Contact-free palm-vein recognition based on local invariant features.
Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun
2014-01-01
Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach.
Contact-Free Palm-Vein Recognition Based on Local Invariant Features
Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun
2014-01-01
Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach. PMID:24866176
Stochastic HKMDHE: A multi-objective contrast enhancement algorithm
NASA Astrophysics Data System (ADS)
Pratiher, Sawon; Mukhopadhyay, Sabyasachi; Maity, Srideep; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.
2018-02-01
This contribution proposes a novel extension of the existing `Hyper Kurtosis based Modified Duo-Histogram Equalization' (HKMDHE) algorithm, for multi-objective contrast enhancement of biomedical images. A novel modified objective function has been formulated by joint optimization of the individual histogram equalization objectives. The optimal adequacy of the proposed methodology with respect to image quality metrics such as brightness preserving abilities, peak signal-to-noise ratio (PSNR), Structural Similarity Index (SSIM) and universal image quality metric has been experimentally validated. The performance analysis of the proposed Stochastic HKMDHE with existing histogram equalization methodologies like Global Histogram Equalization (GHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) has been given for comparative evaluation.
Thresholding histogram equalization.
Chuang, K S; Chen, S; Hwang, I M
2001-12-01
The drawbacks of adaptive histogram equalization techniques are the loss of definition on the edges of the object and overenhancement of noise in the images. These drawbacks can be avoided if the noise is excluded in the equalization transformation function computation. A method has been developed to separate the histogram into zones, each with its own equalization transformation. This method can be used to suppress the nonanatomic noise and enhance only certain parts of the object. This method can be combined with other adaptive histogram equalization techniques. Preliminary results indicate that this method can produce images with superior contrast.
Combining Vector Quantization and Histogram Equalization.
ERIC Educational Resources Information Center
Cosman, Pamela C.; And Others
1992-01-01
Discussion of contrast enhancement techniques focuses on the use of histogram equalization with a data compression technique, i.e., tree-structured vector quantization. The enhancement technique of intensity windowing is described, and the use of enhancement techniques for medical images is explained, including adaptive histogram equalization.…
2013-01-01
Background The high variations of background luminance, low contrast and excessively enhanced contrast of hand bone radiograph often impede the bone age assessment rating system in evaluating the degree of epiphyseal plates and ossification centers development. The Global Histogram equalization (GHE) has been the most frequently adopted image contrast enhancement technique but the performance is not satisfying. A brightness and detail preserving histogram equalization method with good contrast enhancement effect has been a goal of much recent research in histogram equalization. Nevertheless, producing a well-balanced histogram equalized radiograph in terms of its brightness preservation, detail preservation and contrast enhancement is deemed to be a daunting task. Method In this paper, we propose a novel framework of histogram equalization with the aim of taking several desirable properties into account, namely the Multipurpose Beta Optimized Bi-Histogram Equalization (MBOBHE). This method performs the histogram optimization separately in both sub-histograms after the segmentation of histogram using an optimized separating point determined based on the regularization function constituted by three components. The result is then assessed by the qualitative and quantitative analysis to evaluate the essential aspects of histogram equalized image using a total of 160 hand radiographs that are implemented in testing and analyses which are acquired from hand bone online database. Result From the qualitative analysis, we found that basic bi-histogram equalizations are not capable of displaying the small features in image due to incorrect selection of separating point by focusing on only certain metric without considering the contrast enhancement and detail preservation. From the quantitative analysis, we found that MBOBHE correlates well with human visual perception, and this improvement shortens the evaluation time taken by inspector in assessing the bone age. Conclusions The proposed MBOBHE outperforms other existing methods regarding comprehensive performance of histogram equalization. All the features which are pertinent to bone age assessment are more protruding relative to other methods; this has shorten the required evaluation time in manual bone age assessment using TW method. While the accuracy remains unaffected or slightly better than using unprocessed original image. The holistic properties in terms of brightness preservation, detail preservation and contrast enhancement are simultaneous taken into consideration and thus the visual effect is contributive to manual inspection. PMID:23565999
Image contrast enhancement using adjacent-blocks-based modification for local histogram equalization
NASA Astrophysics Data System (ADS)
Wang, Yang; Pan, Zhibin
2017-11-01
Infrared images usually have some non-ideal characteristics such as weak target-to-background contrast and strong noise. Because of these characteristics, it is necessary to apply the contrast enhancement algorithm to improve the visual quality of infrared images. Histogram equalization (HE) algorithm is a widely used contrast enhancement algorithm due to its effectiveness and simple implementation. But a drawback of HE algorithm is that the local contrast of an image cannot be equally enhanced. Local histogram equalization algorithms are proved to be the effective techniques for local image contrast enhancement. However, over-enhancement of noise and artifacts can be easily found in the local histogram equalization enhanced images. In this paper, a new contrast enhancement technique based on local histogram equalization algorithm is proposed to overcome the drawbacks mentioned above. The input images are segmented into three kinds of overlapped sub-blocks using the gradients of them. To overcome the over-enhancement effect, the histograms of these sub-blocks are then modified by adjacent sub-blocks. We pay more attention to improve the contrast of detail information while the brightness of the flat region in these sub-blocks is well preserved. It will be shown that the proposed algorithm outperforms other related algorithms by enhancing the local contrast without introducing over-enhancement effects and additional noise.
Image Enhancement via Subimage Histogram Equalization Based on Mean and Variance
2017-01-01
This paper puts forward a novel image enhancement method via Mean and Variance based Subimage Histogram Equalization (MVSIHE), which effectively increases the contrast of the input image with brightness and details well preserved compared with some other methods based on histogram equalization (HE). Firstly, the histogram of input image is divided into four segments based on the mean and variance of luminance component, and the histogram bins of each segment are modified and equalized, respectively. Secondly, the result is obtained via the concatenation of the processed subhistograms. Lastly, the normalization method is deployed on intensity levels, and the integration of the processed image with the input image is performed. 100 benchmark images from a public image database named CVG-UGR-Database are used for comparison with other state-of-the-art methods. The experiment results show that the algorithm can not only enhance image information effectively but also well preserve brightness and details of the original image. PMID:29403529
DSP+FPGA-based real-time histogram equalization system of infrared image
NASA Astrophysics Data System (ADS)
Gu, Dongsheng; Yang, Nansheng; Pi, Defu; Hua, Min; Shen, Xiaoyan; Zhang, Ruolan
2001-10-01
Histogram Modification is a simple but effective method to enhance an infrared image. There are several methods to equalize an infrared image's histogram due to the different characteristics of the different infrared images, such as the traditional HE (Histogram Equalization) method, and the improved HP (Histogram Projection) and PE (Plateau Equalization) method and so on. If to realize these methods in a single system, the system must have a mass of memory and extremely fast speed. In our system, we introduce a DSP + FPGA based real-time procession technology to do these things together. FPGA is used to realize the common part of these methods while DSP is to do the different part. The choice of methods and the parameter can be input by a keyboard or a computer. By this means, the function of the system is powerful while it is easy to operate and maintain. In this article, we give out the diagram of the system and the soft flow chart of the methods. And at the end of it, we give out the infrared image and its histogram before and after the process of HE method.
NASA Astrophysics Data System (ADS)
Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian; Maldague, Xavier
2018-06-01
Infrared image enhancement plays a significant role in intelligent urban surveillance systems for smart city applications. Unlike existing methods only exaggerating the global contrast, we propose a particle swam optimization-based local entropy weighted histogram equalization which involves the enhancement of both local details and fore-and background contrast. First of all, a novel local entropy weighted histogram depicting the distribution of detail information is calculated based on a modified hyperbolic tangent function. Then, the histogram is divided into two parts via a threshold maximizing the inter-class variance in order to improve the contrasts of foreground and background, respectively. To avoid over-enhancement and noise amplification, double plateau thresholds of the presented histogram are formulated by means of particle swarm optimization algorithm. Lastly, each sub-image is equalized independently according to the constrained sub-local entropy weighted histogram. Comparative experiments implemented on real infrared images prove that our algorithm outperforms other state-of-the-art methods in terms of both visual and quantized evaluations.
Information granules in image histogram analysis.
Wieclawek, Wojciech
2018-04-01
A concept of granular computing employed in intensity-based image enhancement is discussed. First, a weighted granular computing idea is introduced. Then, the implementation of this term in the image processing area is presented. Finally, multidimensional granular histogram analysis is introduced. The proposed approach is dedicated to digital images, especially to medical images acquired by Computed Tomography (CT). As the histogram equalization approach, this method is based on image histogram analysis. Yet, unlike the histogram equalization technique, it works on a selected range of the pixel intensity and is controlled by two parameters. Performance is tested on anonymous clinical CT series. Copyright © 2017 Elsevier Ltd. All rights reserved.
Color Histogram Diffusion for Image Enhancement
NASA Technical Reports Server (NTRS)
Kim, Taemin
2011-01-01
Various color histogram equalization (CHE) methods have been proposed to extend grayscale histogram equalization (GHE) for color images. In this paper a new method called histogram diffusion that extends the GHE method to arbitrary dimensions is proposed. Ranges in a histogram are specified as overlapping bars of uniform heights and variable widths which are proportional to their frequencies. This diagram is called the vistogram. As an alternative approach to GHE, the squared error of the vistogram from the uniform distribution is minimized. Each bar in the vistogram is approximated by a Gaussian function. Gaussian particles in the vistoram diffuse as a nonlinear autonomous system of ordinary differential equations. CHE results of color images showed that the approach is effective.
Histogram equalization with Bayesian estimation for noise robust speech recognition.
Suh, Youngjoo; Kim, Hoirin
2018-02-01
The histogram equalization approach is an efficient feature normalization technique for noise robust automatic speech recognition. However, it suffers from performance degradation when some fundamental conditions are not satisfied in the test environment. To remedy these limitations of the original histogram equalization methods, class-based histogram equalization approach has been proposed. Although this approach showed substantial performance improvement under noise environments, it still suffers from performance degradation due to the overfitting problem when test data are insufficient. To address this issue, the proposed histogram equalization technique employs the Bayesian estimation method in the test cumulative distribution function estimation. It was reported in a previous study conducted on the Aurora-4 task that the proposed approach provided substantial performance gains in speech recognition systems based on the acoustic modeling of the Gaussian mixture model-hidden Markov model. In this work, the proposed approach was examined in speech recognition systems with deep neural network-hidden Markov model (DNN-HMM), the current mainstream speech recognition approach where it also showed meaningful performance improvement over the conventional maximum likelihood estimation-based method. The fusion of the proposed features with the mel-frequency cepstral coefficients provided additional performance gains in DNN-HMM systems, which otherwise suffer from performance degradation in the clean test condition.
Regionally adaptive histogram equalization of the chest.
Sherrier, R H; Johnson, G A
1987-01-01
Advances in the area of digital chest radiography have resulted in the acquisition of high-quality images of the human chest. With these advances, there arises a genuine need for image processing algorithms specific to the chest, in order to fully exploit this digital technology. We have implemented the well-known technique of histogram equalization, noting the problems encountered when it is adapted to chest images. These problems have been successfully solved with our regionally adaptive histogram equalization method. With this technique histograms are calculated locally and then modified according to both the mean pixel value of that region as well as certain characteristics of the cumulative distribution function. This process, which has allowed certain regions of the chest radiograph to be enhanced differentially, may also have broader implications for other image processing tasks.
Jeong, Chang Bu; Kim, Kwang Gi; Kim, Tae Sung; Kim, Seok Ki
2011-06-01
Whole-body bone scan is one of the most frequent diagnostic procedures in nuclear medicine. Especially, it plays a significant role in important procedures such as the diagnosis of osseous metastasis and evaluation of osseous tumor response to chemotherapy and radiation therapy. It can also be used to monitor the possibility of any recurrence of the tumor. However, it is a very time-consuming effort for radiologists to quantify subtle interval changes between successive whole-body bone scans because of many variations such as intensity, geometry, and morphology. In this paper, we present the most effective method of image enhancement based on histograms, which may assist radiologists in interpreting successive whole-body bone scans effectively. Forty-eight successive whole-body bone scans from 10 patients were obtained and evaluated using six methods of image enhancement based on histograms: histogram equalization, brightness-preserving bi-histogram equalization, contrast-limited adaptive histogram equalization, end-in search, histogram matching, and exact histogram matching (EHM). Comparison of the results of the different methods was made using three similarity measures peak signal-to-noise ratio, histogram intersection, and structural similarity. Image enhancement of successive bone scans using EHM showed the best results out of the six methods measured for all similarity measures. EHM is the best method of image enhancement based on histograms for diagnosing successive whole-body bone scans. The method for successive whole-body bone scans has the potential to greatly assist radiologists quantify interval changes more accurately and quickly by compensating for the variable nature of intensity information. Consequently, it can improve radiologists' diagnostic accuracy as well as reduce reading time for detecting interval changes.
Adaptive histogram equalization in digital radiography of destructive skeletal lesions.
Braunstein, E M; Capek, P; Buckwalter, K; Bland, P; Meyer, C R
1988-03-01
Adaptive histogram equalization, an image-processing technique that distributes pixel values of an image uniformly throughout the gray scale, was applied to 28 plain radiographs of bone lesions, after they had been digitized. The non-equalized and equalized digital images were compared by two skeletal radiologists with respect to lesion margins, internal matrix, soft-tissue mass, cortical breakthrough, and periosteal reaction. Receiver operating characteristic (ROC) curves were constructed on the basis of the responses. Equalized images were superior to nonequalized images in determination of cortical breakthrough and presence or absence of periosteal reaction. ROC analysis showed no significant difference in determination of margins, matrix, or soft-tissue masses.
A novel parallel architecture for local histogram equalization
NASA Astrophysics Data System (ADS)
Ohannessian, Mesrob I.; Choueiter, Ghinwa F.; Diab, Hassan
2005-07-01
Local histogram equalization is an image enhancement algorithm that has found wide application in the pre-processing stage of areas such as computer vision, pattern recognition and medical imaging. The computationally intensive nature of the procedure, however, is a main limitation when real time interactive applications are in question. This work explores the possibility of performing parallel local histogram equalization, using an array of special purpose elementary processors, through an HDL implementation that targets FPGA or ASIC platforms. A novel parallelization scheme is presented and the corresponding architecture is derived. The algorithm is reduced to pixel-level operations. Processing elements are assigned image blocks, to maintain a reasonable performance-cost ratio. To further simplify both processor and memory organizations, a bit-serial access scheme is used. A brief performance assessment is provided to illustrate and quantify the merit of the approach.
Reducing Error Rates for Iris Image using higher Contrast in Normalization process
NASA Astrophysics Data System (ADS)
Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa
2017-08-01
Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.
Chest CT window settings with multiscale adaptive histogram equalization: pilot study.
Fayad, Laura M; Jin, Yinpeng; Laine, Andrew F; Berkmen, Yahya M; Pearson, Gregory D; Freedman, Benjamin; Van Heertum, Ronald
2002-06-01
Multiscale adaptive histogram equalization (MAHE), a wavelet-based algorithm, was investigated as a method of automatic simultaneous display of the full dynamic contrast range of a computed tomographic image. Interpretation times were significantly lower for MAHE-enhanced images compared with those for conventionally displayed images. Diagnostic accuracy, however, was insufficient in this pilot study to allow recommendation of MAHE as a replacement for conventional window display.
Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization
Chiu, Chung-Cheng; Ting, Chih-Chung
2016-01-01
Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412
Adaptive image contrast enhancement using generalizations of histogram equalization.
Stark, J A
2000-01-01
This paper proposes a scheme for adaptive image-contrast enhancement based on a generalization of histogram equalization (HE). HE is a useful technique for improving image contrast, but its effect is too severe for many purposes. However, dramatically different results can be obtained with relatively minor modifications. A concise description of adaptive HE is set out, and this framework is used in a discussion of past suggestions for variations on HE. A key feature of this formalism is a "cumulation function," which is used to generate a grey level mapping from the local histogram. By choosing alternative forms of cumulation function one can achieve a wide variety of effects. A specific form is proposed. Through the variation of one or two parameters, the resulting process can produce a range of degrees of contrast enhancement, at one extreme leaving the image unchanged, at another yielding full adaptive equalization.
Multi-stream LSTM-HMM decoding and histogram equalization for noise robust keyword spotting.
Wöllmer, Martin; Marchi, Erik; Squartini, Stefano; Schuller, Björn
2011-09-01
Highly spontaneous, conversational, and potentially emotional and noisy speech is known to be a challenge for today's automatic speech recognition (ASR) systems, which highlights the need for advanced algorithms that improve speech features and models. Histogram Equalization is an efficient method to reduce the mismatch between clean and noisy conditions by normalizing all moments of the probability distribution of the feature vector components. In this article, we propose to combine histogram equalization and multi-condition training for robust keyword detection in noisy speech. To better cope with conversational speaking styles, we show how contextual information can be effectively exploited in a multi-stream ASR framework that dynamically models context-sensitive phoneme estimates generated by a long short-term memory neural network. The proposed techniques are evaluated on the SEMAINE database-a corpus containing emotionally colored conversations with a cognitive system for "Sensitive Artificial Listening".
Entwistle, A
2004-06-01
A means for improving the contrast in the images produced from digital light micrographs is described that requires no intervention by the experimenter: zero-order, scaling, tonally independent, moderated histogram equalization. It is based upon histogram equalization, which often results in digital light micrographs that contain regions that appear to be saturated, negatively biased or very grainy. Here a non-decreasing monotonic function is introduced into the process, which moderates the changes in contrast that are generated. This method is highly effective for all three of the main types of contrast found in digital light micrography: bright objects viewed against a dark background, e.g. fluorescence and dark-ground or dark-field image data sets; bright and dark objects sets against a grey background, e.g. image data sets collected with phase or Nomarski differential interference contrast optics; and darker objects set against a light background, e.g. views of absorbing specimens. Moreover, it is demonstrated that there is a single fixed moderating function, whose actions are independent of the number of elements of image data, which works well with all types of digital light micrographs, including multimodal or multidimensional image data sets. The use of this fixed function is very robust as the appearance of the final image is not altered discernibly when it is applied repeatedly to an image data set. Consequently, moderated histogram equalization can be applied to digital light micrographs as a push-button solution, thereby eliminating biases that those undertaking the processing might have introduced during manual processing. Finally, moderated histogram equalization yields a mapping function and so, through the use of look-up tables, indexes or palettes, the information present in the original data file can be preserved while an image with the improved contrast is displayed on the monitor screen.
Flood Detection/Monitoring Using Adjustable Histogram Equalization Technique
Riaz, Muhammad Mohsin; Ghafoor, Abdul
2014-01-01
Flood monitoring technique using adjustable histogram equalization is proposed. The technique overcomes the limitations (overenhancement, artifacts, and unnatural look) of existing technique by adjusting the contrast of images. The proposed technique takes pre- and postimages and applies different processing steps for generating flood map without user interaction. The resultant flood maps can be used for flood monitoring and detection. Simulation results show that the proposed technique provides better output quality compared to the state of the art existing technique. PMID:24558332
Complexity of possibly gapped histogram and analysis of histogram.
Fushing, Hsieh; Roy, Tania
2018-02-01
We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT.
Complexity of possibly gapped histogram and analysis of histogram
Roy, Tania
2018-01-01
We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT. PMID:29515829
Complexity of possibly gapped histogram and analysis of histogram
NASA Astrophysics Data System (ADS)
Fushing, Hsieh; Roy, Tania
2018-02-01
We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT.
Salas-Gonzalez, D; Górriz, J M; Ramírez, J; Padilla, P; Illán, I A
2013-01-01
A procedure to improve the convergence rate for affine registration methods of medical brain images when the images differ greatly from the template is presented. The methodology is based on a histogram matching of the source images with respect to the reference brain template before proceeding with the affine registration. The preprocessed source brain images are spatially normalized to a template using a general affine model with 12 parameters. A sum of squared differences between the source images and the template is considered as objective function, and a Gauss-Newton optimization algorithm is used to find the minimum of the cost function. Using histogram equalization as a preprocessing step improves the convergence rate in the affine registration algorithm of brain images as we show in this work using SPECT and PET brain images.
Multispectral histogram normalization contrast enhancement
NASA Technical Reports Server (NTRS)
Soha, J. M.; Schwartz, A. A.
1979-01-01
A multispectral histogram normalization or decorrelation enhancement which achieves effective color composites by removing interband correlation is described. The enhancement procedure employs either linear or nonlinear transformations to equalize principal component variances. An additional rotation to any set of orthogonal coordinates is thus possible, while full histogram utilization is maintained by avoiding the reintroduction of correlation. For the three-dimensional case, the enhancement procedure may be implemented with a lookup table. An application of the enhancement to Landsat multispectral scanning imagery is presented.
Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-01-01
99m Technetium-methylene diphosphonate ( 99m Tc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99m Tc-MDP-bone scan images. A set of 89 low contrast 99m Tc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t -test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful.
Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-01-01
Purpose of the Study: 99mTechnetium-methylene diphosphonate (99mTc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99mTc-MDP-bone scan images. Materials and Methods: A set of 89 low contrast 99mTc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. Results: This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t-test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. Conclusion: GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful. PMID:29142344
Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme.
Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun
2015-01-01
Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation.
Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme
Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun
2015-01-01
Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation. PMID:25709942
NASA Astrophysics Data System (ADS)
Li, Shuo; Jin, Weiqi; Li, Li; Li, Yiyang
2018-05-01
Infrared thermal images can reflect the thermal-radiation distribution of a particular scene. However, the contrast of the infrared images is usually low. Hence, it is generally necessary to enhance the contrast of infrared images in advance to facilitate subsequent recognition and analysis. Based on the adaptive double plateaus histogram equalization, this paper presents an improved contrast enhancement algorithm for infrared thermal images. In the proposed algorithm, the normalized coefficient of variation of the histogram, which characterizes the level of contrast enhancement, is introduced as feedback information to adjust the upper and lower plateau thresholds. The experiments on actual infrared images show that compared to the three typical contrast-enhancement algorithms, the proposed algorithm has better scene adaptability and yields better contrast-enhancement results for infrared images with more dark areas or a higher dynamic range. Hence, it has high application value in contrast enhancement, dynamic range compression, and digital detail enhancement for infrared thermal images.
An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement.
Zimmerman, J B; Pizer, S M; Staab, E V; Perry, J R; McCartney, W; Brenton, B C
1988-01-01
Adaptive histogram equalization (AHE) and intensity windowing have been compared using psychophysical observer studies. Experienced radiologists were shown clinical CT (computerized tomographic) images of the chest. Into some of the images, appropriate artificial lesions were introduced; the physicians were then shown the images processed with both AHE and intensity windowing. They were asked to assess the probability that a given image contained the artificial lesion, and their accuracy was measured. The results of these experiments show that for this particular diagnostic task, there was no significant difference in the ability of the two methods to depict luminance contrast; thus, further evaluation of AHE using controlled clinical trials is indicated.
Feature and contrast enhancement of mammographic image based on multiscale analysis and morphology.
Wu, Shibin; Yu, Shaode; Yang, Yuhan; Xie, Yaoqin
2013-01-01
A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII).
Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology
Wu, Shibin; Xie, Yaoqin
2013-01-01
A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII). PMID:24416072
Teh, V; Sim, K S; Wong, E K
2016-11-01
According to the statistic from World Health Organization (WHO), stroke is one of the major causes of death globally. Computed tomography (CT) scan is one of the main medical diagnosis system used for diagnosis of ischemic stroke. CT scan provides brain images in Digital Imaging and Communication in Medicine (DICOM) format. The presentation of CT brain images is mainly relied on the window setting (window center and window width), which converts an image from DICOM format into normal grayscale format. Nevertheless, the ordinary window parameter could not deliver a proper contrast on CT brain images for ischemic stroke detection. In this paper, a new proposed method namely gamma correction extreme-level eliminating with weighting distribution (GCELEWD) is implemented to improve the contrast on CT brain images. GCELEWD is capable of highlighting the hypodense region for diagnosis of ischemic stroke. The performance of this new proposed technique, GCELEWD, is compared with four of the existing contrast enhancement technique such as brightness preserving bi-histogram equalization (BBHE), dualistic sub-image histogram equalization (DSIHE), extreme-level eliminating histogram equalization (ELEHE), and adaptive gamma correction with weighting distribution (AGCWD). GCELEWD shows better visualization for ischemic stroke detection and higher values with image quality assessment (IQA) module. SCANNING 38:842-856, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K
2013-02-01
Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy.
Gray-level transformations for interactive image enhancement. M.S. Thesis. Final Technical Report
NASA Technical Reports Server (NTRS)
Fittes, B. A.
1975-01-01
A gray-level transformation method suitable for interactive image enhancement was presented. It is shown that the well-known histogram equalization approach is a special case of this method. A technique for improving the uniformity of a histogram is also developed. Experimental results which illustrate the capabilities of both algorithms are described. Two proposals for implementing gray-level transformations in a real-time interactive image enhancement system are also presented.
[A fast iterative algorithm for adaptive histogram equalization].
Cao, X; Liu, X; Deng, Z; Jiang, D; Zheng, C
1997-01-01
In this paper, we propose an iterative algorthm called FAHE., which is based on the relativity between the current local histogram and the one before the sliding window moving. Comparing with the basic AHE, the computing time of FAHE is decreased from 5 hours to 4 minutes on a 486dx/33 compatible computer, when using a 65 x 65 sliding window for a 512 x 512 with 8 bits gray-level range.
Hiroyasu, Tomoyuki; Hayashinuma, Katsutoshi; Ichikawa, Hiroshi; Yagi, Nobuaki
2015-08-01
A preprocessing method for endoscopy image analysis using texture analysis is proposed. In a previous study, we proposed a feature value that combines a co-occurrence matrix and a run-length matrix to analyze the extent of early gastric cancer from images taken with narrow-band imaging endoscopy. However, the obtained feature value does not identify lesion zones correctly due to the influence of noise and halation. Therefore, we propose a new preprocessing method with a non-local means filter for de-noising and contrast limited adaptive histogram equalization. We have confirmed that the pattern of gastric mucosa in images can be improved by the proposed method. Furthermore, the lesion zone is shown more correctly by the obtained color map.
Perceptual Contrast Enhancement with Dynamic Range Adjustment
Zhang, Hong; Li, Yuecheng; Chen, Hao; Yuan, Ding; Sun, Mingui
2013-01-01
Recent years, although great efforts have been made to improve its performance, few Histogram equalization (HE) methods take human visual perception (HVP) into account explicitly. The human visual system (HVS) is more sensitive to edges than brightness. This paper proposes to take use of this nature intuitively and develops a perceptual contrast enhancement approach with dynamic range adjustment through histogram modification. The use of perceptual contrast connects the image enhancement problem with the HVS. To pre-condition the input image before the HE procedure is implemented, a perceptual contrast map (PCM) is constructed based on the modified Difference of Gaussian (DOG) algorithm. As a result, the contrast of the image is sharpened and high frequency noise is suppressed. A modified Clipped Histogram Equalization (CHE) is also developed which improves visual quality by automatically detecting the dynamic range of the image with improved perceptual contrast. Experimental results show that the new HE algorithm outperforms several state-of-the-art algorithms in improving perceptual contrast and enhancing details. In addition, the new algorithm is simple to implement, making it suitable for real-time applications. PMID:24339452
Visual Contrast Enhancement Algorithm Based on Histogram Equalization
Ting, Chih-Chung; Wu, Bing-Fei; Chung, Meng-Liang; Chiu, Chung-Cheng; Wu, Ya-Ching
2015-01-01
Image enhancement techniques primarily improve the contrast of an image to lend it a better appearance. One of the popular enhancement methods is histogram equalization (HE) because of its simplicity and effectiveness. However, it is rarely applied to consumer electronics products because it can cause excessive contrast enhancement and feature loss problems. These problems make the images processed by HE look unnatural and introduce unwanted artifacts in them. In this study, a visual contrast enhancement algorithm (VCEA) based on HE is proposed. VCEA considers the requirements of the human visual perception in order to address the drawbacks of HE. It effectively solves the excessive contrast enhancement problem by adjusting the spaces between two adjacent gray values of the HE histogram. In addition, VCEA reduces the effects of the feature loss problem by using the obtained spaces. Furthermore, VCEA enhances the detailed textures of an image to generate an enhanced image with better visual quality. Experimental results show that images obtained by applying VCEA have higher contrast and are more suited to human visual perception than those processed by HE and other HE-based methods. PMID:26184219
An adaptive enhancement algorithm for infrared video based on modified k-means clustering
NASA Astrophysics Data System (ADS)
Zhang, Linze; Wang, Jingqi; Wu, Wen
2016-09-01
In this paper, we have proposed a video enhancement algorithm to improve the output video of the infrared camera. Sometimes the video obtained by infrared camera is very dark since there is no clear target. In this case, infrared video should be divided into frame images by frame extraction, in order to carry out the image enhancement. For the first frame image, which can be divided into k sub images by using K-means clustering according to the gray interval it occupies before k sub images' histogram equalization according to the amount of information per sub image, we used a method to solve a problem that final cluster centers close to each other in some cases; and for the other frame images, their initial cluster centers can be determined by the final clustering centers of the previous ones, and the histogram equalization of each sub image will be carried out after image segmentation based on K-means clustering. The histogram equalization can make the gray value of the image to the whole gray level, and the gray level of each sub image is determined by the ratio of pixels to a frame image. Experimental results show that this algorithm can improve the contrast of infrared video where night target is not obvious which lead to a dim scene, and reduce the negative effect given by the overexposed pixels adaptively in a certain range.
Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei
2013-01-01
Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy. PMID:23482880
Generalized image contrast enhancement technique based on Heinemann contrast discrimination model
NASA Astrophysics Data System (ADS)
Liu, Hong; Nodine, Calvin F.
1994-03-01
This paper presents a generalized image contrast enhancement technique which equalizes perceived brightness based on the Heinemann contrast discrimination model. This is a modified algorithm which presents an improvement over the previous study by Mokrane in its mathematically proven existence of a unique solution and in its easily tunable parameterization. The model uses a log-log representation of contrast luminosity between targets and the surround in a fixed luminosity background setting. The algorithm consists of two nonlinear gray-scale mapping functions which have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of gray scale distribution of the image, and can be uniquely determined once the previous three are given. Tests have been carried out to examine the effectiveness of the algorithm for increasing the overall contrast of images. It can be demonstrated that the generalized algorithm provides better contrast enhancement than histogram equalization. In fact, the histogram equalization technique is a special case of the proposed mapping.
Hue-preserving and saturation-improved color histogram equalization algorithm.
Song, Ki Sun; Kang, Hee; Kang, Moon Gi
2016-06-01
In this paper, an algorithm is proposed to improve contrast and saturation without color degradation. The local histogram equalization (HE) method offers better performance than the global HE method, whereas the local HE method sometimes produces undesirable results due to the block-based processing. The proposed contrast-enhancement (CE) algorithm reflects the characteristics of the global HE method in the local HE method to avoid the artifacts, while global and local contrasts are enhanced. There are two ways to apply the proposed CE algorithm to color images. One is luminance processing methods, and the other one is each channel processing methods. However, these ways incur excessive or reduced saturation and color degradation problems. The proposed algorithm solves these problems by using channel adaptive equalization and similarity of ratios between the channels. Experimental results show that the proposed algorithm enhances contrast and saturation while preserving the hue and producing better performance than existing methods in terms of objective evaluation metrics.
Lower-upper-threshold correlation for underwater range-gated imaging self-adaptive enhancement.
Sun, Liang; Wang, Xinwei; Liu, Xiaoquan; Ren, Pengdao; Lei, Pingshun; He, Jun; Fan, Songtao; Zhou, Yan; Liu, Yuliang
2016-10-10
In underwater range-gated imaging (URGI), enhancement of low-brightness and low-contrast images is critical for human observation. Traditional histogram equalizations over-enhance images, with the result of details being lost. To compress over-enhancement, a lower-upper-threshold correlation method is proposed for underwater range-gated imaging self-adaptive enhancement based on double-plateau histogram equalization. The lower threshold determines image details and compresses over-enhancement. It is correlated with the upper threshold. First, the upper threshold is updated by searching for the local maximum in real time, and then the lower threshold is calculated by the upper threshold and the number of nonzero units selected from a filtered histogram. With this method, the backgrounds of underwater images are constrained with enhanced details. Finally, the proof experiments are performed. Peak signal-to-noise-ratio, variance, contrast, and human visual properties are used to evaluate the objective quality of the global and regions of interest images. The evaluation results demonstrate that the proposed method adaptively selects the proper upper and lower thresholds under different conditions. The proposed method contributes to URGI with effective image enhancement for human eyes.
Sund, T; Olsen, J B
2006-09-01
To investigate whether sliding window adaptive histogram equalization (SWAHE) of digital mammograms improves the detection of simulated calcifications, as compared to images normalized by global histogram equalization (GHE). Direct digital mammograms were obtained from mammary tissue phantoms superimposed with different frames. Each frame was divided into forty squares by a wire mesh, and contained granular calcifications randomly positioned in about 50% of the squares. Three radiologists read the mammograms on a display monitor. They classified their confidence in the presence of microcalcifications in each square on a scale of 1 to 5. Images processed with GHE were first read and used as a reference. In a later session, the same images processed with SWAHE were read. The results were compared using ROC methodology. When the total areas AZ were compared, the results were completely equivocal. When comparing the high-specificity partial ROC area AZ,0.2 below false-positive fraction (FPF) 0.20, two of the three observers performed best with the images processed with SWAHE. The difference was not statistically significant. When the reader's confidence threshold in malignancy is set at a high level, increasing the contrast of mammograms with SWAHE may enhance the visibility of microcalcifications without adversely affecting the false-positive rate. When the reader's confidence threshold is set at a low level, the effect of SWAHE is an increase of false positives. Further investigation is needed to confirm the validity of the conclusions.
Histogram analysis for smartphone-based rapid hematocrit determination
Jalal, Uddin M.; Kim, Sang C.; Shim, Joon S.
2017-01-01
A novel and rapid analysis technique using histogram has been proposed for the colorimetric quantification of blood hematocrits. A smartphone-based “Histogram” app for the detection of hematocrits has been developed integrating the smartphone embedded camera with a microfluidic chip via a custom-made optical platform. The developed histogram analysis shows its effectiveness in the automatic detection of sample channel including auto-calibration and can analyze the single-channel as well as multi-channel images. Furthermore, the analyzing method is advantageous to the quantification of blood-hematocrit both in the equal and varying optical conditions. The rapid determination of blood hematocrits carries enormous information regarding physiological disorders, and the use of such reproducible, cost-effective, and standard techniques may effectively help with the diagnosis and prevention of a number of human diseases. PMID:28717569
A psychophysical comparison of two methods for adaptive histogram equalization.
Zimmerman, J B; Cousins, S B; Hartzell, K M; Frisse, M E; Kahn, M G
1989-05-01
Adaptive histogram equalization (AHE) is a method for adaptive contrast enhancement of digital images. It is an automatic, reproducible method for the simultaneous viewing of contrast within a digital image with a large dynamic range. Recent experiments have shown that in specific cases, there is no significant difference in the ability of AHE and linear intensity windowing to display gray-scale contrast. More recently, a variant of AHE which limits the allowed contrast enhancement of the image has been proposed. This contrast-limited adaptive histogram equalization (CLAHE) produces images in which the noise content of an image is not excessively enhanced, but in which sufficient contrast is provided for the visualization of structures within the image. Images processed with CLAHE have a more natural appearance and facilitate the comparison of different areas of an image. However, the reduced contrast enhancement of CLAHE may hinder the ability of an observer to detect the presence of some significant gray-scale contrast. In this report, a psychophysical observer experiment was performed to determine if there is a significant difference in the ability of AHE and CLAHE to depict gray-scale contrast. Observers were presented with computed tomography (CT) images of the chest processed with AHE and CLAHE. Subtle artificial lesions were introduced into some images. The observers were asked to rate their confidence regarding the presence of the lesions; this rating-scale data was analyzed using receiver operating characteristic (ROC) curve techniques. These ROC curves were compared for significant differences in the observers' performances. In this report, no difference was found in the abilities of AHE and CLAHE to depict contrast information.
Video Segmentation Descriptors for Event Recognition
2014-12-08
Velastin, 3D Extended Histogram of Oriented Gradients (3DHOG) for Classification of Road Users in Urban Scenes , BMVC, 2009. [3] M.-Y. Chen and A. Hauptmann...computed on 3D volume outputted by the hierarchical segmentation . Each video is described as follows. Each supertube is temporally divided in n-frame...strength of these descriptors is their adaptability to the scene variations since they are grounded on a video segmentation . This makes them naturally robust
Information-Adaptive Image Encoding and Restoration
NASA Technical Reports Server (NTRS)
Park, Stephen K.; Rahman, Zia-ur
1998-01-01
The multiscale retinex with color restoration (MSRCR) has shown itself to be a very versatile automatic image enhancement algorithm that simultaneously provides dynamic range compression, color constancy, and color rendition. A number of algorithms exist that provide one or more of these features, but not all. In this paper we compare the performance of the MSRCR with techniques that are widely used for image enhancement. Specifically, we compare the MSRCR with color adjustment methods such as gamma correction and gain/offset application, histogram modification techniques such as histogram equalization and manual histogram adjustment, and other more powerful techniques such as homomorphic filtering and 'burning and dodging'. The comparison is carried out by testing the suite of image enhancement methods on a set of diverse images. We find that though some of these techniques work well for some of these images, only the MSRCR performs universally well oil the test set.
