Sample records for hidroxichalconas em pseudomonas

  1. Recombineering Pseudomonas syringae

    USDA-ARS?s Scientific Manuscript database

    Here we report the identification of functions that promote genomic recombination of linear DNA introduced into Pseudomonas cells by electroporation. The genes encoding these functions were identified in Pseudomonas syringae pv. syringae B728a based on similarity to the lambda Red Exo/Beta and RecE...

  2. High quality draft genome sequences of Pseudomonas fulva DSM 17717 T, Pseudomonas parafulva DSM 17004 T and Pseudomonas cremoricolorata DSM 17059 T type strains

    DOE PAGES

    Peña, Arantxa; Busquets, Antonio; Gomila, Margarita; ...

    2016-09-01

    Pseudomonas has the highest number of species out of any genus of Gram-negative bacteria and is phylogenetically divided into several groups. The Pseudomonas putida phylogenetic branch includes at least 13 species of environmental and industrial interest, plant-associated bacteria, insect pathogens, and even some members that have been found in clinical specimens. In the context of the Genomic Encyclopedia of Bacteria and Archaea project, we present the permanent, high-quality draft genomes of the type strains of 3 taxonomically and ecologically closely related species in the Pseudomonas putida phylogenetic branch: Pseudomonas fulva DSM 17717 T, Pseudomonas parafulva DSM 17004 T and Pseudomonasmore » cremoricolorata DSM 17059T. All three genomes are comparable in size (4.6-4.9Mb), with 4,119-4,459 protein-coding genes. Average nucleotide identity based on BLAST comparisons and digital genome-to-genome distance calculations are in good agreement with experimental DNA-DNA hybridization results. The genome sequences presented here will be very helpful in elucidating the taxonomy, phylogeny and evolution of the Pseudomonas putida species complex.« less

  3. High quality draft genome sequences of Pseudomonas fulva DSM 17717 T, Pseudomonas parafulva DSM 17004 T and Pseudomonas cremoricolorata DSM 17059 T type strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peña, Arantxa; Busquets, Antonio; Gomila, Margarita

    Pseudomonas has the highest number of species out of any genus of Gram-negative bacteria and is phylogenetically divided into several groups. The Pseudomonas putida phylogenetic branch includes at least 13 species of environmental and industrial interest, plant-associated bacteria, insect pathogens, and even some members that have been found in clinical specimens. In the context of the Genomic Encyclopedia of Bacteria and Archaea project, we present the permanent, high-quality draft genomes of the type strains of 3 taxonomically and ecologically closely related species in the Pseudomonas putida phylogenetic branch: Pseudomonas fulva DSM 17717 T, Pseudomonas parafulva DSM 17004 T and Pseudomonasmore » cremoricolorata DSM 17059T. All three genomes are comparable in size (4.6-4.9Mb), with 4,119-4,459 protein-coding genes. Average nucleotide identity based on BLAST comparisons and digital genome-to-genome distance calculations are in good agreement with experimental DNA-DNA hybridization results. The genome sequences presented here will be very helpful in elucidating the taxonomy, phylogeny and evolution of the Pseudomonas putida species complex.« less

  4. Pseudomonas screening assay

    NASA Technical Reports Server (NTRS)

    Margalit, Ruth (Inventor)

    1993-01-01

    A method for the detection of Pseudomonas bacteria is described where an Azurin-specific antibody is employed for detecting the presence of Azurin in a test sample. The detection of the presence of Azurin in the sample is a conclusive indicator of the presence of the Pseudomonas bacteria since the Azurin protein is a specific marker for this bacterial strain.

  5. Pseudomonas folliculitis in Arabian baths.

    PubMed

    Molina-Leyva, Alejandro; Ruiz-Ruigomez, Maria

    2013-07-14

    A 35-year-old man presented with a painful cutaneous skin eruption that was localized on the upper trunk. He stated that the previous weekend he had attended an Arabian bath. The physical examination revealed multiple hair follicle-centered papulopustules surrounded by an erythematous halo. A clinical diagnosis of pseudomonas folliculitis was made and treatment was prescribed. Afterwards Pseudomonas aeruginosa was isolated from a pustule culture. Pseudomonas folliculitis is a bacterial infection of the hair follicles. The most common reservoirs include facilities with hot water and complex piping systems that are difficult to clean, such as hot tubs and bathtubs. Despite adequate or high chlorine levels, Pseudomonas aeruginosa can grow within a biofilm.

  6. [Pseudomonas folliculitis after spa bath exposure].

    PubMed

    Uldall Pallesen, Kristine Appel; Andersen, Klaus Ejner; Mørtz, Charlotte Gotthard

    2012-06-25

    Pseudomonas aeruginosa is a rare cause of folliculitis. Pseudomonas folliculitis can develop after contact with contaminated water from swimming pools, hot tubs and spa baths. Systemic therapy may be indicated in patients with widespread lesions, systemic symptoms or in immunosuppressed patients. We describe a 23-year-old healthy woman who developed a pustular rash and general malaise after using a spa bath contaminated with Pseudomonas aeruginosa. Bacterial culture from a pustule confirmed Pseudomonas folliculitis and the patient was treated with ciprofloxacin with rapid good effect.

  7. High pressure inactivation of Pseudomonas in black truffle - comparison with Pseudomonas fluorescens in tryptone soya broth

    NASA Astrophysics Data System (ADS)

    Ballestra, Patricia; Verret, Catherine; Cruz, Christian; Largeteau, Alain; Demazeau, Gerard; El Moueffak, Abdelhamid

    2010-03-01

    Pseudomonas is one of the most common genera in black Perigord truffle. Its inactivation by high pressure (100-500 MPa/10 min) applied on truffles at sub-zero or low temperatures was studied and compared with those of Pseudomonas fluorescens in tryptone soya broth. Pressurization of truffles at 300 MPa/4 °C reduced the bacterial count of Pseudomonas by 5.3 log cycles. Higher pressures of 400 or 500 MPa, at 4 °C or 20 °C, allowed us to slightly increase the level of destruction to the value of ca. 6.5 log cycles but did not permit us to completely inactivate Pseudomonas. The results showed a residual charge of about 10 CFU/g. Pressure-shift freezing of truffles, which consists in applying a pressure of 200 MPa/-18 °C for 10 min and then quickly releasing this pressure to induce freezing, reduced the population of Pseudomonas by 3.3 log cycles. The level of inactivation was higher than those obtained with conventional freezing. Endogenous Pseudomonas in truffle was shown to be more resistant to high pressure treatments than P. fluorescens used for inoculation of broths.

  8. Monocyte Profiles in Critically Ill Patients With Pseudomonas Aeruginosa Sepsis

    ClinicalTrials.gov

    2017-02-02

    Pseudomonas Infections; Pseudomonas Septicemia; Pseudomonas; Pneumonia; Pseudomonal Bacteraemia; Pseudomonas Urinary Tract Infection; Pseudomonas Gastrointestinal Tract Infection; Sepsis; Sepsis, Severe; Critically Ill

  9. OXIDATION OF POLYCHLORINATED BIPHENYLS BY PSEUDOMONAS SP. STRAIN LB400 AND PSEUDOMONAS PSEUDOALCALIGENES KF707

    EPA Science Inventory

    Biphenyl-grown cells and cell extracts prepared from biphenyl-grown cells of Pseudomonas sp. strain LB400 oxidize a much wider range of chlorinated biphenyls than do analogous preparations from Pseudomonas pseudoalcaligenes KF707. These results are attributed to differences in th...

  10. Pseudomonas caspiana sp. nov., a citrus pathogen in the Pseudomonas syringae phylogenetic group.

    PubMed

    Busquets, Antonio; Gomila, Margarita; Beiki, Farid; Mulet, Magdalena; Rahimian, Heshmat; García-Valdés, Elena; Lalucat, Jorge

    2017-07-01

    In a screening by multilocus sequence analysis of Pseudomonas strains isolated from diverse origins, 4 phylogenetically closely related strains (FBF58, FBF102 T , FBF103, and FBF122) formed a well-defined cluster in the Pseudomonas syringae phylogenetic group. The strains were isolated from citrus orchards in northern Iran with disease symptoms in the leaves and stems and its pathogenicity against citrus plants was demonstrated. The whole genome of the type strain of the proposed new species (FBF102 T =CECT 9164 T =CCUG 69273 T ) was sequenced and characterized. Comparative genomics with the 14 known Pseudomonas species type strains of the P. syringae phylogenetic group demonstrated that this strain belonged to a new genomic species, different from the species described thus far. Genome analysis detected genes predicted to be involved in pathogenesis, such as an atypical type 3 secretion system and two type 6 secretion systems, together with effectors and virulence factors. A polyphasic taxonomic characterization demonstrated that the 4 plant pathogenic strains represented a new species, for which the name Pseudomonas caspiana sp. nov. is proposed. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database.

    PubMed

    Winsor, Geoffrey L; Griffiths, Emma J; Lo, Raymond; Dhillon, Bhavjinder K; Shay, Julie A; Brinkman, Fiona S L

    2016-01-04

    The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. 40 CFR 180.1114 - Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae 742RS...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... biological control agent to growing agricultural crops in accordance with good agricultural practices. [57 FR... 742RS; exemptions from the requirement of a tolerance. The biological pesticides Pseudomonas fluorescens...

  13. 40 CFR 180.1114 - Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae 742RS...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... biological control agent to growing agricultural crops in accordance with good agricultural practices. [57 FR... 742RS; exemptions from the requirement of a tolerance. The biological pesticides Pseudomonas fluorescens...

  14. 40 CFR 180.1114 - Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae 742RS...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... biological control agent to growing agricultural crops in accordance with good agricultural practices. [57 FR... 742RS; exemptions from the requirement of a tolerance. The biological pesticides Pseudomonas fluorescens...

  15. 40 CFR 180.1114 - Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae 742RS...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... biological control agent to growing agricultural crops in accordance with good agricultural practices. [57 FR... 742RS; exemptions from the requirement of a tolerance. The biological pesticides Pseudomonas fluorescens...

  16. 40 CFR 180.1114 - Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae 742RS...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... biological control agent to growing agricultural crops in accordance with good agricultural practices. [57 FR... 742RS; exemptions from the requirement of a tolerance. The biological pesticides Pseudomonas fluorescens...

  17. [Whirlpool and pseudomonas infection--a local outbreak].

    PubMed

    Malterud, Kirsti; Thesen, Janecke

    2007-06-28

    Hot tubs and whirlpools are popular in Norway, but related health risks are not well-known. Manifestations of bathing-associated Pseudomonas aeruginosa-infections can be seen in many organ systems. The most common of these, Pseudomonas folliculitis, is a self-limiting disease in otherwise healthy people, and does not require antibiotic treatment. We describe a local outbreak involving 6 people who had used the same hot whirlpool. The disease manifestations were different, and were initially confused with impetigo and mastitis/mammary tumour. Signs and symptoms are described, documented with photos and discussed in relation to knowledge about Pseudomonas infection and its manifestations. After suspecting the hot tub as a source of infection, diagnosis was made highly probable by bacteriological specimens from the tub. Hot tub-associated infections with Pseudomonas aeruginosa are probably more common than previously anticipated, and can easily be confused with conditions of different aetiology. They indicate unsatisfactory routines in tub maintenance. Improved guidelines for hot-tub-owners and the use of dip-slide cultures to secure routines are likely to prevent bathing-associated Pseudomonas infections.

  18. Dearomatization of diesel oil using Pseudomonas sp.

    PubMed

    Khan, Samiya; Gupta, Sanjay; Gupta, Nidhi

    2018-05-25

    To improve the quality of diesel fuel via removal of aromatic compounds using Pseudomonas sp. In the present study Pseudomonas sp. was able to remove 94% of fluorene, 59% of phenanthrene, 49% of anthracene, 52% of fluoranthene, 45% of pyrene and 75% carbazole present in diesel oil. Additionally, it also does not affect the aliphatic content of fuel thus maintaining the carbon backbone of the fuel. Pseudomonas sp. is a potential biocatalyst that can be used in the refining industry.

  19. Degradation of ethyl mercaptan and its major intermediate diethyl disulfide by Pseudomonas sp. strain WL2.

    PubMed

    Wang, Xiangqian; Wu, Chao; Liu, Nan; Li, Sujing; Li, Wei; Chen, Jianmeng; Chen, Dongzhi

    2015-04-01

    A Pseudomonas sp. strain WL2 that is able to efficiently metabolize ethyl mercaptan (EM) into diethyl disulfide (DEDS) through enzymatic oxidation was isolated from the activated sludge of a pharmaceutical wastewater plant. One hundred percent removal of 113.5 mg L(-1) EM and 110.3 mg L(-1) DEDS were obtained within 14 and 32 h, respectively. A putative EM degradation pathway that involved the catabolism via DEDS was proposed, which indicated DEDS were further mineralized into carbon dioxide (CO2), bacterial cells, and sulfate (SO4 (2-)) through the transformation of element sulfur and ethyl aldehyde. Degradation kinetics for EM and DEDS with different initial concentrations by strain WL2 were evaluated using Haldane-Andrews model with maximum specific degradation rates of 3.13 and 1.33 g g(-1) h(-1), respectively, and maximum degradation rate constants of 0.522 and 0.175 h(-1) using pseudo-first-order kinetic model were obtained. Results obtained that aerobic degradation of EM by strain WL2 was more efficient than those from previous studies. Substrate range studies of strain WL2 demonstrated its ability to degrade several mercaptans, disulfides, aldehydes, and methanol. All the results obtained highlight the potential of strain WL2 for the use in the biodegradation of volatile organic sulfur compounds (VOSCs).

  20. [Application of recombinase polymerase amplification in the detection of Pseudomonas aeruginosa].

    PubMed

    Jin, X J; Gong, Y L; Yang, L; Mo, B H; Peng, Y Z; He, P; Zhao, J N; Li, X L

    2018-04-20

    Objective: To establish an optimized method of recombinase polymerase amplification (RPA) to rapidly detect Pseudomonas aeruginosa in clinic. Methods: (1) The DNA templates of one standard Pseudomonas aeruginosa strain was extracted and detected by polymerase chain reaction (PCR), real-time fluorescence quantitative PCR and RPA. Time of sample loading, time of amplification, and time of detection of the three methods were recorded. (2) One standard Pseudomonas aeruginosa strain was diluted in 7 concentrations of 1×10(7,) 1×10(6,) 1×10(5,) 1×10(4,) 1×10(3,) 1×10(2,) and 1×10(1) colony forming unit (CFU)/mL after recovery and cultivation. The DNA templates of Pseudomonas aeruginosa and negative control strain Pseudomonas putida were extracted and detected by PCR, real-time fluorescence quantitative PCR, and RPA separately. The sensitivity of the three methods in detecting Pseudomonas aeruginosa was analyzed. (3) The DNA templates of one standard Pseudomonas aeruginosa strain and four negative control strains ( Staphylococcus aureus, Acinetobacter baumanii, Candida albicans, and Pseudomonas putida ) were extracted separately, and then they were detected by PCR, real-time fluorescence quantitative PCR, and RPA. The specificity of the three methods in detecting Pseudomonas aeruginosa was analyzed. (4) The DNA templates of 28 clinical strains of Pseudomonas aeruginosa preserved in glycerin, 1 clinical strain of which was taken by cotton swab, and negative control strain Pseudomonas putida were extracted separately, and then they were detected by RPA. Positive amplification signals of the clinical strains were observed, and the detection rate was calculated. All experiments were repeated for 3 times. Sensitivity results were analyzed by GraphPad Prism 5.01 statistical software. Results: (1) The loading time of RPA, PCR, and real-time fluorescence quantitative PCR for detecting Pseudomonas aeruginosa were all 20 minutes. In PCR, time of amplification was 98 minutes

  1. Pseudomonas aeruginosa gram-negative folliculitis.

    PubMed

    Leyden, J J; McGinley, K J; Mills, O H

    1979-10-01

    Three patients with sudden, unmanageable exacerbation of acne vulgaris were shown to have Gram-negative folliculitis due to Pseudomonas aeruginosa. In each patient, the source of the Pseudomonas proved to be an otitis externa infection. In contrast to previous cases of Gram-negative folliculitis due to Proteus, Escherichia coli, or Klebsiella, the anterior nares were not colonized. Treatment of the otitis externa and the Gram-negative folliculitis with acetic acid compresses and topical antibiotics led to prompt resolution without recurrence.

  2. Advances of naphthalene degradation in Pseudomonas putida ND6

    NASA Astrophysics Data System (ADS)

    Song, Fu; Shi, Yifei; Jia, Shiru; Tan, Zhilei; Zhao, Huabing

    2018-03-01

    Naphthalene is one of the most common and simple polycyclic aromatic hydrocarbons. Degradation of naphthalene has been greatly concerned due to its economic, free-pollution and its fine effect in Pseudomonas putida ND6. This review summarizes the development history of naphthalene degradation, the research progress of naphthalene degrading gene and naphthalene degradation pathway of Pseudomonas putida ND6, and the researching path of this strain. Although the study of naphthalene degradation is not consummate in Pseudomonas putida ND6, there is a potential capability for Pseudomonas putida ND6 to degrade the naphthalene in the further research.

  3. Recombineering using RecET from Pseudomonas syringae

    USDA-ARS?s Scientific Manuscript database

    Here we report the identification of functions that promote genomic recombination of linear DNA introduced into Pseudomonas cells by electroporation. The genes encoding these functions were identified in Pseudomonas syringae pv. syringae B728a based on similarity to the lambda Red Exo/Beta and RecE...

  4. Pseudomonas blight discovered on raspberry in Watsonville

    USDA-ARS?s Scientific Manuscript database

    In the winter (February) of 2013, a field of raspberries in Watsonville was discovered to be infected with Pseudomonas syringae, the causal agent of Pseudomonas blight disease. This was the first documentation of this disease on raspberry in our region. The infection of raspberry plants is manifeste...

  5. Heterogeneity of heat-resistant proteases from milk Pseudomonas species.

    PubMed

    Marchand, Sophie; Vandriesche, Gonzalez; Coorevits, An; Coudijzer, Katleen; De Jonghe, Valerie; Dewettinck, Koen; De Vos, Paul; Devreese, Bart; Heyndrickx, Marc; De Block, Jan

    2009-07-31

    Pseudomonas fragi, Pseudomonas lundensis and members of the Pseudomonas fluorescens group may spoil Ultra High Temperature (UHT) treated milk and dairy products, due to the production of heat-stable proteases in the cold chain of raw milk. Since the aprX gene codes for a heat-resistant protease in P. fluorescens, the presence of this gene has also been investigated in other members of the genus. For this purpose an aprX-screening PCR test has been developed. Twenty-nine representatives of important milk Pseudomonas species and thirty-five reference strains were screened. In 42 out of 55 investigated Pseudomonas strains, the aprX gene was detected, which proves the potential of the aprX-PCR test as a screening tool for potentially proteolytic Pseudomonas strains in milk samples. An extensive study of the obtained aprX-sequences on the DNA and the amino acid level, however, revealed a large heterogeneity within the investigated milk isolates. Although this heterogeneity sets limitations to a general detection method for all proteolytic Pseudomonas strains in milk, it offers a great potential for the development of a multiplex PCR screening test targeting individual aprX-genes. Furthermore, our data illustrated the potential use of the aprX gene as a taxonomic marker, which may help in resolving the current taxonomic deadlock in the P. fluorescens group.

  6. Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates.

    PubMed

    Ude, Susanne; Arnold, Dawn L; Moon, Christina D; Timms-Wilson, Tracey; Spiers, Andrew J

    2006-11-01

    The ability to form biofilms is seen as an increasingly important colonization strategy among both pathogenic and environmental bacteria. A survey of 185 plant-associated, phytopathogenic, soil and river Pseudomonas isolates resulted in 76% producing biofilms at the air-liquid (A-L) interface after selection in static microcosms. Considerable variation in biofilm phenotype was observed, including waxy aggregations, viscous and floccular masses, and physically cohesive biofilms with continuously varying strengths over 1500-fold. Calcofluor epifluorescent microscopy identified cellulose as the matrix component in biofilms produced by Pseudomonas asplenii, Pseudomonas corrugata, Pseudomonas fluorescens, Pseudomonas marginalis, Pseudomonas putida, Pseudomonas savastanoi and Pseudomonas syringae isolates. Cellulose expression and biofilm formation could be induced by the constitutively active WspR19 mutant of the cyclic-di-GMP-associated, GGDEF domain-containing response regulator involved in the P. fluorescens SBW25 wrinkly spreader phenotype and cellular aggregation in Pseudomonas aeruginosa PA01. WspR19 could also induce P. putida KT2440, which otherwise did not produce a biofilm or express cellulose, as well as Escherichia coli K12 and Salmonella typhimurium LT2, both of which express cellulose yet lack WspR homologues. Statistical analysis of biofilm parameters suggest that biofilm development is a more complex process than that simply described by the production of attachment and matrix components and bacterial growth. This complexity was also seen in multivariate analysis as a species-ecological habitat effect, underscoring the fact that in vitro biofilms are abstractions of those surface and volume colonization processes used by bacteria in their natural environments.

  7. The Nitrogen-Fixation Island Insertion Site Is Conserved in Diazotrophic Pseudomonas stutzeri and Pseudomonas sp. Isolated from Distal and Close Geographical Regions

    PubMed Central

    Venieraki, Anastasia; Dimou, Maria; Vezyri, Eleni; Vamvakas, Alexandros; Katinaki, Pagona-Artemis; Chatzipavlidis, Iordanis; Tampakaki, Anastasia; Katinakis, Panagiotis

    2014-01-01

    The presence of nitrogen fixers within the genus Pseudomonas has been established and so far most isolated strains are phylogenetically affiliated to Pseudomonas stutzeri. A gene ortholog neighborhood analysis of the nitrogen fixation island (NFI) in four diazotrophic P. stutzeri strains and Pseudomonas azotifigens revealed that all are flanked by genes coding for cobalamin synthase (cobS) and glutathione peroxidise (gshP). The putative NFIs lack all the features characterizing a mobilizable genomic island. Nevertheless, bioinformatic analysis P. stutzeri DSM 4166 NFI demonstrated the presence of short inverted and/or direct repeats within both flanking regions. The other P. stutzeri strains carry only one set of repeats. The genetic diversity of eleven diazotrophic Pseudomonas isolates was also investigated. Multilocus sequence typing grouped nine isolates along with P. stutzeri and two isolates are grouped in a separate clade. A Rep-PCR fingerprinting analysis grouped the eleven isolates into four distinct genotypes. We also provided evidence that the putative NFI in our diazotrophic Pseudomonas isolates is flanked by cobS and gshP genes. Furthermore, we demonstrated that the putative NFI of Pseudomonas sp. Gr65 is flanked by inverted repeats identical to those found in P. stutzeri DSM 4166 and while the other P. stutzeri isolates harbor the repeats located in the intergenic region between cobS and glutaredoxin genes as in the case of P. stutzeri A1501. Taken together these data suggest that all putative NFIs of diazotrophic Pseudomonas isolates are anchored in an intergenic region between cobS and gshP genes and their flanking regions are designated by distinct repeats patterns. Moreover, the presence of almost identical NFIs in diazotrophic Pseudomonas strains isolated from distal geographical locations around the world suggested that this horizontal gene transfer event may have taken place early in the evolution. PMID:25251496

  8. The nitrogen-fixation island insertion site is conserved in diazotrophic Pseudomonas stutzeri and Pseudomonas sp. isolated from distal and close geographical regions.

    PubMed

    Venieraki, Anastasia; Dimou, Maria; Vezyri, Eleni; Vamvakas, Alexandros; Katinaki, Pagona-Artemis; Chatzipavlidis, Iordanis; Tampakaki, Anastasia; Katinakis, Panagiotis

    2014-01-01

    The presence of nitrogen fixers within the genus Pseudomonas has been established and so far most isolated strains are phylogenetically affiliated to Pseudomonas stutzeri. A gene ortholog neighborhood analysis of the nitrogen fixation island (NFI) in four diazotrophic P. stutzeri strains and Pseudomonas azotifigens revealed that all are flanked by genes coding for cobalamin synthase (cobS) and glutathione peroxidise (gshP). The putative NFIs lack all the features characterizing a mobilizable genomic island. Nevertheless, bioinformatic analysis P. stutzeri DSM 4166 NFI demonstrated the presence of short inverted and/or direct repeats within both flanking regions. The other P. stutzeri strains carry only one set of repeats. The genetic diversity of eleven diazotrophic Pseudomonas isolates was also investigated. Multilocus sequence typing grouped nine isolates along with P. stutzeri and two isolates are grouped in a separate clade. A Rep-PCR fingerprinting analysis grouped the eleven isolates into four distinct genotypes. We also provided evidence that the putative NFI in our diazotrophic Pseudomonas isolates is flanked by cobS and gshP genes. Furthermore, we demonstrated that the putative NFI of Pseudomonas sp. Gr65 is flanked by inverted repeats identical to those found in P. stutzeri DSM 4166 and while the other P. stutzeri isolates harbor the repeats located in the intergenic region between cobS and glutaredoxin genes as in the case of P. stutzeri A1501. Taken together these data suggest that all putative NFIs of diazotrophic Pseudomonas isolates are anchored in an intergenic region between cobS and gshP genes and their flanking regions are designated by distinct repeats patterns. Moreover, the presence of almost identical NFIs in diazotrophic Pseudomonas strains isolated from distal geographical locations around the world suggested that this horizontal gene transfer event may have taken place early in the evolution.

  9. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pseudomonas spp. serological reagents. 866.3415 Section 866.3415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3415 Pseudomonas...

  10. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pseudomonas spp. serological reagents. 866.3415 Section 866.3415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3415 Pseudomonas...

  11. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pseudomonas spp. serological reagents. 866.3415 Section 866.3415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3415 Pseudomonas...

  12. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pseudomonas spp. serological reagents. 866.3415 Section 866.3415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3415 Pseudomonas...

  13. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pseudomonas spp. serological reagents. 866.3415 Section 866.3415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3415 Pseudomonas...

  14. Functional amyloid in Pseudomonas.

    PubMed

    Dueholm, Morten S; Petersen, Steen V; Sønderkær, Mads; Larsen, Poul; Christiansen, Gunna; Hein, Kim L; Enghild, Jan J; Nielsen, Jeppe L; Nielsen, Kåre L; Nielsen, Per H; Otzen, Daniel E

    2010-08-01

    Amyloids are highly abundant in many microbial biofilms and may play an important role in their architecture. Nevertheless, little is known of the amyloid proteins. We report the discovery of a novel functional amyloid expressed by a Pseudomonas strain of the P. fluorescens group. The amyloid protein was purified and the amyloid-like structure verified. Partial sequencing by MS/MS combined with full genomic sequencing of the Pseudomonas strain identified the gene coding for the major subunit of the amyloid fibril, termed fapC. FapC contains a thrice repeated motif that differs from those previously found in curli fimbrins and prion proteins. The lack of aromatic residues in the repeat shows that aromatic side chains are not needed for efficient amyloid formation. In contrast, glutamine and asparagine residues seem to play a major role in amyloid formation as these are highly conserved in curli, prion proteins and FapC. fapC is conserved in many Pseudomonas strains including the opportunistic pathogen P. aeruginosa and is situated in a conserved operon containing six genes, of which one encodes a fapC homologue. Heterologous expression of the fapA-F operon in Escherichia coli BL21(DE3) resulted in a highly aggregative phenotype, showing that the operon is involved in biofilm formation. © 2010 Blackwell Publishing Ltd.

  15. Rapid adaptation drives invasion of airway donor microbiota by Pseudomonas after lung transplantation.

    PubMed

    Beaume, M; Köhler, T; Greub, G; Manuel, O; Aubert, J-D; Baerlocher, L; Farinelli, L; Buckling, A; van Delden, C

    2017-01-17

    In cystic fibrosis (CF) patients, chronic airway infection by Pseudomonas leads to progressive lung destruction ultimately requiring lung transplantation (LT). Following LT, CF-adapted Pseudomonas strains, potentially originating from the sinuses, may seed the allograft leading to infections and reduced allograft survival. We investigated whether CF-adapted Pseudomonas populations invade the donor microbiota and adapt to the non-CF allograft. We collected sequential Pseudomonas isolates and airway samples from a CF-lung transplant recipient during two years, and followed the dynamics of the microbiota and Pseudomonas populations. We show that Pseudomonas invaded the host microbiota within three days post-LT, in association with a reduction in richness and diversity. A dominant mucoid and hypermutator mutL lineage was replaced after 11 days by non-mucoid strains. Despite antibiotic therapy, Pseudomonas dominated the allograft microbiota until day 95. We observed positive selection of pre-LT variants and the appearance of novel mutations. Phenotypic adaptation resulted in increased biofilm formation and swimming motility capacities. Pseudomonas was replaced after 95 days by a microbiota dominated by Actinobacillus. In conclusion, mucoid Pseudomonas adapted to the CF-lung remained able to invade the allograft. Selection of both pre-existing non-mucoid subpopulations and of novel phenotypic traits suggests rapid adaptation of Pseudomonas to the non-CF allograft.

  16. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas.

    PubMed

    Gilani, Razia Alam; Rafique, Mazhar; Rehman, Abdul; Munis, Muhammad Farooq Hussain; Rehman, Shafiq Ur; Chaudhary, Hassan Javed

    2016-02-01

    Chlorpyrifos is an organophosphorus pesticide commonly used in agriculture. It is noxious to a variety of organisms that include living soil biota along with beneficial arthropods, fish, birds, humans, animals, and plants. Exposure to chlorpyrifos may cause detrimental effects as delayed seedling emergence, fruit deformities, and abnormal cell division. Contamination of chlorpyrifos has been found about 24 km from the site of its application. There are many physico-chemical and biological approaches to remove organophosphorus pesticides from the ecosystem, among them most promising is biodegradation. The 3,5,6-trichloro-2-pyridinol (TCP) and diethylthiophosphate (DETP) as primary products are made when chlorpyrifos is degraded by soil microorganisms which further break into nontoxic metabolites as CO(2), H(2)O, and NH(3). Pseudomonas is a diversified genus possessing a series of catabolic pathways and enzymes involved in pesticide degradation. Pseudomonas putida MAS-1 is reported to be more efficient in chlorpyrifos degradation by a rate of 90% in 24 h among Pseudomonas genus. The current review analyzed the comparative potential of bacterial species in Pseudomonas genus for degradation of chlorpyrifos thus, expressing an ecofriendly approach for the treatment of environmental contaminants like pesticides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Characterization of Pseudomonas pathovars isolated from rosaceous fruit trees in East Algeria.

    PubMed

    Harzallah, D; Sadallah, S; Larous, L

    2004-01-01

    A survey of bacterial diseases due to Pseudomonas on rosaceous fruit trees was conducted. In forty two orchards located in the Constantine region ( East Algeria). Pseudomonas isolates were identified on the bases of their cultural and biochemical characteristics . A total of fifty nine phytopathogenic bacteria were isolated from diseased pome and stone fruit trees. Thirty one strains comparable to Pseudomonas syringae pv. syringae were isolated from cherry (Prunus avium L.), plum (P. domestica L.), apricot (P. armeniaca L.), almond (P. dulcis L.) and pear trees (Pirus communis L.); sixteen strains comparable to Pseudomonas syringae pv. morsprunorum were obtained from samples of cherry and plum. Twelve strains of Pseudomonas viridiflava were isolated from cherry, apricot and peach (Prunus persica L.).

  18. Antibiotic Resistance Patterns of Pseudomonas spp. Isolated from the River Danube

    PubMed Central

    Kittinger, Clemens; Lipp, Michaela; Baumert, Rita; Folli, Bettina; Koraimann, Günther; Toplitsch, Daniela; Liebmann, Astrid; Grisold, Andrea J.; Farnleitner, Andreas H.; Kirschner, Alexander; Zarfel, Gernot

    2016-01-01

    Spread and persistence of antibiotic resistance pose a severe threat to human health, yet there is still lack of knowledge about reservoirs of antibiotic resistant bacteria in the environment. We took the opportunity of the Joint Danube Survey 3 (JDS3), the world's biggest river research expedition of its kind in 2013, to analyse samples originating from different sampling points along the whole length of the river. Due to its high clinical relevance, we concentrated on the characterization of Pseudomonas spp. and evaluated the resistance profiles of Pseudomonas spp. which were isolated from eight sampling points. In total, 520 Pseudomonas isolates were found, 344 (66.0%) isolates were identified as Pseudomonas putida, and 141 (27.1%) as Pseudomonas fluorescens, all other Pseudomonas species were represented by less than five isolates, among those two P. aeruginosa isolates. Thirty seven percent (37%) of all isolated Pseudomonas species showed resistance to at least one out of 10 tested antibiotics. The most common resistance was against meropenem (30.4%/158 isolates) piperacillin/tazobactam (10.6%/55 isolates) and ceftazidime (4.2%/22 isolates). 16 isolates (3.1%/16 isolates) were multi-resistant. For each tested antibiotic at least one resistant isolate could be detected. Sampling points from the upper stretch of the River Danube showed more resistant isolates than downriver. Our results suggest that antibiotic resistance can be acquired by and persists even in Pseudomonas species that are normally not in direct contact with humans. A possible scenario is that these bacteria provide a reservoir of antibiotic resistance genes that can spread to related human pathogens by horizontal gene transfer. PMID:27199920

  19. [Nosocomial infection caused by Pseudomonas aeruginosa in intensive care unit].

    PubMed

    Wu, Yu-Qi; Shan, Hong-Wei; Zhao, Xian-Yu; Yang, Xing-Yi

    2011-02-01

    To investigate the risk factors of nosocomial infection caused by Pseudomonas aeruginosa in intensive care unit (ICU), in order to provide reference for an effective measure of infection control. A retrospective study of cases of Pseudomonas aeruginosa infection occurring in ICU was made with multivariable Logistic regression analysis. The clinical data of 1 950 cases admitted from January 2002 to December 2006 were found to have nosocomial infection caused by Pseudomonas aeruginosa were analyzed in order to identify its independent risk factors. Sixty-four out of 1 950 patients were found to suffer from nosocomial infection caused by Pseudomonas aeruginosa, the morbidity rate was 3.3%. At the same time, and in the same department, 37 patients suffering from infection caused by Escherichia coli, served as control group. Univariate analysis showed that the risk factors for nosocomial infection caused by Pseudomonas aeruginosa were the use of corticosteroid, unconsciousness or craniocerebral trauma, abdominal surgery, thorax/abdomen drainage tube, mechanical ventilation, and tracheostomy [the use of corticosteroid: odds ratio (OR)=3.364, 95% confidence interval (95%CI) 1.445-7.830; unconsciousness or craniocerebral trauma: OR=4.026, 95%CI 1.545-10.490; abdominal surgery: OR=0.166, 95%CI 0.068-0.403; thorax/abdomen drainage tube: OR=0.350, 95%CI 0.150-0.818; tracheostomy: OR=4.095, 95%CI 1.638-10.740]. Multivariate analysis showed that the independent risk factors of nosocomial infection caused by Pseudomonas aeruginosa in ICU were: the use of corticosteroid and mechanical ventilation [the use of corticosteroid: OR=3.143, 95%CI 1.115-8.856; mechanical ventilation: OR=3.195, 95%CI 1.607-6.353, P<0.05 and P<0.01]. The independent risk factors of nosocomial infection caused by Pseudomonas aeruginosa in ICU are the use of corticosteroid and mechanical ventilation. Measures should be taken to take care of the risk factors in order to prevent nosocomial infection caused by

  20. Genetically enhanced cellulase production in Pseudomonas cellulosa using recombinant DNA technology

    DOEpatents

    Dees, H. Craig

    1999-01-01

    An enhanced strain of Pseudomonas celllulosa was obtained by introducing a recombinant genetic construct comprising a heterologous cellulase gene operably connected to a promoter into ATCC 55702, mutagenizing the transformants by treatment with MNNG, and selecting a high cellulase producing transformant. The transformant, designated Pseudomonas cellulosa ATCC XXXX, exhibits enhanced levels of cellulase production relative to the untransformed Pseudomonas cellulosa strain #142 ATCC 55702.

  1. Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes.

    PubMed

    Winsor, Geoffrey L; Van Rossum, Thea; Lo, Raymond; Khaira, Bhavjinder; Whiteside, Matthew D; Hancock, Robert E W; Brinkman, Fiona S L

    2009-01-01

    Pseudomonas aeruginosa is a well-studied opportunistic pathogen that is particularly known for its intrinsic antimicrobial resistance, diverse metabolic capacity, and its ability to cause life threatening infections in cystic fibrosis patients. The Pseudomonas Genome Database (http://www.pseudomonas.com) was originally developed as a resource for peer-reviewed, continually updated annotation for the Pseudomonas aeruginosa PAO1 reference strain genome. In order to facilitate cross-strain and cross-species genome comparisons with other Pseudomonas species of importance, we have now expanded the database capabilities to include all Pseudomonas species, and have developed or incorporated methods to facilitate high quality comparative genomics. The database contains robust assessment of orthologs, a novel ortholog clustering method, and incorporates five views of the data at the sequence and annotation levels (Gbrowse, Mauve and custom views) to facilitate genome comparisons. A choice of simple and more flexible user-friendly Boolean search features allows researchers to search and compare annotations or sequences within or between genomes. Other features include more accurate protein subcellular localization predictions and a user-friendly, Boolean searchable log file of updates for the reference strain PAO1. This database aims to continue to provide a high quality, annotated genome resource for the research community and is available under an open source license.

  2. Nosocomial outbreak of Pseudomonas aeruginosa folliculitis associated with a physiotherapy pool.

    PubMed Central

    Schlech, W F; Simonsen, N; Sumarah, R; Martin, R S

    1986-01-01

    Outbreaks of community-acquired Pseudomonas aeruginosa folliculitis have recently been described in association with health spa whirlpools. In February 1984 we detected an outbreak of Pseudomonas folliculitis among hospital staff and patients using a swimming pool in a newly constructed physiotherapy unit. A rash developed in 5 (45%) of the 11 physiotherapists who had used the pool, as compared with 0 of the 17 who had not (p less than 0 005). Pseudomonas folliculitis also developed in 6 (21%) of 29 outpatients and 4 (33%) of 12 inpatients who had used the facility; Pseudomonas infection of a surgical wound also developed in 1 of the 4 inpatients. The epidemic curve was consistent with a continuing common-source outbreak. P. aeruginosa, serotype O:10, was isolated from three physiotherapists, the patient with an infected surgical wound and the pool. A case-control study of pool users did not identify risk factors for infection, although the physiotherapists had spent longer in the pool than had the patients. After hyperchlorination and structural repairs to the pool, no further cases were identified among pool users. This outbreak is the first reported nosocomial outbreak of Pseudomonas folliculitis. Further investigation is needed to determine the risk of serious Pseudomonas infections in hospitalized patients using physiotherapy pools. Images Fig. 1 PMID:3955486

  3. Soil mixture composition alters Arabidopsis susceptibility to Pseudomonas syringae infection

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas syringae is a Gram-negative bacterial pathogen that causes disease on more than 100 different plant species, including the model plant Arabidopsis thaliana. Dissection of the Arabidopsis thaliana-Pseudomonas syringae pathosystem has identified many factors that contribute to successful ...

  4. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    PubMed Central

    Zeng, Guanghong; Vad, Brian S.; Dueholm, Morten S.; Christiansen, Gunna; Nilsson, Martin; Tolker-Nielsen, Tim; Nielsen, Per H.; Meyer, Rikke L.; Otzen, Daniel E.

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm stiffness 20-fold. Deletion of any one of the individual members of in the fap operon (except the putative chaperone FapA) abolishes this ability to increase biofilm stiffness and correlates with the loss of amyloid. We conclude that amyloid makes major contributions to biofilm mechanical robustness. PMID:26500638

  5. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness.

    PubMed

    Zeng, Guanghong; Vad, Brian S; Dueholm, Morten S; Christiansen, Gunna; Nilsson, Martin; Tolker-Nielsen, Tim; Nielsen, Per H; Meyer, Rikke L; Otzen, Daniel E

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm stiffness 20-fold. Deletion of any one of the individual members of in the fap operon (except the putative chaperone FapA) abolishes this ability to increase biofilm stiffness and correlates with the loss of amyloid. We conclude that amyloid makes major contributions to biofilm mechanical robustness.

  6. Comparative genome analysis of Pseudomonas genomes including Populus-associated isolates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, Se Ran; Wassenaar, Trudy; Nookaew, Intawat

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches including the rhizosphere and endosphere of many plants influencing phylogenetic diversity and heterogeneity. In this study, comparative genome analysis was performed on over one thousand Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides. Based on average amino acid identity, genomic clusters were identified within the Pseudomonas genus, which showed agreements with clades by NCBI and cliques by IMG. The P. fluorescens group was organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. The speciesmore » P. aeruginosa showed clear distinction in their genomic relatedness compared to other Pseudomonas species groups based on the pan and core genome analysis. The 19 isolates of our 21 Populus-associated isolates formed three distinct subgroups within the P. fluorescens major group, supported by pathway profiles analysis, while two isolates were more closely related to P. chlororaphis and P. putida. The specific genes to Populus-associated subgroups were identified where genes specific to subgroup 1 include several sensory systems such as proteins which act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor; specific genes to subgroup 2 contain unique hypothetical genes; and genes specific to subgroup 3 organisms have a different hydrolase activity. IMPORTANCE The comparative genome analyses of the genus Pseudomonas that included Populus-associated isolates resulted in novel insights into high diversity of Pseudomonas. Consistent and robust genomic clusters with phylogenetic homogeneity were identified, which resolved species-clades that are not clearly defined by 16S rRNA gene sequence analysis alone. The genomic clusters may be reflective of distinct ecological niches to which the organisms have adapted, but

  7. Comparative genome analysis of Pseudomonas genomes including Populus-associated isolates

    DOE PAGES

    Jun, Se Ran; Wassenaar, Trudy; Nookaew, Intawat; ...

    2016-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches including the rhizosphere and endosphere of many plants influencing phylogenetic diversity and heterogeneity. In this study, comparative genome analysis was performed on over one thousand Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides. Based on average amino acid identity, genomic clusters were identified within the Pseudomonas genus, which showed agreements with clades by NCBI and cliques by IMG. The P. fluorescens group was organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. The speciesmore » P. aeruginosa showed clear distinction in their genomic relatedness compared to other Pseudomonas species groups based on the pan and core genome analysis. The 19 isolates of our 21 Populus-associated isolates formed three distinct subgroups within the P. fluorescens major group, supported by pathway profiles analysis, while two isolates were more closely related to P. chlororaphis and P. putida. The specific genes to Populus-associated subgroups were identified where genes specific to subgroup 1 include several sensory systems such as proteins which act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor; specific genes to subgroup 2 contain unique hypothetical genes; and genes specific to subgroup 3 organisms have a different hydrolase activity. IMPORTANCE The comparative genome analyses of the genus Pseudomonas that included Populus-associated isolates resulted in novel insights into high diversity of Pseudomonas. Consistent and robust genomic clusters with phylogenetic homogeneity were identified, which resolved species-clades that are not clearly defined by 16S rRNA gene sequence analysis alone. The genomic clusters may be reflective of distinct ecological niches to which the organisms have adapted, but

  8. In vitro susceptibility of Pseudomonas species to carbenicillin and trimethoprim-sulfamethoxazole.

    PubMed Central

    Hill, S F; Haldane, D J; Ngui-Yen, J H; Smith, J A

    1985-01-01

    We compared susceptibility tests of 47 Pseudomonas aeruginosa isolates and 40 Pseudomonas species to carbenicillin and trimethoprim-sulfamethoxazole by the MS-2 and Sceptor systems and agar dilution. The major and very major errors encountered in these tests in the MS-2 and Sceptor systems raise doubts about the accuracy of these methods for testing P. aeruginosa and confirm that they should not be used for testing the susceptibility of Pseudomonas species to the two drugs tested. PMID:3930567

  9. Community acquired Pseudomonas pneumonia in an immune competent host.

    PubMed

    Gharabaghi, Mehrnaz Asadi; Abdollahi, Seyed Mojtaba Mir; Safavi, Enayat; Abtahi, Seyed Hamid

    2012-05-26

    Pseudomonas aeruginosa is an uncommon cause of community-acquired pneumonia in immune-competent hosts. It is commonly seen in patients with structural lung abnormality such as cystic fibrosis or in immune compromised hosts. Here, the authors report a case of community-acquired Pseudomonas pneumonia in a 26-year old healthy man who presented with 8-week history of malaise and cough.

  10. Properties of an R Factor from Pseudomonas aeruginosa

    PubMed Central

    Datta, Naomi; Hedges, R. W.; Shaw, Elizabeth J.; Sykes, R. B.; Richmond, M. H.

    1971-01-01

    An R factor from Pseudomonas aeruginosa, which confers resistance to penicillins, kanamycin, and tetracycline, was studied in Escherichia coli K-12. The R factor could coexist with F-like or I-like plasmids and therefore constituted a novel compatibility group. The R factor was transferable from E. coli to bacterial genera outside the Enterobacteriaceae (Pseudomonas and members of the Rhizobiaceae) to which transfer of F-like and I-like plasmids could not be demonstrated. PMID:4945193

  11. Influence of Storage Conditions on the Growth of Pseudomonas Species in Refrigerated Raw Milk▿ †

    PubMed Central

    De Jonghe, Valerie; Coorevits, An; Van Hoorde, Koenraad; Messens, Winy; Van Landschoot, Anita; De Vos, Paul; Heyndrickx, Marc

    2011-01-01

    The refrigerated storage of raw milk throughout the dairy chain prior to heat treatment creates selective conditions for growth of psychrotolerant bacteria. These bacteria, mainly belonging to the genus Pseudomonas, are capable of producing thermoresistant extracellular proteases and lipases, which can cause spoilage and structural defects in pasteurized and ultra-high-temperature-treated milk (products). To map the influence of refrigerated storage on the growth of these pseudomonads, milk samples were taken after the first milking turn and incubated laboratory scale at temperatures simulating optimal and suboptimal preprocessing storage conditions. The outgrowth of Pseudomonas members was monitored over time by means of cultivation-independent denaturing gradient gel electrophoresis (DGGE). Isolates were identified by a polyphasic approach. These incubations revealed that outgrowth of Pseudomonas members occurred from the beginning of the dairy chain (farm tank) under both optimal and suboptimal storage conditions. An even greater risk for outgrowth, as indicated by a vast increase of about 2 log CFU per ml raw milk, existed downstream in the chain, especially when raw milk was stored under suboptimal conditions. This difference in Pseudomonas outgrowth between optimal and suboptimal storage was already statistically significant within the farm tank. The predominant taxa were identified as Pseudomonas gessardii, Pseudomonas gessardii-like, Pseudomonas fluorescens-like, Pseudomonas lundensis, Pseudomonas fragi, and Pseudomonas fragi-like. Those taxa show an important spoilage potential as determined on elective media for proteolysis and lipolysis. PMID:21115713

  12. Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol.

    PubMed Central

    Radehaus, P M; Schmidt, S K

    1992-01-01

    A pentachlorophenol (PCP)-mineralizing bacterium was isolated from polluted soil and identified as Pseudomonas sp. strain RA2. In batch cultures, Pseudomonas sp. strain RA2 used PCP as its sole source of carbon and energy and was capable of completely degrading this compound as indicated by radiotracer studies, stoichiometric release of chloride, and biomass formation. Pseudomonas sp. strain RA2 was able to mineralize a higher concentration of PCP (160 mg liter-1) than any previously reported PCP-degrading pseudomonad. At a PCP concentration of 200 mg liter-1, cell growth was completely inhibited and PCP was not degraded, although an active population of Pseudomonas sp. RA2 was still present in these cultures after 2 weeks. The inhibitory effect of PCP was partially attributable to its effect on the growth rate of Pseudomonas sp. strain RA2. The highest specific growth rate (mu = 0.09 h-1) was reached at a PCP concentration of 40 mg liter-1 but decreased at higher or lower PCP concentrations, with the lowest mu (0.05 h-1) occurring at 150 mg liter-1. Despite this reduction in growth rate, total biomass production was proportional to PCP concentration at all PCP concentrations degraded by Pseudomonas sp. RA2. In contrast, final cell density was reduced to below expected values at PCP concentrations greater than 100 mg liter-1. These results indicate that, in addition to its effect as an uncoupler of oxidative phosphorylation, PCP may also inhibit cell division in Pseudomonas sp. strain RA2.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1444401

  13. Novel narrow-host-range vectors for direct cloning of foreign DNA in Pseudomonas.

    PubMed

    Boivin, R; Bellemare, G; Dion, P

    1994-01-01

    Narrow-host-range vectors, based on an indigenous replicon and containing a multiple cloning site, have been constructed in a Pseudomonas host capable of growth on unusual substrates. The new cloning vectors yield sufficient amounts of DNA for preparative purposes and belong to an incompatibility group different from that of the incP and incQ broad-host-range vectors. One of these vectors, named pDB47F, was used to clone, directly in Pseudomonas, DNA fragments from Agrobacterium, Pseudomonas, and Rhizobium. A clone containing Agrobacterium and KmR gene sequences was transformed with a higher efficiency than an RSF1010-derived vector (by as much as 1250-fold) in four out of five Pseudomonas strains tested. The considerable efficiency obtained with this system makes possible the direct cloning and phenotypic selection of foreign DNA in Pseudomonas.

  14. Malpighian tubules are important determinants of Pseudomonas transstadial transmission and longtime persistence in Anopheles stephensi.

    PubMed

    Chavshin, Ali Reza; Oshaghi, Mohammad Ali; Vatandoost, Hasan; Yakhchali, Bagher; Zarenejad, Fahimeh; Terenius, Olle

    2015-01-21

    Pseudomonas is a genus of bacteria commonly found in investigations of gut microbes in malaria mosquitoes. Among those mosquitoes is the dominating malaria vector in Asia, Anopheles stephensi, where Pseudomonas is a prevailing bacterium and natural inhabitant of its breeding places. In order to explore the reason for finding Pseudomonas so frequently, an investigation of its localization and transstadial properties was undertaken. A Pseudomonas isolate from An. stephensi was transformed successfully with an endogenous plasmid modified to express green fluorescent protein (GFP). Subsequently, the Pseudomonas-GFP was added to the laboratory larval breeding place of An. stephensi and taken up by the larvae. After 24 hours, the larvae were cleaned and moved to a bath with double-distilled water. Also, female adults were fed sugar solution containing Pseudomonas-GFP. The Pseudomonas-GFP was traced in the alimentary canal of larvae, pupae and adults. Fluorescent microscopy and PCR assays showed that the Pseudomonas bacteria underwent transstadial transmission from larvae to pupae and then to adults. In blood-fed female mosquitoes, the bacteria increased in numbers and remained in the mosquito body for at least three weeks after eclosion. In addition to the midgut, the Malpighian tubules of both larvae and adult mosquitoes were colonized by the bacteria. Also Pseudomonas-GFP that was distributed through sugar solution was able to colonize the Malpighian tubules of adult females. Colonization of the Malpighian tubules by Pseudomonas bacteria seems to be important for the transstadial passage from larvae to adult and presumably for the longevity of the bacteria in the adult mosquito. The existence of an entry point in the larval stage, and the long duration in the female gut, opens up for a possible use of Pseudomonas in mosquito paratransgenesis.

  15. Discovery of Phloeophagus Beetles as a Source of Pseudomonas Strains That Produce Potentially New Bioactive Substances and Description of Pseudomonas bohemica sp. nov.

    PubMed

    Saati-Santamaría, Zaki; López-Mondéjar, Rubén; Jiménez-Gómez, Alejandro; Díez-Méndez, Alexandra; Větrovský, Tomáš; Igual, José M; Velázquez, Encarna; Kolarik, Miroslav; Rivas, Raúl; García-Fraile, Paula

    2018-01-01

    Antimicrobial resistance is a worldwide problem that threatens the effectiveness of treatments for microbial infection. Consequently, it is essential to study unexplored niches that can serve for the isolation of new microbial strains able to produce antimicrobial compounds to develop new drugs. Bark beetles live in phloem of host trees and establish symbioses with microorganisms that provide them with nutrients. In addition, some of their associated bacteria play a role in the beetle protection by producing substances that inhibit antagonists. In this study the capacity of several bacterial strains, isolated from the bark beetles Ips acuminatus, Pityophthorus pityographus Cryphalus piceae , and Pityogenes bidentatus , to produce antimicrobial compounds was analyzed. Several isolates exhibited the capacity to inhibit Gram-positive and Gram-negative bacteria, as well as fungi. The genome sequence analysis of three Pseudomonas isolates predicted the presence of several gene clusters implicated in the production of already described antimicrobials and moreover, the low similarity of some of these clusters with those previously described, suggests that they encode new undescribed substances, which may be useful for developing new antimicrobial agents. Moreover, these bacteria appear to have genetic machinery for producing antitumoral and antiviral substances. Finally, the strain IA19 T showed to represent a new species of the genus Pseudomonas . The 16S rRNA gene sequence analysis showed that its most closely related species include Pseudomonas lutea, Pseudomonas graminis, Pseudomonas abietaniphila and Pseudomonas alkylphenolica, with 98.6, 98.5 98.4, and 98.4% identity, respectively. MLSA of the housekeeping genes gyr B, rpo B, and rpo D confirmed that strain IA19 T clearly separates from its closest related species. Average nucleotide identity between strains IA19 T and P. abietaniphila ATCC 700689 T , P. graminis DSM 11363 T , P. alkylphenolica KL28 T and P. lutea

  16. Pseudomonas biofilm matrix composition and niche biology

    PubMed Central

    Mann, Ethan E.; Wozniak, Daniel J.

    2014-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072

  17. Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.

    PubMed

    Cross, Megan; Biberacher, Sonja; Park, Suk-Youl; Rajan, Siji; Korhonen, Pasi; Gasser, Robin B; Kim, Jeong-Sun; Coster, Mark J; Hofmann, Andreas

    2018-04-24

    The opportunistic bacterium Pseudomonas aeruginosa has been recognized as an important pathogen of clinical relevance and is a leading cause of hospital-acquired infections. The presence of a glycolytic enzyme in Pseudomonas, which is known to be inhibited by trehalose 6-phosphate (T6P) in other organisms, suggests that these bacteria may be vulnerable to the detrimental effects of intracellular T6P accumulation. In the present study, we explored the structural and functional properties of trehalose 6-phosphate phosphatase (TPP) in P. aeruginosa in support of future target-based drug discovery. A survey of genomes revealed the existence of 2 TPP genes with either chromosomal or extrachromosomal location. Both TPPs were produced as recombinant proteins, and characterization of their enzymatic properties confirmed specific, magnesium-dependent catalytic hydrolysis of T6P. The 3-dimensional crystal structure of the chromosomal TPP revealed a protein dimer arising through β-sheet expansion of the individual monomers, which possess the overall fold of halo-acid dehydrogenases.-Cross, M., Biberacher, S., Park, S.-Y., Rajan, S., Korhonen, P., Gasser, R. B., Kim, J.-S., Coster, M. J., Hofmann, A. Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.

  18. Short communication: Pseudomonas azotoformans causes gray discoloration in HTST fluid milk.

    PubMed

    Evanowski, Rachel L; Reichler, Samuel J; Kent, David J; Martin, Nicole H; Boor, Kathryn J; Wiedmann, Martin

    2017-10-01

    Pseudomonas species are well recognized as dairy product spoilage organisms, particularly due to their ability to grow at refrigeration temperatures. Although Pseudomonas-related spoilage usually manifests itself in flavor, odor, and texture defects, which are typically due to production of bacterial enzymes, Pseudomonas is also reported to cause color defects. Because of consumer complaints, a commercial dairy company shipped 4 samples of high temperature, short time (HTST)-pasteurized milk with distinctly gray colors to our laboratory. Bacterial isolates from all 4 samples were identified as Pseudomonas azotoformans. All isolates shared the same partial 16S rDNA sequence and showed black pigmentation on Dichloran Rose Bengal Chloramphenicol agar. Inoculation of one pigment-producing P. azotoformans isolate into HTST-pasteurized fluid milk led to development of gray milk after 14 d of storage at 6°C, but only in containers that had half of the total volume filled with milk (∼500 mL of milk in ∼1,000-mL bottles). We conclusively demonstrate that Pseudomonas can cause a color defect in fluid milk that manifests in gray discoloration, adding to the palette of color defects known to be caused by Pseudomonas. This information is of considerable interest to the dairy industry, because dairy processors and others may not typically associate black or gray colors in fluid milk with the presence of microbial contaminants but rather with product tampering (e.g., addition of ink) or other inadvertent chemical contamination. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Photodynamic antimicrobial therapy to inhibit pseudomonas aeruginosa of corneal isolates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Durkee, Heather A.; Relhan, Nidhi; Arboleda, Alejandro; Halili, Francisco; De Freitas, Carolina; Alawa, Karam; Aguilar, Mariela C.; Amescua, Guillermo; Miller, Darlene; Parel, Jean-Marie

    2016-03-01

    Keratitis associated with Pseudomonas aeruginosa is difficult to manage. Treatment includes antibiotic eye drops, however, some strains of Pseudomonas aeruginosa are resistant. Current research efforts are focused on finding alternative and adjunct therapies to treat multi-drug resistant bacteria. One promising alternate technique is photodynamic therapy (PDT). The purpose of this study was to evaluate the effect of riboflavin- and rose bengal-mediated PDT on Pseudomonas aeruginosa keratitis isolates in vitro. Two isolates (S+U- and S-U+) of Pseudomonas aeruginosa were derived from keratitis patients and exposed to five experimental groups: (1) Control (dark, UV-A irradiation, 525nm irradiation); (2) 0.1% riboflavin (dark, UV-A irradiation); and (3) 0.1% rose bengal, (4) 0.05% rose bengal and (5) 0.01% rose bengal (dark, 525nm irradiation). Three days after treatment, in dark conditions of all concentration of riboflavin and rose bengal showed no inhibition in both S+U- and S-U+ strains of Pseudomonas aeruginosa. In 0.1% and 0.05% rose bengal irradiated groups, for both S+U- and S-U+ strains, there was complete inhibition of bacterial growth in the central 50mm zone corresponding to the diameter of the green light source. These in vitro results suggest that rose bengal photodynamic therapy may be an effective adjunct treatment for Pseudomonas aeruginosa keratitis.

  20. Efficacy of lactoferricin B in controlling ready-to-eat vegetable spoilage caused by Pseudomonas spp.

    PubMed

    Federico, Baruzzi; Pinto, Loris; Quintieri, Laura; Carito, Antonia; Calabrese, Nicola; Caputo, Leonardo

    2015-12-23

    The microbial content of plant tissues has been reported to cause the spoilage of ca. 30% of chlorine-disinfected fresh vegetables during cold storage. The aim of this work was to evaluate the efficacy of antimicrobial peptides in controlling microbial vegetable spoilage under cold storage conditions. A total of 48 bacterial isolates were collected from ready-to-eat (RTE) vegetables and identified as belonging to Acinetobacter calcoaceticus, Aeromonas media, Pseudomonas cichorii, Pseudomonas fluorescens, Pseudomonas jessenii, Pseudomonas koreensis, Pseudomonas putida, Pseudomonas simiae and Pseudomonas viridiflava species. Reddish or brownish pigmentation was found when Pseudomonas strains were inoculated in wounds on leaves of Iceberg and Trocadero lettuce and escarole chicory throughout cold storage. Bovine lactoferrin (BLF) and its hydrolysates (LFHs) produced by pepsin, papain and rennin, were assayed in vitro against four Pseudomonas spp. strains selected for their heavy spoiling ability. As the pepsin-LFH showed the strongest antimicrobial effect, subsequent experiments were carried out using the peptide lactoferricin B (LfcinB), well known to be responsible for its antimicrobial activity. LfcinB significantly reduced (P ≤ 0.05) spoilage by a mean of 36% caused by three out of four inoculated spoiler pseudomonads on RTE lettuce leaves after six days of cold storage. The reduction in the extent of spoilage was unrelated to viable cell density in the inoculated wounds. This is the first paper providing direct evidence regarding the application of an antimicrobial peptide to control microbial spoilage affecting RTE leafy vegetables during cold storage.

  1. [The effect of biyuanshu oral liquid on the formation of Pseudomonas aeruginosa biofilms in vitro].

    PubMed

    Liu, Xiang; Chen, Haihong; Wang, Shengqing

    2012-07-01

    To observe the effect of biyuanshu oral liquid on the formation of pseudomonas aeruginosa biofilms in vitro. Pseudomonas aeruginosa biofilm was established by plate culture and detected by Scanning electron microscopy and AgNO3 staining. After treated with different dosages of biyuanshu oral liquid and erythromycin, the pseudomonas aeruginosa biofilms were observed by AgNO3 staining and the number of viable bacteria were measured by serial dilution. The pseudomonas aeruginosa biofilms could be detected by SEM at the seventh culture day and it was consistent with the detection of AgNO3 staining. The biyuanshu oral liquid and erythromycin have the effect on inhibiting the formation of pseudomonas aeruginosa biofilms. But with the already formed pseudomonas aeruginosa biofilms the inhibition was not significant. The serial dilution method showed that the viable counts of bacteria of biyuanshu oral liquid and erythromycin treated groups were significantly lower than those untreated groups (P < 0.05). The biyuanshu oral liquid and erythromycin can inhibit the formation of pseudomonas aeruginosa biofilms in vitro.

  2. Metabolism of hexadecyltrimethylammonium chloride in Pseudomonas strain B1.

    PubMed Central

    van Ginkel, C G; van Dijk, J B; Kroon, A G

    1992-01-01

    A bacterium (strain B1) utilizing hexadecyltrimethylammonium chloride as a carbon and energy source was isolated from activated sludge and tentatively identified as a Pseudomonas sp. This bacterium only grew on alkyltrimethylammonium salts (C12 to C22) and possible intermediates of hexadecyltrimethylammonium chloride breakdown such as hexadecanoate and acetate. Pseudomonas strain B1 did not grow on amines. Simultaneous adaptation studies suggested that the bacterium oxidized only the alkyl chain of hexadecyltrimethylammonium chloride. This was confirmed by the stoichiometric formation of trimethylamine from hexadecyltrimethylammonium chloride. The initial hexadecyltrimethylammonium chloride oxygenase activity, measured by its ability to form trimethylamine, was NAD(P)H and O2 dependent. Finally, assays of aldehyde dehydrogenase, hexadecanoyl-coenzyme A dehydrogenase, and isocitrate lyase in cell extracts revealed the potential of Pseudomonas strain B1 to metabolize the alkyl chain via beta-oxidation. PMID:1444422

  3. Comparative In Vitro Efficacy of Doripenem and Imipenem Against Multi-Drug Resistant Pseudomonas aeruginosa.

    PubMed

    Wali, Nadia; Mirza, Irfan Ali

    2016-04-01

    To compare the in vitro efficacy of doripenem and imipenem against multi-drug resistant (MDR) Pseudomonas aeruginosa from various clinical specimens. Descriptive cross-sectional study. Department of Microbiology, Armed Forces Institute of Pathology, Rawalpindi, from November 2012 to November 2013. MDR Pseudomonas aeruginosa isolates from various clinical samples were included in the study. Susceptibility of Pseudomonas aeruginosa against doripenem and imipenem was performed by E-test strip and agar dilution methods. The results were interpreted as recommended by Clinical Laboratory Standard Institute (CLSI) guidelines. The maximum number of Pseudomonas aeruginosa were isolated from pure pus and pus swabs. In vitro efficacy of doripenem was found to be more effective as compared to imipenem against MDR Pseudomonas aeruginosa with both E-test strip and agar dilution methods. Overall, p-values of 0.014 and 0.037 were observed when susceptibility patterns of doripenem and imipenem were evaluated with E-test strip and agar dilution methods. In vitro efficacy of doripenem was found to be better against MDR Pseudomonas aeruginosaas compared to imipenem when tested by both E-test and agar dilution methods.

  4. Combined inoculation of Pseudomonas fluorescens and Trichoderma harzianum for enhancing plant growth of vanilla (Vanilla planifolia).

    PubMed

    Sandheep, A R; Asok, A K; Jisha, M S

    2013-06-15

    This study was conducted to evaluate the plant growth promoting efficiency of combined inoculation of rhizobacteria on Vanilla plants. Based on the in vitro performance of indigenous Trichoderma spp. and Pseudomonas spp., four effective antagonists were selected and screened under greenhouse experiment for their growth enhancement potential. The maximum percentage of growth enhancement were observed in the combination of Trichoderma harzianum with Pseudomonas fluorescens treatment followed by Pseudomonas fluorescens, Trichoderma harzianum, Pseudomonas putida and Trichoderma virens, respectively in decreasing order. Combined inoculation of Trichoderma harzianum and Pseudomonas fluorescens registered the maximum length of vine (82.88 cm), highest number of leaves (26.67/plant), recorded the highest fresh weight of shoots (61.54 g plant(-1)), fresh weight of roots (4.46 g plant(-1)) and dry weight of shoot (4.56 g plant(-1)) where as the highest dry weight of roots (2.0806 g plant(-1)) were achieved with treatments of Pseudomonas fluorescens. Among the inoculated strains, combined inoculation of Trichoderma harzianum and Pseudomonas fluorescens recorded the maximum nitrogen uptake (61.28 mg plant(-1)) followed by the combined inoculation of Trichoderma harzianum (std) and Pseudomonas fluorescens (std) (55.03 mg plant(-1)) and the highest phosphorus uptake (38.80 mg plant(-1)) was recorded in dual inoculation of Trichoderma harzianum and Pseudomonas fluorescens.

  5. [Risk factors for Pseudomonas aeruginosa infections, resistant to carbapenem].

    PubMed

    Ghibu, Laura; Miftode, Egidia; Teodor, Andra; Bejan, Codrina; Dorobăţ, Carmen Mihaela

    2010-01-01

    Since their introduction in clinical practice,carbapenems have been among the most powerful antibiotics for treating serious infections cased by Gram-negative nosocomial pathogens, including Pseudomonas aeruginosa. The emergence of betalactamases with carbapenem-hydrolyzing activity is of major clinical concern. Pseudomonas aeruginosa is a leading cause of nosocomial infection. Risk factors for colonization with carbapenems-resistant Pseudomonas in hospital are: history of P. aeruginosa infection or colonization within the previous year, (length of hospital stay, being bedridden or in the ICU, mechanical ventilation, malignant disease, and history of chronic obstructive pulmonary disease have all been identified as independent risk factors for MDR P. aeruginosa infection. Long-term-care facilities are also reservoirs of resistant bacteria. Risk factors for colonization of LTCF residents with resistant bacteria included age > 86 years, antibiotic treatment in the previous 3 months, indwelling devices, chronic obstructive pulmonary disease, physical disability, and the particular LTCF unit.

  6. Catabolism of Naphthalenesulfonic Acids by Pseudomonas sp. A3 and Pseudomonas sp. C22

    PubMed Central

    Brilon, C.; Beckmann, W.; Knackmuss, H.-J.

    1981-01-01

    Naphthalene and two naphthalenesulfonic acids were degraded by Pseudomonas sp. A3 and Pseudomonas sp. C22 by the same enzymes. Gentisate is a major metabolite. Catabolic activities for naphthalene, 1-naphthalenesulfonic acid, and 2-naphthalenesulfonic acid are induced by growth with naphthalene, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, methylnaphthalene, or salicylate. Gentisate is also an inducer in strain A3. Inhibition kinetics show that naphthalene and substituted naphthalenes are hydroxylated by the same naphthalene dioxygenase. Substrates with nondissociable substituents such as CH3, OCH3, Cl, or NO2 are hydroxylated in the 7,8-position, and 4-substituted salicylates are accumulated. If CO2H, CH2CO2H, or SO3H are substituents, hydroxylation occurs with high regioselectivity in the 1,2-position. Thus, 1,2-dihydroxy-1,2-dihydronaphthalene-2-carboxylic acids are formed quantitatively from the corresponding naphthalenecarboxylic acids. Utilization of naphthalenesulfonic acids proceeds by the same regioselective 1,2-dioxygenation which labilizes the C—SO3− bond and eliminates sulfite. PMID:16345814

  7. Biosurfactant production by Pseudomonas strains isolated from floral nectar.

    PubMed

    Ben Belgacem, Z; Bijttebier, S; Verreth, C; Voorspoels, S; Van de Voorde, I; Aerts, G; Willems, K A; Jacquemyn, H; Ruyters, S; Lievens, B

    2015-06-01

    To screen and identify biosurfactant-producing Pseudomonas strains isolated from floral nectar; to characterize the produced biosurfactants; and to investigate the effect of different carbon sources on biosurfactant production. Four of eight nectar Pseudomonas isolates were found to produce biosurfactants. Phylogenetic analysis based on three housekeeping genes (16S rRNA gene, rpoB and gyrB) classified the isolates into two groups, including one group closely related to Pseudomonas fluorescens and another group closely related to Pseudomonas fragi and Pseudomonas jessenii. Although our nectar pseudomonads were able to grow on a variety of water-soluble and water-immiscible carbon sources, surface active agents were only produced when using vegetable oil as sole carbon source, including olive oil, sunflower oil or waste frying sunflower oil. Structural characterization based on thin layer chromatography (TLC) and ultra high performance liquid chromatography-accurate mass mass spectrometry (UHPLC-amMS) revealed that biosurfactant activity was most probably due to the production of fatty acids (C16:0; C18:0; C18:1 and C18:2), and mono- and diglycerides thereof. Four biosurfactant-producing nectar pseudomonads were identified. The active compounds were identified as fatty acids (C16:0; C18:0; C18:1 and C18:2), and mono- and diglycerides thereof, produced by hydrolysis of triglycerides of the feedstock. Studies on biosurfactant-producing micro-organisms have mainly focused on microbes isolated from soils and aquatic environments. Here, for the first time, nectar environments were screened as a novel source for biosurfactant producers. As nectars represent harsh environments with high osmotic pressure and varying pH levels, further screening of nectar habitats for biosurfactant-producing microbes may lead to the discovery of novel biosurfactants with broad tolerance towards different environmental conditions. © 2015 The Society for Applied Microbiology.

