D.
1972-01-01
An iterative procedure is presented for determining the acquisition behavior of discrete or digital implementations of a tracking loop. The technique is based on the theory of Markov chains and provides the cumulative probability of acquisition in the loop as a function of time in the presence of noise and a given set of initial condition probabilities. A digital second-order tracking loop to be used in the Viking command receiver for continuous tracking of the command subcarrier phase was analyzed using this technique, and the results agree closely with experimental data.
Lee, Kyung-Eun; Park, Hyun-Seok
2015-01-01
Epigenetic computational analyses based on Markov chains can integrate dependencies between regions in the genome that are directly adjacent. In this paper, the BED files of fifteen chromatin states of the Broad Histone Track of the ENCODE project are parsed, and comparative nucleotide frequencies of regional chromatin blocks are thoroughly analyzed to detect the Markov property in them. We perform various tests to examine the Markov property embedded in a frequency domain by checking for the presence of the Markov property in the various chromatin states. We apply these tests to each region of the fifteen chromatin states. The results of our simulation indicate that some of the chromatin states possess a stronger Markov property than others. We discuss the significance of our findings in statistical models of nucleotide sequences that are necessary for the computational analysis of functional units in noncoding DNA.
Bayesian model selection applied to artificial neural networks used for water resources modeling
NASA Astrophysics Data System (ADS)
Kingston, Greer B.; Maier, Holger R.; Lambert, Martin F.
2008-04-01
Artificial neural networks (ANNs) have proven to be extremely valuable tools in the field of water resources engineering. However, one of the most difficult tasks in developing an ANN is determining the optimum level of complexity required to model a given problem, as there is no formal systematic model selection method. This paper presents a Bayesian model selection (BMS) method for ANNs that provides an objective approach for comparing models of varying complexity in order to select the most appropriate ANN structure. The approach uses Markov Chain Monte Carlo posterior simulations to estimate the evidence in favor of competing models and, in this study, three known methods for doing this are compared in terms of their suitability for being incorporated into the proposed BMS framework for ANNs. However, it is acknowledged that it can be particularly difficult to accurately estimate the evidence of ANN models. Therefore, the proposed BMS approach for ANNs incorporates a further check of the evidence results by inspecting the marginal posterior distributions of the hidden-to-output layer weights, which unambiguously indicate any redundancies in the hidden layer nodes. The fact that this check is available is one of the greatest advantages of the proposed approach over conventional model selection methods, which do not provide such a test and instead rely on the modeler's subjective choice of selection criterion. The advantages of a total Bayesian approach to ANN development, including training and model selection, are demonstrated on two synthetic and one real world water resources case study.
DoS detection in IEEE 802.11 with the presence of hidden nodes
Soryal, Joseph; Liu, Xijie; Saadawi, Tarek
2013-01-01
The paper presents a novel technique to detect Denial of Service (DoS) attacks applied by misbehaving nodes in wireless networks with the presence of hidden nodes employing the widely used IEEE 802.11 Distributed Coordination Function (DCF) protocols described in the IEEE standard [1]. Attacker nodes alter the IEEE 802.11 DCF firmware to illicitly capture the channel via elevating the probability of the average number of packets transmitted successfully using up the bandwidth share of the innocent nodes that follow the protocol standards. We obtained the theoretical network throughput by solving two-dimensional Markov Chain model as described by Bianchi [2], and Liu and Saadawi [3] to determine the channel capacity. We validated the results obtained via the theoretical computations with the results obtained by OPNET simulator [4] to define the baseline for the average attainable throughput in the channel under standard conditions where all nodes follow the standards. The main goal of the DoS attacker is to prevent the innocent nodes from accessing the channel and by capturing the channel’s bandwidth. In addition, the attacker strives to appear as an innocent node that follows the standards. The protocol resides in every node to enable each node to police other nodes in its immediate wireless coverage area. All innocent nodes are able to detect and identify the DoS attacker in its wireless coverage area. We applied the protocol to two Physical Layer technologies: Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS) and the results are presented to validate the algorithm. PMID:25685510
DoS detection in IEEE 802.11 with the presence of hidden nodes.
Soryal, Joseph; Liu, Xijie; Saadawi, Tarek
2014-07-01
The paper presents a novel technique to detect Denial of Service (DoS) attacks applied by misbehaving nodes in wireless networks with the presence of hidden nodes employing the widely used IEEE 802.11 Distributed Coordination Function (DCF) protocols described in the IEEE standard [1]. Attacker nodes alter the IEEE 802.11 DCF firmware to illicitly capture the channel via elevating the probability of the average number of packets transmitted successfully using up the bandwidth share of the innocent nodes that follow the protocol standards. We obtained the theoretical network throughput by solving two-dimensional Markov Chain model as described by Bianchi [2], and Liu and Saadawi [3] to determine the channel capacity. We validated the results obtained via the theoretical computations with the results obtained by OPNET simulator [4] to define the baseline for the average attainable throughput in the channel under standard conditions where all nodes follow the standards. The main goal of the DoS attacker is to prevent the innocent nodes from accessing the channel and by capturing the channel's bandwidth. In addition, the attacker strives to appear as an innocent node that follows the standards. The protocol resides in every node to enable each node to police other nodes in its immediate wireless coverage area. All innocent nodes are able to detect and identify the DoS attacker in its wireless coverage area. We applied the protocol to two Physical Layer technologies: Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS) and the results are presented to validate the algorithm.
The generalization ability of online SVM classification based on Markov sampling.
Xu, Jie; Yan Tang, Yuan; Zou, Bin; Xu, Zongben; Li, Luoqing; Lu, Yang
2015-03-01
In this paper, we consider online support vector machine (SVM) classification learning algorithms with uniformly ergodic Markov chain (u.e.M.c.) samples. We establish the bound on the misclassification error of an online SVM classification algorithm with u.e.M.c. samples based on reproducing kernel Hilbert spaces and obtain a satisfactory convergence rate. We also introduce a novel online SVM classification algorithm based on Markov sampling, and present the numerical studies on the learning ability of online SVM classification based on Markov sampling for benchmark repository. The numerical studies show that the learning performance of the online SVM classification algorithm based on Markov sampling is better than that of classical online SVM classification based on random sampling as the size of training samples is larger.