A Comparison of the Multiscale Retinex With Other Image Enhancement Techniques
NASA Technical Reports Server (NTRS)
Rahman, Zia-Ur; Woodell, Glenn A.; Jobson, Daniel J.
1997-01-01
The multiscale retinex with color restoration (MSRCR) has shown itself to be a very versatile automatic image enhancement algorithm that simultaneously provides dynamic range compression, color constancy, and color rendition. A number of algorithms exist that provide one or more of these features, but not all. In this paper we compare the performance of the MSRCR with techniques that are widely used for image enhancement. Specifically, we compare the MSRCR with color adjustment methods such as gamma correction and gain/offset application, histogram modification techniques such as histogram equalization and manual histogram adjustment, and other more powerful techniques such as homomorphic filtering and 'burning and dodging'. The comparison is carried out by testing the suite of image enhancement methods on a set of diverse images. We find that though some of these techniques work well for some of these images, only the MSRCR performs universally well on the test set.
NASA Astrophysics Data System (ADS)
Lei, Tianhu; Udupa, Jayaram K.; Moonis, Gul; Schwartz, Eric; Balcer, Laura
2005-04-01
Based on Fuzzy Connectedness (FC) object delineation principles and algorithms, a hierarchical brain tissue segmentation technique has been developed for MR images. After MR image background intensity inhomogeneity correction and intensity standardization, three FC objects for cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) are generated via FC object delineation, and an intracranial (IC) mask is created via morphological operations. Then, the IC mask is decomposed into parenchymal (BP) and CSF masks, while the BP mask is separated into WM and GM masks. WM mask is further divided into pure and dirty white matter masks (PWM and DWM). In Multiple Sclerosis studies, a severe white matter lesion (LS) mask is defined from DWM mask. Based on the segmented brain tissue images, a histogram-based method has been developed to find disease-specific, image-based quantitative markers for characterizing the macromolecular manifestation of the two diseases. These same procedures have been applied to 65 MS (46 patients and 19 normal subjects) and 25 AD (15 patients and 10 normal subjects) data sets, each of which consists of FSE PD- and T2-weighted MR images. Histograms representing standardized PD and T2 intensity distributions and their numerical parameters provide an effective means for characterizing the two diseases. The procedures are systematic, nearly automated, robust, and the results are reproducible.
NASA Technical Reports Server (NTRS)
Welch, Ronald M.
1996-01-01
The ASTER polar cloud mask algorithm is currently under development. Several classification techniques have been developed and implemented. The merits and accuracy of each are being examined. The classification techniques under investigation include fuzzy logic, hierarchical neural network, and a pairwise histogram comparison scheme based on sample histograms called the Paired Histogram Method. Scene adaptive methods also are being investigated as a means to improve classifier performance. The feature, arctan of Band 4 and Band 5, and the Band 2 vs. Band 4 feature space are key to separating frozen water (e.g., ice/snow, slush/wet ice, etc.) from cloud over frozen water, and land from cloud over land, respectively. A total of 82 Landsat TM circumpolar scenes are being used as a basis for algorithm development and testing. Numerous spectral features are being tested and include the 7 basic Landsat TM bands, in addition to ratios, differences, arctans, and normalized differences of each combination of bands. A technique for deriving cloud base and top height is developed. It uses 2-D cross correlation between a cloud edge and its corresponding shadow to determine the displacement of the cloud from its shadow. The height is then determined from this displacement, the solar zenith angle, and the sensor viewing angle.
Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y
2011-01-01
To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.
A hierarchical word-merging algorithm with class separability measure.
Wang, Lei; Zhou, Luping; Shen, Chunhua; Liu, Lingqiao; Liu, Huan
2014-03-01
In image recognition with the bag-of-features model, a small-sized visual codebook is usually preferred to obtain a low-dimensional histogram representation and high computational efficiency. Such a visual codebook has to be discriminative enough to achieve excellent recognition performance. To create a compact and discriminative codebook, in this paper we propose to merge the visual words in a large-sized initial codebook by maximally preserving class separability. We first show that this results in a difficult optimization problem. To deal with this situation, we devise a suboptimal but very efficient hierarchical word-merging algorithm, which optimally merges two words at each level of the hierarchy. By exploiting the characteristics of the class separability measure and designing a novel indexing structure, the proposed algorithm can hierarchically merge 10,000 visual words down to two words in merely 90 seconds. Also, to show the properties of the proposed algorithm and reveal its advantages, we conduct detailed theoretical analysis to compare it with another hierarchical word-merging algorithm that maximally preserves mutual information, obtaining interesting findings. Experimental studies are conducted to verify the effectiveness of the proposed algorithm on multiple benchmark data sets. As shown, it can efficiently produce more compact and discriminative codebooks than the state-of-the-art hierarchical word-merging algorithms, especially when the size of the codebook is significantly reduced.
A method for normalizing pathology images to improve feature extraction for quantitative pathology.
Tam, Allison; Barker, Jocelyn; Rubin, Daniel
2016-01-01
With the advent of digital slide scanning technologies and the potential proliferation of large repositories of digital pathology images, many research studies can leverage these data for biomedical discovery and to develop clinical applications. However, quantitative analysis of digital pathology images is impeded by batch effects generated by varied staining protocols and staining conditions of pathological slides. To overcome this problem, this paper proposes a novel, fully automated stain normalization method to reduce batch effects and thus aid research in digital pathology applications. Their method, intensity centering and histogram equalization (ICHE), normalizes a diverse set of pathology images by first scaling the centroids of the intensity histograms to a common point and then applying a modified version of contrast-limited adaptive histogram equalization. Normalization was performed on two datasets of digitized hematoxylin and eosin (H&E) slides of different tissue slices from the same lung tumor, and one immunohistochemistry dataset of digitized slides created by restaining one of the H&E datasets. The ICHE method was evaluated based on image intensity values, quantitative features, and the effect on downstream applications, such as a computer aided diagnosis. For comparison, three methods from the literature were reimplemented and evaluated using the same criteria. The authors found that ICHE not only improved performance compared with un-normalized images, but in most cases showed improvement compared with previous methods for correcting batch effects in the literature. ICHE may be a useful preprocessing step a digital pathology image processing pipeline.
NASA Astrophysics Data System (ADS)
Hadida, Jonathan; Desrosiers, Christian; Duong, Luc
2011-03-01
The segmentation of anatomical structures in Computed Tomography Angiography (CTA) is a pre-operative task useful in image guided surgery. Even though very robust and precise methods have been developed to help achieving a reliable segmentation (level sets, active contours, etc), it remains very time consuming both in terms of manual interactions and in terms of computation time. The goal of this study is to present a fast method to find coarse anatomical structures in CTA with few parameters, based on hierarchical clustering. The algorithm is organized as follows: first, a fast non-parametric histogram clustering method is proposed to compute a piecewise constant mask. A second step then indexes all the space-connected regions in the piecewise constant mask. Finally, a hierarchical clustering is achieved to build a graph representing the connections between the various regions in the piecewise constant mask. This step builds up a structural knowledge about the image. Several interactive features for segmentation are presented, for instance association or disassociation of anatomical structures. A comparison with the Mean-Shift algorithm is presented.
Bas-relief generation using adaptive histogram equalization.
Sun, Xianfang; Rosin, Paul L; Martin, Ralph R; Langbein, Frank C
2009-01-01
An algorithm is presented to automatically generate bas-reliefs based on adaptive histogram equalization (AHE), starting from an input height field. A mesh model may alternatively be provided, in which case a height field is first created via orthogonal or perspective projection. The height field is regularly gridded and treated as an image, enabling a modified AHE method to be used to generate a bas-relief with a user-chosen height range. We modify the original image-contrast-enhancement AHE method to use gradient weights also to enhance the shape features of the bas-relief. To effectively compress the height field, we limit the height-dependent scaling factors used to compute relative height variations in the output from height variations in the input; this prevents any height differences from having too great effect. Results of AHE over different neighborhood sizes are averaged to preserve information at different scales in the resulting bas-relief. Compared to previous approaches, the proposed algorithm is simple and yet largely preserves original shape features. Experiments show that our results are, in general, comparable to and in some cases better than the best previously published methods.
A Framework for Reproducible Latent Fingerprint Enhancements.
Carasso, Alfred S
2014-01-01
Photoshop processing of latent fingerprints is the preferred methodology among law enforcement forensic experts, but that appproach is not fully reproducible and may lead to questionable enhancements. Alternative, independent, fully reproducible enhancements, using IDL Histogram Equalization and IDL Adaptive Histogram Equalization, can produce better-defined ridge structures, along with considerable background information. Applying a systematic slow motion smoothing procedure to such IDL enhancements, based on the rapid FFT solution of a Lévy stable fractional diffusion equation, can attenuate background detail while preserving ridge information. The resulting smoothed latent print enhancements are comparable to, but distinct from, forensic Photoshop images suitable for input into automated fingerprint identification systems, (AFIS). In addition, this progressive smoothing procedure can be reexamined by displaying the suite of progressively smoother IDL images. That suite can be stored, providing an audit trail that allows monitoring for possible loss of useful information, in transit to the user-selected optimal image. Such independent and fully reproducible enhancements provide a valuable frame of reference that may be helpful in informing, complementing, and possibly validating the forensic Photoshop methodology.
A Framework for Reproducible Latent Fingerprint Enhancements
Carasso, Alfred S.
2014-01-01
Photoshop processing1 of latent fingerprints is the preferred methodology among law enforcement forensic experts, but that appproach is not fully reproducible and may lead to questionable enhancements. Alternative, independent, fully reproducible enhancements, using IDL Histogram Equalization and IDL Adaptive Histogram Equalization, can produce better-defined ridge structures, along with considerable background information. Applying a systematic slow motion smoothing procedure to such IDL enhancements, based on the rapid FFT solution of a Lévy stable fractional diffusion equation, can attenuate background detail while preserving ridge information. The resulting smoothed latent print enhancements are comparable to, but distinct from, forensic Photoshop images suitable for input into automated fingerprint identification systems, (AFIS). In addition, this progressive smoothing procedure can be reexamined by displaying the suite of progressively smoother IDL images. That suite can be stored, providing an audit trail that allows monitoring for possible loss of useful information, in transit to the user-selected optimal image. Such independent and fully reproducible enhancements provide a valuable frame of reference that may be helpful in informing, complementing, and possibly validating the forensic Photoshop methodology. PMID:26601028
Hierarchical structures of amorphous solids characterized by persistent homology
Hiraoka, Yasuaki; Nakamura, Takenobu; Hirata, Akihiko; Escolar, Emerson G.; Matsue, Kaname; Nishiura, Yasumasa
2016-01-01
This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods. PMID:27298351
Blind identification of image manipulation type using mixed statistical moments
NASA Astrophysics Data System (ADS)
Jeong, Bo Gyu; Moon, Yong Ho; Eom, Il Kyu
2015-01-01
We present a blind identification of image manipulation types such as blurring, scaling, sharpening, and histogram equalization. Motivated by the fact that image manipulations can change the frequency characteristics of an image, we introduce three types of feature vectors composed of statistical moments. The proposed statistical moments are generated from separated wavelet histograms, the characteristic functions of the wavelet variance, and the characteristic functions of the spatial image. Our method can solve the n-class classification problem. Through experimental simulations, we demonstrate that our proposed method can achieve high performance in manipulation type detection. The average rate of the correctly identified manipulation types is as high as 99.22%, using 10,800 test images and six manipulation types including the authentic image.
A method for normalizing pathology images to improve feature extraction for quantitative pathology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tam, Allison; Barker, Jocelyn; Rubin, Daniel
Purpose: With the advent of digital slide scanning technologies and the potential proliferation of large repositories of digital pathology images, many research studies can leverage these data for biomedical discovery and to develop clinical applications. However, quantitative analysis of digital pathology images is impeded by batch effects generated by varied staining protocols and staining conditions of pathological slides. Methods: To overcome this problem, this paper proposes a novel, fully automated stain normalization method to reduce batch effects and thus aid research in digital pathology applications. Their method, intensity centering and histogram equalization (ICHE), normalizes a diverse set of pathology imagesmore » by first scaling the centroids of the intensity histograms to a common point and then applying a modified version of contrast-limited adaptive histogram equalization. Normalization was performed on two datasets of digitized hematoxylin and eosin (H&E) slides of different tissue slices from the same lung tumor, and one immunohistochemistry dataset of digitized slides created by restaining one of the H&E datasets. Results: The ICHE method was evaluated based on image intensity values, quantitative features, and the effect on downstream applications, such as a computer aided diagnosis. For comparison, three methods from the literature were reimplemented and evaluated using the same criteria. The authors found that ICHE not only improved performance compared with un-normalized images, but in most cases showed improvement compared with previous methods for correcting batch effects in the literature. Conclusions: ICHE may be a useful preprocessing step a digital pathology image processing pipeline.« less
The failure of formal rights and equality in the clinic: a critique of bioethics.
Atkins, Chloe G K
2005-01-01
For communities which espouse egalitarian principles, the hierarchical nature of care-giving relationships poses an extraordinary challenge. Patients' accounts of their illnesses and of their medical care capture the latent tension which exists between notional, political equality and the need for dependency on care from others. I believe that the power imbalance in doctor-patient relationships has broad implications for liberal democracies. Professional and care-giving relationships almost always consist of an imbalance of knowledge and expertise which no template of egalitarian moralism can suppress. When we seek help or guidance from authority figures, we are at a disadvantage politically even though we may be equal citizens theoretically and legally. Hierarchic relationships persist within democracies. Moreover, they tend to exist within a realm of privacy which is only partially visible from the social realm. In the end, traditional notions of liberal autonomy and egalitarianism do not properly describe or monitor these interactions. Liberal rhetoric (i.e., terms such as equality, rights, consent, etc.) pervades much of bioethical literature and interventions but, this very language tends to mask the persistence of structural hierarchies in the clinic. The doctor-patient relationship forces democratic communities to confront the problem of continuing hierarchic power relations and challenges liberalism to revise its understanding of individual autonomies.
Pei Li; Jing He; A. Lynn Abbott; Daniel L. Schmoldt
1996-01-01
This paper analyses computed tomography (CT) images of hardwood logs, with the goal of locating internal defects. The ability to detect and identify defects automatically is a critical component of efficiency improvements for future sawmills and veneer mills. This paper describes an approach in which 1) histogram equalization is used during preprocessing to normalize...
Is there a preference for linearity when viewing natural images?
NASA Astrophysics Data System (ADS)
Kane, David; Bertamío, Marcelo
2015-01-01
The system gamma of the imaging pipeline, defined as the product of the encoding and decoding gammas, is typically greater than one and is stronger for images viewed with a dark background (e.g. cinema) than those viewed in lighter conditions (e.g. office displays).1-3 However, for high dynamic range (HDR) images reproduced on a low dynamic range (LDR) monitor, subjects often prefer a system gamma of less than one,4 presumably reflecting the greater need for histogram equalization in HDR images. In this study we ask subjects to rate the perceived quality of images presented on a LDR monitor using various levels of system gamma. We reveal that the optimal system gamma is below one for images with a HDR and approaches or exceeds one for images with a LDR. Additionally, the highest quality scores occur for images where a system gamma of one is optimal, suggesting a preference for linearity (where possible). We find that subjective image quality scores can be predicted by computing the degree of histogram equalization of the lightness distribution. Accordingly, an optimal, image dependent system gamma can be computed that maximizes perceived image quality.
Detection and tracking of gas plumes in LWIR hyperspectral video sequence data
NASA Astrophysics Data System (ADS)
Gerhart, Torin; Sunu, Justin; Lieu, Lauren; Merkurjev, Ekaterina; Chang, Jen-Mei; Gilles, Jérôme; Bertozzi, Andrea L.
2013-05-01
Automated detection of chemical plumes presents a segmentation challenge. The segmentation problem for gas plumes is difficult due to the diffusive nature of the cloud. The advantage of considering hyperspectral images in the gas plume detection problem over the conventional RGB imagery is the presence of non-visual data, allowing for a richer representation of information. In this paper we present an effective method of visualizing hyperspectral video sequences containing chemical plumes and investigate the effectiveness of segmentation techniques on these post-processed videos. Our approach uses a combination of dimension reduction and histogram equalization to prepare the hyperspectral videos for segmentation. First, Principal Components Analysis (PCA) is used to reduce the dimension of the entire video sequence. This is done by projecting each pixel onto the first few Principal Components resulting in a type of spectral filter. Next, a Midway method for histogram equalization is used. These methods redistribute the intensity values in order to reduce icker between frames. This properly prepares these high-dimensional video sequences for more traditional segmentation techniques. We compare the ability of various clustering techniques to properly segment the chemical plume. These include K-means, spectral clustering, and the Ginzburg-Landau functional.
Direct handling of equality constraints in multilevel optimization
NASA Technical Reports Server (NTRS)
Renaud, John E.; Gabriele, Gary A.
1990-01-01
In recent years there have been several hierarchic multilevel optimization algorithms proposed and implemented in design studies. Equality constraints are often imposed between levels in these multilevel optimizations to maintain system and subsystem variable continuity. Equality constraints of this nature will be referred to as coupling equality constraints. In many implementation studies these coupling equality constraints have been handled indirectly. This indirect handling has been accomplished using the coupling equality constraints' explicit functional relations to eliminate design variables (generally at the subsystem level), with the resulting optimization taking place in a reduced design space. In one multilevel optimization study where the coupling equality constraints were handled directly, the researchers encountered numerical difficulties which prevented their multilevel optimization from reaching the same minimum found in conventional single level solutions. The researchers did not explain the exact nature of the numerical difficulties other than to associate them with the direct handling of the coupling equality constraints. The coupling equality constraints are handled directly, by employing the Generalized Reduced Gradient (GRG) method as the optimizer within a multilevel linear decomposition scheme based on the Sobieski hierarchic algorithm. Two engineering design examples are solved using this approach. The results show that the direct handling of coupling equality constraints in a multilevel optimization does not introduce any problems when the GRG method is employed as the internal optimizer. The optimums achieved are comparable to those achieved in single level solutions and in multilevel studies where the equality constraints have been handled indirectly.
INFERRING THE ECCENTRICITY DISTRIBUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogg, David W.; Bovy, Jo; Myers, Adam D., E-mail: david.hogg@nyu.ed
2010-12-20
Standard maximum-likelihood estimators for binary-star and exoplanet eccentricities are biased high, in the sense that the estimated eccentricity tends to be larger than the true eccentricity. As with most non-trivial observables, a simple histogram of estimated eccentricities is not a good estimate of the true eccentricity distribution. Here, we develop and test a hierarchical probabilistic method for performing the relevant meta-analysis, that is, inferring the true eccentricity distribution, taking as input the likelihood functions for the individual star eccentricities, or samplings of the posterior probability distributions for the eccentricities (under a given, uninformative prior). The method is a simple implementationmore » of a hierarchical Bayesian model; it can also be seen as a kind of heteroscedastic deconvolution. It can be applied to any quantity measured with finite precision-other orbital parameters, or indeed any astronomical measurements of any kind, including magnitudes, distances, or photometric redshifts-so long as the measurements have been communicated as a likelihood function or a posterior sampling.« less
A novel method for the evaluation of uncertainty in dose-volume histogram computation.
Henríquez, Francisco Cutanda; Castrillón, Silvia Vargas
2008-03-15
Dose-volume histograms (DVHs) are a useful tool in state-of-the-art radiotherapy treatment planning, and it is essential to recognize their limitations. Even after a specific dose-calculation model is optimized, dose distributions computed by using treatment-planning systems are affected by several sources of uncertainty, such as algorithm limitations, measurement uncertainty in the data used to model the beam, and residual differences between measured and computed dose. This report presents a novel method to take them into account. To take into account the effect of associated uncertainties, a probabilistic approach using a new kind of histogram, a dose-expected volume histogram, is introduced. The expected value of the volume in the region of interest receiving an absorbed dose equal to or greater than a certain value is found by using the probability distribution of the dose at each point. A rectangular probability distribution is assumed for this point dose, and a formulation that accounts for uncertainties associated with point dose is presented for practical computations. This method is applied to a set of DVHs for different regions of interest, including 6 brain patients, 8 lung patients, 8 pelvis patients, and 6 prostate patients planned for intensity-modulated radiation therapy. Results show a greater effect on planning target volume coverage than in organs at risk. In cases of steep DVH gradients, such as planning target volumes, this new method shows the largest differences with the corresponding DVH; thus, the effect of the uncertainty is larger.
Zitek, Emily M; Tiedens, Larissa Z
2012-01-01
We tested the hypothesis that social hierarchies are fluent social stimuli; that is, they are processed more easily and therefore liked better than less hierarchical stimuli. In Study 1, pairs of people in a hierarchy based on facial dominance were identified faster than pairs of people equal in their facial dominance. In Study 2, a diagram representing hierarchy was memorized more quickly than a diagram representing equality or a comparison diagram. This faster processing led the hierarchy diagram to be liked more than the equality diagram. In Study 3, participants were best able to learn a set of relationships that represented hierarchy (asymmetry of power)--compared to relationships in which there was asymmetry of friendliness, or compared to relationships in which there was symmetry--and this processing ease led them to like the hierarchy the most. In Study 4, participants found it easier to make decisions about a company that was more hierarchical and thus thought the hierarchical organization had more positive qualities. In Study 5, familiarity as a basis for the fluency of hierarchy was demonstrated by showing greater fluency for male than female hierarchies. This study also showed that when social relationships are difficult to learn, people's preference for hierarchy increases. Taken together, these results suggest one reason people might like hierarchies--hierarchies are easy to process. This fluency for social hierarchies might contribute to the construction and maintenance of hierarchies.
Efficient visibility-driven medical image visualisation via adaptive binned visibility histogram.
Jung, Younhyun; Kim, Jinman; Kumar, Ashnil; Feng, David Dagan; Fulham, Michael
2016-07-01
'Visibility' is a fundamental optical property that represents the observable, by users, proportion of the voxels in a volume during interactive volume rendering. The manipulation of this 'visibility' improves the volume rendering processes; for instance by ensuring the visibility of regions of interest (ROIs) or by guiding the identification of an optimal rendering view-point. The construction of visibility histograms (VHs), which represent the distribution of all the visibility of all voxels in the rendered volume, enables users to explore the volume with real-time feedback about occlusion patterns among spatially related structures during volume rendering manipulations. Volume rendered medical images have been a primary beneficiary of VH given the need to ensure that specific ROIs are visible relative to the surrounding structures, e.g. the visualisation of tumours that may otherwise be occluded by neighbouring structures. VH construction and its subsequent manipulations, however, are computationally expensive due to the histogram binning of the visibilities. This limits the real-time application of VH to medical images that have large intensity ranges and volume dimensions and require a large number of histogram bins. In this study, we introduce an efficient adaptive binned visibility histogram (AB-VH) in which a smaller number of histogram bins are used to represent the visibility distribution of the full VH. We adaptively bin medical images by using a cluster analysis algorithm that groups the voxels according to their intensity similarities into a smaller subset of bins while preserving the distribution of the intensity range of the original images. We increase efficiency by exploiting the parallel computation and multiple render targets (MRT) extension of the modern graphical processing units (GPUs) and this enables efficient computation of the histogram. We show the application of our method to single-modality computed tomography (CT), magnetic resonance (MR) imaging and multi-modality positron emission tomography-CT (PET-CT). In our experiments, the AB-VH markedly improved the computational efficiency for the VH construction and thus improved the subsequent VH-driven volume manipulations. This efficiency was achieved without major degradation in the VH visually and numerical differences between the AB-VH and its full-bin counterpart. We applied several variants of the K-means clustering algorithm with varying Ks (the number of clusters) and found that higher values of K resulted in better performance at a lower computational gain. The AB-VH also had an improved performance when compared to the conventional method of down-sampling of the histogram bins (equal binning) for volume rendering visualisation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of the hand vein pattern for people recognition
NASA Astrophysics Data System (ADS)
Castro-Ortega, R.; Toxqui-Quitl, C.; Cristóbal, G.; Marcos, J. Victor; Padilla-Vivanco, A.; Hurtado Pérez, R.
2015-09-01
The shape of the hand vascular pattern contains useful and unique features that can be used for identifying and authenticating people, with applications in access control, medicine and financial services. In this work, an optical system for the image acquisition of the hand vascular pattern is implemented. It consists of a CCD camera with sensitivity in the IR and a light source with emission in the 880 nm. The IR radiation interacts with the desoxyhemoglobin, hemoglobin and water present in the blood of the veins, making possible to see the vein pattern underneath skin. The segmentation of the Region Of Interest (ROI) is achieved using geometrical moments locating the centroid of an image. For enhancement of the vein pattern we use the technique of Histogram Equalization and Contrast Limited Adaptive Histogram Equalization (CLAHE). In order to remove unnecessary information such as body hair and skinfolds, a low pass filter is implemented. A method based on geometric moments is used to obtain the invariant descriptors of the input images. The classification task is achieved using Artificial Neural Networks (ANN) and K-Nearest Neighbors (K-nn) algorithms. Experimental results using our database show a percentage of correct classification, higher of 86.36% with ANN for 912 images of 38 people with 12 versions each one.
Pisano, E D; Cole, E B; Major, S; Zong, S; Hemminger, B M; Muller, K E; Johnston, R E; Walsh, R; Conant, E; Fajardo, L L; Feig, S A; Nishikawa, R M; Yaffe, M J; Williams, M B; Aylward, S R
2000-09-01
To determine the preferences of radiologists among eight different image processing algorithms applied to digital mammograms obtained for screening and diagnostic imaging tasks. Twenty-eight images representing histologically proved masses or calcifications were obtained by using three clinically available digital mammographic units. Images were processed and printed on film by using manual intensity windowing, histogram-based intensity windowing, mixture model intensity windowing, peripheral equalization, multiscale image contrast amplification (MUSICA), contrast-limited adaptive histogram equalization, Trex processing, and unsharp masking. Twelve radiologists compared the processed digital images with screen-film mammograms obtained in the same patient for breast cancer screening and breast lesion diagnosis. For the screening task, screen-film mammograms were preferred to all digital presentations, but the acceptability of images processed with Trex and MUSICA algorithms were not significantly different. All printed digital images were preferred to screen-film radiographs in the diagnosis of masses; mammograms processed with unsharp masking were significantly preferred. For the diagnosis of calcifications, no processed digital mammogram was preferred to screen-film mammograms. When digital mammograms were preferred to screen-film mammograms, radiologists selected different digital processing algorithms for each of three mammographic reading tasks and for different lesion types. Soft-copy display will eventually allow radiologists to select among these options more easily.
Understanding seasonal variability of uncertainty in hydrological prediction
NASA Astrophysics Data System (ADS)
Li, M.; Wang, Q. J.
2012-04-01
Understanding uncertainty in hydrological prediction can be highly valuable for improving the reliability of streamflow prediction. In this study, a monthly water balance model, WAPABA, in a Bayesian joint probability with error models are presented to investigate the seasonal dependency of prediction error structure. A seasonal invariant error model, analogous to traditional time series analysis, uses constant parameters for model error and account for no seasonal variations. In contrast, a seasonal variant error model uses a different set of parameters for bias, variance and autocorrelation for each individual calendar month. Potential connection amongst model parameters from similar months is not considered within the seasonal variant model and could result in over-fitting and over-parameterization. A hierarchical error model further applies some distributional restrictions on model parameters within a Bayesian hierarchical framework. An iterative algorithm is implemented to expedite the maximum a posterior (MAP) estimation of a hierarchical error model. Three error models are applied to forecasting streamflow at a catchment in southeast Australia in a cross-validation analysis. This study also presents a number of statistical measures and graphical tools to compare the predictive skills of different error models. From probability integral transform histograms and other diagnostic graphs, the hierarchical error model conforms better to reliability when compared to the seasonal invariant error model. The hierarchical error model also generally provides the most accurate mean prediction in terms of the Nash-Sutcliffe model efficiency coefficient and the best probabilistic prediction in terms of the continuous ranked probability score (CRPS). The model parameters of the seasonal variant error model are very sensitive to each cross validation, while the hierarchical error model produces much more robust and reliable model parameters. Furthermore, the result of the hierarchical error model shows that most of model parameters are not seasonal variant except for error bias. The seasonal variant error model is likely to use more parameters than necessary to maximize the posterior likelihood. The model flexibility and robustness indicates that the hierarchical error model has great potential for future streamflow predictions.
NASA Astrophysics Data System (ADS)
Gan, Chee Kwan; Challacombe, Matt
2003-05-01
Recently, early onset linear scaling computation of the exchange-correlation matrix has been achieved using hierarchical cubature [J. Chem. Phys. 113, 10037 (2000)]. Hierarchical cubature differs from other methods in that the integration grid is adaptive and purely Cartesian, which allows for a straightforward domain decomposition in parallel computations; the volume enclosing the entire grid may be simply divided into a number of nonoverlapping boxes. In our data parallel approach, each box requires only a fraction of the total density to perform the necessary numerical integrations due to the finite extent of Gaussian-orbital basis sets. This inherent data locality may be exploited to reduce communications between processors as well as to avoid memory and copy overheads associated with data replication. Although the hierarchical cubature grid is Cartesian, naive boxing leads to irregular work loads due to strong spatial variations of the grid and the electron density. In this paper we describe equal time partitioning, which employs time measurement of the smallest sub-volumes (corresponding to the primitive cubature rule) to load balance grid-work for the next self-consistent-field iteration. After start-up from a heuristic center of mass partitioning, equal time partitioning exploits smooth variation of the density and grid between iterations to achieve load balance. With the 3-21G basis set and a medium quality grid, equal time partitioning applied to taxol (62 heavy atoms) attained a speedup of 61 out of 64 processors, while for a 110 molecule water cluster at standard density it achieved a speedup of 113 out of 128. The efficiency of equal time partitioning applied to hierarchical cubature improves as the grid work per processor increases. With a fine grid and the 6-311G(df,p) basis set, calculations on the 26 atom molecule α-pinene achieved a parallel efficiency better than 99% with 64 processors. For more coarse grained calculations, superlinear speedups are found to result from reduced computational complexity associated with data parallelism.
Robust Face Detection from Still Images
2014-01-01
significant change in false acceptance rates. Keywords— face detection; illumination; skin color variation; Haar-like features; OpenCV I. INTRODUCTION... OpenCV and an algorithm which used histogram equalization. The test is performed against 17 subjects under 576 viewing conditions from the extended Yale...original OpenCV algorithm proved the least accurate, having a hit rate of only 75.6%. It also had the lowest FAR but only by a slight margin at 25.2
A multiresolution processing method for contrast enhancement in portal imaging.
Gonzalez-Lopez, Antonio
2018-06-18
Portal images have a unique feature among the imaging modalities used in radiotherapy: they provide direct visualization of the irradiated volumes. However, contrast and spatial resolution are strongly limited due to the high energy of the radiation sources. Because of this, imaging modalities using x-ray energy beams have gained importance in the verification of patient positioning, replacing portal imaging. The purpose of this work was to develop a method for the enhancement of local contrast in portal images. The method operates in the subbands of a wavelet decomposition of the image, re-scaling them in such a way that coefficients in the high and medium resolution subbands are amplified, an approach totally different of those operating on the image histogram, widely used nowadays. Portal images of an anthropomorphic phantom were acquired in an electronic portal imaging device (EPID). Then, different re-scaling strategies were investigated, studying the effects of the scaling parameters on the enhanced images. Also, the effect of using different types of transforms was studied. Finally, the implemented methods were combined with histogram equalization methods like the contrast limited adaptive histogram equalization (CLAHE), and these combinations were compared. Uniform amplification of the detail subbands shows the best results in contrast enhancement. On the other hand, linear re-escalation of the high resolution subbands increases the visibility of fine detail of the images, at the expense of an increase in noise levels. Also, since processing is applied only to detail subbands, not to the approximation, the mean gray level of the image is minimally modified and no further display adjustments are required. It is shown that re-escalation of the detail subbands of portal images can be used as an efficient method for the enhancement of both, the local contrast and the resolution of these images. © 2018 Institute of Physics and Engineering in Medicine.
Sliding window adaptive histogram equalization of intraoral radiographs: effect on image quality.
Sund, T; Møystad, A
2006-05-01
To investigate whether contrast enhancement by non-interactive, sliding window adaptive histogram equalization (SWAHE) can enhance the image quality of intraoral radiographs in the dental clinic. Three dentists read 22 periapical and 12 bitewing storage phosphor (SP) radiographs. For the periapical readings they graded the quality of the examination with regard to visually locating the root apex. For the bitewing readings they registered all occurrences of approximal caries on a confidence scale. Each reading was first done on an unprocessed radiograph ("single-view"), and then re-done with the image processed with SWAHE displayed beside the unprocessed version ("twin-view"). The processing parameters for SWAHE were the same for all the images. For the periapical examinations, twin-view was judged to raise the image quality for 52% of those cases where the single-view quality was below the maximum. For the bitewing radiographs, there was a change of caries classification (both positive and negative) with twin-view in 19% of the cases, but with only a 3% net increase in the total number of caries registrations. For both examinations interobserver variance was unaffected. Non-interactive SWAHE applied to dental SP radiographs produces a supplemental contrast enhanced image which in twin-view reading improves the image quality of periapical examinations. SWAHE also affects caries diagnosis of bitewing images, and further study using a gold standard is warranted.
Quark masses and mixings with hierarchical Friedberg-Lee symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araki, Takeshi; Geng, C. Q.
2010-04-01
We consider the Friedberg-Lee symmetry for the quark sector and show that the symmetry closely relates to both quark masses and mixing angles. We also extend our scheme to the fourth generation quark model and find the relation |V{sub tb}{sup '}|{approx_equal}|V{sub t}{sup '}{sub b}|{approx_equal}m{sub b}/m{sub b}{sup '}<{lambda}{sup 2} with {lambda}{approx_equal}0.22 for m{sub b}=4.2 GeV and m{sub b}{sup '}>199 GeV.
NASA Astrophysics Data System (ADS)
Lee, Feifei; Kotani, Koji; Chen, Qiu; Ohmi, Tadahiro
2010-02-01
In this paper, a fast search algorithm for MPEG-4 video clips from video database is proposed. An adjacent pixel intensity difference quantization (APIDQ) histogram is utilized as the feature vector of VOP (video object plane), which had been reliably applied to human face recognition previously. Instead of fully decompressed video sequence, partially decoded data, namely DC sequence of the video object are extracted from the video sequence. Combined with active search, a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by total 15 hours of video contained of TV programs such as drama, talk, news, etc. to search for given 200 MPEG-4 video clips which each length is 15 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 80ms, and Equal Error Rate (ERR) of 2 % in drama and news categories are achieved, which are more accurately and robust than conventional fast video search algorithm.
Pisano, E D; Zong, S; Hemminger, B M; DeLuca, M; Johnston, R E; Muller, K; Braeuning, M P; Pizer, S M
1998-11-01
The purpose of this project was to determine whether Contrast Limited Adaptive Histogram Equalization (CLAHE) improves detection of simulated spiculations in dense mammograms. Lines simulating the appearance of spiculations, a common marker of malignancy when visualized with masses, were embedded in dense mammograms digitized at 50 micron pixels, 12 bits deep. Film images with no CLAHE applied were compared to film images with nine different combinations of clip levels and region sizes applied. A simulated spiculation was embedded in a background of dense breast tissue, with the orientation of the spiculation varied. The key variables involved in each trial included the orientation of the spiculation, contrast level of the spiculation and the CLAHE settings applied to the image. Combining the 10 CLAHE conditions, 4 contrast levels and 4 orientations gave 160 combinations. The trials were constructed by pairing 160 combinations of key variables with 40 backgrounds. Twenty student observers were asked to detect the orientation of the spiculation in the image. There was a statistically significant improvement in detection performance for spiculations with CLAHE over unenhanced images when the region size was set at 32 with a clip level of 2, and when the region size was set at 32 with a clip level of 4. The selected CLAHE settings should be tested in the clinic with digital mammograms to determine whether detection of spiculations associated with masses detected at mammography can be improved.
Rasta, Seyed Hossein; Partovi, Mahsa Eisazadeh; Seyedarabi, Hadi; Javadzadeh, Alireza
2015-01-01
To investigate the effect of preprocessing techniques including contrast enhancement and illumination correction on retinal image quality, a comparative study was carried out. We studied and implemented a few illumination correction and contrast enhancement techniques on color retinal images to find out the best technique for optimum image enhancement. To compare and choose the best illumination correction technique we analyzed the corrected red and green components of color retinal images statistically and visually. The two contrast enhancement techniques were analyzed using a vessel segmentation algorithm by calculating the sensitivity and specificity. The statistical evaluation of the illumination correction techniques were carried out by calculating the coefficients of variation. The dividing method using the median filter to estimate background illumination showed the lowest Coefficients of variations in the red component. The quotient and homomorphic filtering methods after the dividing method presented good results based on their low Coefficients of variations. The contrast limited adaptive histogram equalization increased the sensitivity of the vessel segmentation algorithm up to 5% in the same amount of accuracy. The contrast limited adaptive histogram equalization technique has a higher sensitivity than the polynomial transformation operator as a contrast enhancement technique for vessel segmentation. Three techniques including the dividing method using the median filter to estimate background, quotient based and homomorphic filtering were found as the effective illumination correction techniques based on a statistical evaluation. Applying the local contrast enhancement technique, such as CLAHE, for fundus images presented good potentials in enhancing the vasculature segmentation.