  8. Pseudomonas japonica sp. nov., a novel species that assimilates straight chain alkylphenols.

    PubMed

    Pungrasmi, Wiboonluk; Lee, Haeng-Seog; Yokota, Akira; Ohta, Akinori

    2008-02-01

    A bacterial strain, WL(T), which was isolated from an activated sludge, was able to degrade alkylphenols. 16S rDNA sequence analysis indicated that strain WL(T) belonged to the genus Pseudomonas (sensu stricto) and formed a monophyletic clade with the type strain of Pseudomonas graminis and other members in the Pseudomonas putida subcluster with sequence similarity values higher than 97%. Genomic relatedness based on DNA-DNA hybridization of strain WL(T) to these strains is 2-41%. Strain WL(T) contained ubiquinone-9 as the main respiratory quinone, and the G+C content of DNA was 66 mol%. The organism contained hexadecanoic acid (16:0), hexadecenoic acid (16:1) and octadecenoic acid (18:1) as major cellular fatty acids. The hydroxy fatty acids detected were 3-hydroxydecanoic acid (3-OH 10:0), 3-hydroxydodecanoic acid (3-OH 12:0) and 2-hydroxydodecanoic acid (2-OH 12:0). These results, as well as physiological and biochemical characteristics clearly indicate that the strain WL(T) represents a new Pseudomonas species, for which the name Pseudomonas japonica is proposed. The type strain is strain WL(T) (=IAM 15071T=TISTR 1526T).

  9. 2-Heptyl-4-Quinolone, a Precursor of the Pseudomonas Quinolone Signal Molecule, Modulates Swarming Motility in Pseudomonas aeruginosa▿

    PubMed Central

    Ha, Dae-Gon; Merritt, Judith H.; Hampton, Thomas H.; Hodgkinson, James T.; Janecek, Matej; Spring, David R.; Welch, Martin; O'Toole, George A.

    2011-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen capable of group behaviors, including biofilm formation and swarming motility. These group behaviors are regulated by both the intracellular signaling molecule c-di-GMP and acylhomoserine lactone quorum-sensing systems. Here, we show that the Pseudomonas quinolone signal (PQS) system also contributes to the regulation of swarming motility. Specifically, our data indicate that 2-heptyl-4-quinolone (HHQ), a precursor of PQS, likely induces the production of the phenazine-1-carboxylic acid (PCA), which in turn acts via an as-yet-unknown downstream mechanism to repress swarming motility. We show that this HHQ- and PCA-dependent swarming repression is apparently independent of changes in global levels of c-di-GMP, suggesting complex regulation of this group behavior. PMID:21965567

  10. Vaccines for preventing infection with Pseudomonas aeruginosa in cystic fibrosis.

    PubMed

    Johansen, Helle Krogh; Gøtzsche, Peter C

    2015-08-23

    Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed. This is an update of a previously published review. To assess the effectiveness of vaccination against Pseudomonas aeruginosa in cystic fibrosis. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register using the terms vaccines AND pseudomonas (last search 30 March 2015). We previously searched PubMed using the terms vaccin* AND cystic fibrosis (last search 30 May 2013). Randomised trials (published or unpublished) comparing Pseudomonas aeruginosa vaccines (oral, parenteral or intranasal) with control vaccines or no intervention in cystic fibrosis. The authors independently selected trials, assessed them and extracted data. Six trials were identified. Two trials were excluded since they were not randomised and one old, small trial because it was not possible to assess whether is was randomised. The three included trials comprised 483, 476 and 37 patients, respectively. No data have been published from one of the large trials, but the company stated in a press release that the trial failed to confirm the results from an earlier study and that further clinical development was suspended. In the other large trial, relative risk for chronic infection was 0.91 (95% confidence interval 0.55 to 1.49), and in the small trial, the risk was also close to one. In the large trial, one patient was reported to have died in the observation period. In that trial, 227 adverse events (4 severe) were registered in the vaccine group and 91 (1 severe) in the control group. In this large trial of a vaccine developed against flagella antigens, antibody titres against the epitopes contained in the vaccine were higher in the vaccine group compared to the placebo group (P < 0.0001). Vaccines

  11. 40 CFR 180.1145 - Pseudomonas syringae; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FOOD Exemptions From Tolerances § 180.1145 Pseudomonas syringae; exemption from the requirement of a tolerance. Pseudomonas syringae is exempted from the requirement of a tolerance on all raw agricultural...

  12. 40 CFR 180.1145 - Pseudomonas syringae; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FOOD Exemptions From Tolerances § 180.1145 Pseudomonas syringae; exemption from the requirement of a tolerance. Pseudomonas syringae is exempted from the requirement of a tolerance on all raw agricultural...

  13. Isolation and evaluation of potent Pseudomonas species for bioremediation of phorate in amended soil.

    PubMed

    Jariyal, Monu; Gupta, V K; Jindal, Vikas; Mandal, Kousik

    2015-12-01

    Use of phorate as a broad spectrum pesticide in agricultural crops is finding disfavor due to persistence of both the principal compound as well as its toxic residues in soil. Three phorate utilizing bacterial species (Pseudomonas sp. strain Imbl 4.3, Pseudomonas sp. strain Imbl 5.1, Pseudomonas sp. strain Imbl 5.2) were isolated from field soils. Comparative phorate degradation analysis of these species in liquid cultures identified Pseudomonas sp. strain Imbl 5.1 to cause complete metabolization of phorate during seven days as compared to the other two species in 13 days. In soils amended with phorate at different levels (100, 200, 300 mg kg(-1) soil), Pseudomonas sp. strain Imbl 5.1 resulted in active metabolization of phorate by between 94.66% and 95.62% establishing the same to be a potent bacterium for significantly relieving soil from phorate residues. Metabolization of phorate to these phorate residues did not follow the first order kinetics. This study proves that Pseudomonas sp. strain Imbl 5.1 has huge potential for active bioremediation of phorate both in liquid cultures and agricultural soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Analysis of the core genome and pangenome of Pseudomonas putida.

    PubMed

    Udaondo, Zulema; Molina, Lázaro; Segura, Ana; Duque, Estrella; Ramos, Juan L

    2016-10-01

    Pseudomonas putida are strict aerobes that proliferate in a range of temperate niches and are of interest for environmental applications due to their capacity to degrade pollutants and ability to promote plant growth. Furthermore solvent-tolerant strains are useful for biosynthesis of added-value chemicals. We present a comprehensive comparative analysis of nine strains and the first characterization of the Pseudomonas putida pangenome. The core genome of P. putida comprises approximately 3386 genes. The most abundant genes within the core genome are those that encode nutrient transporters. Other conserved genes include those for central carbon metabolism through the Entner-Doudoroff pathway, the pentose phosphate cycle, arginine and proline metabolism, and pathways for degradation of aromatic chemicals. Genes that encode transporters, enzymes and regulators for amino acid metabolism (synthesis and degradation) are all part of the core genome, as well as various electron transporters, which enable aerobic metabolism under different oxygen regimes. Within the core genome are 30 genes for flagella biosynthesis and 12 key genes for biofilm formation. Pseudomonas putida strains share 85% of the coding regions with Pseudomonas aeruginosa; however, in P. putida, virulence factors such as exotoxins and type III secretion systems are absent. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Occurrence of multi-antibiotic resistant Pseudomonas spp. in drinking water produced from karstic hydrosystems.

    PubMed

    Flores Ribeiro, Angela; Bodilis, Josselin; Alonso, Lise; Buquet, Sylvaine; Feuilloley, Marc; Dupont, Jean-Paul; Pawlak, Barbara

    2014-08-15

    Aquatic environments could play a role in the spread of antibiotic resistance genes by enabling antibiotic-resistant bacteria transferred through wastewater inputs to connect with autochthonous bacteria. Consequently, drinking water could be a potential pathway to humans and animals for antibiotic resistance genes. The aim of this study was to investigate occurrences of Escherichia coli and Pseudomonas spp. in drinking water produced from a karst, a vulnerable aquifer with frequent increases in water turbidity after rainfall events and run-offs. Water samples were collected throughout the system from the karstic springs to the drinking water tap during three non-turbid periods and two turbid events. E. coli densities in the springs were 10- to 1000-fold higher during the turbid events than during the non-turbid periods, indicating that, with increased turbidity, surface water had entered the karstic system and contaminated the spring water. However, no E. coli were isolated in the drinking water. In contrast, Pseudomonas spp. were isolated from the drinking water only during turbid events, while the densities in the springs were from 10- to 100-fold higher than in the non-turbid periods. All the 580 Pseudomonas spp. isolates obtained from the sampling periods were resistant (to between 1 and 10 antibiotics), with similar resistance patterns. Among all the Pseudomonas isolated throughout the drinking water production system, between 32% and 86% carried the major resistance pattern: ticarcillin, ticarcillin-clavulanic acid, cefsulodin, and/or aztreonam, and/or sulfamethoxazol-trimethoprim, and/or fosfomycin. Finally, 8 Pseudomonas spp. isolates, related to the Pseudomonas putida and Pseudomonas fluorescens species, were isolated from the drinking water. Thus, Pseudomonas could be involved in the dissemination of antibiotic resistance via drinking water during critical periods. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Metabolism of Tryptophans by Pseudomonas aureofaciens

    PubMed Central

    Elander, Richard P.; Mabe, James A.; Hamill, Robert H.; Gorman, Marvin

    1968-01-01

    Twenty-nine strains of Pseudomonas, classified as P. fluorescens biotype D or E or as P. multivorans, were examined for the production of pyrrolnitrin, an antifungal agent synthesized in P. aureofaciens. Eight strains were shown to produce pyrrolnitrin in shake-flask fermentation. Four cultures were from the multivorans taxon, and the remaining four were members of the fluorescens group. The antifungal agent produced in these strains was isolated and shown to be pyrrolnitrin by comparison with an authentic sample. The strains differed markedly with respect to the amount of pyrrolnitrin produced and in their utilization of exogenous tryptophan. Secondary metabolites, not related to pyrrolnitrin, were also examined and compared with those synthesized in P. aureofaciens. Marked differences were noted in both phenazine pigments and phenolic metabolites. The results of the study suggest that the production of pyrrolnitrin may be widespread in selected taxonomic groups of Pseudomonas. Images Fig. 1 PMID:4968963

  17. Bioleaching of copper oxide ore by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Shabani, M. A.; Irannajad, M.; Azadmehr, A. R.; Meshkini, M.

    2013-12-01

    Bioleaching is an environmentally friendly method for extraction of metal from ores. In this study, bioleaching of copper oxide ore by Pseudomonas aeruginosa was investigated. Pseudomonas aeruginosa is a heterotrophic bacterium that can produce various organic acids in an appropriate culture medium, and these acids can operate as leaching agents. The parameters, such as particle size, glucose percentage in the culture medium, bioleaching time, and solid/liquid ratio were optimized. Optimum bioleaching conditions were found as follows: particle size of 150-177 μm, glucose percentage of 6%, bioleaching time of 8 d, and solid/liquid ratio of 1:80. Under these conditions, 53% of copper was extracted.

  18. Expansion of Antibacterial Spectrum of Muraymycins toward Pseudomonas aeruginosa.

    PubMed

    Takeoka, Yusuke; Tanino, Tetsuya; Sekiguchi, Mitsuaki; Yonezawa, Shuji; Sakagami, Masahiro; Takahashi, Fumiyo; Togame, Hiroko; Tanaka, Yoshikazu; Takemoto, Hiroshi; Ichikawa, Satoshi; Matsuda, Akira

    2014-05-08

    It is urgent to develop novel anti-Pseudomonas agents that should also be active against multidrug resistant P. aeruginosa. Expanding the antibacterial spectrum of muraymycins toward P. aeruginosa was investigated by the systematic structure-activity relationship study. It was revealed that two functional groups, a lipophilic side chain and a guanidino group, at the accessory moiety of muraymycins were important for the anti-Pseudomonas activity, and analogue 29 exhibited antibacterial activity against a range of P. aeruginosa strains with the minimum inhibitory concentration values of 4-8 μg/mL.

  19. Expansion of Antibacterial Spectrum of Muraymycins toward Pseudomonas aeruginosa

    PubMed Central

    2014-01-01

    It is urgent to develop novel anti-Pseudomonas agents that should also be active against multidrug resistant P. aeruginosa. Expanding the antibacterial spectrum of muraymycins toward P. aeruginosa was investigated by the systematic structure–activity relationship study. It was revealed that two functional groups, a lipophilic side chain and a guanidino group, at the accessory moiety of muraymycins were important for the anti-Pseudomonas activity, and analogue 29 exhibited antibacterial activity against a range of P. aeruginosa strains with the minimum inhibitory concentration values of 4–8 μg/mL. PMID:24900879

  20. A case of orbital apex syndrome due to Pseudomonas aeruginosa infection

    PubMed Central

    Kusunoki, Takeshi; Kase, Kaori; Ikeda, Katsuhisa

    2011-01-01

    Orbital apex syndrome is commonly been thought to have a poor prognosis. Many cases of this syndrome have been reported to be caused by paranasal sinus mycosis. We encountered a very rare case (60-year-old woman) of sinusitis with orbital apex syndrome due to Pseudomonas aeruginosa infection. She had received insulin and dialysis for diabtes and diabetic nephropathy, moreover anticoagulants after heart by-pass surgery. She underwent endoscopic sinus operation and was treated with antibiotics, but her loss of left vision did not improve. Recently, sinusitis cases due to Pseudomonas aeruginosa were reported to be a increasing. Therefore, we should consider the possibility of Pseudomonas aeruginosa as well as mycosis as infections of the sinus, especially inpatients who are immunocompromised body. PMID:24765368

  1. A case of orbital apex syndrome due to Pseudomonas aeruginosa infection.

    PubMed

    Kusunoki, Takeshi; Kase, Kaori; Ikeda, Katsuhisa

    2011-09-28

    Orbital apex syndrome is commonly been thought to have a poor prognosis. Many cases of this syndrome have been reported to be caused by paranasal sinus mycosis. We encountered a very rare case (60-year-old woman) of sinusitis with orbital apex syndrome due to Pseudomonas aeruginosa infection. She had received insulin and dialysis for diabtes and diabetic nephropathy, moreover anticoagulants after heart by-pass surgery. She underwent endoscopic sinus operation and was treated with antibiotics, but her loss of left vision did not improve. Recently, sinusitis cases due to Pseudomonas aeruginosa were reported to be a increasing. Therefore, we should consider the possibility of Pseudomonas aeruginosa as well as mycosis as infections of the sinus, especially inpatients who are immunocompromised body.

  2. Pseudomonas diversity in crude-oil-contaminated intertidal sand samples obtained after the Prestige oil spill.

    PubMed

    Mulet, Magdalena; David, Zoyla; Nogales, Balbina; Bosch, Rafael; Lalucat, Jorge; García-Valdés, Elena

    2011-02-01

    The Galicia seashore, in northwestern Spain, was one of the shorelines affected by the Prestige oil spill in November 2002. The diversity of autochthonous Pseudomonas populations present at two beaches (Carnota municipality) was analyzed using culture-independent and culture-dependent methods. The first analysis involved the screening of an rpoD gene library. The second involved the isolation of 94 Pseudomonas strains that were able to grow on selective media by direct plating or after serial enrichments on several carbon sources: biphenyl, gentisate, hexadecane, methylnaphthalene, naphthalene, phenanthrene, salicylate, xylene, and succinate. Eight denitrifying Pseudomonas strains were also isolated by their ability to grow anaerobically with nitrate. The calculated coverage index for Pseudomonas species was 89% when clones and isolates were considered together, and there were 29 phylospecies detected. The most abundant were members of the species P. stutzeri, P. putida, P. anguilliseptica, and P. oleovorans. Thirty-one isolates could not be identified at the species level and were considered representatives of 16 putative novel Pseudomonas species. One isolate was considered representative of a novel P. stutzeri genomovar. Concordant results were obtained when the diversities of the cloned DNA library and the cultured strains were compared. The clone library obtained by the rpoD PCR method was a useful tool for evaluating Pseudomonas communities and also for microdiversity studies of Pseudomonas populations.

  3. [In vitro indirect pathogenesis of Pseudomonas aeruginosa against anti MRSA chemotherapy].

    PubMed

    Satoh, Naotake; Kondo, Shigemi; Yamada, Toshihiko; Saionji, Katsu; Oguri, Toyoko; Igari, Jun

    2004-09-01

    In the patient with a chronic respiratory disease, both Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA) are frequently detected from expectoration. Vancomycin (VCM) and arbekacin (ABK) are both recommended for the chemotherapy of MRSA infection in Japan. Minocycline (MINO) is also selected for the treatment of MRSA infection. While rifampicin (RFP) and a trimetoprim-sulfamethoxazole combination (ST) are also recommended in Europe and USA but not recommended in Japan for the chemotherapy of MRSA infection. It is pointed out that coexistence bacteria affect chemotherapy as an indirect pathogen. Not only an antibacterial action but the immunological action or the metabolic effect against chronic P. aeruginosa infection such as DPB is known by the administration of 14-membered ring macrolides including erythromycin (EM). We considered the influence of P. aeruginosa isolated with MRSA on the activity against anti-MRSA agents by the disk diffusion method with bilayer flat agar in vitro. Moreover, we also examined the influence of EM against the activity of the anti-MRSA agents when P. aeruginosa was coexistence. One strain of MRSA as an indicator strain and 100 strains of P. aeruginosa as test strains, which were obtained from clinical materials, were used for the following experiment. P. aeruginosa was streaked on to the Mueller-Hinton agar culture medium (MHA), and they incubated at 35 degrees C for 24 hours. Then, the blood agar plate was piled up, MRSA was streaked on the blood agar surface, the susceptibility test disks (VCM, ABK, MINO, RFP, ST) were put on it, and incubated at 35 degrees C for a further 24 hours. The diameter of the zone of inhibition around the susceptibility disks against MRSA was measured and compared with P. aeruginosa free experiments. The anti-MRSA activity of MINO, ST and ABK was reduced by coexistence of P. aeruginosa. In RFP and VCM, the anti-MRSA activity was reinforced by coexistence of P. aeruginosa

  4. "Hot Tub Rash" and "Swimmer's Ear" (Pseudomonas)

    MedlinePlus

    ... This germ is commonly found in water and soil. Hot tub rash can affect people of all ... in locations that have been closed because of pollution. Pseudomonas can multiply quickly when water disinfectant levels ...

  5. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis.

    PubMed

    Langton Hewer, Simon C; Smyth, Alan R

    2017-04-25

    Respiratory tract infection with Pseudomonas aeruginosa occurs in most people with cystic fibrosis. Once chronic infection is established, Pseudomonas aeruginosa is virtually impossible to eradicate and is associated with increased mortality and morbidity. Early infection may be easier to eradicate.This is an update of a Cochrane review first published in 2003, and previously updated in 2006, 2009 and 2014. To determine whether antibiotic treatment of early Pseudomonas aeruginosa infection in children and adults with cystic fibrosis eradicates the organism, delays the onset of chronic infection, and results in clinical improvement. To evaluate whether there is evidence that a particular antibiotic strategy is superior to or more cost-effective than other strategies and to compare the adverse effects of different antibiotic strategies (including respiratory infection with other micro-organisms). We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Most recent search: 10 October 2016. We included randomised controlled trials of people with cystic fibrosis, in whom Pseudomonas aeruginosa had recently been isolated from respiratory secretions. We compared combinations of inhaled, oral or intravenous antibiotics with placebo, usual treatment or other combinations of inhaled, oral or intravenous antibiotics. We excluded non-randomised trials, cross-over trials, and those utilising historical controls. Both authors independently selected trials, assessed risk of bias and extracted data. The search identified 60 trials; seven trials (744 participants) with a duration between 28 days and 27 months were eligible for inclusion. Three of the trials are over 10 years old and their results may be less applicable today given the changes in standard treatment. Some of the trials had low

  6. [Multiresistant Pseudomonas spp. in vitro susceptibility to a combination of two antibiotics].

    PubMed

    Pliego-Castañeda, Q F B Amanda; Yánez-Viguri, Jorge Antonio; López-Valle, Tiburcio

    2005-01-01

    In vitro antibiotic combination testing would guide therapy selection in patients severely affected by multi-drug resistant Pseudomonas. In vitro, a two-antibiotic combination susceptible against multi-drug resistant Pseudomonas isolated at the Laboratorio Clínico of the Hospital de Oncología, Centro Médico Nacional Siglo XXI in Mexico City were analyzed to determine which antibiotic combination showed the best bactericidal activity. During 10 months, 30 multi-drug resistant Pseudomonas strains were tested. An automated method was used, including a diluting solution with a well-known concentration of a second antibiotic. Quality controls recommended by the NCCLS were used. Pseudomonas aeruginosa ATCC 27853; Escherichia coli ATCC 25922; and Escherichia coli ATCC 35218. Combinations were betalactamics-aminoglycosides; carbapenemis-amikacin; fluoroquinolones-cefepime; and ciprofloxacin-ampicillin. Ampicillin-ciprofloxacin combination was bactericidal against 100% of the isolates. Cefazolin, cefixime and ticarcillin with amikacin: <50%; aztreonam, cefoxilin, cefuroxime, cefotaxime, ceftazidime and piperacillin with amikacin: 50-60%; cefepime with gentamicin: 76%; cefepime with amikacin: 86%; imipenem and meropenem with amikacin: 70% and 76%; cefepime with ciprofloxacin: 83%; cefepime with levofloxacin: 73%. In vitro antibiotic combination susceptibilities against multi-drug resistant bacteria would be the only way to guide clinicians to select the best therapy in severe infections. We found that the ampicillin-ciprofloxacin combination showed the best in vitro effect against multi-drug resistant Pseudomonas.

  7. Candida albicans and Pseudomonas aeruginosa adhesion on soft contact lenses.

    PubMed

    Onurdağ, Fatma Kaynak; Ozkan, Semiha; Ozgen, Selda; Olmuş, Hülya; Abbasoğlu, Ufuk

    2011-04-01

    In this study it was aimed to determine the adherence of Pseudomonas and Candida to contact lens surfaces, and to determine the difference in adherence between five contact lens types. Biofilm-negative control strains were also used to emphasize the difference between biofilm-positive and biofilm-negative strains in adherence. Five different soft contact lenses were used to investigate the adherence of Pseudomonas aeruginosa and Candida albicans strains. P. aeruginosa ATCC 27853, P. aeruginosa ATCC 10145, C.albicans ATCC 10231 standard strains and C. albicans clinical isolate were included in the study. Slime formation was investigated by two methods; modified Christensen macrotube method, and a modified microtiter plate test. P. aeruginosa and C. albicans slime formation on soft contact lenses was studied in adherence and separation phases. Pseudomonas and Candida suspensions were serially diluted and inoculated to blood agar and sabouraud dextrose agar surfaces respectively. After overnight incubation, the colonies were counted. Sterile unworn contact lenses were used as negative controls, and bacterial and fungal culture suspensions were used as positive controls. The experiments were conducted in three parallel series. The number of adherent Pseudomonas was as follows from high to low in polymacon, etafilcon A, hilafilcon, ocufilcon and lotrafilcon contact lenses respectively. However, the number of adherent yeast were determined higher in lotrafilcon and ocufilcon contact lenses, followed by hilafilcon, etafilcon A and polymacon contact lenses. Biofilm-negative Pseudomonas ATCC standard strain and Candida clinical isolate were used to confirm that the number of adherent cells were lower than the biofilm-positive ones. This study demonstrates that in addition to the contact lens properties, the microorganisms themselves and their interactions with the lens material also play an important role in adherence.

  8. Phenotypic and genotypic characterization of phenanthrene-degrading fluorescent Pseudomonas biovars.

    PubMed Central

    Johnsen, K; Andersen, S; Jacobsen, C S

    1996-01-01

    A total of 41 phenanthrene degraders were isolated from a former coal gasification site by using Pseudomonas-selective Gould's S1 medium. All isolates were found to belong to the fluorescent Pseudomonas group and were subjected to characterization by phenotypic methods, including classical taxonomic tests, API 20NE, and Biolog GN, and the strains were further characterized by the genotypic method repetitive extragenic palindromic PCR (REP-PCR). By using classical tests, the population was found to consist of 38 strains belonging to P. fluorescens, 2 P. putida strains, and 1 Pseudomonas sp. Bacteria in phenograms from Biolog GN and REP-PCR data were divided into groups, which were in good agreement with classical test and API 20NE results. We found a nonfluorescent group of 22 bacteria inconsistent with any Pseudomonas sp. in Bergey's Manual of Systematic Bacteriology. The group showed small differences in the genotypic test, indicating that all 22 isolates were not recent clones of the same isolate. Analyses of the nonfluorescent group indicated that it belonged to Pseudomonas, but the group could not be affiliated with P. fluorescens because of differences in DNA-DNA hybridization. Identifications using classical tests and API 20NE were found to correlate, but Biolog GN identifications after 24-h incubation resulted very often in the distantly related P. corrugata. The reproducibilities of individual tests of each phenotypic method were assessed, and low reproducibilities were mainly found to be associated with specific Biolog GN test wells. Classical tests and API 20NE proved to be the best for identification of isolates, whereas Biolog GN and REP-PCR were found to be the best tests for high resolution among these closely related isolates. PMID:8837438

  9. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis

    Treesearch

    Jun Fan; Casey Crooks; Gary Creissen; Lionel Hill; Shirley Fairhurst; Peter Doerner; Chris Lamb

    2011-01-01

    Most plant-microbe interactions do not result in disease; natural products restrict non-host pathogens. We found that sulforaphane (4-methylsulfinylbutyl isothiocyanate), a natural product derived from aliphatic glucosinolates, inhibits growth in Arabidopsis of non-host Pseudomonas bacteria in planta. Multiple sax genes (saxCAB/F/D/G) were identified in Pseudomonas...

  10. Pseudomonas kribbensis sp. nov., isolated from garden soils in Daejeon, Korea.

    PubMed

    Chang, Dong-Ho; Rhee, Moon-Soo; Kim, Ji-Sun; Lee, Yookyung; Park, Mi Young; Kim, Haseong; Lee, Seung-Goo; Kim, Byoung-Chan

    2016-11-01

    Two bacterial strains, 46-1 and 46-2 T , were isolated from garden soil. These strains were observed to be aerobic, Gram-stain negative, rod-shaped, non-spore-forming, motile and catalase and oxidase positive. Phylogenetic analysis based on 16S rRNA gene sequences showed that the two strains shared 100 % sequence similarity with each other and belong to the genus Pseudomonas in the class Gammaproteobacteria. The concatenated 16S rRNA, gyrB, rpoB and rpoD gene sequences further confirmed that the isolates belong to the Pseudomonas koreensis subgroup (SG), with P. koreensis Ps 9-14 T , Pseudomonas moraviensis 1B4 T and Pseudomonas granadensis F-278,770 T as their close relatives (>96 % pairwise similarity). DNA-DNA hybridization with the closely related type strain P. koreensis SG revealed a low level of relatedness (<50 %). A cladogram constructed using whole-cell matrix-assisted laser desorption/ionization time-of-flight (WC-MALDI-TOF) MS analysis showed the isolates formed a completely separate monophyletic group. The isolates were negative for utilization of glycogen, D-psicose, α-keto butyric acid, α-keto valeric acid, succinamic acid and D, L-α-glycerol phosphate. In contrast, all these reactions were positive in P. koreensis JCM 14769 T and P. moraviensis DSM 16007 T . The fatty acid C 17:0 cyclo was detected as one of the major cellular fatty acids (>15 %) in the isolates but it was a minor component (<4 %) in both reference type strains. In contrast, the fatty acid, C 12:0 was not observed in the isolates but was present in both reference strains. Based on differences such as phylogenetic position, low-level DNA-DNA hybridization, WC-MALDI-TOF MS analysis, fluorescence pigmentation, fatty acid profiles, and substrate utilization, we propose that the isolates 46-1 and 46-2 T represent a novel species of the genus Pseudomonas, for which the name Pseudomonas kribbensis sp. nov. is proposed; the type strain is 46-2 T (=KCTC 32541 T  = DSM 100278 T ).

  11. Interaction between Pseudomonas aeruginosa and host defenses in cystic fibrosis.

    PubMed

    Marshall, B C; Carroll, K C

    1991-03-01

    The major causes of morbidity and mortality in cystic fibrosis are chronic pulmonary obstruction and infection. Mucoid Pseudomonas aeruginosa is the primary pathogen in up to 90% of these patients. Once Pseudomonas organisms colonize the airways, they are virtually never eradicated. No defect in systemic host defense has been elucidated, however, several mechanisms contribute to the breakdown in host defenses that allow persistence of this organism in the endobronchial space. These mechanisms involve both bacterial adaptation to an unfavorable host environment and impaired host response. P aeruginosa adapts to the host by expressing excessive mucoid exopolysaccharide and a less virulent form of lipopolysaccharide. These features make it less likely to cause systemic infection, yet still enable it to resist local host defenses. Mucociliary clearance becomes impaired due to abnormal viscoelastic properties of sputum, squamous metaplasia of the respiratory epithelium, and bronchiectasis. Despite a brisk antibody response to a variety of Pseudomonas antigens, several defects in antibody-mediated opsonophagocytosis have been identified. These include (1) development of antibody isotypes that are suboptimal at promoting phagocytosis, (2) formation of immune complexes that inhibit phagocytosis, and (3) proteolytic fragmentation of immunoglobulins in the endobronchial space. Complement-mediated opsonophagocytosis is also compromised by proteolytic cleavage of complement receptors from the cell surface of neutrophils and complement opsonins from the surface of Pseudomonas. The resultant chronic inflammation and infection lead to eventual obliteration of the airways.

  12. Peritoneal dialysis-related peritonitis caused by Pseudomonas species: Insight from a post-millennial case series.

    PubMed

    Lu, Wanhong; Kwan, Bonnie Ching-Ha; Chow, Kai Ming; Pang, Wing-Fai; Leung, Chi Bon; Li, Philip Kam-To; Szeto, Cheuk Chun

    2018-01-01

    Pseudomonas peritonitis is a serious complication of peritoneal dialysis (PD). However, the clinical course of Pseudomonas peritonitis following the adoption of international guidelines remains unclear. We reviewed the clinical course and treatment response of 153 consecutive episodes of PD peritonitis caused by Pseudomonas species from 2001 to 2015. Pseudomonas peritonitis accounted for 8.3% of all peritonitis episodes. The bacteria isolated were resistant to ceftazidime in 32 cases (20.9%), and to gentamycin in 18 cases (11.8%). In 20 episodes (13.1%), there was a concomitant exit site infection (ESI); in another 24 episodes (15.7%), there was a history of Pseudomonas ESI in the past. The overall primary response rate was 53.6%, and complete cure rate 42.4%. There was no significant difference in the complete cure rate between patients who treated with regimens of 3 and 2 antibiotics. Amongst 76 episodes (46.4%) that failed to respond to antibiotics by day 4, 37 had immediate catheter removal; the other 24 received salvage antibiotics, but only 6 achieved complete cure. Antibiotic resistance is common amongst Pseudomonas species causing peritonitis. Adoption of the treatment guideline leads to a reasonable complete cure rate of Pseudomonas peritonitis. Treatment with three antibiotics is not superior than the conventional two antibiotics regimen. When there is no clinical response after 4 days of antibiotic treatment, early catheter removal should be preferred over an attempt of salvage antibiotic therapy.

  13. Antibiotic Conditioned Growth Medium of Pseudomonas Aeruginosa

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.; Cazeau, Barbara; Joseph, Njeri

    2004-01-01

    A simple method to study the consequences of bacterial antibiosis after interspecific competition between microorganisms is presented. Common microorganisms are used as the test organisms and Pseudomonas aeruginosa are used as the source of the inhibitor agents.

  14. Prevalence and spread of pseudomonas aeruginosa and Klebsiella pneumoniae strains in patients with hematological malignancies.

    PubMed

    Kolar, Milan; Sauer, Pavel; Faber, Edgar; Kohoutova, Jarmila; Stosová, Tatana; Sedlackova, Michaela; Chroma, Magdalena; Koukalova, Dagmar; Indrak, Karel

    2009-01-01

    The aim of the study was to determine the prevalence of Pseudomonas aeruginosa and Klebsiella pneumoniae strains in patients with acute leukemias, to assess their clinical significance, and to define the sources and ways of their spread using genetic analysis. Thirty-four patients were investigated during the observed period. Twenty-one strains of Pseudomonas aeruginosa and 35 strains of Klebsiella pneumoniae were isolated from patient samples. In the case of Pseudomonas aeruginosa, 47.6% of strains were identified as pathogens and caused infection. By contrast, only 4 isolates (11.4%) of Klebsiella pneumoniae could be regarded as etiological agents of bacterial infection. Based on the obtained results, Klebsiella pneumoniae strains are assumed to be of mostly endogenous origin. In the case of Pseudomonas aeruginosa strains, the proportion of identical strains detected in various patients was higher and exogenous sources were more significant. In addition, our results confirmed the ability of Pseudomonas aeruginosa strains to survive on a particular site in the hospital for a longer time.

  15. [Fatty acids composition of cellular lipids of the collected and newly isolated Pseudomonas lupini strains].

    PubMed

    Hvozdiak, R I; Dankevych, L A; Votselko, S K; Holubets', O V

    2005-01-01

    Fatty acid composition of cellular lipids of 23 Pseudomonas lupini strains (Beltjukova et Koroljova 1968) has been investigated. Cellular fatty acids which contained from C10 to C19 carbon atoms have been identified. Basic fatty acid of those Pseudomonas cells are hexadecanoic, hexadecenoic and octadecanoic acids. The 3-hydroxydecanoic (C10:0 3OH), 3-hydroxydodecanoic (C12:0 3OH), 2-hydroxydodecanoic (C12:0 2OH) and cyclopropane fatty acids which contain 17 and 19 carbon atoms have been detected in cellular lipids. The cellular fatty acids spectra of 22 P. lupini strains are similar to cellular fatty acids spectrum of the type strain Pseudomonas syringae pv. syringae 8511. Pathogenic isolate 2, which fatty acid content of cell lipids significantly differ from lipids of cell fatty acids from P. lupini strains and cell lipids of fatty acids of typical strains Pseudomonas syringae pv. syringae 8511 and Pseudomonas savastanoi pv. phaseolicola 9066 is the exception.

  16. Biotransformation of Tributyltin chloride by Pseudomonas stutzeri strain DN2

    PubMed Central

    Khanolkar, Dnyanada S.; Naik, Milind Mohan; Dubey, Santosh Kumar

    2014-01-01

    A bacterial isolate capable of utilizing tributyltin chloride (TBTCl) as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME) analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM). Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2) through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites. PMID:25763027

  17. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel.

    PubMed

    Arivett, Brock A; Ream, Dave C; Fiester, Steven E; Kidane, Destaalem; Actis, Luis A

    2016-08-11

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work. Copyright © 2016 Arivett et al.

  18. Transferable Drug Resistance in Pseudomonas aeruginosa1

    PubMed Central

    Bryan, L. E.; Elzen, H. M. Van Den; Tseng, Jui Teng

    1972-01-01

    Three strains of Pseudomonas aeruginosa were demonstrated to transfer double-drug resistance by conjugation to a P. aeruginosa recipient at frequencies of 10−4 to 10−2 per recipient cell. Two of the three strains also transferred to Escherichia coli at frequencies which were 103- to 105-fold lower, but the third strain could not be demonstrated to do so. The latter strain, however, conferred maleness on the Pseudomonas recipient. The transfer of streptomycin resistance was associated with the acquisition of streptomycin phosphorylase by both P. aeruginosa and E. coli recipients. Maximal broth mating frequencies were obtained with nonagitated cultures less than 1 mm in depth. A pyocine selection system based on donor sensitivity and recipient resistance is described and appears to have future value as a generalized selective device for use after matings. PMID:4207756

  19. Role of the Pseudomonas quinolone signal (PQS) in sensitising Pseudomonas aeruginosa to UVA radiation.

    PubMed

    Pezzoni, Magdalena; Meichtry, Martín; Pizarro, Ramón A; Costa, Cristina S

    2015-01-01

    One of the main stress factors that bacteria face in the environment is solar ultraviolet-A (UVA) radiation, which leads to lethal effects through oxidative damage. The aim of this work was to investigate the role of 2-heptyl-3-hydroxi-4-quinolone (the Pseudomonas quinolone signal or PQS) in the response of Pseudomonas aeruginosa to UVA radiation. PQS is an intercellular quorum sensing signal associated to membrane vesicles which, among other functions, regulates genes related to iron acquisition, forms stable complexes with iron and participates in oxidative phenomena. UVA exposure of the wild-type PAO1 strain and a pqsA mutant unable to produce PQS revealed a sensitising role for this signal. Research into the mechanism involved in this phenomenon revealed that catalase, an essential factor in the UVA defence, is not related to PQS-mediated UVA sensitivity. Absorption of UVA by PQS produced its own photo-degradation, oxidation of the probe 2',7'- dichlorodihydrofluorescein and generation of singlet oxygen and superoxide anion, suggesting that this signal could be acting as an endogenous photosensitiser. The results presented in this study could explain the high sensitivity to UVA of P. aeruginosa when compared to enteric bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. [Production of inhibiting plant growth and development hormones by pathogenic for legumes Pseudomonas genus bacteria].

    PubMed

    Dankevich, L A

    2013-01-01

    It has been studied the ability of pathogenic for legumes pathovars of Pseudomonas genus to produce ethylene and abscisic acid in vitro. A direct correlation between the level of ethylene production by agent of bacterial pea burn--Pseudomonas syringae pv. pisi and level of its aggressiveness for plants has been found. It is shown that the amount of abscisic acid synthesized by pathogenic for legumes Pseudomonas genus bacteria correlates with their aggressiveness for plants.

  1. Draft Genome Sequence of the Marine Bacterium Pseudomonas aestusnigri VGXO14T.

    PubMed

    Gomila, Margarita; Mulet, Magdalena; Lalucat, Jorge; García-Valdés, Elena

    2017-08-10

    The type strain of Pseudomonas aestusnigri (VGXO14), isolated from a crude oil-polluted marine sand sample, is a member of the P. pertucinogena phylogenetic group. Here, we report the genome sequence (3.83 Mb) of P. aestusnigri to gain insights into the biology and taxonomy of marine Pseudomonas spp. adapted to polluted marine habitats. Copyright © 2017 Gomila et al.

  2. Draft Genome Sequence of the Marine Bacterium Pseudomonas aestusnigri VGXO14T

    PubMed Central

    2017-01-01

    ABSTRACT The type strain of Pseudomonas aestusnigri (VGXO14), isolated from a crude oil-polluted marine sand sample, is a member of the P. pertucinogena phylogenetic group. Here, we report the genome sequence (3.83 Mb) of P. aestusnigri to gain insights into the biology and taxonomy of marine Pseudomonas spp. adapted to polluted marine habitats. PMID:28798177

  3. Cross-reactions of lipopolysaccharides of Pseudomonas aeruginosa in antipneumococcal and other antisera.

    PubMed Central

    Heidelberger, M; Horton, D; Haskell, T H

    1986-01-01

    Lipopolysaccharides of the seven Fisher immunotypes of Pseudomonas aeruginosa gave cross-precipitation in many antipneumococcal sera. The reaction of Pseudomonas type IV in type 25 antipneumococcal serum was immediate and heavy: 93 micrograms of antibody nitrogen per ml. Correlations are described, mainly between the structures of the O-chains of the immunotypes and their specificities as shown by the cross-reactions. PMID:3096896

  4. Pseudomonas yangmingensis sp. nov., an alkaliphilic denitrifying species isolated from a hot spring.

    PubMed

    Wong, Biing-Teo; Lee, Duu-Jong

    2014-01-01

    This study isolated and identified a facultative, alkaliphilic, denitrifying Pseudomonas strain designed as CRS1 from a hot spring, Yang-Ming Mountain, Taiwan. The biochemical characterization, phenotypic characteristics and phylogenetic relationship of strain CRS1 were studied. On the basis of the 16S rRNA sequence similarity, phenotypic and genotypic characteristics and chemotaxonomic data, the strain CRS1 represents a novel species of the genus Pseudomonas, for which the name Pseudomonas yangmingensis sp. nov., is proposed. The strain CRS1 is a facultative autotrophic bacterium that has capability of mixotrophic and heterotrophic denitrification. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales

    PubMed Central

    Ramos, Itzel; Dietrich, Lars E. P.; Price-Whelan, Alexa; Newman, Dianne K.

    2010-01-01

    Pseudomonads produce phenazines, a group of small, redox-active compounds with diverse physiological functions. In this study, we compared the phenotypes of Pseudomonas aeruginosa strain PA14 and a mutant unable to synthesize phenazines in flow cell and colony biofilms quantitatively. Although phenazine production does not impact the ability of PA14 to attach to surfaces, as has been shown for Pseudomonas chlororaphis (Maddula, 2006; Maddula, 2008), it influences swarming motility and the surface-to-volume ratio of mature biofilms. These results indicate that phenazines affect biofilm development across a large range of scales, but in unique ways for different Pseudomonas species. PMID:20123017

  6. Quantitative approach to track lipase producing Pseudomonas sp. S1 in nonsterilized solid state fermentation.

    PubMed

    Sahoo, R K; Subudhi, E; Kumar, M

    2014-06-01

    Proliferation of the inoculated Pseudomonas sp. S1 is quantitatively evaluated using ERIC-PCR during the production of lipase in nonsterile solid state fermentation an approach to reduce the cost of enzyme production. Under nonsterile solid state fermentation with olive oil cake, Pseudomonas sp. S1 produced 57·9 IU g(-1) of lipase. DNA fingerprints of unknown bacterial isolates obtained on Bushnell Haas agar (BHA) + tributyrin exactly matched with that of Pseudomonas sp. S1. Using PCR-based enumeration, population of Pseudomonas sp. S1 was proliferated from 7·6 × 10(4) CFU g(-1) after 24 h to 4·6 × 10(8) CFU g(-1) after 96 h, which tallied with the maximum lipase activity as compared to control. Under submerged fermentation (SmF), Pseudomonas sp. S1 produced maximum lipase (49 IU ml(-1) ) using olive oil as substrate, while lipase production was 9·754 IU ml(-1) when Pseudomonas sp. S1 was grown on tributyrin. Optimum pH and temperature of the crude lipase was 7·0 and 50°C. Crude enzyme activity was 71·2% stable at 50°C for 360 min. Pseudomonas sp. S1 lipase was also stable in methanol showing 91·6% activity in the presence of 15% methanol, whereas 75·5 and 51·1% of activity were retained in the presence of 20 and 30% methanol, respectively. Thus, lipase produced by Pseudomonas sp. S1 is suitable for the production of biodiesel as well as treatment of oily waste water. This study presents the first report on the production of thermophilic organic solvent tolerant lipase using agro-industry waste in nonsterile solid state fermentation. Positive correlation between survival of Pseudomonas sp. S1 and lipase production under nonsterile solid state fermentation was established, which may emphasize the need to combine molecular tools and solid state fermentation in future studies. Our study brings new insights into the lipase production in cost-effective manner, which is an industrially relevant approach. © 2014 The Society for Applied Microbiology.

  7. Hot Tub Rash (Pseudomonas Dermatitis/Folliculitis)

    MedlinePlus

    ... Español [PDF – 1 page] “Hot Tub Rash” ( Pseudomonas Dermatitis / Folliculitis) If contaminated water comes in contact with a person’s skin for a long period ... rash spread at recreational water venues? Hot tub rash can occur if contaminated water comes in contact with skin for a long period of time. ...

  8. Control of Pseudomonas mastitis on a large dairy farm by using slightly acidic electrolyzed water.

    PubMed

    Kawai, Kazuhiro; Shinozuka, Yasunori; Uchida, Ikuo; Hirose, Kazuhiko; Mitamura, Takashi; Watanabe, Aiko; Kuruhara, Kana; Yuasa, Reiko; Sato, Reiichiro; Onda, Ken; Nagahata, Hajime

    2017-10-01

    The disinfection effect of slightly acidic electrolyzed water (SAEW) use in a farm where Pseudomonas mastitis has spread was evaluated. Despite the application of antibiotic therapy and complete cessation of milking infected quarters, numerous new and recurrent Pseudomonas aeruginosa clinical mastitis infections (5.8-7.1% of clinical mastitis cases) occurred on the farm from 2003 to 2005. Procedural changes and equipment modifications did not improve environmental contamination or the incidence of Pseudomonas mastitis. To more thoroughly decontaminate the milking parlor, an SAEW system was installed in 2006. All milking equipment and the parlor environment were sterilized with SAEW (pH 5-6.5, available chlorine 12 parts per million) before and during milking time. After adopting the SAEW system, the incidence of clinical and subclinical Pseudomonas mastitis cases decreased significantly (P < 0.0001) and disappeared. These findings suggest that SAEW effectively reduced the incidence of mastitis in a herd contaminated by Pseudomonas species. This is the first report to demonstrate the effectiveness of disinfection by SAEW against mastitis pathogens in the environment. © 2017 Japanese Society of Animal Science.

  9. Respiration of 2,4,6-Trinitrotoluene by Pseudomonas sp. Strain JLR11

    PubMed Central

    Esteve-Nuñez, Abraham; Lucchesi, Gloria; Philipp, Bodo; Schink, Bernhard; Ramos, Juan L.

    2000-01-01

    Under anoxic conditions Pseudomonas sp. strain JLR11 can use 2,4,6-trinitrotoluene (TNT) as the sole N source, releasing nitrite from the aromatic ring and subsequently reducing it to ammonium and incorporating it into C skeletons. This study shows that TNT can also be used as a terminal electron acceptor in respiratory chains under anoxic conditions by Pseudomonas sp. strain JLR11. TNT-dependent proton translocation coupled to the reduction of TNT to aminonitrotoluenes has been observed in TNT-grown cells. This extrusion did not occur in nitrate-grown cells or in anaerobic TNT-grown cells treated with cyanide, a respiratory chain inhibitor. We have shown that in a membrane fraction prepared from Pseudomonas sp. strain JLR11 grown on TNT under anaerobic conditions, the synthesis of ATP was coupled to the oxidation of molecular hydrogen and to the reduction of TNT. This phosphorylation was uncoupled by gramicidin. Respiration by Pseudomonas sp. strain JLR11 is potentially useful for the biotreatment of TNT in polluted waters and soils, particularly in phytorhizoremediation, in which bacterial cells are transported to the deepest root zones, which are poor in oxygen. PMID:10671458

  10. Enhanced alpha-galactosidase expression in pseudomonas chlororaphis

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas chlororaphis is a non-pathogenic bacterium useful for fermentative production of biopolymer (i.e., poly(hydroxyalkanoates); PHA) and biosurfactant (i.e., rhamnolipid; RhL). In order to enable P. chlororaphis to better fermentatively utilize the residual soy sugars in soy molasses – a lo...

  11. Evolutionary Plasticity of AmrZ Regulation in Pseudomonas

    PubMed Central

    Dougherty, Kevin; Diaz, Beatriz; Murillo, Rachel

    2018-01-01

    ABSTRACT amrZ encodes a master regulator protein conserved across pseudomonads, which can be either a positive or negative regulator of swimming motility depending on the species examined. To better understand plasticity in the regulatory function of AmrZ, we characterized the mode of regulation for this protein for two different motility-related phenotypes in Pseudomonas stutzeri. As in Pseudomonas syringae, AmrZ functions as a positive regulator of swimming motility within P. stutzeri, which suggests that the functions of this protein with regard to swimming motility have switched at least twice across pseudomonads. Shifts in mode of regulation cannot be explained by changes in AmrZ sequence alone. We further show that AmrZ acts as a positive regulator of colony spreading within this strain and that this regulation is at least partially independent of swimming motility. Closer investigation of mechanistic shifts in dual-function regulators like AmrZ could provide unique insights into how transcriptional pathways are rewired between closely related species. IMPORTANCE Microbes often display finely tuned patterns of gene regulation across different environments, with major regulatory changes controlled by a small group of “master” regulators within each cell. AmrZ is a master regulator of gene expression across pseudomonads and can be either a positive or negative regulator for a variety of pathways depending on the strain and genomic context. Here, we demonstrate that the phenotypic outcomes of regulation of swimming motility by AmrZ have switched at least twice independently in pseudomonads, so that AmrZ promotes increased swimming motility in P. stutzeri and P. syringae but represses this phenotype in Pseudomonas fluorescens and Pseudomonas aeruginosa. Since examples of switches in regulatory mode are relatively rare, further investigation into the mechanisms underlying shifts in regulator function for AmrZ could provide unique insights into the

  12. The impact of nosocomially-acquired resistant Pseudomonas aeruginosa infection in a burn unit.

    PubMed

    Armour, Alexis D; Shankowsky, Heather A; Swanson, Todd; Lee, Jonathan; Tredget, Edward E

    2007-07-01

    Nosocomially-acquired Pseudomonas aeruginosa remains a serious cause of infection and septic mortality in burn patients. This study was conducted to quantify the impact of nosocomially-transmitted resistant P. aeruginosa in a burn population. Using a TRACS burn database, 48 patients with P. aeruginosa resistant to gentamicin were identified (Pseudomonas group). Thirty-nine were case-matched to controls without resistant P. aeruginosa cultures (control group) for age, total body surface area, admission year, and presence of inhalation injury. Mortality and various morbidity endpoints were examined, as well as antibiotic costs. There was a significantly higher mortality rate in the Pseudomonas group (33% vs. 8%, p < 0.001) compared with in the control group. Length of stay was increased in the Pseudomonas group (73.4 +/- 11.6 vs. 58.3 +/- 8.3 days). Ventilatory days (23.9 +/- 5.4 vs. 10.8 +/- 2.4, p < 0.05), number of surgical procedures (5.2 +/- 0.6 vs. 3.4 +/- 0.4, p < 0.05), and amount of blood products used (packed cells 51.1 +/- 8.0 vs. 21.1 +/- 3.4, p < 0.01; platelets 11.9 +/- 3.0 vs. 1.4 +/- 0.7, p < 0.01) were all significantly higher in the Pseudomonas group. Cost of antibiotics was also significantly higher ($2,658.52 +/- $647.93 vs. $829.22 +/- $152.82, p < 0.01). Nosocomial colonization or infection, or both, of burn patients with aminoglycoside-resistant P. aeruginosa is associated with significantly higher morbidity, mortality, and cost of care. Increased resource consumption did not prevent significantly higher mortality rates when compared with that of control patients. Thus, prevention, identification, and eradication of nosocomial Pseudomonas contamination are critical for cost-effective, successful burn care.

  13. Pseudomonas aestusnigri sp. nov., isolated from crude oil-contaminated intertidal sand samples after the Prestige oil spill.

    PubMed

    Sánchez, David; Mulet, Magdalena; Rodríguez, Ana C; David, Zoyla; Lalucat, Jorge; García-Valdés, Elena

    2014-03-01

    Strains VGXO14(T) and Vi1 were isolated from the Atlantic intertidal shore from Galicia, Spain, after the Prestige oil spill. Both strains were Gram-negative rod-shaped bacteria with one polar inserted flagellum, strictly aerobic, and able to grow at 18-37°C, pH 6-10 and 2-10% NaCl. A preliminary analysis of the 16S rRNA and the partial rpoD gene sequences indicated that these strains belonged to the Pseudomonas genus but were distinct from any known Pseudomonas species. A polyphasic taxonomic approach including phylogenetic, chemotaxonomic, phenotypic and genotypic data confirmed that the strains belonged to the Pseudomonas pertucinogena group. In a multilocus sequence analysis, the similarity of VGXO14(T) and Vi1 to the closest type strain of the group, Pseudomonas pachastrellae, was 90.4%, which was lower than the threshold of 97% established to discriminate species in the Pseudomonas genus. The DNA-DNA hybridisation similarity between strains VGXO14(T) and Vi1 was 79.6%, but below 70% with the type strains in the P. pertucinogena group. Therefore, the strains should be classified within the genus Pseudomonas as a novel species, for which the name Pseudomonas aestusnigri is proposed. The type strain is VGXO14(T) (=CCUG 64165(T)=CECT 8317(T)). Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions.

    PubMed

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops.

  15. Engineering Pseudomonas protegens Pf-5 for Nitrogen Fixation and its Application to Improve Plant Growth under Nitrogen-Deficient Conditions

    PubMed Central

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops. PMID:23675499

  16. Porins of Pseudomonas fluorescens MFO as fibronectin-binding proteins.

    PubMed

    Rebière-Huët, J; Guérillon, J; Pimenta, A L; Di Martino, P; Orange, N; Hulen, C

    2002-09-24

    Bacterial adherence is a complex phenomenon involving specific interactions between receptors, including matricial fibronectin, and bacterial ligands. We show here that fibronectin and outer membrane proteins of Pseudomonas fluorescens were able to inhibit adherence of P. fluorescens to fibronectin-coated wells. We identified at least six fibronectin-binding proteins with molecular masses of 70, 55, 44, 37, 32 and 28 kDa. The presence of native (32 kDa) and heat-modified forms (37 kDa) of OprF was revealed by immuno-analysis and the 44-kDa band was composed of three proteins, their N-terminal sequences showing homologies with Pseudomonas aeruginosa porins (OprD, OprE1 and OprE3).

  17. Anaerobic oxidation of 2-chloroethanol under denitrifying conditions by Pseudomonas stutzeri strain JJ.

    PubMed

    Dijk, J A; Stams, A J M; Schraa, G; Ballerstedt, H; de Bont, J A M; Gerritse, J

    2003-11-01

    A bacterium that uses 2-chloroethanol as sole energy and carbon source coupled to denitrification was isolated from 1,2-dichloroethane-contaminated soil. Its 16 S rDNA sequence showed 98% similarity with the type strain of Pseudomonas stutzeri (DSM 5190) and the isolate was tentatively identified as Pseudomonas stutzeri strain JJ. Strain JJ oxidized 2-chloroethanol completely to CO(2) with NO(3)(- )or O(2) as electron acceptor, with a preference for O(2) if supplied in combination. Optimum growth on 2-chloroethanol with nitrate occurred at 30 degrees C with a mu(max) of 0.14 h(-1) and a yield of 4.4 g protein per mol 2-chloroethanol metabolized. Under aerobic conditions, the mu(max) was 0.31 h(-1). NO(2)(-) also served as electron acceptor, but reduction of Fe(OH)(3), MnO(2), SO(4)(2-), fumarate or ClO(3)(-) was not observed. Another chlorinated compound used as sole energy and carbon source under aerobic and denitrifying conditions was chloroacetate. Various different bacterial strains, including some closely related Pseudomonas stutzeri strains, were tested for their ability to grow on 2-chloroethanol as sole energy and carbon source under aerobic and denitrifying conditions, respectively. Only three strains, Pseudomonas stutzeri strain LMD 76.42, Pseudomonas putida US2 and Xanthobacter autotrophicus GJ10, grew aerobically on 2-chloroethanol. This is the first report of oxidation of 2-chloroethanol under denitrifying conditions by a pure bacterial culture.

  18. Colonizing ability of Pseudomonas fluorescens 2112, among collections of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens spp. in pea rhizosphere.

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens 2112, isolated in Korea as an indigenous antagonistic bacteria, can produce 2,4-diacetylphloroglucinol (2,4-DAPG) and the siderophore pyoveridin2112 for the control of Phytophthora blight of red-pepper. P. fluorescens 2112 was classified into a new genotype C among the 17 gen...

  19. Induced systemic resistance (ISR) in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens strains that produce the polyketide antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are among the most effective rhizobacteria that suppress root and crown rots, wilts and damping-off diseases of a variety of crops, and they play a key role in the natural suppressiveness of ...

  20. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  1. Genetically modified luminescent bacteria Ralostonia solanacerum, Pseudomonas syringae, Pseudomonas savastanoi, and wild type bacterium Vibrio fischeri in biosynthesis of gold nanoparticles from gold chloride trihydrate.

    PubMed

    Attaran, Neda; Eshghi, Hossein; Rahimizadeh, Mohammad; Mashreghi, Mansour; Bakavoli, Mehdi

    2014-08-04

    The effect of different genetically engineered bacteria, Pseudomonas syringae, Pseudomonas savastanoi, and Ralostonia solanacerum and also a natural marine bacterial species, Vibrio fischeri NRRL B-11177, is studied in producing gold nanoparticles. This is the first report about the biosynthesis of gold nanoparticles by natural and genetically engineered luminescent bacteria. These microorganisms reduced gold ions and produced fairly monodisperse nanoparticles. TEM analysis indicated that spherical nano gold particles in the different diameters and shapes were obtained at pH values of 6.64. In this biosynthesis protocol, the gold nanoparticles with desired shape and size can be prepared.

  2. Heterotrophic bacteria associated with the degradation of zooplankton fecal pellets in Lake Michigan. [Mysis relicta, pseudomonas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrante, J.G.; Ptak, D.J.

    1978-01-01

    Heterotrophic microbes decompose most of the calanoid copepod fecal pellets produced in Lake Michigan before they reach the sediment. Rod-shaped nonfermenters isolated from copepod and Mysis relicta fecal pellets were identified as Pseudomonas maltophilia and Pseudomonas fluorescens species. No enterobacteriaceae or fungal hyphae were found on or in any pellets. This investigation suggests that Pseudomonas species are attached to and may degrade Mysis relicta and calanoid copepod fecal pellets in the water column of Lake Michigan.

  3. Cultivar-dependent root colonization, antifungal metabolite accumulation and gene expression in the wheat-Pseudomonas interaction

    USDA-ARS?s Scientific Manuscript database

    We explored the role of host genotype in three aspects of the wheat-Pseudomonas biocontrol interaction: rhizosphere population density, accumulation of rhizosphere 2,4-diacetylphloroglucinol (DAPG), and Pseudomonas-mediated changes in root gene expression. Wheat cultivars varied in ability to suppo...

  4. Uncommonly isolated clinical Pseudomonas: identification and phylogenetic assignation.

    PubMed

    Mulet, M; Gomila, M; Ramírez, A; Cardew, S; Moore, E R B; Lalucat, J; García-Valdés, E

    2017-02-01

    Fifty-two Pseudomonas strains that were difficult to identify at the species level in the phenotypic routine characterizations employed by clinical microbiology laboratories were selected for genotypic-based analysis. Species level identifications were done initially by partial sequencing of the DNA dependent RNA polymerase sub-unit D gene (rpoD). Two other gene sequences, for the small sub-unit ribosonal RNA (16S rRNA) and for DNA gyrase sub-unit B (gyrB) were added in a multilocus sequence analysis (MLSA) study to confirm the species identifications. These sequences were analyzed with a collection of reference sequences from the type strains of 161 Pseudomonas species within an in-house multi-locus sequence analysis database. Whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analyses of these strains complemented the DNA sequenced-based phylogenetic analyses and were observed to be in accordance with the results of the sequence data. Twenty-three out of 52 strains were assigned to 12 recognized species not commonly detected in clinical specimens and 29 (56 %) were considered representatives of at least ten putative new species. Most strains were distributed within the P. fluorescens and P. aeruginosa lineages. The value of rpoD sequences in species-level identifications for Pseudomonas is emphasized. The correct species identifications of clinical strains is essential for establishing the intrinsic antibiotic resistance patterns and improved treatment plans.

  5. Pseudomonas aeruginosa Dose-Response and Bathing Water Infection

    EPA Science Inventory

    Pseudomonas aeruginosa is the most commonly identified opportunistic pathogen associated with pool acquired bather disease. To better understand why this microorganism poses this protracted problem we recently appraised P. aeruginosa pool risk management. Much is known about the ...

  6. Pseudomonas gallaeciensis sp. nov., isolated from crude-oil-contaminated intertidal sand samples after the Prestige oil spill.

    PubMed

    Mulet, Magdalena; Sánchez, David; Rodríguez, Ana C; Nogales, Balbina; Bosch, Rafael; Busquets, Antonio; Gomila, Margarita; Lalucat, Jorge; García-Valdés, Elena

    2018-04-11

    Strains V113 T , V92 and V120 have been isolated from sand samples taken at the Atlantic intertidal shore in Galicia, Spain, after the Prestige oil spill. A preliminary analysis of the 16S rRNA and the partial rpoD gene sequences indicated that these strains belonged to the Pseudomonas genus, but they were distinct from any known Pseudomonas species. They were extensively characterized by a polyphasic taxonomic approach and phylogenetic data that confirmed that these strains belonged to the Pseudomonas pertucinogena group. Phylogenetic analysis of 16S rRNA, gyrB and rpoD gene sequences showed that the three strains were 99% similar and were closely related to members of the P. pertucinogena group, with less than 94% similarity to strains of established species; Pseudomonas pachastrellae was the closest relative. The Average Nucleotide Index based on blast values was 89.0% between V113 T and the P. pachastrellae type strain, below the accepted species level (95%). The predominant cellular fatty acid contents and whole cell protein profiles determined by MALDI-TOF mass spectrometry also differentiated the studied strains from known Pseudomonas species. We therefore conclude that strains V113 T , V92 and V120 represent a novel species of Pseudomonas, for which the name Pseudomonas gallaeciensis is proposed; the type strain is V113 T (=CCUG 67583 T =LMG 29038 T ). Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. Chitinase activity of Pseudomonas stutzeri PT5 in different fermentation condition

    NASA Astrophysics Data System (ADS)

    Chalidah, N.; Khotimah, I. N.; Hakim, A. R.; Meata, B. A.; Puspita, I. D.; Nugraheni, P. S.; Ustadi; Pudjiraharti, S.

    2018-03-01

    This study aimed to determine the incubation condition of Pseudomonas stutzeri PT5 in producing chitin degrading enzyme in various pH and temperatures; to compare the production of chitin degrading enzyme in chitin medium supplemented with additional nitrogen, carbon and a mixture of nitrogen and carbon sources and to observe the production of chitin degrading enzyme in 250 mL-shake flasks and 2 L-fermentor. The parameters tested during production were chitinase activity (U·mL-1) of culture supernatant and N-acetylglucosamine concentration (μg·mL-1) in the medium. The results showed that Pseudomonas stutzeri PT5 was able to produce the highest chitinase activity at pH 6 and temperature of 37 °C (0.024 U·mL-1). The addition of 0.1 % of ammonium phosphate and 0.1 % of maltose, increased the chitinase activity of Pseudomonas stutzeri PT5 by 3.24 and 8.08 folds, respectively, compared to the control. The addition of 0.1 % ammonium phosphate and 0.1 % maltose mixture to chitin medium resulted in the shorter time of chitinase production compared to the addition of sole nutrition. The production of chitinase using 2 L-fermentor shows that the highest chitinase activity produced by Pseudomonas stutzeri PT5 was reached at 1-day incubation (0.0283 U·mL-1), which was shorter than in 250 mL-shake flasks.

  8. Bacterial mutation affecting plasmid maintenance in Pseudomonas aeruginosa.

    PubMed Central

    Chang, B J; Holloway, B W

    1977-01-01

    A bacterial mutation, risA, in Pseudomonas aeruginosa caused growth inhibition at 43 degrees C of risA strains containing P2 plasmids. Incubation at 43 degrees C resulted in selection for clones that had lost P2 plasmids. PMID:122513

  9. Pseudomonas aeruginosa infections of intact skin.

    PubMed

    Agger, W A; Mardan, A

    1995-02-01

    Pseudomonas aeruginosa infections of healthy skin are uncommon. We report four cases of P. aeruginosa infections of intact skin. These cases illustrate the clinical spectrum of these cutaneous infections: localized, mild epidermal infections (the green nail syndrome and webbed space infections), moderately serious infections (cutaneous folliculitis and otitis externa), and, in immunocompromised patients, extremely serious infections (malignant otitis externa, perirectal infection, and ecthyma gangrenosum).

  10. Draft Genome Sequence of Pseudomonas oceani DSM 100277T, a Deep-Sea Bacterium

    PubMed Central

    2018-01-01

    ABSTRACT Pseudomonas oceani DSM 100277T was isolated from deep seawater in the Okinawa Trough at 1390 m. P. oceani belongs to the Pseudomonas pertucinogena group. Here, we report the draft genome sequence of P. oceani, which has an estimated size of 4.1 Mb and exhibits 3,790 coding sequences, with a G+C content of 59.94 mol%. PMID:29650573

  11. HoPaCI-DB: host-Pseudomonas and Coxiella interaction database

    PubMed Central

    Bleves, Sophie; Dunger, Irmtraud; Walter, Mathias C.; Frangoulidis, Dimitrios; Kastenmüller, Gabi; Voulhoux, Romé; Ruepp, Andreas

    2014-01-01

    Bacterial infectious diseases are the result of multifactorial processes affected by the interplay between virulence factors and host targets. The host-Pseudomonas and Coxiella interaction database (HoPaCI-DB) is a publicly available manually curated integrative database (http://mips.helmholtz-muenchen.de/HoPaCI/) of host–pathogen interaction data from Pseudomonas aeruginosa and Coxiella burnetii. The resource provides structured information on 3585 experimentally validated interactions between molecules, bioprocesses and cellular structures extracted from the scientific literature. Systematic annotation and interactive graphical representation of disease networks make HoPaCI-DB a versatile knowledge base for biologists and network biology approaches. PMID:24137008

  12. Oxidative Formation and Removal of Complexed Mn(III) by Pseudomonas Species

    PubMed Central

    Wright, Mitchell H.; Geszvain, Kati; Oldham, Véronique E.; Luther, George W.; Tebo, Bradley M.