Sarment: Python modules for HMM analysis and partitioning of sequences.
Guéguen, Laurent
2005-08-15
Sarment is a package of Python modules for easy building and manipulation of sequence segmentations. It provides efficient implementation of usual algorithms for hidden Markov Model computation, as well as for maximal predictive partitioning. Owing to its very large variety of criteria for computing segmentations, Sarment can handle many kinds of models. Because of object-oriented programming, the results of the segmentation are very easy tomanipulate.
Regenerative Medicine for Battlefield Injuries
2014-10-01
used immunohistochemical staining of BMP-4 and HGF after treatment with BMP-4/HGF or unamputated limb tissue extract. Sample slides were de- waxed in...Cambridge, MA) primary antibodies were applied on samples separately and incubated overnight at 40 C. After washing the slides in 1x PBS, HRP conjugate...and other dictionaries such as LocusLink and (3) Hidden Markov Models and N-gram, machine - learning methods, to identify biological entities not
2012-05-01
astar (C++) path finding algorithms. bwaves (Fortran) simulation of blast waves in 3D transonic transient laminar viscous flow. bzip2 (C) in...search based on Profile Hidden Markov Models. lbm (C) implementation of Lattice Boltzman Method for simulation of incompressible fluids in 3D...to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
Cluster-based adaptive power control protocol using Hidden Markov Model for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Vinutha, C. B.; Nalini, N.; Nagaraja, M.
2017-06-01
This paper presents strategies for an efficient and dynamic transmission power control technique, in order to reduce packet drop and hence energy consumption of power-hungry sensor nodes operated in highly non-linear channel conditions of Wireless Sensor Networks. Besides, we also focus to prolong network lifetime and scalability by designing cluster-based network structure. Specifically we consider weight-based clustering approach wherein, minimum significant node is chosen as Cluster Head (CH) which is computed stemmed from the factors distance, remaining residual battery power and received signal strength (RSS). Further, transmission power control schemes to fit into dynamic channel conditions are meticulously implemented using Hidden Markov Model (HMM) where probability transition matrix is formulated based on the observed RSS measurements. Typically, CH estimates initial transmission power of its cluster members (CMs) from RSS using HMM and broadcast this value to its CMs for initialising their power value. Further, if CH finds that there are variations in link quality and RSS of the CMs, it again re-computes and optimises the transmission power level of the nodes using HMM to avoid packet loss due noise interference. We have demonstrated our simulation results to prove that our technique efficiently controls the power levels of sensing nodes to save significant quantity of energy for different sized network.
A Context-Recognition-Aided PDR Localization Method Based on the Hidden Markov Model
Lu, Yi; Wei, Dongyan; Lai, Qifeng; Li, Wen; Yuan, Hong
2016-01-01
Indoor positioning has recently become an important field of interest because global navigation satellite systems (GNSS) are usually unavailable in indoor environments. Pedestrian dead reckoning (PDR) is a promising localization technique for indoor environments since it can be implemented on widely used smartphones equipped with low cost inertial sensors. However, the PDR localization severely suffers from the accumulation of positioning errors, and other external calibration sources should be used. In this paper, a context-recognition-aided PDR localization model is proposed to calibrate PDR. The context is detected by employing particular human actions or characteristic objects and it is matched to the context pre-stored offline in the database to get the pedestrian’s location. The Hidden Markov Model (HMM) and Recursive Viterbi Algorithm are used to do the matching, which reduces the time complexity and saves the storage. In addition, the authors design the turn detection algorithm and take the context of corner as an example to illustrate and verify the proposed model. The experimental results show that the proposed localization method can fix the pedestrian’s starting point quickly and improves the positioning accuracy of PDR by 40.56% at most with perfect stability and robustness at the same time. PMID:27916922
Polur, Prasad D; Miller, Gerald E
2006-10-01
Computer speech recognition of individuals with dysarthria, such as cerebral palsy patients requires a robust technique that can handle conditions of very high variability and limited training data. In this study, application of a 10 state ergodic hidden Markov model (HMM)/artificial neural network (ANN) hybrid structure for a dysarthric speech (isolated word) recognition system, intended to act as an assistive tool, was investigated. A small size vocabulary spoken by three cerebral palsy subjects was chosen. The effect of such a structure on the recognition rate of the system was investigated by comparing it with an ergodic hidden Markov model as a control tool. This was done in order to determine if this modified technique contributed to enhanced recognition of dysarthric speech. The speech was sampled at 11 kHz. Mel frequency cepstral coefficients were extracted from them using 15 ms frames and served as training input to the hybrid model setup. The subsequent results demonstrated that the hybrid model structure was quite robust in its ability to handle the large variability and non-conformity of dysarthric speech. The level of variability in input dysarthric speech patterns sometimes limits the reliability of the system. However, its application as a rehabilitation/control tool to assist dysarthric motor impaired individuals holds sufficient promise.
Hidden Markov models reveal complexity in the diving behaviour of short-finned pilot whales
Quick, Nicola J.; Isojunno, Saana; Sadykova, Dina; Bowers, Matthew; Nowacek, Douglas P.; Read, Andrew J.