Adaptive sigmoid function bihistogram equalization for image contrast enhancement
NASA Astrophysics Data System (ADS)
Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe
2015-09-01
Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.
An Approach to Improve the Quality of Infrared Images of Vein-Patterns
Lin, Chih-Lung
2011-01-01
This study develops an approach to improve the quality of infrared (IR) images of vein-patterns, which usually have noise, low contrast, low brightness and small objects of interest, thus requiring preprocessing to improve their quality. The main characteristics of the proposed approach are that no prior knowledge about the IR image is necessary and no parameters must be preset. Two main goals are sought: impulse noise reduction and adaptive contrast enhancement technologies. In our study, a fast median-based filter (FMBF) is developed as a noise reduction method. It is based on an IR imaging mechanism to detect the noisy pixels and on a modified median-based filter to remove the noisy pixels in IR images. FMBF has the advantage of a low computation load. In addition, FMBF can retain reasonably good edges and texture information when the size of the filter window increases. The most important advantage is that the peak signal-to-noise ratio (PSNR) caused by FMBF is higher than the PSNR caused by the median filter. A hybrid cumulative histogram equalization (HCHE) is proposed for adaptive contrast enhancement. HCHE can automatically generate a hybrid cumulative histogram (HCH) based on two different pieces of information about the image histogram. HCHE can improve the enhancement effect on hot objects rather than background. The experimental results are addressed and demonstrate that the proposed approach is feasible for use as an effective and adaptive process for enhancing the quality of IR vein-pattern images. PMID:22247674
An approach to improve the quality of infrared images of vein-patterns.
Lin, Chih-Lung
2011-01-01
This study develops an approach to improve the quality of infrared (IR) images of vein-patterns, which usually have noise, low contrast, low brightness and small objects of interest, thus requiring preprocessing to improve their quality. The main characteristics of the proposed approach are that no prior knowledge about the IR image is necessary and no parameters must be preset. Two main goals are sought: impulse noise reduction and adaptive contrast enhancement technologies. In our study, a fast median-based filter (FMBF) is developed as a noise reduction method. It is based on an IR imaging mechanism to detect the noisy pixels and on a modified median-based filter to remove the noisy pixels in IR images. FMBF has the advantage of a low computation load. In addition, FMBF can retain reasonably good edges and texture information when the size of the filter window increases. The most important advantage is that the peak signal-to-noise ratio (PSNR) caused by FMBF is higher than the PSNR caused by the median filter. A hybrid cumulative histogram equalization (HCHE) is proposed for adaptive contrast enhancement. HCHE can automatically generate a hybrid cumulative histogram (HCH) based on two different pieces of information about the image histogram. HCHE can improve the enhancement effect on hot objects rather than background. The experimental results are addressed and demonstrate that the proposed approach is feasible for use as an effective and adaptive process for enhancing the quality of IR vein-pattern images.
Broadband locally resonant metamaterials with graded hierarchical architecture
NASA Astrophysics Data System (ADS)
Liu, Chenchen; Reina, Celia
2018-03-01
We investigate the effect of hierarchical designs on the bandgap structure of periodic lattice systems with inner resonators. A detailed parameter study reveals various interesting features of structures with two levels of hierarchy as compared with one level systems with identical static mass. In particular: (i) their overall bandwidth is approximately equal, yet bounded above by the bandwidth of the single-resonator system; (ii) the number of bandgaps increases with the level of hierarchy; and (iii) the spectrum of bandgap frequencies is also enlarged. Taking advantage of these features, we propose graded hierarchical structures with ultra-broadband properties. These designs are validated over analogous continuum models via finite element simulations, demonstrating their capability to overcome the bandwidth narrowness that is typical of resonant metamaterials.
Jozifkova, Eva; Konvicka, Martin; Flegr, Jaroslav
2014-01-01
Equality between partners is considering a feature of the functional partnerships in westernized societies. However, the evolutionary consequences of how in-pair hierarchy influences reproduction are less known. Attraction of some high-ranking women towards low-ranking men represents a puzzle. Young urban adults (120 men, 171 women) filled out a questionnaire focused on their sexual preference for higher or lower ranking partners, their future in-pair hierarchy, and hierarchy between their parents. Human pairs with a hierarchic disparity between partners conceive more offspring than pairs of equally-ranking individuals, who, in turn, conceive more offspring than pairs of two dominating partners. Importantly, the higher reproductive success of hierarchically disparate pairs holds, regardless of which sex, male or female, is the dominant one. In addition, the subjects preferring hierarchy disparity in partnerships were with greater probability sexually aroused by such disparity, suggesting that both the partnership preference and the triggers of sexual arousal may reflect a mating strategy. These results challenge the frequently held belief in within-pair equality as a trademark of functional partnerships. It rather appears that existence of some disparity improves within-pair cohesion, facilitating both cooperation between partners and improving the pairs' ability to face societal challenges. The parallel existence of submissivity-dominance hierarchies within human sexes allows for the parallel existence of alternative reproductive strategies, and may form a background for the diversity of mating systems observed in human societies. Arousal of overemphasized dominance/submissiveness may explain sadomasochistic sex, still little understood from the evolutionary psychology point of view.
Design of interpolation functions for subpixel-accuracy stereo-vision systems.
Haller, Istvan; Nedevschi, Sergiu
2012-02-01
Traditionally, subpixel interpolation in stereo-vision systems was designed for the block-matching algorithm. During the evaluation of different interpolation strategies, a strong correlation was observed between the type of the stereo algorithm and the subpixel accuracy of the different solutions. Subpixel interpolation should be adapted to each stereo algorithm to achieve maximum accuracy. In consequence, it is more important to propose methodologies for interpolation function generation than specific function shapes. We propose two such methodologies based on data generated by the stereo algorithms. The first proposal uses a histogram to model the environment and applies histogram equalization to an existing solution adapting it to the data. The second proposal employs synthetic images of a known environment and applies function fitting to the resulted data. The resulting function matches the algorithm and the data as best as possible. An extensive evaluation set is used to validate the findings. Both real and synthetic test cases were employed in different scenarios. The test results are consistent and show significant improvements compared with traditional solutions. © 2011 IEEE
Content based Image Retrieval based on Different Global and Local Color Histogram Methods: A Survey
NASA Astrophysics Data System (ADS)
Suhasini, Pallikonda Sarah; Sri Rama Krishna, K.; Murali Krishna, I. V.
2017-02-01
Different global and local color histogram methods for content based image retrieval (CBIR) are investigated in this paper. Color histogram is a widely used descriptor for CBIR. Conventional method of extracting color histogram is global, which misses the spatial content, is less invariant to deformation and viewpoint changes, and results in a very large three dimensional histogram corresponding to the color space used. To address the above deficiencies, different global and local histogram methods are proposed in recent research. Different ways of extracting local histograms to have spatial correspondence, invariant colour histogram to add deformation and viewpoint invariance and fuzzy linking method to reduce the size of the histogram are found in recent papers. The color space and the distance metric used are vital in obtaining color histogram. In this paper the performance of CBIR based on different global and local color histograms in three different color spaces, namely, RGB, HSV, L*a*b* and also with three distance measures Euclidean, Quadratic and Histogram intersection are surveyed, to choose appropriate method for future research.
Rasta, Seyed Hossein; Partovi, Mahsa Eisazadeh; Seyedarabi, Hadi; Javadzadeh, Alireza
2015-01-01
To investigate the effect of preprocessing techniques including contrast enhancement and illumination correction on retinal image quality, a comparative study was carried out. We studied and implemented a few illumination correction and contrast enhancement techniques on color retinal images to find out the best technique for optimum image enhancement. To compare and choose the best illumination correction technique we analyzed the corrected red and green components of color retinal images statistically and visually. The two contrast enhancement techniques were analyzed using a vessel segmentation algorithm by calculating the sensitivity and specificity. The statistical evaluation of the illumination correction techniques were carried out by calculating the coefficients of variation. The dividing method using the median filter to estimate background illumination showed the lowest Coefficients of variations in the red component. The quotient and homomorphic filtering methods after the dividing method presented good results based on their low Coefficients of variations. The contrast limited adaptive histogram equalization increased the sensitivity of the vessel segmentation algorithm up to 5% in the same amount of accuracy. The contrast limited adaptive histogram equalization technique has a higher sensitivity than the polynomial transformation operator as a contrast enhancement technique for vessel segmentation. Three techniques including the dividing method using the median filter to estimate background, quotient based and homomorphic filtering were found as the effective illumination correction techniques based on a statistical evaluation. Applying the local contrast enhancement technique, such as CLAHE, for fundus images presented good potentials in enhancing the vasculature segmentation. PMID:25709940
Histogram-based adaptive gray level scaling for texture feature classification of colorectal polyps
NASA Astrophysics Data System (ADS)
Pomeroy, Marc; Lu, Hongbing; Pickhardt, Perry J.; Liang, Zhengrong
2018-02-01
Texture features have played an ever increasing role in computer aided detection (CADe) and diagnosis (CADx) methods since their inception. Texture features are often used as a method of false positive reduction for CADe packages, especially for detecting colorectal polyps and distinguishing them from falsely tagged residual stool and healthy colon wall folds. While texture features have shown great success there, the performance of texture features for CADx have lagged behind primarily because of the more similar features among different polyps types. In this paper, we present an adaptive gray level scaling and compare it to the conventional equal-spacing of gray level bins. We use a dataset taken from computed tomography colonography patients, with 392 polyp regions of interest (ROIs) identified and have a confirmed diagnosis through pathology. Using the histogram information from the entire ROI dataset, we generate the gray level bins such that each bin contains roughly the same number of voxels Each image ROI is the scaled down to two different numbers of gray levels, using both an equal spacing of Hounsfield units for each bin, and our adaptive method. We compute a set of texture features from the scaled images including 30 gray level co-occurrence matrix (GLCM) features and 11 gray level run length matrix (GLRLM) features. Using a random forest classifier to distinguish between hyperplastic polyps and all others (adenomas and adenocarcinomas), we find that the adaptive gray level scaling can improve performance based on the area under the receiver operating characteristic curve by up to 4.6%.
NASA Astrophysics Data System (ADS)
Manz, Christoph; Kobitski, Andrei Yu.; Samanta, Ayan; Jäschke, Andres; Nienhaus, G. Ulrich
2018-03-01
RNA (ribonucleic acid) molecules are highly flexible biopolymers fluctuating at physiological temperatures among many different conformations that are represented by minima in a hierarchical conformational free energy landscape. Here we have employed single-molecule FRET (smFRET) to explore the energy landscape of the B. subtilis yitJ SAM-I riboswitch (RS). In this small RNA molecule, specific binding of an S-adenosyl-L-methionine (SAM) ligand in the aptamer domain regulates gene expression by inducing structural changes in another domain, the expression platform, causing transcription termination by the RNA polymerase. We have measured smFRET histograms over wide ranges of Mg2+ concentration for three RS variants that were specifically labeled with fluorescent dyes on different sites. In the analysis, different conformations are associated with discrete Gaussian model distributions, which are typically fairly broad on the FRET efficiency scale and thus can be extremely challenging to unravel due to their mutual overlap. Our earlier work on two SAM-I RS variants revealed four major conformations. By introducing a global fitting procedure which models both the Mg2+ concentration dependencies of the fractional populations and the average FRET efficiencies of the individual FRET distributions according to Mg2+ binding isotherms, we were able to consistently describe the histogram data of both variants at all studied Mg2+ concentrations. With the third FRET-labeled variant, however, we found significant deviations when applying the four-state model to the data. This can arise because the different FRET labeling of the new variant allows two states to be distinguished that were previously not separable due to overlap. Indeed, the resulting five-state model presented here consistently describes the smFRET histograms of all three variants as well as their variations with Mg2+ concentration. We also performed a triangulation of the donor position for two of the constructs to explore how the expression platform is oriented with respect to the aptamer.
Zadpoor, Amir A
2015-03-01
Mechanical characterization of biological tissues and biomaterials at the nano-scale is often performed using nanoindentation experiments. The different constituents of the characterized materials will then appear in the histogram that shows the probability of measuring a certain range of mechanical properties. An objective technique is needed to separate the probability distributions that are mixed together in such a histogram. In this paper, finite mixture models (FMMs) are proposed as a tool capable of performing such types of analysis. Finite Gaussian mixture models assume that the measured probability distribution is a weighted combination of a finite number of Gaussian distributions with separate mean and standard deviation values. Dedicated optimization algorithms are available for fitting such a weighted mixture model to experimental data. Moreover, certain objective criteria are available to determine the optimum number of Gaussian distributions. In this paper, FMMs are used for interpreting the probability distribution functions representing the distributions of the elastic moduli of osteoarthritic human cartilage and co-polymeric microspheres. As for cartilage experiments, FMMs indicate that at least three mixture components are needed for describing the measured histogram. While the mechanical properties of the softer mixture components, often assumed to be associated with Glycosaminoglycans, were found to be more or less constant regardless of whether two or three mixture components were used, those of the second mixture component (i.e. collagen network) considerably changed depending on the number of mixture components. Regarding the co-polymeric microspheres, the optimum number of mixture components estimated by the FMM theory, i.e. 3, nicely matches the number of co-polymeric components used in the structure of the polymer. The computer programs used for the presented analyses are made freely available online for other researchers to use. Copyright © 2014 Elsevier B.V. All rights reserved.
Naturalness preservation image contrast enhancement via histogram modification
NASA Astrophysics Data System (ADS)
Tian, Qi-Chong; Cohen, Laurent D.
2018-04-01
Contrast enhancement is a technique for enhancing image contrast to obtain better visual quality. Since many existing contrast enhancement algorithms usually produce over-enhanced results, the naturalness preservation is needed to be considered in the framework of image contrast enhancement. This paper proposes a naturalness preservation contrast enhancement method, which adopts the histogram matching to improve the contrast and uses the image quality assessment to automatically select the optimal target histogram. The contrast improvement and the naturalness preservation are both considered in the target histogram, so this method can avoid the over-enhancement problem. In the proposed method, the optimal target histogram is a weighted sum of the original histogram, the uniform histogram, and the Gaussian-shaped histogram. Then the structural metric and the statistical naturalness metric are used to determine the weights of corresponding histograms. At last, the contrast-enhanced image is obtained via matching the optimal target histogram. The experiments demonstrate the proposed method outperforms the compared histogram-based contrast enhancement algorithms.
Shin, Myoungjin; Kwon, Sungho
2015-04-01
The objective of this study was to demonstrate the sequential process (i.e., social factors→mediators→motivation→consequences) underlying the Hierarchical Model of Intrinsic and Extrinsic Motivation at the contextual level in instruction using three teaching tools, modified balls, a high net, and colored balls and cones in a college-level tennis class in South Korea. 126 students enrolled in a 15-week tennis class participated in the study. The results indicate that the three teaching tools positively affected students' perceived competence, with perceived competence's beta on intrinsic motivation equal to 0.45. Intrinsic motivation was found to reduce negative affect further by -0.33, thereby demonstrating the sequential process of the Hierarchical Model of Intrinsic and Extrinsic Motivation.
Finger vein recognition based on finger crease location
NASA Astrophysics Data System (ADS)
Lu, Zhiying; Ding, Shumeng; Yin, Jing
2016-07-01
Finger vein recognition technology has significant advantages over other methods in terms of accuracy, uniqueness, and stability, and it has wide promising applications in the field of biometric recognition. We propose using finger creases to locate and extract an object region. Then we use linear fitting to overcome the problem of finger rotation in the plane. The method of modular adaptive histogram equalization (MAHE) is presented to enhance image contrast and reduce computational cost. To extract the finger vein features, we use a fusion method, which can obtain clear and distinguishable vein patterns under different conditions. We used the Hausdorff average distance algorithm to examine the recognition performance of the system. The experimental results demonstrate that MAHE can better balance the recognition accuracy and the expenditure of time compared with three other methods. Our resulting equal error rate throughout the total procedure was 3.268% in a database of 153 finger vein images.
Over a thousand new periodic orbits of a planar three-body system with unequal masses
NASA Astrophysics Data System (ADS)
Li, Xiaoming; Jing, Yipeng; Liao, Shijun
2018-05-01
The three-body problem is common in astronomy, examples of which are the solar system, exoplanets, and stellar systems. Due to its chaotic characteristic, discovered by Poincaré, only three families of periodic three-body orbits were found in 300 years, until 2013 when Šuvakov and Dmitrašinović (2013, Phys. Rev. Lett., 110, 114301) found 13 new periodic orbits of a Newtonian planar three-body problem with equal mass. Recently, more than 600 new families of periodic orbits of triple systems with equal mass were found by Li and Liao (2017, Sci. China-Phys. Mech. Astron., 60, 129511). Here, we report 1349 new families of planar periodic orbits of the triple system where two bodies have the same mass and the other has a different mass. None of the families have ever been reported, except the famous "figure-eight" family. In particular, 1223 among these 1349 families are entirely new, i.e., with newly found "free group elements" that have been never reported, even for three-body systems with equal mass. It has been traditionally believed that triple systems are often unstable if they are non-hierarchical. However, all of our new periodic orbits are in non-hierarchical configurations, but many of them are either linearly or marginally stable. This might inspire the long-term astronomical observation of stable non-hierarchical triple systems in practice. In addition, using these new periodic orbits as initial guesses, new periodic orbits of triple systems with three unequal masses can be found by means of the continuation method, which is more general and thus should have practical meaning from an astronomical viewpoint.
Color Swapping to Enhance Breast Cancer Digital Images Qualities Using Stain Normalization
NASA Astrophysics Data System (ADS)
Muhimmah, Izzati; Puspasari Wijaya, Dhina; Indrayanti
2017-03-01
Histopathology is the disease diagnosis by means of the visual examination of tissues under the microscope. The virtually transparent tissue sections were prepared using a number of colored histochemical stains bound selectively to the cellular components. A variation of colors comes to be a problem in histopathology based upon the microscope lighting for the range of factors. This research aimed to investigate an image enhancement by applying a nonlinear mapping approach to stain normalization and histogram equalization for contrast enhancement. Validation was carried out in 59 datasets with 96.6% accordance and expert justification.
Statistical label fusion with hierarchical performance models
Asman, Andrew J.; Dagley, Alexander S.; Landman, Bennett A.
2014-01-01
Label fusion is a critical step in many image segmentation frameworks (e.g., multi-atlas segmentation) as it provides a mechanism for generalizing a collection of labeled examples into a single estimate of the underlying segmentation. In the multi-label case, typical label fusion algorithms treat all labels equally – fully neglecting the known, yet complex, anatomical relationships exhibited in the data. To address this problem, we propose a generalized statistical fusion framework using hierarchical models of rater performance. Building on the seminal work in statistical fusion, we reformulate the traditional rater performance model from a multi-tiered hierarchical perspective. This new approach provides a natural framework for leveraging known anatomical relationships and accurately modeling the types of errors that raters (or atlases) make within a hierarchically consistent formulation. Herein, we describe several contributions. First, we derive a theoretical advancement to the statistical fusion framework that enables the simultaneous estimation of multiple (hierarchical) performance models within the statistical fusion context. Second, we demonstrate that the proposed hierarchical formulation is highly amenable to the state-of-the-art advancements that have been made to the statistical fusion framework. Lastly, in an empirical whole-brain segmentation task we demonstrate substantial qualitative and significant quantitative improvement in overall segmentation accuracy. PMID:24817809
NASA Astrophysics Data System (ADS)
Tsevas, S.; Iakovidis, D. K.
2011-11-01
Pulmonary infiltrates are common radiological findings indicating the filling of airspaces with fluid, inflammatory exudates, or cells. They are most common in cases of pneumonia, acute respiratory syndrome, atelectasis, pulmonary oedema and haemorrhage, whereas their extent is usually correlated with the extent or the severity of the underlying disease. In this paper we propose a novel pattern recognition framework for the measurement of the extent of pulmonary infiltrates in routine chest radiographs. The proposed framework follows a hierarchical approach to the assessment of image content. It includes the following: (a) sampling of the lung fields; (b) extraction of patient-specific grey-level histogram signatures from each sample; (c) classification of the extracted signatures into classes representing normal lung parenchyma and pulmonary infiltrates; (d) the samples for which the probability of belonging to one of the two classes does not reach an acceptable level are rejected and classified according to their textural content; (e) merging of the classification results of the two classification stages. The proposed framework has been evaluated on real radiographic images with pulmonary infiltrates caused by bacterial infections. The results show that accurate measurements of the infiltration areas can be obtained with respect to each lung field area. The average measurement error rate on the considered dataset reached 9.7% ± 1.0%.
Visual Data Analysis for Satellites
NASA Technical Reports Server (NTRS)
Lau, Yee; Bhate, Sachin; Fitzpatrick, Patrick
2008-01-01
The Visual Data Analysis Package is a collection of programs and scripts that facilitate visual analysis of data available from NASA and NOAA satellites, as well as dropsonde, buoy, and conventional in-situ observations. The package features utilities for data extraction, data quality control, statistical analysis, and data visualization. The Hierarchical Data Format (HDF) satellite data extraction routines from NASA's Jet Propulsion Laboratory were customized for specific spatial coverage and file input/output. Statistical analysis includes the calculation of the relative error, the absolute error, and the root mean square error. Other capabilities include curve fitting through the data points to fill in missing data points between satellite passes or where clouds obscure satellite data. For data visualization, the software provides customizable Generic Mapping Tool (GMT) scripts to generate difference maps, scatter plots, line plots, vector plots, histograms, timeseries, and color fill images.
Hierarchical coefficient of a multifractal based network
NASA Astrophysics Data System (ADS)
Moreira, Darlan A.; Lucena, Liacir dos Santos; Corso, Gilberto
2014-02-01
The hierarchical property for a general class of networks stands for a power-law relation between clustering coefficient, CC and connectivity k: CC∝kβ. This relation is empirically verified in several biologic and social networks, as well as in random and deterministic network models, in special for hierarchical networks. In this work we show that the hierarchical property is also present in a Lucena network. To create a Lucena network we use the dual of a multifractal lattice ML, the vertices are the sites of the ML and links are established between neighbouring lattices, therefore this network is space filling and planar. Besides a Lucena network shows a scale-free distribution of connectivity. We deduce a relation for the maximal local clustering coefficient CCimax of a vertex i in a planar graph. This condition expresses that the number of links among neighbour, N△, of a vertex i is equal to its connectivity ki, that means: N△=ki. The Lucena network fulfils the condition N△≃ki independent of ki and the anisotropy of ML. In addition, CCmax implies the threshold β=1 for the hierarchical property for any scale-free planar network.
Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts.
Zhou, Zhuhuang; Wu, Weiwei; Wu, Shuicai; Tsui, Po-Hsiang; Lin, Chung-Chih; Zhang, Ling; Wang, Tianfu
2014-10-01
Computerized tumor segmentation on breast ultrasound (BUS) images remains a challenging task. In this paper, we proposed a new method for semi-automatic tumor segmentation on BUS images using Gaussian filtering, histogram equalization, mean shift, and graph cuts. The only interaction required was to select two diagonal points to determine a region of interest (ROI) on an input image. The ROI image was shrunken by a factor of 2 using bicubic interpolation to reduce computation time. The shrunken image was smoothed by a Gaussian filter and then contrast-enhanced by histogram equalization. Next, the enhanced image was filtered by pyramid mean shift to improve homogeneity. The object and background seeds for graph cuts were automatically generated on the filtered image. Using these seeds, the filtered image was then segmented by graph cuts into a binary image containing the object and background. Finally, the binary image was expanded by a factor of 2 using bicubic interpolation, and the expanded image was processed by morphological opening and closing to refine the tumor contour. The method was implemented with OpenCV 2.4.3 and Visual Studio 2010 and tested for 38 BUS images with benign tumors and 31 BUS images with malignant tumors from different ultrasound scanners. Experimental results showed that our method had a true positive rate (TP) of 91.7%, a false positive (FP) rate of 11.9%, and a similarity (SI) rate of 85.6%. The mean run time on Intel Core 2.66 GHz CPU and 4 GB RAM was 0.49 ± 0.36 s. The experimental results indicate that the proposed method may be useful in BUS image segmentation. © The Author(s) 2014.
Anifah, Lilik; Purnama, I Ketut Eddy; Hariadi, Mochamad; Purnomo, Mauridhi Hery
2013-01-01
Localization is the first step in osteoarthritis (OA) classification. Manual classification, however, is time-consuming, tedious, and expensive. The proposed system is designed as decision support system for medical doctors to classify the severity of knee OA. A method has been proposed here to localize a joint space area for OA and then classify it in 4 steps to classify OA into KL-Grade 0, KL-Grade 1, KL-Grade 2, KL-Grade 3 and KL-Grade 4, which are preprocessing, segmentation, feature extraction, and classification. In this proposed system, right and left knee detection was performed by employing the Contrast-Limited Adaptive Histogram Equalization (CLAHE) and the template matching. The Gabor kernel, row sum graph and moment methods were used to localize the junction space area of knee. CLAHE is used for preprocessing step, i.e.to normalize the varied intensities. The segmentation process was conducted using the Gabor kernel, template matching, row sum graph and gray level center of mass method. Here GLCM (contrast, correlation, energy, and homogeinity) features were employed as training data. Overall, 50 data were evaluated for training and 258 data for testing. Experimental results showed the best performance by using gabor kernel with parameters α=8, θ=0, Ψ=[0 π/2], γ=0,8, N=4 and with number of iterations being 5000, momentum value 0.5 and α0=0.6 for the classification process. The run gave classification accuracy rate of 93.8% for KL-Grade 0, 70% for KL-Grade 1, 4% for KL-Grade 2, 10% for KL-Grade 3 and 88.9% for KL-Grade 4.
Anifah, Lilik; Purnama, I Ketut Eddy; Hariadi, Mochamad; Purnomo, Mauridhi Hery
2013-01-01
Localization is the first step in osteoarthritis (OA) classification. Manual classification, however, is time-consuming, tedious, and expensive. The proposed system is designed as decision support system for medical doctors to classify the severity of knee OA. A method has been proposed here to localize a joint space area for OA and then classify it in 4 steps to classify OA into KL-Grade 0, KL-Grade 1, KL-Grade 2, KL-Grade 3 and KL-Grade 4, which are preprocessing, segmentation, feature extraction, and classification. In this proposed system, right and left knee detection was performed by employing the Contrast-Limited Adaptive Histogram Equalization (CLAHE) and the template matching. The Gabor kernel, row sum graph and moment methods were used to localize the junction space area of knee. CLAHE is used for preprocessing step, i.e.to normalize the varied intensities. The segmentation process was conducted using the Gabor kernel, template matching, row sum graph and gray level center of mass method. Here GLCM (contrast, correlation, energy, and homogeinity) features were employed as training data. Overall, 50 data were evaluated for training and 258 data for testing. Experimental results showed the best performance by using gabor kernel with parameters α=8, θ=0, Ψ=[0 π/2], γ=0,8, N=4 and with number of iterations being 5000, momentum value 0.5 and α0=0.6 for the classification process. The run gave classification accuracy rate of 93.8% for KL-Grade 0, 70% for KL-Grade 1, 4% for KL-Grade 2, 10% for KL-Grade 3 and 88.9% for KL-Grade 4. PMID:23525188
Agonistic Struggle: Master-Slave Dialogues in Humanities Supervision
ERIC Educational Resources Information Center
Grant, Barbara M.
2008-01-01
Hegel's master and slave is a significant archetype for graduate research supervision. The master-slave relation vividly exemplifies the hierarchical bond that ties supervisor and student together. Such a confronting view of supervision provides a counterbalance to contemporary emphases on equality between supervisor and student. In what follows,…
Reading Phylogenetic Trees: The Effects of Tree Orientation and Text Processing on Comprehension
ERIC Educational Resources Information Center
Novick, Laura R.; Stull, Andrew T.; Catley, Kefyn M.
2012-01-01
Although differently formatted cladograms (hierarchical diagrams depicting evolutionary relationships among taxa) depict the same information, they may not be equally easy to comprehend. Undergraduate biology students attempted to translate cladograms from the diagonal to the rectangular format. The "backbone" line of each diagonal…
Women, Leadership, and Equality in Academe: Moving beyond Double Binds
ERIC Educational Resources Information Center
Frechette, Julie
2009-01-01
Although gender discrimination in all of its manifestations is often thought to be absent from higher education, academic institutions are hierarchical organizations that offer rewards, status and privilege, thereby rendering the status of women within these institutions politically and economically vulnerable. With each generation of female…
Waldenberg, Christian; Hebelka, Hanna; Brisby, Helena; Lagerstrand, Kerstin Magdalena
2018-05-01
Magnetic resonance imaging (MRI) is the best diagnostic imaging method for low back pain. However, the technique is currently not utilized in its full capacity, often failing to depict painful intervertebral discs (IVDs), potentially due to the rough degeneration classification system used clinically today. MR image histograms, which reflect the IVD heterogeneity, may offer sensitive imaging biomarkers for IVD degeneration classification. This study investigates the feasibility of using histogram analysis as means of objective and continuous grading of IVD degeneration. Forty-nine IVDs in ten low back pain patients (six males, 25-69 years) were examined with MRI (T2-weighted images and T2-maps). Each IVD was semi-automatically segmented on three mid-sagittal slices. Histogram features of the IVD were extracted from the defined regions of interest and correlated to Pfirrmann grade. Both T2-weighted images and T2-maps displayed similar histogram features. Histograms of well-hydrated IVDs displayed two separate peaks, representing annulus fibrosus and nucleus pulposus. Degenerated IVDs displayed decreased peak separation, where the separation was shown to correlate strongly with Pfirrmann grade (P < 0.05). In addition, some degenerated IVDs within the same Pfirrmann grade displayed diametrically different histogram appearances. Histogram features correlated well with IVD degeneration, suggesting that IVD histogram analysis is a suitable tool for objective and continuous IVD degeneration classification. As histogram analysis revealed IVD heterogeneity, it may be a clinical tool for characterization of regional IVD degeneration effects. To elucidate the usefulness of histogram analysis in patient management, IVD histogram features between asymptomatic and symptomatic individuals needs to be compared.
Hierarchical clustering using mutual information
NASA Astrophysics Data System (ADS)
Kraskov, A.; Stögbauer, H.; Andrzejak, R. G.; Grassberger, P.
2005-04-01
We present a conceptually simple method for hierarchical clustering of data called mutual information clustering (MIC) algorithm. It uses mutual information (MI) as a similarity measure and exploits its grouping property: The MI between three objects X, Y, and Z is equal to the sum of the MI between X and Y, plus the MI between Z and the combined object (XY). We use this both in the Shannon (probabilistic) version of information theory and in the Kolmogorov (algorithmic) version. We apply our method to the construction of phylogenetic trees from mitochondrial DNA sequences and to the output of independent components analysis (ICA) as illustrated with the ECG of a pregnant woman.
On hierarchical solutions to the BBGKY hierarchy
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.
1988-01-01
It is thought that the gravitational clustering of galaxies in the universe may approach a scale-invariant, hierarchical form in the small separation, large-clustering regime. Past attempts to solve the Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY) hierarchy in this regime have assumed a certain separable hierarchical form for the higher order correlation functions of galaxies in phase space. It is shown here that such separable solutions to the BBGKY equations must satisfy the condition that the clustered component of the solution has cluster-cluster correlations equal to galaxy-galaxy correlations to all orders. The solutions also admit the presence of an arbitrary unclustered component, which plays no dyamical role in the large-clustering regime. These results are a particular property of the specific separable model assumed for the correlation functions in phase space, not an intrinsic property of spatially hierarchical solutions to the BBGKY hierarchy. The observed distribution of galaxies does not satisfy the required conditions. The disagreement between theory and observation may be traced, at least in part, to initial conditions which, if Gaussian, already have cluster correlations greater than galaxy correlations.
NOA: A Scalable Multi-Parent Clustering Hierarchy for WSNs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cree, Johnathan V.; Delgado-Frias, Jose; Hughes, Michael A.
2012-08-10
NOA is a multi-parent, N-tiered, hierarchical clustering algorithm that provides a scalable, robust and reliable solution to autonomous configuration of large-scale wireless sensor networks. The novel clustering hierarchy's inherent benefits can be utilized by in-network data processing techniques to provide equally robust, reliable and scalable in-network data processing solutions capable of reducing the amount of data sent to sinks. Utilizing a multi-parent framework, NOA reduces the cost of network setup when compared to hierarchical beaconing solutions by removing the expense of r-hop broadcasting (r is the radius of the cluster) needed to build the network and instead passes network topologymore » information among shared children. NOA2, a two-parent clustering hierarchy solution, and NOA3, the three-parent variant, saw up to an 83% and 72% reduction in overhead, respectively, when compared to performing one round of a one-parent hierarchical beaconing, as well as 92% and 88% less overhead when compared to one round of two- and three-parent hierarchical beaconing hierarchy.« less
Deforestation due to Urbanization: a Case Study for Trabzon, Turkey
NASA Astrophysics Data System (ADS)
Telkenaroglu, C.; Dikmen, M.
2017-11-01
This paper inspects the deforestation of Trabzon in Turkey, due to urbanization, between 2006 and 2016. For this purpose, Landsat 7 ETM+ (Enhanced Thematic Mapper Plus) images are obtained from United States Geographical Survey (USGS) archive (USGS, 2017a) and their VNIR bands related to this study are utilized. For both years, and for each band, histograms are equalized. Finally, Normalized Difference Vegetation Index (NDVI) values are calculated as images. Resulting vegetation indexes are assessed in comparison to the binary ground truth images. A visual inspection is also done with respect to Google's Timelapse images for each year to validate and support the results.
METEOSAT studies of clouds and radiation budget
NASA Technical Reports Server (NTRS)
Saunders, R. W.
1982-01-01
Radiation budget studies of the atmosphere/surface system from Meteosat, cloud parameter determination from space, and sea surface temperature measurements from TIROS N data are all described. This work was carried out on the interactive planetary image processing system (IPIPS), which allows interactive manipulationion of the image data in addition to the conventional computational tasks. The current hardware configuration of IPIPS is shown. The I(2)S is the principal interactive display allowing interaction via a trackball, four buttons under program control, or a touch tablet. Simple image processing operations such as contrast enhancing, pseudocoloring, histogram equalization, and multispectral combinations, can all be executed at the push of a button.
Bin Ratio-Based Histogram Distances and Their Application to Image Classification.
Hu, Weiming; Xie, Nianhua; Hu, Ruiguang; Ling, Haibin; Chen, Qiang; Yan, Shuicheng; Maybank, Stephen
2014-12-01
Large variations in image background may cause partial matching and normalization problems for histogram-based representations, i.e., the histograms of the same category may have bins which are significantly different, and normalization may produce large changes in the differences between corresponding bins. In this paper, we deal with this problem by using the ratios between bin values of histograms, rather than bin values' differences which are used in the traditional histogram distances. We propose a bin ratio-based histogram distance (BRD), which is an intra-cross-bin distance, in contrast with previous bin-to-bin distances and cross-bin distances. The BRD is robust to partial matching and histogram normalization, and captures correlations between bins with only a linear computational complexity. We combine the BRD with the ℓ1 histogram distance and the χ(2) histogram distance to generate the ℓ1 BRD and the χ(2) BRD, respectively. These combinations exploit and benefit from the robustness of the BRD under partial matching and the robustness of the ℓ1 and χ(2) distances to small noise. We propose a method for assessing the robustness of histogram distances to partial matching. The BRDs and logistic regression-based histogram fusion are applied to image classification. The experimental results on synthetic data sets show the robustness of the BRDs to partial matching, and the experiments on seven benchmark data sets demonstrate promising results of the BRDs for image classification.