    2018-01-01

    The observation of significant concentrations of soluble Mn(III) complexes in oxic, suboxic, and some anoxic waters has triggered a re-evaluation of the previous Mn paradigm which focused on the cycling between soluble Mn(II) and insoluble Mn(III,IV) species as operationally defined by filtration. Though Mn(II) oxidation in aquatic environments is primarily bacterially-mediated, little is known about the effect of Mn(III)-binding ligands on Mn(II) oxidation nor on the formation and removal of Mn(III). Pseudomonas putida GB-1 is one of the most extensively investigated of all Mn(II) oxidizing bacteria, encoding genes for three Mn oxidases (McoA, MnxG, and MopA). P. putida GB-1 and associated Mn oxidase mutants were tested alongside environmental isolates Pseudomonas hunanensis GSL-007 and Pseudomonas sp. GSL-010 for their ability to both directly oxidize weakly and strongly bound Mn(III), and to form these complexes through the oxidation of Mn(II). Using Mn(III)-citrate (weak complex) and Mn(III)-DFOB (strong complex), it was observed that P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 and mutants expressing only MnxG and McoA were able to directly oxidize both species at varying levels; however, no oxidation was detected in cultures of a P. putida mutant expressing only MopA. During cultivation in the presence of Mn(II) and citrate or DFOB, P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 formed Mn(III) complexes transiently as an intermediate before forming Mn(III/IV) oxides with the overall rates and extents of Mn(III,IV) oxide formation being greater for Mn(III)-citrate than for Mn(III)-DFOB. These data highlight the role of bacteria in the oxidative portion of the Mn cycle and suggest that the oxidation of strong Mn(III) complexes can occur through enzymatic mechanisms involving multicopper oxidases. The results support the observations from field studies and further emphasize the complexity of the geochemical cycling of

  13. Oxidative Formation and Removal of Complexed Mn(III) by Pseudomonas Species.

    PubMed

    Wright, Mitchell H; Geszvain, Kati; Oldham, Véronique E; Luther, George W; Tebo, Bradley M

    2018-01-01

    The observation of significant concentrations of soluble Mn(III) complexes in oxic, suboxic, and some anoxic waters has triggered a re-evaluation of the previous Mn paradigm which focused on the cycling between soluble Mn(II) and insoluble Mn(III,IV) species as operationally defined by filtration. Though Mn(II) oxidation in aquatic environments is primarily bacterially-mediated, little is known about the effect of Mn(III)-binding ligands on Mn(II) oxidation nor on the formation and removal of Mn(III). Pseudomonas putida GB-1 is one of the most extensively investigated of all Mn(II) oxidizing bacteria, encoding genes for three Mn oxidases (McoA, MnxG, and MopA). P. putida GB-1 and associated Mn oxidase mutants were tested alongside environmental isolates Pseudomonas hunanensis GSL-007 and Pseudomonas sp. GSL-010 for their ability to both directly oxidize weakly and strongly bound Mn(III), and to form these complexes through the oxidation of Mn(II). Using Mn(III)-citrate (weak complex) and Mn(III)-DFOB (strong complex), it was observed that P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 and mutants expressing only MnxG and McoA were able to directly oxidize both species at varying levels; however, no oxidation was detected in cultures of a P. putida mutant expressing only MopA. During cultivation in the presence of Mn(II) and citrate or DFOB, P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 formed Mn(III) complexes transiently as an intermediate before forming Mn(III/IV) oxides with the overall rates and extents of Mn(III,IV) oxide formation being greater for Mn(III)-citrate than for Mn(III)-DFOB. These data highlight the role of bacteria in the oxidative portion of the Mn cycle and suggest that the oxidation of strong Mn(III) complexes can occur through enzymatic mechanisms involving multicopper oxidases. The results support the observations from field studies and further emphasize the complexity of the geochemical cycling of

  14. Hot tub folliculitis or hot hand-foot syndrome caused by Pseudomonas aeruginosa.

    PubMed

    Yu, Yue; Cheng, Amy S; Wang, Lawrence; Dunne, W Michael; Bayliss, Susan J

    2007-10-01

    Pseudomonas aeruginosa is a ubiquitous gram-negative rod that can cause a well-recognized, acquired skin infection from bacterial colonization of contaminated water called "hot tub folliculitis." We report an outbreak of pseudomonas skin infection associated with the use of a hot tub at a pool party in 33 children. In particular, 2 of the children were admitted to our hospital; both presented with high leukocyte counts, intermittent low grade fevers, and painful, erythematous nodules and papules on their palms and soles. One of the 2 children also presented with small erythematous pustular lesions on the face and trunk, which led to the diagnosis. Cultures from these pustules grew P aeruginosa. Thirty two other children at this pool/hot tub party developed similar lesions of varying severity 6 to 48 hours after the party. These findings were most consistent with the diagnosis of pseudomonas folliculitis/hot hand.

  15. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  16. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  17. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  18. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  19. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  20. Effect of Iron Availability on Induction of Systemic Resistance to Fusarium Wilt of Chickpea by Pseudomonas spp.

    PubMed

    Saikia, Ratul; Srivastava, Alok K; Singh, Kiran; Arora, Dilip K; Lee, Min-Woong

    2005-03-01

    Selected isolates of Pseudomonas fluorescens (Pf4-92 and PfRsC5) and P. aeruginosa (PaRsG18 and PaRsG27) were examined for growth promotion and induced systemic resistance against Fusarium wilt of chickpea. Significant increase in plant height was observed in Pseudomonas treated plants. However, plant growth was inhibited when isolates of Pseudomonas were used in combination with Fusarium oxysporum f. sp. ciceri (FocRs1). It was also observed that the Pseudomonas spp. was colonized in root of chickpea and significantly suppressed the disease in greenhouse condition. Rock wool bioassay technique was used to study the effect of iron availability on the induction of systemic resistance to Fusarium wilt of chickpea mediated by the Pseudomonas spp. All the isolates of Pseudomonas spp. showed greater disease control in the induced systemic resistance (ISR) bioassay when iron availability in the nutrient solution was low. High performance liquid chromatography (HPLC) analysis indicated that all the bacterial isolates produced more salicylic acid (SA) at low iron (10µM EDDHA) than high iron availability (10µFe(3+) EDDHA). Except PaRsG27, all the three isolates produced more pseudobactin at low iron than high iron availability.

  1. Effect of Iron Availability on Induction of Systemic Resistance to Fusarium Wilt of Chickpea by Pseudomonas spp.

    PubMed Central

    Saikia, Ratul; Srivastava, Alok K.; Singh, Kiran; Lee, Min-Woong

    2005-01-01

    Selected isolates of Pseudomonas fluorescens (Pf4-92 and PfRsC5) and P. aeruginosa (PaRsG18 and PaRsG27) were examined for growth promotion and induced systemic resistance against Fusarium wilt of chickpea. Significant increase in plant height was observed in Pseudomonas treated plants. However, plant growth was inhibited when isolates of Pseudomonas were used in combination with Fusarium oxysporum f. sp. ciceri (FocRs1). It was also observed that the Pseudomonas spp. was colonized in root of chickpea and significantly suppressed the disease in greenhouse condition. Rock wool bioassay technique was used to study the effect of iron availability on the induction of systemic resistance to Fusarium wilt of chickpea mediated by the Pseudomonas spp. All the isolates of Pseudomonas spp. showed greater disease control in the induced systemic resistance (ISR) bioassay when iron availability in the nutrient solution was low. High performance liquid chromatography (HPLC) analysis indicated that all the bacterial isolates produced more salicylic acid (SA) at low iron (10µM EDDHA) than high iron availability (10µFe3+ EDDHA). Except PaRsG27, all the three isolates produced more pseudobactin at low iron than high iron availability. PMID:24049472

  2. Pseudomonas abyssi sp. nov., isolated from the abyssopelagic water of the Mariana Trench.

    PubMed

    Wei, Yuli; Mao, Haiyan; Xu, Yunping; Zou, Wencai; Fang, Jiasong; Blom, Jochen

    2018-06-21

    A novel heterotrophic, Gram-stain-negative, aerobic, rod-shaped bacterium, designated as strain MT5 T , was isolated from deep seawater in the Mariana Trench and characterized phylogenetically and phenotypically. Bacterial optimal growth occurred at 28 °C (range, 4-45 °C), pH 5-7 (pH 4-11) and with 3-7 % (w/v) NaCl (0-18 %). Phylogenetic analysis based on 16S rRNA gene sequence showed that strain MT5 T was related to members of the genus Pseudomonas and shared the highest sequence identities with Pseudomonas pachastrellae CCUG 46540 T (99.6 %), Pseudomonas aestusnigri VGXO14 T (98.5 %) and Pseudomonas oceani KX 20 T (98.4 %). The 16S rRNA gene sequence identities between strain MT5 T and other members of the genus Pseudomonas were below 96.7 %. The digital DNA-DNA hybridization values between strain MT5 T and the two type strains, P. pachastrellae and P. aestusnigri, were 38.9±2.5 and 25.8±2.4 %, respectively. The average nucleotide identity values between strain MT5 T and the two type strains were 90.3 and 87.0 %, respectively. Strain MT5 T and the two type strains shared 94.98 and 86.2 % average amino acid identity, and 30 and 33 Karlin genomic signature, respectively. The sole respiratory menaquinone was Q-9. The major polar lipids were phosphatidylethanolamine, diphosphatidyglycerol and phosphatidylglycerol. The predominant cellular fatty acids of strain MT5 T were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) (35.3 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) (24.1 %), C16 : 0 (15.9 %) and C12 : 0 (7.2 %). The G+C content of the genomic DNA was 61.2 mol%. The combined genotypic and phenotypic data indicated that strain MT5 T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas abyssi sp. nov. is proposed, with the type strain MT5 T (=KCTC 62295 T =MCCC 1K03351 T ).

  3. Adding Selectivity to Antimicrobial Peptides: Rational Design of a Multidomain Peptide against Pseudomonas spp.

    PubMed Central

    Eckert, Randal; Qi, Fengxia; Yarbrough, Daniel K.; He, Jian; Anderson, Maxwell H.; Shi, Wenyuan

    2006-01-01

    Currently available antimicrobials exhibit broad killing with regard to bacterial genera and species. Indiscriminate killing of microbes by these conventional antibiotics can disrupt the ecological balance of the indigenous microbial flora, often resulting in negative clinical consequences. Species-specific antimicrobials capable of precisely targeting pathogenic bacteria without damaging benign microorganisms provide a means of avoiding this problem. In this communication, we report the successful creation of the first synthetic, target-specific antimicrobial peptide, G10KHc, via addition of a rationally designed Pseudomonas-specific targeting moiety (KH) to a generally killing peptide (novispirin G10). The resulting chimeric peptide showed enhanced bactericidal activity and faster killing kinetics against Pseudomonas spp. than G10 alone. The enhanced killing activities are due to increased binding and penetration of the outer membrane of Pseudomonas sp. cells. These properties were not observed in tests of untargeted bacterial species, and this specificity allowed G10KHc to selectively eliminate Pseudomonas spp. from mixed cultures. This work lays a foundation for generating target-specific “smart” antimicrobials to complement currently available conventional antibiotics. PMID:16569868

  4. Peter St. John | NREL

    Science.gov Websites

    for microbial strain <em>design> to optimize the production of value-added chemicals from lignin using Pseudomonas putida. Featured Publications "A <em>quantitative> model for the prediction of sooting tendency

  5. The glycerophospholipid inventory of Pseudomonas putida is conserved between strains and enables growth condition‐related alterations

    PubMed Central

    Rühl, Jana; Hein, Eva‐Maria; Hayen, Heiko; Schmid, Andreas; Blank, Lars M.

    2012-01-01

    Summary Microorganisms, such as Pseudomonas putida, utilize specific physical properties of cellular membrane constituents, mainly glycerophospholipids, to (re‐)adjust the membrane barrier to environmental stresses. Building a basis for membrane composition/function studies, we inventoried the glycerophospholipids of different Pseudomonas and challenged membranes of growing cells with n‐butanol. Using a new high‐resolution liquid chromatography/mass spectrometry (LC/MS) method, 127 glycerophospholipid species [e.g. phosphatidylethanolamine PE(32:1)] with up to five fatty acid combinations were detected. The glycerophospholipid inventory consists of 305 distinct glycerophospholipids [e.g. PE(16:0/16:1)], thereof 14 lyso‐glycerophospholipids, revealing conserved compositions within the four investigated pseudomonads P. putida KT2440, DOT‐T1E, S12 and Pseudomonas sp. strain VLB120. Furthermore, we addressed the influence of environmental conditions on the glycerophospholipid composition of Pseudomonas via long‐time exposure to the sublethal n‐butanol concentration of 1% (v/v), focusing on: (i) relative amounts of glycerophospholipid species, (ii) glycerophospholipid head group composition, (iii) fatty acid chain length, (iv) degree of saturation and (v) cis/trans isomerization of unsaturated fatty acids. Observed alterations consist of changing head group compositions and for the solvent‐sensitive strain KT2440 diminished fatty acid saturation degrees. Minor changes in the glycerophospholipid composition of the solvent‐tolerant strains P. putida S12 and Pseudomonas sp. VLB120 suggest different strategies of the investigated Pseudomonas to maintain the barrier function of cellular membranes. PMID:21895997

  6. Pseudomonas keratitis associated with daily wear of silicone hydrogel contact lenses.

    PubMed

    Schornack, Muriel M; Faia, Lisa J; Griepentrog, Gregory J

    2008-03-01

    To report two cases of pseudomonas keratitis associated with daily wear of silicone hydrogel contact lenses. Medical records of two patients who developed pseudomonas keratitis while wearing silicone hydrogel lenses on a daily-wear schedule are reviewed and discussed. A 13-year-old girl who wore ACUVUE Advance lenses (Johnson & Johnson Vision Care, Jacksonville, FL) 12 to 14 hours daily developed a paracentral corneal ulcer in her left eye 4 months after beginning contact lens use. Cultures were positive for Pseudomonas aeruginosa. The ulcer responded to fortified antibiotics and resolved in 10 days. Best-corrected visual acuity after resolution of the ulcer was 20/25. A 58-year-old woman with a 30-year history of rigid gas-permeable contact lens wear was refitted with O2 Optix lenses (CIBA Vision, Duluth, GA). Six months later, she had a 4.9 x 4.0 mm epithelial defect with an underlying stromal infiltrate in the right eye. Cultures were positive for P. aeruginosa. The ulcer responded to fortified antibiotics and resolved in 30 days. Best-corrected visual acuity after resolution of the ulcer was 20/30. Increased oxygen permeability associated with silicone hydrogel contact lenses may reduce, but does not eliminate, the risk of pseudomonas keratitis. Studies have yet to quantify the risk of keratitis associated with daily wear of these lens materials. Further study is necessary to identify the risks of complications with daily wear of silicone hydrogel lenses and to determine which factors may contribute to those risks.

  7. Pseudomonas-related populations associated with reverse osmosis in drinking water treatment.

    PubMed

    Sala-Comorera, Laura; Blanch, Anicet R; Vilaró, Carles; Galofré, Belén; García-Aljaro, Cristina

    2016-11-01

    Reverse osmosis membrane filtration technology (RO) is used to treat drinking water. After RO treatment, bacterial growth is still observed in water. However, it is not clear whether those microorganisms belong to species that can pose a health risk, such as Pseudomonas spp. The goal of this study is to characterize the bacterial isolates from a medium that is selective for Pseudomonas and Aeromonas which were present in the water fraction before and after the RO. To this end, isolates were recovered over two years and were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. They were then biochemically phenotyped and the population similarity indexes were calculated. The isolates were analysed for their capacity to form biofilms in vitro and antimicrobial susceptibility. There were significant differences between the microbial populations in water before and after RO. Furthermore, the structures of the populations analysed at the same sampling point were similar in different sampling campaigns. Some of the isolates had the capacity to form a biofilm and showed resistance to different antibiotics. A successful level filtration via RO and subsequent recolonization of the membrane with different species from those in the feed water was found. Pseudomonas aeruginosa was not recovered from among the isolates. This study increases the knowledge on the microorganisms present in water after RO treatment, with focus in one of the genus causing problems in RO systems associated with human health risk, Pseudomonas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium

    PubMed Central

    Freschi, Luca; Jeukens, Julie; Kukavica-Ibrulj, Irena; Boyle, Brian; Dupont, Marie-Josée; Laroche, Jérôme; Larose, Stéphane; Maaroufi, Halim; Fothergill, Joanne L.; Moore, Matthew; Winsor, Geoffrey L.; Aaron, Shawn D.; Barbeau, Jean; Bell, Scott C.; Burns, Jane L.; Camara, Miguel; Cantin, André; Charette, Steve J.; Dewar, Ken; Déziel, Éric; Grimwood, Keith; Hancock, Robert E. W.; Harrison, Joe J.; Heeb, Stephan; Jelsbak, Lars; Jia, Baofeng; Kenna, Dervla T.; Kidd, Timothy J.; Klockgether, Jens; Lam, Joseph S.; Lamont, Iain L.; Lewenza, Shawn; Loman, Nick; Malouin, François; Manos, Jim; McArthur, Andrew G.; McKeown, Josie; Milot, Julie; Naghra, Hardeep; Nguyen, Dao; Pereira, Sheldon K.; Perron, Gabriel G.; Pirnay, Jean-Paul; Rainey, Paul B.; Rousseau, Simon; Santos, Pedro M.; Stephenson, Anne; Taylor, Véronique; Turton, Jane F.; Waglechner, Nicholas; Williams, Paul; Thrane, Sandra W.; Wright, Gerard D.; Brinkman, Fiona S. L.; Tucker, Nicholas P.; Tümmler, Burkhard; Winstanley, Craig; Levesque, Roger C.

    2015-01-01

    The International Pseudomonas aeruginosa Consortium is sequencing over 1000 genomes and building an analysis pipeline for the study of Pseudomonas genome evolution, antibiotic resistance and virulence genes. Metadata, including genomic and phenotypic data for each isolate of the collection, are available through the International Pseudomonas Consortium Database (http://ipcd.ibis.ulaval.ca/). Here, we present our strategy and the results that emerged from the analysis of the first 389 genomes. With as yet unmatched resolution, our results confirm that P. aeruginosa strains can be divided into three major groups that are further divided into subgroups, some not previously reported in the literature. We also provide the first snapshot of P. aeruginosa strain diversity with respect to antibiotic resistance. Our approach will allow us to draw potential links between environmental strains and those implicated in human and animal infections, understand how patients become infected and how the infection evolves over time as well as identify prognostic markers for better evidence-based decisions on patient care. PMID:26483767

  9. Pseudomonas aestus sp. nov., a plant growth-promoting bacterium isolated from mangrove sediments.

    PubMed

    Vasconcellos, Rafael L F; Santos, Suikinai Nobre; Zucchi, Tiago Domingues; Silva, Fábio Sérgio Paulino; Souza, Danilo Tosta; Melo, Itamar Soares

    2017-10-01

    Strain CMAA 1215 T , a Gram-reaction-negative, aerobic, catalase positive, polarly flagellated, motile, rod-shaped (0.5-0.8 × 1.3-1.9 µm) bacterium, was isolated from mangrove sediments, Cananéia Island, Brazil. Analysis of the 16S rRNA gene sequences showed that strain CMAA 1215 T forms a distinct phyletic line within the Pseudomonas putida subclade, being closely related to P. plecoglossicida ATCC 700383 T , P. monteilii NBRC 103158 T , and P. taiwanensis BCRC 17751 T of sequence similarity of 98.86, 98.73, and 98.71%, respectively. Genomic comparisons of the strain CMAA 1215 T with its closest phylogenetic type strains using average nucleotide index (ANI) and DNA:DNA relatedness approaches revealed 84.3-85.3% and 56.0-63.0%, respectively. A multilocus sequence analysis (MLSA) performed concatenating 16S rRNA, gyrB and rpoB gene sequences from the novel species was related with Pseudomonas putida subcluster and formed a new phylogenetic lineage. The phenotypic, physiological, biochemical, and genetic characteristics support the assignment of CMAA 1215 T to the genus Pseudomonas, representing a novel species. The name Pseudomonas aestus sp.nov. is proposed, with CMAA 1215 T (=NRRL B-653100 T  = CBMAI 1962 T ) as the type strain.

  10. Use of Antimicrobial Food Additives as Potential Dipping Solutions to Control Pseudomonas spp. Contamination in the Frankfurters and Ham.

    PubMed

    Oh, Mi-Hwa; Park, Beom-Young; Jo, Hyunji; Lee, Soomin; Lee, Heeyoung; Choi, Kyoung-Hee; Yoon, Yohan

    2014-01-01

    This study evaluated the effect of sodium diacetate and sodium lactate solutions for reducing the cell count of Pseudomonas spp. in frankfurters and hams. A mixture of Pseudomonas aeruginosa (NCCP10338, NCCP10250, and NCCP11229), and Pseudomonas fluorescens (KACC10323 and KACC10326) was inoculated on cooked frankfurters and ham. The inoculated samples were immersed into control (sterile distilled water), sodium diacetate (5 and 10%), sodium lactate (5 and 10%), 5% sodium diacetate + 5% sodium lactate, and 10% sodium diacetate + 10% sodium lactate for 0-10 min. Inoculated frankfurters and ham were also immersed into acidified (pH 3.0) solutions such as acidified sodium diacetate (5 and 10%), and acidified sodium lactate (5 and 10%) in addition to control (acidified distilled water) for 0-10 min. Total aerobic plate counts for Pseudomonas spp. were enumerated on Cetrimide agar. Significant reductions (ca. 2 Log CFU/g) in Pseudomonas spp. cells on frankfurters and ham were observed only for a combination treatment of 10% sodium lactate + 10% sodium diacetate. When the solutions were acidified to pH 3.0, the total reductions of Pseudomonas spp. were 1.5-4.0 Log CFU/g. The order of reduction amounts of Pseudomonas spp. cell counts was 10% sodium lactate > 5% sodium lactate ≥ 10% sodium diacetate > 5% sodium diacetate > control for frankfurters, and 10% sodium lactate > 5% sodium lactate > 10% sodium diacetate > 5% sodium diacetate > control for ham. The results suggest that using acidified food additive antimicrobials, as dipping solutions, should be useful in reducing Pseudomonas spp. on frankfurters and ham.

  11. Biosurfactant-producing microorganism Pseudomonas sp. SB assists the phytoremediation of DDT-contaminated soil by two grass species.

    PubMed

    Wang, Beibei; Wang, Qingling; Liu, Wuxing; Liu, Xiaoyan; Hou, Jinyu; Teng, Ying; Luo, Yongming; Christie, Peter

    2017-09-01

    Phytoremediation together with microorganisms may confer the advantages of both phytoremediation and microbial remediation of soils containing organic contaminants. In this system biosurfactants produced by Pseudomonas sp. SB may effectively help to increase the bioavailability of organic pollutants and thereby enhance their microbial degradation in soil. Plants may enhance the rhizosphere environment for microorganisms and thus promote the bioremediation of contaminants. In the present pot experiment study, dichlorodiphenyltrichloroethane (DDT) residues underwent an apparent decline after soil bioremediation compared with the original soil. The removal efficiency of fertilizer + tall fescue, fertilizer + tall fescue + Pseudomonas, fertilizer + perennial ryegrass, and fertilizer + perennial ryegrass + Pseudomonas treatments were 59.4, 65.6, 69.0, and 65.9%, respectively, and were generally higher than that in the fertilizer control (40.3%). Principal coordinates analysis (PCoA) verifies that plant species greatly affected the soil bacterial community irrespective of inoculation with Pseudomonas sp. SB. Furthermore, community composition analysis shows that Proteobacteria, Acidobacteria and Actinobacteria were the three dominant phyla in all groups. In particular, the relative abundance of Pseudomonas for fertilizer + tall fescue + Pseudomonas (0.25%) was significantly greater than fertilizer + tall fescue and this was related to the DDT removal efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Biodegradation of propargite by Pseudomonas putida, isolated from tea rhizosphere.

    PubMed

    Sarkar, Soumik; Seenivasan, Subbiah; Asir, Robert Premkumar Samuel

    2010-02-15

    Biodegradation of miticide propargite was carried out in vitro by selected Pseudomonas strains isolated from tea rhizosphere. A total number of 13 strains were isolated and further screened based on their tolerance level to different concentrations of propargite. Five best strains were selected and further tested for their nutritional requirements. Among the different carbon sources tested glucose exhibited the highest growth promoting capacity and among nitrogen sources ammonium nitrate supported the growth to the maximum. The five selected Pseudomonas strain exhibited a range of degradation capabilities. Mineral salts medium (MSM) amended with glucose provided better environment for degradation with the highest degradation potential in strain SPR 13 followed by SPR 8 (71.9% and 69.0% respectively).

  13. Whirlpool-associated folliculitis caused by Pseudomonas aeruginosa: report of an outbreak and review.

    PubMed Central

    Ratnam, S; Hogan, K; March, S B; Butler, R W

    1986-01-01

    An outbreak of folliculitis caused by Pseudomonas aeruginosa serotype O:7 occurred among the guests of a hotel in St. John's, Newfoundland, Canada, and the source of the infection was traced to the hotel whirlpool. Of 36 persons who used the whirlpool, 26 (72%) developed folliculitis within 1 to 5 days after exposure; the attack rate was significantly higher for children (90%) than for adults (50%). The rash characteristics were consistent with those of Pseudomonas folliculitis previously described (T. L. Gustafson, J. D. Band, R. H. Hutcheson, Jr., and W. Schaffner, Rev. Infect. Dis. 5:1-8, 1983). This is considered to be the first outbreak in which P. aeruginosa serotype O:7 has been incriminated. Published reports to date of outbreaks of Pseudomonas folliculitis associated with the use of whirlpools, hot tubs, swimming pools, etc., were reviewed. PMID:3082930

  14. Pseudomonas aeruginosa outbreak in a pediatric oncology care unit caused by an errant water jet into contaminated siphons.

    PubMed

    Schneider, Henriette; Geginat, Gernot; Hogardt, Michael; Kramer, Alexandra; Dürken, Matthias; Schroten, Horst; Tenenbaum, Tobias

    2012-06-01

    We analyzed an outbreak of invasive infections with an exotoxin U positive Pseudomonas aeruginosa strain within a pediatric oncology care unit. Environmental sampling and molecular characterization of the Pseudomonas aeruginosa strains led to identification of the outbreak source. An errant water jet into the sink within patient rooms was observed. Optimized outbreak management resulted in an abundance of further Pseudomonas aeruginosa infections within the pediatric oncology care unit.

  15. Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses.

    PubMed

    Peix, Alvaro; Rivas, Raúl; Santa-Regina, Ignacio; Mateos, Pedro F; Martínez-Molina, Eustoquio; Rodríguez-Barrueco, Claudino; Velázquez, Encarna

    2004-05-01

    A phosphate-solubilizing bacterial strain designated OK2(T) was isolated from rhizospheric soil of grasses growing spontaneously in a soil from Spain. Cells of the strain were Gram-negative, strictly aerobic, rod-shaped and motile. Phylogenetic analysis of the 16S rRNA gene indicated that this bacterium belongs to the gamma-subclass of Proteobacteria within the genus Pseudomonas and that the closest related species is Pseudomonas graminis. The strain produced catalase but not oxidase. Cellulose, casein, starch, gelatin and urea were not hydrolysed. Aesculin was hydrolysed. Growth was observed with many carbohydrates as carbon sources. The main non-polar fatty acids detected were hexadecenoic acid (16 : 1), hexadecanoic acid (16 : 0) and octadecenoic acid (18 : 1). The hydroxy fatty acids detected were 3-hydroxydecanoic acid (3-OH 10 : 0), 3-hydroxydodecanoic acid (3-OH 12 : 0) and 2-hydroxydodecanoic acid (2-OH 12 : 0). The G+C DNA content determined was 59.3 mol%. DNA-DNA hybridization showed 48.7 % relatedness between strain OK2(T) and P. graminis DSM 11363(T) and 26.2 % with respect to Pseudomonas rhizosphaerae LMG 21640(T). Therefore, these results indicate that strain OK2(T) (=LMG 21974(T)=CECT 5822(T)) belongs to a novel species of the genus Pseudomonas, and the name Pseudomonas lutea sp. nov. is proposed.

  16. Draft Genome Sequence of Pseudomonas oceani DSM 100277T, a Deep-Sea Bacterium.

    PubMed

    García-Valdés, Elena; Gomila, Margarita; Mulet, Magdalena; Lalucat, Jorge

    2018-04-12

    Pseudomonas oceani DSM 100277 T was isolated from deep seawater in the Okinawa Trough at 1390 m. P. oceani belongs to the Pseudomonas pertucinogena group. Here, we report the draft genome sequence of P. oceani , which has an estimated size of 4.1 Mb and exhibits 3,790 coding sequences, with a G+C content of 59.94 mol%. Copyright © 2018 García-Valdés et al.

  17. Genomic Diversity of Biocontrol Strains of Pseudomonas spp. Isolated from Aerial or Root Surfaces of Plants

    USDA-ARS?s Scientific Manuscript database

    The striking ecological, metabolic, and biochemical diversity of Pseudomonas has intrigued microbiologists for many decades. To explore the genomic diversity of biocontrol strains of Pseudomonas spp., we derived high quality draft sequences of seven strains known to suppress plant disease. The str...

  18. Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China.

    PubMed

    Zhang, Zhennan; Yin, Naiyi; Cai, Xiaolin; Wang, Zhenzhou; Cui, Yanshan

    2016-09-01

    A mesophilic, Gram-negative, arsenite[As(III)]-oxidizing and arsenate[As(V)]-reducing bacterial strain, Pseudomonas sp. HN-2, was isolated from an As-contaminated soil. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the strain was closely related to Pseudomonas stutzeri. Under aerobic conditions, this strain oxidized 92.0% (61.4μmol/L) of arsenite to arsenate within 3hr of incubation. Reduction of As(V) to As(III) occurred in anoxic conditions. Pseudomonas sp. HN-2 is among the first soil bacteria shown to be capable of both aerobic As(III) oxidation and anoxic As(V) reduction. The strain, as an efficient As(III) oxidizer and As(V) reducer in Pseudomonas, has the potential to impact arsenic mobility in both anoxic and aerobic environments, and has potential application in As remediation processes. Copyright © 2016. Published by Elsevier B.V.

  19. The pseudomonas hot-foot syndrome.

    PubMed

    Fiorillo, L; Zucker, M; Sawyer, D; Lin, A N

    2001-08-02

    Between March and May 1998, there was an outbreak of a clinically distinct skin eruption on the soles of the feet of children who used a community wading pool. We reviewed the medical records of 40 children in whom this syndrome developed between March and May 1998. We treated 17 children and advised the attending physicians on the care of the other 23. Follow-up data were obtained for up to one year. Exquisitely painful erythematous plantar nodules developed in 40 children (age, 2 to 15 years) within 40 hours after they had used a wading pool whose floor was coated with abrasive grit. Culture of the plantar pustules from one child yielded Pseudomonas aeruginosa with a pattern on pulsed-field gel electrophoresis that was identical to that of a strain of P. aeruginosa cultured from the pool water. A skin-biopsy specimen from this patient showed a perivascular and perieccrine neutrophilic infiltrate, and a specimen from another patient showed a dermal microabscess. Thirty-seven patients were treated symptomatically; three others were treated with cephalexin. All patients recovered within 14 days, but three children had recurrences of the painful plantar nodules within 24 hours after using the pool again. Folliculitis developed in one patient. The "pseudomonas hot-foot syndrome" is characterized by the acute onset in children of exquisitely tender plantar nodules and a benign, self-limited course. This community outbreak developed after exposure to pool water containing high concentrations of P. aeruginosa.

  20. Phylogenomics of 2,4-Diacetylphloroglucinol-Producing Pseudomonas and Novel Antiglycation Endophytes from Piper auritum.

    PubMed

    Gutiérrez-García, Karina; Neira-González, Adriana; Pérez-Gutiérrez, Rosa Martha; Granados-Ramírez, Giovana; Zarraga, Ramon; Wrobel, Kazimierz; Barona-Gómez, Francisco; Flores-Cotera, Luis B

    2017-07-28

    2,4-Diacetylphloroglucinol (DAPG) (1) is a phenolic polyketide produced by some plant-associated Pseudomonas species, with many biological activities and ecological functions. Here, we aimed at reconstructing the natural history of DAPG using phylogenomics focused at its biosynthetic gene cluster or phl genes. In addition to around 1500 publically available genomes, we obtained and analyzed the sequences of nine novel Pseudomonas endophytes isolated from the antidiabetic medicinal plant Piper auritum. We found that 29 organisms belonging to six Pseudomonas species contain the phl genes at different frequencies depending on the species. The evolution of the phl genes was then reconstructed, leading to at least two clades postulated to correlate with the known chemical diversity surrounding DAPG biosynthesis. Moreover, two of the newly obtained Pseudomonas endophytes with high antiglycation activity were shown to exert their inhibitory activity against the formation of advanced glycation end-products via DAPG and related congeners. Its isomer, 5-hydroxyferulic acid (2), detected during bioactivity-guided fractionation, together with other DAPG congeners, were found to enhance the detected inhibitory activity. This report provides evidence of a link between the evolution and chemical diversity of DAPG and congeners.

  1. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas.

    PubMed

    Shen, Xuemei; Hu, Hongbo; Peng, Huasong; Wang, Wei; Zhang, Xuehong

    2013-04-22

    Some Pseudomonas strains function as predominant plant growth-promoting rhizobacteria (PGPR). Within this group, Pseudomonas chlororaphis and Pseudomonas fluorescens are non-pathogenic biocontrol agents, and some Pseudomonas aeruginosa and Pseudomonas stutzeri strains are PGPR. P. chlororaphis GP72 is a plant growth-promoting rhizobacterium with a fully sequenced genome. We conducted a genomic analysis comparing GP72 with three other pseudomonad PGPR: P. fluorescens Pf-5, P. aeruginosa M18, and the nitrogen-fixing strain P. stutzeri A1501. Our aim was to identify the similarities and differences among these strains using a comparative genomic approach to clarify the mechanisms of plant growth-promoting activity. The genome sizes of GP72, Pf-5, M18, and A1501 ranged from 4.6 to 7.1 M, and the number of protein-coding genes varied among the four species. Clusters of Orthologous Groups (COGs) analysis assigned functions to predicted proteins. The COGs distributions were similar among the four species. However, the percentage of genes encoding transposases and their inactivated derivatives (COG L) was 1.33% of the total genes with COGs classifications in A1501, 0.21% in GP72, 0.02% in Pf-5, and 0.11% in M18. A phylogenetic analysis indicated that GP72 and Pf-5 were the most closely related strains, consistent with the genome alignment results. Comparisons of predicted coding sequences (CDSs) between GP72 and Pf-5 revealed 3544 conserved genes. There were fewer conserved genes when GP72 CDSs were compared with those of A1501 and M18. Comparisons among the four Pseudomonas species revealed 603 conserved genes in GP72, illustrating common plant growth-promoting traits shared among these PGPR. Conserved genes were related to catabolism, transport of plant-derived compounds, stress resistance, and rhizosphere colonization. Some strain-specific CDSs were related to different kinds of biocontrol activities or plant growth promotion. The GP72 genome contained the cus operon

  2. Community-acquired Pseudomonas aeruginosa urinary tract infections in children hospitalized in a tertiary center: relative frequency, risk factors, antimicrobial resistance and treatment.

    PubMed

    Marcus, N; Ashkenazi, S; Samra, Z; Cohen, A; Livni, G

    2008-10-01

    The practice of antibiotic prophylaxis against recurrent urinary tract infection (UTI), with hospitalization reserved for severe or complicated cases, has led to changes in the nature and culprit uropathogens of community-acquired (CA), hospital-treated UTI. Characterization of subgroups that need special considerations is crucial. To elucidate the trends and characteristics of CA Pseudomonas UTI in hospitalized children; define the antibiotic susceptibility; determine the appropriateness of the empiric antibiotics used; compare to other causes of UTI in this population; and thereby define predictors for Pseudomonas UTI. A prospective clinical and laboratory study from 2001 through 2005. Children with P. aeruginosa UTI were characterized and compared with non-Pseudomonas UTI. Of 351 episodes of culture-proven CA UTI, 28 (8%) were caused by Pseudomonas, representing a 2.8-fold increase from our previous study. Pseudomonas UTI was more common in children > 5 years (p < 0.01), with urinary abnormalities (p < 0.01) and with previous antibiotic use in the previous month (p < 0.001). Pseudomonas UTI was often resistant to antibiotics usually recommended for empiric therapy; 25% was initially treated with inappropriate IV antibiotics (4.6% in the non-Pseudomonas group, p < 0.001) with 1.3 days longer IV antibiotics. On multivariate analysis, risk factors for Pseudomonas UTI were previous antibiotic therapy and underlying urinary pathology. Pseudomonas UTI seems to increase in CA, hospital-treated children and is often treated inappropriately according to current treatment protocols. Awareness of this trend and knowledge of the defined risk factors of Pseudomonas UTI might improve the empiric antibiotic therapy.

  3. Secretion of Pseudomonas aeruginosa type III cytotoxins is dependent on pseudomonas quinolone signal concentration.

    PubMed

    Singh, G; Wu, B; Baek, M S; Camargo, A; Nguyen, A; Slusher, N A; Srinivasan, R; Wiener-Kronish, J P; Lynch, S V

    2010-10-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can, like other bacterial species, exist in antimicrobial resistant sessile biofilms and as free-swimming, planktonic cells. Specific virulence factors are typically associated with each lifestyle and several two component response regulators have been shown to reciprocally regulate transition between biofilm-associated chronic, and free-swimming acute infections. Quorum sensing (QS) signal molecules belonging to the las and rhl systems are known to regulate virulence gene expression by P. aeruginosa. However the impact of a recently described family of novel quorum sensing signals produced by the Pseudomonas Quinolone Signal (PQS) biosynthetic pathway, on the transition between these modes of infection is less clear. Using clonal isolates from a patient developing ventilator-associated pneumonia, we demonstrated that clinical observations were mirrored by an in vitro temporal shift in isolate phenotype from a non-secreting, to a Type III cytotoxin secreting (TTSS) phenotype and further, that this phenotypic change was PQS-dependent. While intracellular type III cytotoxin levels were unaffected by PQS concentration, cytotoxin secretion was dependent on this signal molecule. Elevated PQS concentrations were associated with inhibition of cytotoxin secretion coincident with expression of virulence factors such as elastase and pyoverdin. In contrast, low concentrations or the inability to biosynthesize PQS resulted in a reversal of this phenotype. These data suggest that expression of specific P. aeruginosa virulence factors appears to be reciprocally regulated and that an additional level of PQS-dependent post-translational control, specifically governing type III cytotoxin secretion, exists in this species. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Insights into the mechanisms of Promysalin, a secondary metabolite with genus-specific antibacterial activity against Pseudomonas

    USDA-ARS?s Scientific Manuscript database

    Promysalin, a secondary metabolite produced by Pseudomonas putida RW10S1, has antibacterial activity against a wide variety of Pseudomonas sp., including both human and plant pathogens. Promysalin induces swarming and biofilm formation in the producing species, and inhibits growth of susceptible sp...

  5. Lipolytic and proteolytic activity of Pseudomonas spp. isolated during milking and storage of refrigerated raw milk.

    PubMed

    Capodifoglio, Eduardo; Vidal, Ana Maria Centola; Lima, Joyce Aparecida Santos; Bortoletto, Fernanda; D'Abreu, Léa Furlan; Gonçalves, Ana Carolina Siqueira; Vaz, Andreia Cristina Nakashima; Balieiro, Julio Cesar de Carvalho; Netto, Arlindo Saran

    2016-07-01

    The aim of this study was to verify the presence of lipolytic and proteolytic Pseudomonas spp. during milking and storage of refrigerated raw milk. We also intended to compare samples collected during rainy and dry seasons, from farms with manual and mechanical milking systems. For this, samples of milkers' hands, cows' teats, water, expansion tanks, equipment, and utensils used during milking were analyzed regarding Pseudomonas spp. Positive samples were tested for the production of lipolytic and proteolytic enzymes. Microorganisms of the genus Pseudomonas were isolated from all sampling points. A higher isolation rate of the bacterium was found in the rainy season except for 6 sampling points, with all of these associated with mechanical milking systems. Pseudomonas spp. exhibiting lipolytic activity were found to be predominant during the dry season, since no activity was detected during the rainy season in 26 of the 29 sampling sites. The highest number of lipolytic Pseudomonas isolates was obtained from water. Presence of lipase-producing Pseudomonas spp. was verified in 7 and 36% of the samples collected from farms with manual and mechanical milking, respectively. When analyzing raw milk collected from expansion tanks immediately (0 h) and 24h after milking, we observed that for dairy properties with manual milking process, 10% of the Pseudomonas isolates were positive for lipolytic activity. The percentage increased to 12% 48h after milking. Mean averages were 32, 33, and 39% immediately after, 24 and 48h after milking, respectively, for farms with mechanical milking. All sampling points showed the presence of proteolytic strains of Pseudomonas. The highest proteolytic activity was found during the rainy season, except for the samples collected from milkers' hands before milking, buckets, and teat cup inner surfaces after milking and from the water in dairy farms with mechanical milking system. Of these samples, 72, 56, and 50%, respectively, were positive

  6. Impact of Medium and Substrate on Growth of Pseudomonas Fluorescens Biofilms on Polyurethane Paint

    DTIC Science & Technology

    2011-02-01

    biofilm formation on polyurethane (PU) coatings, and to define how those parameters contribute to polyurethane biodegradation. We used a batch flow system...determine which factors best support the growth and persistence of Pseudomonas fluorescens biofilms . Factors that enhance biofilm formation and...AFRL-RX-WP-TP-2011-4131 IMPACT OF MEDIUM AND SUBSTRATE ON GROWTH OF PSEUDOMONAS FLUORESCENS BIOFILMS ON POLYURETHANE PAINT Wendy L. Goodson

  7. Experimental Keratitis Due to Pseudomonas aeruginosa: Model for Evaluation of Antimicrobial Drugs

    PubMed Central

    Davis, Starkey D.; Chandler, John W.

    1975-01-01

    An improved method for experimental keratitis due to Pseudomonas aeruginosa is described. Essential features of the method are use of inbred guinea pigs, intracorneal injection of bacteria, subconjunctival injection of antibiotics, “blind” evaluation of results, and statistical analysis of data. Untreated ocular infections were most severe 5 to 7 days after infection. Sterilized bacterial suspensions caused no abnormalities on day 5. Tobramycin and polymyxin B were more active than gentamicin against two strains of Pseudomonas. This model is suitable for many types of quantitative studies on experimental keratitis. Images PMID:810084

  8. Phylogenetic Analysis of Polygalacturonase-Producing Bacillus and Pseudomonas Isolated From Plant Waste Material

    PubMed Central

    Sohail, Muhammad; Latif, Zakia

    2016-01-01

    Background: Keeping in mind the commercial application of polygalacturonase (PG) in juice and beverages industry, bacterial strains were isolated from rotten fruits and vegetables to screen for competent producers of PG. Objectives: In this study, the plate method was used for preliminary screening of polygalacturonase-producing bacteria, while the Dinitrosalicylic Acid (DNS) method was used for quantifications of PG. Materials and Methods: Biochemically-identified polygalacturonase-producing Bacillus and Pseudomonas species were further characterized by molecular markers. The genetic diversity among these selected strains was analyzed by investigating microsatellite distribution in their genome. Out of 110 strains, 17 competent strains of Bacillus and eight strains of Pseudomonas were selected, identified and confirmed biochemically. Selected strains were characterized by 16S rRNA sequencing and data was submitted to the national center for biotechnology information (NCBI) website for accession numbers. Results: Among the Bacillus, Bacillus vallismortis (JQ990307) isolated from mango was the most competent producer of PG; producing up to 4.4 U/µL. Amongst Pseudomonas, Pseudomonas aeruginosa (JQ990314) isolated from oranges was the most competent PG producer equivalent to B. vallismortis (JQ990307). To determine genetic diversity of different strains of Pseudomonas and Bacillus varying in PG production, fingerprinting was done on the basis of Simple Sequence Repeats (SSR) or microsatellites. The data was analyzed and a phylogenetic tree was constructed using the Minitab 3 software for comparison of bacterial isolates producing different concentrations of PG. Fingerprinting showed that presence or absence of certain microsatellites correlated with the ability of PG production. Conclusions: Bacteria from biological waste were competent producers of PG and must be used on an industrial scale to cope with the demand of PG in the food industry. PMID:27099686

  9. A Mathematical model to investigate quorum sensing regulation and its heterogenecity in pseudomonas syringae on leaves

    USDA-ARS?s Scientific Manuscript database

    The bacterium Pseudomonas syringae is a plant-pathogen, which through quorum sensing (QS), controls virulence. In this paper, by means of mathematical modeling, we investigate QS of this bacterium when living on leaf surfaces. We extend an existing stochastic model for the formation of Pseudomonas s...

  10. Pseudomonas Folliculitis Associated with Use of Hot Tubs and Spas.

    ERIC Educational Resources Information Center

    Ramsey, Michael L.

    1989-01-01

    Discusses the history, etiology, diagnosis, histopathology, treatment, and prevention of Pseudomonas Folliculitis, an increasingly common skin infection contracted in hot tubs and, to some extent, in swimming pools. (Author/SM)

  11. New strategies for genetic engineering Pseudomonas syringae using recombination

    USDA-ARS?s Scientific Manuscript database

    Here we report that DNA oligonucleotides (oligos) introduced directly into bacteria by electroporation can recombine with the bacterial chromosome. This phenomenon was identified in Pseudomonas syringae and we subsequently found that Escherichia coli, Salmonella typhimurium and Shigella flexneri are...

  12. Inactivation of the Pseudomonas-Derived Cephalosporinase-3 (PDC-3) by Relebactam.

    PubMed

    Barnes, Melissa D; Bethel, Christopher R; Alsop, Jim; Becka, Scott A; Rutter, Joseph D; Papp-Wallace, Krisztina M; Bonomo, Robert A

    2018-05-01

    Pseudomonas aeruginosa is a prevalent and life-threatening Gram-negative pathogen. Pseudomonas -derived cephlosporinase (PDC) is the major inducible cephalosporinase in P. aeruginosa In this investigation, we show that relebactam, a diazabicyclooctane β-lactamase inhibitor, potently inactivates PDC-3, with a k 2 / K of 41,400 M -1 s -1 and a k off of 0.00095 s -1 Relebactam restored susceptibility to imipenem in 62% of multidrug-resistant P. aeruginosa clinical isolates, while only 21% of isolates were susceptible to imipenem-cilastatin alone. Relebactam promises to increase the efficacy of imipenem-cilastatin against P. aeruginosa . Copyright © 2018 American Society for Microbiology.

  13. Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro.

    PubMed

    Peix, Alvaro; Rivas, Raúl; Mateos, Pedro F; Martínez-Molina, Eustoquio; Rodríguez-Barrueco, Claudino; Velázquez, Encarna

    2003-11-01

    A bacterial strain (designated IH5(T)), isolated from rhizospheric soil of grasses growing spontaneously in Spanish soil, actively solubilized phosphates in vitro when bicalcium phosphate was used as a phosphorus source. This strain was Gram-negative, strictly aerobic, rod-shaped and motile. The strain produced catalase, but not oxidase. Cellulose, casein, starch, gelatin, aesculin and urea were not hydrolysed. Growth was observed with many carbohydrates as the carbon source. The main non-polar fatty acids detected were hexadecenoic acid (C(16 : 1)), hexadecanoic acid (C(16 : 0)) and octadecenoic acid (C(18 : 1)). The hydroxy fatty acids detected were 3-hydroxydecanoic acid (C(10 : 0) 3-OH), 3-hydroxydodecanoic acid (C(12 : 0) 3-OH) and 2-hydroxydodecanoic acid (C(12 : 0) 2-OH). Phylogenetic analysis of 16S rRNA indicated that this bacterium belongs to the genus Pseudomonas in the gamma-subclass of the Proteobacteria and that the closest related species is Pseudomonas graminis. The DNA G+C content was 61 mol%. DNA-DNA hybridization showed 23 % relatedness between strain IH5(T) and P. graminis DSM 11363(T). Therefore, strain IH5(T) belongs to a novel species from the genus Pseudomonas, for which the name Pseudomonas rhizosphaerae sp. nov. is proposed (type strain, IH5(T)=LMG 21640(T)=CECT 5726(T)).

  14. Regiochemistry of Camphor Analog Oxidation by Pseudomonas putida

    PubMed Central

    Banerjee, Sujit; Dombrowski, Anne E.; Scala, Anthony J.

    1983-01-01

    Pseudomonas putida cooxidized norcamphor and pericyclocamphanone to hydroxylated and lactonized products during growth on camphor. Norcamphor was hydroxylated at the 5 position, similar to the corresponding process in camphor, but pericyclocamphanone was oxidized at the 6 position. We conclude that the regiochemistry of the hydroxylation may be substrate controlled. PMID:16346279

  15. CrcZ and CrcX regulate carbon utilization in Pseudomonas syringae pathovar tomato strain DC3000

    USDA-ARS?s Scientific Manuscript database

    Small non-coding RNAs (ncRNAs) are important components of many regulatory pathways in bacteria and play key roles in regulating factors important for virulence. Carbon catabolite repression control is modulated by small RNAs (crcZ or crcZ and crcY) in Pseudomonas aeruginosa and Pseudomonas putida. ...

  16. Nosocomial outbreak of Pseudomonas aeruginosa endophthalmitis.

    PubMed

    Mateos, I; Valencia, R; Torres, M J; Cantos, A; Conde, M; Aznar, J

    2006-11-01

    We describe an outbreak of nosocomial endophthalmitis due to a common source, which was determined to be trypan blue solution prepared in the hospital's pharmacy service. We assume that viable bacteria probably gained access to the trypan blue stock solution during cooling after autoclaving. The temporal cluster of Pseudomonas aeruginosa endophthalmitis was readily perceived on the basis of clinical and microbiological findings, and an exogenous source of contamination was unequivocally identified by means of DNA fingerprinting.

  17. Safety of Immunogenicity Testing of a Pilot Polysaccharide Vaccine Preparation to Pseudomonas aeruginosa.

    DTIC Science & Technology

    1980-09-01

    Pilot Polysaccharide Vaccine Preparation to Pseudomonas Aeruginosa .°’. SafGetad uoenct Testin ofaPio.PDsa.ard e(For p ri d 16 August 1979 to 15 August...Immunogenicity Testing of a Pilot Annual Report Polysaccharide Vaccine Preparation to (16 Aug. 79 - 15 Auj. 80) Pseudomonas Aeruginosa 6. PERFORMING ORG. REPORT...qiit polysaccharide (PS) maLerial isolated from Lhe ouit e _l Aace or, cultural supernates of P. ae ruginosa (i) . in it tyl , ; I m W" "des have

  18. In Vivo-Induced Genes in Pseudomonas aeruginosa

    PubMed Central

    Handfield, Martin; Lehoux, Dario E.; Sanschagrin, François; Mahan, Michael J.; Woods, Donald E.; Levesque, Roger C.

    2000-01-01

    In vivo expression technology was used for testing Pseudomonas aeruginosa in the rat lung model of chronic infection and in a mouse model of systemic infection. Three of the eight ivi proteins found showed sequence identity to known virulence factors involved in iron acquisition via an open reading frame (called pvdI) implicated in pyoverdine biosynthesis, membrane biogenesis (FtsY), and adhesion (Hag2). PMID:10722644

  19. Pseudomonas spp. diversity is negatively associated with suppression of the wheat take-all pathogen

    PubMed Central

    Mehrabi, Zia; McMillan, Vanessa E.; Clark, Ian M.; Canning, Gail; Hammond-Kosack, Kim E.; Preston, Gail; Hirsch, Penny R.; Mauchline, Tim H.

    2016-01-01

    Biodiversity and ecosystem functioning research typically shows positive diversity- productivity relationships. However, local increases in species richness can increase competition within trophic levels, reducing the efficacy of intertrophic level population control. Pseudomonas spp. are a dominant group of soil bacteria that play key roles in plant growth promotion and control of crop fungal pathogens. Here we show that Pseudomonas spp. richness is positively correlated with take-all disease in wheat and with yield losses of ~3 t/ha in the field. We modeled the interactions between Pseudomonas and the take-all pathogen in abstract experimental microcosms, and show that increased bacterial genotypic richness escalates bacterial antagonism and decreases the ability of the bacterial community to inhibit growth of the take-all pathogen. Future work is required to determine the generality of these negative biodiversity effects on different media and directly at infection zones on root surfaces. However, the increase in competition between bacteria at high genotypic richness and the potential loss of fungal biocontrol activity highlights an important mechanism to explain the negative Pseudomonas diversity-wheat yield relationship we observed in the field. Together our results suggest that the effect of biodiversity on ecosystem functioning can depend on both the function and trophic level of interest. PMID:27549739

  20. Mass spectrometry identification of alkyl-substituted pyrazines produced by Pseudomonas spp. isolates obtained from wine corks.

    PubMed

    Bañeras, Lluís; Trias, Rosalia; Godayol, Anna; Cerdán, Laura; Nawrath, Thorben; Schulz, Stefan; Anticó, Enriqueta

    2013-06-15

    We investigated the pyrazine production of 23 Pseudomonas isolates obtained from cork in order to assess their implications in off-flavour development. Off-flavour development in cork stoppers is a crucial process in maintaining the high quality of some wines. Pyrazine production was analyzed by headspace solid-phase-microextraction (HS-SPME) and gas chromatography coupled with mass spectrometry (GC-MS). Five out of the 23 isolates, i.e. Pseudomonas koreensis TCA20, Pseudomonas palleroniana TCA16, Pseudomonas putida TCA23 and N7, and Pseudomonas stutzeri TRA27a were able to produce branched alkyl-substituted pyrazines. For isolates N7 and TCA16, 14 compounds could be identified as pyrazines. The use of mineral media supplemented with different carbon and nitrogen sources resulted in changes in the pyrazine production capacity. In the two strains the amount of pyrazines produced was higher with glucose and decreased significantly with lactate. In all cases, 2,5-di(1-methylethyl)pyrazine was found to be dominant and independent of amino acid addition, suggesting a completely de novo synthesis. Aroma descriptions of most alkyl substituted pyrazines include mild vegetal aromas, not necessarily undesirable for the cork manufacturing industry. Methoxypyrazines, exhibiting earthy and musty aromas, could not be detected in any of the strains analysed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Comparative studies on crosslinked and uncrosslinked natural rubber biodegradation by Pseudomonas sp.

    PubMed

    Roy, Ram Vinod; Das, Mithu; Banerjee, Rintu; Bhowmick, Anil K

    2006-12-01

    A comparative study on biodegradation of di-cumyl peroxide (DCP) crosslinked and uncrosslinked natural rubber by Pseudomonas sp. was carried out. Decrease in organic carbon content along with the changes in tensile strength of the treated rubber, both DCP crosslinked and uncrosslinked natural rubber, indicated rubber hydrocarbon utilization by the Pseudomonas sp. A decrease in 60.88% MPa and 41.66% MPa was observed after five month's old treated uncrosslinked natural rubber and DCP crosslinked rubber, respectively. Biodegradation was more pronounced in natural uncrosslinked rubber, which was further confirmed by the formation of aldehydic compounds with decrease in CH2 stretching frequencies.

  2. Production of Polyhydroxyalkanoates from Sludge Palm Oil Using Pseudomonas putida S12.

    PubMed

    Kang, Du-Kyeong; Lee, Cho-Ryong; Lee, Sun Hee; Bae, Jung-Hoon; Park, Young-Kwon; Rhee, Young Ha; Sung, Bong Hyun; Sohn, Jung-Hoon

    2017-05-28

    Polyhydroxyalkanoates (PHAs) are biodegradable plastics produced by bacteria, but their use in diverse applications is prohibited by high production costs. To reduce these costs, the conversion by Pseudomonas strains of P HAs from crude s ludge p alm oil ( SPO) a s an inexpensive renewable raw material was tested. Pseudomonas putida S12 was found to produce the highest yield (~41%) of elastomeric medium-chain-length (MCL)-PHAs from SPO. The MCL-PHA characteristics were analyzed by gas-chromatography/mass spectrometry, gel permeation chromatography, and differential scanning calorimetry. These findings may contribute to more widespread use of PHAs by reducing PHA production costs.

  3. Polytrauma Increases Susceptibility to Pseudomonas Pneumonia in Mature Mice.

    PubMed

    Turnbull, Isaiah R; Ghosh, Sarbani; Fuchs, Anja; Hilliard, Julia; Davis, Christopher G; Bochicchio, Grant V; Southard, Robert E

    2016-05-01

    Pneumonia is the most common complication observed in patients with severe injuries. Although the average age of injured patients is 47 years, existing studies of the effect of injury on the susceptibility to infectious complications have focused on young animals, equivalent to a late adolescent human. We hypothesized that mature adult animals are more susceptible to infection after injury than younger counterparts. To test this hypothesis, we challenged 6 to 8-month-old mature mice to a polytrauma injury followed by Pseudomonas aeruginosa pneumonia and compared them to young (8-10-week-old) animals. We demonstrate that polytrauma injury increases mortality from pneumonia in mature animals (sham-pneumonia 21% vs. polytrauma-pneumonia 62%) but not younger counterparts. After polytrauma, pneumonia in mature mice is associated with higher bacterial burden in lung, increased incidence of bacteremia, and elevated levels of bacteria in the blood, demonstrating that injury decreases the ability to control the infectious challenge. We further find that polytrauma did not induce elevations in circulating cytokine levels (TNF-alpha, IL-6, KC, and IL-10) 24  h after injury. However, mature mice subjected to polytrauma demonstrated an exaggerated circulating inflammatory cytokine response to subsequent Pseudomonas pneumonia. Additionally, whereas prior injury increases LPS-stimulated IL-6 production by peripheral blood leukocytes from young (8-10-week-old) mice, injury does not prime IL-6 production by cell from mature adult mice. We conclude that in mature mice polytrauma results in increased susceptibility to Pseudomonas pneumonia while priming an exaggerated but ineffective inflammatory response.

  4. Resistance to antibiotics in clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Sevillano, E; Valderrey, C; Canduela, M J; Umaran, A; Calvo, F; Gallego, L

    2006-01-01

    To analyse the global resistance to some antibiotics used to treat nosocomial infections by Pseudomonas aeruginosa, specially to carbapenems, and its relationship with the presence of carbapenemases, OXA, VIM and IMP. The study included 229 P. aeruginosa isolates from a Hospital in Northern Spain (year 2002). Susceptibility to antimicrobial agents was determined by the analysis of the MIC. Genetic typing was carried out by RAPD-PCR fingerprinting with primer ERIC-2. Genetic experiments to detect class-1 integrons were performed by PCR with primers 5'CS and 3'CS. Detection of carbapenemases was done by phenotypic (Hodge test and DDST) and genotypic methods (PCR with primers for imp, vim1, vim2 and oxa40 genes). 23.9% of isolates were resistant to ceftazidime, 35.9% to cefotaxime, 5.3% to amikacin, 54.9% to gentamicin, 14.6% to imipenem and 6.6% to meropenem. Isolates resistant to imipenem (33) were furtherly tested. Genetic typing didn't show clonal relatedness among the most of the isolates. Class-1 integrons were present in most isolates (sizes 600-1700 bp). Phenotypic methods for carbapenemases showed 5 positive isolates. Genotypic methods showed the presence of two isolates with the oxa40 gene. Meropenem, amikacin and imipenem were the most active agents to treat infections caused by Pseudomonas aeruginosa. In our study, the presence of carbapenemase enzymes wasn't high. Phenotypic tests cannot be considered as accurate screening tool to detect carbapenemases. This is the fist report of the oxa40 gene in Pseudomonas aeruginosa isolates.

  5. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges.

    PubMed

    Wilkes, R A; Aristilde, L

    2017-09-01

    Synthetic plastics, which are widely present in materials of everyday use, are ubiquitous and slowly-degrading polymers in environmental wastes. Of special interest are the capabilities of microorganisms to accelerate their degradation. Members of the metabolically diverse genus Pseudomonas are of particular interest due to their capabilities to degrade and metabolize synthetic plastics. Pseudomonas species isolated from environmental matrices have been identified to degrade polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polyethylene terephthalate, polyethylene succinate, polyethylene glycol and polyvinyl alcohol at varying degrees of efficiency. Here, we present a review of the current knowledge on the factors that control the ability of Pseudomonas sp. to process these different plastic polymers and their by-products. These factors include cell surface attachment within biofilms, catalytic enzymes involved in oxidation or hydrolysis of the plastic polymer, metabolic pathways responsible for uptake and assimilation of plastic fragments and chemical factors that are advantageous or inhibitory to the biodegradation process. We also highlight future research directions required in order to harness fully the capabilities of Pseudomonas sp. in bioremediation strategies towards eliminating plastic wastes. © 2017 The Society for Applied Microbiology.

  6. In-silico Taxonomic Classification of 373 Genomes Reveals Species Misidentification and New Genospecies within the Genus Pseudomonas.

    PubMed

    Tran, Phuong N; Savka, Michael A; Gan, Han Ming

    2017-01-01

    The genus Pseudomonas has one of the largest diversity of species within the Bacteria kingdom. To date, its taxonomy is still being revised and updated. Due to the non-standardized procedure and ambiguous thresholds at species level, largely based on 16S rRNA gene or conventional biochemical assay, species identification of publicly available Pseudomonas genomes remains questionable. In this study, we performed a large-scale analysis of all Pseudomonas genomes with species designation (excluding the well-defined P. aeruginosa ) and re-evaluated their taxonomic assignment via in silico genome-genome hybridization and/or genetic comparison with valid type species. Three-hundred and seventy-three pseudomonad genomes were analyzed and subsequently clustered into 145 distinct genospecies. We detected 207 erroneous labels and corrected 43 to the proper species based on Average Nucleotide Identity Multilocus Sequence Typing (MLST) sequence similarity to the type strain. Surprisingly, more than half of the genomes initially designated as Pseudomonas syringae and Pseudomonas fluorescens should be classified either to a previously described species or to a new genospecies. Notably, high pairwise average nucleotide identity (>95%) indicating species-level similarity was observed between P. synxantha-P. libanensis, P. psychrotolerans - P. oryzihabitans , and P. kilonensis- P. brassicacearum , that were previously differentiated based on conventional biochemical tests and/or genome-genome hybridization techniques.

  7. Mathematical modelling of temperature effect on growth kinetics of Pseudomonas spp. on sliced mushroom (Agaricus bisporus).

    PubMed

    Tarlak, Fatih; Ozdemir, Murat; Melikoglu, Mehmet

    2018-02-02

    The growth data of Pseudomonas spp. on sliced mushrooms (Agaricus bisporus) stored between 4 and 28°C were obtained and fitted to three different primary models, known as the modified Gompertz, logistic and Baranyi models. The goodness of fit of these models was compared by considering the mean squared error (MSE) and the coefficient of determination for nonlinear regression (pseudo-R 2 ). The Baranyi model yielded the lowest MSE and highest pseudo-R 2 values. Therefore, the Baranyi model was selected as the best primary model. Maximum specific growth rate (r max ) and lag phase duration (λ) obtained from the Baranyi model were fitted to secondary models namely, the Ratkowsky and Arrhenius models. High pseudo-R 2 and low MSE values indicated that the Arrhenius model has a high goodness of fit to determine the effect of temperature on r max . Observed number of Pseudomonas spp. on sliced mushrooms from independent experiments was compared with the predicted number of Pseudomonas spp. with the models used by considering the B f and A f values. The B f and A f values were found to be 0.974 and 1.036, respectively. The correlation between the observed and predicted number of Pseudomonas spp. was high. Mushroom spoilage was simulated as a function of temperature with the models used. The models used for Pseudomonas spp. growth can provide a fast and cost-effective alternative to traditional microbiological techniques to determine the effect of storage temperature on product shelf-life. The models can be used to evaluate the growth behaviour of Pseudomonas spp. on sliced mushroom, set limits for the quantitative detection of the microbial spoilage and assess product shelf-life. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Semisynthetic Penicillin 6-[d(—)-α-Carboxy-3-Thienylacetamido] Penicillanic Acid Active Against Pseudomonas In Vitro

    PubMed Central

    Neu, H. C.; Winshell, E. B.

    1971-01-01

    The activity of 6-[d(—)-α-carboxy-3-thienylacetamido] penicillanic acid, BRL2288, was determined against Pseudomonas aeruginosa and various gram-negative bacilli. The majority of Pseudomonas strains (89%) were inhibited by 100 μg of the antibiotic per ml. BRL2288 is twofold more active than carbenicillin against Pseudomonas at 100 μg/ml or less. Among Enterobacteriaceae tested, 87% Enterobacter and 87% of Proteus mirabilis strains were inhibited by 25 μg/ml or less. Indole-positive Proteus were inhibited by 10 μg/ml or less. Fifty-five per cent of ampicillin-resistant Escherichia coli were inhibited by 100 μg/ml. Klebsiella were uniformly resistant. BRL2288 is not hydrolyzed by most resistant Pseudomonas, but it is destroyed by the β-lactamases of E. coli and P. mirabilis. The antibiotic shows synergy with gentamicin but not with penicillinase-resistant penicillins such as cloxacillin. Activity of BRL2288 against gram-positive organisms is two- to eightfold less than that of ampicillin or benzylpenicillin G. PMID:4993233

  9. Bioremediation of coractive blue dye by using Pseudomonas spp. isolated from the textile dye wastewater

    NASA Astrophysics Data System (ADS)

    Sunar, N. M.; Mon, Z. K.; Rahim, N. A.; Leman, A. M.; Airish, N. A. M.; Khalid, A.; Ali, R.; Zaidi, E.; Azhar, A. T. S.

    2018-04-01

    Wastewater released from the textile industry contains variety substances, mainly dyes that contains a high concentration of color and organic. In this study the potential for bacterial decolorization of coractive blue dye was examined that isolated from textile wastewater. The optimum conditions were determined for pH, temperature and initial concentration of the dye. The bacteria isolated was Pseudomonas spp. The selected bacterium shows high decolorization in static condition at an optimum of pH 7.0. The Pseudomonas spp. could decolorize coractive blue dye by 70% within 24 h under static condition, with the optimum of pH 7.0. Decolorization was confirmed by using UV-VIS spectrophotometer. This present study suggests the potential of Pseudomonas spp. as an approach in sustainable bioremediation that provide an efficient method for decolorizing coractive blue dye.

  10. Pseudomonas granadensis sp. nov., a new bacterial species isolated from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain.

    PubMed

    Pascual, Javier; García-López, Marina; Bills, Gerald F; Genilloud, Olga

    2015-02-01

    During the course of screening bacterial isolates as sources of as-yet unknown bioactive compounds with pharmaceutical applications, a chemo-organotrophic, Gram-negative bacterium was isolated from a soil sample taken from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain. Strain F-278,770(T) was oxidase- and catalase-positive, aerobic, with a respiratory type of metabolism with oxygen as the terminal electron acceptor, non-spore-forming and motile by one polar flagellum, although some cells had two polar flagella. Phylogenetic analysis of the 16S rRNA, gyrB, rpoB and rpoD genes revealed that strain F-278,770(T) belongs to the Pseudomonas koreensis subgroup (Pseudomonas fluorescens lineage), with Pseudomonas moraviensis, P. koreensis, P. baetica and P. helmanticensis as its closest relatives. Chemotaxonomic traits such as polar lipid and fatty acid compositions and G+C content of genomic DNA corroborated the placement of strain F-278,770(T) in the genus Pseudomonas. DNA-DNA hybridization assays and phenotypic traits confirmed that this strain represents a novel species of the genus Pseudomonas, for which the name Pseudomonas granadensis sp. nov. is proposed. The type strain is F-278,770(T) ( = DSM 28040(T) = LMG 27940(T)). © 2015 Fundacion MEDINA, Centro de Excelencia en Investigacion de Medicamentos Innovadores en Andalucia.

  11. Disruption of transporters affiliated with enantio-pyochelin biosynthesis gene cluster of Pseudomonas protegens Pf-5 has pleiotropic effects

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas protegens Pf-5 (formerly Pseudomonas fluorescens) is a biocontrol bacterium that produces the siderophore enantio-pyochelin under conditions of iron starvation in a process that is often accompanied by the secretion of its biosynthesis intermediates, salicylic acid and dihydroaeruginoic ...

  12. The Freshwater Sponge Ephydatia fluviatilis Harbours Diverse Pseudomonas Species (Gammaproteobacteria, Pseudomonadales) with Broad-Spectrum Antimicrobial Activity

    PubMed Central

    Keller-Costa, Tina; Jousset, Alexandre; van Overbeek, Leo; van Elsas, Jan Dirk; Costa, Rodrigo

    2014-01-01

    Bacteria are believed to play an important role in the fitness and biochemistry of sponges (Porifera). Pseudomonas species (Gammaproteobacteria, Pseudomonadales) are capable of colonizing a broad range of eukaryotic hosts, but knowledge of their diversity and function in freshwater invertebrates is rudimentary. We assessed the diversity, structure and antimicrobial activities of Pseudomonas spp. in the freshwater sponge Ephydatia fluviatilis. Polymerase Chain Reaction – Denaturing Gradient Gel Electrophoresis (PCR-DGGE) fingerprints of the global regulator gene gacA revealed distinct structures between sponge-associated and free-living Pseudomonas communities, unveiling previously unsuspected diversity of these assemblages in freshwater. Community structures varied across E. fluviatilis specimens, yet specific gacA phylotypes could be detected by PCR-DGGE in almost all sponge individuals sampled over two consecutive years. By means of whole-genome fingerprinting, 39 distinct genotypes were found within 90 fluorescent Pseudomonas isolates retrieved from E. fluviatilis. High frequency of in vitro antibacterial (49%), antiprotozoan (35%) and anti-oomycetal (32%) activities was found among these isolates, contrasting less-pronounced basidiomycetal (17%) and ascomycetal (8%) antagonism. Culture extracts of highly predation-resistant isolates rapidly caused complete immobility or lysis of cells of the protozoan Colpoda steinii. Isolates tentatively identified as P. jessenii, P. protegens and P. oryzihabitans showed conspicuous inhibitory traits and correspondence with dominant sponge-associated phylotypes registered by cultivation-independent analysis. Our findings suggest that E. fluviatilis hosts both transient and persistent Pseudomonas symbionts displaying antimicrobial activities of potential ecological and biotechnological value. PMID:24533086

  13. Pseudomonas oryzihabitans sepsis in a 1-year-old child with multiple skin rashes: a case report.

    PubMed

    Owusu, Michael; Owusu-Dabo, Ellis; Acheampong, Godfred; Osei, Isaac; Amuasi, John; Sarpong, Nimako; Annan, Augustina; Chiang, Hsin-Ying; Kuo, Chih-Horng; Park, Se Eun; Marks, Florian; Adu-Sarkodie, Yaw

    2017-03-23

    Pseudomonas oryzihabitans is a Pseudomonas bacterial organism rarely implicated in human infections. The bacterium has been isolated in a few reported cases of neurosurgical infections and patients with end-stage cirrhosis, sickle cell disease, and community-acquired urinary tract infections. Limited information exists in developing countries, however, because of the lack of advanced microbiological tools for identification and characterization of this bacterium. This case report describes the isolation of a rare Pseudomonas bacterium in a patient presenting with sepsis and skin infection. A 1-year-old girl was presented to a hospital in the northeastern part of Ghana with a 1-week history of pustular rashes on her scalp and neck, which occasionally ruptured, along with discharge of yellowish purulent fluid. The child is of Mole-Dagbon ethnicity and hails from the northern part of Ghana. Pseudomonas oryzihabitans was identified in the patient's blood culture using the 16S ribosomal deoxyribonucleic acid sequencing technique. The rash on the patient's scalp and skin resolved after continuous treatment with gentamicin while her condition improved clinically. This finding suggests the potential of this bacterium to cause disease in unsuspected situations and emphasizes the need to have evidence for the use of the appropriate antibiotic in clinical settings, particularly in rural settings in Africa. It also brings to the fore the unreliability of conventional methods for identification of Pseudomonas bacteria in clinical samples and thus supports the use of 16S ribosomal deoxyribonucleic acid in making the diagnosis.