2017-01-01
Diving behaviour of short-finned pilot whales is often described by two states; deep foraging and shallow, non-foraging dives. However, this simple classification system ignores much of the variation that occurs during subsurface periods. We used multi-state hidden Markov models (HMM) to characterize states of diving behaviour and the transitions between states in short-finned pilot whales. We used three parameters (number of buzzes, maximum dive depth and duration) measured in 259 dives by digital acoustic recording tags (DTAGs) deployed on 20 individual whales off Cape Hatteras, North Carolina, USA. The HMM identified a four-state model as the best descriptor of diving behaviour. The state-dependent distributions for the diving parameters showed variation between states, indicative of different diving behaviours. Transition probabilities were considerably higher for state persistence than state switching, indicating that dive types occurred in bouts. Our results indicate that subsurface behaviour in short-finned pilot whales is more complex than a simple dichotomy of deep and shallow diving states, and labelling all subsurface behaviour as deep dives or shallow dives discounts a significant amount of important variation. We discuss potential drivers of these patterns, including variation in foraging success, prey availability and selection, bathymetry, physiological constraints and socially mediated behaviour. PMID:28361954
Grecian, W James; Lane, Jude V; Michelot, Théo; Wade, Helen M; Hamer, Keith C
2018-06-01
The development of foraging strategies that enable juveniles to efficiently identify and exploit predictable habitat features is critical for survival and long-term fitness. In the marine environment, meso- and sub-mesoscale features such as oceanographic fronts offer a visible cue to enhanced foraging conditions, but how individuals learn to identify these features is a mystery. In this study, we investigate age-related differences in the fine-scale foraging behaviour of adult (aged ≥ 5 years) and immature (aged 2-4 years) northern gannets Morus bassanus Using high-resolution GPS-loggers, we reveal that adults have a much narrower foraging distribution than immature birds and much higher individual foraging site fidelity. By conditioning the transition probabilities of a hidden Markov model on satellite-derived measures of frontal activity, we then demonstrate that adults show a stronger response to frontal activity than immature birds, and are more likely to commence foraging behaviour as frontal intensity increases. Together, these results indicate that adult gannets are more proficient foragers than immatures, supporting the hypothesis that foraging specializations are learned during individual exploratory behaviour in early life. Such memory-based individual foraging strategies may also explain the extended period of immaturity observed in gannets and many other long-lived species. © 2018 The Authors.
NASA Astrophysics Data System (ADS)
Mat Jafri, Mohd. Zubir; Abdulbaqi, Hayder Saad; Mutter, Kussay N.; Mustapha, Iskandar Shahrim; Omar, Ahmad Fairuz
2017-06-01
A brain tumour is an abnormal growth of tissue in the brain. Most tumour volume measurement processes are carried out manually by the radiographer and radiologist without relying on any auto program. This manual method is a timeconsuming task and may give inaccurate results. Treatment, diagnosis, signs and symptoms of the brain tumours mainly depend on the tumour volume and its location. In this paper, an approach is proposed to improve volume measurement of brain tumors as well as using a new method to determine the brain tumour location. The current study presents a hybrid method that includes two methods. One method is hidden Markov random field - expectation maximization (HMRFEM), which employs a positive initial classification of the image. The other method employs the threshold, which enables the final segmentation. In this method, the tumour volume is calculated using voxel dimension measurements. The brain tumour location was determined accurately in T2- weighted MRI image using a new algorithm. According to the results, this process was proven to be more useful compared to the manual method. Thus, it provides the possibility of calculating the volume and determining location of a brain tumour.
Histogram equalization with Bayesian estimation for noise robust speech recognition.
Suh, Youngjoo; Kim, Hoirin
2018-02-01
The histogram equalization approach is an efficient feature normalization technique for noise robust automatic speech recognition. However, it suffers from performance degradation when some fundamental conditions are not satisfied in the test environment. To remedy these limitations of the original histogram equalization methods, class-based histogram equalization approach has been proposed. Although this approach showed substantial performance improvement under noise environments, it still suffers from performance degradation due to the overfitting problem when test data are insufficient. To address this issue, the proposed histogram equalization technique employs the Bayesian estimation method in the test cumulative distribution function estimation. It was reported in a previous study conducted on the Aurora-4 task that the proposed approach provided substantial performance gains in speech recognition systems based on the acoustic modeling of the Gaussian mixture model-hidden Markov model. In this work, the proposed approach was examined in speech recognition systems with deep neural network-hidden Markov model (DNN-HMM), the current mainstream speech recognition approach where it also showed meaningful performance improvement over the conventional maximum likelihood estimation-based method. The fusion of the proposed features with the mel-frequency cepstral coefficients provided additional performance gains in DNN-HMM systems, which otherwise suffer from performance degradation in the clean test condition.
Lu, Jun; Bushel, Pierre R.
2013-01-01
RNA sequencing (RNA-Seq) allows for the identification of novel exon-exon junctions and quantification of gene expression levels. We show that from RNA-Seq data one may also detect utilization of alternative polyadenylation (APA) in 3′ untranslated regions (3′ UTRs) known to play a critical role in the regulation of mRNA stability, cellular localization and translation efficiency. Given the dynamic nature of APA, it is desirable to examine the APA on a sample by sample basis. We used a Poisson hidden Markov model (PHMM) of RNA-Seq data to identify potential APA in human liver and brain cortex tissues leading to shortened 3′ UTRs. Over three hundred transcripts with shortened 3′ UTRs were detected with sensitivity >75% and specificity >60%. tissue-specific 3′ UTR shortening was observed for 32 genes with a q-value ≤ 0.1. When compared to alternative isoforms detected by Cufflinks or MISO, our PHMM method agreed on over 100 transcripts with shortened 3′ UTRs. Given the increasing usage of RNA-Seq for gene expression profiling, using PHMM to investigate sample-specific 3′ UTR shortening could be an added benefit from this emerging technology. PMID:23845781
NASA Astrophysics Data System (ADS)
Hossen, Jakir; Jacobs, Eddie L.; Chari, Srikant
2014-03-01
In this paper, we propose a real-time human versus animal classification technique using a pyro-electric sensor array and Hidden Markov Model. The technique starts with the variational energy functional level set segmentation technique to separate the object from background. After segmentation, we convert the segmented object to a signal by considering column-wise pixel values and then finding the wavelet coefficients of the signal. HMMs are trained to statistically model the wavelet features of individuals through an expectation-maximization learning process. Human versus animal classifications are made by evaluating a set of new wavelet feature data against the trained HMMs using the maximum-likelihood criterion. Human and animal data acquired-using a pyro-electric sensor in different terrains are used for performance evaluation of the algorithms. Failures of the computationally effective SURF feature based approach that we develop in our previous research are because of distorted images produced when the object runs very fast or if the temperature difference between target and background is not sufficient to accurately profile the object. We show that wavelet based HMMs work well for handling some of the distorted profiles in the data set. Further, HMM achieves improved classification rate over the SURF algorithm with almost the same computational time.