Generating Performance Models for Irregular Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friese, Ryan D.; Tallent, Nathan R.; Vishnu, Abhinav
2017-05-30
Many applications have irregular behavior --- non-uniform input data, input-dependent solvers, irregular memory accesses, unbiased branches --- that cannot be captured using today's automated performance modeling techniques. We describe new hierarchical critical path analyses for the \\Palm model generation tool. To create a model's structure, we capture tasks along representative MPI critical paths. We create a histogram of critical tasks with parameterized task arguments and instance counts. To model each task, we identify hot instruction-level sub-paths and model each sub-path based on data flow, instruction scheduling, and data locality. We describe application models that generate accurate predictions for strong scalingmore » when varying CPU speed, cache speed, memory speed, and architecture. We present results for the Sweep3D neutron transport benchmark; Page Rank on multiple graphs; Support Vector Machine with pruning; and PFLOTRAN's reactive flow/transport solver with domain-induced load imbalance.« less
On the Use of a Low-Cost Thermal Sensor to Improve Kinect People Detection in a Mobile Robot
Susperregi, Loreto; Sierra, Basilio; Castrillón, Modesto; Lorenzo, Javier; Martínez-Otzeta, Jose María; Lazkano, Elena
2013-01-01
Detecting people is a key capability for robots that operate in populated environments. In this paper, we have adopted a hierarchical approach that combines classifiers created using supervised learning in order to identify whether a person is in the view-scope of the robot or not. Our approach makes use of vision, depth and thermal sensors mounted on top of a mobile platform. The set of sensors is set up combining the rich data source offered by a Kinect sensor, which provides vision and depth at low cost, and a thermopile array sensor. Experimental results carried out with a mobile platform in a manufacturing shop floor and in a science museum have shown that the false positive rate achieved using any single cue is drastically reduced. The performance of our algorithm improves other well-known approaches, such as C4 and histogram of oriented gradients (HOG). PMID:24172285
Qiu, Wei; Hamernik, Roger P; Davis, Robert I
2013-05-01
A series of Gaussian and non-Gaussian equal energy noise exposures were designed with the objective of establishing the extent to which the kurtosis statistic could be used to grade the severity of noise trauma produced by the exposures. Here, 225 chinchillas distributed in 29 groups, with 6 to 8 animals per group, were exposed at 97 dB SPL. The equal energy exposures were presented either continuously for 5 d or on an interrupted schedule for 19 d. The non-Gaussian noises all differed in the level of the kurtosis statistic or in the temporal structure of the noise, where the latter was defined by different peak, interval, and duration histograms of the impact noise transients embedded in the noise signal. Noise-induced trauma was estimated from auditory evoked potential hearing thresholds and surface preparation histology that quantified sensory cell loss. Results indicated that the equal energy hypothesis is a valid unifying principle for estimating the consequences of an exposure if and only if the equivalent energy exposures had the same kurtosis. Furthermore, for the same level of kurtosis the detailed temporal structure of an exposure does not have a strong effect on trauma.
Theory and Application of DNA Histogram Analysis.
ERIC Educational Resources Information Center
Bagwell, Charles Bruce
The underlying principles and assumptions associated with DNA histograms are discussed along with the characteristics of fluorescent probes. Information theory was described and used to calculate the information content of a DNA histogram. Two major types of DNA histogram analyses are proposed: parametric and nonparametric analysis. Three levels…
The Emergence of Sub-Syllabic Representations
ERIC Educational Resources Information Center
Lee, Yongeun; Goldrick, Matthew
2008-01-01
In a variety of experimental paradigms speakers do not treat all sub-syllabic sequences equally. In languages like English, participants tend to group vowels and codas together to the exclusion of onsets (i.e., /bet/=/b/-/et/). Three possible accounts of these patterns are examined. A hierarchical account attributes these results to the presence…
Pedestrian Detection in Far-Infrared Daytime Images Using a Hierarchical Codebook of SURF
Besbes, Bassem; Rogozan, Alexandrina; Rus, Adela-Maria; Bensrhair, Abdelaziz; Broggi, Alberto
2015-01-01
One of the main challenges in intelligent vehicles concerns pedestrian detection for driving assistance. Recent experiments have showed that state-of-the-art descriptors provide better performances on the far-infrared (FIR) spectrum than on the visible one, even in daytime conditions, for pedestrian classification. In this paper, we propose a pedestrian detector with on-board FIR camera. Our main contribution is the exploitation of the specific characteristics of FIR images to design a fast, scale-invariant and robust pedestrian detector. Our system consists of three modules, each based on speeded-up robust feature (SURF) matching. The first module allows generating regions-of-interest (ROI), since in FIR images of the pedestrian shapes may vary in large scales, but heads appear usually as light regions. ROI are detected with a high recall rate with the hierarchical codebook of SURF features located in head regions. The second module consists of pedestrian full-body classification by using SVM. This module allows one to enhance the precision with low computational cost. In the third module, we combine the mean shift algorithm with inter-frame scale-invariant SURF feature tracking to enhance the robustness of our system. The experimental evaluation shows that our system outperforms, in the FIR domain, the state-of-the-art Haar-like Adaboost-cascade, histogram of oriented gradients (HOG)/linear SVM (linSVM) and MultiFtrpedestrian detectors, trained on the FIR images. PMID:25871724
Hou, Bin; Wang, Yunhong; Liu, Qingjie
2016-01-01
Characterizations of up to date information of the Earth’s surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs) allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC) segmentation. Then, saliency and morphological building index (MBI) extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF). Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation. PMID:27618903
Global Interior Robot Localisation by a Colour Content Image Retrieval System
NASA Astrophysics Data System (ADS)
Chaari, A.; Lelandais, S.; Montagne, C.; Ahmed, M. Ben
2007-12-01
We propose a new global localisation approach to determine a coarse position of a mobile robot in structured indoor space using colour-based image retrieval techniques. We use an original method of colour quantisation based on the baker's transformation to extract a two-dimensional colour pallet combining as well space and vicinity-related information as colourimetric aspect of the original image. We conceive several retrieving approaches bringing to a specific similarity measure [InlineEquation not available: see fulltext.] integrating the space organisation of colours in the pallet. The baker's transformation provides a quantisation of the image into a space where colours that are nearby in the original space are also nearby in the output space, thereby providing dimensionality reduction and invariance to minor changes in the image. Whereas the distance [InlineEquation not available: see fulltext.] provides for partial invariance to translation, sight point small changes, and scale factor. In addition to this study, we developed a hierarchical search module based on the logic classification of images following rooms. This hierarchical module reduces the searching indoor space and ensures an improvement of our system performances. Results are then compared with those brought by colour histograms provided with several similarity measures. In this paper, we focus on colour-based features to describe indoor images. A finalised system must obviously integrate other type of signature like shape and texture.
Hou, Bin; Wang, Yunhong; Liu, Qingjie
2016-08-27
Characterizations of up to date information of the Earth's surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs) allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC) segmentation. Then, saliency and morphological building index (MBI) extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF). Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation.
Understanding Large-scale Structure in the SSA22 Protocluster Region Using Cosmological Simulations
NASA Astrophysics Data System (ADS)
Topping, Michael W.; Shapley, Alice E.; Steidel, Charles C.; Naoz, Smadar; Primack, Joel R.
2018-01-01
We investigate the nature and evolution of large-scale structure within the SSA22 protocluster region at z = 3.09 using cosmological simulations. A redshift histogram constructed from current spectroscopic observations of the SSA22 protocluster reveals two separate peaks at z = 3.065 (blue) and z = 3.095 (red). Based on these data, we report updated overdensity and mass calculations for the SSA22 protocluster. We find {δ }b,{gal}=4.8+/- 1.8 and {δ }r,{gal}=9.5+/- 2.0 for the blue and red peaks, respectively, and {δ }t,{gal}=7.6+/- 1.4 for the entire region. These overdensities correspond to masses of {M}b=(0.76+/- 0.17)× {10}15{h}-1 {M}ȯ , {M}r=(2.15+/- 0.32)× {10}15{h}-1 {M}ȯ , and {M}t=(3.19+/- 0.40)× {10}15{h}-1 {M}ȯ for the red, blue, and total peaks, respectively. We use the Small MultiDark Planck (SMDPL) simulation to identify comparably massive z∼ 3 protoclusters, and uncover the underlying structure and ultimate fate of the SSA22 protocluster. For this analysis, we construct mock redshift histograms for each simulated z∼ 3 protocluster, quantitatively comparing them with the observed SSA22 data. We find that the observed double-peaked structure in the SSA22 redshift histogram corresponds not to a single coalescing cluster, but rather the proximity of a ∼ {10}15{h}-1 {M}ȯ protocluster and at least one > {10}14{h}-1 {M}ȯ cluster progenitor. Such associations in the SMDPL simulation are easily understood within the framework of hierarchical clustering of dark matter halos. We finally find that the opportunity to observe such a phenomenon is incredibly rare, with an occurrence rate of 7.4{h}3 {{{Gpc}}}-3. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and was made possible by the generous financial support of the W.M. Keck Foundation.
Histogram deconvolution - An aid to automated classifiers
NASA Technical Reports Server (NTRS)
Lorre, J. J.
1983-01-01
It is shown that N-dimensional histograms are convolved by the addition of noise in the picture domain. Three methods are described which provide the ability to deconvolve such noise-affected histograms. The purpose of the deconvolution is to provide automated classifiers with a higher quality N-dimensional histogram from which to obtain classification statistics.
Parameterization of the Age-Dependent Whole Brain Apparent Diffusion Coefficient Histogram
Batra, Marion; Nägele, Thomas
2015-01-01
Purpose. The distribution of apparent diffusion coefficient (ADC) values in the brain can be used to characterize age effects and pathological changes of the brain tissue. The aim of this study was the parameterization of the whole brain ADC histogram by an advanced model with influence of age considered. Methods. Whole brain ADC histograms were calculated for all data and for seven age groups between 10 and 80 years. Modeling of the histograms was performed for two parts of the histogram separately: the brain tissue part was modeled by two Gaussian curves, while the remaining part was fitted by the sum of a Gaussian curve, a biexponential decay, and a straight line. Results. A consistent fitting of the histograms of all age groups was possible with the proposed model. Conclusions. This study confirms the strong dependence of the whole brain ADC histograms on the age of the examined subjects. The proposed model can be used to characterize changes of the whole brain ADC histogram in certain diseases under consideration of age effects. PMID:26609526
Introducing parallelism to histogramming functions for GEM systems
NASA Astrophysics Data System (ADS)
Krawczyk, Rafał D.; Czarski, Tomasz; Kolasinski, Piotr; Pozniak, Krzysztof T.; Linczuk, Maciej; Byszuk, Adrian; Chernyshova, Maryna; Juszczyk, Bartlomiej; Kasprowicz, Grzegorz; Wojenski, Andrzej; Zabolotny, Wojciech
2015-09-01
This article is an assessment of potential parallelization of histogramming algorithms in GEM detector system. Histogramming and preprocessing algorithms in MATLAB were analyzed with regard to adding parallelism. Preliminary implementation of parallel strip histogramming resulted in speedup. Analysis of algorithms parallelizability is presented. Overview of potential hardware and software support to implement parallel algorithm is discussed.
Comparison of Histograms for Use in Cloud Observation and Modeling
NASA Technical Reports Server (NTRS)
Green, Lisa; Xu, Kuan-Man
2005-01-01
Cloud observation and cloud modeling data can be presented in histograms for each characteristic to be measured. Combining information from single-cloud histograms yields a summary histogram. Summary histograms can be compared to each other to reach conclusions about the behavior of an ensemble of clouds in different places at different times or about the accuracy of a particular cloud model. As in any scientific comparison, it is necessary to decide whether any apparent differences are statistically significant. The usual methods of deciding statistical significance when comparing histograms do not apply in this case because they assume independent data. Thus, a new method is necessary. The proposed method uses the Euclidean distance metric and bootstrapping to calculate the significance level.
Ignorance and Translation, "Artifacts" for Practices of Equality
ERIC Educational Resources Information Center
Derycke, Marc
2010-01-01
The passion of inequality exists in the discourse that binds people by their adhesion to the beliefs about the hierarchic distribution of positions in society. In this manner the differences that structure the (apparently) natural titles to be governed or to govern are put in a state of aggregation. The apparent naturalness of these titles masks a…
Image Search Reranking With Hierarchical Topic Awareness.
Tian, Xinmei; Yang, Linjun; Lu, Yijuan; Tian, Qi; Tao, Dacheng
2015-10-01
With much attention from both academia and industrial communities, visual search reranking has recently been proposed to refine image search results obtained from text-based image search engines. Most of the traditional reranking methods cannot capture both relevance and diversity of the search results at the same time. Or they ignore the hierarchical topic structure of search result. Each topic is treated equally and independently. However, in real applications, images returned for certain queries are naturally in hierarchical organization, rather than simple parallel relation. In this paper, a new reranking method "topic-aware reranking (TARerank)" is proposed. TARerank describes the hierarchical topic structure of search results in one model, and seamlessly captures both relevance and diversity of the image search results simultaneously. Through a structured learning framework, relevance and diversity are modeled in TARerank by a set of carefully designed features, and then the model is learned from human-labeled training samples. The learned model is expected to predict reranking results with high relevance and diversity for testing queries. To verify the effectiveness of the proposed method, we collect an image search dataset and conduct comparison experiments on it. The experimental results demonstrate that the proposed TARerank outperforms the existing relevance-based and diversified reranking methods.
Li, Yiming; Ishitsuka, Yuji; Hedde, Per Niklas; Nienhaus, G Ulrich
2013-06-25
In localization-based super-resolution microscopy, individual fluorescent markers are stochastically photoactivated and subsequently localized within a series of camera frames, yielding a final image with a resolution far beyond the diffraction limit. Yet, before localization can be performed, the subregions within the frames where the individual molecules are present have to be identified-oftentimes in the presence of high background. In this work, we address the importance of reliable molecule identification for the quality of the final reconstructed super-resolution image. We present a fast and robust algorithm (a-livePALM) that vastly improves the molecule detection efficiency while minimizing false assignments that can lead to image artifacts.
Automated Age-related Macular Degeneration screening system using fundus images.
Kunumpol, P; Umpaipant, W; Kanchanaranya, N; Charoenpong, T; Vongkittirux, S; Kupakanjana, T; Tantibundhit, C
2017-07-01
This work proposed an automated screening system for Age-related Macular Degeneration (AMD), and distinguishing between wet or dry types of AMD using fundus images to assist ophthalmologists in eye disease screening and management. The algorithm employs contrast-limited adaptive histogram equalization (CLAHE) in image enhancement. Subsequently, discrete wavelet transform (DWT) and locality sensitivity discrimination analysis (LSDA) were used to extract features for a neural network model to classify the results. The results showed that the proposed algorithm was able to distinguish between normal eyes, dry AMD, or wet AMD with 98.63% sensitivity, 99.15% specificity, and 98.94% accuracy, suggesting promising potential as a medical support system for faster eye disease screening at lower costs.
Free energy profiles from single-molecule pulling experiments.
Hummer, Gerhard; Szabo, Attila
2010-12-14
Nonequilibrium pulling experiments provide detailed information about the thermodynamic and kinetic properties of molecules. We show that unperturbed free energy profiles as a function of molecular extension can be obtained rigorously from such experiments without using work-weighted position histograms. An inverse Weierstrass transform is used to relate the system free energy obtained from the Jarzynski equality directly to the underlying molecular free energy surface. An accurate approximation for the free energy surface is obtained by using the method of steepest descent to evaluate the inverse transform. The formalism is applied to simulated data obtained from a kinetic model of RNA folding, in which the dynamics consists of jumping between linker-dominated folded and unfolded free energy surfaces.
NASA Astrophysics Data System (ADS)
Fraldi, M.; Perrella, G.; Ciervo, M.; Bosia, F.; Pugno, N. M.
2017-09-01
Very recently, a Weibull-based probabilistic strategy has been successfully applied to bundles of wires to determine their overall stress-strain behaviour, also capturing previously unpredicted nonlinear and post-elastic features of hierarchical strands. This approach is based on the so-called "Equal Load Sharing (ELS)" hypothesis by virtue of which, when a wire breaks, the load acting on the strand is homogeneously redistributed among the surviving wires. Despite the overall effectiveness of the method, some discrepancies between theoretical predictions and in silico Finite Element-based simulations or experimental findings might arise when more complex structures are analysed, e.g. helically arranged bundles. To overcome these limitations, an enhanced hybrid approach is proposed in which the probability of rupture is combined with a deterministic mechanical model of a strand constituted by helically-arranged and hierarchically-organized wires. The analytical model is validated comparing its predictions with both Finite Element simulations and experimental tests. The results show that generalized stress-strain responses - incorporating tension/torsion coupling - are naturally found and, once one or more elements break, the competition between geometry and mechanics of the strand microstructure, i.e. the different cross sections and helical angles of the wires in the different hierarchical levels of the strand, determines the no longer homogeneous stress redistribution among the surviving wires whose fate is hence governed by a "Hierarchical Load Sharing" criterion.
Felt and Enacted Stigma Among HIV/HCV-Coinfected Adults: The Impact of Stigma Layering
Lekas, Helen-Maria; Siegel, Karolynn; Leider, Jason
2015-01-01
The realization that many persons with HIV/AIDS are subjected to multiple layers of stigmatization because they belong to socially deviant and disenfranchised groups (e.g., injection drug users, racial/ethnic and sexual minorities) accounts for an increasing interest in the phenomenon of stigma layering. The stigma associated with HCV has also been conceptualized as layered. However, researchers have overlooked the fact that HCV adds a layer to the HIV stigma and vice versa. Qualitative interviews with 132 HIV/HCV coinfected patients were analyzed to explore how they experience the two layers of stigma. Most participants hierarchically ordered the stigmas associated with each disease and regarded HIV as the more stigmatizing of the two. A small number perceived HIV and HCV as equally stigmatizing. The impact of the hierarchical and non-hierarchical ordering of the two stigmas on coinfected patients’ felt and enacted stigmatization is explored and implications for interventions are discussed. PMID:21498828
Hilgetag, C C; O'Neill, M A; Young, M P
2000-01-29
Neuroanatomists have described a large number of connections between the various structures of monkey and cat cortical sensory systems. Because of the complexity of the connection data, analysis is required to unravel what principles of organization they imply. To date, analysis of laminar origin and termination connection data to reveal hierarchical relationships between the cortical areas has been the most widely acknowledged approach. We programmed a network processor that searches for optimal hierarchical orderings of cortical areas given known hierarchical constraints and rules for their interpretation. For all cortical systems and all cost functions, the processor found a multitude of equally low-cost hierarchies. Laminar hierarchical constraints that are presently available in the anatomical literature were therefore insufficient to constrain a unique ordering for any of the sensory systems we analysed. Hierarchical orderings of the monkey visual system that have been widely reported, but which were derived by hand, were not among the optimal orderings. All the cortical systems we studied displayed a significant degree of hierarchical organization, and the anatomical constraints from the monkey visual and somato-motor systems were satisfied with very few constraint violations in the optimal hierarchies. The visual and somato-motor systems in that animal were therefore surprisingly strictly hierarchical. Most inconsistencies between the constraints and the hierarchical relationships in the optimal structures for the visual system were related to connections of area FST (fundus of superior temporal sulcus). We found that the hierarchical solutions could be further improved by assuming that FST consists of two areas, which differ in the nature of their projections. Indeed, we found that perfect hierarchical arrangements of the primate visual system, without any violation of anatomical constraints, could be obtained under two reasonable conditions, namely the subdivision of FST into two distinct areas, whose connectivity we predict, and the abolition of at least one of the less reliable rule constraints. Our analyses showed that the future collection of the same type of laminar constraints, or the inclusion of new hierarchical constraints from thalamocortical connections, will not resolve the problem of multiple optimal hierarchical representations for the primate visual system. Further data, however, may help to specify the relative ordering of some more areas. This indeterminacy of the visual hierarchy is in part due to the reported absence of some connections between cortical areas. These absences are consistent with limited cross-talk between differentiated processing streams in the system. Hence, hierarchical representation of the visual system is affected by, and must take into account, other organizational features, such as processing streams.
Predicting the Valence of a Scene from Observers’ Eye Movements
R.-Tavakoli, Hamed; Atyabi, Adham; Rantanen, Antti; Laukka, Seppo J.; Nefti-Meziani, Samia; Heikkilä, Janne
2015-01-01
Multimedia analysis benefits from understanding the emotional content of a scene in a variety of tasks such as video genre classification and content-based image retrieval. Recently, there has been an increasing interest in applying human bio-signals, particularly eye movements, to recognize the emotional gist of a scene such as its valence. In order to determine the emotional category of images using eye movements, the existing methods often learn a classifier using several features that are extracted from eye movements. Although it has been shown that eye movement is potentially useful for recognition of scene valence, the contribution of each feature is not well-studied. To address the issue, we study the contribution of features extracted from eye movements in the classification of images into pleasant, neutral, and unpleasant categories. We assess ten features and their fusion. The features are histogram of saccade orientation, histogram of saccade slope, histogram of saccade length, histogram of saccade duration, histogram of saccade velocity, histogram of fixation duration, fixation histogram, top-ten salient coordinates, and saliency map. We utilize machine learning approach to analyze the performance of features by learning a support vector machine and exploiting various feature fusion schemes. The experiments reveal that ‘saliency map’, ‘fixation histogram’, ‘histogram of fixation duration’, and ‘histogram of saccade slope’ are the most contributing features. The selected features signify the influence of fixation information and angular behavior of eye movements in the recognition of the valence of images. PMID:26407322
Histogram analysis of T2*-based pharmacokinetic imaging in cerebral glioma grading.
Liu, Hua-Shan; Chiang, Shih-Wei; Chung, Hsiao-Wen; Tsai, Ping-Huei; Hsu, Fei-Ting; Cho, Nai-Yu; Wang, Chao-Ying; Chou, Ming-Chung; Chen, Cheng-Yu
2018-03-01
To investigate the feasibility of histogram analysis of the T2*-based permeability parameter volume transfer constant (K trans ) for glioma grading and to explore the diagnostic performance of the histogram analysis of K trans and blood plasma volume (v p ). We recruited 31 and 11 patients with high- and low-grade gliomas, respectively. The histogram parameters of K trans and v p , derived from the first-pass pharmacokinetic modeling based on the T2* dynamic susceptibility-weighted contrast-enhanced perfusion-weighted magnetic resonance imaging (T2* DSC-PW-MRI) from the entire tumor volume, were evaluated for differentiating glioma grades. Histogram parameters of K trans and v p showed significant differences between high- and low-grade gliomas and exhibited significant correlations with tumor grades. The mean K trans derived from the T2* DSC-PW-MRI had the highest sensitivity and specificity for differentiating high-grade gliomas from low-grade gliomas compared with other histogram parameters of K trans and v p . Histogram analysis of T2*-based pharmacokinetic imaging is useful for cerebral glioma grading. The histogram parameters of the entire tumor K trans measurement can provide increased accuracy with additional information regarding microvascular permeability changes for identifying high-grade brain tumors. Copyright © 2017 Elsevier B.V. All rights reserved.
Infrared image segmentation method based on spatial coherence histogram and maximum entropy
NASA Astrophysics Data System (ADS)
Liu, Songtao; Shen, Tongsheng; Dai, Yao
2014-11-01
In order to segment the target well and suppress background noises effectively, an infrared image segmentation method based on spatial coherence histogram and maximum entropy is proposed. First, spatial coherence histogram is presented by weighting the importance of the different position of these pixels with the same gray-level, which is obtained by computing their local density. Then, after enhancing the image by spatial coherence histogram, 1D maximum entropy method is used to segment the image. The novel method can not only get better segmentation results, but also have a faster computation time than traditional 2D histogram-based segmentation methods.
Automatic image equalization and contrast enhancement using Gaussian mixture modeling.
Celik, Turgay; Tjahjadi, Tardi
2012-01-01
In this paper, we propose an adaptive image equalization algorithm that automatically enhances the contrast in an input image. The algorithm uses the Gaussian mixture model to model the image gray-level distribution, and the intersection points of the Gaussian components in the model are used to partition the dynamic range of the image into input gray-level intervals. The contrast equalized image is generated by transforming the pixels' gray levels in each input interval to the appropriate output gray-level interval according to the dominant Gaussian component and the cumulative distribution function of the input interval. To take account of the hypothesis that homogeneous regions in the image represent homogeneous silences (or set of Gaussian components) in the image histogram, the Gaussian components with small variances are weighted with smaller values than the Gaussian components with larger variances, and the gray-level distribution is also used to weight the components in the mapping of the input interval to the output interval. Experimental results show that the proposed algorithm produces better or comparable enhanced images than several state-of-the-art algorithms. Unlike the other algorithms, the proposed algorithm is free of parameter setting for a given dynamic range of the enhanced image and can be applied to a wide range of image types.
ERIC Educational Resources Information Center
Sanchez-Griego, Karen
2010-01-01
Todos Juntos New Mexico was a collaborative made possible through a multimillion dollar grant awarded by the Fellows Foundation to empower the community, students, and educators in New Mexico to affect positive change in our public educational system, leading to increased student success, not just for Hispanics, but for all students. Of particular…
ERIC Educational Resources Information Center
Vandermeulen, H.; DeWreede, R. E.
1983-01-01
Presents a histogram drawing program which sorts real numbers in up to 30 categories. Entered data are sorted and saved in a text file which is then used to generate the histogram. Complete Applesoft program listings are included. (JN)
Bin recycling strategy for improving the histogram precision on GPU
NASA Astrophysics Data System (ADS)
Cárdenas-Montes, Miguel; Rodríguez-Vázquez, Juan José; Vega-Rodríguez, Miguel A.
2016-07-01
Histogram is an easily comprehensible way to present data and analyses. In the current scientific context with access to large volumes of data, the processing time for building histogram has dramatically increased. For this reason, parallel construction is necessary to alleviate the impact of the processing time in the analysis activities. In this scenario, GPU computing is becoming widely used for reducing until affordable levels the processing time of histogram construction. Associated to the increment of the processing time, the implementations are stressed on the bin-count accuracy. Accuracy aspects due to the particularities of the implementations are not usually taken into consideration when building histogram with very large data sets. In this work, a bin recycling strategy to create an accuracy-aware implementation for building histogram on GPU is presented. In order to evaluate the approach, this strategy was applied to the computation of the three-point angular correlation function, which is a relevant function in Cosmology for the study of the Large Scale Structure of Universe. As a consequence of the study a high-accuracy implementation for histogram construction on GPU is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, J; Washington University in St Louis, St Louis, MO; Li, H. Harlod
Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The mostmore » important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools.« less
NASA Technical Reports Server (NTRS)
Dasarathy, B. V.
1976-01-01
An algorithm is proposed for dimensionality reduction in the context of clustering techniques based on histogram analysis. The approach is based on an evaluation of the hills and valleys in the unidimensional histograms along the different features and provides an economical means of assessing the significance of the features in a nonparametric unsupervised data environment. The method has relevance to remote sensing applications.
Clinical Utility of Blood Cell Histogram Interpretation
Bhagya, S.; Majeed, Abdul
2017-01-01
An automated haematology analyser provides blood cell histograms by plotting the sizes of different blood cells on X-axis and their relative number on Y-axis. Histogram interpretation needs careful analysis of Red Blood Cell (RBC), White Blood Cell (WBC) and platelet distribution curves. Histogram analysis is often a neglected part of the automated haemogram which if interpreted well, has significant potential to provide diagnostically relevant information even before higher level investigations are ordered. PMID:29207767
Clinical Utility of Blood Cell Histogram Interpretation.
Thomas, E T Arun; Bhagya, S; Majeed, Abdul
2017-09-01
An automated haematology analyser provides blood cell histograms by plotting the sizes of different blood cells on X-axis and their relative number on Y-axis. Histogram interpretation needs careful analysis of Red Blood Cell (RBC), White Blood Cell (WBC) and platelet distribution curves. Histogram analysis is often a neglected part of the automated haemogram which if interpreted well, has significant potential to provide diagnostically relevant information even before higher level investigations are ordered.
Liang, He-Yue; Huang, Ya-Qin; Yang, Zhao-Xia; Ying-Ding; Zeng, Meng-Su; Rao, Sheng-Xiang
2016-07-01
To determine if magnetic resonance imaging (MRI) histogram analyses can help predict response to chemotherapy in patients with colorectal hepatic metastases by using response evaluation criteria in solid tumours (RECIST1.1) as the reference standard. Standard MRI including diffusion-weighted imaging (b=0, 500 s/mm(2)) was performed before chemotherapy in 53 patients with colorectal hepatic metastases. Histograms were performed for apparent diffusion coefficient (ADC) maps, arterial, and portal venous phase images; thereafter, mean, percentiles (1st, 10th, 50th, 90th, 99th), skewness, kurtosis, and variance were generated. Quantitative histogram parameters were compared between responders (partial and complete response, n=15) and non-responders (progressive and stable disease, n=38). Receiver operator characteristics (ROC) analyses were further analyzed for the significant parameters. The mean, 1st percentile, 10th percentile, 50th percentile, 90th percentile, 99th percentile of the ADC maps were significantly lower in responding group than that in non-responding group (p=0.000-0.002) with area under the ROC curve (AUCs) of 0.76-0.82. The histogram parameters of arterial and portal venous phase showed no significant difference (p>0.05) between the two groups. Histogram-derived parameters for ADC maps seem to be a promising tool for predicting response to chemotherapy in patients with colorectal hepatic metastases. • ADC histogram analyses can potentially predict chemotherapy response in colorectal liver metastases. • Lower histogram-derived parameters (mean, percentiles) for ADC tend to have good response. • MR enhancement histogram analyses are not reliable to predict response.
Using histograms to introduce randomization in the generation of ensembles of decision trees
Kamath, Chandrika; Cantu-Paz, Erick; Littau, David
2005-02-22
A system for decision tree ensembles that includes a module to read the data, a module to create a histogram, a module to evaluate a potential split according to some criterion using the histogram, a module to select a split point randomly in an interval around the best split, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method includes the steps of reading the data; creating a histogram; evaluating a potential split according to some criterion using the histogram, selecting a split point randomly in an interval around the best split, splitting the data, and combining multiple decision trees in ensembles.
Histogram based analysis of lung perfusion of children after congenital diaphragmatic hernia repair.
Kassner, Nora; Weis, Meike; Zahn, Katrin; Schaible, Thomas; Schoenberg, Stefan O; Schad, Lothar R; Zöllner, Frank G
2018-05-01
To investigate a histogram based approach to characterize the distribution of perfusion in the whole left and right lung by descriptive statistics and to show how histograms could be used to visually explore perfusion defects in two year old children after Congenital Diaphragmatic Hernia (CDH) repair. 28 children (age of 24.2±1.7months; all left sided hernia; 9 after extracorporeal membrane oxygenation therapy) underwent quantitative DCE-MRI of the lung. Segmentations of left and right lung were manually drawn to mask the calculated pulmonary blood flow maps and then to derive histograms for each lung side. Individual and group wise analysis of histograms of left and right lung was performed. Ipsilateral and contralateral lung show significant difference in shape and descriptive statistics derived from the histogram (Wilcoxon signed-rank test, p<0.05) on group wise and individual level. Subgroup analysis (patients with vs without ECMO therapy) showed no significant differences using histogram derived parameters. Histogram analysis can be a valuable tool to characterize and visualize whole lung perfusion of children after CDH repair. It allows for several possibilities to analyze the data, either describing the perfusion differences between the right and left lung but also to explore and visualize localized perfusion patterns in the 3D lung volume. Subgroup analysis will be possible given sufficient sample sizes. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2006-01-01
A new method is proposed to compare statistical differences between summary histograms, which are the histograms summed over a large ensemble of individual histograms. It consists of choosing a distance statistic for measuring the difference between summary histograms and using a bootstrap procedure to calculate the statistical significance level. Bootstrapping is an approach to statistical inference that makes few assumptions about the underlying probability distribution that describes the data. Three distance statistics are compared in this study. They are the Euclidean distance, the Jeffries-Matusita distance and the Kuiper distance. The data used in testing the bootstrap method are satellite measurements of cloud systems called cloud objects. Each cloud object is defined as a contiguous region/patch composed of individual footprints or fields of view. A histogram of measured values over footprints is generated for each parameter of each cloud object and then summary histograms are accumulated over all individual histograms in a given cloud-object size category. The results of statistical hypothesis tests using all three distances as test statistics are generally similar, indicating the validity of the proposed method. The Euclidean distance is determined to be most suitable after comparing the statistical tests of several parameters with distinct probability distributions among three cloud-object size categories. Impacts on the statistical significance levels resulting from differences in the total lengths of satellite footprint data between two size categories are also discussed.
Inferred Eccentricity and Period Distributions of Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Prsa, Andrej; Matijevic, G.
2014-01-01
Determining the underlying eccentricity and orbital period distributions from an observed sample of eclipsing binary stars is not a trivial task. Shen and Turner (2008) have shown that the commonly used maximum likelihood estimators are biased to larger eccentricities and they do not describe the underlying distribution correctly; orbital periods suffer from a similar bias. Hogg, Myers and Bovy (2010) proposed a hierarchical probabilistic method for inferring the true eccentricity distribution of exoplanet orbits that uses the likelihood functions for individual star eccentricities. The authors show that proper inference outperforms the simple histogramming of the best-fit eccentricity values. We apply this method to the complete sample of eclipsing binary stars observed by the Kepler mission (Prsa et al. 2011) to derive the unbiased underlying eccentricity and orbital period distributions. These distributions can be used for the studies of multiple star formation, dynamical evolution, and they can serve as a drop-in replacement to prior, ad-hoc distributions used in the exoplanet field for determining false positive occurrence rates.
Unsupervised spike sorting based on discriminative subspace learning.
Keshtkaran, Mohammad Reza; Yang, Zhi
2014-01-01
Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. In this paper, we present two unsupervised spike sorting algorithms based on discriminative subspace learning. The first algorithm simultaneously learns the discriminative feature subspace and performs clustering. It uses histogram of features in the most discriminative projection to detect the number of neurons. The second algorithm performs hierarchical divisive clustering that learns a discriminative 1-dimensional subspace for clustering in each level of the hierarchy until achieving almost unimodal distribution in the subspace. The algorithms are tested on synthetic and in-vivo data, and are compared against two widely used spike sorting methods. The comparative results demonstrate that our spike sorting methods can achieve substantially higher accuracy in lower dimensional feature space, and they are highly robust to noise. Moreover, they provide significantly better cluster separability in the learned subspace than in the subspace obtained by principal component analysis or wavelet transform.
NASA Astrophysics Data System (ADS)
Liu, Hong; Nodine, Calvin F.
1996-07-01
This paper presents a generalized image contrast enhancement technique, which equalizes the perceived brightness distribution based on the Heinemann contrast discrimination model. It is based on the mathematically proven existence of a unique solution to a nonlinear equation, and is formulated with easily tunable parameters. The model uses a two-step log-log representation of luminance contrast between targets and surround in a luminous background setting. The algorithm consists of two nonlinear gray scale mapping functions that have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of the gray-level distribution of the given image, and can be uniquely determined once the previous three are set. Tests have been carried out to demonstrate the effectiveness of the algorithm for increasing the overall contrast of radiology images. The traditional histogram equalization can be reinterpreted as an image enhancement technique based on the knowledge of human contrast perception. In fact, it is a special case of the proposed algorithm.
Cost-effective forensic image enhancement
NASA Astrophysics Data System (ADS)
Dalrymple, Brian E.
1998-12-01
In 1977, a paper was presented at the SPIE conference in Reston, Virginia, detailing the computer enhancement of the Zapruder film. The forensic value of this examination in a major homicide investigation was apparent to the viewer. Equally clear was the potential for extracting evidence which is beyond the reach of conventional detection techniques. The cost of this technology in 1976, however, was prohibitive, and well beyond the means of most police agencies. Twenty-two years later, a highly efficient means of image enhancement is easily within the grasp of most police agencies, not only for homicides but for any case application. A PC workstation combined with an enhancement software package allows a forensic investigator to fully exploit digital technology. The goal of this approach is the optimization of the signal to noise ratio in images. Obstructive backgrounds may be diminished or eliminated while weak signals are optimized by the use of algorithms including Fast Fourier Transform, Histogram Equalization and Image Subtraction. An added benefit is the speed with which these processes are completed and the results known. The efficacy of forensic image enhancement is illustrated through case applications.
Low-level image properties in facial expressions.
Menzel, Claudia; Redies, Christoph; Hayn-Leichsenring, Gregor U
2018-06-04
We studied low-level image properties of face photographs and analyzed whether they change with different emotional expressions displayed by an individual. Differences in image properties were measured in three databases that depicted a total of 167 individuals. Face images were used either in their original form, cut to a standard format or superimposed with a mask. Image properties analyzed were: brightness, redness, yellowness, contrast, spectral slope, overall power and relative power in low, medium and high spatial frequencies. Results showed that image properties differed significantly between expressions within each individual image set. Further, specific facial expressions corresponded to patterns of image properties that were consistent across all three databases. In order to experimentally validate our findings, we equalized the luminance histograms and spectral slopes of three images from a given individual who showed two expressions. Participants were significantly slower in matching the expression in an equalized compared to an original image triad. Thus, existing differences in these image properties (i.e., spectral slope, brightness or contrast) facilitate emotion detection in particular sets of face images. Copyright © 2018. Published by Elsevier B.V.
FPGA based charge fast histogramming for GEM detector
NASA Astrophysics Data System (ADS)
Poźniak, Krzysztof T.; Byszuk, A.; Chernyshova, M.; Cieszewski, R.; Czarski, T.; Dominik, W.; Jakubowska, K.; Kasprowicz, G.; Rzadkiewicz, J.; Scholz, M.; Zabolotny, W.
2013-10-01
This article presents a fast charge histogramming method for the position sensitive X-ray GEM detector. The energy resolved measurements are carried out simultaneously for 256 channels of the GEM detector. The whole process of histogramming is performed in 21 FPGA chips (Spartan-6 series from Xilinx) . The results of the histogramming process are stored in an external DDR3 memory. The structure of an electronic measuring equipment and a firmware functionality implemented in the FPGAs is described. Examples of test measurements are presented.
Local dynamic range compensation for scanning electron microscope imaging system.