  14. Chemotaxis to furan compounds by furan-degrading Pseudomonas strains

    USDA-ARS?s Scientific Manuscript database

    Two Pseudomonas strains known to utilize furan derivatives were shown to be attracted to furfural, 5-hydroxymethylfurfural, furfuryl alcohol, and 2-furoic acid in the absence of furan metabolism. In addition, a LysR-family regulatory protein known to regulate furan metabolic genes was found to be i...

  15. Ghost writer | ASCR Discovery

    Science.gov Websites

    the <em>one> illustrated here, the outer membrane protein OprF of Pseudomonas aeruginosa in its -1990s, NWChem was designed to run on networked processors, as in an HPC system, using <em>one>-sided communication, says Jeff Hammond of Intel Corp.'s Parallel Computing Laboratory. In <em>one>-sided communication, a

  16. Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan

    PubMed Central

    2013-01-01

    Background The contaminated contact lens provides Pseudomonas aeruginosa an ideal site for attachment and biofilm production. Continuous contact of the eye to the biofilm-infested lens can lead to serious ocular diseases, such as keratitis (corneal ulcers). The biofilms also prevent effective penetration of the antibiotics, which increase the chances of antibiotic resistance. Methods For this study, 22 Pseudomonas aeruginosa isolates were obtained from 36 contact lenses and 14 contact lens protective fluid samples. These isolates were tested against eight commonly used antibiotics using Kirby-Bauer disk diffusion method. The biofilm forming potential of these isolates was also evaluated using various qualitative and quantitative techniques. Finally, a relationship between biofilm formation and antibiotic resistance was also examined. Results The isolates of Pseudomonas aeruginosa tested were found resistant to most of the antibiotics tested. Qualitative and quantitative biofilm analysis revealed that most of the isolates exhibited strong biofilm production. The biofilm production was significantly higher in isolates that were multi-drug resistant (p < 0.0001). Conclusion Our study indicates that multi-drug resistant, biofilm forming Pseudomonas aeruginosa isolates are mainly involved in contact lens associated infections. This appears to be the first report from Pakistan, which analyzes both antibiotic resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolates from contact lens of the patients with contact lens associated infections. PMID:24134792

  17. In-silico Taxonomic Classification of 373 Genomes Reveals Species Misidentification and New Genospecies within the Genus Pseudomonas

    PubMed Central

    Tran, Phuong N.; Savka, Michael A.; Gan, Han Ming

    2017-01-01

    The genus Pseudomonas has one of the largest diversity of species within the Bacteria kingdom. To date, its taxonomy is still being revised and updated. Due to the non-standardized procedure and ambiguous thresholds at species level, largely based on 16S rRNA gene or conventional biochemical assay, species identification of publicly available Pseudomonas genomes remains questionable. In this study, we performed a large-scale analysis of all Pseudomonas genomes with species designation (excluding the well-defined P. aeruginosa) and re-evaluated their taxonomic assignment via in silico genome-genome hybridization and/or genetic comparison with valid type species. Three-hundred and seventy-three pseudomonad genomes were analyzed and subsequently clustered into 145 distinct genospecies. We detected 207 erroneous labels and corrected 43 to the proper species based on Average Nucleotide Identity Multilocus Sequence Typing (MLST) sequence similarity to the type strain. Surprisingly, more than half of the genomes initially designated as Pseudomonas syringae and Pseudomonas fluorescens should be classified either to a previously described species or to a new genospecies. Notably, high pairwise average nucleotide identity (>95%) indicating species-level similarity was observed between P. synxantha-P. libanensis, P. psychrotolerans–P. oryzihabitans, and P. kilonensis- P. brassicacearum, that were previously differentiated based on conventional biochemical tests and/or genome-genome hybridization techniques. PMID:28747902

  18. Characterization of the hrpZ gene from Pseudomonas syringae pv. maculicola M2.

    PubMed

    Álvarez-Mejía, César; Rodríguez-Ríos, Dalia; Hernández-Guzmán, Gustavo; López-Ramírez, Varinia; Valenzuela-Soto, Humberto; Marsch, Rodolfo

    2015-01-01

    Pseudomonas syringae pv. maculicola is a natural pathogen of members of the Brassicaceae plant family. Using a transposon-based mutagenesis strategy in Pseudomonas syringaepv. maculicola M2 (PsmM2), we conducted a genetic screen to identify mutants that were capable of growing in M9 medium supplemented with a crude extract from the leaves of Arabidopsis thaliana. A mutant containing a transposon insertion in the hrpZ gene (PsmMut8) was unable to infect adult plants from Arabidopsis thaliana or Brassica oleracea, suggesting a loss of pathogenicity. The promotorless cat reporter present in the gene trap was expressed if PsmMut8 was grown in minimal medium (M9) supplemented with the leaf extract but not if grown in normal rich medium (KB). We conducted phylogenetic analysis using hrpAZB genes, showing the classical 5-clade distribution, and nucleotide diversity analysis, showing the putative position for selective pressure in this operon. Our results indicate that the hrpAZB operon from Pseudomonas syringaepv. maculicola M2 is necessary for its pathogenicity and that its diversity would be under host-mediated diversifying selection.

  19. Channel specificity and secondary structure of the glucose-inducible porins of Pseudomonas spp.

    PubMed

    Adewoye, L O; Tschetter, L; O'Neil, J; Worobec, E A

    1998-06-01

    The OprB porin-mediated glucose transport system was investigated in Pseudomonas chlororaphis, Burkholderia cepacia, and Pseudomonas fluorescens. Kinetic studies of [U-14C]glucose uptake revealed an inducible system of low Km values (0.3-5 microM) and high specificity for glucose. OprB homologs were purified and reconstituted into proteoliposomes. The porin function and channel preference for glucose were demonstrated by liposome swelling assays. Examination of the periplasmic glucose-binding protein (GBP) components by Western immunoblotting using P. aeruginosa GBP-specific antiserum revealed some homology between P. aeruginosa GBP and periplasmic proteins from P. fluorescens and P. chlororaphis but not B. cepacia. Circular dichroism spectropolarimetry of purified OprB-like porins from the three species revealed beta sheet contents of 31-50% in agreement with 40% beta sheet content for the P. aeruginosa OprB porin. These findings suggest that the high-affinity glucose transport system is primarily specific for glucose and well conserved in the genus Pseudomonas although its outer membrane component may differ in channel architecture and specificity for other carbohydrates.

  20. Genetic construction of recombinant Pseudomonas chlororaphis for improved glycerol utilization

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to improve by genetic engineering the glycerol metabolic capability of Pseudomonas chlororaphis which is capable of producing commercially valuable biodegradable poly(hydroxyalkanoate) (PHA) and biosurfactant rhamnolipids (RLs). In the study, glycerol uptake facilitat...

  1. Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms.

    PubMed

    Plyuta, Vladimir; Lipasova, Valentina; Popova, Alexandra; Koksharova, Olga; Kuznetsov, Alexander; Szegedi, Erno; Chernin, Leonid; Khmel, Inessa

    2016-07-01

    The ability to form biofilms plays an important role in bacteria-host interactions, including plant pathogenicity. In this work, we investigated the action of volatile organic compounds (VOCs) produced by rhizospheric strains of Pseudomonas chlororaphis 449, Pseudomonas fluorescens B-4117, Serratia plymuthica IC1270, as well as Serratia proteamaculans strain 94, isolated from spoiled meat, on biofilms formation by three strains of Agrobacterium tumefaciens which are causative agents of crown-gall disease in a wide range of plants. In dual culture assays, the pool of volatiles emitted by the tested Pseudomonas and Serratia strains suppressed the formation of biofilms of A. tumefaciens strains grown on polycarbonate membrane filters and killed Agrobacterium cells in mature biofilms. The individual VOCs produced by the tested Pseudomonas strains, that is, ketones (2-nonanone, 2-heptanone, 2-undecanone), and dimethyl disulfide (DMDS) produced by Serratia strains, were shown to kill A. tumefaciens cells in mature biofilms and suppress their formation. The data obtained in this study suggest an additional potential of some ketones and DMDS as protectors of plants against A. tumefaciens strains, whose virulence is associated with the formation of biofilms on the infected plants. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  2. Pseudomonas protegens Pf-5 causes discoloration and pitting of mushroom caps due to the production of antifungal metabolites

    USDA-ARS?s Scientific Manuscript database

    Bacteria in the diverse P. fluorescens group include mushroom pathogens, such as Pseudomonas tolaasii, and rhizosphere inhabitants known for their antifungal metabolite production and biological control of plant disease, such as Pseudomonas protegens Pf-5. Here, we report that strain Pf-5 causes bro...

  3. The metabolism of galactarate, d-glucarate and various pentoses by species of Pseudomonas

    PubMed Central

    Dagley, S.; Trudgill, P. W.

    1965-01-01

    1. When NAD+ was present, cell extracts of Pseudomonas (A) grown with d-glucarate or galactarate converted 1mol. of either substrate into 1mol. each of 2-oxoglutarate and carbon dioxide; 70–80% of the gas originated from C-1 of the hexarate. 2. The enzyme system that liberated carbon dioxide from galactarate was inactive in air and was stabilized by galactarate or Fe2+ ions; the system that acted on d-glucarate was more stable and was stimulated by Mg2+ ions. 3. When NAD+ was not added, 2-oxoglutarate semialdehyde accumulated from either substrate. This compound was isolated as its bis-2,4-dinitrophenylhydrazone, and several properties of the derivative were compared with those of the chemically synthesized material. Methods were developed for the determination of 2-oxoglutarate semialdehyde. 4. Synthetic 2-oxoglutarate semialdehyde was converted into 2-oxoglutarate by an enzyme that required NAD+; the reaction rate with NADP+ was about one-sixth of that with NAD+. 5. For extracts of Pseudomonas (A) grown with d-glucarate or galactarate, or for those of Pseudomonas fragi grown with l-arabinose or d-xylose, specific activities of 2-oxoglutarate semialdehyde–NAD oxidoreductase were much higher than for extracts of the organisms grown with (+)-tartrate and d-glucose respectively. 6. Extracts of Pseudomonas fragi grown with l-arabinose or d-xylose converted l-arabonate or d-xylonate into 2-oxoglutarate when NAD+ was added to reaction mixtures and into 2-oxoglutarate semialdehyde when NAD+ was omitted. PMID:14333567

  4. Exchange of Xcp (Gsp) secretion machineries between Pseudomonas aeruginosa and Pseudomonas alcaligenes: species specificity unrelated to substrate recognition.

    PubMed

    de Groot, A; Koster, M; Gérard-Vincent, M; Gerritse, G; Lazdunski, A; Tommassen, J; Filloux, A

    2001-02-01

    Pseudomonas aeruginosa and Pseudomonas alcaligenes are gram-negative bacteria that secrete proteins using the type II or general secretory pathway, which requires at least 12 xcp gene products (XcpA and XcpP to -Z). Despite strong conservation of this secretion pathway, gram-negative bacteria usually cannot secrete exoproteins from other species. Based on results obtained with Erwinia, it has been proposed that the XcpP and/or XcpQ homologs determine this secretion specificity (M. Linderberg, G. P. Salmond, and A. Collmer, Mol. Microbiol. 20:175-190, 1996). In the present study, we report that XcpP and XcpQ of P. alcaligenes could not substitute for their respective P. aeruginosa counterparts. However, these complementation failures could not be correlated to species-specific recognition of exoproteins, since these bacteria could secrete exoproteins of each other. Moreover, when P. alcaligenes xcpP and xcpQ were expressed simultaneously in a P. aeruginosa xcpPQ deletion mutant, complementation was observed, albeit only on agar plates and not in liquid cultures. After growth in liquid culture the heat-stable P. alcaligenes XcpQ multimers were not detected, whereas monomers were clearly visible. Together, our results indicate that the assembly of a functional Xcp machinery requires species-specific interactions between XcpP and XcpQ and between XcpP or XcpQ and another, as yet uncharacterized component(s).

  5. Pseudomonas cichorii as the causal agent of midrib rot, an emerging disease of greenhouse-grown butterhead lettuce in Flanders.

    PubMed

    Cottyn, Bart; Heylen, Kim; Heyrman, Jeroen; Vanhouteghem, Katrien; Pauwelyn, Ellen; Bleyaert, Peter; Van Vaerenbergh, Johan; Höfte, Monica; De Vos, Paul; Maes, Martine

    2009-05-01

    Bacterial midrib rot of greenhouse-grown butterhead lettuce (Lactuca sativa L. var. capitata) is an emerging disease in Flanders (Belgium) and fluorescent pseudomonads are suspected to play an important role in the disease. Isolations from infected lettuces, collected from 14 commercial greenhouses in Flanders, yielded 149 isolates that were characterized polyphasically, which included morphological characteristics, pigmentation, pathogenicity tests by both injection and spraying of lettuce, LOPAT characteristics, FAME analysis, BOX-PCR fingerprinting, 16S rRNA and rpoB gene sequencing, as well as DNA-DNA hybridization. Ninety-eight isolates (66%) exhibited a fluorescent pigmentation and were associated with the genus Pseudomonas. Fifty-five of them induced an HR+ (hypersensitive reaction in tobacco leaves) response. The other 43 fluorescent isolates were most probably saprophytic bacteria and about half of them were able to cause rot on potato tuber slices. BOX-PCR genomic fingerprinting was used to assess the genetic diversity of the Pseudomonas midrib rot isolates. The delineated BOX-PCR patterns matched quite well with Pseudomonas morphotypes defined on the basis of colony appearance and variation in fluorescent pigmentation. 16S rRNA and rpoB gene sequence analyses allowed most of the fluorescent isolates to be allocated to Pseudomonas, and they belonged to either the Pseudomonas fluorescens group, Pseudomonas putida group, or the Pseudomonas cichorii/syringae group. In particular, the isolates allocated to this latter group constituted the vast majority of HR+ isolates and were identified as P. cichorii by DNA-DNA hybridization. They were demonstrated by spray-inoculation tests on greenhouse-grown lettuce to induce the midrib rot disease and could be re-isolated from lesions of inoculated plants. Four HR+ non-fluorescent isolates associated with one sample that showed an atypical midrib rot were identified as Dickeya sp.

  6. The role of gluconate production by Pseudomonas spp. in the mineralization and bioavailability of calcium-phytate to Nicotiana tabacum.

    PubMed

    Giles, Courtney D; Hsu, Pei-Chun Lisa; Richardson, Alan E; Hurst, Mark R H; Hill, Jane E

    2015-12-01

    Organic phosphorus (P) is abundant in most soils but is largely unavailable to plants. Pseudomonas spp. can improve the availability of P to plants through the production of phytases and organic anions. Gluconate is a major component of Pseudomonas organic anion production and may therefore play an important role in the mineralization of insoluble organic P forms such as calcium-phytate (CaIHP). Organic anion and phytase production was characterized in 2 Pseudomonas spp. soil isolates (CCAR59, Ha200) and an isogenic mutant of strain Ha200, which lacked a functional glucose dehydrogenase (Gcd) gene (strain Ha200 gcd::Tn5B8). Wild-type and mutant strains of Pseudomonas spp. were evaluated for their ability to solubilize and hydrolyze CaIHP and to promote the growth and assimilation of P by tobacco plants. Gluconate, 2-keto-gluconate, pyruvate, ascorbate, acetate, and formate were detected in Pseudomonas spp. supernatants. Wild-type pseudomonads containing a functional gcd could produce gluconate and mineralize CaIHP, whereas the isogenic mutant could not. Inoculation with Pseudomonas improved the bioavailability of CaIHP to tobacco plants, but there was no difference in plant growth response due to Gcd function. Gcd function is required for the mineralization of CaIHP in vitro; however, further studies will be needed to quantify the relative contribution of specific organic anions such as gluconate to plant growth promotion by soil pseudomonads.

  7. Biosynthesis, Chemical Structure, and Structure-Activity Relationship of Orfamide Lipopeptides Produced by Pseudomonas protegens and Related Species

    PubMed Central

    Ma, Zongwang; Geudens, Niels; Kieu, Nam P.; Sinnaeve, Davy; Ongena, Marc; Martins, José C.; Höfte, Monica

    2016-01-01

    Orfamide-type cyclic lipopeptides (CLPs) are biosurfactants produced by Pseudomonas and involved in lysis of oomycete zoospores, biocontrol of Rhizoctonia and insecticidal activity against aphids. In this study, we compared the biosynthesis, structural diversity, in vitro and in planta activities of orfamides produced by rhizosphere-derived Pseudomonas protegens and related Pseudomonas species. Genetic characterization together with chemical identification revealed that the main orfamide compound produced by the P. protegens group is orfamide A, while the related strains Pseudomonas sp. CMR5c and CMR12a produce orfamide B. Comparison of orfamide fingerprints led to the discovery of two new orfamide homologs (orfamide F and orfamide G) in Pseudomonas sp. CMR5c. The structures of these two CLPs were determined by nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. Mutagenesis and complementation showed that orfamides determine the swarming motility of parental Pseudomonas sp. strain CMR5c and their production was regulated by luxR type regulators. Orfamide A and orfamide B differ only in the identity of a single amino acid, while orfamide B and orfamide G share the same amino acid sequence but differ in length of the fatty acid part. The biological activities of orfamide A, orfamide B, and orfamide G were compared in further bioassays. The three compounds were equally active against Magnaporthe oryzae on rice, against Rhizoctonia solani AG 4-HGI in in vitro assays, and caused zoospore lysis of Phytophthora and Pythium. Furthermore, we could show that orfamides decrease blast severity in rice plants by blocking appressorium formation in M. oryzae. Taken all together, our study shows that orfamides produced by P. protegens and related species have potential in biological control of a broad spectrum of fungal plant pathogens. PMID:27065956

  8. The isolation and functional identification on producing cellulase of Pseudomonas mendocina

    PubMed Central

    Zhang, Jianfeng; Hou, Hongyan; Chen, Guang; Wang, Shusheng; Zhang, Jiejing

    2016-01-01

    ABSTRACT The straw can be degraded efficiently into humus by powerful enzymes from microorganisms, resulting in the accelerated circulation of N,P,K and other effective elements in ecological system. We isolated a strain through screening the straw degradation strains from natural humic straw in the low temperature area in northeast of china, which can produce cellulase efficiently. The strain was identified as Pseudomonas mendocina by using morphological, physiological, biochemical test, and molecular biological test, with the functional clarification on producing cellulase for Pseudomonas mendocina for the first time. The enzyme force constant Km and the maximum reaction rate (Vmax) of the strain were 0.3261 g/L and 0.1525 mg/(min.L) through the enzyme activity detection, and the molecular weight of the enzyme produced by the strain were 42.4 kD and 20.4 kD based on SDS-PAGE. The effects of various ecological factors such as temperature, pH and nematodes on the enzyme produced by the strain in the micro ecosystem in plant roots were evaluated. The result showed that the optimum temperature was 28°C, and the best pH was 7.4∼7.8, the impact heavy metal was Pb2+ and the enzyme activity and biomass of Pseudomonas mendocina increased the movement and predation of nematodes. PMID:27710430

  9. Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria.

    PubMed

    Gilardi, G L; Faur, Y C

    1984-10-01

    Twenty-one strains of pink-pigmented bacteria, isolated from human clinical specimens and an environmental source, were compared with Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. These isolates were gram-negative, oxidative rods which were motile by means of a single polar flagellum; gave positive catalase, indophenol oxidase, urease, and amylase reactions; and grew slowly at 30 degrees C. Fourteen isolates conformed to the designated type strains Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. The remaining seven strains represented an undescribed taxon. These pink bacteria appear to be invaders of debilitated patients with an underlying chronic disease.

  10. Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria.

    PubMed Central

    Gilardi, G L; Faur, Y C

    1984-01-01

    Twenty-one strains of pink-pigmented bacteria, isolated from human clinical specimens and an environmental source, were compared with Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. These isolates were gram-negative, oxidative rods which were motile by means of a single polar flagellum; gave positive catalase, indophenol oxidase, urease, and amylase reactions; and grew slowly at 30 degrees C. Fourteen isolates conformed to the designated type strains Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. The remaining seven strains represented an undescribed taxon. These pink bacteria appear to be invaders of debilitated patients with an underlying chronic disease. PMID:6490848

  11. Genome Sequence of Pseudomonas sp. Strain S9, an Extracellular Arylsulfatase-Producing Bacterium Isolated from Mangrove Soil ▿

    PubMed Central

    Long, Mengxian; Ruan, Lingwei; Yu, Ziniu; Xu, Xun

    2011-01-01

    Pseudomonas sp. strain S9 was originally isolated from mangrove soil in Xiamen, China. It is an aerobic bacterium which shows extracellular arylsulfatase activity. Here, we describe the 4.8-Mb draft genome sequence of Pseudomonas sp. S9, which exhibits novel cysteine-type sulfatases. PMID:21622746

  12. Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas CMR12a was previously selected as an efficient biocontrol strain producing phenazines and cyclic lipopeptides (CLPs). In this study, biocontrol capacity of Pseudomonas CMR12a against Rhizoctonia root rot of bean and the involvement of phenazines and CLPs in this ability were tested. Two ...

  13. Assessment of the Diversity of Pseudomonas spp. and Fusarium spp. in Radix pseudostellariae Rhizosphere under Monoculture by Combining DGGE and Quantitative PCR

    PubMed Central

    Chen, Jun; Wu, Linkun; Xiao, Zhigang; Wu, Yanhong; Wu, Hongmiao; Qin, Xianjin; Wang, Juanying; Wei, Xiaoya; Khan, Muhammad U.; Lin, Sheng; Lin, Wenxiong

    2017-01-01

    Radix pseudostellariae is a perennial tonic medicinal plant, with high medicinal value. However, consecutive monoculture of this plant in the same field results in serious decrease in both yield and quality. In this study, a 3-year field experiment was performed to identify the inhibitory effect of growth caused by prolonged monoculture of R. pseudostellariae. DGGE analysis was used to explore the shifts in the structure and diversity of soil Fusarium and Pseudomonas communities along a 3-year gradient of monoculture. The results demonstrated that extended monoculture significantly boosted the diversity of Fusarium spp., but declined Pseudomonas spp. diversity. Quantitative PCR analysis showed a significant increase in Fusarium oxysporum, but a decline in Pseudomonas spp. Furthermore, abundance of antagonistic Pseudomonas spp. possessing antagonistic ability toward F. oxysporum significantly decreased in consecutively monocultured soils. Phenolic acid mixture at the same ratio as detected in soil could boost mycelial and sporular growth of pathogenic F. oxysporum while inhibit the growth of antagonistic Pseudomonas sp. CJ313. Moreover, plant bioassays showed that Pseudomonas sp. CJ313 had a good performance that protected R. pseudostellariae from infection by F. oxysporum. In conclusion, this study demonstrated that extended monoculture of R. pseudostellariae could alter the Fusarium and Pseudomonas communities in the plant rhizosphere, leading to relatively low level of antagonistic microorganisms, but with relatively high level of pathogenic microorganisms. PMID:28966607

  14. Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection.

    PubMed

    Khawaldeh, A; Morales, S; Dillon, B; Alavidze, Z; Ginn, A N; Thomas, L; Chapman, S J; Dublanchet, A; Smithyman, A; Iredell, J R

    2011-11-01

    We describe the success of adjunctive bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection in the context of bilateral ureteric stents and bladder ulceration, after repeated failure of antibiotics alone. No bacteriophage-resistant bacteria arose, and the kinetics of bacteriophage and bacteria in urine suggest self-sustaining and self-limiting infection.

  15. Purification of Pseudomonas aeruginosa Endotoxin by Membrane Partition Chromatography

    PubMed Central

    Rubio, Nazario; Lopez, Rubens

    1972-01-01

    A procedure is described for obtaining large quantities of purified endotoxin of Pseudomonas aeruginosa by using Diaflo ultrafiltration. This method allowed us to isolate from the protein-lipopolysaccharide complex two low-molecular-weight substances which do not play any antigenic role. It provides a useful tool for immunological purposes. Images PMID:4622818

  16. Structure of a putative acetyltransferase (PA1377) from Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Anna M.; Tata, Renée; Chauviac, François-Xavier

    2008-05-01

    The crystal structure of an acetyltransferase encoded by the gene PA1377 from Pseudomonas aeruginosa has been determined at 2.25 Å resolution. Comparison with a related acetyltransferase revealed a structural difference in the active site that was taken to reflect a difference in substrate binding and/or specificity between the two enzymes. Gene PA1377 from Pseudomonas aeruginosa encodes a 177-amino-acid conserved hypothetical protein of unknown function. The structure of this protein (termed pitax) has been solved in space group I222 to 2.25 Å resolution. Pitax belongs to the GCN5-related N-acetyltransferase family and contains all four sequence motifs conserved among family members. Themore » β-strand structure in one of these motifs (motif A) is disrupted, which is believed to affect binding of the substrate that accepts the acetyl group from acetyl-CoA.« less

  17. Involvement of phenazines and lipopeptides in interactions between Pseudomonas species and Sclerotium rolfsii, causal agent of stem rot disease on groundnut.

    PubMed

    Le, C N; Kruijt, M; Raaijmakers, J M

    2012-02-01

    To determine the role of phenazines (PHZ) and lipopeptide surfactants (LPs) produced by Pseudomonas in suppression of stem rot disease of groundnut, caused by the fungal pathogen Sclerotium rolfsii. In vitro assays showed that PHZ-producing Pseudomonas chlororaphis strain Phz24 significantly inhibited hyphal growth of S. rolfsii and suppressed stem rot disease of groundnut under field conditions. Biosynthesis and regulatory mutants of Phz24 deficient in PHZ production were less effective in pathogen suppression. Pseudomonas strains SS101, SBW25 and 267, producing viscosin or putisolvin-like LPs, only marginally inhibited hyphal growth of S. rolfsii and did not suppress stem rot disease. In contrast, Pseudomonas strain SH-C52, producing the chlorinated LP thanamycin, inhibited hyphal growth of S. rolfsii and significantly reduced stem rot disease of groundnut in nethouse and field experiments, whereas its thanamycin-deficient mutant was less effective. Phenazines and specific lipopeptides play an important role in suppression of stem rot disease of groundnut by root-colonizing Pseudomonas strains. Pseudomonas strains Phz24 and SH-C52 showed significant control of stem rot disease. Treatment of seeds or soil with these strains provides a promising supplementary strategy to control stem rot disease of groundnut. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  18. Toxicity of phenol and monochlorophenols to growth and metabolic activities of Pseudomonas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, D.S.; Tseng, I.C.

    1996-07-01

    Phenolic compounds are toxic to many organisms and are often present in the effluents from oil refineries, the petrochemical, pesticide, and color and textile industries. Several authors have demonstrated a characteristic pattern of behavioral responses in fishes during phenol exposure. Others have also evaluated the toxicity of halogenated phenolic compounds by screening for effects on the specific growth rates (SGR) and the dehydrogenase activity (DHA) of Escherichia coli. However, little work has been done to determine the effects on biota from short exposures at relatively high concentrations of phenol or monochlorophenols that might occur following a deliberate or accidental dischargemore » to a receiving water. Microorganisms with phenol-degrading capacity have been studied intensively, including cyanobacteria such as Nostoc linckia, yeast such as Trichosporon cutaneum, bacteria such as Pseudomonas putida, and other unidentified species. Among these Pseudomonas has received the most attention and several mutants have been prepared to degrade substituted phenols. This study investigates the initial response of Pseudomonas upon exposure to high concentrations of phenol and chlorophenols by measuring the oxygen uptake rates. A series growth experiment was also conducted in order to compare the kinetic results with standard microbial tests. 12 refs., 3 figs., 1 tab.« less

  19. Glyphosate catabolism by Pseudomonas sp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinabarger, D.L.

    1986-01-01

    The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing (3-/sup 14/C) glyphosate revealed that approximately 50-59% of the C3 carbon was oxidized to CO/sub 2/. Fractionation of stationary phase cells labeled with (3-/sup 14/C)glyphosate revealed that from 45-47% of the assimilated C3 carbon is distributed to proteins and that amino acids methionine and serine are highly labeled. The nucleic acid bases adenine and guanine received 90% of the C3 label that was incorporated into nucleic acids, and the only pyrimidine base labeled was thymine. Pulse labeling ofmore » PG2982 cells with (3-/sup 14/C)glyphosate revealed that (3-/sup 14/C)sarcosine is an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of an enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. Phosphonate utilization by Pseudomonas sp. PG2982 was investigated. Each of the ten phosphonates tested were utilized as a sole source of phosphorus by PG2982. Representative compounds tested included alkylphosphonates, 1-amino-substituted alkylphosphonates, amino-terminal phosphonates, and an arylphosphonate. PG2982 cultures degraded phenylphosphonate to benzene and produced methane from methylphosphonate. The data indicate that PG2982 is capable of cleaving the carbon-phosphorus bond of several structurally different phosphonates.« less

  20. MULTIPLE ENZYME RESTRICTION FRAGMENT LENGTH POLYMORPHISM ANALYSIS FOR HIGH RESOLUTION DISTINCTION OF PSEUDOMONAS (SENSU STRICTO) 16S RRNA GENES

    EPA Science Inventory

    Pseudomonas specific 16S rDNA PCR amplification and multiple enzyme restriction fragment length polymorphism (MERFLP) analysis using a single digestion mixture of Alu I, Hinf I, Rsa I, and Tru 9I distinguished 150 published sequences and reference strains of authentic Pseudomonas...

  1. A HIGHLY SELECTIVE PCR PROTOCOL FOR DETECTING 16S RRNA GENES OF THE GENUS PSEUDOMONAS (SENSU STRICTO) IN ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    Pseudomonas species are plant, animal, and human pathogens; exhibit plant pathogen-suppressing properties useful in biological control; or express metabolic versatilities valued in biotechnology and bioremediation. Specific detection of Pseudomonas species in the environment may ...

  2. The Biology and Biological Activity of Pseudomonas syringae pv. tagetis

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas syringae pv. tagetis (Pst) is a disease of plants in the family Asteraceae. A distinctive characteristic of this bacterial pathogen is the symptom of apical chlorosis in infected plants, caused by the phytotoxin tagetitoxin. Strains of Pst have been isolated from several plant species ...

  3. Release of cystic fibrosis airway inflammatory markers from Pseudomonas aeruginosa-stimulated human neutrophils involves NADPH oxidase-dependent extracellular DNA trap formation.

    PubMed

    Yoo, Dae-goon; Winn, Matthew; Pang, Lan; Moskowitz, Samuel M; Malech, Harry L; Leto, Thomas L; Rada, Balázs

    2014-05-15

    Cystic fibrosis (CF) airways are characterized by bacterial infections, excess mucus production, and robust neutrophil recruitment. The main CF airway pathogen is Pseudomonas aeruginosa. Neutrophils are not capable of clearing the infection. Neutrophil primary granule components, myeloperoxidase (MPO) and human neutrophil elastase (HNE), are inflammatory markers in CF airways, and their increased levels are associated with poor lung function. Identifying the mechanism of MPO and HNE release from neutrophils is of high clinical relevance for CF. In this article, we show that human neutrophils release large amounts of neutrophil extracellular traps (NETs) in the presence of P. aeruginosa. Bacteria are entangled in NETs and colocalize with extracellular DNA. MPO, HNE, and citrullinated histone H4 are all associated with DNA in Pseudomonas-triggered NETs. Both laboratory standard strains and CF isolates of P. aeruginosa induce DNA, MPO, and HNE release from human neutrophils. The increase in peroxidase activity of neutrophil supernatants after Pseudomonas exposure indicates that enzymatically active MPO is released. P. aeruginosa induces a robust respiratory burst in neutrophils that is required for extracellular DNA release. Inhibition of the cytoskeleton prevents Pseudomonas-initiated superoxide production and DNA release. NADPH oxidase inhibition suppresses Pseudomonas-induced release of active MPO and HNE. Blocking MEK/ERK signaling results in only minimal inhibition of DNA release induced by Pseudomonas. Our data describe in vitro details of DNA, MPO, and HNE release from neutrophils activated by P. aeruginosa. We propose that Pseudomonas-induced NET formation is an important mechanism contributing to inflammatory conditions characteristic of CF airways.

  4. [Antimicrobial susceptibility of Pseudomonas aeruginosa isolated in Fukushima Prefecture].

    PubMed

    Niitsuma, K; Saitoh, M; Kojimabara, M; Kashiwabara, N; Aoki, T; Tomizawa, M; Maeda, J; Kosenda, T

    2001-02-01

    We investigated the susceptibility of Pseudomonas aeruginosa (isolated from the sputum of patients with respiratory infection in 4 medical institutions in Fukushima Prefecture) to 8 beta-lactam antibiotics including three carbapenems and relationships among MICs of antibiotics tested. The MIC90 values for a total of 216 strains were 6.25 micrograms/ml for meropenem, 12.5 micrograms/ml for imipenem and ceftazidime, 25 micrograms/ml for panipenem and cefsulodin, 50 micrograms/ml for cefpirome and over than 200 micrograms/ml for cefoperazone and piperacillin. The frequency of resistance of these strains to each antibiotic was as follows: The resistant strains were 19 (8.8%) for meropenem, 34 (15.7%) for imipenem and ceftazidime, 50 (23.1%) for cefsulodin, 72 (33.3%) for panipenem, 76 (35.2%) for piperacillin and 90 (41.7%) for cefpirome. Eighteen strains (18.3%) of 19 meropenem resitant straisn were resistant to imipenem and panipenem, but 16 strains of the 34 imipenem-resistant strains and 54 strains of the 72 panipenem-resistant strains were susceptible to meropenem. In investigation of isolation of multi-resistant Pseudomonas aeruginosa, the susceptibility of strains tested to 7 antibiotics except cefoperazone was as follows: The strains susceptible to all the 7 antibiotics were 92 strains (42.6%), and 33 strains (15.2%) were resistant to 2 antibiotics, 31 strains (14.4%) were resistant to 1 antibiotic, 21 strains (9.7%) were resistant to 3 antibiotics, 13 strains (6.0%) were resistant to 5 antibiotics, 9 (4.2%) were resistant to 4 and 7 antibiotics, and 8 strains (3.7%) were reistant to 6 antibiotics. Since the emergence of these multi-resistant strains is closely related to frequent use of antibiotics for nosocomial infections, special attention should be paid to the antimicrobial susceptibility of Pseudomonas aeruginosa and the situation of antibiotic resistant strains.

  5. PAMDB: a comprehensive Pseudomonas aeruginosa metabolome database.

    PubMed

    Huang, Weiliang; Brewer, Luke K; Jones, Jace W; Nguyen, Angela T; Marcu, Ana; Wishart, David S; Oglesby-Sherrouse, Amanda G; Kane, Maureen A; Wilks, Angela

    2018-01-04

    The Pseudomonas aeruginosaMetabolome Database (PAMDB, http://pseudomonas.umaryland.edu) is a searchable, richly annotated metabolite database specific to P. aeruginosa. P. aeruginosa is a soil organism and significant opportunistic pathogen that adapts to its environment through a versatile energy metabolism network. Furthermore, P. aeruginosa is a model organism for the study of biofilm formation, quorum sensing, and bioremediation processes, each of which are dependent on unique pathways and metabolites. The PAMDB is modelled on the Escherichia coli (ECMDB), yeast (YMDB) and human (HMDB) metabolome databases and contains >4370 metabolites and 938 pathways with links to over 1260 genes and proteins. The database information was compiled from electronic databases, journal articles and mass spectrometry (MS) metabolomic data obtained in our laboratories. For each metabolite entered, we provide detailed compound descriptions, names and synonyms, structural and physiochemical information, nuclear magnetic resonance (NMR) and MS spectra, enzymes and pathway information, as well as gene and protein sequences. The database allows extensive searching via chemical names, structure and molecular weight, together with gene, protein and pathway relationships. The PAMBD and its future iterations will provide a valuable resource to biologists, natural product chemists and clinicians in identifying active compounds, potential biomarkers and clinical diagnostics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Characterization of the hrpZ gene from Pseudomonas syringae pv. maculicolaM2

    PubMed Central

    Álvarez-Mejía, César; Rodríguez-Ríos, Dalia; Hernández-Guzmán, Gustavo; López-Ramírez, Varinia; Valenzuela-Soto, Humberto; Marsch, Rodolfo

    2015-01-01

    Pseudomonas syringae pv. maculicola is a natural pathogen of members of the Brassicaceae plant family. Using a transposon-based mutagenesis strategy in Pseudomonas syringaepv. maculicola M2 (PsmM2), we conducted a genetic screen to identify mutants that were capable of growing in M9 medium supplemented with a crude extract from the leaves of Arabidopsis thaliana. A mutant containing a transposon insertion in the hrpZ gene (PsmMut8) was unable to infect adult plants from Arabidopsis thaliana or Brassica oleracea, suggesting a loss of pathogenicity. The promotorless cat reporter present in the gene trap was expressed if PsmMut8 was grown in minimal medium (M9) supplemented with the leaf extract but not if grown in normal rich medium (KB). We conducted phylogenetic analysis using hrpAZB genes, showing the classical 5-clade distribution, and nucleotide diversity analysis, showing the putative position for selective pressure in this operon. Our results indicate that the hrpAZB operon from Pseudomonas syringaepv. maculicola M2 is necessary for its pathogenicity and that its diversity would be under host-mediated diversifying selection. PMID:26413080

  7. Biotransformation of trinitrotoluene (TNT) by Pseudomonas spp. isolated from a TNT-contaminated environment.

    PubMed

    Chien, Chih-Ching; Kao, Chih-Ming; Chen, De-Yu; Chen, Ssu Ching; Chen, Chien-Cheng

    2014-05-01

    The compound 2,4,6-trinitrotoluene (TNT) is a secondary explosive widely used worldwide for both military and civil purposes. As a result, residual TNT has been detected as an environmental pollutant in both soil and groundwater. The authors have isolated several microbial strains from soil contaminated with TNT by enrichment culture techniques using TNT as a carbon, nitrogen, and energy source. The contaminated soil contained approximately 1860 ppm TNT measured by high-performance liquid chromatography (HPLC). The initial identification of these isolates was determined by 16S rRNA gene comparison. The isolates mainly included species belonging to the genus Pseudomonas. Two strains (Pseudomonas putida strain TP1 and Pseudomonas aeruginosa strain TP6) were selected for further examination. Both strains demonstrated the ability to grow on the medium containing TNT as a carbon, energy, and nitrogen source and also clearly demonstrated the ability to degrade TNT. More than 90% of the TNT in the growth medium was degraded by both strains after 22 d incubation, as determined by HPLC. Additionally, the resting cells of P. putida TP1 and P. aeruginosa TP6 both significantly displayed the ability to transform (metabolize) TNT. © 2014 SETAC.

  8. Engineering the Soil Bacterium Pseudomonas putida for Arsenic Methylation

    PubMed Central

    Chen, Jian; Qin, Jie; Zhu, Yong-Guan; de Lorenzo, Víctor

    2013-01-01

    Accumulation of arsenic has potential health risks through consumption of food. Here, we inserted the arsenite [As(III)] S-adenosylmethionine methyltransferase (ArsM) gene into the chromosome of Pseudomonas putida KT2440. Recombinant bacteria methylate inorganic arsenic into less toxic organoarsenicals. This has the potential for bioremediation of environmental arsenic and reducing arsenic contamination in food. PMID:23645194

  9. Complete Genome Sequence of Pseudomonas aeruginosa Phage AAT-1

    PubMed Central

    Andrade-Domínguez, Andrés

    2016-01-01

    Aspects of the interaction between phages and animals are of interest and importance for medical applications. Here, we report the genome sequence of the lytic Pseudomonas phage AAT-1, isolated from mammalian serum. AAT-1 is a double-stranded DNA phage, with a genome of 57,599 bp, containing 76 predicted open reading frames. PMID:27563032

  10. Plasmid Profile Analysis and bla VIM Gene Detection of Metalo β-lactamase (MBL) Producing Pseudomonas aeruginosa Isolates from Clinical Samples.

    PubMed

    S, Jayanthi; M, Jeya

    2014-06-01

    Pseudomonas aeruginosa is a frequent colonizer of hospitalized patients. They are responsible for serious infections such as meningitis, urological infections, septicemia and pneumonia. Carbapenem resistance of Pseudomonas aeruginosa is currently increasingly reported which is often mediated by production of metallo-β-lactamase (MBL). Multidrug resistant Pseudomonas aeruginosa isolates may involve reduced cell wall permeability, production of chromosomal and plasmid mediated β lactamases, aminoglycosides modifying enzymes and an active multidrug efflux mechanism. This study is aimed to detect the presence and the nature of plasmids among metallo-β-lactamase producing Pseudomonas aeruginosa isolates. Also to detect the presence of bla VIM gene from these isolates. Clinical isolates of Pseudomonas aeruginosa showing the metalo-β-lactamase enzyme (MBL) production were isolated. The MBL production was confirmed by three different methods. From the MBL producing isolates plasmid extraction was done by alkaline lysis method. Plasmid positive isolates were subjected for blaVIM gene detection by PCR method. Two thousand seventy six clinical samples yielded 316 (15.22%) Pseudomonas aeruginosa isolates, out of which 141 (44.62%) were multidrug resistant. Among them 25 (17.73%) were metallo-β-lactamase enzyme producers. Plasmids were extracted from 18 out of 25 isolates tested. Five out of 18 isolates were positive for the blaVIM gene detection by the PCR amplification. The MBL producers were susceptible to polymyxin /colistin with MIC ranging from 0.5 - 2μg/ml. Molecular detection of specific genes bla VIM were positive among the carbapenem resistant isolates.

  11. Biosorption of heavy metals by Pseudomonas species isolated from sugar industry.

    PubMed

    Naz, Tayyaba; Khan, Muhammad Daud; Ahmed, Iftikhar; Rehman, Shafiq Ur; Rha, Eui Shik; Malook, Ijaz; Jamil, Muhammad

    2016-09-01

    Heavy metal-resistant bacteria can be efficient bioremediators of metals and may provide an alternative or additional method to conventional methods of metal removal. In this study, 10 bacterial isolates were isolated from soil samples of a sugar industry, located at Peshawar, Pakistan. Morphological, physiological, and biochemical characteristics of these isolates were observed. Sequence analysis (16S ribosomal RNA) revealed that isolated strains were closely related to the species belonging to the genera Pseudomonas, Arthrobacter, Exiguobacterium, Citrobacter, and Enterobacter Bacterial isolates were resistant with a minimum inhibitory concentration (500-900 ppm) to lead ion (Pb(2+)), (500-600 ppm) nickel ion (Ni(2+)), (500-800 ppm) copper ion (Cu(2+)), and (600-800 ppm) chromium ion (Cr(3+)) in solid media. Furthermore, biosorption of metals proved considerable removal of heavy metals by isolated metal-resistant strains. Pseudomonas sp. reduced 37% (Pb(2+)), 32% (Ni(2+)), 29% (Cu(2+)), and 32% (Cr(3+)) and was thus found to be most effective, whereas Enterobacter sp. reduced 19% (Pb(2+)), 7% (Ni(2+)), 14% (Cu(2+)), and 21% (Cr(3+)) and was found to be least effective. While average reduction of Pb(2+), Ni(2+), Cu(2+), and Cr(3+) by Citrobacter sp. was found to be 24%, 18%, 23%, and 27%, respectively, among recognized species. This study revealed that Pseudomonas sp. may provide a new microbial community that can be used for enhanced remediation of contaminated environment. © The Author(s) 2015.

  12. Molecular confirmation of shampoo as the putative source of Pseudomonas aeruginosa-induced postgrooming furunculosis in a dog.

    PubMed

    Tham, Heng L; Jacob, Megan E; Bizikova, Petra

    2016-08-01

    An acute onset furunculosis due to Pseudomonas aeruginosa following grooming is a well recognized entity. Although contaminated shampoos have been suspected to be the source of the infection, a molecular confirmation of this association has been missing. This case report describes a dog with postgrooming furunculosis in which Pseudomonas aeruginosa with an identical genetic fingerprint was isolated from the skin lesions as well as from the shampoo used prior to the disease onset. The dog presented for lethargy, anorexia, pain and rapidly progressing skin lesions consistent with haemorrhagic papules, pustules, coalescing ulcers and crusts localized to the dorsal and lateral aspects of the thorax and gluteal region, which developed within 24 h after a bath. Cytology demonstrated suppurative inflammation with occasional intracellular rod-shaped bacteria. Bacterial culture from skin lesions and the shampoo bottle yielded Pseudomonas aeruginosa with an identical pulsed-field gel electrophoresis pattern. Treatment with oral ciprofloxacin and topical antimicrobial shampoo resulted in a complete resolution of skin lesions within eight weeks. Our clinical investigation suggests a link between Pseudomonas-contaminated shampoo and development of postgrooming furunculosis, and underscores the need for hygienic management of shampoos to help limit this disease. © 2016 ESVD and ACVD.

  13. TSCA Experimental Release Application Approved for Pseudomonas putida Strains (fact sheet)

    EPA Pesticide Factsheets

    In 1998, EPA approved the TERAs R98-0004/5 submitted by the National Explosives Waste Technology & Evaluation Center (NEWTEC) and the Oak Ridge National Laboratory for field trials of two modified strains of Pseudomonas putida (P.putida).

  14. A novel enterocin T1 with anti-Pseudomonas activity produced by Enterococcus faecium T1 from Chinese Tibet cheese.

    PubMed

    Liu, Hui; Zhang, Lanwei; Yi, Huaxi; Han, Xue; Gao, Wei; Chi, Chunliang; Song, Wei; Li, Haiying; Liu, Chunguang

    2016-02-01

    An enterocin-producing Enterococcus faecium T1 was isolated from Chinese Tibet cheese. The enterocin was purified by SP-Sepharose and reversed phase HPLC. It was identified as unique from other reported bacteriocins based on molecular weight (4629 Da) and amino acid compositions; therefore it was subsequently named enterocin T1. Enterocin T1 was stable at 80-100 °C and over a wide pH range, pH 3.0-10.0. Protease sensitivity was observed to trypsin, pepsin, papain, proteinase K, and pronase E. Importantly, enterocin T1 was observed to inhibit the growth of numerous Gram-negative and Gram-positive bacteria including Pseudomonas putida, Pseudomonas aeruginosa, Pseudomonas fluorescens, Escherichia coli, Salmonella typhimurium, Shigella flexneri, Shigella sonnei, Staphylococcus aureus, Listeria monocytogenes. Take together, these results suggest that enterocin T1 is a novel bacteriocin with the potential to be used as a bio-preservative to control Pseudomonas spp. in food.

  15. Elongation factor P is dispensable in Escherichia coli and Pseudomonas aeruginosa.

    PubMed

    Balibar, Carl J; Iwanowicz, Dorothy; Dean, Charles R

    2013-09-01

    Elongation factor P (EF-P) is a highly conserved ribosomal initiation factor responsible for stimulating formation of the first peptide bond. Its essentiality has been debated and may differ depending on the organism. Here, we demonstrate that EF-P is dispensable in Escherichia coli and Pseudomonas aeruginosa under laboratory growth conditions. Although knockouts are viable, growth rates are diminished compared with wild-type strains. Despite this cost in fitness, these mutants are not more susceptible to a wide range of antibiotics; including ribosome targeting antibiotics, such as lincomycin, chloramphenicol, and streptomycin, which have been shown previously to disrupt EF-P function in vitro. In Pseudomonas, knockout of efp leads to an upregulation of mexX, a phenotype previously observed with other genetic lesions affecting ribosome function and that can be induced by the treatment with antibiotics affecting protein synthesis.

  16. The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent

    PubMed Central

    Banin, Ehud; Lozinski, Alina; Brady, Keith M.; Berenshtein, Eduard; Butterfield, Phillip W.; Moshe, Maya; Chevion, Mordechai; Greenberg, Everett Peter; Banin, Eyal

    2008-01-01

    The opportunistic pathogen Pseudomonas aeruginosa causes infections that are difficult to treat by antibiotic therapy. This bacterium can cause biofilm infections where it shows tolerance to antibiotics. Here we report the novel use of a metallo-complex, desferrioxamine-gallium (DFO-Ga) that targets P. aeruginosa iron metabolism. This complex kills free-living bacteria and blocks biofilm formation. A combination of DFO-Ga and the anti-Pseudomonas antibiotic gentamicin caused massive killing of P. aeruginosa cells in mature biofilms. In a P. aeruginosa rabbit corneal infection, topical administration of DFO-Ga together with gentamicin decreased both infiltrate and final scar size by about 50% compared to topical application of gentamicin alone. The use of DFO-Ga as a Trojan horse delivery system that interferes with iron metabolism shows promise as a treatment for P. aeruginosa infections. PMID:18931304

  17. Bacterial Tethering Analysis Reveals a “Run-Reverse-Turn” Mechanism for Pseudomonas Species Motility

    PubMed Central

    Qian, Chen; Wong, Chui Ching; Swarup, Sanjay

    2013-01-01

    We have developed a program that can accurately analyze the dynamic properties of tethered bacterial cells. The program works especially well with cells that tend to give rise to unstable rotations, such as polar-flagellated bacteria. The program has two novel components. The first dynamically adjusts the center of the cell's rotational trajectories. The second applies piecewise linear approximation to the accumulated rotation curve to reduce noise and separate the motion of bacteria into phases. Thus, it can separate counterclockwise (CCW) and clockwise (CW) rotations distinctly and measure rotational speed accurately. Using this program, we analyzed the properties of tethered Pseudomonas aeruginosa and Pseudomonas putida cells for the first time. We found that the Pseudomonas flagellar motor spends equal time in both CCW and CW phases and that it rotates with the same speed in both phases. In addition, we discovered that the cell body can remain stationary for short periods of time, leading to the existence of a third phase of the flagellar motor which we call “pause.” In addition, P. aeruginosa cells adopt longer run lengths, fewer pause frequencies, and shorter pause durations as part of their chemotactic response. We propose that one purpose of the pause phase is to allow the cells to turn at a large angle, where we show that pause durations in free-swimming cells positively correlate with turn angle sizes. Taken together, our results suggest a new “run-reverse-turn” paradigm for polar-flagellated Pseudomonas motility that is different from the “run-and-tumble” paradigm established for peritrichous Escherichia coli. PMID:23728820

  18. Soil burial method for plastic degradation performed by Pseudomonas PL-01, Bacillus PL-01, and indigenous bacteria

    NASA Astrophysics Data System (ADS)

    Shovitri, Maya; Nafi'ah, Risyatun; Antika, Titi Rindi; Alami, Nur Hidayatul; Kuswytasari, N. D.; Zulaikha, Enny

    2017-06-01

    Lately, plastic bag is becoming the most important pollutant for environment since it is difficult to be naturally degraded due to it consists of long hydrocarbon polymer chains. Our previous study indicated that our pure isolate Pseudomonas PL-01 and Bacillus PL-01 could degrade about 10% plastic bag. This present study was aimed to find out whether Pseudomonas PL01 and Bacillus PL01 put a positive effect to indigenous bacteria from marginal area in doing plastic degradation with a soil burial method. Beach sand was used as a representative marginal area, and mangrove sediment was used as a comparison. Plastics were submerged into unsterile beach sand with 10% of Pseudomonas PL-01 or Bacillus PL-01 containing liquid minimal salt medium (MSM) separately, while other plastics were submerged into unsterile mangrove sediments. After 4, 8, 12 and 16 weeks, their biofilm formation on their plastic surfaces and plastic degradation were measured. Results indicated that those 2 isolates put positive influent on biofilm formation and plastic degradation for indigenous beach sand bacteria. Bacillus PL-01 put higher influent than Pseudomonas PL-01. Plastic transparent was preferable degraded than black and white plastic bag `kresek'. But anyhow, indigenous mangrove soil bacteria showed the best performance in biofilm formation and plastic degradation, even without Pseudomonas PL-01 or Bacillus PL-01 addition. Fourier Transform Infrared (FTIR) analysis complemented the results; there were attenuated peaks with decreasing peaks transmittances. This FTIR peaks indicated chemical functional group changes happened among the plastic compounds after 16 weeks incubation time.

  19. Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia induce distinct host responses

    PubMed Central

    McConnell, Kevin W.; McDunn, Jonathan E.; Clark, Andrew T.; Dunne, W. Michael; Dixon, David J.; Turnbull, Isaiah R.; DiPasco, Peter J.; Osberghaus, William F.; Sherman, Benjamin; Martin, James R.; Walter, Michael J.; Cobb, J. Perren; Buchman, Timothy G.; Hotchkiss, Richard S.; Coopersmith, Craig M.

    2009-01-01

    Objective Pathogens that cause pneumonia may be treated in a targeted fashion by antibiotics, but if this therapy fails, treatment involves only non-specific supportive measures, independent of the inciting infection. The purpose of this study was to determine whether host response is similar following disparate infections with similar mortalities. Design Prospective, randomized controlled study. Setting Animal laboratory in a university medical center. Interventions Pneumonia was induced in FVB/N mice by either Streptococcus pneumoniae or two different concentrations of Pseudomonas aeruginosa. Plasma and bronchoalveolar lavage fluid from septic animals was assayed by a microarray immunoassay measuring 18 inflammatory mediators at multiple timepoints. Measurements and Main Results The host response was dependent upon the causative organism as well as kinetics of mortality, but the pro- and anti- inflammatory response was independent of inoculum concentration or degree of bacteremia. Pneumonia caused by different concentrations of the same bacteria, Pseudomonas aeruginosa, also yielded distinct inflammatory responses; however, inflammatory mediator expression did not directly track the severity of infection. For all infections, the host response was compartmentalized, with markedly different concentrations of inflammatory mediators in the systemic circulation and the lungs. Hierarchical clustering analysis resulted in the identification of 5 distinct clusters of the host response to bacterial infection. Principal components analysis correlated pulmonary MIP-2 and IL-10 with progression of infection while elevated plasma TNFsr2 and MCP-1 were indicative of fulminant disease with >90% mortality within 48 hours. Conclusions Septic mice have distinct local and systemic responses to Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia. Targeting specific host inflammatory responses induced by distinct bacterial infections could represent a potential therapeutic

  20. Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia induce distinct host responses.

    PubMed

    McConnell, Kevin W; McDunn, Jonathan E; Clark, Andrew T; Dunne, W Michael; Dixon, David J; Turnbull, Isaiah R; Dipasco, Peter J; Osberghaus, William F; Sherman, Benjamin; Martin, James R; Walter, Michael J; Cobb, J Perren; Buchman, Timothy G; Hotchkiss, Richard S; Coopersmith, Craig M

    2010-01-01

    Pathogens that cause pneumonia may be treated in a targeted fashion by antibiotics, but if this therapy fails, then treatment involves only nonspecific supportive measures, independent of the inciting infection. The purpose of this study was to determine whether host response is similar after disparate infections with similar mortalities. Prospective, randomized controlled study. Animal laboratory in a university medical center. Pneumonia was induced in FVB/N mice by either Streptococcus pneumoniae or two different concentrations of Pseudomonas aeruginosa. Plasma and bronchoalveolar lavage fluid from septic animals was assayed by a microarray immunoassay measuring 18 inflammatory mediators at multiple time points. The host response was dependent on the causative organism as well as kinetics of mortality, but the pro-inflammatory and anti-inflammatory responses were independent of inoculum concentration or degree of bacteremia. Pneumonia caused by different concentrations of the same bacteria, Pseudomonas aeruginosa, also yielded distinct inflammatory responses; however, inflammatory mediator expression did not directly track the severity of infection. For all infections, the host response was compartmentalized, with markedly different concentrations of inflammatory mediators in the systemic circulation and the lungs. Hierarchical clustering analysis resulted in the identification of five distinct clusters of the host response to bacterial infection. Principal components analysis correlated pulmonary macrophage inflammatory peptide-2 and interleukin-10 with progression of infection, whereas elevated plasma tumor necrosis factor sr2 and macrophage chemotactic peptide-1 were indicative of fulminant disease with >90% mortality within 48 hrs. Septic mice have distinct local and systemic responses to Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia. Targeting specific host inflammatory responses induced by distinct bacterial infections could represent a

  1. Pseudomonas aeruginosa inhibits the growth of Cryptococcus species.

    PubMed

    Rella, Antonella; Yang, Mo Wei; Gruber, Jordon; Montagna, Maria Teresa; Luberto, Chiara; Zhang, Yong-Mei; Del Poeta, Maurizio

    2012-06-01

    Pseudomonas aeruginosa is a ubiquitous and opportunistic bacterium that inhibits the growth of different microorganisms, including Gram-positive bacteria and fungi such as Candida spp. and Aspergillus fumigatus. In this study, we investigated the interaction between P. aeruginosa and Cryptococcus spp. We found that P. aeruginosa PA14 and, to a lesser extent, PAO1 significantly inhibited the growth of Cryptococcus spp. The inhibition of growth was observed on solid medium by the visualization of a zone of inhibition of yeast growth and in liquid culture by viable cell counting. Interestingly, such inhibition was only observed when P. aeruginosa and Cryptococcus were co-cultured. Minimal inhibition was observed when cell-cell contact was prevented using a separation membrane, suggesting that cell contact is required for inhibition. Using mutant strains of Pseudomonas quinoline signaling, we showed that P. aeruginosa inhibited the growth of Cryptococcus spp. by producing antifungal molecules pyocyanin, a redox-active phenazine, and 2-heptyl-3,4-dihydroxyquinoline (PQS), an extracellular quorum-sensing signal. Because both P. aeruginosa and Cryptococcus neoformans are commonly found in lung infections of immunocompromised patients, this study may have important implication for the interaction of these microbes in both an ecological and a clinical point of view.

  2. Occurrence of Pseudomonas aeruginosa in waters: implications for patients with cystic fibrosis (CF).

    PubMed

    Caskey, S; Stirling, J; Moore, J E; Rendall, J C

    2018-06-01

    Chronic Pseudomonas aeruginosa infection is associated with increased morbidity and mortality in patients with cystic fibrosis (CF). Current understanding of risk factors for acquisition is limited and so the aim of this study was to examine a large sample of environmental waters from diverse sources. Environmental water samples (n = 7904) from jacuzzis, hydrants, swimming pools, hot tubs, plunge pools, bottled natural mineral water, taps, springs, ice machines, water coolers, bores and showers were examined for the presence of P. aeruginosa. Pseudomonas aeruginosa was detected in 524/7904 (6·6%) waters examined. Hot tubs (51/243; 20·9%), tap water (3/40; 8%) and jacuzzis (432/5811; 7·4%) were the most likely environments where P. aeruginosa was isolated. Pseudomonas aeruginosa was isolated from bottled water (2/67; 3%). Our study highlights the ubiquitous nature of P. aeruginosa in the environment. Given CF patients are frequently counselled to make lifestyle changes to minimize P. aeruginosa exposure, these results have important implications. In particular, the occurrence of P. aeruginosa in tap water highlights the need to disinfect the CF patients' nebulizer after each use. This study examined a large number of water sources (n = 7904) over a 9-year period for the presence of Pseudomonas aeruginosa. The study highlighted that jacuzzis (n = 5811; 7% positive) and hot tubs had the highest occurrence of this organism (n = 243, 21% positive). Patients with cystic fibrosis (CF) are interested in knowing what water environments are likely to be contaminated with this organism, as this bacterium is an important cause of increased morbidity and mortality in such patients. With such information, CF patients and parents may make informed decisions about lifestyle choice and water environment avoidance. © 2018 The Society for Applied Microbiology.

  3. phzO, a Gene for Biosynthesis of 2-Hydroxylated Phenazine Compounds in Pseudomonas aureofaciens 30-84

    PubMed Central

    Delaney, Shannon M.; Mavrodi, Dmitri V.; Bonsall, Robert F.; Thomashow, Linda S.

    2001-01-01

    Certain strains of root-colonizing fluorescent Pseudomonas spp. produce phenazines, a class of antifungal metabolites that can provide protection against various soilborne root pathogens. Despite the fact that the phenazine biosynthetic locus is highly conserved among fluorescent Pseudomonas spp., individual strains differ in the range of phenazine compounds they produce. This study focuses on the ability of Pseudomonas aureofaciens 30-84 to produce 2-hydroxyphenazine-1-carboxylic acid (2-OH-PCA) and 2-hydroxyphenazine from the common phenazine metabolite phenazine-1-carboxylic acid (PCA). P. aureofaciens 30-84 contains a novel gene located downstream from the core phenazine operon that encodes a 55-kDa aromatic monooxygenase responsible for the hydroxylation of PCA to produce 2-OH-PCA. Knowledge of the genes responsible for phenazine product specificity could ultimately reveal ways to manipulate organisms to produce multiple phenazines or novel phenazines not previously described. PMID:11114932

  4. Plasmid Profile Analysis and bla VIM Gene Detection of Metalo β-lactamase (MBL) Producing Pseudomonas aeruginosa Isolates from Clinical Samples

    PubMed Central

    M, Jeya

    2014-01-01

    Introduction:Pseudomonas aeruginosa is a frequent colonizer of hospitalized patients. They are responsible for serious infections such as meningitis, urological infections, septicemia and pneumonia. Carbapenem resistance of Pseudomonas aeruginosa is currently increasingly reported which is often mediated by production of metallo-β-lactamase (MBL). Multidrug resistant Pseudomonas aeruginosa isolates may involve reduced cell wall permeability, production of chromosomal and plasmid mediated β lactamases, aminoglycosides modifying enzymes and an active multidrug efflux mechanism. Objective: This study is aimed to detect the presence and the nature of plasmids among metallo-β-lactamase producing Pseudomonas aeruginosa isolates. Also to detect the presence of bla VIM gene from these isolates. Materials and Methods: Clinical isolates of Pseudomonas aeruginosa showing the metalo-β-lactamase enzyme (MBL) production were isolated. The MBL production was confirmed by three different methods. From the MBL producing isolates plasmid extraction was done by alkaline lysis method. Plasmid positive isolates were subjected for blaVIM gene detection by PCR method. Results: Two thousand seventy six clinical samples yielded 316 (15.22%) Pseudomonas aeruginosa isolates, out of which 141 (44.62%) were multidrug resistant. Among them 25 (17.73%) were metallo-β-lactamase enzyme producers. Plasmids were extracted from 18 out of 25 isolates tested. Five out of 18 isolates were positive for the blaVIM gene detection by the PCR amplification. Conclusion: The MBL producers were susceptible to polymyxin /colistin with MIC ranging from 0.5 – 2μg/ml. Molecular detection of specific genes bla VIM were positive among the carbapenem resistant isolates. PMID:25120980

  5. Cometabolism of DDT analogs by a Pseudomonas sp.

    PubMed Central

    Francis, A J; Spanggord, R J; Ouchi, G I; Bohonos, N

    1978-01-01

    A Pseudomonas sp. capable of growth on several nonchlorinated and mono-p-chloro-substituted analogs of DDT as a sole carbon source degraded bis(p-chlorophenyl)methane and 1,1-bis(p-chlorophenyl)ethane only in the presence of diphenylethane. The products p-chlorophenylacetic acid and 2-(p-chlorophenyl)-propionic acid were not further metabolized by the bacterium. Other chlorinated analogs of DDT were found to be recalcitrant to cometabolic degradation with diphenylethane. PMID:637537

  6. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria.

    PubMed

    Marinho, Palloma Rodrigues; Moreira, Ana Paula Barbosa; Pellegrino, Flávia Lúcia Piffano Costa; Muricy, Guilherme; Bastos, Maria do Carmo de Freire; Santos, Kátia Regina Netto dos; Giambiagi-deMarval, Marcia; Laport, Marinella Silva

    2009-08-01

    Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  7. Biodegradation of Decabromodiphenyl Ether (BDE-209) by Crude Enzyme Extract from Pseudomonas aeruginosa.

    PubMed

    Liu, Yu; Gong, Ai-Jun; Qiu, Li-Na; Li, Jing-Rui; Li, Fu-Kai

    2015-09-18

    The biodegradation effect and mechanism of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa were investigated. The results demonstrated that crude enzyme extract exhibited obviously higher degradation efficiency and shorter biodegradation time than Pseudomonas aeruginosa itself. Under the optimum conditions of pH 9.0, 35 °C and protein content of 2000 mg/L, 92.77% of the initial BDE-209 (20 mg/L) was degraded after 5 h. A BDE-209 biodegradation pathway was proposed on the basis of the biodegradation products identified by GC-MS analysis. The biodegradation mechanism showed that crude enzyme extract degraded BDE-209 into lower brominated PBDEs and OH-PBDEs through debromination and hydroxylation of the aromatic rings.

  8. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa

    PubMed Central

    Bosire, Erick M.; Blank, Lars M.

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa. We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm−2 with ∼150 μg ml−1 phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. IMPORTANCE Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an

  9. Athlete's foot caused by pseudomonas aeruginosa.

    PubMed

    Abramson, C

    1983-01-01

    An enzymatically active pigment-producing clinical isolate of Pseudomonas aeruginosa was found to produce a diffusible antifungal product that was shown to be inhibitory to the growth of several dermatophytes, specifically, Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum gypseum, and Microsporum audouini. In this study, Trichophyton rubrum was used as the test organism. The antifungal product was partially purified by Sephadex column chromatography and was found to be stable at 5 degrees, 25 degrees, and 37 degrees C. Several investigators have alluded to the fact that as asymptomatic cases of dermatophytosis simplex progress to symptomatic dermatophytosis complex, the bacterial profile changes from a gram-positive bacterial ecosystem to a gram-negative bacterial over-growth. The primary event in the pathogenesis of interdigital athlete's foot is the invasion of the horny layer by dermatophytes. This presents as a mild to moderate scaly lesion and is asymptomatic. As a result of predisposing factors, such as hyperhidrosis, occlusion by tight shoes, minute abrasions due to friction, and fungal-infected skin surfaces, dynamic overgrowth of opportunistic gram-negative bacilli prevails. As the gram-negative population increases, the recovery of dermatophytes dramatically diminishes, until a point is reached when no dermatophytes can be recovered from clinically symptomatic tinea pedis. Pseudomonas aeruginosa is inhibiting its fungal competitor Trichophyton rubrum by producing a diffusible antifungal agent into the infectious environment of the intertriginous foot lesion. Clinically, the patient is diagnosed as having tinea pedis; laboratory culture for fungus and KOH are negative, and what was a paradox just a few years ago can currently be identified and treated appropriately as gram-negative athlete's foot.

  10. Heavy metals resistant plasmid-mediated utilization of solar by Pseudomonas aeruginosa AA301.

    PubMed

    Abo-Amer, Aly E; Mohamed, Rehab M

    2006-01-01

    Solar-degrading bacteria, Pseudomonas aeruginosa strains, were isolated from Egyptian soil by Mineral Salt Medium (MSM) supplemented with Solar (motor fuel) from different oil-contaminated sites in Sohag province. The strain AA301 of Pseudomonas aeruginosa showed appreciable growth in MSM medium containing high concentrations of Solar ranging from 0.5 to 3% (v/v), with optimum concentration at 1.5%. Solar was used as a sole carbon source and a source of energy by the bacterium. The ability to degrade Solar was found to be associated with a single 60-kb plasmid designated pSOL15. The plasmid-cured variant, which was obtained by culturing in LB broth with kanamycin, lost the plasmid indicative the ability to degrade Solar must depend on this plasmid. The wild type isolate, Pseudomonas aeruginosa AA301 and transformant strain, have maximum growth (OD600 = approximately 2) on Solar, however the plasmid-cured variant did not have any significant growth on Solar. Moreover, resistance to a wide range of heavy metals such as Mn2+, Hg2+, Mg2+, Cd2+, Zn2+, and Ni2+ was also 60-kb plasmid-mediated. Therefore, the strain AA301 could be good candidate for remediation of some heavy metals and oil hydrocarbons in heavily polluted sites.