Chen, Wenxi; Kitazawa, Masumi; Togawa, Tatsuo
2009-09-01
This paper proposes a method to estimate a woman's menstrual cycle based on the hidden Markov model (HMM). A tiny device was developed that attaches around the abdominal region to measure cutaneous temperature at 10-min intervals during sleep. The measured temperature data were encoded as a two-dimensional image (QR code, i.e., quick response code) and displayed in the LCD window of the device. A mobile phone captured the QR code image, decoded the information and transmitted the data to a database server. The collected data were analyzed by three steps to estimate the biphasic temperature property in a menstrual cycle. The key step was an HMM-based step between preprocessing and postprocessing. A discrete Markov model, with two hidden phases, was assumed to represent higher- and lower-temperature phases during a menstrual cycle. The proposed method was verified by the data collected from 30 female participants, aged from 14 to 46, over six consecutive months. By comparing the estimated results with individual records from the participants, 71.6% of 190 menstrual cycles were correctly estimated. The sensitivity and positive predictability were 91.8 and 96.6%, respectively. This objective evaluation provides a promising approach for managing premenstrual syndrome and birth control.
Robust Hidden Markov Model based intelligent blood vessel detection of fundus images.
Hassan, Mehdi; Amin, Muhammad; Murtza, Iqbal; Khan, Asifullah; Chaudhry, Asmatullah
2017-11-01
In this paper, we consider the challenging problem of detecting retinal vessel networks. Precise detection of retinal vessel networks is vital for accurate eye disease diagnosis. Most of the blood vessel tracking techniques may not properly track vessels in presence of vessels' occlusion. Owing to problem in sensor resolution or acquisition of fundus images, it is possible that some part of vessel may occlude. In this scenario, it becomes a challenging task to accurately trace these vital vessels. For this purpose, we have proposed a new robust and intelligent retinal vessel detection technique on Hidden Markov Model. The proposed model is able to successfully track vessels in the presence of occlusion. The effectiveness of the proposed technique is evaluated on publically available standard DRIVE dataset of the fundus images. The experiments show that the proposed technique not only outperforms the other state of the art methodologies of retinal blood vessels segmentation, but it is also capable of accurate occlusion handling in retinal vessel networks. The proposed technique offers better average classification accuracy, sensitivity, specificity, and area under the curve (AUC) of 95.7%, 81.0%, 97.0%, and 90.0% respectively, which shows the usefulness of the proposed technique. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Luk, B. L.; Liu, K. P.; Tong, F.; Man, K. F.
2010-05-01
The impact-acoustics method utilizes different information contained in the acoustic signals generated by tapping a structure with a small metal object. It offers a convenient and cost-efficient way to inspect the tile-wall bonding integrity. However, the existence of the surface irregularities will cause abnormal multiple bounces in the practical inspection implementations. The spectral characteristics from those bounces can easily be confused with the signals obtained from different bonding qualities. As a result, it will deteriorate the classic feature-based classification methods based on frequency domain. Another crucial difficulty posed by the implementation is the additive noise existing in the practical environments that may also cause feature mismatch and false judgment. In order to solve this problem, the work described in this paper aims to develop a robust inspection method that applies model-based strategy, and utilizes the wavelet domain features with hidden Markov modeling. It derives a bonding integrity recognition approach with enhanced immunity to surface roughness as well as the environmental noise. With the help of the specially designed artificial sample slabs, experiments have been carried out with impact acoustic signals contaminated by real environmental noises acquired under practical inspection background. The results are compared with those using classic method to demonstrate the effectiveness of the proposed method.
Liu, Mengting; Amey, Rachel C; Forbes, Chad E
2017-12-01
When individuals are placed in stressful situations, they are likely to exhibit deficits in cognitive capacity over and above situational demands. Despite this, individuals may still persevere and ultimately succeed in these situations. Little is known, however, about neural network properties that instantiate success or failure in both neutral and stressful situations, particularly with respect to regions integral for problem-solving processes that are necessary for optimal performance on more complex tasks. In this study, we outline how hidden Markov modeling based on multivoxel pattern analysis can be used to quantify unique brain states underlying complex network interactions that yield either successful or unsuccessful problem solving in more neutral or stressful situations. We provide evidence that brain network stability and states underlying synchronous interactions in regions integral for problem-solving processes are key predictors of whether individuals succeed or fail in stressful situations. Findings also suggested that individuals utilize discriminate neural patterns in successfully solving problems in stressful or neutral situations. Findings overall highlight how hidden Markov modeling can provide myriad possibilities for quantifying and better understanding the role of global network interactions in the problem-solving process and how the said interactions predict success or failure in different contexts.
Sequence similarity is more relevant than species specificity in probabilistic backtranslation.
Ferro, Alfredo; Giugno, Rosalba; Pigola, Giuseppe; Pulvirenti, Alfredo; Di Pietro, Cinzia; Purrello, Michele; Ragusa, Marco
2007-02-21
Backtranslation is the process of decoding a sequence of amino acids into the corresponding codons. All synthetic gene design systems include a backtranslation module. The degeneracy of the genetic code makes backtranslation potentially ambiguous since most amino acids are encoded by multiple codons. The common approach to overcome this difficulty is based on imitation of codon usage within the target species. This paper describes EasyBack, a new parameter-free, fully-automated software for backtranslation using Hidden Markov Models. EasyBack is not based on imitation of codon usage within the target species, but instead uses a sequence-similarity criterion. The model is trained with a set of proteins with known cDNA coding sequences, constructed from the input protein by querying the NCBI databases with BLAST. Unlike existing software, the proposed method allows the quality of prediction to be estimated. When tested on a group of proteins that show different degrees of sequence conservation, EasyBack outperforms other published methods in terms of precision. The prediction quality of a protein backtranslation methis markedly increased by replacing the criterion of most used codon in the same species with a Hidden Markov Model trained with a set of most similar sequences from all species. Moreover, the proposed method allows the quality of prediction to be estimated probabilistically.