Sim, K S; Huang, Y H
2015-01-01
This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods. © Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afonine, Pavel V.; Moriarty, Nigel W.; Mustyakimov, Marat
A method is presented that modifies a 2 m F obs- D F modelσ A-weighted map such that the resulting map can strengthen a weak signal, if present, and can reduce model bias and noise. The method consists of first randomizing the starting map and filling in missing reflections using multiple methods. This is followed by restricting the map to regions with convincing density and the application of sharpening. The final map is then created by combining a series of histogram-equalized intermediate maps. In the test cases shown, the maps produced in this way are found to have increased interpretabilitymore » and decreased model bias compared with the starting 2 m F obs- D F modelσ A-weighted map.« less
A cost-effective line-based light-balancing technique using adaptive processing.
Hsia, Shih-Chang; Chen, Ming-Huei; Chen, Yu-Min
2006-09-01
The camera imaging system has been widely used; however, the displaying image appears to have an unequal light distribution. This paper presents novel light-balancing techniques to compensate uneven illumination based on adaptive signal processing. For text image processing, first, we estimate the background level and then process each pixel with nonuniform gain. This algorithm can balance the light distribution while keeping a high contrast in the image. For graph image processing, the adaptive section control using piecewise nonlinear gain is proposed to equalize the histogram. Simulations show that the performance of light balance is better than the other methods. Moreover, we employ line-based processing to efficiently reduce the memory requirement and the computational cost to make it applicable in real-time systems.
Recovery of Background Structures in Nanoscale Helium Ion Microscope Imaging.
Carasso, Alfred S; Vladár, András E
2014-01-01
This paper discusses a two step enhancement technique applicable to noisy Helium Ion Microscope images in which background structures are not easily discernible due to a weak signal. The method is based on a preliminary adaptive histogram equalization, followed by 'slow motion' low-exponent Lévy fractional diffusion smoothing. This combined approach is unexpectedly effective, resulting in a companion enhanced image in which background structures are rendered much more visible, and noise is significantly reduced, all with minimal loss of image sharpness. The method also provides useful enhancements of scanning charged-particle microscopy images obtained by composing multiple drift-corrected 'fast scan' frames. The paper includes software routines, written in Interactive Data Language (IDL),(1) that can perform the above image processing tasks.
Afonine, Pavel V.; Moriarty, Nigel W.; Mustyakimov, Marat; Sobolev, Oleg V.; Terwilliger, Thomas C.; Turk, Dusan; Urzhumtsev, Alexandre; Adams, Paul D.
2015-01-01
A method is presented that modifies a 2m F obs − D F model σA-weighted map such that the resulting map can strengthen a weak signal, if present, and can reduce model bias and noise. The method consists of first randomizing the starting map and filling in missing reflections using multiple methods. This is followed by restricting the map to regions with convincing density and the application of sharpening. The final map is then created by combining a series of histogram-equalized intermediate maps. In the test cases shown, the maps produced in this way are found to have increased interpretability and decreased model bias compared with the starting 2m F obs − D F model σA-weighted map. PMID:25760612
Afonine, Pavel V.; Moriarty, Nigel W.; Mustyakimov, Marat; ...
2015-02-26
A method is presented that modifies a 2 m F obs- D F modelσ A-weighted map such that the resulting map can strengthen a weak signal, if present, and can reduce model bias and noise. The method consists of first randomizing the starting map and filling in missing reflections using multiple methods. This is followed by restricting the map to regions with convincing density and the application of sharpening. The final map is then created by combining a series of histogram-equalized intermediate maps. In the test cases shown, the maps produced in this way are found to have increased interpretabilitymore » and decreased model bias compared with the starting 2 m F obs- D F modelσ A-weighted map.« less
A natural-color mapping for single-band night-time image based on FPGA
NASA Astrophysics Data System (ADS)
Wang, Yilun; Qian, Yunsheng
2018-01-01
A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.
Liu, Song; Zhang, Yujuan; Chen, Ling; Guan, Wenxian; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang
2017-10-02
Whole-lesion apparent diffusion coefficient (ADC) histogram analysis has been introduced and proved effective in assessment of multiple tumors. However, the application of whole-volume ADC histogram analysis in gastrointestinal tumors has just started and never been reported in T and N staging of gastric cancers. Eighty patients with pathologically confirmed gastric carcinomas underwent diffusion weighted (DW) magnetic resonance imaging before surgery prospectively. Whole-lesion ADC histogram analysis was performed by two radiologists independently. The differences of ADC histogram parameters among different T and N stages were compared with independent-samples Kruskal-Wallis test. Receiver operating characteristic (ROC) analysis was performed to evaluate the performance of ADC histogram parameters in differentiating particular T or N stages of gastric cancers. There were significant differences of all the ADC histogram parameters for gastric cancers at different T (except ADC min and ADC max ) and N (except ADC max ) stages. Most ADC histogram parameters differed significantly between T1 vs T3, T1 vs T4, T2 vs T4, N0 vs N1, N0 vs N3, and some parameters (ADC 5% , ADC 10% , ADC min ) differed significantly between N0 vs N2, N2 vs N3 (all P < 0.05). Most parameters except ADC max performed well in differentiating different T and N stages of gastric cancers. Especially for identifying patients with and without lymph node metastasis, the ADC 10% yielded the largest area under the ROC curve of 0.794 (95% confidence interval, 0.677-0.911). All the parameters except ADC max showed excellent inter-observer agreement with intra-class correlation coefficients higher than 0.800. Whole-volume ADC histogram parameters held great potential in differentiating different T and N stages of gastric cancers preoperatively.
Gihr, Georg Alexander; Horvath-Rizea, Diana; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Henkes, Hans; Richter, Cindy; Hoffmann, Karl-Titus; Surov, Alexey; Schob, Stefan
2018-06-14
Meningiomas are the most frequently diagnosed intracranial masses, oftentimes requiring surgery. Especially procedure-related morbidity can be substantial, particularly in elderly patients. Hence, reliable imaging modalities enabling pretherapeutic prediction of tumor grade, growth kinetic, realistic prognosis, and-as a consequence-necessity of surgery are of great value. In this context, a promising diagnostic approach is advanced analysis of magnetic resonance imaging data. Therefore, our study investigated whether histogram profiling of routinely acquired postcontrast T1-weighted images is capable of separating low-grade from high-grade lesions and whether histogram parameters reflect Ki-67 expression in meningiomas. Pretreatment T1-weighted postcontrast volumes of 44 meningioma patients were used for signal intensity histogram profiling. WHO grade, tumor volume, and Ki-67 expression were evaluated. Comparative and correlative statistics investigating the association between histogram profile parameters and neuropathology were performed. None of the investigated histogram parameters revealed significant differences between low-grade and high-grade meningiomas. However, significant correlations were identified between Ki-67 and the histogram parameters skewness and entropy as well as between entropy and tumor volume. Contrary to previously reported findings, pretherapeutic postcontrast T1-weighted images can be used to predict growth kinetics in meningiomas if whole tumor histogram analysis is employed. However, no differences between distinct WHO grades were identifiable in out cohort. As a consequence, histogram analysis of postcontrast T1-weighted images is a promising approach to obtain quantitative in vivo biomarkers reflecting the proliferative potential in meningiomas. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Dose-volume histogram prediction using density estimation.
Skarpman Munter, Johanna; Sjölund, Jens
2015-09-07
Knowledge of what dose-volume histograms can be expected for a previously unseen patient could increase consistency and quality in radiotherapy treatment planning. We propose a machine learning method that uses previous treatment plans to predict such dose-volume histograms. The key to the approach is the framing of dose-volume histograms in a probabilistic setting.The training consists of estimating, from the patients in the training set, the joint probability distribution of some predictive features and the dose. The joint distribution immediately provides an estimate of the conditional probability of the dose given the values of the predictive features. The prediction consists of estimating, from the new patient, the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimate of the dose-volume histogram.To illustrate how the proposed method relates to previously proposed methods, we use the signed distance to the target boundary as a single predictive feature. As a proof-of-concept, we predicted dose-volume histograms for the brainstems of 22 acoustic schwannoma patients treated with stereotactic radiosurgery, and for the lungs of 9 lung cancer patients treated with stereotactic body radiation therapy. Comparing with two previous attempts at dose-volume histogram prediction we find that, given the same input data, the predictions are similar.In summary, we propose a method for dose-volume histogram prediction that exploits the intrinsic probabilistic properties of dose-volume histograms. We argue that the proposed method makes up for some deficiencies in previously proposed methods, thereby potentially increasing ease of use, flexibility and ability to perform well with small amounts of training data.
Structure Size Enhanced Histogram
NASA Astrophysics Data System (ADS)
Wesarg, Stefan; Kirschner, Matthias
Direct volume visualization requires the definition of transfer functions (TFs) for the assignment of opacity and color. Multi-dimensional TFs are based on at least two image properties, and are specified by means of 2D histograms. In this work we propose a new type of a 2D histogram which combines gray value with information about the size of the structures. This structure size enhanced (SSE) histogram is an intuitive approach for representing anatomical features. Clinicians — the users we are focusing on — are much more familiar with selecting features by their size than by their gradient magnitude value. As a proof of concept, we employ the SSE histogram for the definition of two-dimensional TFs for the visualization of 3D MRI and CT image data.
Face recognition algorithm using extended vector quantization histogram features.
Yan, Yan; Lee, Feifei; Wu, Xueqian; Chen, Qiu
2018-01-01
In this paper, we propose a face recognition algorithm based on a combination of vector quantization (VQ) and Markov stationary features (MSF). The VQ algorithm has been shown to be an effective method for generating features; it extracts a codevector histogram as a facial feature representation for face recognition. Still, the VQ histogram features are unable to convey spatial structural information, which to some extent limits their usefulness in discrimination. To alleviate this limitation of VQ histograms, we utilize Markov stationary features (MSF) to extend the VQ histogram-based features so as to add spatial structural information. We demonstrate the effectiveness of our proposed algorithm by achieving recognition results superior to those of several state-of-the-art methods on publicly available face databases.
Xu, Yan; Ru, Tong; Zhu, Lijing; Liu, Baorui; Wang, Huanhuan; Zhu, Li; He, Jian; Liu, Song; Zhou, Zhengyang; Yang, Xiaofeng
To monitor early response for locally advanced cervical cancers undergoing concurrent chemo-radiotherapy (CCRT) by ultrasonic histogram. B-mode ultrasound examinations were performed at 4 time points in thirty-four patients during CCRT. Six ultrasonic histogram parameters were used to assess the echogenicity, homogeneity and heterogeneity of tumors. I peak increased rapidly since the first week after therapy initiation, whereas W low , W high and A high changed significantly at the second week. The average ultrasonic histogram progressively moved toward the right and converted into more symmetrical shape. Ultrasonic histogram could be served as a potential marker to monitor early response during CCRT. Copyright © 2018 Elsevier Inc. All rights reserved.
Face verification system for Android mobile devices using histogram based features
NASA Astrophysics Data System (ADS)
Sato, Sho; Kobayashi, Kazuhiro; Chen, Qiu
2016-07-01
This paper proposes a face verification system that runs on Android mobile devices. In this system, facial image is captured by a built-in camera on the Android device firstly, and then face detection is implemented using Haar-like features and AdaBoost learning algorithm. The proposed system verify the detected face using histogram based features, which are generated by binary Vector Quantization (VQ) histogram using DCT coefficients in low frequency domains, as well as Improved Local Binary Pattern (Improved LBP) histogram in spatial domain. Verification results with different type of histogram based features are first obtained separately and then combined by weighted averaging. We evaluate our proposed algorithm by using publicly available ORL database and facial images captured by an Android tablet.
Packard, René R Sevag; Baek, Kyung In; Beebe, Tyler; Jen, Nelson; Ding, Yichen; Shi, Feng; Fei, Peng; Kang, Bong Jin; Chen, Po-Heng; Gau, Jonathan; Chen, Michael; Tang, Jonathan Y; Shih, Yu-Huan; Ding, Yonghe; Li, Debiao; Xu, Xiaolei; Hsiai, Tzung K
2017-08-17
This study sought to develop an automated segmentation approach based on histogram analysis of raw axial images acquired by light-sheet fluorescent imaging (LSFI) to establish rapid reconstruction of the 3-D zebrafish cardiac architecture in response to doxorubicin-induced injury and repair. Input images underwent a 4-step automated image segmentation process consisting of stationary noise removal, histogram equalization, adaptive thresholding, and image fusion followed by 3-D reconstruction. We applied this method to 3-month old zebrafish injected intraperitoneally with doxorubicin followed by LSFI at 3, 30, and 60 days post-injection. We observed an initial decrease in myocardial and endocardial cavity volumes at day 3, followed by ventricular remodeling at day 30, and recovery at day 60 (P < 0.05, n = 7-19). Doxorubicin-injected fish developed ventricular diastolic dysfunction and worsening global cardiac function evidenced by elevated E/A ratios and myocardial performance indexes quantified by pulsed-wave Doppler ultrasound at day 30, followed by normalization at day 60 (P < 0.05, n = 9-20). Treatment with the γ-secretase inhibitor, DAPT, to inhibit cleavage and release of Notch Intracellular Domain (NICD) blocked cardiac architectural regeneration and restoration of ventricular function at day 60 (P < 0.05, n = 6-14). Our approach provides a high-throughput model with translational implications for drug discovery and genetic modifiers of chemotherapy-induced cardiomyopathy.
Histogram Curve Matching Approaches for Object-based Image Classification of Land Cover and Land Use
Toure, Sory I.; Stow, Douglas A.; Weeks, John R.; Kumar, Sunil
2013-01-01
The classification of image-objects is usually done using parametric statistical measures of central tendency and/or dispersion (e.g., mean or standard deviation). The objectives of this study were to analyze digital number histograms of image objects and evaluate classifications measures exploiting characteristic signatures of such histograms. Two histograms matching classifiers were evaluated and compared to the standard nearest neighbor to mean classifier. An ADS40 airborne multispectral image of San Diego, California was used for assessing the utility of curve matching classifiers in a geographic object-based image analysis (GEOBIA) approach. The classifications were performed with data sets having 0.5 m, 2.5 m, and 5 m spatial resolutions. Results show that histograms are reliable features for characterizing classes. Also, both histogram matching classifiers consistently performed better than the one based on the standard nearest neighbor to mean rule. The highest classification accuracies were produced with images having 2.5 m spatial resolution. PMID:24403648
Shin, Young Gyung; Yoo, Jaeheung; Kwon, Hyeong Ju; Hong, Jung Hwa; Lee, Hye Sun; Yoon, Jung Hyun; Kim, Eun-Kyung; Moon, Hee Jung; Han, Kyunghwa; Kwak, Jin Young
2016-08-01
The objective of the study was to evaluate whether texture analysis using histogram and gray level co-occurrence matrix (GLCM) parameters can help clinicians diagnose lymphocytic thyroiditis (LT) and differentiate LT according to pathologic grade. The background thyroid pathology of 441 patients was classified into no evidence of LT, chronic LT (CLT), and Hashimoto's thyroiditis (HT). Histogram and GLCM parameters were extracted from the regions of interest on ultrasound. The diagnostic performances of the parameters for diagnosing and differentiating LT were calculated. Of the histogram and GLCM parameters, the mean on histogram had the highest Az (0.63) and VUS (0.303). As the degrees of LT increased, the mean decreased and the standard deviation and entropy increased. The mean on histogram from gray-scale ultrasound showed the best diagnostic performance as a single parameter in differentiating LT according to pathologic grade as well as in diagnosing LT. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guan, Yue; Shi, Hua; Chen, Ying; Liu, Song; Li, Weifeng; Jiang, Zhuoran; Wang, Huanhuan; He, Jian; Zhou, Zhengyang; Ge, Yun
2016-01-01
The aim of this study was to explore the application of whole-lesion histogram analysis of apparent diffusion coefficient (ADC) values of cervical cancer. A total of 54 women (mean age, 53 years) with cervical cancers underwent 3-T diffusion-weighted imaging with b values of 0 and 800 s/mm prospectively. Whole-lesion histogram analysis of ADC values was performed. Paired sample t test was used to compare differences in ADC histogram parameters between cervical cancers and normal cervical tissues. Receiver operating characteristic curves were constructed to identify the optimal threshold of each parameter. All histogram parameters in this study including ADCmean, ADCmin, ADC10%-ADC90%, mode, skewness, and kurtosis of cervical cancers were significantly lower than those of normal cervical tissues (all P < 0.0001). ADC90% had the largest area under receiver operating characteristic curve of 0.996. Whole-lesion histogram analysis of ADC maps is useful in the assessment of cervical cancer.
NASA Technical Reports Server (NTRS)
Seze, Genevieve; Rossow, William B.
1991-01-01
The spatial and temporal stability of the distributions of satellite-measured visible and infrared radiances, caused by variations in clouds and surfaces, are investigated using bidimensional and monodimensional histograms and time-composite images. Similar analysis of the histograms of the original and time-composite images provides separation of the contributions of the space and time variations to the total variations. The variability of both the surfaces and clouds is found to be larger at scales much larger than the minimum resolved by satellite imagery. This study shows that the shapes of these histograms are distinctive characteristics of the different climate regimes and that particular attributes of these histograms can be related to several general, though not universal, properties of clouds and surface variations at regional and synoptic scales. There are also significant exceptions to these relationships in particular climate regimes. The characteristics of these radiance histograms provide a stable well defined descriptor of the cloud and surface properties.
Meng, Jie; Zhu, Lijing; Zhu, Li; Wang, Huanhuan; Liu, Song; Yan, Jing; Liu, Baorui; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng
2016-10-22
To explore the role of apparent diffusion coefficient (ADC) histogram shape related parameters in early assessment of treatment response during the concurrent chemo-radiotherapy (CCRT) course of advanced cervical cancers. This prospective study was approved by the local ethics committee and informed consent was obtained from all patients. Thirty-two patients with advanced cervical squamous cell carcinomas underwent diffusion weighted magnetic resonance imaging (b values, 0 and 800 s/mm 2 ) before CCRT, at the end of 2nd and 4th week during CCRT and immediately after CCRT completion. Whole lesion ADC histogram analysis generated several histogram shape related parameters including skewness, kurtosis, s-sD av , width, standard deviation, as well as first-order entropy and second-order entropies. The averaged ADC histograms of 32 patients were generated to visually observe dynamic changes of the histogram shape following CCRT. All parameters except width and standard deviation showed significant changes during CCRT (all P < 0.05), and their variation trends fell into four different patterns. Skewness and kurtosis both showed high early decline rate (43.10 %, 48.29 %) at the end of 2nd week of CCRT. All entropies kept decreasing significantly since 2 weeks after CCRT initiated. The shape of averaged ADC histogram also changed obviously following CCRT. ADC histogram shape analysis held the potential in monitoring early tumor response in patients with advanced cervical cancers undergoing CCRT.
[Clinical application of MRI histogram in evaluation of muscle fatty infiltration].
Zheng, Y M; Du, J; Li, W Z; Wang, Z X; Zhang, W; Xiao, J X; Yuan, Y
2016-10-18
To describe a method based on analysis of the histogram of intensity values produced from the magnetic resonance imaging (MRI) for quantifying the degree of fatty infiltration. The study included 25 patients with dystrophinopathy. All the subjects underwent muscle MRI test at thigh level. The histogram M values of 250 muscles adjusted for subcutaneous fat, representing the degree of fatty infiltration, were compared with the expert visual reading using the modified Mercuri scale. There was a significant positive correlation between the histogram M values and the scores of visual reading (r=0.854, P<0.001). The distinct pattern of muscle involvement detected in the patients with dystrophinopathy in our study of histogram M values was similar to that of visual reading and results in literature. The histogram M values had stronger correlations with the clinical data than the scores of visual reading as follows: the correlations with age (r=0.730, P<0.001) and (r=0.753, P<0.001); with strength of knee extensor (r=-0.468, P=0.024) and (r=-0.460, P=0.027) respectively. Meanwhile, the histogram M values analysis had better repeatability than visual reading with the interclass correlation coefficient was 0.998 (95% CI: 0.997-0.998, P<0.001) and 0.958 (95% CI: 0.946-0.967, P<0.001) respectively. Histogram M values analysis of MRI with the advantages of repeatability and objectivity can be used to evaluate the degree of muscle fatty infiltration.
Dissimilarity representations in lung parenchyma classification
NASA Astrophysics Data System (ADS)
Sørensen, Lauge; de Bruijne, Marleen
2009-02-01
A good problem representation is important for a pattern recognition system to be successful. The traditional approach to statistical pattern recognition is feature representation. More specifically, objects are represented by a number of features in a feature vector space, and classifiers are built in this representation. This is also the general trend in lung parenchyma classification in computed tomography (CT) images, where the features often are measures on feature histograms. Instead, we propose to build normal density based classifiers in dissimilarity representations for lung parenchyma classification. This allows for the classifiers to work on dissimilarities between objects, which might be a more natural way of representing lung parenchyma. In this context, dissimilarity is defined between CT regions of interest (ROI)s. ROIs are represented by their CT attenuation histogram and ROI dissimilarity is defined as a histogram dissimilarity measure between the attenuation histograms. In this setting, the full histograms are utilized according to the chosen histogram dissimilarity measure. We apply this idea to classification of different emphysema patterns as well as normal, healthy tissue. Two dissimilarity representation approaches as well as different histogram dissimilarity measures are considered. The approaches are evaluated on a set of 168 CT ROIs using normal density based classifiers all showing good performance. Compared to using histogram dissimilarity directly as distance in a emph{k} nearest neighbor classifier, which achieves a classification accuracy of 92.9%, the best dissimilarity representation based classifier is significantly better with a classification accuracy of 97.0% (text{emph{p" border="0" class="imgtopleft"> = 0.046).
ERIC Educational Resources Information Center
Gratzer, William; Carpenter, James E.
2008-01-01
This article demonstrates an alternative approach to the construction of histograms--one based on the notion of using area to represent relative density in intervals of unequal length. The resulting histograms illustrate the connection between the area of the rectangles associated with particular outcomes and the relative frequency (probability)…
Investigating Student Understanding of Histograms
ERIC Educational Resources Information Center
Kaplan, Jennifer J.; Gabrosek, John G.; Curtiss, Phyllis; Malone, Chris
2014-01-01
Histograms are adept at revealing the distribution of data values, especially the shape of the distribution and any outlier values. They are included in introductory statistics texts, research methods texts, and in the popular press, yet students often have difficulty interpreting the information conveyed by a histogram. This research identifies…
NASA Astrophysics Data System (ADS)
Cruz-Roa, Angel; Basavanhally, Ajay; González, Fabio; Gilmore, Hannah; Feldman, Michael; Ganesan, Shridar; Shih, Natalie; Tomaszewski, John; Madabhushi, Anant
2014-03-01
This paper presents a deep learning approach for automatic detection and visual analysis of invasive ductal carcinoma (IDC) tissue regions in whole slide images (WSI) of breast cancer (BCa). Deep learning approaches are learn-from-data methods involving computational modeling of the learning process. This approach is similar to how human brain works using different interpretation levels or layers of most representative and useful features resulting into a hierarchical learned representation. These methods have been shown to outpace traditional approaches of most challenging problems in several areas such as speech recognition and object detection. Invasive breast cancer detection is a time consuming and challenging task primarily because it involves a pathologist scanning large swathes of benign regions to ultimately identify the areas of malignancy. Precise delineation of IDC in WSI is crucial to the subsequent estimation of grading tumor aggressiveness and predicting patient outcome. DL approaches are particularly adept at handling these types of problems, especially if a large number of samples are available for training, which would also ensure the generalizability of the learned features and classifier. The DL framework in this paper extends a number of convolutional neural networks (CNN) for visual semantic analysis of tumor regions for diagnosis support. The CNN is trained over a large amount of image patches (tissue regions) from WSI to learn a hierarchical part-based representation. The method was evaluated over a WSI dataset from 162 patients diagnosed with IDC. 113 slides were selected for training and 49 slides were held out for independent testing. Ground truth for quantitative evaluation was provided via expert delineation of the region of cancer by an expert pathologist on the digitized slides. The experimental evaluation was designed to measure classifier accuracy in detecting IDC tissue regions in WSI. Our method yielded the best quantitative results for automatic detection of IDC regions in WSI in terms of F-measure and balanced accuracy (71.80%, 84.23%), in comparison with an approach using handcrafted image features (color, texture and edges, nuclear textural and architecture), and a machine learning classifier for invasive tumor classification using a Random Forest. The best performing handcrafted features were fuzzy color histogram (67.53%, 78.74%) and RGB histogram (66.64%, 77.24%). Our results also suggest that at least some of the tissue classification mistakes (false positives and false negatives) were less due to any fundamental problems associated with the approach, than the inherent limitations in obtaining a very highly granular annotation of the diseased area of interest by an expert pathologist.
Extreme close approaches in hierarchical triple systems with comparable masses
NASA Astrophysics Data System (ADS)
Haim, Niv; Katz, Boaz
2018-06-01
We study close approaches in hierarchical triple systems with comparable masses using full N-body simulations, motivated by a recent model for type Ia supernovae involving direct collisions of white dwarfs (WDs). For stable hierarchical systems where the inner binary components have equal masses, we show that the ability of the inner binary to achieve very close approaches, where the separation between the components of the inner binary reaches values which are orders of magnitude smaller than the semi-major axis, can be analytically predicted from initial conditions. The rate of close approaches is found to be roughly linear with the mass of the tertiary. The rate increases in systems with unequal inner binaries by a marginal factor of ≲ 2 for mass ratios 0.5 ≤ m1/m2 ≤ 1 relevant for the inner white-dwarf binaries. For an average tertiary mass of ˜0.3M⊙ which is representative of typical M-dwarfs, the chance for clean collisions is ˜1% setting challenging constraints on the collisional model for type Ia's.
NASA Astrophysics Data System (ADS)
Galich, Nikolay E.
2008-07-01
Communication contains the description of the immunology data treatment. New nonlinear methods of immunofluorescence statistical analysis of peripheral blood neutrophils have been developed. We used technology of respiratory burst reaction of DNA fluorescence in the neutrophils cells nuclei due to oxidative activity. The histograms of photon count statistics the radiant neutrophils populations' in flow cytometry experiments are considered. Distributions of the fluorescence flashes frequency as functions of the fluorescence intensity are analyzed. Statistic peculiarities of histograms set for women in the pregnant period allow dividing all histograms on the three classes. The classification is based on three different types of smoothing and long-range scale averaged immunofluorescence distributions, their bifurcation and wavelet spectra. Heterogeneity peculiarities of long-range scale immunofluorescence distributions and peculiarities of wavelet spectra allow dividing all histograms on three groups. First histograms group belongs to healthy donors. Two other groups belong to donors with autoimmune and inflammatory diseases. Some of the illnesses are not diagnosed by standards biochemical methods. Medical standards and statistical data of the immunofluorescence histograms for identifications of health and illnesses are interconnected. Peculiarities of immunofluorescence for women in pregnant period are classified. Health or illness criteria are connected with statistics features of immunofluorescence histograms. Neutrophils populations' fluorescence presents the sensitive clear indicator of health status.
Morikawa, Kei; Kurimoto, Noriaki; Inoue, Takeo; Mineshita, Masamichi; Miyazawa, Teruomi
2015-01-01
Endobronchial ultrasonography using a guide sheath (EBUS-GS) is an increasingly common bronchoscopic technique, but currently, no methods have been established to quantitatively evaluate EBUS images of peripheral pulmonary lesions. The purpose of this study was to evaluate whether histogram data collected from EBUS-GS images can contribute to the diagnosis of lung cancer. Histogram-based analyses focusing on the brightness of EBUS images were retrospectively conducted: 60 patients (38 lung cancer; 22 inflammatory diseases), with clear EBUS images were included. For each patient, a 400-pixel region of interest was selected, typically located at a 3- to 5-mm radius from the probe, from recorded EBUS images during bronchoscopy. Histogram height, width, height/width ratio, standard deviation, kurtosis and skewness were investigated as diagnostic indicators. Median histogram height, width, height/width ratio and standard deviation were significantly different between lung cancer and benign lesions (all p < 0.01). With a cutoff value for standard deviation of 10.5, lung cancer could be diagnosed with an accuracy of 81.7%. Other characteristics investigated were inferior when compared to histogram standard deviation. Histogram standard deviation appears to be the most useful characteristic for diagnosing lung cancer using EBUS images. © 2015 S. Karger AG, Basel.
Kim, Ji Youn; Kim, Hai-Joong; Hahn, Meong Hi; Jeon, Hye Jin; Cho, Geum Joon; Hong, Sun Chul; Oh, Min Jeong
2013-09-01
Our aim was to figure out whether volumetric gray-scale histogram difference between anterior and posterior cervix can indicate the extent of cervical consistency. We collected data of 95 patients who were appropriate for vaginal delivery with 36th to 37th weeks of gestational age from September 2010 to October 2011 in the Department of Obstetrics and Gynecology, Korea University Ansan Hospital. Patients were excluded who had one of the followings: Cesarean section, labor induction, premature rupture of membrane. Thirty-four patients were finally enrolled. The patients underwent evaluation of the cervix through Bishop score, cervical length, cervical volume, three-dimensional (3D) cervical volumetric gray-scale histogram. The interval days from the cervix evaluation to the delivery day were counted. We compared to 3D cervical volumetric gray-scale histogram, Bishop score, cervical length, cervical volume with interval days from the evaluation of the cervix to the delivery. Gray-scale histogram difference between anterior and posterior cervix was significantly correlated to days to delivery. Its correlation coefficient (R) was 0.500 (P = 0.003). The cervical length was significantly related to the days to delivery. The correlation coefficient (R) and P-value between them were 0.421 and 0.013. However, anterior lip histogram, posterior lip histogram, total cervical volume, Bishop score were not associated with days to delivery (P >0.05). By using gray-scale histogram difference between anterior and posterior cervix and cervical length correlated with the days to delivery. These methods can be utilized to better help predict a cervical consistency.
NASA Technical Reports Server (NTRS)
Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro
1994-01-01
We calculate reduced moments (xi bar)(sub q) of the matter density fluctuations, up to order q = 5, from counts in cells produced by particle-mesh numerical simulations with scale-free Gaussian initial conditions. We use power-law spectra P(k) proportional to k(exp n) with indices n = -3, -2, -1, 0, 1. Due to the supposed absence of characteristic times or scales in our models, all quantities are expected to depend on a single scaling variable. For each model, the moments at all times can be expressed in terms of the variance (xi bar)(sub 2), alone. We look for agreement with the hierarchical scaling ansatz, according to which ((xi bar)(sub q)) proportional to ((xi bar)(sub 2))(exp (q - 1)). For n less than or equal to -2 models, we find strong deviations from the hierarchy, which are mostly due to the presence of boundary problems in the simulations. A small, residual signal of deviation from the hierarchical scaling is however also found in n greater than or equal to -1 models. The wide range of spectra considered and the large dynamic range, with careful checks of scaling and shot-noise effects, allows us to reliably detect evolution away from the perturbation theory result.
Construction and Evaluation of Histograms in Teacher Training
ERIC Educational Resources Information Center
Bruno, A.; Espinel, M. C.
2009-01-01
This article details the results of a written test designed to reveal how education majors construct and evaluate histograms and frequency polygons. Included is a description of the mistakes made by the students which shows how they tend to confuse histograms with bar diagrams, incorrectly assign data along the Cartesian axes and experience…
Empirical Histograms in Item Response Theory with Ordinal Data
ERIC Educational Resources Information Center
Woods, Carol M.
2007-01-01
The purpose of this research is to describe, test, and illustrate a new implementation of the empirical histogram (EH) method for ordinal items. The EH method involves the estimation of item response model parameters simultaneously with the approximation of the distribution of the random latent variable (theta) as a histogram. Software for the EH…
Yang, Su
2005-02-01
A new descriptor for symbol recognition is proposed. 1) A histogram is constructed for every pixel to figure out the distribution of the constraints among the other pixels. 2) All the histograms are statistically integrated to form a feature vector with fixed dimension. The robustness and invariance were experimentally confirmed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-01-01
This volume contains geology of the Durango D detail area, radioactive mineral occurrences in Colorado, and geophysical data interpretation. Eight appendices provide: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, geochemical statistical tables, magnetic and ancillary profiles, and test line data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-01-01
Geology of Durango C detail area, radioactive mineral occurrences in Colorado, and geophysical data interpretation are included in this report. Eight appendices provide: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, magnetic and ancillary profiles, and test line data.
Action recognition via cumulative histogram of multiple features
NASA Astrophysics Data System (ADS)
Yan, Xunshi; Luo, Yupin
2011-01-01
Spatial-temporal interest points (STIPs) are popular in human action recognition. However, they suffer from difficulties in determining size of codebook and losing much information during forming histograms. In this paper, spatial-temporal interest regions (STIRs) are proposed, which are based on STIPs and are capable of marking the locations of the most ``shining'' human body parts. In order to represent human actions, the proposed approach takes great advantages of multiple features, including STIRs, pyramid histogram of oriented gradients and pyramid histogram of oriented optical flows. To achieve this, cumulative histogram is used to integrate dynamic information in sequences and to form feature vectors. Furthermore, the widely used nearest neighbor and AdaBoost methods are employed as classification algorithms. Experiments on public datasets KTH, Weizmann and UCF sports show that the proposed approach achieves effective and robust results.
Meng, Jie; Zhu, Lijing; Zhu, Li; Ge, Yun; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng
2017-11-01
Background Apparent diffusion coefficient (ADC) histogram analysis has been widely used in determining tumor prognosis. Purpose To investigate the dynamic changes of ADC histogram parameters during concurrent chemo-radiotherapy (CCRT) in patients with advanced cervical cancers. Material and Methods This prospective study enrolled 32 patients with advanced cervical cancers undergoing CCRT who received diffusion-weighted (DW) magnetic resonance imaging (MRI) before CCRT, at the end of the second and fourth week during CCRT and one month after CCRT completion. The ADC histogram for the entire tumor volume was generated, and a series of histogram parameters was obtained. Dynamic changes of those parameters in cervical cancers were investigated as early biomarkers for treatment response. Results All histogram parameters except AUC low showed significant changes during CCRT (all P < 0.05). There were three variable trends involving different parameters. The mode, 5th, 10th, and 25th percentiles showed similar early increase rates (33.33%, 33.99%, 34.12%, and 30.49%, respectively) at the end of the second week of CCRT. The pre-CCRT 5th and 25th percentiles of the complete response (CR) group were significantly lower than those of the partial response (PR) group. Conclusion A series of ADC histogram parameters of cervical cancers changed significantly at the early stage of CCRT, indicating their potential in monitoring early tumor response to therapy.
Schob, Stefan; Münch, Benno; Dieckow, Julia; Quäschling, Ulf; Hoffmann, Karl-Titus; Richter, Cindy; Garnov, Nikita; Frydrychowicz, Clara; Krause, Matthias; Meyer, Hans-Jonas; Surov, Alexey
2018-04-01
Diffusion weighted imaging (DWI) quantifies motion of hydrogen nuclei in biological tissues and hereby has been used to assess the underlying tissue microarchitecture. Histogram-profiling of DWI provides more detailed information on diffusion characteristics of a lesion than the standardly calculated values of the apparent diffusion coefficient (ADC)-minimum, mean and maximum. Hence, the aim of our study was to investigate, which parameters of histogram-profiling of DWI in primary central nervous system lymphoma can be used to specifically predict features like cellular density, chromatin content and proliferative activity. Pre-treatment ADC maps of 21 PCNSL patients (8 female, 13 male, 28-89 years) from a 1.5T system were used for Matlab-based histogram profiling. Results of histopathology (H&E staining) and immunohistochemistry (Ki-67 expression) were quantified. Correlations between histogram-profiling parameters and neuropathologic examination were calculated using SPSS 23.0. The lower percentiles (p10 and p25) showed significant correlations with structural parameters of the neuropathologic examination (cellular density, chromatin content). The highest percentile, p90, correlated significantly with Ki-67 expression, resembling proliferative activity. Kurtosis of the ADC histogram correlated significantly with cellular density. Histogram-profiling of DWI in PCNSL provides a comprehensible set of parameters, which reflect distinct tumor-architectural and tumor-biological features, and hence, are promising biomarkers for treatment response and prognosis. Copyright © 2018. Published by Elsevier Inc.
ADC histogram analysis of muscle lymphoma - Correlation with histopathology in a rare entity.
Meyer, Hans-Jonas; Pazaitis, Nikolaos; Surov, Alexey
2018-06-21
Diffusion weighted imaging (DWI) is able to reflect histopathology architecture. A novel imaging approach, namely histogram analysis, is used to further characterize lesion on MRI. The purpose of this study is to correlate histogram parameters derived from apparent diffusion coefficient- (ADC) maps with histopathology parameters in muscle lymphoma. Eight patients (mean age 64.8 years, range 45-72 years) with histopathologically confirmed muscle lymphoma were retrospectively identified. Cell count, total nucleic and average nucleic areas were estimated using ImageJ. Additionally, Ki67-index was calculated. DWI was obtained on a 1.5T scanner by using the b values of 0 and 1000 s/mm2. Histogram analysis was performed as a whole lesion measurement by using a custom-made Matlabbased application. The correlation analysis revealed statistically significant correlation between cell count and ADCmean (p=-0.76, P=0.03) as well with ADCp75 (p=-0.79, P=0.02). Kurtosis and entropy correlated with average nucleic area (p=-0.81, P=0.02, p=0.88, P=0.007, respectively). None of the analyzed ADC parameters correlated with total nucleic area and with Ki67-index. This study identified significant correlations between cellularity and histogram parameters derived from ADC maps in muscle lymphoma. Thus, histogram analysis parameters reflect histopathology in muscle tumors. Advances in knowledge: Whole lesion ADC histogram analysis is able to reflect histopathology parameters in muscle lymphomas.