  11. Production of melanin pigment from Pseudomonas stutzeri isolated from red seaweed Hypnea musciformis.

    PubMed

    Ganesh Kumar, C; Sahu, N; Narender Reddy, G; Prasad, R B N; Nagesh, N; Kamal, A

    2013-10-01

    Hypnea musciformis red seaweed is popularly known to produce carrageenan was collected from the Gulf of Mannar, India. Strain HMGM-7 [MTCC 11712] was isolated from the surface of this seaweed, which was capable of producing an extracellular black-coloured polymeric pigment. Based on phenotypic characterization and 16S rDNA sequencing, the strain HMGM-7 was identified as Pseudomonas stutzeri. Biophysical characterization by UV-visible, FT-IR, EPR and XRD spectroscopic studies confirmed the pigment as melanin. Further chemical characterization showed that it was acid-resistant, alkali-soluble and alkali-insoluble in most of the organic solvents and distilled water. To our knowledge, this is a first report on a marine Pseudomonas stutzeri strain producing significant amounts of melanin of about 6·7 g l(-1) without L-tyrosine supplementation in the sea-water production medium. This investigation reports a marine Pseudomonas stutzeri strain HMGM-7 [MTCC 11712] that produces significant quantities of melanin (6·7 g l(-1) ) in sea-water medium without the supplementation of L-tyrosine. The confirmation of the produced melanin was carried out by various chemical and physical characterization studies. The isolated melanin may find potential application for use in cosmetic and/or pharmaceutical industries. © 2013 The Society for Applied Microbiology.

  12. Evaluation of Etest MBL for Detection of blaIMP-1 and blaVIM-2 Allele-Positive Clinical Isolates of Pseudomonas spp. and Acinetobacter spp.

    PubMed Central

    Lee, Kyungwon; Yong, Dongeun; Yum, Jong Hwa; Lim, Yong Sik; Bolmström, Anne; Qwärnström, Anette; Karlsson, Åsa; Chong, Yunsop

    2005-01-01

    The Etest MBL (AB BIODISK, Solna, Sweden) correctly differentiated all 57 isolates of Acinetobacter spp. and Pseudomonas aeruginosa with the blaIMP-1 allele and 135 of 137 (98.5%) Acinetobacter spp. and Pseudomonas spp. isolates with the blaVIM-2 allele. The Etest MBL was reliable for detecting the IMP-1- and VIM-2-producing Pseudomonas and Acinetobacter isolates. PMID:15695713

  13. Distribution of Pseudomonas-Derived Cephalosporinase and Metallo-β-Lactamases in Carbapenem-Resistant Pseudomonas aeruginosa Isolates from Korea.

    PubMed

    Cho, Hye Hyun; Kwon, Gye Cheol; Kim, Semi; Koo, Sun Hoe

    2015-07-01

    The emergence of carbapenem resistance among Pseudomonas aeruginosa is an increasing problem in many parts of the world. In particular, metallo-β-lactamases (MBLs) and AmpC β- lactamases are responsible for high-level resistance to carbapenem and cephalosporin. We studied the diversity and frequency of β-lactamases and characterized chromosomal AmpC β- lactamase from carbapenem-resistant P. aeruginosa isolates. Sixty-one carbapenem-resistant P. aeruginosa isolates were collected from patients in a tertiary hospital in Daejeon, Korea, from January 2011 to June 2014. Minimum inhibitory concentrations (MICs) of four antimicrobial agents were determined using the agar-dilution method. Polymerase chain reaction and sequencing were used to identify the various β-lactamase genes, class 1 integrons, and chromosomally encoded and plasmid-mediated ampC genes. In addition, the epidemiological relationship was investigated by multilocus sequence typing. Among 61 carbapenem-resistant P. aeruginosa isolates, 25 isolates (41.0%) were MBL producers. Additionally, 30 isolates producing PDC (Pseudomonas-derived cephalosporinase)-2 were highly resistant to ceftazidime (MIC50 = 256 μg/ml) and cefepime (MIC50 = 256 μg/ml). Of all the PDC variants, 25 isolates harboring MBL genes showed high levels of cephalosporin and carbapenem resistance, whereas 36 isolates that did not harbor MBL genes revealed relatively low-level resistance (ceftazidime, p < 0.001; cefepime, p < 0.001; imipenem, p = 0.003; meropenem, p < 0.001). The coexistence of MBLs and AmpC β-lactamases suggests that these may be important contributing factors for cephalosporin and carbapenem resistance. Therefore, efficient detection and intervention to control drug resistance are necessary to prevent the emergence of P. aeruginosa possessing this combination of β-lactamases.

  14. Draft genome sequence of Pseudomonas sp. strain M47T1, carried by Bursaphelenchus xylophilus isolated from Pinus pinaster.

    PubMed

    Proença, Diogo Neves; Espírito Santo, Christophe; Grass, Gregor; Morais, Paula V

    2012-09-01

    The draft genome sequence of Pseudomonas sp. strain M47T1, carried by the Bursaphelenchus xylophilus pinewood nematode, the causative agent of pine wilt disease, is presented. In Pseudomonas sp. strain M47T1, genes that make this a plant growth-promoting bacterium, as well as genes potentially involved in nematotoxicity, were identified.

  15. Amplification of the groESL operon in Pseudomonas putida increases siderophore gene promoter activity.

    PubMed

    Venturi, V; Wolfs, K; Leong, J; Weisbeek, P J

    1994-10-17

    Pseudobactin 358 is the yellow-green fluorescent siderophore [microbial iron(III) transport agent] produced by Pseudomonas putida WCS358 under iron-limiting conditions. The genes encoding pseudobactin 358 biosynthesis are iron-regulated at the level of transcription. In this study, the molecular characterization is reported of a cosmid clone of WCS358 DNA that can stimulate, in an iron-dependent manner, the activity of a WCS358 siderophore gene promoter in the heterologous Pseudomonas strain A225. The functional region in the clone was identified by subcloning, transposon mutagenesis and DNA sequencing as the groESL operon of strain WCS358. This increase in promoter activity was not observed when the groESL genes of strain WCS358 were integrated via a transposon vector into the genome of Pseudomonas A225, indicating that multiple copies of the operon are necessary for the increase in siderophore gene promoter activity. Amplification of the Escherichia coli and WCS358 groESL genes also increased iron-regulated promoter activity in the parent strain WCS358. The groESL operon codes for the chaperone proteins GroES and GroEL, which are responsible for mediating the folding and assembly of many proteins.

  16. Pip, a Novel Activator of Phenazine Biosynthesis in Pseudomonas chlororaphis PCL1391▿ †

    PubMed Central

    Girard, Geneviève; Barends, Sharief; Rigali, Sébastien; van Rij, E. Tjeerd; Lugtenberg, Ben J. J.; Bloemberg, Guido V.

    2006-01-01

    Secondary metabolites are important factors for interactions between bacteria and other organisms. Pseudomonas chlororaphis PCL1391 produces the antifungal secondary metabolite phenazine-1-carboxamide (PCN) that inhibits growth of Fusarium oxysporum f. sp. radius lycopersici the causative agent of tomato foot and root rot. Our previous work unraveled a cascade of genes regulating the PCN biosynthesis operon, phzABCDEFGH. Via a genetic screen, we identify in this study a novel TetR/AcrR regulator, named Pip (phenazine inducing protein), which is essential for PCN biosynthesis. A combination of a phenotypical characterization of a pip mutant, in trans complementation assays of various mutant strains, and electrophoretic mobility shift assays identified Pip as the fifth DNA-binding protein so far involved in regulation of PCN biosynthesis. In this regulatory pathway, Pip is positioned downstream of PsrA (Pseudomonas sigma factor regulator) and the stationary-phase sigma factor RpoS, while it is upstream of the quorum-sensing system PhzI/PhzR. These findings provide further evidence that the path leading to the expression of secondary metabolism gene clusters in Pseudomonas species is highly complex. PMID:16997957

  17. Characterization of Pseudomonas syringae from blueberry fields in Oregon and Washington

    USDA-ARS?s Scientific Manuscript database

    Bacterial canker, caused by Pseudomonas syringae, is a common disease that kills buds and stems in blueberry fields in Oregon and western Washington. Management is primarily through application of copper; antibiotics are not registered for blueberry. Little is known about the diversity of P. syringa...

  18. A novel chromogenic medium for isolation of Pseudomonas aeruginosa from the sputa of cystic fibrosis patients.

    PubMed

    Laine, Larissa; Perry, John D; Lee, Jenner; Oliver, Michelle; James, Arthur L; De La Foata, Corinne; Halimi, Diane; Orenga, Sylvain; Galloway, Angela; Gould, F Kate

    2009-03-01

    A novel chromogenic medium for isolation and identification of Pseudomonas aeruginosa from sputa of cystic fibrosis (CF) patients was evaluated and compared with standard laboratory methods. One hundred sputum samples from distinct CF patients were cultured onto blood agar (BA), Pseudomonas CN selective agar (CN) and a Pseudomonas chromogenic medium (PS-ID). All Gram-negative morphological variants from each medium were subjected to antimicrobial susceptibility testing, and identification using a combination of biochemical and molecular methods. P. aeruginosa was isolated from 62 samples after 72 h incubation. Blood agar recovered P. aeruginosa from 56 samples (90.3%) compared with 59 samples (95.2%) using either CN or PS-ID. The positive predictive value of PS-ID (98.3%) was significantly higher than growth on CN (88.5%) for identification of P. aeruginosa (P<0.05). PS-ID is a promising medium allowing for the isolation and simultaneous identification of P. aeruginosa from sputa of CF patients.

  19. Endogenous Phenazine Antibiotics Promote Anaerobic Survival of Pseudomonas aeruginosa via Extracellular Electron Transfer ▿

    PubMed Central

    Wang, Yun; Kern, Suzanne E.; Newman, Dianne K.

    2010-01-01

    Antibiotics are increasingly recognized as having other, important physiological functions for the cells that produce them. An example of this is the effect that phenazines have on signaling and community development for Pseudomonas aeruginosa (L. E. Dietrich, T. K. Teal, A. Price-Whelan, and D. K. Newman, Science 321:1203-1206, 2008). Here we show that phenazine-facilitated electron transfer to poised-potential electrodes promotes anaerobic survival but not growth of Pseudomonas aeruginosa PA14 under conditions of oxidant limitation. Other electron shuttles that are reduced but not made by PA14 do not facilitate survival, suggesting that the survival effect is specific to endogenous phenazines. PMID:19880596

  20. Complete Genome Sequence of Pseudomonas aeruginosa Phage AAT-1.

    PubMed

    Andrade-Domínguez, Andrés; Kolter, Roberto

    2016-08-25

    Aspects of the interaction between phages and animals are of interest and importance for medical applications. Here, we report the genome sequence of the lytic Pseudomonas phage AAT-1, isolated from mammalian serum. AAT-1 is a double-stranded DNA phage, with a genome of 57,599 bp, containing 76 predicted open reading frames. Copyright © 2016 Andrade-Domínguez and Kolter.

  1. Ciprofloxacin during upper respiratory tract infections to reduce Pseudomonas aeruginosa infection in paediatric cystic fibrosis: a pilot study.

    PubMed

    Connett, Gary J; Pike, Katharine C; Legg, Julian P; Cathie, Katrina; Dewar, Ann; Foote, Keith; Harris, Amanda; Faust, Saul N

    2015-12-01

    Acute viral respiratory illnesses are associated with acquisition of Pseudomonas aeruginosa infection in cystic fibrosis (CF) patients. This study aimed to pilot a protocol for a randomized controlled trial to determine whether oral antipseudomonal antibiotics used at the onset of such episodes might delay onset of infection with this organism. A total of 41 children with CF aged 2-14 years, without chronic Pseudomonas infection, were randomized to receive ciprofloxacin (n = 28) or placebo (n = 13) at the onset of acute viral respiratory infections on an intention to treat basis, during a study period of up to 32 months. There were no unexpected adverse events believed related to the use of the study medication. The rate of withdrawal from the study was low (approximately 7%) and did not differ between groups. Randomization was effective and acceptable to participants. Primary and secondary outcome measures all favoured active treatment, but there were no significant between group differences. The median rate of Pseudomonas isolates was 0/patient/year (interquartile range 0-0.38) in both the active and placebo groups. Kaplan-Meier survival curves showed no significant difference in time to first Pseudomonas isolate between groups. This study demonstrated the clinical feasibility of using oral ciprofloxacin in CF patients at times of viral infection. Within this sample size, no significant association was found between active treatment and decreased growth of Pseudomonas in follow-up microbiological samples. A definitive study would require at least 320 children to demonstrate significant differences in the rate of pseudomonal isolates. © The Author(s), 2015.

  2. Enterobacteria secrete an inhibitor of Pseudomonas virulence during clinical bacteriuria

    PubMed Central

    Ohlemacher, Shannon I.; Giblin, Daryl E.; d’Avignon, D. André; Stapleton, Ann E.; Trautner, Barbara W.; Henderson, Jeffrey P.

    2017-01-01

    Escherichia coli and other Enterobacteriaceae are among the most common pathogens of the human urinary tract. Among the genetic gains of function associated with urinary E. coli isolates is the Yersinia high pathogenicity island (HPI), which directs the biosynthesis of yersiniabactin (Ybt), a virulence-associated metallophore. Using a metabolomics approach, we found that E. coli and other Enterobacteriaceae expressing the Yersinia HPI also secrete escherichelin, a second metallophore whose chemical structure matches a known synthetic inhibitor of the virulence-associated pyochelin siderophore system in Pseudomonas aeruginosa. We detected escherichelin during clinical E. coli urinary tract infection (UTI) and experimental human colonization with a commensal, potentially probiotic E. coli bacteriuria strain. Escherichelin production by colonizing enterobacteria may help human hosts resist opportunistic infections by Pseudomonas and other pyochelin-expressing bacteria. This siderophore-based mechanism of microbial antagonism may be one of many elements contributing to the protective effects of the human microbiome. Future UTI-preventive probiotic strains may benefit by retaining the escherichelin biosynthetic capacity of the Yersinia HPI while eliminating the Ybt biosynthetic capacity. PMID:28945201

  3. Variable Copy Number, Intra-Genomic Heterogeneities and Lateral Transfers of the 16S rRNA Gene in Pseudomonas

    PubMed Central

    Bodilis, Josselin; Nsigue-Meilo, Sandrine; Besaury, Ludovic; Quillet, Laurent

    2012-01-01

    Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies. PMID:22545126

  4. Irrigation Differentially Impacts Populations of Indigenous Antibiotic-Producing Pseudomonas spp. in the Rhizosphere of Wheat

    PubMed Central

    Mavrodi, Olga V.; Mavrodi, Dmitri V.; Parejko, James A.; Thomashow, Linda S.

    2012-01-01

    This work determined the impact of irrigation on the seasonal dynamics of populations of Pseudomonas spp. producing the antibiotics phenazine-1-carboxylic acid (Phz+) and 2,4-diacetylphloroglucinol (Phl+) in the rhizosphere of wheat grown in the low-precipitation zone (150 to 300 mm annually) of the Columbia Plateau of the Inland Pacific Northwest. Population sizes and plant colonization frequencies of Phz+ and Phl+ Pseudomonas spp. were determined in winter and spring wheat collected during the growing seasons from 2008 to 2009 from selected commercial dryland and irrigated fields in central Washington State. Only Phz+ bacteria were detected on dryland winter wheat, with populations ranging from 4.8 to 6.3 log CFU g−1 of root and rhizosphere colonization frequencies of 67 to 100%. The ranges of population densities of Phl+ and Phz+ Pseudomonas spp. recovered from wheat grown under irrigation were similar, but 58 to 100% of root systems were colonized by Phl+ bacteria whereas only 8 to 50% of plants harbored Phz+ bacteria. In addition, Phz+ Pseudomonas spp. were abundant in the rhizosphere of native plant species growing in nonirrigated areas adjacent to the sampled dryland wheat fields. This is the first report that documents the impact of irrigation on indigenous populations of two closely related groups of antibiotic-producing pseudomonads that coinhabit the rhizosphere of an economically important cereal crop. These results demonstrate how crop management practices can influence indigenous populations of antibiotic-producing pseudomonads with the capacity to suppress soilborne diseases of wheat. PMID:22389379

  5. Biodegradation of Decabromodiphenyl Ether (BDE-209) by Crude Enzyme Extract from Pseudomonas aeruginosa

    PubMed Central

    Liu, Yu; Gong, Ai-Jun; Qiu, Li-Na; Li, Jing-Rui; Li, Fu-Kai

    2015-01-01

    The biodegradation effect and mechanism of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa were investigated. The results demonstrated that crude enzyme extract exhibited obviously higher degradation efficiency and shorter biodegradation time than Pseudomonas aeruginosa itself. Under the optimum conditions of pH 9.0, 35 °C and protein content of 2000 mg/L, 92.77% of the initial BDE-209 (20 mg/L) was degraded after 5 h. A BDE-209 biodegradation pathway was proposed on the basis of the biodegradation products identified by GC-MS analysis. The biodegradation mechanism showed that crude enzyme extract degraded BDE-209 into lower brominated PBDEs and OH-PBDEs through debromination and hydroxylation of the aromatic rings. PMID:26393637

  6. Complete Genome Sequence of Biocontrol Strain Pseudomonas fluorescens LBUM223

    PubMed Central

    Roquigny, Roxane; Arseneault, Tanya; Gadkar, Vijay J.; Novinscak, Amy

    2015-01-01

    Pseudomonas fluorescens LBUM223 is a plant growth-promoting rhizobacterium (PGPR) with biocontrol activity against various plant pathogens. It produces the antimicrobial metabolite phenazine-1-carboxylic acid, which is involved in the biocontrol of Streptomyces scabies, the causal agent of common scab of potato. Here, we report the complete genome sequence of P. fluorescens LBUM223. PMID:25953163

  7. The study of formulated Zoush ointment against wound infection and gene expression of virulence factors Pseudomonas aeruginosa.

    PubMed

    Meskini, Maryam; Esmaeili, Davoud

    2018-06-15

    The outbreak of MDR and XDR strains of Pseudomonas aeruginosa and increased resistance to infection in burn patients recommend the issue of infection control. In this research, we study ZOUSH herbal ointment for gene silencing of Pseudomonas aeruginosa. The herbal ZOUSH ointment was formulated by alcoholic extracts of plants Satureja khuzestaniea, Zataria multiflora, Mentha Mozaffariani Jamzad, honey, and polyurethane. The MIC and disk diffusion tests were examined by single, binary, tertiary and five compounds. Three-week-old mice were considered to be second-degree infections by Pseudomonas aeruginosa. During the interval of 5 days, cultures were done from the liver, blood, and wound by four consecutive quarters and counting of Pseudomonas aeruginosa was reported in the liver. In this study, silver sulfadiazine ointments and Akbar were used as a positive control. The gene gyrA reference was used as the control. Real-time RT-PCR results were evaluated based on Livak as the comparative Ct method. The In vitro results indicated that wound infection was improved by healing wound size in the treatment groups compared to control treatment group. In this research, the changes in gene expression were evaluated by molecular technique Real-time RT-PCR. The results showed downregulation exoS, lasA, and lasB after treatment with ZOUSH ointment. SPSS Analyses showed that reduction of expressions in genes exoS, lasA and lasB after treatment with ZOUSH ointment were significantly meaningful (p < 0.05). Our study showed that ZOUSH ointment has the positive effect for gene silencing Pseudomonas aeruginosa in the mouse model with the second-degree burn. The positive effects decreased in the number of bacteria by reducing the expression of virulence bacteria genes as exoS, lasA and lasB and improvement of wound healing.

  8. Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria

    PubMed Central

    Murphy, Andrew R. J.; Scanlan, David J.; Bending, Gary D.; Jones, Alexandra M. E.; Moore, Jonathan D.; Goodall, Andrew; Hammond, John P.; Wellington, Elizabeth M. H.

    2016-01-01

    Summary Bacteria that inhabit the rhizosphere of agricultural crops can have a beneficial effect on crop growth. One such mechanism is the microbial‐driven solubilization and remineralization of complex forms of phosphorus (P). It is known that bacteria secrete various phosphatases in response to low P conditions. However, our understanding of their global proteomic response to P stress is limited. Here, exoproteomic analysis of Pseudomonas putida BIRD‐1 (BIRD‐1), Pseudomonas fluorescens SBW25 and Pseudomonas stutzeri DSM4166 was performed in unison with whole‐cell proteomic analysis of BIRD‐1 grown under phosphate (Pi) replete and Pi deplete conditions. Comparative exoproteomics revealed marked heterogeneity in the exoproteomes of each Pseudomonas strain in response to Pi depletion. In addition to well‐characterized members of the PHO regulon such as alkaline phosphatases, several proteins, previously not associated with the response to Pi depletion, were also identified. These included putative nucleases, phosphotriesterases, putative phosphonate transporters and outer membrane proteins. Moreover, in BIRD‐1, mutagenesis of the master regulator, phoBR, led us to confirm the addition of several novel PHO‐dependent proteins. Our data expands knowledge of the Pseudomonas PHO regulon, including species that are frequently used as bioinoculants, opening up the potential for more efficient and complete use of soil complexed P. PMID:27233093

  9. Degradation of 4-chloro-3-nitrophenol via a novel intermediate, 4-chlororesorcinol by Pseudomonas sp. JHN

    PubMed Central

    Arora, Pankaj Kumar; Srivastava, Alok; Singh, Vijay Pal

    2014-01-01

    A 4-chloro-3-nitrophenol (4C3NP)-mineralizing bacterium, Pseudomonas sp. JHN was isolated from a waste water sample collected from a chemically-contaminated area, India by an enrichment method. Pseudomonas sp. JHN utilized 4C3NP as a sole carbon and energy source and degraded it with the release of stoichiometric amounts of chloride and nitrite ions. Gas chromatography and gas chromatography-mass spectrometry detected 4-chlororesorcinol as a major metabolite of the 4C3NP degradation pathway. Inhibition studies using 2,2′-dipyridyl showed that 4-chlororesorcinol is a terminal aromatic compound in the degradation pathway of 4C3NP. The activity for 4C3NP-monooxygenase was detected in the crude extracts of the 4C3NP-induced JHN cells that confirmed the formation of 4-chlororesorcinol from 4C3NP. The capillary assay showed that Pseudomonas sp. JHN exhibited chemotaxis toward 4C3NP. The bioremediation capability of Pseudomonas sp. JHN was monitored to carry out the microcosm experiments using sterile and non-sterile soils spiked with 4C3NP. Strain JHN degraded 4C3NP in sterile and non-sterile soil with same degradation rates. This is the first report of (i) bacterial degradation and bioremediation of 4C3NP, (ii) formation of 4-chlororesorcinol in the degradation pathway of 4C3NP, (iii) bacterial chemotaxis toward 4C3NP. PMID:24667329

  10. Isolation and Characterization of the cis-trans-Unsaturated Fatty Acid Isomerase of Pseudomonas oleovorans GPo12

    PubMed Central

    Pedrotta, Valerian; Witholt, Bernard

    1999-01-01

    Pseudomonas oleovorans contains an isomerase which catalyzes the cis-trans conversion of the abundant unsaturated membrane fatty acids 9-cis-hexadecenoic acid (palmitoleic acid) and 11-cis-octadecenoic acid (vaccenic acid). We purified the isomerase from the periplasmic fraction of Pseudomonas oleovorans. The molecular mass of the enzyme was estimated to be 80 kDa under denaturing conditions and 70 kDa under native conditions, suggesting a monomeric structure of the active enzyme. N-terminal sequencing showed that the isomerase derives from a precursor with a signal sequence which is cleaved from the primary translation product in accord with the periplasmic localization of the enzyme. The purified isomerase acted only on free unsaturated fatty acids and not on esterified fatty acids. In contrast to the in vivo cis-trans conversion of lipids, this in vitro isomerization of free fatty acids did not require the addition of organic solvents. Pure phospholipids, even in the presence of organic solvents, could not serve as substrate for the isomerase. However, when crude membranes from Pseudomonas or Escherichia coli cells were used as phospholipid sources, a cis-trans isomerization was detectable which occurred only in the presence of organic solvents. These results indicate that isolated membranes from Pseudomonas or E. coli cells must contain factors which, activated by the addition of organic solvents, enable and control the cis-trans conversion of unsaturated acyl chains of membrane phospholipids by the periplasmic isomerase. PMID:10322030

  11. Development and Testing of Secondary Metabolism Mutants of Pseudomonas fluorescens PF-5

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens Pf-5, a biological control agent of soil-borne plant diseases, produces at least ten secondary metabolites. Several of these metabolites, including hydrogen cyanide, pyrrolnitrin, pyoluteorin and 2,4-diacetylphloroglucinol have well-characterized roles in biological control. ...

  12. Complete genome sequence of Pseudomonas rhizosphaerae IH5T (=DSM 16299T), a phosphate-solubilizing rhizobacterium for bacterial biofertilizer.

    PubMed

    Kwak, Yunyoung; Jung, Byung Kwon; Shin, Jae-Ho

    2015-01-10

    Pseudomonas rhizosphaerae IH5(T) (=DSM 16299(T)), isolated from the rhizospheric soil of grass growing in Spain, has been reported as a novel species of the genus Pseudomonas harboring insoluble phosphorus solubilizing activity. To understanding the multifunctional biofertilizer better, we report the complete genome sequence of P. rhizosphaerae IH5(T). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. pA506, a Conjugative Plasmid of the Plant Epiphyte Pseudomonas fluorescens A506

    PubMed Central

    Stockwell, Virginia O.; Davis, Edward W.; Carey, Alyssa; Shaffer, Brenda T.; Mavrodi, Dmitri V.; Hassan, Karl A.; Hockett, Kevin; Thomashow, Linda S.; Paulsen, Ian T.

    2013-01-01

    Conjugative plasmids are known to facilitate the acquisition and dispersal of genes contributing to the fitness of Pseudomonas spp. Here, we report the characterization of pA506, the 57-kb conjugative plasmid of Pseudomonas fluorescens A506, a plant epiphyte used in the United States for the biological control of fire blight disease of pear and apple. Twenty-nine of the 67 open reading frames (ORFs) of pA506 have putative functions in conjugation, including a type IV secretion system related to that of MOBP6 family plasmids and a gene cluster for type IV pili. We demonstrate that pA506 is self-transmissible via conjugation between A506 and strains of Pseudomonas spp. or the Enterobacteriaceae. The origin of vegetative replication (oriV) of pA506 is typical of those in pPT23A family plasmids, which are present in many pathovars of Pseudomonas syringae, but pA506 lacks repA, a defining locus for pPT23A plasmids, and has a novel partitioning region. We selected a plasmid-cured derivative of A506 and compared it to the wild type to identify plasmid-encoded phenotypes. pA506 conferred UV resistance, presumably due to the plasmid-borne rulAB genes, but did not influence epiphytic fitness of A506 on pear or apple blossoms in the field. pA506 does not appear to confer resistance to antibiotics or other toxic elements. Based on the conjugative nature of pA506 and the large number of its genes that are shared with plasmids from diverse groups of environmental bacteria, the plasmid is likely to serve as a vehicle for genetic exchange between A506 and its coinhabitants on plant surfaces. PMID:23811504

  14. Plastic Encapsulation of Stabilized Escherichia coli and Pseudomonas putida

    PubMed Central

    Manzanera, M.; Vilchez, S.; Tunnacliffe, A.

    2004-01-01

    Escherichia coli and Pseudomonas putida dried in hydroxyectoine or trehalose are shown to be highly resistant to the organic solvents chloroform and acetone, and consequently, they can be encapsulated in a viable form in solid plastic materials. Bacteria are recovered by rehydration after physical disruption of the plastic. P. putida incorporated into a plastic coating of maize seeds was shown to colonize roots efficiently after germination. PMID:15128579

  15. Control of spoiler Pseudomonas spp. on fresh cut vegetables by neutral electrolyzed water.

    PubMed

    Pinto, Loris; Ippolito, Antonio; Baruzzi, Federico

    2015-09-01

    In the present study, we evaluated the antimicrobial activity of neutral electrolyzed water (NEW) against 14 strains of spoilage Pseudomonas of fresh cut vegetables under cold storage. The NEW, produced from solutions of potassium and sodium chloride, and sodium bicarbonate developed up to 4000 mg/L of free chlorine, depending on the salt and relative concentration used. The antimicrobial effect of the NEW was evaluated against different bacterial strains at 10(5) cells/ml, with different combinations of free chlorine concentration/contact time; all concentrations above 100 mg/L, regardless of the salt used, were found to be bactericidal already after 2 min. When catalogna chicory and lettuce leaves were dipped for 5 min in diluted NEW, microbial loads of mesophilic bacteria and Enterobacteriaceae were reduced on average of 1.7 log cfu/g. In addition, when lettuce leaves were dipped in a cellular suspension of the spoiler Pseudomonas chicorii I3C strain, diluted NEW was able to reduce Pseudomonas population of about 1.0 log cfu/g. Thanks to its high antimicrobial activity against spoilage microorganisms, and low cost of operation, the application of cycles of electrolysis to the washing water looks as an effective tool in controlling fresh cut vegetable microbial spoilage contamination occurring during washing steps. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. DAPG-producing Pseudomonas fluorescens: beneficial agents for suppression of plant-parasitic nematodes?

    USDA-ARS?s Scientific Manuscript database

    Some beneficial strains of the bacterium Pseudomonas fluorescens produce the antibiotic 2, 4-diacetylphloroglucinol (DAPG). DAPG is active against a number of organisms, including viruses, bacteria, fungi and plants, and DAPG-producing P. fluorescens can also induce plant resistance against pathogen...

  17. Draft genome sequence of the phenazine-producing Pseudomonas fluorescens strain 2-79

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens strain 2-79, a natural isolate of the rhizosphere of wheat (Triticum aestivum L.), possesses antagonistic potential toward several fungal pathogens. We report the draft genome sequence of strain 2-79, which comprises 5,674 protein-coding sequences....

  18. Galacto-oligosaccharide hydrolysis by genetically-engineered alpha-galactosidase-producing Pseudomonas chlororaphis strains

    USDA-ARS?s Scientific Manuscript database

    Various Pseudomonas chlororaphis strains have been shown to produce rhamnolipid (a biosurfactant), poly(hydroxyalkanoate) (PHA; a biopolymer), and/or antifungal compounds for plants. An ability to metabolize galacto-oligosaccharides in soy molasses would allow P. chlororaphis to use the byproduct as...

  19. [The comparison of selected virulence factors in Pseudomonas aeruginosa catheter isolates].

    PubMed

    Olejnízková, Katerina; Holá, Veronika

    2012-05-01

    Healthcare quality improvement brings about an increasing number of invasive diagnostic and therapeutic procedures and thus also an increasing number of high-risk patients prone to hospital infections. Pseudomonas aeruginosa is one of the most commonly isolated nosocomial species and the treatment of the infection is often long and problematic, with frequent recurrences. The pathogenesis of Pseudomonas infection is associated with a range of virulence factors. In the present study, 93 catheter isolates of Pseudomonas aeruginosa were screened for the biofilm formation, motility and secretion of selected extracellular products. A high rate of the strains tested were producers of hemolysins, LasB elastase, and pyoverdines (> 70%). The biofilm formation was detected in 80% of isolates and formation of aerated biofilm was present in 90% of isolates with a positive correlation found between the two types of biofilm formation (p = 0.00583; gamma = 0.551). All strains showed swarming motility, 95% of strains showed swimming motility, and 75% of strains showed twitching motility. Among the virulence factors studied, only pyocyanin and pyochelin were produced by a lower proportion of isolates (< 25%). A positive correlation was seen between the production of some extracellular molecules (pyochelin and pyocyanin, pyocyanin and LasB elastase, and LasB elastase and haemolysins), between biofilm formation and formation of aerated biofilm, and between formation of aerated biofilm and pigments (pyoverdine and pyocyanin) production. On the other hand, a negative correlation was found between biofilm production and LasB elastase production and between the production of biofilm under immersion and pigments (pyoverdine and pyocyanin) production. All correlations are significant at the level p = 0.05, with the correlation coefficient gamma > 0.50.

  20. [The action of quaternary ammonium derivatives on respiration and nitrate reduction in Pseudomonas aeruginosa].

    PubMed

    Bievskiĭ, A N

    1994-01-01

    It was revealed that the same dosages of quaternary ammonium derivatives, such as decamethoxin and cetyltrimethylammonium bromide, inhibited the respiratory chains and caused destruction of Pseudomonas aeruginosa under aerobic conditions more effectively than under anaerobic ones when anions of nitric acid were the terminal acceptors of electrons. It was also registered that Pseudomonas were able to dissimilatory nitrate reduction in the media under the polysaccharide layer that was produced by these bacteria: this fact possibly proves the possibility of survival of denitrifying bacteria in solutions with high concentrations of quaternary ammonium salts. The data obtained permit supposing that inhibitors of respiratory chains and oxidizers may be used as potentiators of the antimicrobial action of quaternary ammonium derivatives.

  1. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-02-14

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs.

  2. EM Diffusion for a Time-Domain Airborne EM System

    NASA Astrophysics Data System (ADS)

    Yin, C.; Qiu, C.; Liu, Y.; Cai, J.

    2014-12-01

    Visualization of EM diffusion for an airborne EM (AEM) system is important for understanding the transient procedure of EM diffusion. The current distribution and diffusion features also provide effective means to evaluate EM footprint, depth of exploration and further help AEM system design and data interpretation. Most previous studies on EM diffusion (or "smoke ring" effect) are based on the static presentation of EM field, where the dynamic features of EM diffusion were not visible. For visualizing the dynamic feature of EM diffusion, we first calculate in this paper the frequency-domain EM field by downward continuation of the EM field at the EM receiver to the deep earth. After that, we transform the results to time-domain via a Fourier transform. We take a homogeneous half-space and a two-layered earth induced by a step pulse to calculate the EM fields and display the EM diffusion in the earth as 3D animated vectors or time-varying contours. The "smoke ring" effect of EM diffusion, dominated by the resistivity distribution of the earth, is clearly observed. The numerical results for an HCP (vertical magnetic dipole) and a VCX (horizontal magnetic dipole) transmitting coil above a homogeneous half-space of 100 ohm-m are shown in Fig.1. We display as example only the distribution of EM field inside the earth for the diffusion time of 0.05ms. The detailed EM diffusion will be shown in our future presentation. From the numerical experiments for different models, we find that 1) the current for either an HCP or a VCX transmitting dipole propagates downward and outward with time, becoming wider and more diffuse, forming a "smoke ring"; 2) for a VCX transmitter, the underground current forms two ellipses, corresponding to the two polarities of the magnetic flux of a horizontal magnetic dipole, injecting into or ejected from the earth; 3) for a HCP transmitter, however, the underground current forms only one circle, corresponding to the polarity of the magnetic flux

  3. Pseudomonas aeruginosa Las quorum sensing autoinducer suppresses growth and biofilm production in Legionella species.

    PubMed

    Kimura, Soichiro; Tateda, Kazuhiro; Ishii, Yoshikazu; Horikawa, Manabu; Miyairi, Shinichi; Gotoh, Naomasa; Ishiguro, Masaji; Yamaguchi, Keizo

    2009-06-01

    Bacteria commonly communicate with each other by a cell-to-cell signalling mechanism known as quorum sensing (QS). Recent studies have shown that the Las QS autoinducer N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C(12)-HSL) of Pseudomonas aeruginosa performs a variety of functions not only in intraspecies communication, but also in interspecies and interkingdom interactions. In this study, we report the effects of Pseudomonas 3-oxo-C(12)-HSL on the growth and suppression of virulence factors in other bacterial species that frequently co-exist with Ps. aeruginosa in nature. It was found that 3-oxo-C(12)-HSL, but not its analogues, suppressed the growth of Legionella pneumophila in a dose-dependent manner. However, 3-oxo-C(12)-HSL did not exhibit a growth-suppressive effect on Serratia marcescens, Proteus mirabilis, Escherichia coli, Alcaligenes faecalis and Stenotrophomonas maltophilia. A concentration of 50 microM 3-oxo-C(12)-HSL completely inhibited the growth of L. pneumophila. Additionally, a significant suppression of biofilm formation was demonstrated in L. pneumophila exposed to 3-oxo-C(12)-HSL. Our results suggest that the Pseudomonas QS autoinducer 3-oxo-C(12)-HSL exerts both bacteriostatic and virulence factor-suppressive activities on L. pneumophila alone.

  4. Three Strains of Pseudomonas fluorescens Exhibit Differential Toxicity Against Drosophila melanogaster

    USDA-ARS?s Scientific Manuscript database

    Three strains of Pseudomonas fluorescens were tested for toxicity to Drosophila melanogaster in an insect feeding assay. Insect eggs were placed on the surface of a non-nutritive agar plate supplemented with a food source that was non-inoculated or inoculated with P. fluorescens Pf0-1, SBW25, or Pf-...

  5. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.

    PubMed

    Bosire, Erick M; Blank, Lars M; Rosenbaum, Miriam A

    2016-08-15

    Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm(-2) with ∼150 μg ml(-1) phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an entire microbial

  6. Carbon Catabolite Repression and Impranil Polyurethane Degradation in Pseudomonas protegens Strain Pf-5

    PubMed Central

    Hung, Chia-Suei; Zingarelli, Sandra; Nadeau, Lloyd J.; Biffinger, Justin C.; Drake, Carrie A.; Crouch, Audra L.; Barlow, Daniel E.; Russell, John N.

    2016-01-01

    ABSTRACT Polyester polyurethane (PU) coatings are widely used to help protect underlying structural surfaces but are susceptible to biological degradation. PUs are susceptible to degradation by Pseudomonas species, due in part to the degradative activity of secreted hydrolytic enzymes. Microorganisms often respond to environmental cues by secreting enzymes or secondary metabolites to benefit their survival. This study investigated the impact of exposing several Pseudomonas strains to select carbon sources on the degradation of the colloidal polyester polyurethane Impranil DLN (Impranil). The prototypic Pseudomonas protegens strain Pf-5 exhibited Impranil-degrading activities when grown in sodium citrate but not in glucose-containing medium. Glucose also inhibited the induction of Impranil-degrading activity by citrate-fed Pf-5 in a dose-dependent manner. Biochemical and mutational analyses identified two extracellular lipases present in the Pf-5 culture supernatant (PueA and PueB) that were involved in degradation of Impranil. Deletion of the pueA gene reduced Impranil-clearing activities, while pueB deletion exhibited little effect. Removal of both genes was necessary to stop degradation of the polyurethane. Bioinformatic analysis showed that putative Cbr/Hfq/Crc-mediated regulatory elements were present in the intergenic sequences upstream of both pueA and pueB genes. Our results confirmed that both PueA and PueB extracellular enzymes act in concert to degrade Impranil. Furthermore, our data showed that carbon sources in the growth medium directly affected the levels of Impranil-degrading activity but that carbon source effects varied among Pseudomonas strains. This study uncovered an intricate and complicated regulation of P. protegens PU degradation activity controlled by carbon catabolite repression. IMPORTANCE Polyurethane (PU) coatings are commonly used to protect metals from corrosion. Microbiologically induced PU degradation might pose a substantial

  7. Carbon Catabolite Repression and Impranil Polyurethane Degradation in Pseudomonas protegens Strain Pf-5.

    PubMed

    Hung, Chia-Suei; Zingarelli, Sandra; Nadeau, Lloyd J; Biffinger, Justin C; Drake, Carrie A; Crouch, Audra L; Barlow, Daniel E; Russell, John N; Crookes-Goodson, Wendy J

    2016-10-15

    Polyester polyurethane (PU) coatings are widely used to help protect underlying structural surfaces but are susceptible to biological degradation. PUs are susceptible to degradation by Pseudomonas species, due in part to the degradative activity of secreted hydrolytic enzymes. Microorganisms often respond to environmental cues by secreting enzymes or secondary metabolites to benefit their survival. This study investigated the impact of exposing several Pseudomonas strains to select carbon sources on the degradation of the colloidal polyester polyurethane Impranil DLN (Impranil). The prototypic Pseudomonas protegens strain Pf-5 exhibited Impranil-degrading activities when grown in sodium citrate but not in glucose-containing medium. Glucose also inhibited the induction of Impranil-degrading activity by citrate-fed Pf-5 in a dose-dependent manner. Biochemical and mutational analyses identified two extracellular lipases present in the Pf-5 culture supernatant (PueA and PueB) that were involved in degradation of Impranil. Deletion of the pueA gene reduced Impranil-clearing activities, while pueB deletion exhibited little effect. Removal of both genes was necessary to stop degradation of the polyurethane. Bioinformatic analysis showed that putative Cbr/Hfq/Crc-mediated regulatory elements were present in the intergenic sequences upstream of both pueA and pueB genes. Our results confirmed that both PueA and PueB extracellular enzymes act in concert to degrade Impranil. Furthermore, our data showed that carbon sources in the growth medium directly affected the levels of Impranil-degrading activity but that carbon source effects varied among Pseudomonas strains. This study uncovered an intricate and complicated regulation of P. protegens PU degradation activity controlled by carbon catabolite repression. Polyurethane (PU) coatings are commonly used to protect metals from corrosion. Microbiologically induced PU degradation might pose a substantial problem for the integrity

  8. Pyogranulomatous panniculitis in ferrets (Mustela putorius furo) with intralesional demonstration of Pseudomonas luteola.

    PubMed

    Baum, B; Richter, B; Reifinger, M; Klang, A; Finnberg, C; Loncaric, I; Spergser, J; Eisenberg, T; Künzel, F; Preis, S; Pantchev, N; Rütgen, B; Guija de Arespacochaga, A; Hewicker-Trautwein, M

    2015-01-01

    One ferret (Mustela putorius furo) from Finland and two ferrets from Austria, aged 1-4.5 years and of both genders, were presented with pyogranulomatous subcutaneous inflammation affecting the inguinal, preputial and femoral regions, respectively. Histologically, microorganisms were detected within the lesions. The organisms had a capsule that stained positively by the periodic acid-Schiff reaction. Pseudomonas spp. were cultured from the lesions in two cases. In the third case, electron microscopy revealed a prokaryotic organism surrounded by an electron lucent matrix. 16S rRNA gene sequencing showed highest sequence homology to Pseudomonas luteola in all three cases. In combination with recent reports of pleuropneumonia in ferrets due to P. luteola infection, these cases might indicate a predisposition of ferrets for infection by these bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Analysis of Dibenzothiophene Desulfurization in a Recombinant Pseudomonas putida Strain▿

    PubMed Central

    Calzada, Javier; Zamarro, María T.; Alcón, Almudena; Santos, Victoria E.; Díaz, Eduardo; García, José L.; Garcia-Ochoa, Felix

    2009-01-01

    Biodesulfurization was monitored in a recombinant Pseudomonas putida CECT5279 strain. DszB desulfinase activity reached a sharp maximum at the early exponential phase, but it rapidly decreased at later growth phases. A model two-step resting-cell process combining sequentially P. putida cells from the late and early exponential growth phases was designed to significantly increase biodesulfurization. PMID:19047400

  10. A Natural Chimeric Pseudomonas Bacteriocin with Novel Pore-Forming Activity Parasitizes the Ferrichrome Transporter.

    PubMed

    Ghequire, Maarten G K; Kemland, Lieselore; Anoz-Carbonell, Ernesto; Buchanan, Susan K; De Mot, René

    2017-02-21

    Modular bacteriocins represent a major group of secreted protein toxins with a narrow spectrum of activity, involved in interference competition between Gram-negative bacteria. These antibacterial proteins include a domain for binding to the target cell and a toxin module at the carboxy terminus. Self-inhibition of producers is provided by coexpression of linked immunity genes that transiently inhibit the toxin's activity through formation of bacteriocin-immunity complexes or by insertion in the inner membrane, depending on the type of toxin module. We demonstrate strain-specific inhibitory activity for PmnH, a Pseudomonas bacteriocin with an unprecedented dual-toxin architecture, hosting both a colicin M domain, potentially interfering with peptidoglycan synthesis, and a novel colicin N-type domain, a pore-forming module distinct from the colicin Ia-type domain in Pseudomonas aeruginosa pyocin S5. A downstream-linked gene product confers PmnH immunity upon susceptible strains. This protein, ImnH, has a transmembrane topology similar to that of Pseudomonas colicin M-like and pore-forming immunity proteins, although homology with either of these is essentially absent. The enhanced killing activity of PmnH under iron-limited growth conditions reflects parasitism of the ferrichrome-type transporter for entry into target cells, a strategy shown here to be used as well by monodomain colicin M-like bacteriocins from pseudomonads. The integration of a second type of toxin module in a bacteriocin gene could offer a competitive advantage against bacteria displaying immunity against only one of both toxic activities. IMPORTANCE In their continuous struggle for ecological space, bacteria face a huge load of contenders, including phylogenetically related strains that compete for the same niche. One important group of secreted antibacterial proteins assisting in eliminating these rivals are modular bacteriocins of Gram-negative bacteria, comprising a domain for docking onto the

  11. Pseudomonas aeruginosa lipopolysaccharide induces CF-like alteration of protein secretion by human tracheal gland cells.

    PubMed

    Kammouni, W; Figarella, C; Baeza, N; Marchand, S; Merten, M D

    1997-12-18

    Human tracheal gland (HTG) serous cells are now believed to play a major role in the physiopathology of cystic fibrosis. Because of the persistent inflammation and the specific infection by Pseudomonas aeruginosa in the lung, we looked for the action of the lipopolysaccharide (LPS) of this bacteria on human tracheal gland cells in culture by studying the secretion of the secretory leukocyte proteinase inhibitor (SLPI) which is a specific serous secretory marker of these cells. Treatment with Pseudomonas aeruginosa LPS resulted in a significant dose-dependent increase in the basal production of SLPI (+ 250 +/- 25%) whilst the SLPI transcript mRNA levels remained unchanged. This LPS-induced increase in secretion was inhibited by glucocorticoides. Furthermore, LPS treatment of HTG cells induces a loss of responsiveness to carbachol and isoproterenol but not to adenosine triphosphate. These findings indicate that HTG cells treated by Pseudomonas aeruginosa LPS have the same behavior as those previously observed with CF-HTG cells. Exploration by using reverse transcriptase polymerase chain reaction amplification showed that LPS downregulated cystic fibrosis transmembrane conductance regulator (CFTR) mRNA expression in HTG cells indicative of a link between CFTR function and consequent CF-like alteration in protein secretory process.

  12. Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: A review.

    PubMed

    Yong, Yang-Chun; Wu, Xiang-Yang; Sun, Jian-Zhong; Cao, Ying-Xiu; Song, Hao

    2015-12-01

    Cell-cell communication that enables synchronized population behaviors in microbial communities dictates various biological processes. It is of great interest to unveil the underlying mechanisms of fine-tuning cell-cell communication to achieve environmental and energy applications. Pseudomonas is a ubiquitous microbe in environments that had wide applications in bioremediation and bioenergy generation. The quorum sensing (QS, a generic cell-cell communication mechanism) systems of Pseudomonas underlie the aromatics biodegradation, denitrification and electricity harvest. Here, we reviewed the recent progresses of the genetic strategies in engineering QS circuits to improve efficiency of wastewater treatment and the performance of microbial fuel cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Les infections à Pseudomonas aeruginosa au service des maladies infectieuses du CHU YO, Burkina Faso: à propos deux cas

    PubMed Central

    Mamoudou, Savadogo; Lassina, Dao; Fla, Koueta

    2015-01-01

    Nous rapportons deux cas d'infection à Pseudomonas aeruginosa: un cas de méningite et un cas d'infection urinaire. Les auteurs rappellent qu’à côté des étiologies classiques des méningites et des infections urinaires, des germes résistants comme Pseudomonas aeruginosa peuvent être responsables d'infections à localisation méningées et urinaires et dont il faut connaître pour une bonne prise en charge. Le traitement de ces infections requiert un antibiogramme au regard de la grande capacité de résistance de Pseudomonas aeruginosa en milieu hospitalier. La limitation des gestes invasifs et l'application rigoureuse des mesures de prévention des infections en milieu hospitalier contribueront à lutter efficacement contre ces infections en milieu de soins. PMID:26491521

  14. Assessment on the decolourization of textile dye (Reactive Yellow) using Pseudomonas sp. immobilized on fly ash: Response surface methodology optimization and toxicity evaluation.

    PubMed

    Roy, Uttariya; Sengupta, Shubhalakshmi; Banerjee, Priya; Das, Papita; Bhowal, Avijit; Datta, Siddhartha

    2018-06-18

    This study focuses on the investigation of removal of textile dye (Reactive Yellow) by a combined approach of sorption integrated with biodegradation using low cost adsorbent fly ash immobilized with Pseudomonas sp. To ensure immobilization of bacterial species on treated fly ash, fly ash with immobilized bacterial cells was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and fluorescence microscopy. Comparative batch studies were carried out using Pseudomonas sp, fly ash and immobilized Pseudomonas sp on flyash and were observed that immobilized Pseudomonas sp on flyash acted as better decolourizing agent. The optimized pH, temperature, and immobilized adsorbent dosage for highest percentage of dye removal were observed to be pH 6, 303 K, 1.2 g/L in all the cases. At optimum condition, the highest percentage of dye removal was found to be 88.51%, 92.62% and 98.72% for sorption (flyash), biodegradation (Pseudomonas sp) and integral approach (Pseudomonas sp on flyash) respectively. Optimization of operating parameters of textile dye decolourization was done by response surface methodology (RSM) using Design Expert 7 software. Phytotoxicity evaluation with Cicer arietinum revealed that seeds exposed to untreated dye effluents showed considerably lower growth, inhibited biochemical, and enzyme parameters with compared to those exposed to treated textile effluents. Thus this immobilized inexpensive technique could be used for removal of synthetic dyes present in textile wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Various effects of fluorescent bacteria of the genus Pseudomonas containing ACC deaminase on wheat seedling growth.

    PubMed

    Magnucka, Elżbieta G; Pietr, Stanisław J

    2015-12-01

    The study evaluates the effect of rhizobacteria having 1-aminocyclopropane-1-carboxylate deaminase (ACCd) on the development of wheat seedlings. This enzyme has been proposed to play a key role in microbe-plant association. Three fluorescent pseudomonads containing this deaminase were selected from 70 strains of pseudomonads isolated from rhizosphere of wheat (Triticum aestivum L.) and rape (Brassica napus L.). These bacteria, varied significantly in the ability to both biosynthesize auxins and hydrolyze ACC. Among them, Pseudomonas brassicacearum subsp. brassicacearum strain RZ310 presented the highest activities of ACC deaminase during 96h of growth in liquid Dworkin and Foster (DF) salt medium. Additionally, this rape rhizosphere strain did not produce indoles. Two other isolates, Pseudomonas sp. PO283 and Pseudomonas sp. PO366, secreted auxins only in the presence of their precursor. Phylogenetic analysis of the 16S rRNA gene and four other protein-encoding genes indicated that these wheat rhizosphere isolates belonged to the fluorescent Pseudomonas group. Moreover, the effects of these strains on wheat seedling growth under in vitro conditions were markedly dependent on both their cell suspensions used to grain inoculation and nutrient conditions. Strains tested had beneficial influence on wheat seedlings mainly at low cell densities. In addition, access to nutrients markedly changed bacteria action on cereal growth. Their presence generally favored the positive effects of pseudomonads on length and the estimated biomasses of wheat coleoptiles. Despite these general rules, impacts of each isolate on the growth parameters of cereal seedlings were unique. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions

    PubMed Central

    Scarascia, Giantommaso; Yap, Scott A.; Kaksonen, Anna H.; Hong, Pei-Ying

    2018-01-01

    Pseudomonas aeruginosa is a ubiquitous member of marine biofilm, and reduces thiosulfate to produce toxic hydrogen sulfide gas. In this study, lytic bacteriophages were isolated and applied to inhibit the growth of P. aeruginosa in planktonic mode at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P. aeruginosa exhibited significantly longer lag phase and lower specific growth rates upon exposure to bacteriophages. Bacteriophages were subsequently applied to P. aeruginosa-enriched biofilm and were determined to lower the relative abundance of Pseudomonas-related taxa from 0.17 to 5.58% in controls to 0.01–0.61% in treated microbial communities. The relative abundance of Alphaproteobacteria, Pseudoalteromonas, and Planococcaceae decreased, possibly due to the phage-induced disruption of the biofilm matrix. Lastly, when applied to mitigate biofouling of ultrafiltration membranes, bacteriophages were determined to reduce the transmembrane pressure increase by 18% when utilized alone, and by 49% when used in combination with citric acid. The combined treatment was more effective compared with the citric acid treatment alone, which reported ca. 30% transmembrane pressure reduction. Collectively, the findings demonstrated that bacteriophages can be used as a biocidal agent to mitigate undesirable P. aeruginosa-associated problems in seawater applications. PMID:29770130

  17. Genomic analysis of the type VI secretion systems in Pseudomonas spp.: novel clusters and putative effectors uncovered.

    PubMed

    Barret, Matthieu; Egan, Frank; Fargier, Emilie; Morrissey, John P; O'Gara, Fergal

    2011-06-01

    Bacteria encode multiple protein secretion systems that are crucial for interaction with the environment and with hosts. In recent years, attention has focused on type VI secretion systems (T6SSs), which are specialized transporters widely encoded in Proteobacteria. The myriad of processes associated with these secretion systems could be explained by subclasses of T6SS, each involved in specialized functions. To assess diversity and predict function associated with different T6SSs, comparative genomic analysis of 34 Pseudomonas genomes was performed. This identified 70 T6SSs, with at least one locus in every strain, except for Pseudomonas stutzeri A1501. By comparing 11 core genes of the T6SS, it was possible to identify five main Pseudomonas phylogenetic clusters, with strains typically carrying T6SSs from more than one clade. In addition, most strains encode additional vgrG and hcp genes, which encode extracellular structural components of the secretion apparatus. Using a combination of phylogenetic and meta-analysis of transcriptome datasets it was possible to associate specific subsets of VgrG and Hcp proteins with each Pseudomonas T6SS clade. Moreover, a closer examination of the genomic context of vgrG genes in multiple strains highlights a number of additional genes associated with these regions. It is proposed that these genes may play a role in secretion or alternatively could be new T6S effectors.

  18. Isolation and Molecular Characterization of a Model Antagonistic Pseudomonas aeruginosa Divulging In Vitro Plant Growth Promoting Characteristics.

    PubMed

    Uzair, Bushra; Kausar, Rehana; Bano, Syeda Asma; Fatima, Sammer; Badshah, Malik; Habiba, Ume; Fasim, Fehmida

    2018-01-01

    The use of microbial technologies in agriculture is currently expanding quite rapidly with the identification of new bacterial strains, which are more effective in promoting plant growth. In the present study 18 strains of Pseudomonas were isolated from soil sample of Balochistan coastline. Among isolated Pseudomonas strains four designated as SP19, SP22, PS24, and SP25 exhibited biocontrol activities against phytopathogenic fungi, that is, Rhizopus microsporus, Fusarium oxysporum, Aspergillus niger, Alternaria alternata, and Penicillium digitatum ; PS24 identified as Pseudomonas aeruginosa by 16srRNA gene bank accession number EU081518 was selected on the basis of its antifungal activity to explore its potential as plant growth promotion. PS24 showed multiple plant growth promoting attributes such as phosphate solubilization activity, indole acetic acid (IAA), siderophore, and HCN production. In order to determine the basis for antifungal properties, antibiotics were extracted from King B broth of PS24 and analyzed by TLC. Pyrrolnitrin antibiotic was detected in the culture of strain PS24. PS24 exhibited antifungal activities found to be positive for hydrogen cyanide synthase Hcn BC gene. Sequencing of gene of Hcn BC gene of strain PS24 revealed 99% homology with the Pseudomonas aeruginosa strain PA01 . The sequence of PS24 had been submitted in gene bank accession number KR605499. Ps. aeruginosa PS24 with its multifunctional biocontrol possessions can be used to bioprotect the crop plants from phytopathogens.

  19. Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1-Carboxamide from Pseudomonas aeruginosa PAO1

    PubMed Central

    Mavrodi, Dmitri V.; Bonsall, Robert F.; Delaney, Shannon M.; Soule, Marilyn J.; Phillips, Greg; Thomashow, Linda S.

    2001-01-01

    Two seven-gene phenazine biosynthetic loci were cloned from Pseudomonas aeruginosa PAO1. The operons, designated phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2, are homologous to previously studied phenazine biosynthetic operons from Pseudomonas fluorescens and Pseudomonas aureofaciens. Functional studies of phenazine-nonproducing strains of fluorescent pseudomonads indicated that each of the biosynthetic operons from P. aeruginosa is sufficient for production of a single compound, phenazine-1-carboxylic acid (PCA). Subsequent conversion of PCA to pyocyanin is mediated in P. aeruginosa by two novel phenazine-modifying genes, phzM and phzS, which encode putative phenazine-specific methyltransferase and flavin-containing monooxygenase, respectively. Expression of phzS alone in Escherichia coli or in enzymes, pyocyanin-nonproducing P. fluorescens resulted in conversion of PCA to 1-hydroxyphenazine. P. aeruginosa with insertionally inactivated phzM or phzS developed pyocyanin-deficient phenotypes. A third phenazine-modifying gene, phzH, which has a homologue in Pseudomonas chlororaphis, also was identified and was shown to control synthesis of phenazine-1-carboxamide from PCA in P. aeruginosa PAO1. Our results suggest that there is a complex pyocyanin biosynthetic pathway in P. aeruginosa consisting of two core loci responsible for synthesis of PCA and three additional genes encoding unique enzymes involved in the conversion of PCA to pyocyanin, 1-hydroxyphenazine, and phenazine-1-carboxamide. PMID:11591691

  20. Fast and economic immobilization methods described for non-commercial Pseudomonas lipases

    PubMed Central

    2014-01-01

    Background There is an increasing interest to seek new enzyme preparations for the development of new products derived from bioprocesses to obtain alternative bio-based materials. In this context, four non-commercial lipases from Pseudomonas species were prepared, immobilized on different low-cost supports, and examined for potential biotechnological applications. Results To reduce costs of eventual scaling-up, the new lipases were obtained directly from crude cell extracts or from growth culture supernatants, and immobilized by simple adsorption on Accurel EP100, Accurel MP1000 and Celite®545. The enzymes evaluated were LipA and LipC from Pseudomonas sp. 42A2, a thermostable mutant of LipC, and LipI.3 from Pseudomonas CR611, which were produced in either homologous or heterologous hosts. Best immobilization results were obtained on Accurel EP100 for LipA and on Accurel MP1000 for LipC and its thermostable variant. Lip I.3, requiring a refolding step, was poorly immobilized on all supports tested (best results for Accurel MP1000). To test the behavior of immobilized lipases, they were assayed in triolein transesterification, where the best results were observed for lipases immobilized on Accurel MP1000. Conclusions The suggested protocol does not require protein purification and uses crude enzymes immobilized by a fast adsorption technique on low-cost supports, which makes the method suitable for an eventual scaling up aimed at biotechnological applications. Therefore, a fast, simple and economic method for lipase preparation and immobilization has been set up. The low price of the supports tested and the simplicity of the procedure, skipping the tedious and expensive purification steps, will contribute to cost reduction in biotechnological lipase-catalyzed processes. PMID:24755191

  1. Stimulating Central Carbon Metabolism to Re-sensitize Pseudomonas aeruginosa to Aminoglycosides.

    PubMed

    Martins, Dorival; Nguyen, Dao

    2017-02-16

    In this issue of Cell Chemical Biology, Meylan et al. (2017) examine how stimulation of central carbon metabolism of Pseudomonas aeruginosa modulates aminoglycoside lethality in tolerant bacteria. They identify fumarate as a tobramycin potentiator that stimulates proton motive force-dependent drug uptake and increases respiration-dependent killing. Copyright © 2017. Published by Elsevier Ltd.

  2. Imipenem, meropenem, or doripenem to treat patients with Pseudomonas aeruginosa ventilator-associated pneumonia.

    PubMed

    Luyt, Charles-Edouard; Aubry, Alexandra; Lu, Qin; Micaelo, Maïté; Bréchot, Nicolas; Brossier, Florence; Brisson, Hélène; Rouby, Jean-Jacques; Trouillet, Jean-Louis; Combes, Alain; Jarlier, Vincent; Chastre, Jean

    2014-01-01

    Only limited data exist on Pseudomonas aeruginosa ventilator-associated pneumonia (VAP) treated with imipenem, meropenem, or doripenem. Therefore, we conducted a prospective observational study in 169 patients who developed Pseudomonas aeruginosa VAP. Imipenem, meropenem, and doripenem MICs for Pseudomonas aeruginosa isolates were determined using Etests and compared according to the carbapenem received. Among the 169 isolates responsible for the first VAP episode, doripenem MICs were lower (P<0.0001) than those of imipenem and meropenem (MIC50s, 0.25, 2, and 0.38, respectively); 61%, 64%, and 70% were susceptible to imipenem, meropenem, and doripenem, respectively (P was not statistically significant). Factors independently associated with carbapenem resistance were previous carbapenem use (within 15 days) and mechanical ventilation duration before VAP onset. Fifty-six (33%) patients had at least one VAP recurrence, and 56 (33%) died. Factors independently associated with an unfavorable outcome (recurrence or death) were a high day 7 sequential organ failure assessment score and mechanical ventilation dependency on day 7. Physicians freely prescribed a carbapenem to 88 patients: imipenem for 32, meropenem for 24, and doripenem for 32. The remaining 81 patients were treated with various antibiotics. Imipenem-, meropenem-, and doripenem-treated patients had similar VAP recurrence rates (41%, 25%, and 22%, respectively; P=0.15) and mortality rates (47%, 25%, and 22%, respectively; P=0.07). Carbapenem resistance emerged similarly among patients treated with any carbapenem. No carbapenem was superior to another for preventing carbapenem resistance emergence.

  3. Imipenem, Meropenem, or Doripenem To Treat Patients with Pseudomonas aeruginosa Ventilator-Associated Pneumonia

    PubMed Central

    Aubry, Alexandra; Lu, Qin; Micaelo, Maïté; Bréchot, Nicolas; Brossier, Florence; Brisson, Hélène; Rouby, Jean-Jacques; Trouillet, Jean-Louis; Combes, Alain; Jarlier, Vincent; Chastre, Jean

    2014-01-01

    Only limited data exist on Pseudomonas aeruginosa ventilator-associated pneumonia (VAP) treated with imipenem, meropenem, or doripenem. Therefore, we conducted a prospective observational study in 169 patients who developed Pseudomonas aeruginosa VAP. Imipenem, meropenem, and doripenem MICs for Pseudomonas aeruginosa isolates were determined using Etests and compared according to the carbapenem received. Among the 169 isolates responsible for the first VAP episode, doripenem MICs were lower (P < 0.0001) than those of imipenem and meropenem (MIC50s, 0.25, 2, and 0.38, respectively); 61%, 64%, and 70% were susceptible to imipenem, meropenem, and doripenem, respectively (P was not statistically significant). Factors independently associated with carbapenem resistance were previous carbapenem use (within 15 days) and mechanical ventilation duration before VAP onset. Fifty-six (33%) patients had at least one VAP recurrence, and 56 (33%) died. Factors independently associated with an unfavorable outcome (recurrence or death) were a high day 7 sequential organ failure assessment score and mechanical ventilation dependency on day 7. Physicians freely prescribed a carbapenem to 88 patients: imipenem for 32, meropenem for 24, and doripenem for 32. The remaining 81 patients were treated with various antibiotics. Imipenem-, meropenem-, and doripenem-treated patients had similar VAP recurrence rates (41%, 25%, and 22%, respectively; P = 0.15) and mortality rates (47%, 25%, and 22%, respectively; P = 0.07). Carbapenem resistance emerged similarly among patients treated with any carbapenem. No carbapenem was superior to another for preventing carbapenem resistance emergence. PMID:24342638

  4. Transfer of Pseudomonas flectens Johnson 1956 to Phaseolibacter gen. nov., in the family Enterobacteriaceae, as Phaseolibacter flectens gen. nov., comb. nov.

    PubMed

    Halpern, Malka; Fridman, Svetlana; Aizenberg-Gershtein, Yana; Izhaki, Ido

    2013-01-01

    Pseudomonas flectens Johnson 1956, a plant-pathogenic bacterium on the pods of the French bean, is no longer considered to be a member of the genus Pseudomonas sensu stricto. A polyphasic approach that included examination of phenotypic properties and phylogenetic analyses based on 16S rRNA, rpoB and atpD gene sequences supported the transfer of Pseudomonas flectens Johnson 1956 to a new genus in the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Two strains of Phaseolibacter flectens were studied (ATCC 12775(T) and LMG 2186); the strains shared 99.8 % sequence similarity in their 16S rRNA genes and the housekeeping gene sequences were identical. Strains of Phaseolibacter flectens shared 96.6 % or less 16S rRNA gene sequence similarity with members of different genera in the family Enterobacteriaceae and only 84.7 % sequence similarity with Pseudomonas aeruginosa LMG 1242(T), demonstrating that they are not related to the genus Pseudomonas. As Phaseolibacter flectens formed an independent phyletic lineage in all of the phylogenetic analyses, it could not be affiliated to any of the recognized genera within the family Enterobacteriaceae and therefore was assigned to a new genus. Cells were Gram-negative, straight rods, motile by means of one or two polar flagella, fermentative, facultative anaerobes, oxidase-negative and catalase-positive. Growth occurred in the presence of 0-60 % sucrose. The DNA G+C content of the type strain was 44.3 mol%. On the basis of phenotypic properties and phylogenetic distinctiveness, Pseudomonas flectens Johnson 1956 is transferred to the novel genus Phaseolibacter gen. nov. as Phaseolibacter flectens gen. nov., comb. nov. The type strain of Phaseolibacter flectens is ATCC 12775(T) = CFBP 3281(T) = ICMP 745(T) = LMG 2187(T) = NCPPB 539(T).

  5. Spatial distributions of Pseudomonas fluorescens colony variants in mixed-culture biofilms.

    PubMed

    Workentine, Matthew L; Wang, Siyuan; Ceri, Howard; Turner, Raymond J

    2013-07-28

    The emergence of colony morphology variants in structured environments is being recognized as important to both niche specialization and stress tolerance. Pseudomonas fluorescens demonstrates diversity in both its natural environment, the rhizosphere, and in laboratory grown biofilms. Sub-populations of these variants within a biofilm have been suggested as important contributors to antimicrobial stress tolerance given their altered susceptibility to various agents. As such it is of interest to determine how these variants might be distributed in the biofilm environment. Here we present an analysis of the spatial distribution of Pseudomonas fluorescens colony morphology variants in mixed-culture biofilms with the wildtype phenotype. These findings reveal that two variant colony morphotypes demonstrate a significant growth advantage over the wildtype morphotype in the biofilm environment. The two variant morphotypes out-grew the wildtype across the entire biofilm and this occurred within 24 h and was maintained through to 96 h. This competitive advantage was not observed in homogeneous broth culture. The significant advantage that the variants demonstrate in biofilm colonization over the wildtype denotes the importance of this phenotype in structured environments.

  6. Engineering Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review.

    PubMed

    Bilal, Muhammad; Guo, Shuqi; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-10-03

    Pseudomonas strains are increasingly attracting considerable attention as a valuable bacterial host both for basic and applied research. It has been considered as a promising candidate to produce a variety of bioactive secondary metabolites, particularly phenazines. Apart from the biotechnological perspective, these aromatic compounds have the notable potential to inhibit plant-pathogenic fungi and thus are useful in controlling plant diseases. Nevertheless, phenazines production is quite low by the wild-type strains that necessitated its yield improvement for large-scale agricultural applications. Metabolic engineering approaches with the advent of plentiful information provided by systems-level genomic and transcriptomic analyses enabled the development of new biological agents functioning as potential cell factories for producing the desired level of value-added bioproducts. This study presents an up-to-date overview of recombinant Pseudomonas strains as the preferred choice of host organisms for the biosynthesis of natural phenazines. The biosynthetic pathway and regulatory mechanism involved in the phenazine biosynthesis are comprehensively discussed. Finally, a summary of biological functionalities and biotechnological applications of the phenazines is also provided.