Tumor propagation model using generalized hidden Markov model
NASA Astrophysics Data System (ADS)
Park, Sun Young; Sargent, Dustin
2017-02-01
Tumor tracking and progression analysis using medical images is a crucial task for physicians to provide accurate and efficient treatment plans, and monitor treatment response. Tumor progression is tracked by manual measurement of tumor growth performed by radiologists. Several methods have been proposed to automate these measurements with segmentation, but many current algorithms are confounded by attached organs and vessels. To address this problem, we present a new generalized tumor propagation model considering time-series prior images and local anatomical features using a Hierarchical Hidden Markov model (HMM) for tumor tracking. First, we apply the multi-atlas segmentation technique to identify organs/sub-organs using pre-labeled atlases. Second, we apply a semi-automatic direct 3D segmentation method to label the initial boundary between the lesion and neighboring structures. Third, we detect vessels in the ROI surrounding the lesion. Finally, we apply the propagation model with the labeled organs and vessels to accurately segment and measure the target lesion. The algorithm has been designed in a general way to be applicable to various body parts and modalities. In this paper, we evaluate the proposed algorithm on lung and lung nodule segmentation and tracking. We report the algorithm's performance by comparing the longest diameter and nodule volumes using the FDA lung Phantom data and a clinical dataset.
Chao, Michael C.; Pritchard, Justin R.; Zhang, Yanjia J.; Rubin, Eric J.; Livny, Jonathan; Davis, Brigid M.; Waldor, Matthew K.
2013-01-01
The coupling of high-density transposon mutagenesis to high-throughput DNA sequencing (transposon-insertion sequencing) enables simultaneous and genome-wide assessment of the contributions of individual loci to bacterial growth and survival. We have refined analysis of transposon-insertion sequencing data by normalizing for the effect of DNA replication on sequencing output and using a hidden Markov model (HMM)-based filter to exploit heretofore unappreciated information inherent in all transposon-insertion sequencing data sets. The HMM can smooth variations in read abundance and thereby reduce the effects of read noise, as well as permit fine scale mapping that is independent of genomic annotation and enable classification of loci into several functional categories (e.g. essential, domain essential or ‘sick’). We generated a high-resolution map of genomic loci (encompassing both intra- and intergenic sequences) that are required or beneficial for in vitro growth of the cholera pathogen, Vibrio cholerae. This work uncovered new metabolic and physiologic requirements for V. cholerae survival, and by combining transposon-insertion sequencing and transcriptomic data sets, we also identified several novel noncoding RNA species that contribute to V. cholerae growth. Our findings suggest that HMM-based approaches will enhance extraction of biological meaning from transposon-insertion sequencing genomic data. PMID:23901011
Wissel, Tobias; Pfeiffer, Tim; Frysch, Robert; Knight, Robert T.; Chang, Edward F.; Hinrichs, Hermann; Rieger, Jochem W.; Rose, Georg
2013-01-01
Objective Support Vector Machines (SVM) have developed into a gold standard for accurate classification in Brain-Computer-Interfaces (BCI). The choice of the most appropriate classifier for a particular application depends on several characteristics in addition to decoding accuracy. Here we investigate the implementation of Hidden Markov Models (HMM)for online BCIs and discuss strategies to improve their performance. Approach We compare the SVM, serving as a reference, and HMMs for classifying discrete finger movements obtained from the Electrocorticograms of four subjects doing a finger tapping experiment. The classifier decisions are based on a subset of low-frequency time domain and high gamma oscillation features. Main results We show that decoding optimization between the two approaches is due to the way features are extracted and selected and less dependent on the classifier. An additional gain in HMM performance of up to 6% was obtained by introducing model constraints. Comparable accuracies of up to 90% were achieved with both SVM and HMM with the high gamma cortical response providing the most important decoding information for both techniques. Significance We discuss technical HMM characteristics and adaptations in the context of the presented data as well as for general BCI applications. Our findings suggest that HMMs and their characteristics are promising for efficient online brain-computer interfaces. PMID:24045504
Li, Ao; Liu, Zongzhi; Lezon-Geyda, Kimberly; Sarkar, Sudipa; Lannin, Donald; Schulz, Vincent; Krop, Ian; Winer, Eric; Harris, Lyndsay; Tuck, David
2011-01-01
There is an increasing interest in using single nucleotide polymorphism (SNP) genotyping arrays for profiling chromosomal rearrangements in tumors, as they allow simultaneous detection of copy number and loss of heterozygosity with high resolution. Critical issues such as signal baseline shift due to aneuploidy, normal cell contamination, and the presence of GC content bias have been reported to dramatically alter SNP array signals and complicate accurate identification of aberrations in cancer genomes. To address these issues, we propose a novel Global Parameter Hidden Markov Model (GPHMM) to unravel tangled genotyping data generated from tumor samples. In contrast to other HMM methods, a distinct feature of GPHMM is that the issues mentioned above are quantitatively modeled by global parameters and integrated within the statistical framework. We developed an efficient EM algorithm for parameter estimation. We evaluated performance on three data sets and show that GPHMM can correctly identify chromosomal aberrations in tumor samples containing as few as 10% cancer cells. Furthermore, we demonstrated that the estimation of global parameters in GPHMM provides information about the biological characteristics of tumor samples and the quality of genotyping signal from SNP array experiments, which is helpful for data quality control and outlier detection in cohort studies. PMID:21398628
Stability Analysis of Multi-Sensor Kalman Filtering over Lossy Networks
Gao, Shouwan; Chen, Pengpeng; Huang, Dan; Niu, Qiang
2016-01-01
This paper studies the remote Kalman filtering problem for a distributed system setting with multiple sensors that are located at different physical locations. Each sensor encapsulates its own measurement data into one single packet and transmits the packet to the remote filter via a lossy distinct channel. For each communication channel, a time-homogeneous Markov chain is used to model the normal operating condition of packet delivery and losses. Based on the Markov model, a necessary and sufficient condition is obtained, which can guarantee the stability of the mean estimation error covariance. Especially, the stability condition is explicitly expressed as a simple inequality whose parameters are the spectral radius of the system state matrix and transition probabilities of the Markov chains. In contrast to the existing related results, our method imposes less restrictive conditions on systems. Finally, the results are illustrated by simulation examples. PMID:27104541
Golightly, Andrew; Wilkinson, Darren J.