NASA Astrophysics Data System (ADS)
Galich, Nikolay E.; Filatov, Michael V.
2008-07-01
Communication contains the description of the immunology experiments and the experimental data treatment. New nonlinear methods of immunofluorescence statistical analysis of peripheral blood neutrophils have been developed. We used technology of respiratory burst reaction of DNA fluorescence in the neutrophils cells nuclei due to oxidative activity. The histograms of photon count statistics the radiant neutrophils populations' in flow cytometry experiments are considered. Distributions of the fluorescence flashes frequency as functions of the fluorescence intensity are analyzed. Statistic peculiarities of histograms set for healthy and unhealthy donors allow dividing all histograms on the three classes. The classification is based on three different types of smoothing and long-range scale averaged immunofluorescence distributions and their bifurcation. Heterogeneity peculiarities of long-range scale immunofluorescence distributions allow dividing all histograms on three groups. First histograms group belongs to healthy donors. Two other groups belong to donors with autoimmune and inflammatory diseases. Some of the illnesses are not diagnosed by standards biochemical methods. Medical standards and statistical data of the immunofluorescence histograms for identifications of health and illnesses are interconnected. Possibilities and alterations of immunofluorescence statistics in registration, diagnostics and monitoring of different diseases in various medical treatments have been demonstrated. Health or illness criteria are connected with statistics features of immunofluorescence histograms. Neutrophils populations' fluorescence presents the sensitive clear indicator of health status.
Yin, T C; Kuwada, S
1983-10-01
We used the binaural beat stimulus to study the interaural phase sensitivity of inferior colliculus (IC) neurons in the cat. The binaural beat, produced by delivering tones of slightly different frequencies to the two ears, generates continuous and graded changes in interaural phase. Over 90% of the cells that exhibit a sensitivity to changes in the interaural delay also show a sensitivity to interaural phase disparities with the binaural beat. Cells respond with a burst of impulses with each complete cycle of the beat frequency. The period histogram obtained by binning the poststimulus time histogram on the beat frequency gives a measure of the interaural phase sensitivity of the cell. In general, there is good correspondence in the shapes of the period histograms generated from binaural beats and the interaural phase curves derived from interaural delays and in the mean interaural phase angle calculated from them. The magnitude of the beat frequency determines the rate of change of interaural phase and the sign determines the direction of phase change. While most cells respond in a phase-locked manner up to beat frequencies of 10 Hz, there are some cells tht will phase lock up to 80 Hz. Beat frequency and mean interaural phase angle are linearly related for most cells. Most cells respond equally in the two directions of phase change and with different rates of change, at least up to 10 Hz. However, some IC cells exhibit marked sensitivity to the speed of phase change, either responding more vigorously at low beat frequencies or at high beat frequencies. In addition, other cells demonstrate a clear directional sensitivity. The cells that show sensitivity to the direction and speed of phase changes would be expected to demonstrate a sensitivity to moving sound sources in the free field. Changes in the mean interaural phase of the binaural beat period histograms are used to determine the effects of changes in average and interaural intensity on the phase sensitivity of the cells. The effects of both forms of intensity variation are continuously distributed. The binaural beat offers a number of advantages for studying the interaural phase sensitivity of binaural cells. The dynamic characteristics of the interaural phase can be varied so that the speed and direction of phase change are under direct control. The data can be obtained in a much more efficient manner, as the binaural beat is about 10 times faster in terms of data collection than the interaural delay.
Time-cumulated visible and infrared histograms used as descriptor of cloud cover
NASA Technical Reports Server (NTRS)
Seze, G.; Rossow, W.
1987-01-01
To study the statistical behavior of clouds for different climate regimes, the spatial and temporal stability of VIS-IR bidimensional histograms is tested. Also, the effect of data sampling and averaging on the histogram shapes is considered; in particular the sampling strategy used by the International Satellite Cloud Climatology Project is tested.
Interpreting Histograms. As Easy as It Seems?
ERIC Educational Resources Information Center
Lem, Stephanie; Onghena, Patrick; Verschaffel, Lieven; Van Dooren, Wim
2014-01-01
Histograms are widely used, but recent studies have shown that they are not as easy to interpret as it might seem. In this article, we report on three studies on the interpretation of histograms in which we investigated, namely, (1) whether the misinterpretation by university students can be considered to be the result of heuristic reasoning, (2)…
Improving Real World Performance of Vision Aided Navigation in a Flight Environment
2016-09-15
Introduction . . . . . . . 63 4.2 Wide Area Search Extent . . . . . . . . . . . . . . . . . 64 4.3 Large-Scale Image Navigation Histogram Filter ...65 4.3.1 Location Model . . . . . . . . . . . . . . . . . . 66 4.3.2 Measurement Model . . . . . . . . . . . . . . . 66 4.3.3 Histogram Filter ...Iteration of Histogram Filter . . . . . . . . . . . 70 4.4 Implementation and Flight Test Campaign . . . . . . . . 71 4.4.1 Software Implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-01-01
This volume contains geology of the Durango A detail area, radioactive mineral occurences in Colorado, and geophysical data interpretation. Eight appendices provide the following: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, geochemical statistical tables, magnetic and ancillary profiles, and test line data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-01-01
The geology of the Durango B detail area, the radioactive mineral occurrences in Colorado and the geophysical data interpretation are included in this report. Seven appendices contain: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, geochemical statistical tables, and test line data.
Students' Understanding of Bar Graphs and Histograms: Results from the LOCUS Assessments
ERIC Educational Resources Information Center
Whitaker, Douglas; Jacobbe, Tim
2017-01-01
Bar graphs and histograms are core statistical tools that are widely used in statistical practice and commonly taught in classrooms. Despite their importance and the instructional time devoted to them, many students demonstrate misunderstandings when asked to read and interpret bar graphs and histograms. Much of the research that has been…
Walimbe, Vivek; Shekhar, Raj
2006-12-01
We present an algorithm for automatic elastic registration of three-dimensional (3D) medical images. Our algorithm initially recovers the global spatial mismatch between the reference and floating images, followed by hierarchical octree-based subdivision of the reference image and independent registration of the floating image with the individual subvolumes of the reference image at each hierarchical level. Global as well as local registrations use the six-parameter full rigid-body transformation model and are based on maximization of normalized mutual information (NMI). To ensure robustness of the subvolume registration with low voxel counts, we calculate NMI using a combination of current and prior mutual histograms. To generate a smooth deformation field, we perform direct interpolation of six-parameter rigid-body subvolume transformations obtained at the last subdivision level. Our interpolation scheme involves scalar interpolation of the 3D translations and quaternion interpolation of the 3D rotational pose. We analyzed the performance of our algorithm through experiments involving registration of synthetically deformed computed tomography (CT) images. Our algorithm is general and can be applied to image pairs of any two modalities of most organs. We have demonstrated successful registration of clinical whole-body CT and positron emission tomography (PET) images using this algorithm. The registration accuracy for this application was evaluated, based on validation using expert-identified anatomical landmarks in 15 CT-PET image pairs. The algorithm's performance was comparable to the average accuracy observed for three expert-determined registrations in the same 15 image pairs.
Cauley, K A; Hu, Y; Och, J; Yorks, P J; Fielden, S W
2018-04-01
The majority of brain growth and development occur in the first 2 years of life. This study investigated these changes by analysis of the brain radiodensity histogram of head CT scans from the clinical population, 0-2 years of age. One hundred twenty consecutive head CTs with normal findings meeting the inclusion criteria from children from birth to 2 years were retrospectively identified from 3 different CT scan platforms. Histogram analysis was performed on brain-extracted images, and histogram mean, mode, full width at half maximum, skewness, kurtosis, and SD were correlated with subject age. The effects of scan platform were investigated. Normative curves were fitted by polynomial regression analysis. Average total brain volume was 360 cm 3 at birth, 948 cm 3 at 1 year, and 1072 cm 3 at 2 years. Total brain tissue density showed an 11% increase in mean density at 1 year and 19% at 2 years. Brain radiodensity histogram skewness was positive at birth, declining logarithmically in the first 200 days of life. The histogram kurtosis also decreased in the first 200 days to approach a normal distribution. Direct segmentation of CT images showed that changes in brain radiodensity histogram skewness correlated with, and can be explained by, a relative increase in gray matter volume and an increase in gray and white matter tissue density that occurs during this period of brain maturation. Normative metrics of the brain radiodensity histogram derived from routine clinical head CT images can be used to develop a model of normal brain development. © 2018 by American Journal of Neuroradiology.
Meyer, Hans Jonas; Emmer, Alexander; Kornhuber, Malte; Surov, Alexey
2018-05-01
Diffusion-weighted imaging (DWI) has the potential of being able to reflect histopathology architecture. A novel imaging approach, namely histogram analysis, is used to further characterize tissues on MRI. The aim of this study was to correlate histogram parameters derived from apparent diffusion coefficient (ADC) maps with serological parameters in myositis. 16 patients with autoimmune myositis were included in this retrospective study. DWI was obtained on a 1.5 T scanner by using the b-values of 0 and 1000 s mm - 2 . Histogram analysis was performed as a whole muscle measurement by using a custom-made Matlab-based application. The following ADC histogram parameters were estimated: ADCmean, ADCmax, ADCmin, ADCmedian, ADCmode, and the following percentiles ADCp10, ADCp25, ADCp75, ADCp90, as well histogram parameters kurtosis, skewness, and entropy. In all patients, the blood sample was acquired within 3 days to the MRI. The following serological parameters were estimated: alanine aminotransferase, aspartate aminotransferase, creatine kinase, lactate dehydrogenase, C-reactive protein (CRP) and myoglobin. All patients were screened for Jo1-autobodies. Kurtosis correlated inversely with CRP (p = -0.55 and 0.03). Furthermore, ADCp10 and ADCp90 values tended to correlate with creatine kinase (p = -0.43, 0.11, and p = -0.42, = 0.12 respectively). In addition, ADCmean, p10, p25, median, mode, and entropy were different between Jo1-positive and Jo1-negative patients. ADC histogram parameters are sensitive for detection of muscle alterations in myositis patients. Advances in knowledge: This study identified that kurtosis derived from ADC maps is associated with CRP in myositis patients. Furthermore, several ADC histogram parameters are statistically different between Jo1-positive and Jo1-negative patients.
Can histogram analysis of MR images predict aggressiveness in pancreatic neuroendocrine tumors?
De Robertis, Riccardo; Maris, Bogdan; Cardobi, Nicolò; Tinazzi Martini, Paolo; Gobbo, Stefano; Capelli, Paola; Ortolani, Silvia; Cingarlini, Sara; Paiella, Salvatore; Landoni, Luca; Butturini, Giovanni; Regi, Paolo; Scarpa, Aldo; Tortora, Giampaolo; D'Onofrio, Mirko
2018-06-01
To evaluate MRI derived whole-tumour histogram analysis parameters in predicting pancreatic neuroendocrine neoplasm (panNEN) grade and aggressiveness. Pre-operative MR of 42 consecutive patients with panNEN >1 cm were retrospectively analysed. T1-/T2-weighted images and ADC maps were analysed. Histogram-derived parameters were compared to histopathological features using the Mann-Whitney U test. Diagnostic accuracy was assessed by ROC-AUC analysis; sensitivity and specificity were assessed for each histogram parameter. ADC entropy was significantly higher in G2-3 tumours with ROC-AUC 0.757; sensitivity and specificity were 83.3 % (95 % CI: 61.2-94.5) and 61.1 % (95 % CI: 36.1-81.7). ADC kurtosis was higher in panNENs with vascular involvement, nodal and hepatic metastases (p= .008, .021 and .008; ROC-AUC= 0.820, 0.709 and 0.820); sensitivity and specificity were: 85.7/74.3 % (95 % CI: 42-99.2 /56.4-86.9), 36.8/96.5 % (95 % CI: 17.2-61.4 /76-99.8) and 100/62.8 % (95 % CI: 56.1-100/44.9-78.1). No significant differences between groups were found for other histogram-derived parameters (p >.05). Whole-tumour histogram analysis of ADC maps may be helpful in predicting tumour grade, vascular involvement, nodal and liver metastases in panNENs. ADC entropy and ADC kurtosis are the most accurate parameters for identification of panNENs with malignant behaviour. • Whole-tumour ADC histogram analysis can predict aggressiveness in pancreatic neuroendocrine neoplasms. • ADC entropy and kurtosis are higher in aggressive tumours. • ADC histogram analysis can quantify tumour diffusion heterogeneity. • Non-invasive quantification of tumour heterogeneity can provide adjunctive information for prognostication.
Tsuchiya, Naoko; Doai, Mariko; Usuda, Katsuo; Uramoto, Hidetaka; Tonami, Hisao
2017-01-01
Investigating the diagnostic accuracy of histogram analyses of apparent diffusion coefficient (ADC) values for determining non-small cell lung cancer (NSCLC) tumor grades, lymphovascular invasion, and pleural invasion. We studied 60 surgically diagnosed NSCLC patients. Diffusion-weighted imaging (DWI) was performed in the axial plane using a navigator-triggered single-shot, echo-planar imaging sequence with prospective acquisition correction. The ADC maps were generated, and we placed a volume-of-interest on the tumor to construct the whole-lesion histogram. Using the histogram, we calculated the mean, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of ADC, skewness, and kurtosis. Histogram parameters were correlated with tumor grade, lymphovascular invasion, and pleural invasion. We performed a receiver operating characteristics (ROC) analysis to assess the diagnostic performance of histogram parameters for distinguishing different pathologic features. The ADC mean, 10th, 25th, 50th, 75th, 90th, and 95th percentiles showed significant differences among the tumor grades. The ADC mean, 25th, 50th, 75th, 90th, and 95th percentiles were significant histogram parameters between high- and low-grade tumors. The ROC analysis between high- and low-grade tumors showed that the 95th percentile ADC achieved the highest area under curve (AUC) at 0.74. Lymphovascular invasion was associated with the ADC mean, 50th, 75th, 90th, and 95th percentiles, skewness, and kurtosis. Kurtosis achieved the highest AUC at 0.809. Pleural invasion was only associated with skewness, with the AUC of 0.648. ADC histogram analyses on the basis of the entire tumor volume are able to stratify NSCLCs' tumor grade, lymphovascular invasion and pleural invasion.
Novel medical image enhancement algorithms
NASA Astrophysics Data System (ADS)
Agaian, Sos; McClendon, Stephen A.
2010-01-01
In this paper, we present two novel medical image enhancement algorithms. The first, a global image enhancement algorithm, utilizes an alpha-trimmed mean filter as its backbone to sharpen images. The second algorithm uses a cascaded unsharp masking technique to separate the high frequency components of an image in order for them to be enhanced using a modified adaptive contrast enhancement algorithm. Experimental results from enhancing electron microscopy, radiological, CT scan and MRI scan images, using the MATLAB environment, are then compared to the original images as well as other enhancement methods, such as histogram equalization and two forms of adaptive contrast enhancement. An image processing scheme for electron microscopy images of Purkinje cells will also be implemented and utilized as a comparison tool to evaluate the performance of our algorithm.
Recovery of Background Structures in Nanoscale Helium Ion Microscope Imaging
Carasso, Alfred S; Vladár, András E
2014-01-01
This paper discusses a two step enhancement technique applicable to noisy Helium Ion Microscope images in which background structures are not easily discernible due to a weak signal. The method is based on a preliminary adaptive histogram equalization, followed by ‘slow motion’ low-exponent Lévy fractional diffusion smoothing. This combined approach is unexpectedly effective, resulting in a companion enhanced image in which background structures are rendered much more visible, and noise is significantly reduced, all with minimal loss of image sharpness. The method also provides useful enhancements of scanning charged-particle microscopy images obtained by composing multiple drift-corrected ‘fast scan’ frames. The paper includes software routines, written in Interactive Data Language (IDL),1 that can perform the above image processing tasks. PMID:26601050
Improved automatic adjustment of density and contrast in FCR system using neural network
NASA Astrophysics Data System (ADS)
Takeo, Hideya; Nakajima, Nobuyoshi; Ishida, Masamitsu; Kato, Hisatoyo
1994-05-01
FCR system has an automatic adjustment of image density and contrast by analyzing the histogram of image data in the radiation field. Advanced image recognition methods proposed in this paper can improve the automatic adjustment performance, in which neural network technology is used. There are two methods. Both methods are basically used 3-layer neural network with back propagation. The image data are directly input to the input-layer in one method and the histogram data is input in the other method. The former is effective to the imaging menu such as shoulder joint in which the position of interest region occupied on the histogram changes by difference of positioning and the latter is effective to the imaging menu such as chest-pediatrics in which the histogram shape changes by difference of positioning. We experimentally confirm the validity of these methods (about the automatic adjustment performance) as compared with the conventional histogram analysis methods.
NASA Astrophysics Data System (ADS)
Zeng, Bangze; Zhu, Youpan; Li, Zemin; Hu, Dechao; Luo, Lin; Zhao, Deli; Huang, Juan
2014-11-01
Duo to infrared image with low contrast, big noise and unclear visual effect, target is very difficult to observed and identified. This paper presents an improved infrared image detail enhancement algorithm based on adaptive histogram statistical stretching and gradient filtering (AHSS-GF). Based on the fact that the human eyes are very sensitive to the edges and lines, the author proposed to extract the details and textures by using the gradient filtering. New histogram could be acquired by calculating the sum of original histogram based on fixed window. With the minimum value for cut-off point, author carried on histogram statistical stretching. After the proper weights given to the details and background, the detail-enhanced results could be acquired finally. The results indicate image contrast could be improved and the details and textures could be enhanced effectively as well.
Research of image retrieval technology based on color feature
NASA Astrophysics Data System (ADS)
Fu, Yanjun; Jiang, Guangyu; Chen, Fengying
2009-10-01
Recently, with the development of the communication and the computer technology and the improvement of the storage technology and the capability of the digital image equipment, more and more image resources are given to us than ever. And thus the solution of how to locate the proper image quickly and accurately is wanted.The early method is to set up a key word for searching in the database, but now the method has become very difficult when we search much more picture that we need. In order to overcome the limitation of the traditional searching method, content based image retrieval technology was aroused. Now, it is a hot research subject.Color image retrieval is the important part of it. Color is the most important feature for color image retrieval. Three key questions on how to make use of the color characteristic are discussed in the paper: the expression of color, the abstraction of color characteristic and the measurement of likeness based on color. On the basis, the extraction technology of the color histogram characteristic is especially discussed. Considering the advantages and disadvantages of the overall histogram and the partition histogram, a new method based the partition-overall histogram is proposed. The basic thought of it is to divide the image space according to a certain strategy, and then calculate color histogram of each block as the color feature of this block. Users choose the blocks that contain important space information, confirming the right value. The system calculates the distance between the corresponding blocks that users choosed. Other blocks merge into part overall histograms again, and the distance should be calculated. Then accumulate all the distance as the real distance between two pictures. The partition-overall histogram comprehensive utilizes advantages of two methods above, by choosing blocks makes the feature contain more spatial information which can improve performance; the distances between partition-overall histogram make rotating and translation does not change. The HSV color space is used to show color characteristic of image, which is suitable to the visual characteristic of human. Taking advance of human's feeling to color, it quantifies color sector with unequal interval, and get characteristic vector. Finally, it matches the similarity of image with the algorithm of the histogram intersection and the partition-overall histogram. Users can choose a demonstration image to show inquired vision require, and also can adjust several right value through the relevance-feedback method to obtain the best result of search.An image retrieval system based on these approaches is presented. The result of the experiments shows that the image retrieval based on partition-overall histogram can keep the space distribution information while abstracting color feature efficiently, and it is superior to the normal color histograms in precision rate while researching. The query precision rate is more than 95%. In addition, the efficient block expression will lower the complicate degree of the images to be searched, and thus the searching efficiency will be increased. The image retrieval algorithms based on the partition-overall histogram proposed in the paper is efficient and effective.
Spline smoothing of histograms by linear programming
NASA Technical Reports Server (NTRS)
Bennett, J. O.
1972-01-01
An algorithm for an approximating function to the frequency distribution is obtained from a sample of size n. To obtain the approximating function a histogram is made from the data. Next, Euclidean space approximations to the graph of the histogram using central B-splines as basis elements are obtained by linear programming. The approximating function has area one and is nonnegative.
Kwon, M-R; Shin, J H; Hahn, S Y; Oh, Y L; Kwak, J Y; Lee, E; Lim, Y
2018-06-01
To evaluate the diagnostic value of histogram analysis using ultrasound (US) to differentiate between the subtypes of follicular variant of papillary thyroid carcinoma (FVPTC). The present study included 151 patients with surgically confirmed FVPTC diagnosed between January 2014 and May 2016. Their preoperative US features were reviewed retrospectively. Histogram parameters (mean, maximum, minimum, range, root mean square, skewness, kurtosis, energy, entropy, and correlation) were obtained for each nodule. The 152 nodules in 151 patients comprised 48 non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTPs; 31.6%), 60 invasive encapsulated FVPTCs (EFVPTCs; 39.5%), and 44 infiltrative FVPTCs (28.9%). The US features differed significantly between the subtypes of FVPTC. Discrimination was achieved between NIFTPs and infiltrative FVPTC, and between invasive EFVPTC and infiltrative FVPTC using histogram parameters; however, the parameters were not significantly different between NIFTP and invasive EFVPTC. It is feasible to use greyscale histogram analysis to differentiate between NIFTP and infiltrative FVPTC, but not between NIFTP and invasive EFVPTC. Histograms can be used as a supplementary tool to differentiate the subtypes of FVPTC. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Song, Yong Sub; Choi, Seung Hong; Park, Chul-Kee; Yi, Kyung Sik; Lee, Woong Jae; Yun, Tae Jin; Kim, Tae Min; Lee, Se-Hoon; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sung-Hye; Kim, Il Han; Jahng, Geon-Ho; Chang, Kee-Hyun
2013-01-01
The purpose of this study was to differentiate true progression from pseudoprogression of glioblastomas treated with concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ) by using histogram analysis of apparent diffusion coefficient (ADC) and normalized cerebral blood volume (nCBV) maps. Twenty patients with histopathologically proven glioblastoma who had received CCRT with TMZ underwent perfusion-weighted imaging and diffusion-weighted imaging (b = 0, 1000 sec/mm(2)). The corresponding nCBV and ADC maps for the newly visible, entirely enhancing lesions were calculated after the completion of CCRT with TMZ. Two observers independently measured the histogram parameters of the nCBV and ADC maps. The histogram parameters between the true progression group (n = 10) and the pseudoprogression group (n = 10) were compared by use of an unpaired Student's t test and subsequent multivariable stepwise logistic regression analysis to determine the best predictors for the differential diagnosis between the two groups. Receiver operating characteristic analysis was employed to determine the best cutoff values for the histogram parameters that proved to be significant predictors for differentiating true progression from pseudoprogression. Intraclass correlation coefficient was used to determine the level of inter-observer reliability for the histogram parameters. The 5th percentile value (C5) of the cumulative ADC histograms was a significant predictor for the differential diagnosis between true progression and pseudoprogression (p = 0.044 for observer 1; p = 0.011 for observer 2). Optimal cutoff values of 892 × 10(-6) mm(2)/sec for observer 1 and 907 × 10(-6) mm(2)/sec for observer 2 could help differentiate between the two groups with a sensitivity of 90% and 80%, respectively, a specificity of 90% and 80%, respectively, and an area under the curve of 0.880 and 0.840, respectively. There was no other significant differentiating parameter on the nCBV histograms. Inter-observer reliability was excellent or good for all histogram parameters (intraclass correlation coefficient range: 0.70-0.99). The C5 of the cumulative ADC histogram can be a promising parameter for the differentiation of true progression from pseudoprogression of newly visible, entirely enhancing lesions after CCRT with TMZ for glioblastomas.
Song, Yong Sub; Park, Chul-Kee; Yi, Kyung Sik; Lee, Woong Jae; Yun, Tae Jin; Kim, Tae Min; Lee, Se-Hoon; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sung-Hye; Kim, Il Han; Jahng, Geon-Ho; Chang, Kee-Hyun
2013-01-01
Objective The purpose of this study was to differentiate true progression from pseudoprogression of glioblastomas treated with concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ) by using histogram analysis of apparent diffusion coefficient (ADC) and normalized cerebral blood volume (nCBV) maps. Materials and Methods Twenty patients with histopathologically proven glioblastoma who had received CCRT with TMZ underwent perfusion-weighted imaging and diffusion-weighted imaging (b = 0, 1000 sec/mm2). The corresponding nCBV and ADC maps for the newly visible, entirely enhancing lesions were calculated after the completion of CCRT with TMZ. Two observers independently measured the histogram parameters of the nCBV and ADC maps. The histogram parameters between the true progression group (n = 10) and the pseudoprogression group (n = 10) were compared by use of an unpaired Student's t test and subsequent multivariable stepwise logistic regression analysis to determine the best predictors for the differential diagnosis between the two groups. Receiver operating characteristic analysis was employed to determine the best cutoff values for the histogram parameters that proved to be significant predictors for differentiating true progression from pseudoprogression. Intraclass correlation coefficient was used to determine the level of inter-observer reliability for the histogram parameters. Results The 5th percentile value (C5) of the cumulative ADC histograms was a significant predictor for the differential diagnosis between true progression and pseudoprogression (p = 0.044 for observer 1; p = 0.011 for observer 2). Optimal cutoff values of 892 × 10-6 mm2/sec for observer 1 and 907 × 10-6 mm2/sec for observer 2 could help differentiate between the two groups with a sensitivity of 90% and 80%, respectively, a specificity of 90% and 80%, respectively, and an area under the curve of 0.880 and 0.840, respectively. There was no other significant differentiating parameter on the nCBV histograms. Inter-observer reliability was excellent or good for all histogram parameters (intraclass correlation coefficient range: 0.70-0.99). Conclusion The C5 of the cumulative ADC histogram can be a promising parameter for the differentiation of true progression from pseudoprogression of newly visible, entirely enhancing lesions after CCRT with TMZ for glioblastomas. PMID:23901325
Schob, Stefan; Meyer, Hans Jonas; Dieckow, Julia; Pervinder, Bhogal; Pazaitis, Nikolaos; Höhn, Anne Kathrin; Garnov, Nikita; Horvath-Rizea, Diana; Hoffmann, Karl-Titus; Surov, Alexey
2017-04-12
Pre-surgical diffusion weighted imaging (DWI) is increasingly important in the context of thyroid cancer for identification of the optimal treatment strategy. It has exemplarily been shown that DWI at 3T can distinguish undifferentiated from well-differentiated thyroid carcinoma, which has decisive implications for the magnitude of surgery. This study used DWI histogram analysis of whole tumor apparent diffusion coefficient (ADC) maps. The primary aim was to discriminate thyroid carcinomas which had already gained the capacity to metastasize lymphatically from those not yet being able to spread via the lymphatic system. The secondary aim was to reflect prognostically important tumor-biological features like cellularity and proliferative activity with ADC histogram analysis. Fifteen patients with follicular-cell derived thyroid cancer were enrolled. Lymph node status, extent of infiltration of surrounding tissue, and Ki-67 and p53 expression were assessed in these patients. DWI was obtained in a 3T system using b values of 0, 400, and 800 s/mm². Whole tumor ADC volumes were analyzed using a histogram-based approach. Several ADC parameters showed significant correlations with immunohistopathological parameters. Most importantly, ADC histogram skewness and ADC histogram kurtosis were able to differentiate between nodal negative and nodal positive thyroid carcinoma. histogram analysis of whole ADC tumor volumes has the potential to provide valuable information on tumor biology in thyroid carcinoma. However, further studies are warranted.
Schob, Stefan; Meyer, Hans Jonas; Dieckow, Julia; Pervinder, Bhogal; Pazaitis, Nikolaos; Höhn, Anne Kathrin; Garnov, Nikita; Horvath-Rizea, Diana; Hoffmann, Karl-Titus; Surov, Alexey
2017-01-01
Pre-surgical diffusion weighted imaging (DWI) is increasingly important in the context of thyroid cancer for identification of the optimal treatment strategy. It has exemplarily been shown that DWI at 3T can distinguish undifferentiated from well-differentiated thyroid carcinoma, which has decisive implications for the magnitude of surgery. This study used DWI histogram analysis of whole tumor apparent diffusion coefficient (ADC) maps. The primary aim was to discriminate thyroid carcinomas which had already gained the capacity to metastasize lymphatically from those not yet being able to spread via the lymphatic system. The secondary aim was to reflect prognostically important tumor-biological features like cellularity and proliferative activity with ADC histogram analysis. Fifteen patients with follicular-cell derived thyroid cancer were enrolled. Lymph node status, extent of infiltration of surrounding tissue, and Ki-67 and p53 expression were assessed in these patients. DWI was obtained in a 3T system using b values of 0, 400, and 800 s/mm2. Whole tumor ADC volumes were analyzed using a histogram-based approach. Several ADC parameters showed significant correlations with immunohistopathological parameters. Most importantly, ADC histogram skewness and ADC histogram kurtosis were able to differentiate between nodal negative and nodal positive thyroid carcinoma. Conclusions: histogram analysis of whole ADC tumor volumes has the potential to provide valuable information on tumor biology in thyroid carcinoma. However, further studies are warranted. PMID:28417929
Zolal, Amir; Juratli, Tareq A; Linn, Jennifer; Podlesek, Dino; Sitoci Ficici, Kerim Hakan; Kitzler, Hagen H; Schackert, Gabriele; Sobottka, Stephan B; Rieger, Bernhard; Krex, Dietmar
2016-05-01
Objective To determine the value of apparent diffusion coefficient (ADC) histogram parameters for the prediction of individual survival in patients undergoing surgery for recurrent glioblastoma (GBM) in a retrospective cohort study. Methods Thirty-one patients who underwent surgery for first recurrence of a known GBM between 2008 and 2012 were included. The following parameters were collected: age, sex, enhancing tumor size, mean ADC, median ADC, ADC skewness, ADC kurtosis and fifth percentile of the ADC histogram, initial progression free survival (PFS), extent of second resection and further adjuvant treatment. The association of these parameters with survival and PFS after second surgery was analyzed using log-rank test and Cox regression. Results Using log-rank test, ADC histogram skewness of the enhancing tumor was significantly associated with both survival (p = 0.001) and PFS after second surgery (p = 0.005). Further parameters associated with prolonged survival after second surgery were: gross total resection at second surgery (p = 0.026), tumor size (0.040) and third surgery (p = 0.003). In the multivariate Cox analysis, ADC histogram skewness was shown to be an independent prognostic factor for survival after second surgery. Conclusion ADC histogram skewness of the enhancing lesion, enhancing lesion size, third surgery, as well as gross total resection have been shown to be associated with survival following the second surgery. ADC histogram skewness was an independent prognostic factor for survival in the multivariate analysis.
Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques.
Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh
2016-12-01
Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications.
Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques
Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh
2016-01-01
Background: Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. Methods: In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. Results: With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Conclusion: Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications. PMID:28077898
Gender differences in public and private drinking contexts: a multi-level GENACIS analysis.
Bond, Jason C; Roberts, Sarah C M; Greenfield, Thomas K; Korcha, Rachael; Ye, Yu; Nayak, Madhabika B
2010-05-01
This multi-national study hypothesized that higher levels of country-level gender equality would predict smaller differences in the frequency of women's compared to men's drinking in public (like bars and restaurants) settings and possibly private (home or party) settings. GENACIS project survey data with drinking contexts included 22 countries in Europe (8); the Americas (7); Asia (3); Australasia (2), and Africa (2), analyzed using hierarchical linear models (individuals nested within country). Age, gender and marital status were individual predictors; country-level gender equality as well as equality in economic participation, education, and political participation, and reproductive autonomy and context of violence against women measures were country-level variables. In separate models, more reproductive autonomy, economic participation, and educational attainment and less violence against women predicted smaller differences in drinking in public settings. Once controlling for country-level economic status, only equality in economic participation predicted the size of the gender difference. Most country-level variables did not explain the gender difference in frequency of drinking in private settings. Where gender equality predicted this difference, the direction of the findings was opposite from the direction in public settings, with more equality predicting a larger gender difference, although this relationship was no longer significant after controlling for country-level economic status. Findings suggest that country-level gender equality may influence gender differences in drinking. However, the effects of gender equality on drinking may depend on the specific alcohol measure, in this case drinking context, as well as on the aspect of gender equality considered. Similar studies that use only global measures of gender equality may miss key relationships. We consider potential implications for alcohol related consequences, policy and public health.
Sun, Xiaofei; Shi, Lin; Luo, Yishan; Yang, Wei; Li, Hongpeng; Liang, Peipeng; Li, Kuncheng; Mok, Vincent C T; Chu, Winnie C W; Wang, Defeng
2015-07-28
Intensity normalization is an important preprocessing step in brain magnetic resonance image (MRI) analysis. During MR image acquisition, different scanners or parameters would be used for scanning different subjects or the same subject at a different time, which may result in large intensity variations. This intensity variation will greatly undermine the performance of subsequent MRI processing and population analysis, such as image registration, segmentation, and tissue volume measurement. In this work, we proposed a new histogram normalization method to reduce the intensity variation between MRIs obtained from different acquisitions. In our experiment, we scanned each subject twice on two different scanners using different imaging parameters. With noise estimation, the image with lower noise level was determined and treated as the high-quality reference image. Then the histogram of the low-quality image was normalized to the histogram of the high-quality image. The normalization algorithm includes two main steps: (1) intensity scaling (IS), where, for the high-quality reference image, the intensities of the image are first rescaled to a range between the low intensity region (LIR) value and the high intensity region (HIR) value; and (2) histogram normalization (HN),where the histogram of low-quality image as input image is stretched to match the histogram of the reference image, so that the intensity range in the normalized image will also lie between LIR and HIR. We performed three sets of experiments to evaluate the proposed method, i.e., image registration, segmentation, and tissue volume measurement, and compared this with the existing intensity normalization method. It is then possible to validate that our histogram normalization framework can achieve better results in all the experiments. It is also demonstrated that the brain template with normalization preprocessing is of higher quality than the template with no normalization processing. We have proposed a histogram-based MRI intensity normalization method. The method can normalize scans which were acquired on different MRI units. We have validated that the method can greatly improve the image analysis performance. Furthermore, it is demonstrated that with the help of our normalization method, we can create a higher quality Chinese brain template.
A contrast enhancement method for improving the segmentation of breast lesions on ultrasonography.
Flores, Wilfrido Gómez; Pereira, Wagner Coelho de Albuquerque
2017-01-01
This paper presents an adaptive contrast enhancement method based on sigmoidal mapping function (SACE) used for improving the computerized segmentation of breast lesions on ultrasound. First, from the original ultrasound image an intensity variation map is obtained, which is used to generate local sigmoidal mapping functions related to distinct contextual regions. Then, a bilinear interpolation scheme is used to transform every original pixel to a new gray level value. Also, four contrast enhancement techniques widely used in breast ultrasound enhancement are implemented: histogram equalization (HEQ), contrast limited adaptive histogram equalization (CLAHE), fuzzy enhancement (FEN), and sigmoid based enhancement (SEN). In addition, these contrast enhancement techniques are considered in a computerized lesion segmentation scheme based on watershed transformation. The performance comparison among techniques is assessed in terms of both the quality of contrast enhancement and the segmentation accuracy. The former is quantified by the measure, where the greater the value, the better the contrast enhancement, whereas the latter is calculated by the Jaccard index, which should tend towards unity to indicate adequate segmentation. The experiments consider a data set with 500 breast ultrasound images. The results show that SACE outperforms its counterparts, where the median values for the measure are: SACE: 139.4, SEN: 68.2, HEQ: 64.1, CLAHE: 62.8, and FEN: 7.9. Considering the segmentation performance results, the SACE method presents the largest accuracy, where the median values for the Jaccard index are: SACE: 0.81, FEN: 0.80, CLAHE: 0.79, HEQ: 77, and SEN: 0.63. The SACE method performs well due to the combination of three elements: (1) the intensity variation map reduces intensity variations that could distort the real response of the mapping function, (2) the sigmoidal mapping function enhances the gray level range where the transition between lesion and background is found, and (3) the adaptive enhancing scheme for coping with local contrasts. Hence, the SACE approach is appropriate for enhancing contrast before computerized lesion segmentation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Improvement in Recursive Hierarchical Segmentation of Data
NASA Technical Reports Server (NTRS)
Tilton, James C.