  7. Rice-Infecting Pseudomonas Genomes Are Highly Accessorized and Harbor Multiple Putative Virulence Mechanisms to Cause Sheath Brown Rot.

    PubMed

    Quibod, Ian Lorenzo; Grande, Genelou; Oreiro, Eula Gems; Borja, Frances Nikki; Dossa, Gerbert Sylvestre; Mauleon, Ramil; Cruz, Casiana Vera; Oliva, Ricardo

    2015-01-01

    Sheath rot complex and seed discoloration in rice involve a number of pathogenic bacteria that cannot be associated with distinctive symptoms. These pathogens can easily travel on asymptomatic seeds and therefore represent a threat to rice cropping systems. Among the rice-infecting Pseudomonas, P. fuscovaginae has been associated with sheath brown rot disease in several rice growing areas around the world. The appearance of a similar Pseudomonas population, which here we named P. fuscovaginae-like, represents a perfect opportunity to understand common genomic features that can explain the infection mechanism in rice. We showed that the novel population is indeed closely related to P. fuscovaginae. A comparative genomics approach on eight rice-infecting Pseudomonas revealed heterogeneous genomes and a high number of strain-specific genes. The genomes of P. fuscovaginae-like harbor four secretion systems (Type I, II, III, and VI) and other important pathogenicity machinery that could probably facilitate rice colonization. We identified 123 core secreted proteins, most of which have strong signatures of positive selection suggesting functional adaptation. Transcript accumulation of putative pathogenicity-related genes during rice colonization revealed a concerted virulence mechanism. The study suggests that rice-infecting Pseudomonas causing sheath brown rot are intrinsically diverse and maintain a variable set of metabolic capabilities as a potential strategy to occupy a range of environments.

  8. CHARACTERIZATION OF PB2+ UPTAKE AND SEQUESTRATION IN PSEUDOMONAS AERUGINOSA CHL004

    EPA Science Inventory

    In laboratory studies, the soil isolate Pseudomonas aeruginosa CHL004 (Vesper et al 1996) has been found to concentrated Pb2+ in the cytoplasm by formation of particles that contain Pb2+ and phosphorus. Upon examination of the washed lyophilized cells grown in the presence of lea...

  9. [Pseudomonas folliculitis outbreaks associated with swimming pools or whirlpools in two guest-room sites in the northern region of Israel].

    PubMed

    Cohen-Dar, Michal; DiCastro, Noa; Grotto, Itamar

    2012-07-01

    In summer 2010-2011 two outbreaks of Pseudomonas foliculitis occurred among bathers who used the swimming pools or whirlpools in two guest-room sites. The source of the infection was traced to the swimming pools or whirlpools, which had not been chlorinated and monitored routinely. Of 40 bathers, 25 (62.5%) developed Pseudomonas folliculitis 2-4 days after exposure. Typically the rash began as a pruritic erythematous papule on the buttocks, axilla, and extremities, with fever, adenopathy and otitis externa. In the culture of the pustules and bacterial examination grew Pseudomonas aeroginosa. Pseudomonas folliculitis was first described by McCausland and Cox in 1975. To the best of our knowledge, this is the first description of outbreaks in swimming pools or whirlpools in guest-room sites in Israel. This article describes the epidemiological and environmental health investigation of the two outbreaks. With the rising popularity of swimming pools and whirlpools in guest-room sites, physicians in the community and the emergency rooms may encounter this disease. We urge their real time report to the public health offices, in charge of the epidemiological inquires, aiming to prevent the occurrence of new cases or improper treatment of similar cases.

  10. Pseudomonas aeruginosa Type III Secretory Toxin ExoU and Its Predicted Homologs.

    PubMed

    Sawa, Teiji; Hamaoka, Saeko; Kinoshita, Mao; Kainuma, Atsushi; Naito, Yoshifumi; Akiyama, Koichi; Kato, Hideya

    2016-10-26

    Pseudomonas aeruginosa ExoU, a type III secretory toxin and major virulence factor with patatin-like phospholipase activity, is responsible for acute lung injury and sepsis in immunocompromised patients. Through use of a recently updated bacterial genome database, protein sequences predicted to be homologous to Ps. aeruginosa ExoU were identified in 17 other Pseudomonas species ( Ps. fluorescens , Ps. lundensis , Ps. weihenstephanensis , Ps. marginalis, Ps. rhodesiae, Ps. synxantha , Ps. libanensis , Ps. extremaustralis , Ps. veronii , Ps. simiae , Ps. trivialis , Ps. tolaasii , Ps. orientalis , Ps. taetrolens , Ps. syringae , Ps. viridiflava , and Ps. cannabina ) and 8 Gram-negative bacteria from three other genera ( Photorhabdus , Aeromonas , and Paludibacterium ). In the alignment of the predicted primary amino acid sequences used for the phylogenetic analyses, both highly conserved and nonconserved parts of the toxin were discovered among the various species. Further comparative studies of the predicted ExoU homologs should provide us with more detailed information about the unique characteristics of the Ps. aeruginosa ExoU toxin.

  11. Pf16 and phiPMW: Expanding the realm of Pseudomonas putida bacteriophages

    PubMed Central

    Krylov, Victor N.; Shaburova, Olga V.; McGrath, John W.; Allen, Christopher C. R.; Quinn, John P.; Kulakov, Leonid A.

    2017-01-01

    We present the analysis of two novel Pseudomonas putida phages, pf16 and phiPMW. Pf16 represents a peripherally related T4-like phage, and is the first of its kind infecting a Pseudomonad, with evidence suggesting cyanophage origins. Extensive divergence has resulted in pf16 occupying a newly defined clade designated as the pf16-related phages, lying at the interface of the Schizo T-Evens and Exo T-Evens. Recombination with an ancestor of the P. putida phage AF is likely responsible for the tropism of this phage. phiPMW represents a completely novel Pseudomonas phage with a genome containing substantial genetic novelty through its many hypothetical proteins. Evidence suggests that this phage has been extensively shaped through gene transfer events and vertical evolution. Phylogenetics shows that this phage has an evolutionary history involving FelixO1-related viruses but is in itself highly distinct from this group. PMID:28877269

  12. Mining Genomes of Biological Control Strains of Pseudomonas spp.: Unexpected Gems and Tailings

    USDA-ARS?s Scientific Manuscript database

    The biocontrol bacterium Pseudomonas fluorescens Pf-5 suppresses numerous soilborne plant diseases and produces an array of structurally-characterized secondary metabolites that are toxic to plant pathogenic bacteria, fungi and Oomycetes. Biosynthetic gene clusters for these metabolites compose nea...

  13. Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv. phaseolicola.

    PubMed Central

    Robinette, D; Matthysse, A G

    1990-01-01

    Injection into tobacco leaves of biotype 1 Agrobacterium tumefaciens or of Pseudomonas savastanoi inhibited the development of a visible hypersensitive response to the subsequent injection at the same site of Pseudomonas syringae pv. phaseolicola. This interference with the hypersensitive response was not seen with injection of bacterial growth medium or Escherichia coli cells. Live A. tumefaciens cells were required for the inhibitory effect. Various mutants and strains of A. tumefaciens were examined to determine the genes involved. Known chromosomal mutations generally had no effect on the ability of A. tumefaciens to inhibit the hypersensitive response, except for chvB mutants which showed a reduced (but still significant) inhibition of the hypersensitive response. Ti plasmid genes appeared to be required for the inhibition of the hypersensitive response. The bacteria did not need to be virulent in order to inhibit the hypersensitive response. Deletion of the vir region from pTi had no effect on the inhibition. However, the T region of the Ti plasmid was required for inhibition. Studies of transposon mutants suggested that the tms but not tmr or ocs genes were required. These genes were not acting after transfer to plant cells since they were effective in strains lacking vir genes and thus unable to transfer DNA to plant cells. The results suggest that the expression of the tms genes in the bacteria may inhibit the development of the hypersensitive response by the plant. An examination of the genes required in P. savastanoi for the inhibition of the hypersensitive response suggested that bacterial production of auxin was also required for the inhibition of the hypersensitive response by these bacteria. Images PMID:2211508

  14. Transformation of Dibenzo-p-Dioxin by Pseudomonas sp. Strain HH69

    PubMed Central

    Harms, Hauke; Wittich, Rolf-Michael; Sinnwell, Volker; Meyer, Holger; Fortnagel, Peter; Francke, Wittko

    1990-01-01

    Dibenzo-p-dioxin was oxidatively cleaved by the dibenzofuran-degrading bacterium Pseudomonas sp. strain HH69 to produce minor amounts of 1-hydroxydibenzo-p-dioxin and catechol, while a 2-phenoxy derivative of muconic acid was formed as the major product. Upon acidic methylation, the latter yielded the dimethylester of cis, trans-2-(2-hydroxyphenoxy)-muconic acid. PMID:16348160

  15. Impact of Pseudomonas aeruginosa Infection on Respiratory Muscle Function in Adult Cystic Fibrosis Patients.

    PubMed

    Magnet, Friederike Sophie; Callegari, Jens; Dieninghoff, Doris; Spielmanns, Marc; Storre, Jan Hendrik; Schmoor, Claudia; Windisch, Wolfram

    2017-01-01

    Pseudomonas aeruginosa infection impairs respiratory muscle function in adolescents with cystic fibrosis, but its impact on adult patients has not been characterised. To investigate respiratory muscle function in adult cystic fibrosis patients according to P. aeruginosa status (repetitive samples over 12 months). The pressure-time index of the respiratory muscles (PTImus), a measure of their efficiency, served as the primary outcome. In addition, respiratory load and maximal respiratory muscle strength were assessed. In 51 patients examined (65% female; median age 32 years, IQR 24-40), a median of 3.0 (IQR 2-4) different pathogens was found in each patient. The PTImus was 0.113 and 0.126 in Pseudomonas-positive (n = 33) and -negative (n = 18) patients, respectively (p = 0.53). Univariate analysis showed a lower PTImus in male than in female patients (p = 0.006). Respiratory muscle load and strength were otherwise comparable, with the exception of higher nasal sniff pressures in Pseudomonas-positive patients who were chronically infected (>50% of positive samples). Quality of Life (according to the Cystic Fibrosis Questionnaire-Revised) was higher if both respiratory load and the PTImus were low (high respiratory muscle efficiency). Chronic P. aeruginosa infection does not influence respiratory muscle efficiency in adult cystic fibrosis patients with otherwise multiple co-infections. In addition, patients with reduced respiratory muscle efficiency had worse Quality of Life. © 2016 S. Karger AG, Basel.

  16. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model

    PubMed Central

    Wang, Ke; Cai, Shuangqi; Liu, Tangjuan; Cheng, Xiaojing; Lei, Danqing; Chen, Yanling; Li, Yanan; Kong, Jinliang; Chen, Yiqiang

    2017-01-01

    The quorum sensing (QS) circuit plays a role in the precise regulation of genes controlling virulence factors and biofilm formation in Pseudomonas aeruginosa. QS-controlled biofilm formation by Pseudomonas aeruginosa in clinical settings has remained controversial due to emerging drug resistance; therefore, screening diverse compounds for anti-biofilm or anti-QS activities is important. This study demonstrates the ability of sub-minimum inhibitory concentrations (sub-MICs) of baicalin, an active natural compound extracted from the traditional Chinese medicinal Scutellaria baicalensis, to inhibit the formation of Pseudomonas aeruginosa biofilms and enhance the bactericidal effects of various conventional antibiotics in vitro. In addition, baicalin exerted dose-dependent inhibitory effects on virulence phenotypes (LasA protease, LasB elastase, pyocyanin, rhamnolipid, motilities and exotoxin A) regulated by QS in Pseudomonas aeruginosa. Moreover, the expression levels of QS-regulatory genes, including lasI, lasR, rhlI, rhlR, pqsR and pqsA, were repressed after sub-MIC baicalin treatment, resulting in significant decreases in the QS signaling molecules 3-oxo-C12-HSL and C4-HSL, confirming the ability of baicalin-mediated QS inhibition to alter gene and protein expression. In vivo experiments indicated that baicalin treatment reduces Pseudomonas aeruginosa pathogenicity in Caenorhabditis elegans. Greater worm survival in the baicalin-treated group manifested as an increase in the LT50 from 24 to 96 h. In a mouse peritoneal implant infection model, baicalin treatment enhanced the clearance of Pseudomonas aeruginosa from the implants of mice infected with Pseudomonas aeruginosa compared with the control group. Moreover, the combination of baicalin and antibiotics significantly reduced the numbers of colony-forming units in the implants to a significantly greater degree than antibiotic treatment alone. Pathological and histological analyses revealed mitigation of the

  17. Microarray Analysis and Mutagenesis of the Biological Control Agent Pseudomonas fluorescens Pf-5

    USDA-ARS?s Scientific Manuscript database

    The biological control agent Pseudomonas fluorescens Pf-5 suppresses seedling emergence diseases caused by soilborne fungi and Oomycetes. Pf-5 produces at least ten secondary metabolites. These include hydrogen cyanide, pyrrolnitrin, pyoluteorin and 2,4-diacetylphloroglucinol, which have known funct...

  18. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria.

    PubMed

    Browne, Patrick; Barret, Matthieu; O'Gara, Fergal; Morrissey, John P

    2010-11-25

    Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate nutritional status cues with the regulation

  19. EFFECT OF PHENOTYPIC PLASTICITY ON EPIPHYTIC SURVIVAL AND COLONIZATION BY PSEUDOMONAS SYRINGAE

    EPA Science Inventory

    The bacterial epiphyte Pseudomonas syringas MF714R was cultured on agar or in broth or collected form colonized leaves; it was then inoculated onto greenhouse-grown bean plants incubated in a growth chamber at low relative humidity or in the field or onto field-grown bean plants....

  20. Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa.

    PubMed

    Brand, Alexandra; Barnes, Julia D; Mackenzie, Kevin S; Odds, Frank C; Gow, Neil A R

    2008-10-01

    The fungus, Candida albicans, and the bacterium, Pseudomonas aeruginosa, are opportunistic human pathogens that have been coisolated from diverse body sites. Pseudomonas aeruginosa suppresses C. albicans proliferation in vitro and potentially in vivo but it is the C. albicans hyphae that are killed while yeast cells are not. We show that hyphal killing involves both contact-mediated and soluble factors. Bacterial culture filtrates contained heat-labile soluble factors that killed C. albicans hyphae. In cocultures, localized points of hyphal lysis were observed, suggesting that adhesion and subsequent bacteria-mediated cell wall lysis is involved in the killing of C. albicans hyphae. The glycosylation status of the C. albicans cell wall affected the rate of contact-dependent killing because mutants with severely truncated O-linked, but not N-linked, glycans were hypersensitive to Pseudomonas-mediated killing. Deletion of HWP1, ALS3 or HYR1, which encode major hypha-associated cell wall proteins, had no effect on fungal susceptibility.

  1. Biosynthesis of Polyhydroxyalkanoate from Steamed Soybean Wastewater by a Recombinant Strain of Pseudomonas sp. 61-3.

    PubMed

    Hokamura, Ayaka; Yunoue, Yuko; Goto, Saki; Matsusaki, Hiromi

    2017-08-08

    Pseudomonas sp. 61-3 accumulates a blend of poly(3-hydroxybutyrate) [P(3HB)] homopolymer and a random copolymer, poly(3-hydroxybutyrate- co -3-hydroxyalkanoate) [P(3HB- co -3HA)], consisting of 3HA units of 4-12 carbon atoms. Pseudomonas sp. 61-3 possesses two types of PHA synthases, PHB synthase (PhbC) and PHA synthases (PhaC1 and PhaC2), encoded by the phb and pha loci, respectively. The P(94 mol% 3HB- co -6 mol% 3HA) copolymer synthesized by the recombinant strain of Pseudomonas sp. 61-3 ( phbC :: tet ) harboring additional copies of phaC1 gene is known to have desirable physical properties and to be a flexible material with moderate toughness, similar to low-density polyethylene. In this study, we focused on the production of the P(3HB- co -3HA) copolymer using steamed soybean wastewater, a by-product in brewing miso , which is a traditional Japanese seasoning. The steamed soybean wastewater was spray-dried to produce a powder (SWP) and used as the sole nitrogen source for the synthesis of P(3HB- co -3HA) by the Pseudomonas sp. 61-3 recombinant strain. Hydrolyzed SWP (HSWP) was also used as a carbon and nitrogen source. P(3HB- co -3HA)s with relatively high 3HB fractions could be synthesized by a recombinant strain of Pseudomonas sp. 61-3 ( phbC :: tet ) harboring additional copies of the phaC1 gene in the presence of 2% glucose and 10-20 g/L SWP as the sole nitrogen source, producing a PHA concentration of 1.0-1.4 g/L. When HSWP was added to a nitrogen- and carbon-free medium, the recombinant strain could synthesize PHA without glucose as a carbon source. The recombinant strain accumulated 32 wt% P(3HB- co -3HA) containing 80 mol% 3HB and 20 mol% medium-chain-length 3HA with a PHA concentration of 1.0 g/L when 50 g/L of HSWP was used. The PHA production yield was estimated as 20 mg-PHA/g-HSWP, which equates to approximately 1.0 g-PHA per liter of soybean wastewater.

  2. Biosynthesis of Polyhydroxyalkanoate from Steamed Soybean Wastewater by a Recombinant Strain of Pseudomonas sp. 61-3

    PubMed Central

    Hokamura, Ayaka; Yunoue, Yuko; Goto, Saki; Matsusaki, Hiromi

    2017-01-01

    Pseudomonas sp. 61-3 accumulates a blend of poly(3-hydroxybutyrate) [P(3HB)] homopolymer and a random copolymer, poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) [P(3HB-co-3HA)], consisting of 3HA units of 4–12 carbon atoms. Pseudomonas sp. 61-3 possesses two types of PHA synthases, PHB synthase (PhbC) and PHA synthases (PhaC1 and PhaC2), encoded by the phb and pha loci, respectively. The P(94 mol% 3HB-co-6 mol% 3HA) copolymer synthesized by the recombinant strain of Pseudomonas sp. 61-3 (phbC::tet) harboring additional copies of phaC1 gene is known to have desirable physical properties and to be a flexible material with moderate toughness, similar to low-density polyethylene. In this study, we focused on the production of the P(3HB-co-3HA) copolymer using steamed soybean wastewater, a by-product in brewing miso, which is a traditional Japanese seasoning. The steamed soybean wastewater was spray-dried to produce a powder (SWP) and used as the sole nitrogen source for the synthesis of P(3HB-co-3HA) by the Pseudomonas sp. 61-3 recombinant strain. Hydrolyzed SWP (HSWP) was also used as a carbon and nitrogen source. P(3HB-co-3HA)s with relatively high 3HB fractions could be synthesized by a recombinant strain of Pseudomonas sp. 61-3 (phbC::tet) harboring additional copies of the phaC1 gene in the presence of 2% glucose and 10–20 g/L SWP as the sole nitrogen source, producing a PHA concentration of 1.0–1.4 g/L. When HSWP was added to a nitrogen- and carbon-free medium, the recombinant strain could synthesize PHA without glucose as a carbon source. The recombinant strain accumulated 32 wt% P(3HB-co-3HA) containing 80 mol% 3HB and 20 mol% medium-chain-length 3HA with a PHA concentration of 1.0 g/L when 50 g/L of HSWP was used. The PHA production yield was estimated as 20 mg-PHA/g-HSWP, which equates to approximately 1.0 g-PHA per liter of soybean wastewater. PMID:28952548

  3. Chromosomally Encoded mcr-5 in Colistin non-susceptible Pseudomonas aeruginosa.

    PubMed

    Snesrud, Erik; Maybank, Rosslyn; Kwak, Yoon I; Jones, Anthony R; Hinkle, Mary K; Mc Gann, Patrick

    2018-05-29

    Whole genome sequencing (WGS) of historical Pseudomonas aeruginosa clinical isolates identified a chromosomal copy of mcr-5 within a Tn 3 -like transposon in P. aeruginosa MRSN 12280. The isolate was non-susceptible to colistin by broth microdilution and genome analysis revealed no mutations known to confer colistin resistance. To the best of our knowledge, this is the first report of mcr in colistin non-susceptible P. aeruginosa .

  4. Lipopolysaccharide Antigens of Pseudomonas aeruginosa and Design of Novel Vaccines.

    DTIC Science & Technology

    1987-09-01

    Pseudomonas aeruginosa, OA 1-C LChemical structure, Fisher immunotypes, M; ig0-Chain polysaccharide , and Synthetic antigens 19. ABSTRACT (Conu on rftvm if...have been characterized in our laboratories. Partial structures for the remaining two types have been elucidated. The O-chain polysaccharides of the... polysaccharide antigens for native structure, and (5) binding-site xa[lJ11:, of the antibodies using the synthetic antigens. b% B.. Sirmificance: General

  5. Methods of detecting and controlling mucoid Pseudomonas biofilm production

    NASA Technical Reports Server (NTRS)

    Qiu, Dongru (Inventor); Yu, Hongwei D. (Inventor)

    2013-01-01

    Compositions and methods for detecting and controlling the conversion to mucoidy in Pseudomonas aeruginosa are disclosed. The present invention provides for detecting the switch from nonmucoid to mucoid state of P. aeruginosa by measuring mucE expression or MucE protein levels. The interaction between MucE and AlgW controls the switch to mucoidy in wild type P. aeruginosa. Also disclosed is an alginate biosynthesis heterologous expression system for use in screening candidate substances that inhibit conversion to mucoidy.

  6. Methods of detecting and controlling mucoid pseudomonas biofilm production

    NASA Technical Reports Server (NTRS)

    Qiu, Dongru (Inventor); Yu, Hongwei D. (Inventor)

    2010-01-01

    Compositions and methods for detecting and controlling the conversion to mucoidy in Pseudomonas aeruginosa are disclosed. The present invention provides for detecting the switch from nonmucoid to mucoid state of P. aeruginosa by measuring mucE expression or MucE protein levels. The interaction between MucE and AlgW controls the switch to mucoidy in wild type P. aeruginosa. Also disclosed is an alginate biosynthesis heterologous expression system for use in screening candidate substances that inhibit conversion to mucoidy.

  7. Candidate nematicidal proteins in a new Pseudomonas veronii isolate identified by its antagonistic properties against Xiphinema index.

    PubMed

    Canchignia, Hayron; Altimira, Fabiola; Montes, Christian; Sánchez, Evelyn; Tapia, Eduardo; Miccono, María; Espinoza, Daniel; Aguirre, Carlos; Seeger, Michael; Prieto, Humberto

    2017-03-17

    The nematode Xiphinema index affects grape vines and transmits important viruses associated with fanleaf degeneration. Pseudomonas spp. are an extensive bacterial group in which important biodegradation and/or biocontrol properties can occur for several strains in the group. The aim of this study was to identify new Pseudomonas isolates with antagonist activity against X. index. Forty bacterial isolates were obtained from soil and root samples from Chilean vineyards. Thirteen new fluorescent pseudomonads were found and assessed for their antagonistic capability. The nematicide Pseudomonas protegens CHA0 was used as a control. Challenges of nematode individuals in King's B semi-solid agar Petri dishes facilitated the identification of the Pseudomonas veronii isolate R4, as determined by a 16S rRNA sequence comparison. This isolate was as effective as CHA0 as an antagonist of X. index, although it had a different lethality kinetic. Milk-induced R4 cultures exhibited protease and lipase activities in cell supernatants using both gelatin/tributyrin Petri dish assays and zymograms. Three proteins with these activities were isolated and subjected to mass spectrometry. Amino acid partial sequences enabled the identification of a 49-kDa protease similar to metalloprotease AprA and two lipases of 50 kDa and 69 kDa similar to LipA and ExoU, respectively. Electron microscopy analyses of challenged nematodes revealed degraded cuticle after R4 supernatant treatment. These results represent a new and unexplored property in this species associated with the presence of secretable lipases and protease, similar to characterized enzymes present in biocontrol pseudomonads.

  8. Small-Molecule Inhibition of Choline Catabolism in Pseudomonas aeruginosa and Other Aerobic Choline-Catabolizing Bacteria ▿ †

    PubMed Central

    Fitzsimmons, Liam F.; Flemer, Stevenson; Wurthmann, A. Sandy; Deker, P. Bruce; Sarkar, Indra Neil; Wargo, Matthew J.

    2011-01-01

    Choline is abundant in association with eukaryotes and plays roles in osmoprotection, thermoprotection, and membrane biosynthesis in many bacteria. Aerobic catabolism of choline is widespread among soil proteobacteria, particularly those associated with eukaryotes. Catabolism of choline as a carbon, nitrogen, and/or energy source may play important roles in association with eukaryotes, including pathogenesis, symbioses, and nutrient cycling. We sought to generate choline analogues to study bacterial choline catabolism in vitro and in situ. Here we report the characterization of a choline analogue, propargylcholine, which inhibits choline catabolism at the level of Dgc enzyme-catalyzed dimethylglycine demethylation in Pseudomonas aeruginosa. We used genetic analyses and 13C nuclear magnetic resonance to demonstrate that propargylcholine is catabolized to its inhibitory form, propargylmethylglycine. Chemically synthesized propargylmethylglycine was also an inhibitor of growth on choline. Bioinformatic analysis suggests that there are genes encoding DgcA homologues in a variety of proteobacteria. We examined the broader utility of propargylcholine and propargylmethylglycine by assessing growth of other members of the proteobacteria that are known to grow on choline and possess putative DgcA homologues. Propargylcholine showed utility as a growth inhibitor in P. aeruginosa but did not inhibit growth in other proteobacteria tested. In contrast, propargylmethylglycine was able to inhibit choline-dependent growth in all tested proteobacteria, including Pseudomonas mendocina, Pseudomonas fluorescens, Pseudomonas putida, Burkholderia cepacia, Burkholderia ambifaria, and Sinorhizobium meliloti. We predict that chemical inhibitors of choline catabolism will be useful for studying this pathway in clinical and environmental isolates and could be a useful tool to study proteobacterial choline catabolism in situ. PMID:21602374

  9. Agricultural Use of Burkholderia (Pseudomonas) Cepacia: A Threat to Human Health?

    DTIC Science & Technology

    1998-06-01

    endocarditis in the 1950s. Since then the organism has caused numerous catheter-associated urinary tract infections , wound infections , and intravenous...4-6). While in some patients indolent pulmonary infection occurs with only gradual deterioration in lung function similar to that associated with...Pseudomonas aeruginosa, approximately 35% of B. cepacia- infected patients contract accelerated pulmonary deterio- ration or fulminant, necrotizing

  10. Diversity of endophytic Pseudomonas in Halimione portulacoides from metal(loid)-polluted salt marshes.

    PubMed

    Rocha, Jaqueline; Tacão, Marta; Fidalgo, Cátia; Alves, Artur; Henriques, Isabel

    2016-07-01

    Phytoremediation assisted by bacteria is seen as a promising alternative to reduce metal contamination in the environment. The main goal of this study was to characterize endophytic Pseudomonas isolated from Halimione portulacoides, a metal-accumulator plant, in salt marshes contaminated with metal(loid)s. Phylogenetic analysis based on 16S rRNA and gyrB genes showed that isolates affiliated with P. sabulinigri (n = 16), P. koreensis (n = 10), P. simiae (n = 5), P. seleniipraecipitans (n = 2), P. guineae (n = 2), P. migulae (n = 1), P. fragi (n = 1), P. xanthomarina (n = 1), and Pseudomonas sp. (n = 1). Most of these species have never been described as endophytic. The majority of the isolates were resistant to three or more metal(loid)s. Antibiotic resistance was frequent among the isolates but most likely related to species-intrinsic features. Common acquired antibiotic resistance genes and integrons were not detected. Plasmids were detected in 43.6 % of the isolates. Isolates that affiliated with different species shared the same plasmid profile but attempts to transfer metal resistance to receptor strains were not successful. Phosphate solubilization and IAA production were the most prevalent plant growth promoting traits, and 20 % of the isolates showed activity against phytopathogenic bacteria. Most isolates produced four or more extracellular enzymes. Preliminary results showed that two selected isolates promote Arabidopsis thaliana root elongation. Results highlight the diversity of endophytic Pseudomonas in H. portulacoides from contaminated sites and their potential to assist phytoremediation by acting as plant growth promoters and as environmental detoxifiers.

  11. Cloning of genes required for hypersensitivity and pathogenicity in Pseudomonas syringae pv. aptata.

    PubMed

    Minardi, P

    1995-01-01

    A genomic library of Pseudomonas syringae pv. aptata strain NCPPB 2664, which causes bacterial blight of sugar beet, lettuce and other plants, was constructed in the cosmid vector pCPP31. The 13.4 kb EcoRI fragment of the cosmid pHIR11, containing the hrp (hypersensitive response and pathogenicity) gene cluster of the closely related bacterium Pseudomonas syringae pv. syringae strain 61, was used as a probe to identify a homologous hrp gene cluster in P. syringae pv. aptata. Thirty of 2500 cosmid clones, screened by colony hybridization, gave a strong hybridization signal with the probe, but none of these conferred to the non-pathogenic bacterium, Pseudomonas fluorescens, the ability to elicit the hypersensitive response (HR) in tobacco. Southern blot analysis of EcoRI-digested genomic DNA of P. syringae pv. aptata showed hybridizing bands of 12 kb and 4.4 kb. Only a 12 kb fragment hybridized in digests of the cosmids. Cosmid clone pCPP1069 was mutagenized with Tn10-minitet and marker-exchanged into the genome of P. syringae pv. aptata. Three resulting prototrophic mutant strains failed to elicit the HR in tobacco and to cause disease in lettuce. The DNA flanking the Tn10-minitet insertions from mutated derivatives of pCPP1069 hybridized with the 10.6 kb Bg/II fragment of pHIR11. These results indicate that P. syringae pv. aptata harbours hrp genes that are similar to, but arranged differently from, homologous hrp genes of P. syringae pv. syringae.

  12. Computer-aided discovery in antimicrobial research: In silico model for virtual screening of potent and safe anti-pseudomonas agents.

    PubMed

    Speck-Planche, Alejandro; Cordeiro, Maria N D S

    2015-01-01

    Resistance of bacteria to current antibiotics is an alarming health problem. In this sense, Pseudomonas represents a genus of Gram-negative pathogens, which has emerged as one of the most dangerous species causing nosocomial infections. Despite the effort of the scientific community, drug resistant strains of bacteria belonging to Pseudomonas spp. prevail. The high costs associated to drug discovery and the urgent need for more efficient antimicrobial chemotherapies envisage the fact that computeraided methods can rationalize several stages involved in the development of a new drug. In this work, we introduce a chemoinformatic methodology devoted to the construction of a multitasking model for quantitative-structure biological effect relationships (mtk-QSBER). The purpose of this model was to perform simultaneous predictions of anti-Pseudomonas activities and ADMET (absorption, distribution, metabolism, elimination, and toxicity) properties of organic compounds. The mtk-QSBER model was created from a large and heterogeneous dataset (more than 54000 cases) and displayed accuracies higher than 90% in both training and prediction sets. In order to demonstrate the applicability of our mtk-QSBER model, we used the investigational antibacterial drug delafloxacin as a case of study, for which experimental results were recently reported. The predictions performed for many biological effects of this drug exhibited a remarkable convergence with the experimental assays, confirming that our model can serve as useful tool for virtual screening of potent and safer anti-Pseudomonas agents.

  13. Isolation and characterization of a novel simazine-degrading bacterium from agricultural soil of central Chile, Pseudomonas sp. MHP41.

    PubMed

    Hernández, Marcela; Villalobos, Patricio; Morgante, Verónica; González, Myriam; Reiff, Caroline; Moore, Edward; Seeger, Michael

    2008-09-01

    s-Triazine herbicides are used extensively in South America in agriculture and forestry. In this study, a bacterium designated as strain MHP41, capable of degrading simazine and atrazine, was isolated from agricultural soil in the Quillota valley, central Chile. Strain MHP41 is able to grow in minimal medium, using simazine as the sole nitrogen source. In this medium, the bacterium exhibited a growth rate of mu=0.10 h(-1), yielding a high biomass of 4.2 x 10(8) CFU mL(-1). Resting cells of strain MHP41 degrade more than 80% of simazine within 60 min. The atzA, atzB, atzC, atzD, atzE and atzF genes encoding the enzymes of the simazine upper and lower pathways were detected in strain MHP41. The motile Gram-negative bacterium was identified as a Pseudomonas sp., based on the Biolog microplate system and comparative sequence analyses of the 16S rRNA gene. Amplified ribosomal DNA restriction analysis allowed the differentiation of strain MHP41 from Pseudomonas sp. ADP. The comparative 16S rRNA gene sequence analyses suggested that strain MHP41 is closely related to Pseudomonas nitroreducens and Pseudomonas multiresinovorans. This is the first s-triazine-degrading bacterium isolated in South America. Strain MHP41 is a potential biocatalyst for the remediation of s-triazine-contaminated environments.

  14. Prevalence of multi and pan drug resistant Pseudomonas aeruginosa with respect to ESBL and MBL in a tertiary care hospital.

    PubMed

    Jayakumar, S; Appalaraju, B

    2007-10-01

    Multi drug resistant Pseudomonas aeruginosa (MDRPA) and pan drug resistant Pseudomonas aeruginosa (PDRPA) isolates in critically ill patients are often difficult to treat. Prevalence of MDRPA and their antibiotic profile was investigated to select an appropriate empirical therapy. Moreover lack of sufficient data on prevalence of PDRPA in tertiary care hospitals indicated the need for this study. Pseudomonas aeruginosa was isolated in 245 patients over a period of one and half years from various clinical materials and their antibiotic profile was determined. Minimum inhibitory concentration (MIC) for Imipenem and Meropenam was determined by broth dilution method. Phenotypic confirmation test and EDTA double disk synergy test was used to detect Extended spectrum a-lactamase (ESBL) and Metallo-a-lactamase (MBL) producers respectively. Out of 245 isolates, 54 strains (22 %) and 11 strains (4%) were found to be MDRPA and PDRPA respectively. Carbapenem resistant isolates showed MICs ranging from 16 to > 64 microg/ml. Thirty eight strains (15.5%) were ESBL producers and six (54.5%) among 11 PDRPA were MBL producers. Prevalence of MDR and PDR isolates of Pseudomonas aeruginosa was found to be 22% and 4% respectively, which is less compared to other studies. Majority of the PDRPA isolates were MBL producers which have propensity to spread to other bacteria.

  15. Genome Sequence of the Biocontrol Strain Pseudomonas fluorescens F113

    PubMed Central

    Redondo-Nieto, Miguel; Barret, Matthieu; Morrisey, John P.; Germaine, Kieran; Martínez-Granero, Francisco; Barahona, Emma; Navazo, Ana; Sánchez-Contreras, María; Moynihan, Jennifer A.; Giddens, Stephen R.; Coppoolse, Eric R.; Muriel, Candela; Stiekema, Willem J.; Rainey, Paul B.; Dowling, David; O'Gara, Fergal; Martín, Marta

    2012-01-01

    Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) that has biocontrol activity against fungal plant pathogens and is a model for rhizosphere colonization. Here, we present its complete genome sequence, which shows that besides a core genome very similar to those of other strains sequenced within this species, F113 possesses a wide array of genes encoding specialized functions for thriving in the rhizosphere and interacting with eukaryotic organisms. PMID:22328765

  16. Vaccines for Pseudomonas aeruginosa: a long and winding road.

    PubMed

    Priebe, Gregory P; Goldberg, Joanna B

    2014-04-01

    Despite the recognition of Pseudomonas aeruginosa as an opportunistic pathogen, no vaccine against this bacteria has come to market. This review describes the current state-of-the-art in vaccinology for this bacterium. This includes a discussion of those at risk for infection, the types of vaccines and the approaches for empirical and targeted antigen selection under development, as well as a perspective on where the field should go. In addition, the challenges in developing a vaccine for those individuals at risk are discussed.

  17. Fatal suppurative nephritis caused by Pseudomonas in a chimpanzee

    USGS Publications Warehouse

    Migaki, G.; Asher, D.M.; Casey, H.W.; Locke, Louis N.; Gibbs, C.J.; Gajdusek, C.

    1979-01-01

    Reports of nephritis in chimpanzees are relatively rare, compared with those in other nonhuman primates. McClure and Guilloud reported chronic pyelonephritis in a 35-year-old female chimpanzee; Schmidt and Butler reported glomerulonephritis in an 11-year-old female chimpanzee, and Kim reported on a 12-year-old male with subacute interstitial nephritis in a chimpanzee after the animal had recurrent hemolysis due to phenolic intoxication. The present report deals with supprative nephritis caused by Pseudomonas resulting in renal failure in a chimpanzee.

  18. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4

    PubMed Central

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Glick, Bernard R.

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  19. Using "Pseudomonas Putida xylE" Gene to Teach Molecular Cloning Techniques for Undergraduates

    ERIC Educational Resources Information Center

    Dong, Xu; Xin, Yi; Ye, Li; Ma, Yufang

    2009-01-01

    We have developed and implemented a serial experiment in molecular cloning laboratory course for undergraduate students majored in biotechnology. "Pseudomonas putida xylE" gene, encoding catechol 2, 3-dioxygenase, was manipulated to learn molecular biology techniques. The integration of cloning, expression, and enzyme assay gave students…

  20. The effect of zinc limitation on the transcriptome of Pseudomonas protegens Pf-5

    USDA-ARS?s Scientific Manuscript database

    Zinc is an important nutrient but can be lacking in some soil environments, influencing the physiology of soil-dwelling bacteria. Hence, we studied the global effect of zinc limitation on the transcriptome of the rhizosphere biocontrol strain Pseudomonas protegens Pf-5. We observed that the expressi...

  1. The effect of zinc limitation on the transcriptome of Pseudomonas fluorescens Pf-5

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens Pf-5 is a soil bacterium that can protect several plant species from diseases caused by fungal and bacterial pathogens. Zinc is a vital micronutrient for bacteria but is deficient in some soil environments and toxic in large quantities. Hence, bacteria have evolved elaborate ...

  2. CHARACTERIZATION OF PB2+ UPTAKE AND SEQUESTRATION IN PSEUDOMONAS AERUGINOSA, CHL004, LEAD

    EPA Science Inventory

    In laboratory studies, the soil isolate Pseudomonas aeruginosa CHL004 has been found to concentrate Pb2+ in the cytoplasm by formation of particles that contain Pb2+ and phosphorus. Upon examination of many particles using x-ray diffraction, we have found that the product formed ...

  3. A combined computational-experimental analyses of selected metabolic enzymes in Pseudomonas species.

    PubMed

    Perumal, Deepak; Lim, Chu Sing; Chow, Vincent T K; Sakharkar, Kishore R; Sakharkar, Meena K

    2008-09-10

    Comparative genomic analysis has revolutionized our ability to predict the metabolic subsystems that occur in newly sequenced genomes, and to explore the functional roles of the set of genes within each subsystem. These computational predictions can considerably reduce the volume of experimental studies required to assess basic metabolic properties of multiple bacterial species. However, experimental validations are still required to resolve the apparent inconsistencies in the predictions by multiple resources. Here, we present combined computational-experimental analyses on eight completely sequenced Pseudomonas species. Comparative pathway analyses reveal that several pathways within the Pseudomonas species show high plasticity and versatility. Potential bypasses in 11 metabolic pathways were identified. We further confirmed the presence of the enzyme O-acetyl homoserine (thiol) lyase (EC: 2.5.1.49) in P. syringae pv. tomato that revealed inconsistent annotations in KEGG and in the recently published SYSTOMONAS database. These analyses connect and integrate systematic data generation, computational data interpretation, and experimental validation and represent a synergistic and powerful means for conducting biological research.

  4. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin

    NASA Astrophysics Data System (ADS)

    Das, Manash C.; Sandhu, Padmani; Gupta, Priya; Rudrapaul, Prasenjit; de, Utpal C.; Tribedi, Prosun; Akhter, Yusuf; Bhattacharjee, Surajit

    2016-03-01

    Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combination with azithromycin and gentamicin. Vitexin shows minimum inhibitory concentration (MIC) at 260 μg/ml. It’s antibiofilm activity was evaluated by safranin staining, protein extraction, microscopy methods, quantification of EPS and in vivo models using several sub-MIC doses. Various quorum sensing (QS) mediated phenomenon such as swarming motility, azocasein degrading protease activity, pyoverdin and pyocyanin production, LasA and LasB activity of the bacteria were also evaluated. Results showed marked attenuation in biofilm formation and QS mediated phenotype of Pseudomonas aeruginosa in presence of 110 μg/ml vitexin in combination with azithromycin and gentamicin separately. Molecular docking of vitexin with QS associated LuxR, LasA, LasI and motility related proteins showed high and reasonable binding affinity respectively. The study explores the antibiofilm potential of vitexin against P. aeruginosa which can be used as a new antibiofilm agent against microbial biofilm associated pathogenesis.

  5. Mineralization of a Malaysian crude oil by Pseudomonas sp. and Achromabacter sp. isolated from coastal waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, J.; Ahmad, M.F.

    1995-12-31

    Regarded as being a potentially effective tool to combat oil pollution, bioremediation involves mineralization, i.e., the conversion of complex hydrocarbons into harmless CO{sub 2} and water by action of microorganisms. Therefore, in achieving optimum effectiveness from the application of these products on crude oil in local environments, the capability of the bacteria to mineralize hydrocarbons was evaluated. The microbial laboratory testing of mineralization on local oil degraders involved, first, isolation of bacteria found at a port located on the west coast of Peninsular Malaysia. Subsequently, these bacteria were identified by means of Biomereux`s API 20E and 20 NE systems andmore » later screened by their growth on a Malaysian crude oil. Selected strains of Pseudomonas sp. and Achromabacter sp. were then exposed individually to a similar crude oil in a mineralization unit and monitored for 16 days for release of CO{sub 2}. Pseudomonas paucimobilis was found to produce more CO{sub 2} than Achromobacter sp. When tested under similar conditions, mixed populations of these two taxa produced more CO{sub 2} than that produced by any individual strain. Effective bioremediation of local crude in Malaysian waters can therefore be achieved from biochemically developed Pseudomonas sp. strains.« less

  6. Regulation of NAD+- and NADP+-linked isocitrate dehydrogenase in the obligate methylotrophic bacterium Pseudomonas W6.

    PubMed

    Hofmann, K H; Babel, W

    1980-01-01

    Cell-free extracts of the obligate methanol-utilizing bacterium Pseudomonas W6 catalyze the oxydation of isocitrate to alpha-ketoglutarate in the presence of NAD+ and NADP+. After electro-focusing of the crude extract of Pseudomonas W6 actually two distinct bands each of NAD+-linked isocitrate dehydrogenase (NAD+-IDH) and of NADP+-linked isocitrate dehydrogenase (NADP+-IDH) could be observed. The NAD+-IDH was completely separated from the NADP+-IDH by employing DEAE ion exchange chromatography and further purified by affinity chromatography using Cibacron blue F 3G-A. The NAD+-IDH was inhibited by a high energy charge, whereas the NADP+-IDH was found to be independent of energy charge. Consequently the NAD+-IDH showed the control behaviour of an enzyme of an energy-generating sequence which, however, equally fulfils a catabolic and an anabolic function. With respect to the inhibition by reduced pyridine nucleotides and alpha-ketoglutarate differences between NAD+-IDH and NADP+-IDH were also found. Only the NADP+-linked enzyme exhibited a feedback inhibition by its reaction products alpha-ketoglutarate and NADPH. This control behaviour gives evidence for the biosynthetic function of the NADP+-IDH. These results confer an amphibolic character to the sequence from citrate to alpha-ketoglutarate in the incomplete citric-acid cycle of Pseudomonas W6.

  7. Biodegradation of 2,4'-dichlorobiphenyl, a congener of polychlorinated biphenyl, by Pseudomonas isolates GSa and GSb.

    PubMed

    Gayathri, D; Shobha, K J

    2015-08-01

    Bioegradation of 2,4'-dichlorobiphenyl (2,4 CB), by two isolates of Pseudomonas (GSa and GSb) was compared using GC-MS. Transformer oil polluted soil was used for the isolation of 2,4 CB degrading bacteria. GC-MS analysis of the solvent extracts obtained from Pseudomonas sp. GSa spent culture indicated the presence of Phenol 2,6-bis (1,1-dimethyl)-4-methyl (C15H24O). Further, the enzyme analysis of the cell free extracts showed the presence of 2,4'-dichlorobiphenyl dehalogenase (CBD), 2,4'-dichlorobiphenyl-NADPH-oxido-reductase (2,4 CBOR) and 2,3-dihydroxybiphenyl-NADPH-oxido-reductase (2,3 DHOR) with specific activity of 6.00, 0.4 and 0.22 pmol/min/mg of protein, suggesting that dechlorination as an important step during 2,4 CB catabolism. Further, the cell free extract of GSb showed only 2,4'-dichlorobiphenyl-NADPH-oxido-reductase (2,4 CBOR) and 2,3-dihydroxybiphenyl-NADPH-oxido-reductase (2,3 DHOR), with specific activity of 0.3 and 0.213 μmol/min/mg of protein, suggesting attack on non-chlorinated aromatic ring of 2,4 CB, releasing chlorinated intermediates which are toxic to the environment. Although, both the isolated bacteria (GSa and GSb) belong to Pseudomonas spp., they exhibited different metabolic potential.

  8. Genotyping of Pseudomonas aeruginosa isolates from lung transplant recipients and aquatic environment-detected in-hospital transmission.

    PubMed

    Johansson, Ewa; Welinder-Olsson, Christina; Gilljam, Marita

    2014-02-01

    Lung infection with Pseudomonas aeruginosa is common in lung transplant recipients and may lead to severe complications. Bacteriological surveillance aims to detect transmission of microbes between hospital environment and patients. We sought to determine whether genotyping of P. aeruginosa isolates could improve identifications of pathways of infection. From 2004 to 2009, we performed genotyping with multiple-locus variable number of tandem repeats analysis (MLVA) and pulsed-field gel electrophoresis (PFGE) of P. aeruginosa isolates cultured from lung transplant recipients at Sahlgrenska University Hospital, Gothenburg. During a small outbreak in 2008, cultivation and genotyping of isolates from sink and drains samples from the hospital ward were performed. Pseudomona aeruginosa from 11/18 patients were genotyped to unique strains. The remaining seven patients were carriers of a P. aeruginosa strain of cluster A genotype. Pseudomona aeruginosa was isolated in 4/8 water samples, typed by MLVA also as cluster A genotype and confirmed by PFGE to be similar or identical to the isolates from four transplanted patients. In conclusion, genotyping of isolates revealed a clonal relationship between patient and water isolates, indicating in-hospital transmission of P. aeruginosa. We suggest genotyping with MLVA for rapid routine surveillance, with the PFGE method used for extended, confirmatory analyses. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  9. Coinfection pulmonaire par pneumocystis jirovecii et pseudomonas aeruginosa au cours du SIDA: à propos de deux cas

    PubMed Central

    Mamoudou, Savadogo; Bellaud, Guillaume; Ana, Canestri; Gilles, Pialoux

    2015-01-01

    Rapporter deux cas cliniques de coinfections pulmonaires par Pneumocystis jirovecii et par Pseudomonas aeruginosa chez des patients vivant avec le VIH. Les deux patients étaient âgés respectivement de 32 ans et 46 ans. Un patient a été pris en charge à l'hôpital Yalgado Ouédraogo de Ouagadougou au Burkina Faso et l'autre a été pris en charge à l'hôpital Ténon de Paris, en France. Les deux souffraient de pneumopathie confirmée à la radiographie et à la tomodensitométrie. L'un des patients était sévèrement immuno déprimé, contrairement à l'autre. L'examen bactériologique dans les crachats avait permis d'isoler Pseudomonas aeruginosa et Pneumocystis jirovecii chez les deux patients. Sous traitement, l’évolution a été favorable. Les coinfections morbides sont relativement fréquentes chez les patients vivant avec le VIH. Devant une symptomatologie respiratoire du sujet vivant avec le VIH, il faut savoir rechercher en plus du Bacille de Koch, Pneumocystis jirovecii et Pseudomonas aeruginosa par un lavage broncho alvéolaire. PMID:26516396

  10. Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens

    PubMed Central

    Powers, Matthew J.; Sanabria-Valentín, Edgardo; Bowers, Albert A.

    2015-01-01

    ABSTRACT Interspecies interactions have been described for numerous bacterial systems, leading to the identification of chemical compounds that impact bacterial physiology and differentiation for processes such as biofilm formation. Here, we identified soil microbes that inhibit biofilm formation and sporulation in the common soil bacterium Bacillus subtilis. We did so by creating a reporter strain that fluoresces when the transcription of a biofilm-specific gene is repressed. Using this reporter in a coculture screen, we identified Pseudomonas putida and Pseudomonas protegens as bacteria that secrete compounds that inhibit biofilm gene expression in B. subtilis. The active compound produced by P. protegens was identified as the antibiotic and antifungal molecule 2,4-diacetylphloroglucinol (DAPG). Colonies of B. subtilis grown adjacent to a DAPG-producing P. protegens strain had altered colony morphologies relative to B. subtilis colonies grown next to a DAPG-null P. protegens strain (phlD strain). Using a subinhibitory concentration of purified DAPG in a pellicle assay, we saw that biofilm-specific gene transcription was delayed relative to transcription in untreated samples. These transcriptional changes also corresponded to phenotypic alterations: both biofilm biomass and spore formation were reduced in B. subtilis liquid cultures treated with subinhibitory concentrations of DAPG. Our results add DAPG to the growing list of antibiotics that impact bacterial development and physiology at subinhibitory concentrations. These findings also demonstrate the utility of using coculture as a means to uncover chemically mediated interspecies interactions between bacteria. IMPORTANCE Biofilms are communities of bacteria adhered to surfaces by an extracellular matrix; such biofilms can have important effects in both clinical and agricultural settings. To identify chemical compounds that inhibited biofilm formation, we used a fluorescent reporter to screen for bacteria that

  11. Biodegradation of nicotine by a newly isolated Pseudomonas stutzeri JZD

    NASA Astrophysics Data System (ADS)

    Petricevic, Jelena; Gujanicic, Vera; Radic, Danka; Jovicic Petrovic, Jelena; Jovic, Jelena; Raicevic, Vera

    2013-04-01

    The tobacco-manufacturing process and all activities that use tobacco, produce solid or liquid wastes with high concentrations of nicotine. Nicotine is a significant toxic waste product in tobacco industry. This waste is classified as 'toxic and hazardous' by European Union regulations when the nicotine content exceeds 500 milligrams per kilogram dry weight. Therefore, there is a major environmental requirement to remove nicotine from tobacco wastes. Bioremediation techniques which involve nicotine degradation by microorganisms have attracted attention during the last years, because microorganisms have the potential to reduce nicotine levels in tobacco and to detoxify tobacco wastes. The aim of this study is isolation and identification of nicotine degraded bacteria and optimization of nicotine degradation in laboratory conditions. An aerobic bacterial strain capable of effectively degrading nicotine was isolated from the tobacco industry waste, Serbia. After isolation, the liquid culture was spread onto the solid plates of the nicotine inorganic salt medium using the dilution plate method. Cell morphology of strain was observed by a light microscope and physiological characteristics were determined by Api technique and sequence analyzes of 16S rDNA. This isolate was identified as Pseudomonas stutzeri based on morphology, physiological characteristics, and Apiweb technique. Comparison with sequences available in data library showed the 99% similarity with 16S rDNA gene sequence of the species Pseudomonas stutzeri ( GenBank Acc. No. CP003725). We analyzed the effect of initial nicotine concentration (1g/L, 1.5 g/L, 2.5 g/L) on microbial activity in aim to optimize biodegradation. The effect of cultivation temperature (25°C; 30°C; 37°C) on nicotine degradation by P. stutzeri was evaluated after 24 h of cultivation, with 1.5 g/L nicotine added as the sole carbon source. Effect of biodegradation has depended on initial concentration. During incubation, number of

  12. Flexible exportation mechanisms of arthrofactin in Pseudomonas sp. MIS38.

    PubMed

    Lim, S P; Roongsawang, N; Washio, K; Morikawa, M

    2009-07-01

    To obtain further insights into transportation mechanisms of a most effective biosurfactant, arthrofactin in Pseudomonas sp. MIS38. A cluster genes arfA/B/C encodes an arthrofactin synthetase complex (ArfA/B/C). Downstream of the arfA/B/C lie genes encoding a putative periplasmic protein (ArfD, 362 aa) and a putative ATP-binding cassette transporter (ArfE, 651 aa), namely arfD and arfE, respectively. The arfA/B/C, arfD, and arfE form an operon suggesting their functional connection. Gene knockout mutants ArfD:Km, ArfE:Km, ArfD:Tc/ArfE:Km, and gene overexpression strains MIS38(pME6032_arfD/E) and ArfE:Km(pME6032_arfD/E) were prepared and analysed for arthrofactin production profiles. It was found that the production levels of arthrofactin were temporally reduced in the mutants or increased in the gene overexpression strains, but they eventually became similar level to that of MIS38. Addition of ABC transporter inhibitors, glibenclamide and sodium ortho-vanadate dramatically reduced the production levels of arthrofactin. This excludes a possibility that arthrofactin is exported by diffusion with the aid of its own high surfactant activity. ArfD/E is not an exclusive but a primary exporter of arthrofactin during early growth stage. Reduction in the arthrofactin productivity of arfD and arfE knockout mutants was eventually rescued by another ABC transporter system. Effects of arfD and arfE overexpression were evident only for 1-day cultivation. Multiple ATP dependent active transporter systems are responsible for the production of arthrofactin. Pseudomonas bacteria are characterized to be endued with multiple exporter and efflux systems for secondary metabolites including antibiotics, plant toxins, and biosurfactants. The present work demonstrates exceptionally flexible and highly controlled transportation mechanisms of a most effective lipopeptide biosurfactant, arthrofactin in Pseudomonas sp. MIS38. Because lipopeptide biosurfactants are known to enhance efficacy of

  13. Cloning, sequencing and characterization of lipase genes from a polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans

    USDA-ARS?s Scientific Manuscript database

    Lipase (lip) and lipase-specific foldase (lif) genes of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans NRRL B-2649 were cloned using primers based on consensus sequences, followed by PCR-based genome walking. Sequence analyses showed a putative Lip gene-product (...

  14. Pseudomonas aeruginosa ventilator-associated pneumonia management.

    PubMed

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising.

  15. Analysis of Draft Genome Sequence of Pseudomonas sp. QTF5 Reveals Its Benzoic Acid Degradation Ability and Heavy Metal Tolerance

    PubMed Central

    Li, Yang; Ren, Yi

    2017-01-01

    Pseudomonas sp. QTF5 was isolated from the continuous permafrost near the bitumen layers in the Qiangtang basin of Qinghai-Tibetan Plateau in China (5,111 m above sea level). It is psychrotolerant and highly and widely tolerant to heavy metals and has the ability to metabolize benzoic acid and salicylic acid. To gain insight into the genetic basis for its adaptation, we performed whole genome sequencing and analyzed the resistant genes and metabolic pathways. Based on 120 published and annotated genomes representing 31 species in the genus Pseudomonas, in silico genomic DNA-DNA hybridization (<54%) and average nucleotide identity calculation (<94%) revealed that QTF5 is closest to Pseudomonas lini and should be classified into a novel species. This study provides the genetic basis to identify the genes linked to its specific mechanisms for adaptation to extreme environment and application of this microorganism in environmental conservation. PMID:29270429

  16. Pseudomonas canadensis sp. nov., a biological control agent isolated from a field plot under long-term mineral fertilization.

    PubMed

    Tambong, James T; Xu, Renlin; Bromfield, Eden S P

    2017-04-01

    The bacterial strain 2-92T, isolated from a field plot under long-term (>40 years) mineral fertilization, exhibited in vitro antagonistic properties against fungal pathogens. A polyphasic approach was undertaken to verify its taxonomic status. Strain 2-92T was Gram-reaction-negative, aerobic, non-spore-forming, motile by one or more flagella, and oxidase-, catalase- and urease-positive. The optimal growth temperature of strain 2-92T was 30 °C. 16S rRNA gene sequence analysis demonstrated that the strain is related to species of the genus Pseudomonas. Phylogenetic analysis of six housekeeping genes (dnaA, gyrB, recA, recF, rpoB and rpoD) revealed that strain 2-92T clustered as a distinct and well separated lineage with Pseudomonassimiae as the most closely related species. Polar lipid and fatty acid compositions corroborated the taxonomic position of strain 2-92T in the genus Pseudomonas. Phenotypic characteristics from carbon utilization tests could be used to differentiate strain 2-92T from closely related species of the genus Pseudomonas. DNA-DNA hybridization values (wet laboratory and genome-based) and average nucleotide identity data confirmed that this strain represents a novel species. On the basis of phenotypic and genotypic characteristics, it is concluded that this strain represents a separate novel species for which the name Pseudomonas canadensis sp. nov. is proposed, with type strain 2-92T (=LMG 28499T=DOAB 798T). The DNA G+C content is 60.30 mol%.

  17. An intra-abdominal abscess or "rind" as a consequence of peritoneal dialysis-associated pseudomonas peritonitis.

    PubMed

    Culpepper, R Michael; Gore, Sarah; Rutecki, Gregory W

    2013-01-01

    Abdominal CT imaging has defined characteristics of two pathological entities specific to peritoneal dialysis patients. Both are associated with serious peritoneal complications. One is comprised of ascites accompanied by septation and loculated fluid pockets as a complication of bacterial peritonitis. The other is the syndrome of encapsulating peritoneal sclerosis. We present the evolution of a single, thick-walled fluid collection as a consequence of relapsing Pseudomonas aeruginosa peritonitis. The entity had distinctive features differing from either of the two previously described entities, and to our knowledge, has not been described previously. Our patient's radiological evolution resembled the formation of a pleural or peritoneal "rind." Peritonitis, as a result of Pseudomonas aeruginosa , may lead to "rind" formation as described with empyemas and is distinct from previously described intra-abdominal pathologies in peritoneal dialysis patients.

  18. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa

    EPA Science Inventory

    BACKGROUND: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexis...

  19. Role of the interplay between quorum sensing regulator VqsR and the Pseudomonas quinolone signal in mediating carbapenem tolerance in Pseudomonas aeruginosa.

    PubMed

    Viducic, Darija; Murakami, Keiji; Amoh, Takashi; Ono, Tsuneko; Miyake, Yoichiro

    2017-06-01

    Pseudomonas aeruginosa coordinates its response to environmental conditions through activation of a quorum sensing (QS) system. In this study, we investigated the regulatory interaction between the QS transcriptional regulator VqsR and the Pseudomonas quinolone signal (PQS) through integration of sigma factor RpoS, and we addressed whether one of the pathways controlling carbapenem tolerance can be attributed to VqsR. We demonstrate that vqsR expression at the transcriptional level is regulated by pqsA, pqsR, and pqsE. Assessment of the transcriptional expression of vqsR, lasI, rhlI, and qscR in ΔpqsA and ΔpqsAΔrpoS mutants provided insight into pqsA- and rpoS-dependent regulation of vqsR and vqsR-controlled genes. Exogenously supplemented PQS reversed expression of vqsR and vqsR-controlled genes in the ΔpqsA mutant to wild-type levels, but failed to increase expression levels of lasI and qscR in the ΔpqsAΔrpoS mutant to levels observed in wild-type PAO1. The ΔvqsR mutant showed reduced survival when challenged with carbapenems compared to wild-type PAO1. Introduction of a pqsA mutation into the ΔvqsR mutant completely abolished its carbapenem-sensitive phenotype. We conclude that a regulatory link between PQS and vqsR exists, and that RpoS is important in their interaction. We also demonstrate that VqsR affects carbapenem tolerance. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Prevalence of genomic island PAPI-1 in clinical isolates of Pseudomonas aeruginosa in Iran.

    PubMed

    Sadeghifard, Nourkhoda; Rasaei, Seyedeh Zahra; Ghafourian, Sobhan; Zolfaghary, Mohammad Reza; Ranjbar, Reza; Raftari, Mohammad; Mohebi, Reza; Maleki, Abbas; Rahbar, Mohammad

    2012-03-01

    Pseudomonas aeruginosa, a gram-negative rod-shaped bacterium, is an opportunistic pathogen, which causes various serious diseases in humans and animals. The aims of this study were to evaluate of the presence of genomic island PAPI-1 in Pseudomonas aeruginosa isolated from Reference Laboratory of Ilam, Milad Hospital and Emam Khomeini Hospital, Iran and to study the frequency of extended spectrum beta-lactamases (ESBLs) among isolates. Forty-eight clinical isolates of P. aeruginosa were obtained during April to September 2010, and were evaluated for ESBLs by screening and confirmatory disk diffusion methods and PAPI-1 by PCR. Fifteen of 48 P. aeruginosa isolates were positive for ESBLs and 17 isolates positive for PAPI-1. This was first study of the prevalence of PAPI-1 in clinical isolates of P. aeruginosa in Iran, showing that most of PAPI-1 positive strains had high levels of antibiotic resistance and produced ESBLs.

  1. Crystallization and preliminary X-ray diffraction analysis of the amidase domain of allophanate hydrolase from Pseudomonas sp. strain ADP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balotra, Sahil; Newman, Janet; French, Nigel G.

    2014-02-19

    The amidase domain of the allophanate hydrolase AtzF from Pseudomonas sp. strain ADP has been crystallized and preliminary X-ray diffraction data have been collected. The allophanate hydrolase from Pseudomonas sp. strain ADP was expressed and purified, and a tryptic digest fragment was subsequently identified, expressed and purified. This 50 kDa construct retained amidase activity and was crystallized. The crystals diffracted to 2.5 Å resolution and adopted space group P2{sub 1}, with unit-cell parameters a = 82.4, b = 179.2, c = 112.6 Å, β = 106.6°.

  2. Reduction of Selenite to Elemental Red Selenium by Pseudomonas sp. strain CA5

    USDA-ARS?s Scientific Manuscript database

    A Pseudomonas sp. that may be useful in bioremediation projects was isolated from soil. The strain is of potential value because it reduces selenite to elemental red selenium and is unusual in that it was resistant to high concentrations of both selenate and selenite. Cell of the strain removed 1....

  3. Imipenem Resistant Pseudomonas aeruginosa: The fall of the final quarterback.

    PubMed

    Ameen, Nadya; Memon, Zahida; Shaheen, Shehla; Fatima, Ghulam; Ahmed, Farah

    2015-01-01

    To isolate, determine the frequency, and study the demographic trends of MBL positive Pseudomonas aeruginosa from imipenem resistant isolates collected from clinical samples in a tertiary care hospital of Pakistan. In this cross sectional study a total of 230 strains of Pseudomonas were isolated from various clinical specimens on the basis of culture and biochemical tests. Imipenem resistant isolates were selected by Kirby Bauer Diffusion technique, followed by screening for MBL production by Imipenem EDTA Combined Disk Test. Demographic details of each patient were recorded on a separate questionnaire. Chi-Square goodness-of-fit test was computed to review the isolation of MBL positive isolates (P-value ≤ 0.05) in different specimen. Out of 230 strains of P. aeruginosa 49.5% were imipenem resistant; MBL production was confirmed in 64.9% of the resistant isolates. Resistance to polymyxin B (12.5%) was notable. Majority of the MBL positive strains were isolated from patients aged between 20-39 years (45.9%) and the predominant source was pus (43.24%) which was found to be statistically significant (P-value=0.04). Outpatient departments (24.3%) and burn unit (21.6%) were the major places for resistant isolates. MBL production is one of the major causes of IRPA. Increasing resistance to polymyxin B is grave. Due to acquisition of MBL strains MDR P. aeruginosa has become endemic in tertiary setups.

  4. Toxicity of Pseudomonas fluorescens strain Pf-5 to Drosophila larvae is due to downstream gene targets of the GacA/GacS signal transduction system

    USDA-ARS?s Scientific Manuscript database

    Given the vast number of microorganisms in the environment, surprisingly, only a few are lethal or cause morbidity to host organisms. Pseudomonas spp are a diverse genus of Gram-negative bacteria commonly found in soil, water, or in association with plants and animals. Pseudomonas fluorescens has be...

  5. A Natural Chimeric Pseudomonas Bacteriocin with Novel Pore-Forming Activity Parasitizes the Ferrichrome Transporter

    PubMed Central

    Kemland, Lieselore; Anoz-Carbonell, Ernesto; Buchanan, Susan K.; De Mot, René

    2017-01-01

    ABSTRACT Modular bacteriocins represent a major group of secreted protein toxins with a narrow spectrum of activity, involved in interference competition between Gram-negative bacteria. These antibacterial proteins include a domain for binding to the target cell and a toxin module at the carboxy terminus. Self-inhibition of producers is provided by coexpression of linked immunity genes that transiently inhibit the toxin’s activity through formation of bacteriocin-immunity complexes or by insertion in the inner membrane, depending on the type of toxin module. We demonstrate strain-specific inhibitory activity for PmnH, a Pseudomonas bacteriocin with an unprecedented dual-toxin architecture, hosting both a colicin M domain, potentially interfering with peptidoglycan synthesis, and a novel colicin N-type domain, a pore-forming module distinct from the colicin Ia-type domain in Pseudomonas aeruginosa pyocin S5. A downstream-linked gene product confers PmnH immunity upon susceptible strains. This protein, ImnH, has a transmembrane topology similar to that of Pseudomonas colicin M-like and pore-forming immunity proteins, although homology with either of these is essentially absent. The enhanced killing activity of PmnH under iron-limited growth conditions reflects parasitism of the ferrichrome-type transporter for entry into target cells, a strategy shown here to be used as well by monodomain colicin M-like bacteriocins from pseudomonads. The integration of a second type of toxin module in a bacteriocin gene could offer a competitive advantage against bacteria displaying immunity against only one of both toxic activities. PMID:28223456

  6. Properties of Polyhydroxyalkanoate Granules and Bioemulsifiers from Pseudomonas sp. and Burkholderia sp. Isolates Growing on Glucose.

    PubMed

    Sacco, Laís Postai; Castellane, Tereza Cristina Luque; Lopes, Erica Mendes; de Macedo Lemos, Eliana Gertrudes; Alves, Lúcia Maria Carareto

    2016-03-01

    A Burkholderia and Pseudomonas species designated as AB4 and AS1, respectively, were isolated from soil containing decomposing straw or sugar cane bagasse collected from Brazil. This study sought to evaluate the capacities of culture media, cell-free medium, and crude lysate preparations (containing PHB inclusion bodies) from bacterial cell cultures to stabilize emulsions with several hydrophobic compounds. Four conditions showed good production of bioemulsifiers (E24 ≥ 50 %), headed by substantially cell-free media from bacterial cell cultures in which bacterial isolates from Burkholderia sp. strain AB4 and Pseudomonas sp. strain AS1 were grown. Our results revealed that the both isolates (AB4 and AS1 strains) exhibited high emulsification indices (indicating usefulness in bioremediation) and good stabilities.

  7. AlgU controls expression of virulence genes in Pseudomonas syringae pv. tomato DC3000

    USDA-ARS?s Scientific Manuscript database

    Plant pathogenic bacteria are able to integrate information about their environment and adjust gene expression to provide adaptive functions. AlgU, an ECF sigma factor encoded by Pseudomonas syringae, controls expression of genes for alginate biosynthesis and is active while the bacteria are associa...

  8. OXIDATION OF BIPHENYL BY A MULTICOMPONENT ENZYME SYSTEM FROM PSEUDOMONAS SP. STRAIN LB400

    EPA Science Inventory

    Pseudomonas sp. strain LB400 grows on biphenyl as the sole carbon and energy source. This organism also cooxidizes several chlorinated biphenyl congeners. Biphenyl dioxygenase activity in cell extract required addition of NAD(P)H as an electron donor for the conversion of bipheny...

  9. Pseudomonas aeruginosa ventilator-associated pneumonia management

    PubMed Central

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising. PMID:26855594

  10. Molecular and epidemiological characterization of canine Pseudomonas otitis using a prospective case-control study design.

    PubMed

    Morris, Daniel O; Davis, Meghan F; Palmeiro, Brian S; O'Shea, Kathleen; Rankin, Shelley C

    2017-02-01

    Pseudomonas aeruginosa is an opportunistic pathogen of the canine ear canal and occupies aquatic habitats in the environment. Nosocomial and zoonotic transmission of P. aeruginosa have been documented, including clonal outbreaks. The primary objective of this study was to assess various environmental exposures as potential risk factors for canine Pseudomonas otitis. It was hypothesized that isolates derived from infected ears would be clonal to isolates derived from household water sources and the mouths of human and animal companions of the study subjects. Seventy seven privately owned dogs with otitis were enrolled, along with their human and animal household companions, in a case-control design. Data on potential risk factors for Pseudomonas otitis were collected. Oral cavities of all study subjects, their human and animal companions, and household water sources were sampled. Pulsed field gel electrophoresis was used to estimate clonal relatedness of P. aeruginosa isolates. In a multivariate model, visiting a dog park was associated with 77% increased odds of case status (P = 0.048). Strains clonal to the infection isolates were obtained from subjects' mouths (n = 18), companion pets' mouths (n = 5), pet owners' mouths (n = 2), water bowls (n = 7) and water taps (n = 2). Clonally related P. aeruginosa isolates were obtained from dogs that had no clear epidemiological link. Genetic homology between otic and environmental isolates is consistent with a waterborne source for some dogs, and cross-contamination with other human and animal members within some households. © 2016 ESVD and ACVD.