2011-01-01
Computational systems biology is concerned with the development of detailed mechanistic models of biological processes. Such models are often stochastic and analytically intractable, containing uncertain parameters that must be estimated from time course data. In this article, we consider the task of inferring the parameters of a stochastic kinetic model defined as a Markov (jump) process. Inference for the parameters of complex nonlinear multivariate stochastic process models is a challenging problem, but we find here that algorithms based on particle Markov chain Monte Carlo turn out to be a very effective computationally intensive approach to the problem. Approximations to the inferential model based on stochastic differential equations (SDEs) are considered, as well as improvements to the inference scheme that exploit the SDE structure. We apply the methodology to a Lotka–Volterra system and a prokaryotic auto-regulatory network. PMID:23226583
Irreversible Markov chains in spin models: Topological excitations
NASA Astrophysics Data System (ADS)
Lei, Ze; Krauth, Werner
2018-01-01
We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-antivortex correlations while spin waves decorrelate very quickly. Using a Fréchet description of the maximum vortex-antivortex distance, we quantify the contributions of topological excitations to the equilibrium correlations, and show that they vary from a dynamical critical exponent z∼ 2 at the critical temperature to z∼ 0 in the limit of zero temperature. We confirm the event-chain algorithm's fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation to the XY model. Mixing times (describing the approach towards equilibrium from the least favorable initial state) however remain much larger than equilibrium correlation times at low temperatures. We also describe the respective influence of topological monopole-antimonopole excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg model.
Bayesian tomography by interacting Markov chains
NASA Astrophysics Data System (ADS)
Romary, T.
2017-12-01
In seismic tomography, we seek to determine the velocity of the undergound from noisy first arrival travel time observations. In most situations, this is an ill posed inverse problem that admits several unperfect solutions. Given an a priori distribution over the parameters of the velocity model, the Bayesian formulation allows to state this problem as a probabilistic one, with a solution under the form of a posterior distribution. The posterior distribution is generally high dimensional and may exhibit multimodality. Moreover, as it is known only up to a constant, the only sensible way to addressthis problem is to try to generate simulations from the posterior. The natural tools to perform these simulations are Monte Carlo Markov chains (MCMC). Classical implementations of MCMC algorithms generally suffer from slow mixing: the generated states are slow to enter the stationary regime, that is to fit the observations, and when one mode of the posterior is eventually identified, it may become difficult to visit others. Using a varying temperature parameter relaxing the constraint on the data may help to enter the stationary regime. Besides, the sequential nature of MCMC makes them ill fitted toparallel implementation. Running a large number of chains in parallel may be suboptimal as the information gathered by each chain is not mutualized. Parallel tempering (PT) can be seen as a first attempt to make parallel chains at different temperatures communicate but only exchange information between current states. In this talk, I will show that PT actually belongs to a general class of interacting Markov chains algorithm. I will also show that this class enables to design interacting schemes that can take advantage of the whole history of the chain, by authorizing exchanges toward already visited states. The algorithms will be illustrated with toy examples and an application to first arrival traveltime tomography.
Generating intrinsically disordered protein conformational ensembles from a Markov chain
NASA Astrophysics Data System (ADS)
Cukier, Robert I.
2018-03-01
Intrinsically disordered proteins (IDPs) sample a diverse conformational space. They are important to signaling and regulatory pathways in cells. An entropy penalty must be payed when an IDP becomes ordered upon interaction with another protein or a ligand. Thus, the degree of conformational disorder of an IDP is of interest. We create a dichotomic Markov model that can explore entropic features of an IDP. The Markov condition introduces local (neighbor residues in a protein sequence) rotamer dependences that arise from van der Waals and other chemical constraints. A protein sequence of length N is characterized by its (information) entropy and mutual information, MIMC, the latter providing a measure of the dependence among the random variables describing the rotamer probabilities of the residues that comprise the sequence. For a Markov chain, the MIMC is proportional to the pair mutual information MI which depends on the singlet and pair probabilities of neighbor residue rotamer sampling. All 2N sequence states are generated, along with their probabilities, and contrasted with the probabilities under the assumption of independent residues. An efficient method to generate realizations of the chain is also provided. The chain entropy, MIMC, and state probabilities provide the ingredients to distinguish different scenarios using the terminologies: MoRF (molecular recognition feature), not-MoRF, and not-IDP. A MoRF corresponds to large entropy and large MIMC (strong dependence among the residues' rotamer sampling), a not-MoRF corresponds to large entropy but small MIMC, and not-IDP corresponds to low entropy irrespective of the MIMC. We show that MorFs are most appropriate as descriptors of IDPs. They provide a reasonable number of high-population states that reflect the dependences between neighbor residues, thus classifying them as IDPs, yet without very large entropy that might lead to a too high entropy penalty.
Borgy, Benjamin; Reboud, Xavier; Peyrard, Nathalie; Sabbadin, Régis; Gaba, Sabrina
2015-01-01
Predicting the population dynamics of annual plants is a challenge due to their hidden seed banks in the field. However, such predictions are highly valuable for determining management strategies, specifically in agricultural landscapes. In agroecosystems, most weed seeds survive during unfavourable seasons and persist for several years in the seed bank. This causes difficulties in making accurate predictions of weed population dynamics and life history traits (LHT). Consequently, it is very difficult to identify management strategies that limit both weed populations and species diversity. In this article, we present a method of assessing weed population dynamics from both standing plant time series data and an unknown seed bank. We use a Hidden Markov Model (HMM) to obtain estimates of over 3,080 botanical records for three major LHT: seed survival in the soil, plant establishment (including post-emergence mortality), and seed production of 18 common weed species. Maximum likelihood and Bayesian approaches were complementarily used to estimate LHT values. The results showed that the LHT provided by the HMM enabled fairly accurate estimates of weed populations in different crops. There was a positive correlation between estimated germination rates and an index of the specialisation to the crop type (IndVal). The relationships between estimated LHTs and that between the estimated LHTs and the ecological characteristics of weeds provided insights into weed strategies. For example, a common strategy to cope with agricultural practices in several weeds was to produce less seeds and increase germination rates. This knowledge, especially of LHT for each type of crop, should provide valuable information for developing sustainable weed management strategies.