2006-01-01
A further modification has been made in the algorithm and implementing software reported in Modified Recursive Hierarchical Segmentation of Data (GSC- 14681-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 51. That software performs recursive hierarchical segmentation of data having spatial characteristics (e.g., spectral-image data). The output of a prior version of the software contained artifacts, including spurious segmentation-image regions bounded by processing-window edges. The modification for suppressing the artifacts, mentioned in the cited article, was addition of a subroutine that analyzes data in the vicinities of seams to find pairs of regions that tend to lie adjacent to each other on opposite sides of the seams. Within each such pair, pixels in one region that are more similar to pixels in the other region are reassigned to the other region. The present modification provides for a parameter ranging from 0 to 1 for controlling the relative priority of merges between spatially adjacent and spatially non-adjacent regions. At 1, spatially-adjacent-/spatially- non-adjacent-region merges have equal priority. At 0, only spatially-adjacent-region merges (no spectral clustering) are allowed. Between 0 and 1, spatially-adjacent- region merges have priority over spatially- non-adjacent ones.
The Hierarchical Cortical Organization of Human Speech Processing
de Heer, Wendy A.; Huth, Alexander G.; Griffiths, Thomas L.
2017-01-01
Speech comprehension requires that the brain extract semantic meaning from the spectral features represented at the cochlea. To investigate this process, we performed an fMRI experiment in which five men and two women passively listened to several hours of natural narrative speech. We then used voxelwise modeling to predict BOLD responses based on three different feature spaces that represent the spectral, articulatory, and semantic properties of speech. The amount of variance explained by each feature space was then assessed using a separate validation dataset. Because some responses might be explained equally well by more than one feature space, we used a variance partitioning analysis to determine the fraction of the variance that was uniquely explained by each feature space. Consistent with previous studies, we found that speech comprehension involves hierarchical representations starting in primary auditory areas and moving laterally on the temporal lobe: spectral features are found in the core of A1, mixtures of spectral and articulatory in STG, mixtures of articulatory and semantic in STS, and semantic in STS and beyond. Our data also show that both hemispheres are equally and actively involved in speech perception and interpretation. Further, responses as early in the auditory hierarchy as in STS are more correlated with semantic than spectral representations. These results illustrate the importance of using natural speech in neurolinguistic research. Our methodology also provides an efficient way to simultaneously test multiple specific hypotheses about the representations of speech without using block designs and segmented or synthetic speech. SIGNIFICANCE STATEMENT To investigate the processing steps performed by the human brain to transform natural speech sound into meaningful language, we used models based on a hierarchical set of speech features to predict BOLD responses of individual voxels recorded in an fMRI experiment while subjects listened to natural speech. Both cerebral hemispheres were actively involved in speech processing in large and equal amounts. Also, the transformation from spectral features to semantic elements occurs early in the cortical speech-processing stream. Our experimental and analytical approaches are important alternatives and complements to standard approaches that use segmented speech and block designs, which report more laterality in speech processing and associated semantic processing to higher levels of cortex than reported here. PMID:28588065
Visibility Equalizer Cutaway Visualization of Mesoscopic Biological Models.
Le Muzic, M; Mindek, P; Sorger, J; Autin, L; Goodsell, D; Viola, I
2016-06-01
In scientific illustrations and visualization, cutaway views are often employed as an effective technique for occlusion management in densely packed scenes. We propose a novel method for authoring cutaway illustrations of mesoscopic biological models. In contrast to the existing cutaway algorithms, we take advantage of the specific nature of the biological models. These models consist of thousands of instances with a comparably smaller number of different types. Our method constitutes a two stage process. In the first step, clipping objects are placed in the scene, creating a cutaway visualization of the model. During this process, a hierarchical list of stacked bars inform the user about the instance visibility distribution of each individual molecular type in the scene. In the second step, the visibility of each molecular type is fine-tuned through these bars, which at this point act as interactive visibility equalizers. An evaluation of our technique with domain experts confirmed that our equalizer-based approach for visibility specification was valuable and effective for both, scientific and educational purposes.
Visibility Equalizer Cutaway Visualization of Mesoscopic Biological Models
Le Muzic, M.; Mindek, P.; Sorger, J.; Autin, L.; Goodsell, D.; Viola, I.
2017-01-01
In scientific illustrations and visualization, cutaway views are often employed as an effective technique for occlusion management in densely packed scenes. We propose a novel method for authoring cutaway illustrations of mesoscopic biological models. In contrast to the existing cutaway algorithms, we take advantage of the specific nature of the biological models. These models consist of thousands of instances with a comparably smaller number of different types. Our method constitutes a two stage process. In the first step, clipping objects are placed in the scene, creating a cutaway visualization of the model. During this process, a hierarchical list of stacked bars inform the user about the instance visibility distribution of each individual molecular type in the scene. In the second step, the visibility of each molecular type is fine-tuned through these bars, which at this point act as interactive visibility equalizers. An evaluation of our technique with domain experts confirmed that our equalizer-based approach for visibility specification was valuable and effective for both, scientific and educational purposes. PMID:28344374
Automatic dynamic range adjustment for ultrasound B-mode imaging.
Lee, Yeonhwa; Kang, Jinbum; Yoo, Yangmo
2015-02-01
In medical ultrasound imaging, dynamic range (DR) is defined as the difference between the maximum and minimum values of the displayed signal to display and it is one of the most essential parameters that determine its image quality. Typically, DR is given with a fixed value and adjusted manually by operators, which leads to low clinical productivity and high user dependency. Furthermore, in 3D ultrasound imaging, DR values are unable to be adjusted during 3D data acquisition. A histogram matching method, which equalizes the histogram of an input image based on that from a reference image, can be applied to determine the DR value. However, it could be lead to an over contrasted image. In this paper, a new Automatic Dynamic Range Adjustment (ADRA) method is presented that adaptively adjusts the DR value by manipulating input images similar to a reference image. The proposed ADRA method uses the distance ratio between the log average and each extreme value of a reference image. To evaluate the performance of the ADRA method, the similarity between the reference and input images was measured by computing a correlation coefficient (CC). In in vivo experiments, the CC values were increased by applying the ADRA method from 0.6872 to 0.9870 and from 0.9274 to 0.9939 for kidney and liver data, respectively, compared to the fixed DR case. In addition, the proposed ADRA method showed to outperform the histogram matching method with in vivo liver and kidney data. When using 3D abdominal data with 70 frames, while the CC value from the ADRA method is slightly increased (i.e., 0.6%), the proposed method showed improved image quality in the c-plane compared to its fixed counterpart, which suffered from a shadow artifact. These results indicate that the proposed method can enhance image quality in 2D and 3D ultrasound B-mode imaging by improving the similarity between the reference and input images while eliminating unnecessary manual interaction by the user. Copyright © 2014 Elsevier B.V. All rights reserved.
Value of MR histogram analyses for prediction of microvascular invasion of hepatocellular carcinoma.
Huang, Ya-Qin; Liang, He-Yue; Yang, Zhao-Xia; Ding, Ying; Zeng, Meng-Su; Rao, Sheng-Xiang
2016-06-01
The objective is to explore the value of preoperative magnetic resonance (MR) histogram analyses in predicting microvascular invasion (MVI) of hepatocellular carcinoma (HCC).Fifty-one patients with histologically confirmed HCC who underwent diffusion-weighted and contrast-enhanced MR imaging were included. Histogram analyses were performed and mean, variance, skewness, kurtosis, 1th, 10th, 50th, 90th, and 99th percentiles were derived. Quantitative histogram parameters were compared between HCCs with and without MVI. Receiver operating characteristics (ROC) analyses were generated to compare the diagnostic performance of tumor size, histogram analyses of apparent diffusion coefficient (ADC) maps, and MR enhancement.The mean, 1th, 10th, and 50th percentiles of ADC maps, and the mean, variance. 1th, 10th, 50th, 90th, and 99th percentiles of the portal venous phase (PVP) images were significantly different between the groups with and without MVI (P <0.05), with area under the ROC curves (AUCs) of 0.66 to 0.74 for ADC and 0.76 to 0.88 for PVP. The largest AUC of PVP (1th percentile) showed significantly higher accuracy compared with that of arterial phase (AP) or tumor size (P <0.001).MR histogram analyses-in particular for 1th percentile for PVP images-held promise for prediction of MVI of HCC.
Lu, Shan Shan; Kim, Sang Joon; Kim, Namkug; Kim, Ho Sung; Choi, Choong Gon; Lim, Young Min
2015-04-01
This study intended to investigate the usefulness of histogram analysis of apparent diffusion coefficient (ADC) maps for discriminating primary CNS lymphomas (PCNSLs), especially atypical PCNSLs, from tumefactive demyelinating lesions (TDLs). Forty-seven patients with PCNSLs and 18 with TDLs were enrolled in our study. Hyperintense lesions seen on T2-weighted images were defined as ROIs after ADC maps were registered to the corresponding T2-weighted image. ADC histograms were calculated from the ROIs containing the entire lesion on every section and on a voxel-by-voxel basis. The ADC histogram parameters were compared among all PCNSLs and TDLs as well as between the subgroup of atypical PCNSLs and TDLs. ROC curves were constructed to evaluate the diagnostic performance of the histogram parameters and to determine the optimum thresholds. The differences between the PCNSLs and TDLs were found in the minimum ADC values (ADCmin) and in the 5th and 10th percentiles (ADC5% and ADC10%) of the cumulative ADC histograms. However, no statistical significance was found in the mean ADC value or in the ADC value concerning the mode, kurtosis, and skewness. The ADCmin, ADC5%, and ADC10% were also lower in atypical PCNSLs than in TDLs. ADCmin was the best indicator for discriminating atypical PCNSLs from TDLs, with a threshold of 556×10(-6) mm2/s (sensitivity, 81.3 %; specificity, 88.9%). Histogram analysis of ADC maps may help to discriminate PCNSLs from TDLs and may be particularly useful in differentiating atypical PCNSLs from TDLs.
Zhang, Yujuan; Chen, Jun; Liu, Song; Shi, Hua; Guan, Wenxian; Ji, Changfeng; Guo, Tingting; Zheng, Huanhuan; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng; Liu, Tian
2017-02-01
To investigate the efficacy of histogram analysis of the entire tumor volume in apparent diffusion coefficient (ADC) maps for differentiating between histological grades in gastric cancer. Seventy-eight patients with gastric cancer were enrolled in a retrospective 3.0T magnetic resonance imaging (MRI) study. ADC maps were obtained at two different b values (0 and 1000 sec/mm 2 ) for each patient. Tumors were delineated on each slice of the ADC maps, and a histogram for the entire tumor volume was subsequently generated. A series of histogram parameters (eg, skew and kurtosis) were calculated and correlated with the histological grade of the surgical specimen. The diagnostic performance of each parameter for distinguishing poorly from moderately well-differentiated gastric cancers was assessed by using the area under the receiver operating characteristic curve (AUC). There were significant differences in the 5 th , 10 th , 25 th , and 50 th percentiles, skew, and kurtosis between poorly and well-differentiated gastric cancers (P < 0.05). There were correlations between the degrees of differentiation and histogram parameters, including the 10 th percentile, skew, kurtosis, and max frequency; the correlation coefficients were 0.273, -0.361, -0.339, and -0.370, respectively. Among all the histogram parameters, the max frequency had the largest AUC value, which was 0.675. Histogram analysis of the ADC maps on the basis of the entire tumor volume can be useful in differentiating between histological grades for gastric cancer. 4 J. Magn. Reson. Imaging 2017;45:440-449. © 2016 International Society for Magnetic Resonance in Medicine.
Tiano, L; Chessa, M G; Carrara, S; Tagliafierro, G; Delmonte Corrado, M U
1999-01-01
The chromatin structure dynamics of the Colpoda inflata macronucleus have been investigated in relation to its functional condition, concerning chromatin body extrusion regulating activity. Samples of 2- and 25-day-old resting cysts derived from a standard culture, and of 1-year-old resting cysts derived from a senescent culture, were examined by means of histogram analysis performed on acquired optical microscopy images. Three groups of histograms were detected in each sample. Histogram classification, clustering and matching were assessed in order to obtain the mean histogram of each group. Comparative analysis of the mean histogram showed a similarity in the grey level range of 25-day- and 1-year-old cysts, unlike the wider grey level range found in 2-day-old cysts. Moreover, the respective mean histograms of the three cyst samples appeared rather similar in shape. All this implies that macronuclear chromatin structural features of 1-year-old cysts are common to both cyst standard cultures. The evaluation of the acquired images and their respective histograms evidenced a dynamic state of the macronuclear chromatin, appearing differently condensed in relation to the chromatin body extrusion regulating activity of the macronucleus. The coexistence of a chromatin-decondensed macronucleus with a pycnotic extrusion body suggests that chromatin unable to decondense, thus inactive, is extruded. This finding, along with the presence of chromatin structural features common to standard and senescent cyst populations, supports the occurrence of 'rejuvenated' cell lines from 1-year-old encysted senescent cells, a phenomenon which could be a result of accomplished macronuclear renewal.
NASA Technical Reports Server (NTRS)
Gorski, K. M.; Hivon, Eric; Banday, A. J.; Wandelt, Benjamin D.; Hansen, Frode K.; Reinecke, Mstvos; Bartelmann, Matthia
2005-01-01
HEALPix the Hierarchical Equal Area isoLatitude Pixelization is a versatile structure for the pixelization of data on the sphere. An associated library of computational algorithms and visualization software supports fast scientific applications executable directly on discretized spherical maps generated from very large volumes of astronomical data. Originally developed to address the data processing and analysis needs of the present generation of cosmic microwave background experiments (e.g., BOOMERANG, WMAP), HEALPix can be expanded to meet many of the profound challenges that will arise in confrontation with the observational output of future missions and experiments, including, e.g., Planck, Herschel, SAFIR, and the Beyond Einstein inflation probe. In this paper we consider the requirements and implementation constraints on a framework that simultaneously enables an efficient discretization with associated hierarchical indexation and fast analysis/synthesis of functions defined on the sphere. We demonstrate how these are explicitly satisfied by HEALPix.
NASA Astrophysics Data System (ADS)
da Silva, Roberto; Vainstein, Mendeli H.; Lamb, Luis C.; Prado, Sandra D.
2013-03-01
We propose a novel probabilistic model that outputs the final standings of a soccer league, based on a simple dynamics that mimics a soccer tournament. In our model, a team is created with a defined potential (ability) which is updated during the tournament according to the results of previous games. The updated potential modifies a team future winning/losing probabilities. We show that this evolutionary game is able to reproduce the statistical properties of final standings of actual editions of the Brazilian tournament (Brasileirão) if the starting potential is the same for all teams. Other leagues such as the Italian (Calcio) and the Spanish (La Liga) tournaments have notoriously non-Gaussian traces and cannot be straightforwardly reproduced by this evolutionary non-Markovian model with simple initial conditions. However, we show that by setting the initial abilities based on data from previous tournaments, our model is able to capture the stylized statistical features of double round robin system (DRRS) tournaments in general. A complete understanding of these phenomena deserves much more attention, but we suggest a simple explanation based on data collected in Brazil: here several teams have been crowned champion in previous editions corroborating that the champion typically emerges from random fluctuations that partly preserve the Gaussian traces during the tournament. On the other hand, in the Italian and Spanish cases, only a few teams in recent history have won their league tournaments. These leagues are based on more robust and hierarchical structures established even before the beginning of the tournament. For the sake of completeness, we also elaborate a totally Gaussian model (which equalizes the winning, drawing, and losing probabilities) and we show that the scores of the Brazilian tournament “Brasileirão” cannot be reproduced. This shows that the evolutionary aspects are not superfluous and play an important role which must be considered in other alternative models. Finally, we analyze the distortions of our model in situations where a large number of teams is considered, showing the existence of a transition from a single to a double peaked histogram of the final classification scores. An interesting scaling is presented for different sized tournaments.
Tsuchiya, Naoko; Doai, Mariko; Usuda, Katsuo; Uramoto, Hidetaka
2017-01-01
Purpose Investigating the diagnostic accuracy of histogram analyses of apparent diffusion coefficient (ADC) values for determining non-small cell lung cancer (NSCLC) tumor grades, lymphovascular invasion, and pleural invasion. Materials and methods We studied 60 surgically diagnosed NSCLC patients. Diffusion-weighted imaging (DWI) was performed in the axial plane using a navigator-triggered single-shot, echo-planar imaging sequence with prospective acquisition correction. The ADC maps were generated, and we placed a volume-of-interest on the tumor to construct the whole-lesion histogram. Using the histogram, we calculated the mean, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of ADC, skewness, and kurtosis. Histogram parameters were correlated with tumor grade, lymphovascular invasion, and pleural invasion. We performed a receiver operating characteristics (ROC) analysis to assess the diagnostic performance of histogram parameters for distinguishing different pathologic features. Results The ADC mean, 10th, 25th, 50th, 75th, 90th, and 95th percentiles showed significant differences among the tumor grades. The ADC mean, 25th, 50th, 75th, 90th, and 95th percentiles were significant histogram parameters between high- and low-grade tumors. The ROC analysis between high- and low-grade tumors showed that the 95th percentile ADC achieved the highest area under curve (AUC) at 0.74. Lymphovascular invasion was associated with the ADC mean, 50th, 75th, 90th, and 95th percentiles, skewness, and kurtosis. Kurtosis achieved the highest AUC at 0.809. Pleural invasion was only associated with skewness, with the AUC of 0.648. Conclusions ADC histogram analyses on the basis of the entire tumor volume are able to stratify NSCLCs' tumor grade, lymphovascular invasion and pleural invasion. PMID:28207858
Image enhancement software for underwater recovery operations: User's manual
NASA Astrophysics Data System (ADS)
Partridge, William J.; Therrien, Charles W.
1989-06-01
This report describes software for performing image enhancement on live or recorded video images. The software was developed for operational use during underwater recovery operations at the Naval Undersea Warfare Engineering Station. The image processing is performed on an IBM-PC/AT compatible computer equipped with hardware to digitize and display video images. The software provides the capability to provide contrast enhancement and other similar functions in real time through hardware lookup tables, to automatically perform histogram equalization, to capture one or more frames and average them or apply one of several different processing algorithms to a captured frame. The report is in the form of a user manual for the software and includes guided tutorial and reference sections. A Digital Image Processing Primer in the appendix serves to explain the principle concepts that are used in the image processing.
Sim, K S; Teh, V; Tey, Y C; Kho, T K
2016-11-01
This paper introduces new development technique to improve the Scanning Electron Microscope (SEM) image quality and we name it as sub-blocking multiple peak histogram equalization (SUB-B-MPHE) with convolution operator. By using this new proposed technique, it shows that the new modified MPHE performs better than original MPHE. In addition, the sub-blocking method consists of convolution operator which can help to remove the blocking effect for SEM images after applying this new developed technique. Hence, by using the convolution operator, it effectively removes the blocking effect by properly distributing the suitable pixel value for the whole image. Overall, the SUB-B-MPHE with convolution outperforms the rest of methods. SCANNING 38:492-501, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
A long-term target detection approach in infrared image sequence
NASA Astrophysics Data System (ADS)
Li, Hang; Zhang, Qi; Li, Yuanyuan; Wang, Liqiang
2015-12-01
An automatic target detection method used in long term infrared (IR) image sequence from a moving platform is proposed. Firstly, based on non-linear histogram equalization, target candidates are coarse-to-fine segmented by using two self-adapt thresholds generated in the intensity space. Then the real target is captured via two different selection approaches. At the beginning of image sequence, the genuine target with litter texture is discriminated from other candidates by using contrast-based confidence measure. On the other hand, when the target becomes larger, we apply online EM method to iteratively estimate and update the distributions of target's size and position based on the prior detection results, and then recognize the genuine one which satisfies both the constraints of size and position. Experimental results demonstrate that the presented method is accurate, robust and efficient.
Analytical stability criteria for the Caledonian Symmetric Four and Five Body Problems
NASA Astrophysics Data System (ADS)
Steves, Bonnie; Shoaib Afridi, Mohammad; Sweatman, Winston
2017-06-01
Analytical studies of the stability of three or more body gravitational systems are difficult because of the greater number of variables involved with the increasing number of bodies and the limitation of 10 integrals that exist in the gravitational n-body problem. Utilisation of symmetries or the neglecting of the masses of some of the bodies compared to others can simplify the dynamical problem and enable global analytical stability solutions to be derived. These symmetric and restricted few body systems with their analytical stability criterion can then provide useful information on the stability of the general few body system when near symmetry or the restricted situation. Even with symmetrical reductions, analytical stability derivations for four and five body problems are rare. In this paper, we develop an analytical stability criterion for the Caledonian Symmetric Five Body Problem (CS5BP) , a dynamically symmetrical planar problem with two pairs of equal masses and a fifth mass located at the centre of mass. Sundman’s inequality is applied to derive boundary surfaces to the allowed real motion of the system. This enables the derivation of a stability criterion valid for all time for the hierarchical stability of the CS5BP and its subset the Caledonian Symmetric Four Body Problem (CSFBP), where the central mass is taken to be equal to zero. We show that the hierarchical stability depends solely on the Szebehely constant C0, which is a function of the total energy H and angular momentum c. The critical value Ccrit at which the system becomes hierarchically stable for all time depends only on the two mass ratios of the symmetric five body system. We then explore the effect on the stability of the whole system of adding an increasing massive central body. It is shown both analytically and numerically that all CS5BPs and CSFBPs of different mass ratios are hierarchically stable if C0 > 0.0659 and C0 > 0.0465, respectively. The Caledonian Symmetric Four and Five Body gravitational models are relevant to the study of the stability and evolution of symmetric quadruple/quintuple stellar clusters and symmetric exoplanetary systems of two planets orbiting a binary/triplet of stars.
Wu, Chen-Jiang; Wang, Qing; Li, Hai; Wang, Xiao-Ning; Liu, Xi-Sheng; Shi, Hai-Bin; Zhang, Yu-Dong
2015-10-01
To investigate diagnostic efficiency of DWI using entire-tumor histogram analysis in differentiating the low-grade (LG) prostate cancer (PCa) from intermediate-high-grade (HG) PCa in comparison with conventional ROI-based measurement. DW images (b of 0-1400 s/mm(2)) from 126 pathology-confirmed PCa (diameter >0.5 cm) in 110 patients were retrospectively collected and processed by mono-exponential model. The measurement of tumor apparent diffusion coefficients (ADCs) was performed with using histogram-based and ROI-based approach, respectively. The diagnostic ability of ADCs from two methods for differentiating LG-PCa (Gleason score, GS ≤ 6) from HG-PCa (GS > 6) was determined by ROC regression, and compared by McNemar's test. There were 49 LG-tumor and 77 HG-tumor at pathologic findings. Histogram-based ADCs (mean, median, 10th and 90th) and ROI-based ADCs (mean) showed dominant relationships with ordinal GS of Pca (ρ = -0.225 to -0.406, p < 0.05). All above imaging indices reflected significant difference between LG-PCa and HG-PCa (all p values <0.01). Histogram 10th ADCs had dominantly high Az (0.738), Youden index (0.415), and positive likelihood ratio (LR+, 2.45) in stratifying tumor GS against mean, median and 90th ADCs, and ROI-based ADCs. Histogram mean, median, and 10th ADCs showed higher specificity (65.3%-74.1% vs. 44.9%, p < 0.01), but lower sensitivity (57.1%-71.3% vs. 84.4%, p < 0.05) than ROI-based ADCs in differentiating LG-PCa from HG-PCa. DWI-associated histogram analysis had higher specificity, Az, Youden index, and LR+ for differentiation of PCa Gleason grade than ROI-based approach.
Choi, M H; Oh, S N; Park, G E; Yeo, D-M; Jung, S E
2018-05-10
To evaluate the interobserver and intermethod correlations of histogram metrics of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters acquired by multiple readers using the single-section and whole-tumor volume methods. Four DCE parameters (K trans , K ep , V e , V p ) were evaluated in 45 patients (31 men and 14 women; mean age, 61±11 years [range, 29-83 years]) with locally advanced rectal cancer using pre-chemoradiotherapy (CRT) MRI. Ten histogram metrics were extracted using two methods of lesion selection performed by three radiologists: the whole-tumor volume method for the whole tumor on axial section-by-section images and the single-section method for the entire area of the tumor on one axial image. The interobserver and intermethod correlations were evaluated using the intraclass correlation coefficients (ICCs). The ICCs showed excellent interobserver and intermethod correlations in most of histogram metrics of the DCE parameters. The ICCs among the three readers were > 0.7 (P<0.001) for all histogram metrics, except for the minimum and maximum. The intermethod correlations for most of the histogram metrics were excellent for each radiologist, regardless of the differences in the radiologists' experience. The interobserver and intermethod correlations for most of the histogram metrics of the DCE parameters are excellent in rectal cancer. Therefore, the single-section method may be a potential alternative to the whole-tumor volume method using pre-CRT MRI, despite the fact that the high agreement between the two methods cannot be extrapolated to post-CRT MRI. Copyright © 2018 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.
van Heeswijk, Miriam M; Lambregts, Doenja M J; Maas, Monique; Lahaye, Max J; Ayas, Z; Slenter, Jos M G M; Beets, Geerard L; Bakers, Frans C H; Beets-Tan, Regina G H
2017-06-01
The apparent diffusion coefficient (ADC) is a potential prognostic imaging marker in rectal cancer. Typically, mean ADC values are used, derived from precise manual whole-volume tumor delineations by experts. The aim was first to explore whether non-precise circular delineation combined with histogram analysis can be a less cumbersome alternative to acquire similar ADC measurements and second to explore whether histogram analyses provide additional prognostic information. Thirty-seven patients who underwent a primary staging MRI including diffusion-weighted imaging (DWI; b0, 25, 50, 100, 500, 1000; 1.5 T) were included. Volumes-of-interest (VOIs) were drawn on b1000-DWI: (a) precise delineation, manually tracing tumor boundaries (2 expert readers), and (b) non-precise delineation, drawing circular VOIs with a wide margin around the tumor (2 non-experts). Mean ADC and histogram metrics (mean, min, max, median, SD, skewness, kurtosis, 5th-95th percentiles) were derived from the VOIs and delineation time was recorded. Measurements were compared between the two methods and correlated with prognostic outcome parameters. Median delineation time reduced from 47-165 s (precise) to 21-43 s (non-precise). The 45th percentile of the non-precise delineation showed the best correlation with the mean ADC from the precise delineation as the reference standard (ICC 0.71-0.75). None of the mean ADC or histogram parameters showed significant prognostic value; only the total tumor volume (VOI) was significantly larger in patients with positive clinical N stage and mesorectal fascia involvement. When performing non-precise tumor delineation, histogram analysis (in specific 45th ADC percentile) may be used as an alternative to obtain similar ADC values as with precise whole tumor delineation. Histogram analyses are not beneficial to obtain additional prognostic information.
Zhang, Yu-Dong; Wang, Qing; Wu, Chen-Jiang; Wang, Xiao-Ning; Zhang, Jing; Liu, Hui; Liu, Xi-Sheng; Shi, Hai-Bin
2015-04-01
To evaluate histogram analysis of intravoxel incoherent motion (IVIM) for discriminating the Gleason grade of prostate cancer (PCa). A total of 48 patients pathologically confirmed as having clinically significant PCa (size > 0.5 cm) underwent preoperative DW-MRI (b of 0-900 s/mm(2)). Data was post-processed by monoexponential and IVIM model for quantitation of apparent diffusion coefficients (ADCs), perfusion fraction f, diffusivity D and pseudo-diffusivity D*. Histogram analysis was performed by outlining entire-tumour regions of interest (ROIs) from histological-radiological correlation. The ability of imaging indices to differentiate low-grade (LG, Gleason score (GS) ≤6) from intermediate/high-grade (HG, GS > 6) PCa was analysed by ROC regression. Eleven patients had LG tumours (18 foci) and 37 patients had HG tumours (42 foci) on pathology examination. HG tumours had significantly lower ADCs and D in terms of mean, median, 10th and 75th percentiles, combined with higher histogram kurtosis and skewness for ADCs, D and f, than LG PCa (p < 0.05). Histogram D showed relatively higher correlations (ñ = 0.641-0.668 vs. ADCs: 0.544-0.574) with ordinal GS of PCa; and its mean, median and 10th percentile performed better than ADCs did in distinguishing LG from HG PCa. It is feasible to stratify the pathological grade of PCa by IVIM with histogram metrics. D performed better in distinguishing LG from HG tumour than conventional ADCs. • GS had relatively higher correlation with tumour D than ADCs. • Difference of histogram D among two-grade tumours was statistically significant. • D yielded better individual features in demonstrating tumour grade than ADC. • D* and f failed to determine tumour grade of PCa.
Li, Anqin; Xing, Wei; Li, Haojie; Hu, Yao; Hu, Daoyu; Li, Zhen; Kamel, Ihab R
2018-05-29
The purpose of this article is to evaluate the utility of volumetric histogram analysis of apparent diffusion coefficient (ADC) derived from reduced-FOV DWI for small (≤ 4 cm) solid renal mass subtypes at 3-T MRI. This retrospective study included 38 clear cell renal cell carcinomas (RCCs), 16 papillary RCCs, 18 chromophobe RCCs, 13 minimal fat angiomyolipomas (AMLs), and seven oncocytomas evaluated with preoperative MRI. Volumetric ADC maps were generated using all slices of the reduced-FOV DW images to obtain histogram parameters, including mean, median, 10th percentile, 25th percentile, 75th percentile, 90th percentile, and SD ADC values, as well as skewness, kurtosis, and entropy. Comparisons of these parameters were made by one-way ANOVA, t test, and ROC curves analysis. ADC histogram parameters differentiated eight of 10 pairs of renal tumors. Three subtype pairs (clear cell RCC vs papillary RCC, clear cell RCC vs chromophobe RCC, and clear cell RCC vs minimal fat AML) were differentiated by mean ADC. However, five other subtype pairs (clear cell RCC vs oncocytoma, papillary RCC vs minimal fat AML, papillary RCC vs oncocytoma, chromophobe RCC vs minimal fat AML, and chromophobe RCC vs oncocytoma) were differentiated by histogram distribution parameters exclusively (all p < 0.05). Mean ADC, median ADC, 75th and 90th percentile ADC, SD ADC, and entropy of malignant tumors were significantly higher than those of benign tumors (all p < 0.05). Combination of mean ADC with histogram parameters yielded the highest AUC (0.851; sensitivity, 80.0%; specificity, 86.1%). Quantitative volumetric ADC histogram analysis may help differentiate various subtypes of small solid renal tumors, including benign and malignant lesions.
Choi, Moon Hyung; Oh, Soon Nam; Rha, Sung Eun; Choi, Joon-Il; Lee, Sung Hak; Jang, Hong Seok; Kim, Jun-Gi; Grimm, Robert; Son, Yohan
2016-07-01
To investigate the usefulness of apparent diffusion coefficient (ADC) values derived from histogram analysis of the whole rectal cancer as a quantitative parameter to evaluate pathologic complete response (pCR) on preoperative magnetic resonance imaging (MRI). We enrolled a total of 86 consecutive patients who had undergone surgery for rectal cancer after neoadjuvant chemoradiotherapy (CRT) at our institution between July 2012 and November 2014. Two radiologists who were blinded to the final pathological results reviewed post-CRT MRI to evaluate tumor stage. Quantitative image analysis was performed using T2 -weighted and diffusion-weighted images independently by two radiologists using dedicated software that performed histogram analysis to assess the distribution of ADC in the whole tumor. After surgery, 16 patients were confirmed to have achieved pCR (18.6%). All parameters from pre- and post-CRT ADC histogram showed good or excellent agreement between two readers. The minimum, 10th, 25th, 50th, and 75th percentile and mean ADC from post-CRT ADC histogram were significantly higher in the pCR group than in the non-pCR group for both readers. The 25th percentile value from ADC histogram in post-CRT MRI had the best diagnostic performance for detecting pCR, with an area under the receiver operating characteristic curve of 0.796. Low percentile values derived from the ADC histogram analysis of rectal cancer on MRI after CRT showed a significant difference between pCR and non-pCR groups, demonstrating the utility of the ADC value as a quantitative and objective marker to evaluate complete pathologic response to preoperative CRT in rectal cancer. J. Magn. Reson. Imaging 2016;44:212-220. © 2015 Wiley Periodicals, Inc.
Serial data acquisition for GEM-2D detector
NASA Astrophysics Data System (ADS)
Kolasinski, Piotr; Pozniak, Krzysztof T.; Czarski, Tomasz; Linczuk, Maciej; Byszuk, Adrian; Chernyshova, Maryna; Juszczyk, Bartlomiej; Kasprowicz, Grzegorz; Wojenski, Andrzej; Zabolotny, Wojciech; Zienkiewicz, Pawel; Mazon, Didier; Malard, Philippe; Herrmann, Albrecht; Vezinet, Didier
2014-11-01
This article debates about data fast acquisition and histogramming method for the X-ray GEM detector. The whole process of histogramming is performed by FPGA chips (Spartan-6 series from Xilinx). The results of the histogramming process are stored in an internal FPGA memory and then sent to PC. In PC data is merged and processed by MATLAB. The structure of firmware functionality implemented in the FPGAs is described. Examples of test measurements and results are presented.
Frequency distribution histograms for the rapid analysis of data
NASA Technical Reports Server (NTRS)
Burke, P. V.; Bullen, B. L.; Poff, K. L.
1988-01-01
The mean and standard error are good representations for the response of a population to an experimental parameter and are frequently used for this purpose. Frequency distribution histograms show, in addition, responses of individuals in the population. Both the statistics and a visual display of the distribution of the responses can be obtained easily using a microcomputer and available programs. The type of distribution shown by the histogram may suggest different mechanisms to be tested.
Mitra, Rajib; Jordan, Michael I.; Dunbrack, Roland L.
2010-01-01
Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1) input data size and criteria for structure inclusion (resolution, R-factor, etc.); 2) filtering of suspect conformations and outliers using B-factors or other features; 3) secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included); 4) the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5) whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately) have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp. PMID:20442867
NASA Astrophysics Data System (ADS)
Kvinnsland, Yngve; Muren, Ludvig Paul; Dahl, Olav
2004-08-01
Calculations of normal tissue complication probability (NTCP) values for the rectum are difficult because it is a hollow, non-rigid, organ. Finding the true cumulative dose distribution for a number of treatment fractions requires a CT scan before each treatment fraction. This is labour intensive, and several surrogate distributions have therefore been suggested, such as dose wall histograms, dose surface histograms and histograms for the solid rectum, with and without margins. In this study, a Monte Carlo method is used to investigate the relationships between the cumulative dose distributions based on all treatment fractions and the above-mentioned histograms that are based on one CT scan only, in terms of equivalent uniform dose. Furthermore, the effect of a specific choice of histogram on estimates of the volume parameter of the probit NTCP model was investigated. It was found that the solid rectum and the rectum wall histograms (without margins) gave equivalent uniform doses with an expected value close to the values calculated from the cumulative dose distributions in the rectum wall. With the number of patients available in this study the standard deviations of the estimates of the volume parameter were large, and it was not possible to decide which volume gave the best estimates of the volume parameter, but there were distinct differences in the mean values of the values obtained.
Choi, Sang Hyun; Lee, Jeong Hyun; Choi, Young Jun; Park, Ji Eun; Sung, Yu Sub; Kim, Namkug; Baek, Jung Hwan
2017-01-01
This study aimed to explore the added value of histogram analysis of the ratio of initial to final 90-second time-signal intensity AUC (AUCR) for differentiating local tumor recurrence from contrast-enhancing scar on follow-up dynamic contrast-enhanced T1-weighted perfusion MRI of patients treated for head and neck squamous cell carcinoma (HNSCC). AUCR histogram parameters were assessed among tumor recurrence (n = 19) and contrast-enhancing scar (n = 27) at primary sites and compared using the t test. ROC analysis was used to determine the best differentiating parameters. The added value of AUCR histogram parameters was assessed when they were added to inconclusive conventional MRI results. Histogram analysis showed statistically significant differences in the 50th, 75th, and 90th percentiles of the AUCR values between the two groups (p < 0.05). The 90th percentile of the AUCR values (AUCR 90 ) was the best predictor of local tumor recurrence (AUC, 0.77; 95% CI, 0.64-0.91) with an estimated cutoff of 1.02. AUCR 90 increased sensitivity by 11.7% over that of conventional MRI alone when added to inconclusive results. Histogram analysis of AUCR can improve the diagnostic yield for local tumor recurrence during surveillance after treatment for HNSCC.