  11. Trans-membrane transport of n-octadecane by Pseudomonas sp. DG17.

    PubMed

    Hua, Fei; Wang, Hong Qi; Li, Yi; Zhao, Yi Cun

    2013-12-01

    The trans-membrane transport of hydrocarbons is an important and complex aspect of the process of biodegradation of hydrocarbons by microorganisms. The mechanism of transport of (14)C n-octadecane by Pseudomonas sp. DG17, an alkane-degrading bacterium, was studied by the addition of ATP inhibitors and different substrate concentrations. When the concentration of n-octadecane was higher than 4.54 μmol/L, the transport of (14)C n-octadecane was driven by a facilitated passive mechanism following the intra/extra substrate concentration gradient. However, when the cells were grown with a low concentration of the substrate, the cellular accumulation of n-octadecane, an energy-dependent process, was dramatically decreased by the presence of ATP inhibitors, and n-octadecane accumulation continually increased against its concentration gradient. Furthermore, the presence of non-labeled alkanes blocked (14)C n-octadecane transport only in the induced cells, and the trans-membrane transport of n-octadecane was specific with an apparent dissociation constant K t of 11.27 μmol/L and V max of 0.96 μmol/min/mg protein. The results indicated that the trans-membrane transport of n-octadecane by Pseudomonas sp. DG17 was related to the substrate concentration and ATP.

  12. [The antibacterial activity of oregano essential oil (Origanum heracleoticum L.) against clinical strains of Escherichia coli and Pseudomonas aeruginosa].

    PubMed

    Sienkiewicz, Monika; Wasiela, Małgorzata; Głowacka, Anna

    2012-01-01

    The aim of this study was to investigate the antibacterial properties of oregano (Origanum heracleoticum L.) essential oil against clinical strains of Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of oregano essential oil was investigate against 2 tested and 20 clinical bacterial strains of Escherichia coli and 20 clinical strains o Pseudomonas aeruginosa come from patients with different clinical conditions. The agar dilution method was used for microbial growth inhibition at various concentrations ofoil. Susceptibility testing to antibiotics was carried out using disc-diffusion method. The results of experiments showed that the tested oil was active against all of the clinical strains from both genus of bacteria, but strains of Escherichia coli were more sensitive to tested oil. Essential oil from Origanum heracleoticum L. inhibited the growth of Escherichia coli and Pseudomonas aeruginosa clinical strains with different patters of resistance. The obtained outcomes will enable further investigations using oregano essential oil obtained from Origanum heracleoticum L. as alternative antibacterial remedies enhancing healing process in bacterial infections and as an effective means for the prevention of antibiotic-resistant strain development.

  13. Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection.

    PubMed

    Zhao, Feng; Li, Ping; Guo, Chao; Shi, Rong-Jiu; Zhang, Ying

    2018-03-01

    Considering the anoxic conditions within oil reservoirs, a new microbial enhanced oil recovery (MEOR) technology through in-situ biosurfactant production without air injection was proposed. High-throughput sequencing data revealed that Pseudomonas was one of dominant genera in Daqing oil reservoirs. Pseudomonas aeruginosa DQ3 which can anaerobically produce biosurfactant at 42 °C was isolated. Strain DQ3 was bioaugmented in an anaerobic bioreactor to approximately simulate MEOR process. During bioaugmentation process, although a new bacterial community was gradually formed, Pseudomonas was still one of dominant genera. Culture-based data showed that hydrocarbon-degrading bacteria and biosurfactant-producing bacteria were activated, while sulfate reducing bacteria were controlled. Biosurfactant was produced at simulated reservoir conditions, decreasing surface tension to 33.8 mN/m and emulsifying crude oil with EI 24  = 58%. Core flooding tests revealed that extra 5.22% of oil was displaced by in-situ biosurfactant production. Bioaugmenting indigenous biosurfactant producer P. aeruginosa without air injection is promising for in-situ MEOR applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Busca de estruturas em grandes escalas em altos redshifts

    NASA Astrophysics Data System (ADS)

    Boris, N. V.; Sodré, L., Jr.; Cypriano, E.

    2003-08-01

    A busca por estruturas em grandes escalas (aglomerados de galáxias, por exemplo) é um ativo tópico de pesquisas hoje em dia, pois a detecção de um único aglomerado em altos redshifts pode por vínculos fortes sobre os modelos cosmológicos. Neste projeto estamos fazendo uma busca de estruturas distantes em campos contendo pares de quasares próximos entre si em z Â3 0.9. Os pares de quasares foram extraídos do catálogo de Véron-Cetty & Véron (2001) e estão sendo observados com os telescópios: 2,2m da University of Hawaii (UH), 2,5m do Observatório de Las Campanas e com o GEMINI. Apresentamos aqui a análise preliminar de um par de quasares observado nos filtros i'(7800 Å) e z'(9500 Å) com o GEMINI. A cor (i'-z') mostrou-se útil para detectar objetos "early-type" em redshifts menores que 1.1. No estudo do par 131046+0006/J131055+0008, com redshift ~ 0.9, o uso deste método possibilitou a detecção de sete objetos candidatos a galáxias "early-type". Num mapa da distribuição projetada dos objetos para 22 < i' < 25 observou-se que estas galáxias estão localizadas próximas a um dos quasares e há indícios de que estejam aglomeradas dentro de um área de ~ 6 arcmin2. Se esse for o caso, estes objetos seriam membros de uma estrutura em grande escala. Um outro argumento em favor dessa hipótese é que eles obedecem uma relação do tipo Kormendy (raio equivalente X brilho superficial dentro desse raio), como a apresentada pelas galáxias elípticas em z = 0.

  15. Kinetics of styrene biodegradation by Pseudomonas sp. E-93486.

    PubMed

    Gąszczak, Agnieszka; Bartelmus, Grażyna; Greń, Izabela

    2012-01-01

    The research into kinetics of styrene biodegradation by bacterial strain Pseudomonas sp. E-93486 coming from VTT Culture Collection (Finland) was presented in this work. Microbial growth tests in the presence of styrene as the sole carbon and energy source were performed both in batch and continuous cultures. Batch experiments were conducted for initial concentration of styrene in the liquid phase changed in the range of 5-90 g m(-3). The Haldane model was found to be the best to fit the kinetic data, and the estimated constants of the equation were: μ (m) = 0.1188 h(-1), K(S) = 5.984 mg l(-1), and K (i) = 156.6 mg l(-1). The yield coefficient mean value [Formula in text] for the batch culture was 0.72 g(dry cells weight) (g(substrate))(-1). The experiments conducted in a chemostat at various dilution rates (D = 0.035-0.1 h(-1)) made it possible to determine the value of the coefficient for maintenance metabolism m (d) = 0.0165 h(-1) and the maximum yield coefficient value [Formula in text]. Chemostat experiments confirmed the high value of yield coefficient [Formula in text] observed in the batch culture. The conducted experiments showed high activity of the examined strain in the styrene biodegradation process and a relatively low sensitivity to inhibition of its growth at higher concentrations of styrene in the solution. Such exceptional features of Pseudomonas sp. E-93486 make this bacterial strain the perfect candidate for technical applications.

  16. Development of a real-time TaqMan assay to detect mendocina sublineage Pseudomonas species in contaminated metalworking fluids.

    PubMed

    Saha, Ratul; Donofrio, Robert S; Bagley, Susan T

    2010-08-01

    A TaqMan quantitative real-time polymerase chain reaction (qPCR) assay was developed for the detection and enumeration of three Pseudomonas species belonging to the mendocina sublineage (P. oleovorans, P. pseudoalcaligenes, and P. oleovorans subsp. lubricantis) found in contaminated metalworking fluids (MWFs). These microbes are the primary colonizers and serve as indicator organisms of biodegradation of used MWFs. Molecular techniques such as qPCR are preferred for the detection of these microbes since they grow poorly on typical growth media such as R2A agar and Pseudomonas isolation agar (PIA). Traditional culturing techniques not only underestimate the actual distribution of these bacteria but are also time-consuming. The primer-probe pair developed from gyrase B (gyrB) sequences of the targeted bacteria was highly sensitive and specific for the three species. qPCR was performed with both whole cell and genomic DNA to confirm the specificity and sensitivity of the assay. The sensitivity of the assay was 10(1) colony forming units (CFU)/ml for whole cell and 13.7 fg with genomic DNA. The primer-probe pair was successful in determining concentrations from used MWF samples, indicating levels between 2.9 x 10(3) and 3.9 x 10(6) CFU/ml. In contrast, the total count of Pseudomonas sp. recovered on PIA was in the range of <1.0 x 10(1) to 1.4 x 10(5) CFU/ml for the same samples. Based on these results from the qPCR assay, the designed TaqMan primer-probe pair can be efficiently used for rapid (within 2 h) determination of the distribution of these species of Pseudomonas in contaminated MWFs.

  17. Detection of a Gentamicin-Resistant Burn Wound Strain of Pseudomonas Aeruginosa but Sensitive to Honey and Garcinia Kola (Heckel) Seed Extract

    PubMed Central

    Adeleke, O.E.; Coker, M.E.; Oke, O.B.

    2010-01-01

    Summary Studies on Staphylococcus aureus and Staphylococcus intermedius from dog and cat, and also on Staphylococcus aureus from wound and pyoderma infections, have shown a correlation between the site of microbial infection and antimicrobial susceptibility. Both the methanolic extract concentrate of Garcinia kola (Heckel) seeds and natural honey have been associated with activity on bacterial isolates from respiratory tract infections. In this study, selected bacteria belonging to genera from burn wound infection sites were treated with natural honey and methanolic extract concentrate of Garcinia kola in antimicrobial susceptibility tests separately and in combined form, and also with gentamicin and methanol as controls. The two natural products were found to be active on the bacterial isolates, excluding Klebsiella pneumoniae strains, all of which showed resistance to honey. Combination forms of the two natural products were active only on the strains of Pseudomonas aeruginosa. At 4 and 8 µg/ml, gentamicin was ineffective on the three strains of Klebsiella pneumoniae while 8 µg/ml was moderately active on only two strains of Pseudomonas aeruginosa. One strain of Pseudomonas aeruginosa, UCH002, was resistant to gentamicin beyond 1,000 µ/ml. Gentamicin at 4 µ/ml was inhibitory to one strain of Escherichia coli and two strains of Staphylococcus aureus. Though the antimicrobial activity of the two natural products tested had been previously reported against microbial agents of respiratory tract infection, it was also recorded in this study. The lack of activity of each of the three honey types used in this study against the Klebsiella pneumoniae strains tested underscores the need to exclude this organism from burn wound infections before embarking on treatment with honey. The sensitivity of one high-level gentamicin-resistant strain of Pseudomonas aeruginosa to honey and Garcinia kola seed extract was noteworthy considering the therapeutic failures of gentamicin

  18. Evaluation of five selective media for the detection of Pseudomonas aeruginosa using a strain panel from clinical, environmental and industrial sources.

    PubMed

    Weiser, Rebecca; Donoghue, Denise; Weightman, Andrew; Mahenthiralingam, Eshwar

    2014-04-01

    Isolation and correct identification of the opportunistic pathogen and industrial contaminant Pseudomonas aeruginosa are very important and numerous selective media are available for this purpose. A novel comparison of five selective media having positive (acetamide-based agars), negative (Pseudomonas CN selective agar [Oxoid Ltd.] and Pseudomonas Isolation agar [Sigma-Aldrich Company Ltd.]) and chromogenic (chromID® P. aeruginosa [bioMérieux]) selection strategies was performed using a systematically designed bacterial test panel (58 P. aeruginosa and 90 non-P. aeruginosa strains including those commonly misidentified as P. aeruginosa by culture-dependent techniques). Standardised inocula were added to the selective media and the results were recorded after 24 and 72h. After 72h of incubation at 37°C chromID® P. aeruginosa displayed the highest specificity (70%) and had good sensitivity (95%), although the sensitivity was negatively impacted by the large variation in colour of P. aeruginosa colonies, which hampered interpretation. Both media containing inhibitory selective agents performed very similarly, both having 100% sensitivity and a specificity of approximately 30%. Raising the incubation temperature to 42°C increased the specificity of Pseudomonas CN selective agar and Pseudomonas isolation agar (61% and 47% respectively after 72h), but increased the number of false positives encountered with the chromogenic medium, decreasing its specificity to 68% after 72h. Growth on the acetamide agars was weak for all strains and it was often difficult to determine whether true growth had occurred. This, compounded by the low specificity of the acetamide agars (<26%), suggested they were less suitable for application to clinical or industrial settings without further modification. Overall, the chromogenic agar was the most selective but further consideration is required to optimise interpretation of results. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Lethality and Developmental Delay of Drosophila melanogaster Following Ingestion of Selected Pseudomonas fluorescens Strains

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens secretes antimicrobial compounds that promote plant health and provide protection from pathogens. We used a non-invasive feeding assay to study the toxicity of P. fluorescens strains Pf0-1, SBW25, and Pf-5 to Drosophila melanogaster. The three strains of P. fluorescens varie...

  20. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Moo Hwan; Lee, Jintae

    2014-12-01

    The opportunistic pathogen Pseudomonas aeruginosa produces a variety of virulence factors, and biofilms of this bacterium are much more resistant to antibiotics than planktonic cells. Thirty-six metal ions have been investigated to identify antivirulence and antibiofilm metal ions. Zinc ions and ZnO nanoparticles were found to markedly inhibit biofilm formation and the production of pyocyanin, Pseudomonas quinolone signal (PQS), pyochelin, and hemolytic activity of P. aeruginosa without affecting the growth of planktonic cells. Transcriptome analyses showed that ZnO nanoparticles induce the zinc cation efflux pump czc operon and several important transcriptional regulators (porin gene opdT and type III repressor ptrA), but repress the pyocyanin-related phz operon, which explains observed phenotypic changes. A mutant study showed that the effects of ZnO nanoparticles on the control of pyocyanin production and biofilm formation require the czc regulator CzcR. In addition, ZnO nanoparticles markedly increased the cellular hydrophilicity of P. aeruginosa cells. Our results support that ZnO nanoparticles are potential antivirulence materials against recalcitrant P. aeruginosa infections and possibly other important pathogens. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Outbreak of Pseudomonas fluorescens bacteremia among oncology patients.

    PubMed

    Hsueh, P R; Teng, L J; Pan, H J; Chen, Y C; Sun, C C; Ho, S W; Luh, K T

    1998-10-01

    From 7 to 24 March 1997, four patients developed Pseudomonas fluorescens bacteremia at the hospital; one on the oncology ward and the other three in the chemotherapy room. These patients all had underlying malignancies and had the Port-A-Cath (Smiths Industries Medical Systems, Deltec, Inc., St. Paul, Minn.) implants. Three patients had primary bacteremia, and one had Port-A-Cath-related infection. None of these patients had received a blood transfusion before the episodes of bacteremia. All patients recovered: two received antimicrobial agents with in vitro activity against the isolates, and the other two did not have any antibiotic treatment. A total of eight blood isolates were recovered from these patients during the febrile episodes that occurred several minutes after the infusion of chemotherapeutic agents via the Port-A-Cath. These isolates were initially identified as P. fluorescens or Pseudomonas putida (four), Burkholderia (Ralstonia) pickettii (three), and a non-glucose-fermenting gram-negative bacillus (one) by routine biochemical methods and the Vitek GNI card. These isolates were later identified as P. fluorescens on the basis of the characteristic cellular fatty acid chromatogram and the results of supplemental biochemical tests. The identification of identical antibiotypes by the E test and the random amplified polymorphic DNA patterns generated by arbitrarily primed PCR of the isolates showed that the outbreak was caused by a single clone of P. fluorescens. Surveillance cultures of the possibly contaminated infusion fluids and disinfectants, which were performed 7 days after recognition of the last infected patient, failed to isolate P. fluorescens. This report of a small outbreak caused by P. fluorescens suggests that timely, accurate identification of unusual nosocomial pathogens is crucial for early initiation of an epidemiological investigation and timely control of an outbreak.

  2. Crystal Structure of the Pseudomonas aeruginosa Virulence Factor Regulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordes, Timothy J.; Worzalla, Gregory A.; Ginster, Aaron M.

    2012-09-07

    Virulence factor regulator (Vfr) enhances Pseudomonas aeruginosa pathogenicity through its role as a global transcriptional regulator. The crystal structure of Vfr shows that it is a winged-helix DNA-binding protein like its homologue cyclic AMP receptor protein (CRP). In addition to an expected primary cyclic AMP-binding site, a second ligand-binding site is nestled between the N-terminal domain and the C-terminal helix-turn-helix domain. Unlike CRP, Vfr is a symmetric dimer in the absence of DNA. Removal of seven disordered N-terminal residues of Vfr prvents the growth of P. aeruginosa.

  3. Candida albicans and Pseudomonas aeruginosa Interaction, with Focus on the Role of Eicosanoids

    PubMed Central

    Fourie, Ruan; Ells, Ruan; Swart, Chantel W.; Sebolai, Olihile M.; Albertyn, Jacobus; Pohl, Carolina H.

    2016-01-01

    Candida albicans is commonly found in mixed infections with Pseudomonas aeruginosa, especially in the lungs of cystic fibrosis (CF) patients. Both of these opportunistic pathogens are able to form resistant biofilms and frequently infect immunocompromised individuals. The interaction between these two pathogens, which includes physical interaction as well as secreted factors, is mainly antagonistic. In addition, research suggests considerable interaction with their host, especially with immunomodulatory lipid mediators, termed eicosanoids. Candida albicans and Pseudomonas aeruginosa are both able to utilize arachidonic acid (AA), liberated from the host cells during infection, to form eicosanoids. The production of these eicosanoids, such as Prostaglandin E2, by the host and the pathogens may affect the dynamics of polymicrobial infection and the outcome of infections. It is of considerable importance to elucidate the role of host-produced, as well as pathogen-produced eicosanoids in polymicrobial infection. This review will focus on in vitro as well as in vivo interaction between C. albicans and P. aeruginosa, paying special attention to the role of eicosanoids in the cross-talk between host and the pathogens. PMID:26955357

  4. Phospholipids and protein adaptation of Pseudomonas sp. to the xenoestrogen tributyltin chloride (TBT).

    PubMed

    Bernat, Przemysław; Siewiera, Paulina; Soboń, Adrian; Długoński, Jerzy

    2014-09-01

    A tributyltin (TBT)-resistant strain of Pseudomonas sp. isolated from an overworked car filter was tested for its adaptation to TBT. The isolate was checked for organotin degradation ability, as well as membrane lipid and cellular protein composition in the presence of TBT. The phospholipid profiles of bacteria, grown with and without increased amounts of TBT, were characterized using liquid chromatography/electrospray ionization/mass spectrometry. The strain reacted to the biocide by changing the composition of its phospholipids. TBT induced a twofold decline in the amounts of many molecular species of phosphatidylglycerol and an increase in the levels of phosphatidic acid (by 58%) and phosphatidylethanolamine (by 70%). An increase in the degree of saturation of phospholipid fatty acids of TBT exposed Pseudomonas sp. was observed. These changes in the phospholipid composition and concentration reflect the mechanisms which support optimal lipid ordering in the presence of toxic xenobiotic. In the presence of TBT the abundances of 16 proteins, including TonB-dependent receptors, porins and peroxidases were modified, which could indicate a contribution of some enzymes to TBT resistance.

  5. NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes.

    PubMed

    Yoo, Dae-goon; Floyd, Madison; Winn, Matthew; Moskowitz, Samuel M; Rada, Balázs

    2014-08-01

    Cystic fibrosis (CF) airway disease is characterized by Pseudomonas aeruginosa infection and recruitment of neutrophil granulocytes. Neutrophil granule components (myeloperoxidase (MPO), human neutrophil elastase (HNE)), extracellular DNA and P. aeruginosa can all be found in the CF respiratory tract and have all been associated with worsening CF lung function. Pseudomonas-induced formation of neutrophil extracellular traps (NETs) offers a likely mechanism for release of MPO, HNE and DNA from neutrophils. NETs are composed of a DNA backbone decorated with granule proteins like MPO and HNE. Here we sought to examine whether CF clinical isolates of Pseudomonas are capable of inducing NET release from human neutrophil granulocytes. We used two methods to quantify NETs. We modified a previously employed ELISA that detects MPO-DNA complexes and established a new HNE-DNA ELISA. We show that these methods reliably quantify MPO-DNA and HNE-DNA complexes, measures of NET formation. We have found that CF isolates of P. aeruginosa stimulate robust respiratory burst and NET release in human neutrophils. By comparing paired "early" and "late" bacterial isolates obtained from the same CF patient we have found that early isolates induced significantly more NET release than late isolates. Our data support that Pseudomonas-induced NET release represents an important mechanism for release of neutrophil-derived CF inflammatory mediators, and confirm that decreased induction of NET formation is required for long-term adaptation of P. aeruginosa to CF airways. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Draft genome sequence of the novel strain Pseudomonas sp. 10B238 with potential ability to produce antibiotics from deep-sea sediment.

    PubMed

    Pan, Hua-Qi; Hu, Jiang-Chun

    2015-10-01

    Pseudomonas sp. 10B238 was a putatively novel species of Pseudomonas, isolated from a deep-sea sediment of the South China Sea, which had the genetic potential to produce secondary metabolites related to nonribosomal peptides (NRPs), as well as showed moderate antimicrobial activities. Here we report a high quality draft genome of Pseudomonas sp. 10B238, which comprises 4,933,052bp with the G+C content of 60.23%. A total of 11 potential secondary metabolite biosynthetic gene clusters were predicted, including a NRP for new peptide siderophore. And many anaerobic respiratory terminal enzymes were found for life in deep-sea environments. Our results may provide insights into biosynthetic pathway for antimicrobial bioactive compounds and be helpful to understand the physiological characteristic of this species. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Occurrence of bla genes encoding carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from Intensive Care Unit in a tertiary care hospital.

    PubMed

    Subramaniyan, Jayanthi Siva; Sundaram, Jeya Meenakshi

    2018-01-01

    ICU shows increasing incidence of infection associated with the use of invasive procedures for the diagnostic purpose as well as the indiscriminate use of antibiotics. Pseudomonas aeruginosa and Acinetobacter species are "very successful" pathogen and the emergence of the Metallo-β-Lactamases (MBL) is becoming a therapeutic challenge. To isolate the Nonfermenting Gram negative bacilli from the ICU samples. To identify the metallo betalactamase producers and to detect the bla gene presence among the Pseudomonas aeruginosa and Acinetobacter baumannii . The Nonfermenting Gram negative bacilli isolates from the ICU samples were taken over for 5 years (2009-2014) in a tertiary care hospital. The isolates of Pseudomonas species and Acinetobacter species were confirmed by API analyser and processed according to standard procedures. Detection of the MBL producers were done by E strip method and subjected for bla gene detection by PCR method. In our study a total of 195 isolates of NFGNB were obtained from various ICU. Of these MBL producers, 26 % were Pseudomonas aeruginosa and 25 % were Acinetobacter baumannii . The subtypes of bla VIM MBL producing P.aeruginosa were 26%. The predominant gene coding for MBL activity in A.baumannii were found to be bla OXA gene 11.9%. The gene accession numbers were KF975367, KF975372. We have to control the development and dissemination of these superbugs among the ICU's.

  8. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  9. The Pseudomonas aeruginosa oxyvinylglycine L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a weak seed germination-arrest factor

    USDA-ARS?s Scientific Manuscript database

    The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is demonstrated to share biological activities with 4-formylaminooxyvinylglycine, a related molecule produced by Pseudomonas fluorescens WH6. We found that culture filtrates of a P. aeruginosa strain overproduc...

  10. ACTIVE EFFLUX OF ORGANIC SOLVENTS BY PSEUDOMONAS PUTIDA S12 IS INDUCED BY SOLVENTS

    EPA Science Inventory

    Induction of the membrane-associated organic solvent efflux system SrpABC of Pseudomonas putida S12 was examined by cloning a 312-bp DNA fragment, containing the srp promoter, in the broad-host-range reporter vector pKRZ-1. Compounds that are capable of inducing expression of the...

  11. Distribution and survival of Pseudomonas sp. on Italian ryegrass and Curly dock in Georgia

    USDA-ARS?s Scientific Manuscript database

    Yellow bud, caused by Pseudomonas sp. is an emerging bacterial disease of onion. Polymerase chain reaction (PCR) assay based on the coronafacate ligase (cfl) and HrpZ genes were used to detect initial suspected bacteria on weeds. Growth on an agar medium, ability to cause a hypersensitive response i...

  12. [In-vitro antibiotic resistance of hospital and non-hospital strains of Pseudomonas aeruginosa].

    PubMed

    Ceddia, T; Marinucci, M C; Parravano, N

    1979-03-30

    The AA report about the resistence towards antibiotics of 42 stocks of Pseudomonas aeruginosa isolated from hospitalized patients and of 18 stocks isolated from non hospitalized patients. The most active antibiotics are Gentamicine, Neomicine and Streptomicine. Interestingly towards Tobramicine no resistence has been detected. The stocks isolated from hospitalized patients have generally shown a higher resistence.

  13. Strain-Tailored Double-Disk Synergy Test Detects Extended-Spectrum Oxacillinases in Pseudomonas aeruginosa▿

    PubMed Central

    Hocquet, Didier; Dehecq, Barbara; Bertrand, Xavier; Plésiat, Patrick

    2011-01-01

    The prevalence of class D extended-spectrum oxacillinases (ES-OXAs) in ceftazidime-resistant strains of Pseudomonas aeruginosa is often underestimated by double-disk synergy tests (DDST) using clavulanate. A DDST with a customized distance between a disk of ceftazidime or cefepime and inhibitors (clavulanate and imipenem) detected 14 out of 15 different ES-OXAs. PMID:21450950

  14. Protective ventilation reduces Pseudomonas aeruginosa growth in lung tissue in a porcine pneumonia model.

    PubMed

    Sperber, Jesper; Nyberg, Axel; Lipcsey, Miklos; Melhus, Åsa; Larsson, Anders; Sjölin, Jan; Castegren, Markus

    2017-08-31

    Mechanical ventilation with positive end expiratory pressure and low tidal volume, i.e. protective ventilation, is recommended in patients with acute respiratory distress syndrome. However, the effect of protective ventilation on bacterial growth during early pneumonia in non-injured lungs is not extensively studied. The main objectives were to compare two different ventilator settings on Pseudomonas aeruginosa growth in lung tissue and the development of lung injury. A porcine model of severe pneumonia was used. The protective group (n = 10) had an end expiratory pressure of 10 cm H 2 O and a tidal volume of 6 ml x kg -1 . The control group (n = 10) had an end expiratory pressure of 5 cm H 2 O and a tidal volume of 10 ml x kg -1 . 10 11 colony forming units of Pseudomonas aeruginosa were inoculated intra-tracheally at baseline, after which the experiment continued for 6 h. Two animals from each group received only saline, and served as sham animals. Lung tissue samples from each animal were used for bacterial cultures and wet-to-dry weight ratio measurements. The protective group displayed lower numbers of Pseudomonas aeruginosa (p < 0.05) in the lung tissue, and a lower wet-to-dry ratio (p < 0.01) than the control group. The control group deteriorated in arterial oxygen tension/inspired oxygen fraction, whereas the protective group was unchanged (p < 0.01). In early phase pneumonia, protective ventilation with lower tidal volume and higher end expiratory pressure has the potential to reduce the pulmonary bacterial burden and the development of lung injury.

  15. Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa

    PubMed Central

    Johansen, Helle Krogh; Molin, Søren

    2018-01-01

    ABSTRACT Evolution by natural selection under complex and dynamic environmental conditions occurs through intricate and often counterintuitive trajectories affecting many genes and metabolic solutions. To study short- and long-term evolution of bacteria in vivo, we used the natural model system of cystic fibrosis (CF) infection. In this work, we investigated how and through which trajectories evolution of Pseudomonas aeruginosa occurs when migrating from the environment to the airways of CF patients, and specifically, we determined reduction of growth rate and metabolic specialization as signatures of adaptive evolution. We show that central metabolic pathways of three distinct Pseudomonas aeruginosa lineages coevolving within the same environment become restructured at the cost of versatility during long-term colonization. Cell physiology changes from naive to adapted phenotypes resulted in (i) alteration of growth potential that particularly converged to a slow-growth phenotype, (ii) alteration of nutritional requirements due to auxotrophy, (iii) tailored preference for carbon source assimilation from CF sputum, (iv) reduced arginine and pyruvate fermentation processes, and (v) increased oxygen requirements. Interestingly, although convergence was evidenced at the phenotypic level of metabolic specialization, comparative genomics disclosed diverse mutational patterns underlying the different evolutionary trajectories. Therefore, distinct combinations of genetic and regulatory changes converge to common metabolic adaptive trajectories leading to within-host metabolic specialization. This study gives new insight into bacterial metabolic evolution during long-term colonization of a new environmental niche. PMID:29636437

  16. Imipenem Resistant Pseudomonas aeruginosa: The fall of the final quarterback

    PubMed Central

    Ameen, Nadya; Memon, Zahida; Shaheen, Shehla; Fatima, Ghulam; Ahmed, Farah

    2015-01-01

    Objective: To isolate, determine the frequency, and study the demographic trends of MBL positive Pseudomonas aeruginosa from imipenem resistant isolates collected from clinical samples in a tertiary care hospital of Pakistan. Methods: In this cross sectional study a total of 230 strains of Pseudomonas were isolated from various clinical specimens on the basis of culture and biochemical tests. Imipenem resistant isolates were selected by Kirby Bauer Diffusion technique, followed by screening for MBL production by Imipenem EDTA Combined Disk Test. Demographic details of each patient were recorded on a separate questionnaire. Chi-Square goodness-of-fit test was computed to review the isolation of MBL positive isolates (P-value ≤ 0.05) in different specimen. Results: Out of 230 strains of P. aeruginosa 49.5% were imipenem resistant; MBL production was confirmed in 64.9% of the resistant isolates. Resistance to polymyxin B (12.5%) was notable. Majority of the MBL positive strains were isolated from patients aged between 20-39 years (45.9%) and the predominant source was pus (43.24%) which was found to be statistically significant (P-value=0.04). Outpatient departments (24.3%) and burn unit (21.6%) were the major places for resistant isolates. Conclusion: MBL production is one of the major causes of IRPA. Increasing resistance to polymyxin B is grave. Due to acquisition of MBL strains MDR P. aeruginosa has become endemic in tertiary setups. PMID:26150844

  17. Draft genome sequences of seven 4-Formylaminooxyvinylglycine producers belonging to the Pseudomonas fluorescens species complex

    USDA-ARS?s Scientific Manuscript database

    Vinylglycines are non-proteinogenic amino acids that inhibit amino acid metabolism and ethylene production. In this report, we describe the draft genome sequences of seven isolates of Pseudomonas that produce 4-formylaminooxyvinylglycine, a compound known to inhibit the germination of grasses and t...

  18. Living on the edge: Emergence of spontaneous gac mutations in Pseudomonas protegens during swarming motility

    USDA-ARS?s Scientific Manuscript database

    Swarming motility is a flagella-driven multicellular behavior that allows bacteria to colonize new niches and escape competition. Here, we investigated the spatial distribution and evolution of ‘social cheaters’ in swarming colonies of Pseudomonas protegens Pf-5. Lipopeptide surfactants in the orfam...

  19. Vesiculation from Pseudomonas aeruginosa under SOS.

    PubMed

    Maredia, Reshma; Devineni, Navya; Lentz, Peter; Dallo, Shatha F; Yu, Jiehjuen; Guentzel, Neal; Chambers, James; Arulanandam, Bernard; Haskins, William E; Weitao, Tao

    2012-01-01

    Bacterial infections can be aggravated by antibiotic treatment that induces SOS response and vesiculation. This leads to a hypothesis concerning association of SOS with vesiculation. To test it, we conducted multiple analyses of outer membrane vesicles (OMVs) produced from the Pseudomonas aeruginosa wild type in which SOS is induced by ciprofloxacin and from the LexA noncleavable (lexAN) strain in which SOS is repressed. The levels of OMV proteins, lipids, and cytotoxicity increased for both the treated strains, demonstrating vesiculation stimulation by the antibiotic treatment. However, the further increase was suppressed in the lexAN strains, suggesting the SOS involvement. Obviously, the stimulated vesiculation is attributed by both SOS-related and unrelated factors. OMV subproteomic analysis was performed to examine these factors, which reflected the OMV-mediated cytotoxicity and the physiology of the vesiculating cells under treatment and SOS. Thus, SOS plays a role in the vesiculation stimulation that contributes to cytotoxicity.

  20. Vesiculation from Pseudomonas aeruginosa under SOS

    PubMed Central

    Maredia, Reshma; Devineni, Navya; Lentz, Peter; Dallo, Shatha F.; Yu, JiehJuen; Guentzel, Neal; Chambers, James; Arulanandam, Bernard; Haskins, William E.; Weitao, Tao

    2012-01-01

    Bacterial infections can be aggravated by antibiotic treatment that induces SOS response and vesiculation. This leads to a hypothesis concerning association of SOS with vesiculation. To test it, we conducted multiple analyses of outer membrane vesicles (OMVs) produced from the Pseudomonas aeruginosa wild type in which SOS is induced by ciprofloxacin and from the LexA noncleavable (lexAN) strain in which SOS is repressed. The levels of OMV proteins, lipids, and cytotoxicity increased for both the treated strains, demonstrating vesiculation stimulation by the antibiotic treatment. However, the further increase was suppressed in the lexAN strains, suggesting the SOS involvement. Obviously, the stimulated vesiculation is attributed by both SOS-related and unrelated factors. OMV subproteomic analysis was performed to examine these factors, which reflected the OMV-mediated cytotoxicity and the physiology of the vesiculating cells under treatment and SOS. Thus, SOS plays a role in the vesiculation stimulation that contributes to cytotoxicity. PMID:22448133

  1. 2D motility tracking of Pseudomonas putida KT2440 in growth phases using video microscopy

    PubMed Central

    Davis, Michael L.; Mounteer, Leslie C.; Stevens, Lindsey K.; Miller, Charles D.; Zhou, Anhong

    2011-01-01

    Pseudomonas putida KT2440 is a gram negative motile soil bacterium important in bioremediation and biotechnology. Thus, it is important to understand its motility characteristics as individuals and in populations. Population characteristics were determined using a modified Gompertz model. Video microscopy and imaging software were utilized to analyze two dimensional (2D) bacteria movement tracks to quantify individual bacteria behavior. It was determined that inoculum density increased the lag time as seeding densities decreased, and that the maximum specific growth rate decreased as seeding densities increased. Average bacterial velocity remained relatively similar throughout exponential growth phase (~20.9 µm/sec), while maximum velocities peak early in exponential growth phase at a velocity of 51.2 µm/sec. Pseudomonas putida KT2440 also favor smaller turn angles indicating they often continue in the same direction after a change in flagella rotation throughout the exponential growth phase. PMID:21334971

  2. Functional Characterization of the Mannitol Promoter of Pseudomonas fluorescens DSM 50106 and Its Application for a Mannitol-Inducible Expression System for Pseudomonas putida KT2440

    PubMed Central

    Hoffmann, Jana; Altenbuchner, Josef

    2015-01-01

    A new pBBR1MCS-2-derived vector containing the Pseudomonas fluorescens DSM10506 mannitol promoter PmtlE and mtlR encoding its AraC/XylS type transcriptional activator was constructed and optimized for low basal expression. Mannitol, arabitol, and glucitol-inducible gene expression was demonstrated with Pseudomonas putida and eGFP as reporter gene. The new vector was applied for functional characterization of PmtlE. Identification of the DNA binding site of MtlR was achieved by in vivo eGFP measurement with PmtlE wild type and mutants thereof. Moreover, purified MtlR was applied for detailed in vitro investigations using electrophoretic mobility shift assays and DNaseI footprinting experiments. The obtained data suggest that MtlR binds to PmtlE as a dimer. The proposed DNA binding site of MtlR is AGTGC-N5-AGTAT-N7-AGTGC-N5-AGGAT. The transcription activation mechanism includes two binding sites with different binding affinities, a strong upstream binding site and a weaker downstream binding site. The presence of the weak downstream binding site was shown to be necessary to sustain mannitol-inducibility of PmtlE. Two possible functions of mannitol are discussed; the effector might stabilize binding of the second monomer to the downstream half site or promote transcription activation by inducing a conformational change of the regulator that influences the contact to the RNA polymerase. PMID:26207762

  3. HOPM1 mediated disease resistance to Pseudomonas syringae in Arabidopsis

    DOEpatents

    He, Sheng Yang [Okemos, MI; Nomura, Kinya [East Lansing, MI

    2011-11-15

    The present invention relates to compositions and methods for enhancing plant defenses against pathogens. More particularly, the invention relates to enhancing plant immunity against bacterial pathogens, wherein HopM1.sub.1-300 mediated protection is enhanced, such as increased protection to Pseudomonas syringae pv. tomato DC3000 HopM1 and/or there is an increase in activity of an ATMIN associated plant protection protein, such as ATMIN7. Reagents of the present invention further provide a means of studying cellular trafficking while formulations of the present inventions provide increased pathogen resistance in plants.

  4. Identification of pilin pools in the membranes of Pseudomonas aeruginosa.

    PubMed Central

    Watts, T H; Worobec, E A; Paranchych, W

    1982-01-01

    The proteins of purified inner and outer membranes obtained from Pseudomonas aeruginosa strains PAK and PAK/2Pfs were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose, and treated with antiserum raised against pure pili. Bound antipilus antibodies were visualized by reaction with 125I-labeled protein A from Staphylococcus aureus. The results showed that there are pools of pilin in both the inner and outer membranes of P. aeruginosa and that the pool size in the multipiliated strain is comparable with that of the wild-type strain. Images PMID:6813311

  5. [Degradation characteristics of naphthalene with a Pseudomonas aeruginosa strain isolated from soil contaminated by diesel].

    PubMed

    Liu, Wen-Chao; Wu, Bin-Bin; Li, Xiao-Sen; Lu, Dian-Nan; Liu, Yong-Min

    2015-02-01

    Abstract: A naphthalene-degrading bacterium (referred as HD-5) was isolated from the diesel-contaminated soil and was assigned to Pseudomonas aeruginosa according to 16S rDNA sequences analysis. Gene nah, which encodes naphthalene dioxygenase, was identified from strain HD-5 by PCR amplification. Different bioremediation approaches, including nature attenuation, bioaugmentation with strain Pseudomonas aeruginosa, biostimulation, and an integrated degradation by bioaugmentation and biostimulation, were evaluated for their effectiveness in the remediating soil containing 5% naphthalene. The degradation rates of naphthalene in the soil were compared among the different bioremediation approaches, the FDA and dehydrogenase activity in bioremediation process were measured, and the gene copy number of 16S rRNA and nah in soil were dynamically monitored using real-time PCR. It was shown that the naphthalene removal rate reached 71.94%, 62.22% and 83.14% in approaches of bioaugmentation (B), biostimulation(S) and integrated degradation composed of bioaugmentation and biostimulation (BS), respectively. The highest removal rate of naphthalene was achieved by using BS protocol, which also gives the highest FDA and dehydrogenase activity. The gene copy number of 16S rRNA and nah in soil increased by about 2.67 x 10(11) g(-1) and 8.67 x 10(8) g(-1) after 31 days treatment using BS protocol. Above-mentioned results also demonstrated that the screened bacterium, Pseudomonas aeruginosa, could grow well in naphthalene-contaminated soil and effectively degrade naphthalene, which is of fundamental importance for bioremediation of naphthalene-contaminated soil.

  6. Lactate Utilization Is Regulated by the FadR-Type Regulator LldR in Pseudomonas aeruginosa

    PubMed Central

    Gao, Chao; Hu, Chunhui; Zheng, Zhaojuan; Jiang, Tianyi; Dou, Peipei; Zhang, Wen; Che, Bin; Wang, Yujiao; Lv, Min

    2012-01-01

    NAD-independent l-lactate dehydrogenase (l-iLDH) and NAD-independent d-lactate dehydrogenase (d-iLDH) activities are induced coordinately by either enantiomer of lactate in Pseudomonas strains. Inspection of the genomic sequences of different Pseudomonas strains revealed that the lldPDE operon comprises 3 genes, lldP (encoding a lactate permease), lldD (encoding an l-iLDH), and lldE (encoding a d-iLDH). Cotranscription of lldP, lldD, and lldE in Pseudomonas aeruginosa strain XMG starts with the base, C, that is located 138 bp upstream of the lldP ATG start codon. The lldPDE operon is located adjacent to lldR (encoding an FadR-type regulator, LldR). The gel mobility shift assays revealed that the purified His-tagged LldR binds to the upstream region of lldP. An XMG mutant strain that constitutively expresses d-iLDH and l-iLDH was found to contain a mutation in lldR that leads to an Ile23-to-serine substitution in the LldR protein. The mutated protein, LldRM, lost its DNA-binding activity. A motif with a hyphenated dyad symmetry (TGGTCTTACCA) was identified as essential for the binding of LldR to the upstream region of lldP by using site-directed mutagenesis. l-Lactate and d-lactate interfered with the DNA-binding activity of LldR. Thus, l-iLDH and d-iLDH were expressed when the operon was induced in the presence of l-lactate or d-lactate. PMID:22408166

  7. The Pseudomonas aeruginosa Pathogenicity Island PAPI-1 is transferred via a novel Type IV pilus

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. The notable ability of P. aeruginosa to inhabit a broad range of environments including humans is in part due to its large and diverse genomic repertoi...

  8. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...

  9. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...

  10. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...

  11. Antimicrobial potential of bioconverted products of omega-3 fatty acids by Pseudomonas aeruginosa PR3

    USDA-ARS?s Scientific Manuscript database

    Bioconverted omega-3 fatty acids, eicosapentaenoic acid (bEPA) and docosahexanoic acid (bDHA), obtained from the microbial conversion of non-bioconverted eicosapentaenoic and docosahexaenoic acids by Pseudomonas aeruginosa PR3 were evaluated for their antimicrobial potential. bEPA and bDHA at 5 µl/...

  12. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...

  13. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...

  14. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings.

    PubMed

    Ivanova, Elena P; Hasan, Jafar; Webb, Hayden K; Truong, Vi Khanh; Watson, Gregory S; Watson, Jolanta A; Baulin, Vladimir A; Pogodin, Sergey; Wang, James Y; Tobin, Mark J; Löbbe, Christian; Crawford, Russell J

    2012-08-20

    Natural superhydrophobic surfaces are often thought to have antibiofouling potential due to their self-cleaning properties. However, when incubated on cicada wings, Pseudomonas aeruginosa cells are not repelled; instead they are penetrated by the nanopillar arrays present on the wing surface, resulting in bacterial cell death. Cicada wings are effective antibacterial, as opposed to antibiofouling, surfaces. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Pseudomonas mendocina native valve infective endocarditis: a case report.

    PubMed

    Rapsinski, Glenn J; Makadia, Jina; Bhanot, Nitin; Min, Zaw

    2016-10-04

    Gram-negative microorganisms are uncommon pathogens responsible for infective endocarditis. Pseudomonas mendocina, a Gram-negative water-borne and soil-borne bacterium, was first reported to cause human infection in 1992. Since then, it has rarely been reported as a human pathogen in the literature. We describe the first case of native valve infective endocarditis due to P. mendocina in the USA. A 57-year-old white man presented with bilateral large leg ulcers, fever, and marked leukocytosis. His past medical history included gout and chronic alcohol use. P. mendocina was isolated from his blood cultures. A comprehensive review of P. mendocina infection in the literature was performed. A total of eight cases of P. mendocina infection were reported in the literature. More than two-thirds of the cases of P. mendocina septicemia were associated with native valve infective endocarditis. Thus, an echocardiogram was performed and demonstrated mitral valve endocarditis with mild mitral insufficiency. His leg wounds were debrided and were probably the source of P. mendocina bacteremia. Unlike Pseudomonas aeruginosa, P. mendocina is susceptible to third-generation cephalosporins. Our patient received a 6-week course of antimicrobial therapy with a favorable clinical outcome. Our reported case and literature review illuminates a rare bacterial cause of infective endocarditis secondary to P. mendocina pathogen. Native cardiac valves were affected in all reported cases of infective endocarditis, and a majority of affected heart valves were left-sided. The antibiotics active against P. mendocina are different from those that are active against P. aeruginosa, and they notably include third-generation cephalosporins. The outcome of all reported cases of P. mendocina was favorable and no mortality was described.

  16. Pseudomonas Pyocyanin Increases Interleukin-8 Expression by Human Airway Epithelial Cells

    PubMed Central

    Denning, Gerene M.; Wollenweber, Laura A.; Railsback, Michelle A.; Cox, Charles D.; Stoll, Lynn L.; Britigan, Bradley E.

    1998-01-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, causes acute pneumonia in patients with hospital-acquired infections and is commonly associated with chronic lung disease in individuals with cystic fibrosis (CF). Evidence suggests that the pathophysiological effects of P. aeruginosa are mediated in part by virulence factors secreted by the bacterium. Among these factors is pyocyanin, a redox active compound that increases intracellular oxidant stress. We find that pyocyanin increases release of interleukin-8 (IL-8) by both normal and CF airway epithelial cell lines and by primary airway epithelial cells. Moreover, pyocyanin synergizes with the inflammatory cytokines tumor necrosis factor alpha and IL-1α. RNase protection assays indicate that increased IL-8 release is accompanied by increased levels of IL-8 mRNA. The antioxidant n-acetyl cysteine, general inhibitors of protein tyrosine kinases, and specific inhibitors of mitogen-activated protein kinases diminish pyocyanin-dependent increases in IL-8 release. Conversely, inhibitors of protein kinases C (PKC) and PKA have no effect. In contrast to its effects on IL-8 expression, pyocyanin inhibits cytokine-dependent expression of the monocyte/macrophage/T-cell chemokine RANTES. Increased release of IL-8, a potent neutrophil chemoattractant, in response to pyocyanin could contribute to the marked infiltration of neutrophils and subsequent neutrophil-mediated tissue damage that are observed in Pseudomonas-associated lung disease. PMID:9826354

  17. Oily wastewaters treatment using Pseudomonas sp. isolated from the compost fertilizer

    PubMed Central

    2014-01-01

    Background Discharging the oily wastewater in the environment causes serious problems, because of the oil compounds and organic materials presence. Applying biological methods using the lipase enzyme producer microorganisms can be an appropriate choice for treatment of these wastewaters. The aim of this study is to treat those oil wastewaters having high concentration of oil by applying lipase enzyme producer bacteria. Materials and methods Oil concentration measurement was conducted using the standard method of gravimetric and the wastewater under study was synthetically made and contained olive, canola and sunflower oil. The strain used in this study was Pseudomonas strain isolated from compost fertilizer. The oil under study had concentration of 1.5 to 22 g/l. Results The oil removal amount in concentrations lower than 8.4 g/l was over 95 ± 1.5%. Increase of the oil's concentration to 22 g/l decreases the amount of removal in retention time of 44 hours to 85 ± 2.5%. The best yield of removing this strain in retention time of 44 hours and temperature of 30°C was achieved using Ammonium Nitrate as the nitrogen resource which yield was about 95 percent. Conclusion The findings of the research showed that Pseudomonas bacteria isolated from the compost fertilizer can degrade high concentration oils. PMID:24876932

  18. Decolorization of adsorbed textile dyes by developed consortium of Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 under solid state fermentation.

    PubMed

    Kadam, Avinash A; Telke, Amar A; Jagtap, Sujit S; Govindwar, Sanjay P

    2011-05-15

    The objective of this study was to develop consortium using Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 to decolorize adsorbed dyes from textile effluent wastewater under solid state fermentation. Among various agricultural wastes rice bran showed dye adsorption up to 90, 62 and 80% from textile dye reactive navy blue HE2R (RNB HE2R) solution, mixture of textile dyes and textile industry wastewater, respectively. Pseudomonas sp. SUK1 and A. ochraceus NCIM-1146 showed 62 and 38% decolorization of RNB HE2R adsorbed on rice bran in 24h under solid state fermentation. However, the consortium of Pseudomonas sp. SUK1 and A. ochraceus NCIM-1146 (consortium-PA) showed 80% decolorization in 24h. The consortium-PA showed effective ADMI removal ratio of adsorbed dyes from textile industry wastewater (77%), mixture of textile dyes (82%) and chemical precipitate of textile dye effluent (CPTDE) (86%). Secretion of extracellular enzymes such as laccase, azoreductase, tyrosinase and NADH-DCIP reductase and their significant induction in the presence of adsorbed dye suggests their role in the decolorization of RNB HE2R. GCMS and HPLC analysis of product suggests the different fates of biodegradation of RNB HE2R when used Pseudomonas sp. SUK1, A. ochraceus NCIM-1146 and consortium PA. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Unraveling the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress by ¹H NMR-based metabolomics.

    PubMed

    Ye, Yangfang; Wang, Xin; Zhang, Limin; Lu, Zhenmei; Yan, Xiaojun

    2012-07-01

    Nicotine can cause oxidative damage to organisms; however, some bacteria, for example Pseudomonas sp. HF-1, are resistant to such oxidative stress. In the present study, we analyzed the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress using ¹H NMR spectroscopy coupled with multivariate data analysis. We found that the dominant metabolites in Pseudomonas sp. HF-1 were eight aliphatic organic acids, six amino acids, three sugars and 11 nucleotides. After 18 h of cultivation, 1 g/L nicotine caused significant elevation of sugar (glucose, trehalose and maltose), succinate and nucleic acid metabolites (cytidine, 5'-CMP, guanine 2',3'-cyclic phosphate and adenosine 2',3'-cyclic phosphate), but decrease of glutamate, putrescine, pyrimidine, 2-propanol, diethyl ether and acetamide levels. Similar metabolomic changes were induced by 2 g/L nicotine, except that no significant change in trehalose, 5'-UMP levels and diethyl ether were found. However, 3 g/L nicotine led to a significant elevation in the two sugars (trehalose and maltose) levels and decrease in the levels of glutamate, putrescine, pyrimidine and 2-propanol. Our findings indicated that nicotine resulted in the enhanced nucleotide biosynthesis, decreased glucose catabolism, elevated succinate accumulation, severe disturbance in osmoregulation and complex antioxidant strategy. And a further increase of nicotine level was a critical threshold value that triggered the change of metabolic flow in Pseudomonas sp. HF-1. These findings revealed the comprehensive insights into the metabolic response of nicotine-degrading bacteria to nicotine-induced oxidative toxicity.

  20. Occurrence of bla genes encoding carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from Intensive Care Unit in a tertiary care hospital

    PubMed Central

    Subramaniyan, Jayanthi Siva; Sundaram, Jeya Meenakshi

    2018-01-01

    CONTEXT: ICU shows increasing incidence of infection associated with the use of invasive procedures for the diagnostic purpose as well as the indiscriminate use of antibiotics. Pseudomonas aeruginosa and Acinetobacter species are “very successful” pathogen and the emergence of the Metallo-β-Lactamases (MBL) is becoming a therapeutic challenge. AIMS: To isolate the Nonfermenting Gram negative bacilli from the ICU samples. To identify the metallo betalactamase producers and to detect the bla gene presence among the Pseudomonas aeruginosa and Acinetobacter baumannii. SETTINGS AND DESIGN: The Nonfermenting Gram negative bacilli isolates from the ICU samples were taken over for 5 years (2009-2014) in a tertiary care hospital. METHODS AND MATERIALS: The isolates of Pseudomonas species and Acinetobacter species were confirmed by API analyser and processed according to standard procedures. Detection of the MBL producers were done by E strip method and subjected for bla gene detection by PCR method. RESULTS: In our study a total of 195 isolates of NFGNB were obtained from various ICU. Of these MBL producers, 26 % were Pseudomonas aeruginosa and 25 % were Acinetobacter baumannii. The subtypes of blaVIM MBL producing P.aeruginosa were 26%. The predominant gene coding for MBL activity in A.baumannii were found to be blaOXA gene 11.9%. The gene accession numbers were KF975367, KF975372. CONCLUSIONS: We have to control the development and dissemination of these superbugs among the ICU's. PMID:29692589

  1. Characterization of a phage-like pyocin from the plant growth-promoting rhizobacterium Pseudomonas fluorescens SF4c.

    PubMed

    Fischer, Sonia; Godino, Agustina; Quesada, José Miguel; Cordero, Paula; Jofré, Edgardo; Mori, Gladys; Espinosa-Urgel, Manuel

    2012-06-01

    R-type and F-type pyocins are high-molecular-mass bacteriocins produced by Pseudomonas aeruginosa that resemble bacteriophage tails. They contain no head structures and no DNA, and are used as defence systems. In this report, we show that Pseudomonas fluorescens SF4c, a strain isolated from the wheat rhizosphere, produces a high-molecular-mass bacteriocin which inhibits the growth of closely related bacteria. A mutant deficient in production of this antimicrobial compound was obtained by transposon mutagenesis. Sequence analysis revealed that the transposon had disrupted a gene that we have named ptm, since it is homologous to that encoding phage tape-measure protein in P. fluorescens Pf0-1, a gene belonging to a prophage similar to phage-like pyocin from P. aeruginosa PAO1. In addition, we have identified genes from the SF4c pyocin cluster that encode a lytic system and regulatory genes. We constructed a non-polar ptm mutant of P. fluorescens SF4c. Heterologous complementation of this mutation restored the production of bacteriocin. Real-time PCR was used to analyse the expression of pyocin under different stress conditions. Bacteriocin was upregulated by mitomycin C, UV light and hydrogen peroxide, and was downregulated by saline stress. This report constitutes, to our knowledge, the first genetic characterization of a phage tail-like bacteriocin in a rhizosphere Pseudomonas strain.

  2. ATP-dependent RecG Helicase Is Required for the Transcriptional Regulator OxyR Function in Pseudomonas species*

    PubMed Central

    Yeom, Jinki; Lee, Yunho; Park, Woojun

    2012-01-01

    The oxyR gene appears to reside in an operon with the recG helicase gene in many bacteria, including pathogenic Pseudomonas aeruginosa and Pseudomonas putida. Analysis of P. putida transcriptomes shows that many OxyR-controlled genes are regulated by the ATP-dependent RecG helicase and that RecG alone modulates the expression of many genes. We found that purified RecG binds to the promoters of many OxyR-controlled genes and that expression of these genes was not induced under conditions of oxidative stress in recG mutants of P. aeruginosa, P. putida, and Escherichia coli. In vitro data revealed that promoters containing palindromic sequences are essential for RecG binding and that single-strand binding proteins and ATP are also needed for RecG to promote transcription, whereas a magnesium ion has the opposite effect. The OxyR tetramer preferentially binds to promoters after RecG has generated linear DNA in the presence of ATP; otherwise, the OxyR dimer has higher affinity. This study provides new insights into the mechanism of bacterial transcription by demonstrating that RecG might be required for the induction of the OxyR regulon by unwinding palindromic DNA for transcription. This work describes a novel bacterial transcriptional function by RecG helicase with OxyR and may provide new targets for controlling Pseudomonas species pathogen. PMID:22621928

  3. Alginate Lyase (AlgL) Activity Is Required for Alginate Biosynthesis in Pseudomonas aeruginosa

    PubMed Central

    Albrecht, Mark T.; Schiller, Neal L.

    2005-01-01

    To determine whether AlgL's lyase activity is required for alginate production in Pseudomonas aeruginosa, an algLΔ::Gmr mutant (FRD-MA7) was created. algL complementation of FRD-MA7 restored alginate production, but algL constructs containing mutations inactivating lyase activity did not, demonstrating that the enzymatic activity of AlgL is required for alginate production. PMID:15901714

  4. Draft Genome Sequence of Pseudomonas sp. Strain JMM, a Sediment-Hosted Environmental Isolate

    PubMed Central

    Grewal, Simmi; Vakhlu, Jyoti; Gupta, Vipin; Sangwan, Naseer; Kohli, Puneet; Nayyar, Namita; Rani, Pooja; Sance, Shivani Singh

    2014-01-01

    Pseudomonas sp. strain JMM was isolated from the sediments of a natural water reservoir (pH, 6 to 7) located at Chambyal village in Samba district of Jammu and Kashmir, India. Here we report the annotated draft genome sequence of strain JMM having 52 contigs with 5,884 genes and an average G+C content of 66.5%. PMID:25189587

  5. Molecular Detection of Legionella spp. and their associations with Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in a drinking water distribution system

    EPA Pesticide Factsheets

    Quantity of Legionella spp., Mycobacterium spp., Acanthamoeba,Vermamoeba vermiformis and Pseudomonas aeruginosa were estimated using qPCR methods.This dataset is associated with the following publication:Lu , J., I. Struewing, E. Vereen, A.E. Kirby, K. Levy, C. Moe, and N. Ashbolt. Molecular detection of Legionella spp. and their associations with Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in a drinking water distribution system (Journal Article). JOURNAL OF APPLIED MICROBIOLOGY. Blackwell Publishing, Malden, MA, USA, 120(2): 509-521, (2016).

  6. Pseudomonas pseudomallei infection from drowning: the first reported case in Taiwan.

    PubMed Central

    Lee, N; Wu, J L; Lee, C H; Tsai, W C

    1985-01-01

    We report a case of Pseudomonas pseudomallei infection, in which the patient acquired the bacteria by aspiration of river water after a drowning incident near Manila, the Philippines. The pulmonary form of melioidosis was noted at the onset, but septicemia developed at a later stage. Positive blood cultures were obtained 17 days after the accident. The patient was treated successfully with a combination of amikacin and cephalothin. This is the first report of P. pseudomallei infection documented in Taiwan. Images PMID:4044794

  7. Degradation of 2-chloroallylalcohol by a Pseudomonas sp.

    PubMed Central

    van der Waarde, J J; Kok, R; Janssen, D B

    1993-01-01

    Three Pseudomonas strains capable of utilizing 2-chloroallylalcohol (2-chloropropenol) as the sole carbon source for growth were isolated from soil. The fastest growth was observed with strain JD2, with a generation time of 3.6 h. Degradation of 2-chloroallylalcohol was accompanied by complete dehalogenation. Chloroallylalcohols that did not support growth were dechlorinated by resting cells; the dechlorination level was highest if an alpha-chlorine substituent was present. Crude extracts of strain JD2 contained inducible alcohol dehydrogenase activity that oxidized mono- and dichloroallylalcohols but not trichloroallylalcohol. The enzyme used phenazine methosulfate as an artificial electron acceptor. Further oxidation yielded 2-chloroacrylic acid. The organism also produced hydrolytic dehalogenases converting 2-chloroacetic acid and 2-chloropropionic acid. PMID:8434917

  8. Irrigation differentially impacts populations of indigenous antibiotic-producing Pseudomonas spp. in the rhizosphere of wheat

    USDA-ARS?s Scientific Manuscript database

    This work determined the impact of irrigation on the seasonal dynamics of populations of Pseudomonas spp. producing the antibiotics phenazine-1-carboxylic acid (Phz+) and 2,4-diacetylphloroglucinol (Phl+) in the rhizosphere of wheat grown in the low precipitation zone (150 to 300 mm annually) of the...

  9. Phloroglucinol functions as an intracellular and intercellular chemical messenger influencing gene expression in Pseudomonas protegens

    USDA-ARS?s Scientific Manuscript database

    Bacteria can be both highly communicative and highly competitive in natural habitats and antibiotics are thought to play a role in both of these processes. The soil bacterium Pseudomonas protegens Pf-5 produces a spectrum of antibiotics, two of which, pyoluteorin and 2,4-diacetylphloroglucinol (DAP...

  10. Structure and interaction with phospholipids of a prokaryotic lipoxygenase from Pseudomonas aeruginosa

    PubMed Central

    Garreta, Albert; Val-Moraes, Silvana P.; García-Fernández, Queralt; Busquets, Montserrat; Juan, Carlos; Oliver, Antonio; Ortiz, Antonio; Gaffney, Betty J.; Fita, Ignacio; Manresa, Àngels; Carpena, Xavi

    2013-01-01

    Lipoxygenases (LOXs), which are essential in eukaryotes, have no confirmed function in prokaryotes that are devoid of polyunsaturated fatty acids. The structure of a secretable LOX from Pseudomonas aeruginosa (Pa_LOX), the first available from a prokaryote, presents significant differences with respect to eukaryotic LOXs, including a cluster of helices acting as a lid to the active center. The mobility of the lid and the structural variability of the N-terminal region of Pa_LOX was confirmed by comparing 2 crystal forms. The binding pocket contains a phosphatidylethanolamine phospholipid with branches of 18 (sn-1) and 14/16 (sn-2) carbon atoms in length. Carbon atoms from the sn-1 chain approach the catalytic iron in a manner that sheds light on how the enzymatic reaction might proceed. The findings in these studies suggest that Pa_LOX has the capacity to extract and modify unsaturated phospholipids from eukaryotic membranes, allowing this LOX to play a role in the interaction of P. aeruginosa with host cells.—Garreta, A., Val-Moraes, S. P., García-Fernández, Q., Montserrat Busquets, C. J., Oliver, A., Ortiz, A., Gaffney, B. J., Fita, I., Manresa, A., Carpena, X. Structure and interaction with phospholipids of a prokaryotic lipoxygenase from Pseudomonas aeruginosa. PMID:23985801

  11. Lectin-Like Bacteriocins from Pseudomonas spp. Utilise D-Rhamnose Containing Lipopolysaccharide as a Cellular Receptor

    PubMed Central

    Josts, Inokentijs; Roszak, Aleksander W.; Waløen, Kai I.; Cogdell, Richard J.; Milner, Joel; Evans, Tom; Kelly, Sharon; Tucker, Nicholas P.; Byron, Olwyn; Smith, Brian; Walker, Daniel

    2014-01-01

    Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins. PMID:24516380

  12. Swietenia macrophylla extract promotes the ability of Caenorhabditis elegans to survive Pseudomonas aeruginosa infection.

    PubMed

    Dharmalingam, Komalavali; Tan, Boon-Khai; Mahmud, Muhd Zulkarnain; Sedek, Saiedatul Akmal Mohamed; Majid, Mohamed Isa Abdul; Kuah, Meng-Kiat; Sulaiman, Shaida Fariza; Ooi, Kheng Leong; Khan, Nurzalina Abdul Karim; Muhammad, Tengku Sifzizul Tengku; Tan, Man-Wah; Shu-Chien, Alexander Chong

    2012-01-31

    Swietenia macrophylla or commonly known as big leaf mahogany, has been traditionally used as an antibacterial and antifungal agent. The unwanted problem of antibiotic resistance in many bacterial species advocates the need for the discovery of the new anti-infective drugs. Here, we investigated the anti-infective properties of Swietenia macrophylla with an assay involving lethal infection of Caenorhabditis elegans with the opportunistic human pathogen Pseudomonas aeruginosa. Using a slow killing assay, Caenorhabditis elegans was challenged with an infective strain of Pseudomonas aeruginosa (PA14). The ability of Swietenia macrophylla seed ethyl acetate extract to promote the survival of infected worms was assessed by comparing the percentage of survival between extract treated and non-treated worm populations. The effect of Swietenia macrophylla towards PA14 growth, Caenorhabditis elegans feeding rate and degree of PA14 colonization in the worm gut was also evaluated. Lastly, using a fluorescent transgenic Caenorhabditis elegans strain and real time PCR, the effect of Swietenia macrophylla on the expression of lys-7, an immune response gene was also investigated. Our results demonstrate the ability of Swietenia macrophylla seed ethyl acetate extract in rescuing Caenorhabditis elegans from fatal PA14 infection. Consequently, we showed that the extract promotes the survival without exhibiting any bactericidal effect or perturbation of Caenorhabditis elegans feeding rate. We also showed that Swietenia macrophylla was able to restore the initially repressed lys-7 level in PA14 infected Caenorhabditis elegans. Swietenia macrophylla extract is able to enhance the ability of Caenorhabditis elegans to survive PA14 infection without directly killing the pathogen. We further showed that the extract boosted the expression of a gene pivotal for innate immunity in Caenorhabditis elegans. Collectively, these findings strongly suggest the presence of compounds within Swietenia

  13. Efficacy, tolerance, and pharmacokinetics of once daily tobramycin for pseudomonas exacerbations in cystic fibrosis.

    PubMed

    Vic, P; Ategbo, S; Turck, D; Husson, M O; Launay, V; Loeuille, G A; Sardet, A; Deschildre, A; Druon, D; Arrouet-Lagande, C

    1998-06-01

    To compare once daily with thrice daily tobramycin for treatment of Pseudomonas aeruginosa infection in patients with cystic fibrosis. 22 patients with cystic fibrosis, mean (SD) age 11 (3.4) years (range 5.6-19.3), with pulmonary pseudomonas exacerbations were randomly assigned to receive a 14 day course of tobramycin (15 mg/kg/day) either in three infusions (group A) (n = 10) or a single daily infusion (group B) (n = 12), combined with ceftazidime (200 mg/kg/day as three intravenous injections). Efficacy was assessed by comparison of pulmonary, nutritional, and inflammatory indices on days 1 and 14. Cochlear and renal tolerance were assessed on days 1 and 14. Tobramycin concentration was measured in serum and sputum 1, 2, 3, 4, 8, and 24 hours after the start of the infusion. Analysis was by non-parametric Wilcoxon test. Variables improving (p < 0.05) in both groups A and B were, respectively: weight/height (+4% and +3.1%), plasma prealbumin (+66 and +63 mg/l), forced vital capacity (FVC) (+14% and +11%), forced expiratory volume in one second (+15% and +14%), and forced expiratory flow between 25% and 75% of FVC (+13% and +21%). Improvement was not significantly different between groups. Renal and cochlear indices remained within the normal range. Serum peak concentration of tobramycin on day 1 was 13.2 (7.1) mg/l in group A and 42.5 (11.2) mg/l in group B (p < 0.001); serum trough was 1.1 (0.8) mg/l in group A and 0.3 (0.2) mg/l in group B (p < 0.01). Tobramycin concentrations in sputum were two to three times higher in group B than group A. Once daily tobramycin combined with three injections of ceftazidime is safe and effective for the treatment of pseudomonas exacerbations in cystic fibrosis patients.

  14. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere

    PubMed Central

    Li, Hai-Bi; Singh, Rajesh K.; Singh, Pratiksha; Song, Qi-Qi; Xing, Yong-Xiu; Yang, Li-Tao; Li, Yang-Rui

    2017-01-01

    The study was designed to isolate and characterize Pseudomonas spp. from sugarcane rhizosphere, and to evaluate their plant- growth- promoting (PGP) traits and nitrogenase activity. A biological nitrogen-fixing microbe has great potential to replace chemical fertilizers and be used as a targeted biofertilizer in a plant. A total of 100 isolates from sugarcane rhizosphere, belonging to different species, were isolated; from these, 30 isolates were selected on the basis of preliminary screening, for in vitro antagonistic activities against sugarcane pathogens and for various PGP traits, as well as nitrogenase activity. The production of IAA varied from 312.07 to 13.12 μg mL−1 in tryptophan supplemented medium, with higher production in AN15 and lower in CN20 strain. The estimation of ACC deaminase activity, strains CY4 and BA2 produced maximum and minimum activity of 77.0 and 15.13 μmoL mg−1 h−1. For nitrogenase activity among the studied strains, CoA6 fixed higher and AY1 fixed lower in amounts (108.30 and 6.16 μmoL C2H2 h−1 mL−1). All the strains were identified on the basis of 16S rRNA gene sequencing, and the phylogenetic diversity of the strains was analyzed. The results identified all strains as being similar to Pseudomonas spp. Polymerase chain reaction (PCR) amplification of nifH and antibiotic genes was suggestive that the amplified strains had the capability to fix nitrogen and possessed biocontrol activities. Genotypic comparisons of the strains were determined by BOX, ERIC, and REP PCR profile analysis. Out of all the screened isolates, CY4 (Pseudomonas koreensis) and CN11 (Pseudomonas entomophila) showed the most prominent PGP traits, as well as nitrogenase activity. Therefore, only these two strains were selected for further studies; Biolog profiling; colonization through green fluorescent protein (GFP)-tagged bacteria; and nifH gene expression using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The Biolog phenotypic

  15. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere.