Borgy, Benjamin; Reboud, Xavier; Peyrard, Nathalie; Sabbadin, Régis; Gaba, Sabrina
2015-01-01
Predicting the population dynamics of annual plants is a challenge due to their hidden seed banks in the field. However, such predictions are highly valuable for determining management strategies, specifically in agricultural landscapes. In agroecosystems, most weed seeds survive during unfavourable seasons and persist for several years in the seed bank. This causes difficulties in making accurate predictions of weed population dynamics and life history traits (LHT). Consequently, it is very difficult to identify management strategies that limit both weed populations and species diversity. In this article, we present a method of assessing weed population dynamics from both standing plant time series data and an unknown seed bank. We use a Hidden Markov Model (HMM) to obtain estimates of over 3,080 botanical records for three major LHT: seed survival in the soil, plant establishment (including post-emergence mortality), and seed production of 18 common weed species. Maximum likelihood and Bayesian approaches were complementarily used to estimate LHT values. The results showed that the LHT provided by the HMM enabled fairly accurate estimates of weed populations in different crops. There was a positive correlation between estimated germination rates and an index of the specialisation to the crop type (IndVal). The relationships between estimated LHTs and that between the estimated LHTs and the ecological characteristics of weeds provided insights into weed strategies. For example, a common strategy to cope with agricultural practices in several weeds was to produce less seeds and increase germination rates. This knowledge, especially of LHT for each type of crop, should provide valuable information for developing sustainable weed management strategies. PMID:26427023
Affective State Level Recognition in Naturalistic Facial and Vocal Expressions.
Meng, Hongying; Bianchi-Berthouze, Nadia
2014-03-01
Naturalistic affective expressions change at a rate much slower than the typical rate at which video or audio is recorded. This increases the probability that consecutive recorded instants of expressions represent the same affective content. In this paper, we exploit such a relationship to improve the recognition performance of continuous naturalistic affective expressions. Using datasets of naturalistic affective expressions (AVEC 2011 audio and video dataset, PAINFUL video dataset) continuously labeled over time and over different dimensions, we analyze the transitions between levels of those dimensions (e.g., transitions in pain intensity level). We use an information theory approach to show that the transitions occur very slowly and hence suggest modeling them as first-order Markov models. The dimension levels are considered to be the hidden states in the Hidden Markov Model (HMM) framework. Their discrete transition and emission matrices are trained by using the labels provided with the training set. The recognition problem is converted into a best path-finding problem to obtain the best hidden states sequence in HMMs. This is a key difference from previous use of HMMs as classifiers. Modeling of the transitions between dimension levels is integrated in a multistage approach, where the first level performs a mapping between the affective expression features and a soft decision value (e.g., an affective dimension level), and further classification stages are modeled as HMMs that refine that mapping by taking into account the temporal relationships between the output decision labels. The experimental results for each of the unimodal datasets show overall performance to be significantly above that of a standard classification system that does not take into account temporal relationships. In particular, the results on the AVEC 2011 audio dataset outperform all other systems presented at the international competition.
Schulz, Vincent; Chen, Min; Tuck, David
2010-01-01
Background Genotyping platforms such as single nucleotide polymorphism (SNP) arrays are powerful tools to study genomic aberrations in cancer samples. Allele specific information from SNP arrays provides valuable information for interpreting copy number variation (CNV) and allelic imbalance including loss-of-heterozygosity (LOH) beyond that obtained from the total DNA signal available from array comparative genomic hybridization (aCGH) platforms. Several algorithms based on hidden Markov models (HMMs) have been designed to detect copy number changes and copy-neutral LOH making use of the allele information on SNP arrays. However heterogeneity in clinical samples, due to stromal contamination and somatic alterations, complicates analysis and interpretation of these data. Methods We have developed MixHMM, a novel hidden Markov model using hidden states based on chromosomal structural aberrations. MixHMM allows CNV detection for copy numbers up to 7 and allows more complete and accurate description of other forms of allelic imbalance, such as increased copy number LOH or imbalanced amplifications. MixHMM also incorporates a novel sample mixing model that allows detection of tumor CNV events in heterogeneous tumor samples, where cancer cells are mixed with a proportion of stromal cells. Conclusions We validate MixHMM and demonstrate its advantages with simulated samples, clinical tumor samples and a dilution series of mixed samples. We have shown that the CNVs of cancer cells in a tumor sample contaminated with up to 80% of stromal cells can be detected accurately using Illumina BeadChip and MixHMM. Availability The MixHMM is available as a Python package provided with some other useful tools at http://genecube.med.yale.edu:8080/MixHMM. PMID:20532221
A compositional framework for Markov processes
NASA Astrophysics Data System (ADS)
Baez, John C.; Fong, Brendan; Pollard, Blake S.
2016-03-01
We define the concept of an "open" Markov process, or more precisely, continuous-time Markov chain, which is one where probability can flow in or out of certain states called "inputs" and "outputs." One can build up a Markov process from smaller open pieces. This process is formalized by making open Markov processes into the morphisms of a dagger compact category. We show that the behavior of a detailed balanced open Markov process is determined by a principle of minimum dissipation, closely related to Prigogine's principle of minimum entropy production. Using this fact, we set up a functor mapping open detailed balanced Markov processes to open circuits made of linear resistors. We also describe how to "black box" an open Markov process, obtaining the linear relation between input and output data that holds in any steady state, including nonequilibrium steady states with a nonzero flow of probability through the system. We prove that black boxing gives a symmetric monoidal dagger functor sending open detailed balanced Markov processes to Lagrangian relations between symplectic vector spaces. This allows us to compute the steady state behavior of an open detailed balanced Markov process from the behaviors of smaller pieces from which it is built. We relate this black box functor to a previously constructed black box functor for circuits.
A multi-level solution algorithm for steady-state Markov chains
NASA Technical Reports Server (NTRS)
Horton, Graham; Leutenegger, Scott T.