    PubMed

    Li, Hai-Bi; Singh, Rajesh K; Singh, Pratiksha; Song, Qi-Qi; Xing, Yong-Xiu; Yang, Li-Tao; Li, Yang-Rui

    2017-01-01

    The study was designed to isolate and characterize Pseudomonas spp. from sugarcane rhizosphere, and to evaluate their plant- growth- promoting (PGP) traits and nitrogenase activity. A biological nitrogen-fixing microbe has great potential to replace chemical fertilizers and be used as a targeted biofertilizer in a plant. A total of 100 isolates from sugarcane rhizosphere, belonging to different species, were isolated; from these, 30 isolates were selected on the basis of preliminary screening, for in vitro antagonistic activities against sugarcane pathogens and for various PGP traits, as well as nitrogenase activity. The production of IAA varied from 312.07 to 13.12 μg mL -1 in tryptophan supplemented medium, with higher production in AN15 and lower in CN20 strain. The estimation of ACC deaminase activity, strains CY4 and BA2 produced maximum and minimum activity of 77.0 and 15.13 μmoL mg -1 h -1 . For nitrogenase activity among the studied strains, CoA6 fixed higher and AY1 fixed lower in amounts (108.30 and 6.16 μmoL C 2 H 2 h -1 mL -1 ). All the strains were identified on the basis of 16S rRNA gene sequencing, and the phylogenetic diversity of the strains was analyzed. The results identified all strains as being similar to Pseudomonas spp. Polymerase chain reaction (PCR) amplification of nifH and antibiotic genes was suggestive that the amplified strains had the capability to fix nitrogen and possessed biocontrol activities. Genotypic comparisons of the strains were determined by BOX, ERIC, and REP PCR profile analysis. Out of all the screened isolates, CY4 ( Pseudomonas koreensis ) and CN11 ( Pseudomonas entomophila ) showed the most prominent PGP traits, as well as nitrogenase activity. Therefore, only these two strains were selected for further studies; Biolog profiling; colonization through green fluorescent protein (GFP)-tagged bacteria; and nifH gene expression using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The Biolog

  16. Acidosis increases the susceptibility of respiratory epithelial cells to Pseudomonas aeruginosa-induced cytotoxicity.

    PubMed

    Torres, Iviana M; Demirdjian, Sally; Vargas, Jennifer; Goodale, Britton C; Berwin, Brent

    2017-07-01

    Bacterial infection can lead to acidosis of the local microenvironment, which is believed to exacerbate disease pathogenesis; however, the mechanisms by which changes in pH alter disease progression are poorly understood. We test the hypothesis that acidosis enhances respiratory epithelial cell death in response to infection with Pseudomonas aeruginosa Our findings support the idea that acidosis in the context of P. aeruginosa infection results in increased epithelial cell cytotoxicity due to ExoU intoxication. Importantly, enforced maintenance of neutral pH during P. aeruginosa infection demonstrates that cytotoxicity is dependent on the acidosis. Investigation of the underlying mechanisms revealed that host cell cytotoxicity correlated with increased bacterial survival during an acidic infection that was due to reduced bactericidal activity of host-derived antimicrobial peptides. These findings extend previous reports that the activities of antimicrobial peptides are pH-dependent and provide novel insights into the consequences of acidosis on infection-derived pathology. Therefore, this report provides the first evidence that physiological levels of acidosis increase the susceptibility of epithelial cells to acute Pseudomonas infection and demonstrates the benefit of maintaining pH homeostasis during a bacterial infection. Copyright © 2017 the American Physiological Society.

  17. Evidence for the involvement of the anthranilate degradation pathway in Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Costaglioli, Patricia; Barthe, Christophe; Claverol, Stephane; Brözel, Volker S; Perrot, Michel; Crouzet, Marc; Bonneu, Marc; Garbay, Bertrand; Vilain, Sebastien

    2012-01-01

    Bacterial biofilms are complex cell communities found attached to surfaces and surrounded by an extracellular matrix composed of exopolysaccharides, DNA, and proteins. We investigated the whole-genome expression profile of Pseudomonas aeruginosa sessile cells (SCs) present in biofilms developed on a glass wool substratum. The transcriptome and proteome of SCs were compared with those of planktonic cell cultures. Principal component analysis revealed a biofilm-specific gene expression profile. Our study highlighted the overexpression of genes controlling the anthranilate degradation pathway in the SCs grown on glass wool for 24 h. In this condition, the metabolic pathway that uses anthranilate for Pseudomonas quinolone signal production was not activated, which suggested that anthranilate was primarily being consumed for energy metabolism. Transposon mutants defective for anthranilate degradation were analyzed in a simple assay of biofilm formation. The phenotypic analyses confirmed that P. aeruginosa biofilm formation partially depended on the activity of the anthranilate degradation pathway. This work points to a new feature concerning anthranilate metabolism in P. aeruginosa SCs. PMID:23170231

  18. Kinetics of substrate utilization and bacterial growth of crude oil degraded by Pseudomonas aeruginosa.

    PubMed

    Talaiekhozani, Amirreza; Jafarzadeh, Nematollah; Fulazzaky, Mohamad Ali; Talaie, Mohammad Reza; Beheshti, Masoud

    2015-01-01

    Pollution associated with crude oil (CO) extraction degrades the quality of waters, threatens drinking water sources and may ham air quality. The systems biology approach aims at learning the kinetics of substrate utilization and bacterial growth for a biological process for which very limited knowledge is available. This study uses the Pseudomonas aeruginosa to degrade CO and determines the kinetic parameters of substrate utilization and bacterial growth modeled from a completely mixed batch reactor. The ability of Pseudomonas aeruginosa can remove 91 % of the total petroleum hydrocarbons and 83 % of the aromatic compounds from oily environment. The value k of 9.31 g of substrate g(-1) of microorganism d(-1) could be far higher than the value k obtained for petrochemical wastewater treatment and that for municipal wastewater treatment. The production of new cells of using CO as the sole carbon and energy source can exceed 2(3) of the existing cells per day. The kinetic parameters are verified to contribute to improving the biological removal of CO from oily environment.

  19. A Lung Segmental Model of Chronic Pseudomonas Infection in Sheep

    PubMed Central

    Collie, David; Govan, John; Wright, Steven; Thornton, Elisabeth; Tennant, Peter; Smith, Sionagh; Doherty, Catherine; McLachlan, Gerry

    2013-01-01

    Background Chronic lung infection with Pseudomonas aeruginosa is a major contributor to morbidity, mortality and premature death in cystic fibrosis. A new paradigm for managing such infections is needed, as are relevant and translatable animal models to identify and test concepts. We sought to improve on limitations associated with existing models of infection in small animals through developing a lung segmental model of chronic Pseudomonas infection in sheep. Methodology/Principal Findings Using local lung instillation of P. aeruginosa suspended in agar beads we were able to demonstrate that such infection led to the development of a suppurative, necrotising and pyogranulomatous pneumonia centred on the instilled beads. No overt evidence of organ or systemic compromise was apparent in any animal during the course of infection. Infection persisted in the lungs of individual animals for as long as 66 days after initial instillation. Quantitative microbiology applied to bronchoalveolar lavage fluid derived from infected segments proved an insensitive index of the presence of significant infection in lung tissue (>104 cfu/g). Conclusions/Significance The agar bead model of chronic P. aeruginosa lung infection in sheep is a relevant platform to investigate both the pathobiology of such infections as well as novel approaches to their diagnosis and therapy. Particular ethical benefits relate to the model in terms of refining existing approaches by compromising a smaller proportion of the lung with infection and facilitating longitudinal assessment by bronchoscopy, and also potentially reducing animal numbers through facilitating within-animal comparisons of differential therapeutic approaches. PMID:23874438

  20. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes.

    PubMed

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti- Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa . Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu , primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.

  1. Evaluation of an antibiotic producing strain of Pseudomonas flourescens for suppression of plant-parasitic nematodes

    USDA-ARS?s Scientific Manuscript database

    The antibiotic 2,4-diacetylphloroglucinol (DAPG), produced by some strains of Pseudomonas spp., is involved in suppression of several fungal root pathogens as well as plant-parasitic nematodes. The primary objective of this study was to determine whether Wood1R, a D-genotype strain of DAPG-producin...

  2. Recent Insights into the Diversity, Frequency and Ecological Roles of Phenazines in Fluorescent Pseudomonas spp.

    USDA-ARS?s Scientific Manuscript database

    Phenazine compounds represent a large class of bacterial metabolites that are produced by some fluorescent Pseudomonas spp. and a few other bacterial genera. Phenazines were first noted in the scientific literature over 100 years ago, but for a long time were considered to be pigments of uncertain f...

  3. Correlation of the NBME advanced clinical examination in EM and the national EM M4 exams.

    PubMed

    Hiller, Katherine; Miller, Emily S; Lawson, Luan; Wald, David; Beeson, Michael; Heitz, Corey; Morrissey, Thomas; House, Joseph; Poznanski, Stacey

    2015-01-01

    Since 2011 two online, validated exams for fourth-year emergency medicine (EM) students have been available (National EM M4 Exams). In 2013 the National Board of Medical Examiners offered the Advanced Clinical Examination in Emergency Medicine (EM-ACE). All of these exams are now in widespread use; however, there are no data on how they correlate. This study evaluated the correlation between the EM-ACE exam and the National EM M4 Exams. From May 2013 to April 2014 the EM-ACE and one version of the EM M4 exam were administered sequentially to fourth-year EM students at five U.S. medical schools. Data collected included institution, gross and scaled scores and version of the EM M4 exam. We performed Pearson's correlation and random effects linear regression. 305 students took the EM-ACE and versions 1 (V1) or 2 (V2) of the EM M4 exams (281 and 24, respectively) [corrected].The mean percent correct for the exams were as follows: EM-ACE 74.9 (SD-9.82), V1 83.0 (SD-6.39), V2 78.5 (SD-7.70) [corrected]. Pearson's correlation coefficient for the V1/EM-ACE was 0.53 (0.43 scaled) and for the V2/EM-ACE was 0.58 (0.41 scaled) [corrected]. The coefficient of determination for V1/ EM-ACE was 0.73 and for V2/EM-ACE 0.71 (0.65 and .49 for scaled scores) [ERRATUM]. The R-squared values were 0.28 and 0.30 (0.18 and 0.13 scaled), respectively [corrected]. There was significant cluster effect by institution. There was moderate positive correlation of student scores on the EM-ACE exam and the National EM M4 Exams.

  4. A Case of Congenital Folliculitis Caused by Pseudomonas aeruginosa in a Preterm Neonate.

    PubMed

    Matsui, Koichiro; Okazaki, Kaoru; Horikoshi, Yuho; Kakinuma, Ryota; Kondo, Masatoshi

    2017-07-24

    Intrauterine infections are associated with life-threatening neonatal conditions such as sepsis, intracranial hemorrhage, and chronic lung disease. Herein we present a case of generalized congenital folliculitis caused by Pseudomonas aeruginosa in a preterm neonate of 27 weeks gestational age successfully treated with antibiotics. Folliculitis is an important manifestation of intrauterine P. aeruginosa infection, and prompt, effective treatment is crucial to ensuring a good prognosis.

  5. [Prevalence of metallo-beta-lactamase in carbapenem resistant Pseudomonas aeruginosa at a university hospital of Buenos Aires City].

    PubMed

    Pagniez, G; Radice, M; Cuirolo, A; Rodríguez, O; Rodríguez, H; Vay, C; Famiglietti, A; Gutkind, G

    2006-01-01

    The present study was conducted to estimate the prevalence of metallo-beta-lactamases in 91 consecutive carbapenem resistant Pseudomonas aeruginosa isolates, recovered from inpatients at Hospital de Clínicas in Buenos Aires. Both, phenotypic and genotypic methods detected the presence of carbapenemases in 10 (11%) isolates, corresponding to VIM-11 in 7/10 and VIM-2 in the others. Codifying genes were all included in class 1 integrons, upstream genes coding for aminoglycoside modifying enzymes. One hundred percent sensitivity and specificity was achieved by the metallo-beta-lactamases phenotypic screening method using EDTA (1 micromol) disks in the Pseudomonas aeruginosa isolates included in this study. Sensitivity to aztreonam in carbapenem resistant isolates was suspicious of the presence of these enzymes.

  6. Phenol-Rich Compounds Sweet Gel: A Statistically More Effective Antibiotic than Cloxacillin Against Pseudomonas Aeruginosa.

    PubMed

    Dashtdar, Mehrab; Dashtdar, Mohammad Reza; Dashtdar, Babak; Khan, Gazala Afreen; Kardi, Karima

    2016-09-01

    The purpose of this study was to obtain a natural antibiotic from Phenol-rich compounds; for the dressing and the treatment of chronic wounds. The Phenol-rich compound sweet gel was prepared by blending four natural herbal extracts, Acacia catechu (L.F.), Momia ( Shilajit ), Castanea sativa , and Ephedra sinica stapf , with combination of a sweet gel medium, including honey, maple saps, Phoenix dactylifera L . (date), pomegranate extract and Azadirachta indica gum as a stabilizer. The combinations were screened by using a well-diffusion assay with cloxacillin as a control. Pseudomonas spp. was tested with our novel antimicrobial compound. The zones of inhibition in agar culture were measured for each individual component and for the compound, and the results were compared with those of the control group which had been treated with cloxacillin. Data were expressed as means ± standard deviations. Quantitative analyses were performed using the paired t -test. The antibiotic effect of the Phenol-rich compound sweet gel was statistically shown to be more significant than that of cloxacillin against Pseudomonas aeruginosa ( P < 0.05). Our novel approach to fighting the antibiotic resistance of Pseudomonas proved to be successful. The Phenol-rich compound sweet gel was found to be suitable for use as an alternative medicine and bioactive dressing material, for the treatment of patients with various types of wounds, including burns, venous leg ulcers, ulcers of various etiologies, leg ulcers on the feet of diabetic, unhealed graft sampling sites, abscesses, boils, surgical wounds, necrotic process, post-operative and neonatal wound infection, and should be considered as an alternative to the usual methods of cure.

  7. Phenol-Rich Compounds Sweet Gel: A Statistically More Effective Antibiotic than Cloxacillin Against Pseudomonas Aeruginosa

    PubMed Central

    Dashtdar, Mehrab; Dashtdar, Mohammad Reza; Dashtdar, Babak; Khan, Gazala Afreen; Kardi, Karima

    2016-01-01

    Objectives: The purpose of this study was to obtain a natural antibiotic from Phenol-rich compounds; for the dressing and the treatment of chronic wounds. Methods: The Phenol-rich compound sweet gel was prepared by blending four natural herbal extracts, Acacia catechu (L.F.), Momia (Shilajit), Castanea sativa, and Ephedra sinica stapf, with combination of a sweet gel medium, including honey, maple saps, Phoenix dactylifera L. (date), pomegranate extract and Azadirachta indica gum as a stabilizer. The combinations were screened by using a well-diffusion assay with cloxacillin as a control. Pseudomonas spp. was tested with our novel antimicrobial compound. The zones of inhibition in agar culture were measured for each individual component and for the compound, and the results were compared with those of the control group which had been treated with cloxacillin. Data were expressed as means ± standard deviations. Quantitative analyses were performed using the paired t-test. Results: The antibiotic effect of the Phenol-rich compound sweet gel was statistically shown to be more significant than that of cloxacillin against Pseudomonas aeruginosa (P < 0.05). Conclusion: Our novel approach to fighting the antibiotic resistance of Pseudomonas proved to be successful. The Phenol-rich compound sweet gel was found to be suitable for use as an alternative medicine and bioactive dressing material, for the treatment of patients with various types of wounds, including burns, venous leg ulcers, ulcers of various etiologies, leg ulcers on the feet of diabetic, unhealed graft sampling sites, abscesses, boils, surgical wounds, necrotic process, post-operative and neonatal wound infection, and should be considered as an alternative to the usual methods of cure. PMID:27695634

  8. Assessment of DAPG-producing Pseudomonas fluorescens for management of Meloidogyne incognita and Fusarium oxysporum on watermelon

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens isolates Clinto 1R, Wayne 1R and Wood 1R, which produce the antibiotic 2,4-diacetylphloroglucinol (DAPG), can suppress soilborne diseases and promote plant growth. Consequently, these beneficial bacterial isolates were tested on watermelon plants for suppression of Meloidogy...

  9. Factors impacting the activity of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens against take-all of wheat

    USDA-ARS?s Scientific Manuscript database

    Take-all, caused by Gaeumannomyces graminis var. tritici, is an important soilborne disease of wheat worldwide. Pseudomonas fluorescens producing the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are biocontrol agents of take-all and provide natural suppression of the disease during wheat monocul...

  10. Reconstruction of a Nearly Complete Pseudomonas Draft Genome Sequence from a Coalbed Methane-Produced Water Metagenome

    DOE PAGES

    Ross, Daniel E.; Gulliver, Djuna

    2016-10-06

    The draft genome sequence ofPseudomonas stutzeristrain K35 was separated from a metagenome derived from a produced water microbial community of a coalbed methane well. The genome encodes a complete nitrogen fixation pathway and the upper and lower naphthalene degradation pathways.

  11. Reconstruction of a Nearly Complete Pseudomonas Draft Genome Sequence from a Coalbed Methane-Produced Water Metagenome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Daniel E.; Gulliver, Djuna

    The draft genome sequence ofPseudomonas stutzeristrain K35 was separated from a metagenome derived from a produced water microbial community of a coalbed methane well. The genome encodes a complete nitrogen fixation pathway and the upper and lower naphthalene degradation pathways.

  12. Complete Genome Sequence of the Naphthalene-Degrading Bacterium Pseudomonas stutzeri AN10 (CCUG 29243)

    PubMed Central

    Brunet-Galmés, Isabel; Busquets, Antonio; Peña, Arantxa; Gomila, Margarita; Nogales, Balbina; García-Valdés, Elena; Lalucat, Jorge; Bennasar, Antonio

    2012-01-01

    Pseudomonas stutzeri AN10 (CCUG 29243) can be considered a model strain for aerobic naphthalene degradation. We report the complete genome sequence of this bacterium. Its 4.71-Mb chromosome provides insights into other biodegradative capabilities of strain AN10 (i.e., benzoate catabolism) and suggests a high number of horizontal gene transfer events. PMID:23144395

  13. Evidence for a role of biosurfactants produced by Pseudomonas fluorescens in the spoilage of fresh aerobically stored chicken meat.

    PubMed

    Mellor, Glen E; Bentley, Jessica A; Dykes, Gary A

    2011-08-01

    Fresh chicken meat is a fat-rich environment and we therefore hypothesised that production of biosurfactants to increase bioavailability of fats may represent one way in which spoilage bacteria might enhance the availability of nutrients. Numbers of Pseudomonas were determined on a total of 20 fresh and 20 spoiled chicken thighs with skin. A total of 400 randomly isolated Pseudomonas colonies from fresh (200) and spoiled (200) chicken were screened for the presence of biosurfactant production. Biosurfactant producing strains represented 5% and 72% of the Pseudomonas spp. isolates from fresh (mean count 2.3 log(10) cfu g(-1)) and spoiled (mean count 7.4 log(10) cfu g(-1)) chicken skin, respectively. Partially-purified biosurfactants derived from a subgroup of four Pseudomonasfluorescens strains obtained through the screening process were subsequently used to investigate the role that the addition of these compounds plays in the spoilage of aerobically stored chicken. Emulsification potential of the four selected biosurfactants was measured against a range of hydrocarbons and oils. All four biosurfactants displayed a greater ability to emulsify rendered chicken fat than hydrocarbons (paraffin liquid, toluene and hexane) and oils (canola, olive, sunflower and vegetable). Storage trials (4 °C) of chicken meat treated with the four selected biosurfactants revealed a significantly greater (P < 0.05) total aerobic count in biosurfactant treated samples, as compared to untreated samples on each day (0, 1, 2, 3) of storage. For biosurfactant treated samples the greatest increase in total aerobic count (1.3-1.7 log(10) cfu g(-1)) occurred following one day of incubation. These results indicate that biosurfactants produced by Pseudomonas spp. may play an important role in the spoilage of aerobically stored chicken meat by making nutrients more freely available and providing strains producing them with a competitive advantage. Copyright © 2011 Elsevier Ltd. All rights

  14. AtMIN7 mediated disease resistance to Pseudomonas syringae in Arabidopsis

    DOEpatents

    He, Sheng Yang [Okemos, MI; Nomura, Kinya [East Lansing, MI

    2011-07-26

    The present invention relates to compositions and methods for enhancing plant defenses against pathogens. More particularly, the invention relates to enhancing plant immunity against bacterial pathogens, wherein AtMIN7 mediated protection is enhanced and/or there is a decrease in activity of an AtMIN7 associated virulence protein such as a Pseudomonas syringae pv. tomato DC3000 HopM1. Reagents of the present invention provide a means of studying cellular trafficking while formulations of the present inventions provide increased pathogen resistance in plants.

  15. Nanoindentation of Pseudomonas aeruginosa bacterial biofilm using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Baniasadi, Mahmoud; Xu, Zhe; Gandee, Leah; Du, Yingjie; Lu, Hongbing; Zimmern, Philippe; Minary-Jolandan, Majid

    2014-12-01

    Bacterial biofilms are a source of many chronic infections. Biofilms and their inherent resistance to antibiotics are attributable to a range of health issues including affecting prosthetic implants, hospital-acquired infections, and wound infection. Mechanical properties of biofilm, in particular, at micro- and nano-scales, are governed by microstructures and porosity of the biofilm, which in turn may contribute to their inherent antibiotic resistance. We utilize atomic force microscopy (AFM)-based nanoindentation and finite element simulation to investigate the nanoscale mechanical properties of Pseudomonas aeruginosa bacterial biofilm. This biofilm was derived from human samples and represents a medically relevant model.

  16. Two small RNAs, CrcY and CrcZ, act in concert to sequester the Crc global regulator in Pseudomonas putida, modulating catabolite repression.

    PubMed

    Moreno, Renata; Fonseca, Pilar; Rojo, Fernando

    2012-01-01

    The Crc protein is a translational repressor that recognizes a specific target at some mRNAs, controlling catabolite repression and co-ordinating carbon metabolism in pseudomonads. In Pseudomonas aeruginosa, the levels of free Crc protein are controlled by CrcZ, a sRNA that sequesters Crc, acting as an antagonist. We show that, in Pseudomonas putida, the levels of free Crc are controlled by CrcZ and by a novel 368 nt sRNA named CrcY. CrcZ and CrcY, which contain six potential targets for Crc, were able to bind Crc specifically in vitro. The levels of CrcZ and CrcY were low under conditions generating a strong catabolite repression, and increased strongly when catabolite repression was absent. Deletion of either crcZ or crcY had no effect on catabolite repression, but the simultaneous absence of both sRNAs led to constitutive catabolite repression that compromised growth on some carbon sources. Overproduction of CrcZ or CrcY significantly reduced repression. We propose that CrcZ and CrcY act in concert, sequestering and modulating the levels of free Crc according to metabolic conditions. The CbrA/CbrB two-component system activated crcZ transcription, but had little effect on crcY. CrcY was detected in P. putida, Pseudomonas fluorescens and Pseudomonas syringae, but not in P. aeruginosa. © 2011 Blackwell Publishing Ltd.

  17. Comparative Immunological Studies of Two Pseudomonas Enzymes

    PubMed Central

    Stanier, R. Y.; Wachter, D.; Gasser, Charlotte; Wilson, A. C.

    1970-01-01

    Crystalline preparations of muconate lactonizing enzyme and muconolactone isomerase, two inducible enzymes that catalyze successive steps in the catechol branch of the β-ketoadipate pathway, were used to prepare antisera. Both enzymes were isolated from a strain of Pseudomonas putida biotype A. The antisera did not cross-react with enzymes of the same bacterial strain that catalyze the chemically analogous steps in the protocatechuate branch of the β-ketoadipate pathway, carboxymuconate lactonizing enzyme and carboxymuconolactone decarboxylase. The antisera gave heterologous cross-reactions of varying intensities with the muconate lactonizing enzymes and muconolactone isomerases of P. putida biotype B, P. aeruginosa, P. stutzeri, and all biotypes of P. fluorescens, but did not cross-react with the isofunctional enzymes of P. acidovorans, of P. multivorans, and of two bacterial species that belong to other genera. The evolutionary and taxonomic implications of the findings are discussed. Images PMID:4986759

  18. Antibacterial effects of afzelin isolated from Cornus macrophylla on Pseudomonas aeruginosa, a leading cause of illness in immunocompromised individuals.

    PubMed

    Lee, Sang Yeol; So, Young-Jin; Shin, Moon Sam; Cho, Jae Youl; Lee, Jongsung

    2014-03-17

    The crude ethyl acetate extract of the leaves of Cornus macrophylla showed antibacterial activity against Pseudomonas aeruginosa, a leading cause of illness in immunocompromised individuals. Bioactivity-guided separation led to the isolation of kaempferol 3-O-α-L-rhamnopyranoside (afzelin). The structure was determined based on evaluation of its spectroscopic (UV, MS, and NMR) data. The minimum inhibitory concentration (MIC) of afzelin against Pseudomonas aeruginosa was found to be 31 µg/mL. In addition, the results indicated that a hydroxyl group at C3 of the C-ring of the flavone skeleton and the rhamnose group may act as a negative factor and an enhancing factor, respectively, in the antibacterial activities of afzelin.

  19. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex

    PubMed Central

    Garrido-Sanz, Daniel; Meier-Kolthoff, Jan P.; Göker, Markus; Martín, Marta; Rivilla, Rafael; Redondo-Nieto, Miguel

    2016-01-01

    The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR) with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH) identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI) approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as PGPR. PMID:26915094

  20. Evaluation of traditional plant extracts for innate immune mechanisms and disease resistance against fish bacterial Aeromonas hydrophila and Pseudomonas sp.

    NASA Astrophysics Data System (ADS)

    Hardi, E. H.; Saptiani, G.; Kusuma, I. W.; Suwinarti, W.; Nugroho, R. A.

    2018-03-01

    The purposes of this study were to evaluate effect of ethanol herbal extracts of Boesenbergia pandurata, Solanum ferox and Zingimber zerumbet on Tilapia (Oreochromis nilaticus) innate immune mechanisms and disease resistance against Aeromonas hydrophila and Pseudomonas sp. Fish were intramuscularly injected with 0.1 mL/fish (1010 CFU mL-1) of each bacterium on the day 6th of post treatment using extract by several methods (injection, oral administration and immersion). The doses of extract were 600 ppm of B. pandurata, 900 ppm S. ferox and 200 ppm of Z. zerumbet. The percentage mortality, Relative Percent Survival (RPS) and innate immune response were assessed on weeks 1, 2, 3 and 4. All the methods were effective to enhance the immune parameters after 2 weeks application and the RPS of treatment reached more than 90 %. The results showed that the injection method of extracts was the most effective method to control A. hydrophila and Pseudomonas sp. The result indicated that all the doses of extracts could be significantly influence the immune response and protect the health status of tilapia against A. hydrophila and Pseudomonas sp. infections.

  1. No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1.

    PubMed

    Garbeva, Paolina; Tyc, Olaf; Remus-Emsermann, Mitja N P; van der Wal, Annemieke; Vos, Michiel; Silby, Mark; de Boer, Wietse

    2011-01-01

    Many soil-inhabiting bacteria are known to produce secondary metabolites that can suppress microorganisms competing for the same resources. The production of antimicrobial compounds is expected to incur fitness costs for the producing bacteria. Such costs form the basis for models on the co-existence of antibiotic-producing and non-antibiotic producing strains. However, so far studies quantifying the costs of antibiotic production by bacteria are scarce. The current study reports on possible costs, for antibiotic production by Pseudomonas fluorescens Pf0-1, a soil bacterium that is induced to produce a broad-spectrum antibiotic when it is confronted with non-related bacterial competitors or supernatants of their cultures. We measured the possible cost of antibiotic production for Pseudomonas fluorescens Pf0-1 by monitoring changes in growth rate with and without induction of antibiotic production by supernatant of a bacterial competitor, namely Pedobacter sp.. Experiments were performed in liquid as well as on semi-solid media under nutrient-limited conditions that are expected to most clearly reveal fitness costs. Our results did not reveal any significant costs for production of antibiotics by Pseudomonas fluorescens Pf0-1. Comparison of growth rates of the antibiotic-producing wild-type cells with those of non-antibiotic producing mutants did not reveal costs of antibiotic production either. Based on our findings we propose that the facultative production of antibiotics might not be selected to mitigate metabolic costs, but instead might be advantageous because it limits the risk of competitors evolving resistance, or even the risk of competitors feeding on the compounds produced.

  2. Draft Genome Sequence of a Pseudomonas aeruginosa NA04 Bacterium Isolated from an Entomopathogenic Nematode.

    PubMed

    Salgado-Morales, Rosalba; Rivera-Gómez, Nancy; Lozano-Aguirre Beltrán, Luis Fernando; Hernández-Mendoza, Armando; Dantán-González, Edgar

    2017-09-07

    We report the draft genome sequence of Gram-negative bacterium Pseudomonas aeruginosa NA04, isolated from the entomopathogenic nematode Heterorhabditis indica MOR03. The draft genome consists of 54 contigs, a length of 6.37 Mb, and a G+C content 66.49%. Copyright © 2017 Salgado-Morales et al.

  3. Multilocus sequence typing of Pseudomonas syringae sensu lato confirms previously described genomospecies and permits rapid identification.

    USDA-ARS?s Scientific Manuscript database

    Since 2002, severe leaf spotting on parsley (Petroselinum crispum L.) has occurred in Monterey County, California. One of two different pathovars of Pseudomonas syringae sensu lato were isolated from diseased leaves from seven distinct outbreaks and twice from the same outbreak (2002 and 2009). Frag...

  4. Phloroglucinol functions as an intercellular chemical messenger with broad transcriptional effects in Pseudomonas protegens Pf-5

    USDA-ARS?s Scientific Manuscript database

    Bacteria can be both highly communicative and highly competitive in the rhizosphere and antibiotics play a role in both of these processes. Among the large spectrum of antibiotics produced by the rhizosphere bacterium Pseudomonas protegens Pf-5, two—pyoluteorin and 2,4-diacetylphloroglucinol (DAPG)...

  5. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...

  6. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...

  7. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...

  8. Management of Bacterial Blight of Lilac Caused by Pseudomonas syringae by Growing Plants under Plastic Shelters

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas syringae pv. syringae causes some of the most economically-important bacterial diseases affecting woody perennials grown by the nursery industry in the Pacific Northwest of the United States. In this study, we evaluated a cultural control practice, placement of plants in plastic shelter...

  9. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...

  10. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...

  11. Isolation of an iron-binding compound from Pseudomonas aeruginosa.

    PubMed Central

    Cox, C D; Graham, R

    1979-01-01

    An iron-binding compound was isolated from ethyl acetate extracts of culture supernatant fluids of Pseudomonas aeruginosa and was purified by successive paper and thin-layer chromatographic procedures. The purified compound was characterized by UV, visible, infrared, and fluorescence spectroscopy. The compound possesses phenolic characteristics, with little or no similarity to dihydroxybenzoates and no indication of a hydroxamate group. P. aeruginosa synthesized the compound during active growth in culture media containing less than 5 X 10(-6) M added FeCl3. When added to iron-poor cultures of P. aeruginosa, the compound promoted the growth of the bacterium and also reversed growth inhibition by the iron chelator ethylenediamine-di-(o-hydroxyphenylacetic acid). PMID:104968

  12. Selective biosorption of lanthanide (La, Eu, Yb) ions by Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Texier, A.C.; Andres, Y.; Cloirec, P. le

    1999-02-01

    The ability of Pseudomonas aeruginosa to adsorb selectively La{sup 3+}, Eu{sup 3+}, and Yb{sup 3+} from aqueous solution was investigated. The lanthanide biosorption equilibrium obeyed the Brunauer-Emmett-Teller isotherm model, indicating multilayer adsorption. Determined levels of maximum adsorption capacities were 397 {micro}mol/g for lanthanum, 290 {micro}mol/g for europium and 326 {micro}mol/g for ytterbium. The results indicated that there were about 100 preferential sites for lanthanum per g of dry biomass. Experiments with mixed-cation solutions showed that the sequence of preferential biosorption was Eu{sup 3+} = Yb{sup 3+} > La{sup 3+}. Biomass dried at 37 and 70 C showed the same selectivemore » behavior as wet biomass. Inert microbial biomass dried at 37 C appeared to be the most efficient form for experimental use. The uptake of lanthanide by P. aeruginosa cells was not affected by the presence of sodium, potassium, calcium, chloride, sulfate and nitrate ions. Aluminum was a strong inhibitor of lanthanide ions biosorption. 87% of the total Al{sup 3+} was removed from the 3 mM solution, whereas only 8%, 20% and 3% of the total La{sup 3+}, Eu{sup 3+}, and Yb{sup 3+}, respectively, were sorbed from 3 mM solutions. The results suggested that cells of Pseudomonas aeruginosa may find promising applications for removal and separation of lanthanide ions from aqueous effluents.« less

  13. Pseudomonas protegens Pf-5 causes discoloration and pitting of mushroom caps due to the production of antifungal metabolites.

    PubMed

    Henkels, Marcella D; Kidarsa, Teresa A; Shaffer, Brenda T; Goebel, Neal C; Burlinson, Peter; Mavrodi, Dmitri V; Bentley, Michael A; Rangel, Lorena I; Davis, Edward W; Thomashow, Linda S; Zabriskie, T Mark; Preston, Gail M; Loper, Joyce E

    2014-07-01

    Bacteria in the diverse Pseudomonas fluorescens group include rhizosphere inhabitants known for their antifungal metabolite production and biological control of plant disease, such as Pseudomonas protegens Pf-5, and mushroom pathogens, such as Pseudomonas tolaasii. Here, we report that strain Pf-5 causes brown, sunken lesions on peeled caps of the button mushroom (Agaricus bisporus) that resemble brown blotch symptoms caused by P. tolaasii. Strain Pf-5 produces six known antifungal metabolites under the control of the GacS/GacA signal transduction system. A gacA mutant produces none of these metabolites and did not cause lesions on mushroom caps. Mutants deficient in the biosynthesis of the antifungal metabolites 2,4-diacetylphloroglucinol and pyoluteorin caused less-severe symptoms than wild-type Pf-5 on peeled mushroom caps, whereas mutants deficient in the production of lipopeptide orfamide A caused similar symptoms to wild-type Pf-5. Purified pyoluteorin and 2,4-diacetylphloroglucinol mimicked the symptoms caused by Pf-5. Both compounds were isolated from mushroom tissue inoculated with Pf-5, providing direct evidence for their in situ production by the bacterium. Although the lipopeptide tolaasin is responsible for brown blotch of mushroom caused by P. tolaasii, P. protegens Pf-5 caused brown blotch-like symptoms on peeled mushroom caps through a lipopeptide-independent mechanism involving the production of 2,4-diacetylphloroglucinol and pyoluteorin.

  14. Interspecific cooperation: enhanced growth, attachment and strain-specific distribution in biofilms through Azospirillum brasilense-Pseudomonas protegens co-cultivation.

    PubMed

    Pagnussat, Luciana A; Salcedo, Florencia; Maroniche, Guillermo; Keel, Christoph; Valverde, Claudio; Creus, Cecilia M

    2016-10-01

    Plant-growth-promoting bacteria belonging to Azospirillum and Pseudomonas genera are major inhabitants of the rhizosphere. Both are increasingly commercialized as crops inoculants. Interspecific interaction in the rhizosphere is critical for inoculants aptness. The objective of this work was to evaluate Azospirillum and Pseudomonas interaction in mixed biofilms by co-cultivation of the model strains Azospirillum brasilense Sp245 and Pseudomonas protegens CHA0. The results revealed enhanced growth of both strains when co-cultured in static conditions. Moreover, Sp245 biofilm formed in plastic surfaces was increased 2-fold in the presence of CHA0. Confocal microscopy revealed highly structured mixed biofilms showing Sp245 mainly on the bottom and CHA0 towards the biofilm surface. In addition, A. brasilense biofilm was thicker and denser when co-cultured with P. protegens. In a colony-colony interaction assay, Sp245 changed nearby CHA0 producing small colony phenotype, which accounts for a diffusible metabolite mediator; though CHA0 spent medium did not affect Sp245 colony phenotype. Altogether, these results point to a cooperative interaction between A. brasilense Sp245 and P. protegens CHA0 in which both strains increase their static growth and produce structured mixed biofilms with a strain-specific distribution. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Electrophoretic analysis of cyanide depletion by Pseudomonas alcaligenes.

    PubMed

    Zaugg, S E; Davidson, R A; Walker, J C; Walker, E B

    1997-02-01

    Bacterial-facilitated depletion of cyanide is under development for remediation of heap leach operations in the gold mining industry. Capillary electrophoresis was found to be a powerful tool for quantifying cyanide depletion. Changes in cyanide concentration in aqueous suspensions of Pseudomonas alcaligenes bacteria and cyanide at elevated pH were easily monitored by capillary electrophoresis. The resulting data can be used to study rates of cyanide depletion by this strain of bacteria. Concentrations of these bacteria at 10(5) cells/mL were found to reduce cyanide from 100 ppm to less than 8 ppm in four days. In addition, other ions of interest in cyanide metabolism, such as formate, can be simultaneously analyzed. Direct UV detection of cyanide at 192 nm further simplifies the analytical method for these ions.

  16. Flagellation of Pseudomonas aeruginosa in newly divided cells

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Lee, Calvin; Anda, Jaime; Wong, Gerard

    2015-03-01

    For monotrichous bacteria, Pseudomonas aeruginosa, after cell division, one daughter cell inherits the old flagellum from its mother cell, and the other grows a new flagellum during or after cell division. It had been shown that the new flagellum grows at the distal pole of the dividing cell when the two daughter cells haven't completely separated. However, for those daughter cells who grow new flagella after division, it still remains unknown at which pole the new flagellum will grow. Here, by combining our newly developed bacteria family tree tracking techniques with genetic manipulation method, we showed that for the daughter cell who did not inherit the old flagellum, a new flagellum has about 90% chances to grow at the newly formed pole. We proposed a model for flagellation of P. aeruginosa.

  17. Identification and Characterization of Putative Integron-Like Elements of the Heavy-Metal-Hypertolerant Strains of Pseudomonas spp.

    PubMed

    Ciok, Anna; Adamczuk, Marcin; Bartosik, Dariusz; Dziewit, Lukasz

    2016-11-28

    Pseudomonas strains isolated from the heavily contaminated Lubin copper mine and Zelazny Most post-flotation waste reservoir in Poland were screened for the presence of integrons. This analysis revealed that two strains carried homologous DNA regions composed of a gene encoding a DNA_BRE_C domain-containing tyrosine recombinase (with no significant sequence similarity to other integrases of integrons) plus a three-component array of putative integron gene cassettes. The predicted gene cassettes encode three putative polypeptides with homology to (i) transmembrane proteins, (ii) GCN5 family acetyltransferases, and (iii) hypothetical proteins of unknown function (homologous proteins are encoded by the gene cassettes of several class 1 integrons). Comparative sequence analyses identified three structural variants of these novel integron-like elements within the sequenced bacterial genomes. Analysis of their distribution revealed that they are found exclusively in strains of the genus Pseudomonas .

  18. Community-led comparative genomic and phenotypic analysis of the aquaculture pathogen Pseudomonas baetica a390T sequenced by Ion semiconductor and Nanopore technologies

    PubMed Central

    Beaton, Ainsley; Lood, Cédric; Cunningham-Oakes, Edward; MacFadyen, Alison; Mullins, Alex J; Bestawy, Walid El; Botelho, João; Chevalier, Sylvie; Dalzell, Chloe; Dolan, Stephen K; Faccenda, Alberto; Ghequire, Maarten G K; Higgins, Steven; Kutschera, Alexander; Murray, Jordan; Redway, Martha; Salih, Talal; Smith, Brian A; Smits, Nathan; Thomson, Ryan; Woodcock, Stuart; Cornelis, Pierre; Lavigne, Rob; van Noort, Vera

    2018-01-01

    Abstract Pseudomonas baetica strain a390T is the type strain of this recently described species and here we present its high-contiguity draft genome. To celebrate the 16th International Conference on Pseudomonas, the genome of P. baetica strain a390T was sequenced using a unique combination of Ion Torrent semiconductor and Oxford Nanopore methods as part of a collaborative community-led project. The use of high-quality Ion Torrent sequences with long Nanopore reads gave rapid, high-contiguity and -quality, 16-contig genome sequence. Whole genome phylogenetic analysis places P. baetica within the P. koreensis clade of the P. fluorescens group. Comparison of the main genomic features of P. baetica with a variety of other Pseudomonas spp. suggests that it is a highly adaptable organism, typical of the genus. This strain was originally isolated from the liver of a diseased wedge sole fish, and genotypic and phenotypic analyses show that it is tolerant to osmotic stress and to oxytetracycline. PMID:29579234

  19. Immunocytochemical localization of HrpA and HrpZ supports a role for the Hrp pilus in the transfer of effector proteins from Pseudomonas syringae pv. tomato across the host plant cell wall.

    PubMed

    Brown, I R; Mansfield, J W; Taira, S; Roine, E; Romantschuk, M

    2001-03-01

    The Hrp pilus, composed of HrpA subunits, is an essential component of the type III secretion system in Pseudomonas syringae. We used electron microscopy (EM) and immunocytochemistry to examine production of the pilus in vitro from P. syringae pv. tomato strain DC3000 grown under hrp-inducing conditions on EM grids. Pili, when labeled with antibodies to HrpA, developed rapidly in a nonpolar manner shortly after the detection of the hrpA transcript and extended up to 5 microm into surrounding media. Structures at the base of the pilus were clearly differentiated from the basal bodies of flagella. The HrpZ protein, also secreted via the type III system, was found by immunogold labeling to be associated with the pilus in vitro. Accumulation and secretion of HrpA and HrpZ were also examined quantitatively after the inoculation of wild-type DC3000 and hrpA and hrpZ mutants into leaves of Arabidopsis thaliana. The functional pilus crossed the plant cell wall to generate tracks of immunogold labeling for HrpA and HrpZ. Mutants that produced HrpA but did not assemble pili were nonpathogenic, did not secrete HrpA protein, and were compromised for the accumulation of HrpZ. A model is proposed in which the rapidly elongating Hrp pilus acts as a moving conveyor, facilitating transfer of effector proteins from bacteria to the plant cytoplasm across the formidable barrier of the plant cell wall.

  20. Safety and Immunogenicity Testing of a Pilot Polysaccharide Vaccine Preparation to Pseudomonas aeruginosa.

    DTIC Science & Technology

    1981-09-01

    8217-NAL." BUR-._,AL)- ’..O,.-,.S.AN--DA. .-D-S.... . . . .A AD___________ Safety and Immunogenicity Testing of a Pilot Polysaccharide Vaccine Preparation...COVERED Safety and Immunogenicity Testing of a Pilot Annual Report Polysaccharide Vaccine Preparation to (16 Aug. 80 - 1 Aug. 81) Pseudomonas...immunogenic or biologically active component of the vaccine. The vaccine is a high molecu- lar weight polysaccharide (PS) material isolated from the outer

  1. Serological Typing of 31 Achromogenic and 40 Melanogenic Pseudomonas aeruginosa Strains

    PubMed Central

    Yabuuchi, Eiko; Miyajima, Noriko; Hotta, Hisako; Furu, Youichi

    1971-01-01

    Thirty-one achromogenic and 40 melanogenic Pseudomonas aeruginosa strains were studied with 10 monovalent typing sera (3). Twenty-one of the achromogenic (67.7%) and seven of the melanogenic (17.5%) strains were agglutinated by one of the 10 typing sera. Ten achromogenic and 33 melanogenic strains were not agglutinated by any of the 10 typing sera. As far as this set of antisera is concerned, the typability of achromogenic and melanogenic P. aeruginosa strains appears to be much lower than that of the chromogenic, nonmelanogenic strains of the species reported previously. PMID:5002137

  2. Nosocomial outbreak of extensively drug-resistant Pseudomonas aeruginosa associated with aromatherapy.

    PubMed

    Mayr, Astrid; Hinterberger, Guido; Lorenz, Ingo H; Kreidl, Peter; Mutschlechner, Wolfgang; Lass-Flörl, Cornelia

    2017-04-01

    An increase of extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) in various clinical specimens among intensive care unit patients (n = 7) initiated an outbreak investigation consisting of patient data analyses, control of adherence to infection control guidelines, microbiologic surveys, and molecular-based studies. XDR-PA was detected in a jointly used aroma-oil nursing bottle for aromatherapy. We implemented the restriction of oil sharing among patients. Hence, the outbreak was controlled successfully. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Sensitivity of Pseudomonas fluorescens to gamma irradiation following surface inoculations on romaine lettuce and baby spinach

    USDA-ARS?s Scientific Manuscript database

    Irradiation of fresh fruits and vegetables is a post-harvest intervention measure often used to inactivate pathogenic food-borne microbes. We evaluated the sensitivity of Pseudomonas fluorescens strains (2-79, Q8R1, Q287) to gamma irradiation following surface inoculations on romaine lettuce and spi...

  4. Molecular epidemiology of Pseudomonas aeruginosa.

    PubMed

    Speert, David P

    2002-10-01

    Pseudomonas aeruginosa is a serious opportunistic pathogen in certain compromised hosts, such as those with cystic fibrosis, thermal burns and cancer. It also causes less severe noninvasive disease, such as otitis externa and hot tub folliculitis, in normal hosts. P. aeruginosa is phenotypically very unstable, particularly in patients with chronic infection. Phenotypic typing techniques are useful for understanding the epidemiology of acute infections, but they are limited by their discriminatory power and by their inability to group isolates that are phenotypically unrelated but genetically homologous. Molecular typing techniques, developed over the past decade, are highly discriminatory and are useful for typing strains from patients with chronic infection where the bacterial phenotype is unstable; this is particularly true in cystic fibrosis, where patients often are infected with the same strain for several decades, but the bacteria undergo phenotypic alteration. Molecular typing techniques, which have proven useful in typing P. aeruginosa for epidemiological purposes, include pulsed field gel electrophoresis, restriction fragment length polymorphic DNA analysis, random amplified polymorphic DNA analysis, repetitive extrapalindromic PCR analysis, and multilocus sequence typing. These methods are generally only available in specialized laboratories, but they should be used when data from phenotypic typing analysis are ambiguous or when phenotypic methods are unreliable, such as in cystic fibrosis.

  5. [Selective enrichment of Pseudomonas spp. in the rhizoplane of different plant species].

    PubMed

    Marrero, Mariana A; Agaras, Betina; Wall, Luis G; Valverde, Claudio

    2015-01-01

    In contrast to rhizobia-legume symbiosis, the specificity for root colonization by pseudomonads seems to be less strict. However, several studies about bacterial diversity in the rhizosphere highlight the influence of plant species on the selective enrichment of certain microorganisms from the bulk soil community. In order to evaluate the effect that different crops have on the structure of pseudomonad community on the root surface, we performed plant trap experiments, using surface-disinfected maize, wheat or soybean seeds that were sown in pots containing the same pristine soil as substrate. Rhizoplane suspensions were plated on a selective medium for Pseudomonas, and pooled colonies served as DNA source to carry out PCR-RFLP community structure analysis of the pseudomonads-specific marker genes oprF and gacA. PCR-RFLP profiles were grouped by plant species, and were distinguished from those of bulk soil samples. Partial sequencing of 16S rDNA genes of some representative colonies of Pseudomonas confirmed the selective enrichment of distinctive genotypes in the rhizoplane of each plant species. These results support the idea that the root systems of agricultural crops such as soybean, maize and wheat, select differential sets of pseudomonads from the native microbial repertoire inhabiting the bulk soil. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. [The decolorization and biodegrading metabolism of azo dyes by Pseudomonas S-42].

    PubMed

    Liu, Z P; Yang, H F

    1989-12-01

    Pseudomonas S-42 was capable of decolorizing azo dyes such as Diamira Brilliant Orange RR(DBO-RR), Direct Brown M (DBM), Eriochrome Brown R(EBR) and so on. The cell suspension, cell-free extract and purified enzyme of Pseud. S-42 could decolorize azo dyes under similar conditions: the optimum pH and temperature laid 7.0 and 37 degrees C respectively. The efficiencies of decolorizing of DBO-RR, DBM, EBR by intact cells stood more than 90%. When the cell concentration was 15 mg(wet)/ml and the reaction time was 5 hours, the decolorizing activity for above three azo dyes by intact cells were 1.75, 2.4, 0.95 micrograms dye/mg cell, respectively. Cell-free extract and purified enzyme could well express the decolorizing activity only under the anaerobic condition and added NADH. Purified enzyme belongs to azoreductase, its molecular weight is about 34,000-2000 daltons, and its Vmax and Km for DBO-RR are 13 mumol.mg protein-1.min-1 and 54 mumol/L. The results of the detection of the biodegrading products of DBO-RR by spectrophotometric and NaNO2 reactional methods showed that the biodegradation of azo dyes was initiated by the reduction cleavage of azo bonds. It was hypothesized that biodegrading metabolism pathway of DBO-RR by Pseudomonas S-42.

  7. Indigenous Pseudomonas spp. Strains from the Olive (Olea europaea L.) Rhizosphere as Effective Biocontrol Agents against Verticillium dahliae: From the Host Roots to the Bacterial Genomes

    PubMed Central

    Gómez-Lama Cabanás, Carmen; Legarda, Garikoitz; Ruano-Rosa, David; Pizarro-Tobías, Paloma; Valverde-Corredor, Antonio; Niqui, José L.; Triviño, Juan C.; Roca, Amalia; Mercado-Blanco, Jesús

    2018-01-01

    The use of biological control agents (BCA), alone or in combination with other management measures, has gained attention over the past decades, driven by the need to seek for sustainable and eco-friendly alternatives to confront plant pathogens. The rhizosphere of olive (Olea europaea L.) plants is a source of bacteria with potential as biocontrol tools against Verticillium wilt of olive (VWO) caused by Verticillium dahliae Kleb. A collection of bacterial isolates from healthy nursery-produced olive (cultivar Picual, susceptible to VWO) plants was generated based on morphological, biochemical and metabolic characteristics, chemical sensitivities, and on their in vitro antagonistic activity against several olive pathogens. Three strains (PIC25, PIC105, and PICF141) showing high in vitro inhibition ability of pathogens' growth, particularly against V. dahliae, were eventually selected. Their effectiveness against VWO caused by the defoliating pathotype of V. dahliae was also demonstrated, strain PICF141 being the rhizobacteria showing the best performance as BCA. Genotypic and phenotypic traits traditionally associated with plant growth promotion and/or biocontrol abilities were evaluated as well (e.g., phytase, xylanase, catalase, cellulase, chitinase, glucanase activities, and siderophore and HCN production). Multi-locus sequence analyses of conserved genes enabled the identification of these strains as Pseudomonas spp. Strain PICF141 was affiliated to the “Pseudomonas mandelii subgroup,” within the “Pseudomonas fluorescens group,” Pseudomonas lini being the closest species. Strains PIC25 and PIC105 were affiliated to the “Pseudomonas aeruginosa group,” Pseudomonas indica being the closest relative. Moreover, we identified P. indica (PIC105) for the first time as a BCA. Genome sequencing and in silico analyses allowed the identification of traits commonly associated with plant-bacteria interactions. Finally, the root colonization ability of these olive

  8. Indigenous Pseudomonas spp. Strains from the Olive (Olea europaea L.) Rhizosphere as Effective Biocontrol Agents against Verticillium dahliae: From the Host Roots to the Bacterial Genomes.

    PubMed

    Gómez-Lama Cabanás, Carmen; Legarda, Garikoitz; Ruano-Rosa, David; Pizarro-Tobías, Paloma; Valverde-Corredor, Antonio; Niqui, José L; Triviño, Juan C; Roca, Amalia; Mercado-Blanco, Jesús

    2018-01-01

    The use of biological control agents (BCA), alone or in combination with other management measures, has gained attention over the past decades, driven by the need to seek for sustainable and eco-friendly alternatives to confront plant pathogens. The rhizosphere of olive ( Olea europaea L.) plants is a source of bacteria with potential as biocontrol tools against Verticillium wilt of olive (VWO) caused by Verticillium dahliae Kleb. A collection of bacterial isolates from healthy nursery-produced olive (cultivar Picual, susceptible to VWO) plants was generated based on morphological, biochemical and metabolic characteristics, chemical sensitivities, and on their in vitro antagonistic activity against several olive pathogens. Three strains (PIC25, PIC105, and PICF141) showing high in vitro inhibition ability of pathogens' growth, particularly against V. dahliae , were eventually selected. Their effectiveness against VWO caused by the defoliating pathotype of V. dahliae was also demonstrated, strain PICF141 being the rhizobacteria showing the best performance as BCA. Genotypic and phenotypic traits traditionally associated with plant growth promotion and/or biocontrol abilities were evaluated as well (e.g., phytase, xylanase, catalase, cellulase, chitinase, glucanase activities, and siderophore and HCN production). Multi-locus sequence analyses of conserved genes enabled the identification of these strains as Pseudomonas spp. Strain PICF141 was affiliated to the " Pseudomonas mandelii subgroup," within the " Pseudomonas fluorescens group," Pseudomonas lini being the closest species. Strains PIC25 and PIC105 were affiliated to the " Pseudomonas aeruginosa group," Pseudomonas indica being the closest relative. Moreover, we identified P. indica (PIC105) for the first time as a BCA. Genome sequencing and in silico analyses allowed the identification of traits commonly associated with plant-bacteria interactions. Finally, the root colonization ability of these olive

  9. Rubbing skin with nylon towels as a major cause of pseudomonas folliculitis in a Japanese population.

    PubMed

    Teraki, Yuichi; Nakamura, Kaori

    2015-01-01

    Pseudomonas folliculitis (PF) is a community-acquired skin infection, which develops after exposure to contaminated water such as whirlpools, swimming pools, water slides and hot tubs. In Japan, this condition has been sporadically reported, often in association with bathing; however, the exact cause of PF in the Japanese population remains unclear. In this study, we retrospectively reviewed 10 patients with PF diagnosed at our dermatology clinic (two males and eight females). Four patients had recurrences over 1-3 years. Notably, eight of the 10 patients were rubbing their bodies with nylon towels or sponges placed in the bathrooms during bathing. Pseudomonas aeruginosa was isolated from the nylon towels used in two of the two patients examined. Discontinued use of nylon towels resulted in prompt resolution of PF and no recurrence in all cases. Our observation suggests that rubbing the skin with nylon towels contaminated with P. aeruginosa was a major cause of PF in a Japanese population. © 2014 Japanese Dermatological Association.

  10. Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen.

    PubMed

    Scortichini, Marco; Marcelletti, Simone; Ferrante, Patrizia; Petriccione, Milena; Firrao, Giuseppe

    2012-09-01

    Pseudomonas syringae pv. actinidiae is the causal agent of bacterial canker of green-fleshed kiwifruit (Actinidia deliciosa) and yellow-fleshed kiwifruit (A. chinensis). A recent, sudden, re-emerging wave of this disease has occurred, almost contemporaneously, in all of the main areas of kiwifruit production in the world, suggesting that it can be considered as a pandemic disease. Recent in-depth genetic studies performed on P. syringae pv. actinidiae strains have revealed that this pathovar is composed of four genetically different populations which, to different extents, can infect crops of the genus Actinidia worldwide. Genome comparisons of these strains have revealed that this pathovar can gain and lose the phaseolotoxin gene cluster, as well as mobile genetic elements, such as plasmids and putative prophages, and that it can modify the repertoire of the effector gene arrays. In addition, the strains currently causing worldwide severe economic losses display an extensive set of genes related to the ecological fitness of the bacterium in planta, such as copper and antibiotic resistance genes, multiple siderophore genes and genes involved in the degradation of lignin derivatives and other phenolics. This pathogen can therefore easily colonize hosts throughout the year. Bacteria; Proteobacteria, gamma subdivision; Order Pseudomonadales; Family Pseudomonadaceae; Genus Pseudomonas; Pseudomonas syringae species complex, genomospecies 8; Pathovar actinidiae. Gram-negative, aerobic, motile, rod-shaped, polar flagella, oxidase-negative, arginine dihydrolase-negative, DNA 58.5-58.8 mol.% GC, elicits the hypersensitive response on tobacco leaves. Primarily studied as the causal agent of bacterial canker of green-fleshed kiwifruit (Actinidia deliciosa), it has also been isolated from yellow-fleshed kiwifruit (A. chinensis). In both species, it causes severe economic losses worldwide. It has also been isolated from wild A. arguta and A. kolomikta. In green-fleshed and

  11. Anti-Pseudomonas aeruginosa compound, 1,2,3,4-tetrahydro-1,3,5-triazine derivative, exerts its action by primarily targeting MreB.

    PubMed

    Yamachika, Shinichiro; Sugihara, Chika; Tsuji, Hayato; Muramatsu, Yasunori; Kamai, Yasuki; Yamashita, Makoto

    2012-01-01

    In order to find new anti-Pseudomonas agents, we carried out whole-cell based P. aeruginosa growth assay, and identified 1,2,3,4-tetrahydro-1,3,5-triazine (Compound A). This compound showed anti-Pseudomonas activity against wild as well as pumpless strain equally at a same concentration. Also, this compound was structurally very similar to A22, which is known to inhibit the bacterial actin-like protein MreB. By the analysis of resistant strains, the primary target of this compound in P. aeruginosa was definitely confirmed to be MreB. In addition, these compounds showed a bacteriostatic effect, and induced the morphology changes in P. aeruginosa from rod shape to sphere shape, which leads to be clinically favorable in terms of susceptibility to phagocytosis and release of endotoxin. These results display that Compound A is a very attractive compound which shows anti-P. aeruginosa activity based on inhibition of MreB without being affected by efflux pumps, and could provide a new step toward development of new promising anti-Pseudomonas agents, MreB inhibitors.

  12. Degradation of soil cyanide by single and mixed cultures of Pseudomonas stutzeri and Bacillus subtilis.

    PubMed

    Nwokoro, Ogbonnaya; Dibua, Marie Esther Uju

    2014-03-01

    The aim of this investigation was to study whether certain bacteria could be used for cyanide degradation in soil. The bacteria Pseudomonas stutzeri and Bacillus subtilis were selected based on their good growth in a minimal medium containing 0.8 mg mL-1 potassium cyanide (KCN). In this study we tested their ability to reduce cyanide levels in a medium containing 1.5 mg mL-1 of KCN. Although both microorganisms reduced cyanide levels, Pseudomonas stutzeri was the more effective test organism. Later on, the selected cultures were grown, diluted and their various cell concentrations were used individually and in combination to test their ability of cyanide degradation in soil samples collected around a cassava processing mill. Bacillus subtilis caused degradation of soil cyanide from 0.218 mg g-1 soil immediately with an inoculum concentration of 0.1 (OD600nm) to 0.072 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) implying a 66.9 % reduction. Pseudomonas stutzeri cell concentration of 0.1 (OD600nm) decreased soil cyanide from 0.218 mg g-1 soil initially to 0.061 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) (72 % reduction). The mixed culture of the two bacteria produced the best degradation of soil cyanide from 0.218 mg g-1 soil sample with a combined inoculum concentration of 0.1 (OD600nm) initially to 0.025 mg g-1 soil with a combined inoculum concentration of 0.6 (OD600nm) after 10 days incubation resulting in an 88.5 % degradation of soil cyanide. The analysed bacteria displayed high cyanide degradation potential and may be useful for efficient decontamination of cyanide contaminated sites.

  13. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis

    PubMed Central

    Großkinsky, Dominik K.; Tafner, Richard; Moreno, María V.; Stenglein, Sebastian A.; García de Salamone, Inés E.; Nelson, Louise M.; Novák, Ondřej; Strnad, Miroslav; van der Graaff, Eric; Roitsch, Thomas

    2016-01-01

    Plant beneficial microbes mediate biocontrol of diseases by interfering with pathogens or via strengthening the host. Although phytohormones, including cytokinins, are known to regulate plant development and physiology as well as plant immunity, their production by microorganisms has not been considered as a biocontrol mechanism. Here we identify the ability of Pseudomonas fluorescens G20-18 to efficiently control P. syringae infection in Arabidopsis, allowing maintenance of tissue integrity and ultimately biomass yield. Microbial cytokinin production was identified as a key determinant for this biocontrol effect on the hemibiotrophic bacterial pathogen. While cytokinin-deficient loss-of-function mutants of G20-18 exhibit impaired biocontrol, functional complementation with cytokinin biosynthetic genes restores cytokinin-mediated biocontrol, which is correlated with differential cytokinin levels in planta. Arabidopsis mutant analyses revealed the necessity of functional plant cytokinin perception and salicylic acid-dependent defence signalling for this biocontrol mechanism. These results demonstrate microbial cytokinin production as a novel microbe-based, hormone-mediated concept of biocontrol. This mechanism provides a basis to potentially develop novel, integrated plant protection strategies combining promotion of growth, a favourable physiological status and activation of fine-tuned direct defence and abiotic stress resilience. PMID:26984671

  14. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis.

    PubMed

    Großkinsky, Dominik K; Tafner, Richard; Moreno, María V; Stenglein, Sebastian A; García de Salamone, Inés E; Nelson, Louise M; Novák, Ondřej; Strnad, Miroslav; van der Graaff, Eric; Roitsch, Thomas

    2016-03-17

    Plant beneficial microbes mediate biocontrol of diseases by interfering with pathogens or via strengthening the host. Although phytohormones, including cytokinins, are known to regulate plant development and physiology as well as plant immunity, their production by microorganisms has not been considered as a biocontrol mechanism. Here we identify the ability of Pseudomonas fluorescens G20-18 to efficiently control P. syringae infection in Arabidopsis, allowing maintenance of tissue integrity and ultimately biomass yield. Microbial cytokinin production was identified as a key determinant for this biocontrol effect on the hemibiotrophic bacterial pathogen. While cytokinin-deficient loss-of-function mutants of G20-18 exhibit impaired biocontrol, functional complementation with cytokinin biosynthetic genes restores cytokinin-mediated biocontrol, which is correlated with differential cytokinin levels in planta. Arabidopsis mutant analyses revealed the necessity of functional plant cytokinin perception and salicylic acid-dependent defence signalling for this biocontrol mechanism. These results demonstrate microbial cytokinin production as a novel microbe-based, hormone-mediated concept of biocontrol. This mechanism provides a basis to potentially develop novel, integrated plant protection strategies combining promotion of growth, a favourable physiological status and activation of fine-tuned direct defence and abiotic stress resilience.

  15. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes

    PubMed Central

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration. PMID:28184354

  16. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism

    DTIC Science & Technology

    2016-03-15

    mutants hisC1 (PA4447), hisD (PA4448), hutH (PA5098), and PA0006. We predicted that uro - canate was depleted in these high biofilm-producing mutants and...Lam DK, Fleming L, Lo R, Whiteside MD, Yu NY, et al. PseudomonasGenome Database: improved comparative analysis and population genomics capability for

  17. Antibiofilm and Antioxidant Activity of Propolis and Bud Poplar Resins versus Pseudomonas aeruginosa

    PubMed Central

    De Marco, Stefania; Piccioni, Miranda; Pagiotti, Rita

    2017-01-01

    Pseudomonas aeruginosa is a common biofilm-forming bacterial pathogen implicated in lung, skin, and systemic infections. Biofilms are majorly associated with chronic lung infection, which is the most severe complication in cystic fibrosis patients characterized by drug-resistant biofilms in the bronchial mucus with zones, where reactive oxygen species concentration is increased mainly due to neutrophil activity. Aim of this work is to verify the anti-Pseudomonas property of propolis or bud poplar resins extracts. The antimicrobial activity of propolis and bud poplar resins extracts was determined by MIC and biofilm quantification. Moreover, we tested the antioxidant activity by DPPH and neutrophil oxidative burst assays. In the end, both propolis and bud poplar resins extracts were able to inhibit P. aeruginosa biofilm formation and to influence both swimming and swarming motility. Moreover, the extracts could inhibit proinflammatory cytokine production by human PBMC and showed both direct and indirect antioxidant activity. This work is the first to demonstrate that propolis and bud poplar resins extracts can influence biofilm formation of P. aeruginosa contrasting the inflammation and the oxidation state typical of chronic infection suggesting that propolis or bud poplar resins can be used along with antibiotic as adjuvant in the therapy against P. aeruginosa infections related to biofilm. PMID:28127379

  18. Resistance of Pseudomonas to Quaternary Ammonium Compounds. I. Growth in Benzalkonium Chloride Solution

    PubMed Central

    Adair, Frank W.; Geftic, Sam G.; Gelzer, Justus

    1969-01-01

    Resistant cells of Pseudomonas aeruginosa and a waterborne Pseudomonas sp. (strain Z-R) were able to multiply in nitrogen-free minimal salts solution containing various concentrations of commercially prepared, ammonium acetate-buffered benzalkonium chloride (CBC), a potent antimicrobial agent. As the CBC concentration increased, growth increased until a point was reached at which the extent of growth leveled off or was completely depressed. Minimal salts solutions of pure benzalkonium chloride (PBC) containing no ammonium acetate did not support bacterial growth. When ammonium acetate was added to PBC solutions in the same concentrations found in CBC solutions, growth patterns developed that were comparable to those found with CBC. Likewise, (NH4)2SO4 added to PBC solutions supported growth of both organisms. P. aeruginosa was initially resistant to CBC levels of 0.02% and it was adapted to tolerate levels as high as 0.36%. Strain Z-R was naturally resistant to 0.4% CBC. Since ammonium acetate, carried over by the CBC used in drug formulations and disinfectant solutions, has the potential to support the growth of resistant bacteria and thus make possible the risk of serious infection, it is suggested that regulations allowing the presence of ammonium acetate in CBC solution be reconsidered. PMID:4984761

  19. Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions.

    PubMed

    Cipriano, Matheus A P; Lupatini, Manoeli; Lopes-Santos, Lucilene; da Silva, Márcio J; Roesch, Luiz F W; Destéfano, Suzete A L; Freitas, Sueli S; Kuramae, Eiko E

    2016-12-01

    Plant growth promoting rhizobacteria are well described and recommended for several crops worldwide. However, one of the most common problems in research into them is the difficulty in obtaining reproducible results. Furthermore, few studies have evaluated plant growth promotion and soil microbial community composition resulting from bacterial inoculation under field conditions. Here we evaluated the effect of 54 Pseudomonas strains on lettuce (Lactuca sativa) growth. The 12 most promising strains were phylogenetically and physiologically characterized for plant growth-promoting traits, including phosphate solubilization, hormone production and antagonism to pathogen compounds, and their effect on plant growth under farm field conditions. Additionally, the impact of beneficial strains on the rhizospheric bacterial community was evaluated for inoculated plants. The strains IAC-RBcr4 and IAC-RBru1, with different plant growth promoting traits, improved lettuce plant biomass yields up to 30%. These two strains also impacted rhizosphere bacterial groups including Isosphaera and Pirellula (phylum Planctomycetes) and Acidothermus, Pseudolabrys and Singusphaera (phylum Actinobacteria). This is the first study to demonstrate consistent results for the effects of Pseudomonas strains on lettuce growth promotion for seedlings and plants grown under tropical field conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Endophytic colonization of olive roots by the biocontrol strain Pseudomonas fluorescens PICF7.

    PubMed

    Prieto, Pilar; Mercado-Blanco, Jesús

    2008-05-01

    Confocal microscopy combined with three-dimensional olive root tissue sectioning was used to provide evidence of the endophytic behaviour of Pseudomonas fluorescens PICF7, an effective biocontrol strain against Verticillium wilt of olive. Two derivatives of the green fluorescent protein (GFP), the enhanced green and the red fluorescent proteins, have been used to visualize simultaneously two differently fluorescently tagged populations of P. fluorescens PICF7 within olive root tissues at the single cell level. The time-course of colonization events of olive roots cv. Arbequina by strain PICF7 and the localization of tagged bacteria within olive root tissues are described. First, bacteria rapidly colonized root surfaces and were predominantly found in the differentiation zone. Thereafter, microscopy observations showed that PICF7-tagged populations eventually disappeared from the root surface, and increasingly colonized inner root tissues. Localized and limited endophytic colonization by the introduced bacteria was observed over time. Fluorescent-tagged bacteria were always visualized in the intercellular spaces of the cortex region, and no colonization of the root xylem vessels was detected at any time. To the best of our knowledge, this is the first time this approach has been used to demonstrate endophytism of a biocontrol Pseudomonas spp. strain in a woody host such as olive using a nongnotobiotic system.