1993-01-01
A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial differential equations. Initial results of numerical experiments are reported, showing significant reductions in computation time, often an order of magnitude or more, relative to the Gauss-Seidel and optimal SOR algorithms for a variety of test problems. The multi-level method is compared and contrasted with the iterative aggregation-disaggregation algorithm of Takahashi.
Geodesic Monte Carlo on Embedded Manifolds
Byrne, Simon; Girolami, Mark
2013-01-01
Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton–Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices. PMID:25309024
Lee, K-E; Lee, E-J; Park, H-S
2016-08-30
Recent advances in computational epigenetics have provided new opportunities to evaluate n-gram probabilistic language models. In this paper, we describe a systematic genome-wide approach for predicting functional roles in inactive chromatin regions by using a sequence-based Markovian chromatin map of the human genome. We demonstrate that Markov chains of sequences can be used as a precursor to predict functional roles in heterochromatin regions and provide an example comparing two publicly available chromatin annotations of large-scale epigenomics projects: ENCODE project consortium and Roadmap Epigenomics consortium.
A descriptive model of resting-state networks using Markov chains.
Xie, H; Pal, R; Mitra, S
2016-08-01
Resting-state functional connectivity (RSFC) studies considering pairwise linear correlations have attracted great interests while the underlying functional network structure still remains poorly understood. To further our understanding of RSFC, this paper presents an analysis of the resting-state networks (RSNs) based on the steady-state distributions and provides a novel angle to investigate the RSFC of multiple functional nodes. This paper evaluates the consistency of two networks based on the Hellinger distance between the steady-state distributions of the inferred Markov chain models. The results show that generated steady-state distributions of default mode network have higher consistency across subjects than random nodes from various RSNs.
NASA Astrophysics Data System (ADS)
Šantić, Branko; Gracin, Davor
2017-12-01
A new simple Monte Carlo method is introduced for the study of electrostatic screening by surrounding ions. The proposed method is not based on the generally used Markov chain method for sample generation. Each sample is pristine and there is no correlation with other samples. As the main novelty, the pairs of ions are gradually added to a sample provided that the energy of each ion is within the boundaries determined by the temperature and the size of ions. The proposed method provides reliable results, as demonstrated by the screening of ion in plasma and in water.
Vulnerability of networks of interacting Markov chains.
Kocarev, L; Zlatanov, N; Trajanov, D
2010-05-13
The concept of vulnerability is introduced for a model of random, dynamical interactions on networks. In this model, known as the influence model, the nodes are arranged in an arbitrary network, while the evolution of the status at a node is according to an internal Markov chain, but with transition probabilities that depend not only on the current status of that node but also on the statuses of the neighbouring nodes. Vulnerability is treated analytically and numerically for several networks with different topological structures, as well as for two real networks--the network of infrastructures and the EU power grid--identifying the most vulnerable nodes of these networks.
Analysis of Streamline Separation at Infinity Using Time-Discrete Markov Chains.
Reich, W; Scheuermann, G
2012-12-01
Existing methods for analyzing separation of streamlines are often restricted to a finite time or a local area. In our paper we introduce a new method that complements them by allowing an infinite-time-evaluation of steady planar vector fields. Our algorithm unifies combinatorial and probabilistic methods and introduces the concept of separation in time-discrete Markov-Chains. We compute particle distributions instead of the streamlines of single particles. We encode the flow into a map and then into a transition matrix for each time direction. Finally, we compare the results of our grid-independent algorithm to the popular Finite-Time-Lyapunov-Exponents and discuss the discrepancies.
Carbon Nanotube Growth Rate Regression using Support Vector Machines and Artificial Neural Networks
2014-03-27
intensity D peak. Reprinted with permission from [38]. The SVM classifier is trained using custom written Java code leveraging the Sequential Minimal...Society Encog is a machine learning framework for Java , C++ and .Net applications that supports Bayesian Networks, Hidden Markov Models, SVMs and ANNs [13...SVM classifiers are trained using Weka libraries and leveraging custom written Java code. The data set is created as an Attribute Relationship File
2013-03-01
framework of orientation distribution functions and crack-induced texture o Quantify effects of temperature on damage behavior and damage monitoring...measurement model was obtained from hidden Markov modeling (HMM) of joint time-frequency (TF) features extracted from the PZT sensor signals using the...considered PZT sensor signals recorded from a bolted aluminum plate. About only 20% of the samples of a signal were first randomly selected as
Autonomous detection of crowd anomalies in multiple-camera surveillance feeds
NASA Astrophysics Data System (ADS)
Nordlöf, Jonas; Andersson, Maria
2016-10-01
A novel approach for autonomous detection of anomalies in crowded environments is presented in this paper. The proposed models uses a Gaussian mixture probability hypothesis density (GM-PHD) filter as feature extractor in conjunction with different Gaussian mixture hidden Markov models (GM-HMMs). Results, based on both simulated and recorded data, indicate that this method can track and detect anomalies on-line in individual crowds through multiple camera feeds in a crowded environment.
Population Synthesis of Radio and Y-ray Millisecond Pulsars Using Markov Chain Monte Carlo
NASA Astrophysics Data System (ADS)
Gonthier, Peter L.; Billman, C.; Harding, A. K.
2013-04-01
We present preliminary results of a new population synthesis of millisecond pulsars (MSP) from the Galactic disk using Markov Chain Monte Carlo techniques to better understand the model parameter space. We include empirical radio and γ-ray luminosity models that are dependent on the pulsar period and period derivative with freely varying exponents. The magnitudes of the model luminosities are adjusted to reproduce the number of MSPs detected by a group of ten radio surveys and by Fermi, predicting the MSP birth rate in the Galaxy. We follow a similar set of assumptions that we have used in previous, more constrained Monte Carlo simulations. The parameters associated with the birth distributions such as those for the accretion rate, magnetic field and period distributions are also free to vary. With the large set of free parameters, we employ Markov Chain Monte Carlo simulations to explore the large and small worlds of the parameter space. We present preliminary comparisons of the simulated and detected distributions of radio and γ-ray pulsar characteristics. We express our gratitude for the generous support of the National Science Foundation (REU and RUI), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program.