Value of MR histogram analyses for prediction of microvascular invasion of hepatocellular carcinoma
Huang, Ya-Qin; Liang, He-Yue; Yang, Zhao-Xia; Ding, Ying; Zeng, Meng-Su; Rao, Sheng-Xiang
2016-01-01
Abstract The objective is to explore the value of preoperative magnetic resonance (MR) histogram analyses in predicting microvascular invasion (MVI) of hepatocellular carcinoma (HCC). Fifty-one patients with histologically confirmed HCC who underwent diffusion-weighted and contrast-enhanced MR imaging were included. Histogram analyses were performed and mean, variance, skewness, kurtosis, 1th, 10th, 50th, 90th, and 99th percentiles were derived. Quantitative histogram parameters were compared between HCCs with and without MVI. Receiver operating characteristics (ROC) analyses were generated to compare the diagnostic performance of tumor size, histogram analyses of apparent diffusion coefficient (ADC) maps, and MR enhancement. The mean, 1th, 10th, and 50th percentiles of ADC maps, and the mean, variance. 1th, 10th, 50th, 90th, and 99th percentiles of the portal venous phase (PVP) images were significantly different between the groups with and without MVI (P <0.05), with area under the ROC curves (AUCs) of 0.66 to 0.74 for ADC and 0.76 to 0.88 for PVP. The largest AUC of PVP (1th percentile) showed significantly higher accuracy compared with that of arterial phase (AP) or tumor size (P <0.001). MR histogram analyses—in particular for 1th percentile for PVP images—held promise for prediction of MVI of HCC. PMID:27368028
Effect of respiratory and cardiac gating on the major diffusion-imaging metrics
Hamaguchi, Hiroyuki; Sugimori, Hiroyuki; Nakanishi, Mitsuhiro; Nakagawa, Shin; Fujiwara, Taro; Yoshida, Hirokazu; Takamori, Sayaka; Shirato, Hiroki
2016-01-01
The effect of respiratory gating on the major diffusion-imaging metrics and that of cardiac gating on mean kurtosis (MK) are not known. For evaluation of whether the major diffusion-imaging metrics—MK, fractional anisotropy (FA), and mean diffusivity (MD) of the brain—varied between gated and non-gated acquisitions, respiratory-gated, cardiac-gated, and non-gated diffusion-imaging of the brain were performed in 10 healthy volunteers. MK, FA, and MD maps were constructed for all acquisitions, and the histograms were constructed. The normalized peak height and location of the histograms were compared among the acquisitions by use of Friedman and post hoc Wilcoxon tests. The effect of the repetition time (TR) on the diffusion-imaging metrics was also tested, and we corrected for its variation among acquisitions, if necessary. The results showed a shift in the peak location of the MK and MD histograms to the right with an increase in TR (p ≤ 0.01). The corrected peak location of the MK histograms, the normalized peak height of the FA histograms, the normalized peak height and the corrected peak location of the MD histograms varied significantly between the gated and non-gated acquisitions (p < 0.05). These results imply an influence of respiration and cardiac pulsation on the major diffusion-imaging metrics. The gating conditions must be kept identical if reproducible results are to be achieved. PMID:27073115
Infrared face recognition based on LBP histogram and KW feature selection
NASA Astrophysics Data System (ADS)
Xie, Zhihua
2014-07-01
The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).
Remote logo detection using angle-distance histograms
NASA Astrophysics Data System (ADS)
Youn, Sungwook; Ok, Jiheon; Baek, Sangwook; Woo, Seongyoun; Lee, Chulhee
2016-05-01
Among all the various computer vision applications, automatic logo recognition has drawn great interest from industry as well as various academic institutions. In this paper, we propose an angle-distance map, which we used to develop a robust logo detection algorithm. The proposed angle-distance histogram is invariant against scale and rotation. The proposed method first used shape information and color characteristics to find the candidate regions and then applied the angle-distance histogram. Experiments show that the proposed method detected logos of various sizes and orientations.
NASA Astrophysics Data System (ADS)
Maggio, Angelo; Carillo, Viviana; Cozzarini, Cesare; Perna, Lucia; Rancati, Tiziana; Valdagni, Riccardo; Gabriele, Pietro; Fiorino, Claudio
2013-04-01
The aim of this study was to evaluate the correlation between the ‘true’ absolute and relative dose-volume histograms (DVHs) of the bladder wall, dose-wall histogram (DWH) defined on MRI imaging and other surrogates of bladder dosimetry in prostate cancer patients, planned both with 3D-conformal and intensity-modulated radiation therapy (IMRT) techniques. For 17 prostate cancer patients, previously treated with radical intent, CT and MRI scans were acquired and matched. The contours of bladder walls were drawn by using MRI images. External bladder surfaces were then used to generate artificial bladder walls by performing automatic contractions of 5, 7 and 10 mm. For each patient a 3D conformal radiotherapy (3DCRT) and an IMRT treatment plan was generated with a prescription dose of 77.4 Gy (1.8 Gy/fr) and DVH of the whole bladder of the artificial walls (DVH-5/10) and dose-surface histograms (DSHs) were calculated and compared against the DWH in absolute and relative value, for both treatment planning techniques. A specific software (VODCA v. 4.4.0, MSS Inc.) was used for calculating the dose-volume/surface histogram. Correlation was quantified for selected dose-volume/surface parameters by the Spearman correlation coefficient. The agreement between %DWH and DVH5, DVH7 and DVH10 was found to be very good (maximum average deviations below 2%, SD < 5%): DVH5 showed the best agreement. The correlation was slightly better for absolute (R = 0.80-0.94) compared to relative (R = 0.66-0.92) histograms. The DSH was also found to be highly correlated with the DWH, although slightly higher deviations were generally found. The DVH was not a good surrogate of the DWH (R < 0.7 for most of parameters). When comparing the two treatment techniques, more pronounced differences between relative histograms were seen for IMRT with respect to 3DCRT (p < 0.0001).
Objective evaluation of linear and nonlinear tomosynthetic reconstruction algorithms
NASA Astrophysics Data System (ADS)
Webber, Richard L.; Hemler, Paul F.; Lavery, John E.
2000-04-01
This investigation objectively tests five different tomosynthetic reconstruction methods involving three different digital sensors, each used in a different radiologic application: chest, breast, and pelvis, respectively. The common task was to simulate a specific representative projection for each application by summation of appropriately shifted tomosynthetically generated slices produced by using the five algorithms. These algorithms were, respectively, (1) conventional back projection, (2) iteratively deconvoluted back projection, (3) a nonlinear algorithm similar to back projection, except that the minimum value from all of the component projections for each pixel is computed instead of the average value, (4) a similar algorithm wherein the maximum value was computed instead of the minimum value, and (5) the same type of algorithm except that the median value was computed. Using these five algorithms, we obtained data from each sensor-tissue combination, yielding three factorially distributed series of contiguous tomosynthetic slices. The respective slice stacks then were aligned orthogonally and averaged to yield an approximation of a single orthogonal projection radiograph of the complete (unsliced) tissue thickness. Resulting images were histogram equalized, and actual projection control images were subtracted from their tomosynthetically synthesized counterparts. Standard deviations of the resulting histograms were recorded as inverse figures of merit (FOMs). Visual rankings of image differences by five human observers of a subset (breast data only) also were performed to determine whether their subjective observations correlated with homologous FOMs. Nonparametric statistical analysis of these data demonstrated significant differences (P > 0.05) between reconstruction algorithms. The nonlinear minimization reconstruction method nearly always outperformed the other methods tested. Observer rankings were similar to those measured objectively.
Hidden Markov models for fault detection in dynamic systems
NASA Technical Reports Server (NTRS)
Smyth, Padhraic J. (Inventor)
1995-01-01
The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) (vertical bar)/x), 1 less than or equal to i isless than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.
Hidden Markov models for fault detection in dynamic systems
NASA Technical Reports Server (NTRS)
Smyth, Padhraic J. (Inventor)
1993-01-01
The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) perpendicular to x), 1 less than or equal to i is less than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.
Gender differences in response to competition with same-gender coworkers: A relational perspective.
Lee, Sun Young; Kesebir, Selin; Pillutla, Madan M
2016-06-01
We take a relational perspective to explain how women and men may differently experience competition with their same-gender coworkers. According to gender socialization research, the female peer culture values harmony and the appearance of equality, whereas hierarchical ranking is integral to the male peer culture. As competition dispenses with equality and creates a ranking hierarchy, we propose that competition is at odds with the norms of female (but not male) peer relationships. On this basis, we predicted and found in 1 correlational study and 3 experiments that women regard competition with their same-gender coworkers as less desirable than men do, and that their relationships with each other suffer in the presence of competition. We discuss the implications of these findings for women's career progression. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
ERIC Educational Resources Information Center
Leyden, Michael B.
1975-01-01
Describes various elementary school activities using a loaf of raisin bread to promote inquiry skills. Activities include estimating the number of raisins in the loaf by constructing histograms of the number of raisins in a slice. (MLH)
NASA Astrophysics Data System (ADS)
Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian
2018-06-01
Infrared (IR) small target enhancement plays a significant role in modern infrared search and track (IRST) systems and is the basic technique of target detection and tracking. In this paper, a coarse-to-fine grey level mapping method using improved sigmoid transformation and saliency histogram is designed to enhance IR small targets under different backgrounds. For the stage of rough enhancement, the intensity histogram is modified via an improved sigmoid function so as to narrow the regular intensity range of background as much as possible. For the part of further enhancement, a linear transformation is accomplished based on a saliency histogram constructed by averaging the cumulative saliency values provided by a saliency map. Compared with other typical methods, the presented method can achieve both better visual performances and quantitative evaluations.
Massar, Melody L; Bhagavatula, Ramamurthy; Ozolek, John A; Castro, Carlos A; Fickus, Matthew; Kovačević, Jelena
2011-10-19
We present the current state of our work on a mathematical framework for identification and delineation of histopathology images-local histograms and occlusion models. Local histograms are histograms computed over defined spatial neighborhoods whose purpose is to characterize an image locally. This unit of description is augmented by our occlusion models that describe a methodology for image formation. In the context of this image formation model, the power of local histograms with respect to appropriate families of images will be shown through various proved statements about expected performance. We conclude by presenting a preliminary study to demonstrate the power of the framework in the context of histopathology image classification tasks that, while differing greatly in application, both originate from what is considered an appropriate class of images for this framework.
Chen, Zhaoxue; Yu, Haizhong; Chen, Hao
2013-12-01
To solve the problem of traditional K-means clustering in which initial clustering centers are selected randomly, we proposed a new K-means segmentation algorithm based on robustly selecting 'peaks' standing for White Matter, Gray Matter and Cerebrospinal Fluid in multi-peaks gray histogram of MRI brain image. The new algorithm takes gray value of selected histogram 'peaks' as the initial K-means clustering center and can segment the MRI brain image into three parts of tissue more effectively, accurately, steadily and successfully. Massive experiments have proved that the proposed algorithm can overcome many shortcomings caused by traditional K-means clustering method such as low efficiency, veracity, robustness and time consuming. The histogram 'peak' selecting idea of the proposed segmentootion method is of more universal availability.
Neutron camera employing row and column summations
Clonts, Lloyd G.; Diawara, Yacouba; Donahue, Jr, Cornelius; Montcalm, Christopher A.; Riedel, Richard A.; Visscher, Theodore
2016-06-14
For each photomultiplier tube in an Anger camera, an R.times.S array of preamplifiers is provided to detect electrons generated within the photomultiplier tube. The outputs of the preamplifiers are digitized to measure the magnitude of the signals from each preamplifier. For each photomultiplier tube, a corresponding summation circuitry including R row summation circuits and S column summation circuits numerically add the magnitudes of the signals from preamplifiers for each row and for each column to generate histograms. For a P.times.Q array of photomultiplier tubes, P.times.Q summation circuitries generate P.times.Q row histograms including R entries and P.times.Q column histograms including S entries. The total set of histograms include P.times.Q.times.(R+S) entries, which can be analyzed by a position calculation circuit to determine the locations of events (detection of a neutron).
Cho, Gene Young; Moy, Linda; Kim, Sungheon G; Baete, Steven H; Moccaldi, Melanie; Babb, James S; Sodickson, Daniel K; Sigmund, Eric E
2016-08-01
To examine heterogeneous breast cancer through intravoxel incoherent motion (IVIM) histogram analysis. This HIPAA-compliant, IRB-approved retrospective study included 62 patients (age 48.44 ± 11.14 years, 50 malignant lesions and 12 benign) who underwent contrast-enhanced 3 T breast MRI and diffusion-weighted imaging. Apparent diffusion coefficient (ADC) and IVIM biomarkers of tissue diffusivity (Dt), perfusion fraction (fp), and pseudo-diffusivity (Dp) were calculated using voxel-based analysis for the whole lesion volume. Histogram analysis was performed to quantify tumour heterogeneity. Comparisons were made using Mann-Whitney tests between benign/malignant status, histological subtype, and molecular prognostic factor status while Spearman's rank correlation was used to characterize the association between imaging biomarkers and prognostic factor expression. The average values of the ADC and IVIM biomarkers, Dt and fp, showed significant differences between benign and malignant lesions. Additional significant differences were found in the histogram parameters among tumour subtypes and molecular prognostic factor status. IVIM histogram metrics, particularly fp and Dp, showed significant correlation with hormonal factor expression. Advanced diffusion imaging biomarkers show relationships with molecular prognostic factors and breast cancer malignancy. This analysis reveals novel diagnostic metrics that may explain some of the observed variability in treatment response among breast cancer patients. • Novel IVIM biomarkers characterize heterogeneous breast cancer. • Histogram analysis enables quantification of tumour heterogeneity. • IVIM biomarkers show relationships with breast cancer malignancy and molecular prognostic factors.
Wu, Rongli; Watanabe, Yoshiyuki; Arisawa, Atsuko; Takahashi, Hiroto; Tanaka, Hisashi; Fujimoto, Yasunori; Watabe, Tadashi; Isohashi, Kayako; Hatazawa, Jun; Tomiyama, Noriyuki
2017-10-01
This study aimed to compare the tumor volume definition using conventional magnetic resonance (MR) and 11C-methionine positron emission tomography (MET/PET) images in the differentiation of the pre-operative glioma grade by using whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) maps. Thirty-four patients with histopathologically proven primary brain low-grade gliomas (n = 15) and high-grade gliomas (n = 19) underwent pre-operative or pre-biopsy MET/PET, fluid-attenuated inversion recovery, dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging, and contrast-enhanced T1-weighted at 3.0 T. The histogram distribution derived from the nCBV maps was obtained by co-registering the whole tumor volume delineated on conventional MR or MET/PET images, and eight histogram parameters were assessed. The mean nCBV value had the highest AUC value (0.906) based on MET/PET images. Diagnostic accuracy significantly improved when the tumor volume was measured from MET/PET images compared with conventional MR images for the parameters of mean, 50th, and 75th percentile nCBV value (p = 0.0246, 0.0223, and 0.0150, respectively). Whole-tumor histogram analysis of CBV map provides more valuable histogram parameters and increases diagnostic accuracy in the differentiation of pre-operative cerebral gliomas when the tumor volume is derived from MET/PET images.
Effect of respiratory and cardiac gating on the major diffusion-imaging metrics.
Hamaguchi, Hiroyuki; Tha, Khin Khin; Sugimori, Hiroyuki; Nakanishi, Mitsuhiro; Nakagawa, Shin; Fujiwara, Taro; Yoshida, Hirokazu; Takamori, Sayaka; Shirato, Hiroki
2016-08-01
The effect of respiratory gating on the major diffusion-imaging metrics and that of cardiac gating on mean kurtosis (MK) are not known. For evaluation of whether the major diffusion-imaging metrics-MK, fractional anisotropy (FA), and mean diffusivity (MD) of the brain-varied between gated and non-gated acquisitions, respiratory-gated, cardiac-gated, and non-gated diffusion-imaging of the brain were performed in 10 healthy volunteers. MK, FA, and MD maps were constructed for all acquisitions, and the histograms were constructed. The normalized peak height and location of the histograms were compared among the acquisitions by use of Friedman and post hoc Wilcoxon tests. The effect of the repetition time (TR) on the diffusion-imaging metrics was also tested, and we corrected for its variation among acquisitions, if necessary. The results showed a shift in the peak location of the MK and MD histograms to the right with an increase in TR (p ≤ 0.01). The corrected peak location of the MK histograms, the normalized peak height of the FA histograms, the normalized peak height and the corrected peak location of the MD histograms varied significantly between the gated and non-gated acquisitions (p < 0.05). These results imply an influence of respiration and cardiac pulsation on the major diffusion-imaging metrics. The gating conditions must be kept identical if reproducible results are to be achieved. © The Author(s) 2016.
Class categories and the subjective dimension of class: the case of Denmark.
Harrits, Gitte Sommer; Pedersen, Helene Helboe
2018-03-01
Class relations have been proven to affect various aspects of social life, even in modern individualized societies. However, following claims on individualization and the so-called 'death of class' thesis, studying the subjective dimension of class - that is, the way individuals perceive of class relations and their own position within them - has gone out of style. We argue that even in equalized societies, subjective class perceptions may still influence attitudes and behaviour as they evolve to fit modern class relations. To explore the existence as well as structure and content of perceived social classes, this article investigates how people describe society and social groups in focus group discussions. We find that groups in different positions in terms of education and economy all tend to apply hierarchical class categories to describe Danish society, which is normally seen as one of the most equal societies and political systems in the world. In addition, we find that economic resources serve as a baseline for the hierarchical ordering, often supplemented with notions of education, lifestyle and/or occupational profile. Even though people are somewhat uncomfortable with the notion of class, their descriptions of Danish society and classes are surprisingly similar within and across groups. We conclude that not only do class relations matter; people are also highly aware of the existing classes and able to position themselves and others according to their notion of classes. © London School of Economics and Political Science 2017.
NASA Astrophysics Data System (ADS)
Win, Khin Yadanar; Choomchuay, Somsak; Hamamoto, Kazuhiko
2017-06-01
The automated segmentation of cell nuclei is an essential stage in the quantitative image analysis of cell nuclei extracted from smear cytology images of pleural fluid. Cell nuclei can indicate cancer as the characteristics of cell nuclei are associated with cells proliferation and malignancy in term of size, shape and the stained color. Nevertheless, automatic nuclei segmentation has remained challenging due to the artifacts caused by slide preparation, nuclei heterogeneity such as the poor contrast, inconsistent stained color, the cells variation, and cells overlapping. In this paper, we proposed a watershed-based method that is capable to segment the nuclei of the variety of cells from cytology pleural fluid smear images. Firstly, the original image is preprocessed by converting into the grayscale image and enhancing by adjusting and equalizing the intensity using histogram equalization. Next, the cell nuclei are segmented using OTSU thresholding as the binary image. The undesirable artifacts are eliminated using morphological operations. Finally, the distance transform based watershed method is applied to isolate the touching and overlapping cell nuclei. The proposed method is tested with 25 Papanicolaou (Pap) stained pleural fluid images. The accuracy of our proposed method is 92%. The method is relatively simple, and the results are very promising.
MRI volumetry of prefrontal cortex
NASA Astrophysics Data System (ADS)
Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.
1995-05-01
Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was
Pattern-histogram-based temporal change detection using personal chest radiographs
NASA Astrophysics Data System (ADS)
Ugurlu, Yucel; Obi, Takashi; Hasegawa, Akira; Yamaguchi, Masahiro; Ohyama, Nagaaki
1999-05-01
An accurate and reliable detection of temporal changes from a pair of images has considerable interest in the medical science. Traditional registration and subtraction techniques can be applied to extract temporal differences when,the object is rigid or corresponding points are obvious. However, in radiological imaging, loss of the depth information, the elasticity of object, the absence of clearly defined landmarks and three-dimensional positioning differences constraint the performance of conventional registration techniques. In this paper, we propose a new method in order to detect interval changes accurately without using an image registration technique. The method is based on construction of so-called pattern histogram and comparison procedure. The pattern histogram is a graphic representation of the frequency counts of all allowable patterns in the multi-dimensional pattern vector space. K-means algorithm is employed to partition pattern vector space successively. Any differences in the pattern histograms imply that different patterns are involved in the scenes. In our experiment, a pair of chest radiographs of pneumoconiosis is employed and the changing histogram bins are visualized on both of the images. We found that the method can be used as an alternative way of temporal change detection, particularly when the precise image registration is not available.
NASA Astrophysics Data System (ADS)
Rhodes, Andrew P.; Christian, John A.; Evans, Thomas
2017-12-01
With the availability and popularity of 3D sensors, it is advantageous to re-examine the use of point cloud descriptors for the purpose of pose estimation and spacecraft relative navigation. One popular descriptor is the oriented unique repeatable clustered viewpoint feature histogram (
Hybrid Histogram Descriptor: A Fusion Feature Representation for Image Retrieval.
Feng, Qinghe; Hao, Qiaohong; Chen, Yuqi; Yi, Yugen; Wei, Ying; Dai, Jiangyan
2018-06-15
Currently, visual sensors are becoming increasingly affordable and fashionable, acceleratingly the increasing number of image data. Image retrieval has attracted increasing interest due to space exploration, industrial, and biomedical applications. Nevertheless, designing effective feature representation is acknowledged as a hard yet fundamental issue. This paper presents a fusion feature representation called a hybrid histogram descriptor (HHD) for image retrieval. The proposed descriptor comprises two histograms jointly: a perceptually uniform histogram which is extracted by exploiting the color and edge orientation information in perceptually uniform regions; and a motif co-occurrence histogram which is acquired by calculating the probability of a pair of motif patterns. To evaluate the performance, we benchmarked the proposed descriptor on RSSCN7, AID, Outex-00013, Outex-00014 and ETHZ-53 datasets. Experimental results suggest that the proposed descriptor is more effective and robust than ten recent fusion-based descriptors under the content-based image retrieval framework. The computational complexity was also analyzed to give an in-depth evaluation. Furthermore, compared with the state-of-the-art convolutional neural network (CNN)-based descriptors, the proposed descriptor also achieves comparable performance, but does not require any training process.
Improved LSB matching steganography with histogram characters reserved
NASA Astrophysics Data System (ADS)
Chen, Zhihong; Liu, Wenyao
2008-03-01
This letter bases on the researches of LSB (least significant bit, i.e. the last bit of a binary pixel value) matching steganographic method and the steganalytic method which aims at histograms of cover images, and proposes a modification to LSB matching. In the LSB matching, if the LSB of the next cover pixel matches the next bit of secret data, do nothing; otherwise, choose to add or subtract one from the cover pixel value at random. In our improved method, a steganographic information table is defined and records the changes which embedded secrete bits introduce in. Through the table, the next LSB which has the same pixel value will be judged to add or subtract one dynamically in order to ensure the histogram's change of cover image is minimized. Therefore, the modified method allows embedding the same payload as the LSB matching but with improved steganographic security and less vulnerability to attacks compared with LSB matching. The experimental results of the new method show that the histograms maintain their attributes, such as peak values and alternative trends, in an acceptable degree and have better performance than LSB matching in the respects of histogram distortion and resistance against existing steganalysis.
Histograms and Frequency Density.
ERIC Educational Resources Information Center
Micromath, 2003
2003-01-01
Introduces exercises on histograms and frequency density. Guides pupils to Discovering Important Statistical Concepts Using Spreadsheets (DISCUSS), created at the University of Coventry. Includes curriculum points, teaching tips, activities, and internet address (http://www.coventry.ac.uk/discuss/). (KHR)
NASA Technical Reports Server (NTRS)
Lum, Kenneth S. K.; Canizares, Claude R.; Clark, George W.; Coyne, Joan M.; Markert, Thomas H.; Saez, Pablo J.; Schattenburg, Mark L.; Winkler, P. F.
1992-01-01
The Einstein Observatory Focal Plane Crystal Spectrometer (FPCS) used the technique of Bragg spectroscopy to study cosmic X-ray sources in the 0.2-3 keV energy range. The high spectral resolving power (E/Delta-E is approximately equal to 100-1000) of this instrument allowed it to resolve closely spaced lines and study the structure of individual features in the spectra of 41 cosmic X-ray sources. An archival summary of the results is presented as a concise record the FPCS observations and a source of information for future analysis by the general astrophysics community. For each observation, the instrument configuration, background rate, X-ray flux or upper limit within the energy band observed, and spectral histograms are given. Examples of the contributions the FPCS observations have made to the understanding of the objects observed are discussed.
Video enhancement workbench: an operational real-time video image processing system
NASA Astrophysics Data System (ADS)
Yool, Stephen R.; Van Vactor, David L.; Smedley, Kirk G.
1993-01-01
Video image sequences can be exploited in real-time, giving analysts rapid access to information for military or criminal investigations. Video-rate dynamic range adjustment subdues fluctuations in image intensity, thereby assisting discrimination of small or low- contrast objects. Contrast-regulated unsharp masking enhances differentially shadowed or otherwise low-contrast image regions. Real-time removal of localized hotspots, when combined with automatic histogram equalization, may enhance resolution of objects directly adjacent. In video imagery corrupted by zero-mean noise, real-time frame averaging can assist resolution and location of small or low-contrast objects. To maximize analyst efficiency, lengthy video sequences can be screened automatically for low-frequency, high-magnitude events. Combined zoom, roam, and automatic dynamic range adjustment permit rapid analysis of facial features captured by video cameras recording crimes in progress. When trying to resolve small objects in murky seawater, stereo video places the moving imagery in an optimal setting for human interpretation.
Dong, Zhicheng; Bao, Zhengyu; Wu, Guoai; Fu, Yangrong; Yang, Yi
2010-11-01
The content and spatial distribution of lead in the aquatic systems in two Chinese tropical cities in Hainan province (Haikou and Sanyan) show an unequal distribution of lead between the urban and the suburban areas. The lead content is significantly higher (72.3 mg/kg) in the urban area than the suburbs (15.0 mg/kg) in Haikou, but quite equal in Sanya (41.6 and 43.9 mg/kg). The frequency distribution histograms suggest that the lead in Haikou and in Sanya derives from different natural and/or anthropogenic sources. The isotopic compositions indicate that urban sediment lead in Haikou originates mainly from anthropogenic sources (automobile exhaust, atmospheric deposition, etc.) which contribute much more than the natural sources, while natural lead (basalt and sea sands) is still dominant in the suburban areas in Haikou. In Sanya, the primary source is natural (soils and sea sands).
NASA Astrophysics Data System (ADS)
Jiang, G.; Wong, C. Y.; Lin, S. C. F.; Rahman, M. A.; Ren, T. R.; Kwok, Ngaiming; Shi, Haiyan; Yu, Ying-Hao; Wu, Tonghai
2015-04-01
The enhancement of image contrast and preservation of image brightness are two important but conflicting objectives in image restoration. Previous attempts based on linear histogram equalization had achieved contrast enhancement, but exact preservation of brightness was not accomplished. A new perspective is taken here to provide balanced performance of contrast enhancement and brightness preservation simultaneously by casting the quest of such solution to an optimization problem. Specifically, the non-linear gamma correction method is adopted to enhance the contrast, while a weighted sum approach is employed for brightness preservation. In addition, the efficient golden search algorithm is exploited to determine the required optimal parameters to produce the enhanced images. Experiments are conducted on natural colour images captured under various indoor, outdoor and illumination conditions. Results have shown that the proposed method outperforms currently available methods in contrast to enhancement and brightness preservation.
An Unsupervised Approach for Extraction of Blood Vessels from Fundus Images.
Dash, Jyotiprava; Bhoi, Nilamani
2018-04-26
Pathological disorders may happen due to small changes in retinal blood vessels which may later turn into blindness. Hence, the accurate segmentation of blood vessels is becoming a challenging task for pathological analysis. This paper offers an unsupervised recursive method for extraction of blood vessels from ophthalmoscope images. First, a vessel-enhanced image is generated with the help of gamma correction and contrast-limited adaptive histogram equalization (CLAHE). Next, the vessels are extracted iteratively by applying an adaptive thresholding technique. At last, a final vessel segmented image is produced by applying a morphological cleaning operation. Evaluations are accompanied on the publicly available digital retinal images for vessel extraction (DRIVE) and Child Heart And Health Study in England (CHASE_DB1) databases using nine different measurements. The proposed method achieves average accuracies of 0.957 and 0.952 on DRIVE and CHASE_DB1 databases respectively.
Automated Detection of Diabetic Retinopathy using Deep Learning.
Lam, Carson; Yi, Darvin; Guo, Margaret; Lindsey, Tony
2018-01-01
Diabetic retinopathy is a leading cause of blindness among working-age adults. Early detection of this condition is critical for good prognosis. In this paper, we demonstrate the use of convolutional neural networks (CNNs) on color fundus images for the recognition task of diabetic retinopathy staging. Our network models achieved test metric performance comparable to baseline literature results, with validation sensitivity of 95%. We additionally explored multinomial classification models, and demonstrate that errors primarily occur in the misclassification of mild disease as normal due to the CNNs inability to detect subtle disease features. We discovered that preprocessing with contrast limited adaptive histogram equalization and ensuring dataset fidelity by expert verification of class labels improves recognition of subtle features. Transfer learning on pretrained GoogLeNet and AlexNet models from ImageNet improved peak test set accuracies to 74.5%, 68.8%, and 57.2% on 2-ary, 3-ary, and 4-ary classification models, respectively.
Retinex based low-light image enhancement using guided filtering and variational framework
NASA Astrophysics Data System (ADS)
Zhang, Shi; Tang, Gui-jin; Liu, Xiao-hua; Luo, Su-huai; Wang, Da-dong
2018-03-01
A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization (CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.
Nondestructive Detection of the Internalquality of Apple Using X-Ray and Machine Vision
NASA Astrophysics Data System (ADS)
Yang, Fuzeng; Yang, Liangliang; Yang, Qing; Kang, Likui
The internal quality of apple is impossible to be detected by eyes in the procedure of sorting, which could reduce the apple’s quality reaching market. This paper illustrates an instrument using X-ray and machine vision. The following steps were introduced to process the X-ray image in order to determine the mould core apple. Firstly, lifting wavelet transform was used to get a low frequency image and three high frequency images. Secondly, we enhanced the low frequency image through image’s histogram equalization. Then, the edge of each apple's image was detected using canny operator. Finally, a threshold was set to clarify mould core and normal apple according to the different length of the apple core’s diameter. The experimental results show that this method could on-line detect the mould core apple with less time consuming, less than 0.03 seconds per apple, and the accuracy could reach 92%.
Fluorescent Microscopy Enhancement Using Imaging
NASA Astrophysics Data System (ADS)
Conrad, Morgan P.; Reck tenwald, Diether J.; Woodhouse, Bryan S.
1986-06-01
To enhance our capabilities for observing fluorescent stains in biological systems, we are developing a low cost imaging system based around an IBM AT microcomputer and a commercial image capture board compatible with a standard RS-170 format video camera. The image is digitized in real time with 256 grey levels, while being displayed and also stored in memory. The software allows for interactive processing of the data, such as histogram equalization or pseudocolor enhancement of the display. The entire image, or a quadrant thereof, can be averaged over time to improve the signal to noise ratio. Images may be stored to disk for later use or comparison. The camera may be selected for better response in the UV or near IR. Combined with signal averaging, this increases the sensitivity relative to that of the human eye, while still allowing for the fluorescence distribution on either the surface or internal cytoskeletal structure to be observed.
The DataCube Server. Animate Agent Project Working Note 2, Version 1.0
1993-11-01
before this can be called a histogram of all the needed levels must be made and their one band images must be made. Note if a levels backprojection...will not be used then the level does not need to be histogrammed. Any points outside the active region in a levels backprojection will be undefined...this can be called a histogram of all the needed levels must be made and their one band images must be made. Note if a levels backprojection will not
Fisher, B; Gunduz, N; Costantino, J; Fisher, E R; Redmond, C; Mamounas, E P; Siderits, R
1991-10-01
Between 1971 and 1974, 1665 women with primary operable breast cancer were randomized into a National Surgical Adjuvant Breast and Bowel Project (NSABP) trial (B-04) conducted to evaluate the effectiveness of several different regimens of surgical and radiation therapy. No systemic therapy was given. Cells from archival paraffin-embedded tumor tissue taken from 398 patients were analyzed for ploidy and S-phase fraction (SPF) using flow cytometry. Characteristics and outcome of patients with satisfactory DNA histograms were comparable to those from whom no satisfactory cytometric studies were available. In patients with diploid tumors (43%), the mean SPF was 3.4% +/- 2.3%; in the aneuploid population (57%), the SPF was 7.9% +/- 6.3%. Only 29.9% +/- 17.3% of cells in aneuploid tumors were aneuploid. Diploid tumors were more likely than aneuploid tumors to be of good nuclear grade (P less than 0.001) and smaller size (P equals 0.03). More tumors with high SPF were of poor nuclear grade than were tumors with low SPF (P equals 0.002). No significant difference in 10-year disease-free survival (P equals 0.3) or survival (P equals 0.1) was found between women with diploid or aneuploid tumors. Patients with low SPF tumors had a 13% better disease-free survival (P equals 0.0006) than those with a high SPF and a 14% better survival (P equals 0.007) at 10 years than patients with high SPF tumors. After adjustment for clinical tumor size, the difference in both disease-free survival and survival between patients with high and low SPF tumors was only 10% (P equals 0.04 and 0.08, respectively). Although SPF was found to be of independent prognostic significance for disease-free survival and marginal significance for survival, it did not detect patients with such a good prognosis as to preclude their receiving chemotherapy. The overall survival of patients with low SPF was only 53% at 10 years. These findings and those of others indicate that additional studies are necessary before tumor ploidy and SPF can be used to select patients who should or should not receive systemic therapy.
Gihr, Georg Alexander; Horvath-Rizea, Diana; Garnov, Nikita; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Henkes, Hans; Meyer, Hans Jonas; Hoffmann, Karl-Titus; Surov, Alexey; Schob, Stefan
2018-02-01
Presurgical grading, estimation of growth kinetics, and other prognostic factors are becoming increasingly important for selecting the best therapeutic approach for meningioma patients. Diffusion-weighted imaging (DWI) provides microstructural information and reflects tumor biology. A novel DWI approach, histogram profiling of apparent diffusion coefficient (ADC) volumes, provides more distinct information than conventional DWI. Therefore, our study investigated whether ADC histogram profiling distinguishes low-grade from high-grade lesions and reflects Ki-67 expression and progesterone receptor status. Pretreatment ADC volumes of 37 meningioma patients (28 low-grade, 9 high-grade) were used for histogram profiling. WHO grade, Ki-67 expression, and progesterone receptor status were evaluated. Comparative and correlative statistics investigating the association between histogram profiling and neuropathology were performed. The entire ADC profile (p10, p25, p75, p90, mean, median) was significantly lower in high-grade versus low-grade meningiomas. The lower percentiles, mean, and modus showed significant correlations with Ki-67 expression. Skewness and entropy of the ADC volumes were significantly associated with progesterone receptor status and Ki-67 expression. ROC analysis revealed entropy to be the most accurate parameter distinguishing low-grade from high-grade meningiomas. ADC histogram profiling provides a distinct set of parameters, which help differentiate low-grade versus high-grade meningiomas. Also, histogram metrics correlate significantly with histological surrogates of the respective proliferative potential. More specifically, entropy revealed to be the most promising imaging biomarker for presurgical grading. Both, entropy and skewness were significantly associated with progesterone receptor status and Ki-67 expression and therefore should be investigated further as predictors for prognostically relevant tumor biological features. Since absolute ADC values vary between MRI scanners of different vendors and field strengths, their use is more limited in the presurgical setting.
Reiner, Caecilia S; Gordic, Sonja; Puippe, Gilbert; Morsbach, Fabian; Wurnig, Moritz; Schaefer, Niklaus; Veit-Haibach, Patrick; Pfammatter, Thomas; Alkadhi, Hatem
2016-03-01
To evaluate in patients with hepatocellular carcinoma (HCC), whether assessment of tumor heterogeneity by histogram analysis of computed tomography (CT) perfusion helps predicting response to transarterial radioembolization (TARE). Sixteen patients (15 male; mean age 65 years; age range 47-80 years) with HCC underwent CT liver perfusion for treatment planning prior to TARE with Yttrium-90 microspheres. Arterial perfusion (AP) derived from CT perfusion was measured in the entire tumor volume, and heterogeneity was analyzed voxel-wise by histogram analysis. Response to TARE was evaluated on follow-up imaging (median follow-up, 129 days) based on modified Response Evaluation Criteria in Solid Tumors (mRECIST). Results of histogram analysis and mean AP values of the tumor were compared between responders and non-responders. Receiver operating characteristics were calculated to determine the parameters' ability to discriminate responders from non-responders. According to mRECIST, 8 patients (50%) were responders and 8 (50%) non-responders. Comparing responders and non-responders, the 50th and 75th percentile of AP derived from histogram analysis was significantly different [AP 43.8/54.3 vs. 27.6/34.3 mL min(-1) 100 mL(-1)); p < 0.05], while the mean AP of HCCs (43.5 vs. 27.9 mL min(-1) 100 mL(-1); p > 0.05) was not. Further heterogeneity parameters from histogram analysis (skewness, coefficient of variation, and 25th percentile) did not differ between responders and non-responders (p > 0.05). If the cut-off for the 75th percentile was set to an AP of 37.5 mL min(-1) 100 mL(-1), therapy response could be predicted with a sensitivity of 88% (7/8) and specificity of 75% (6/8). Voxel-wise histogram analysis of pretreatment CT perfusion indicating tumor heterogeneity of HCC improves the pretreatment prediction of response to TARE.
Umanodan, Tomokazu; Fukukura, Yoshihiko; Kumagae, Yuichi; Shindo, Toshikazu; Nakajo, Masatoyo; Takumi, Koji; Nakajo, Masanori; Hakamada, Hiroto; Umanodan, Aya; Yoshiura, Takashi
2017-04-01
To determine the diagnostic performance of apparent diffusion coefficient (ADC) histogram analysis in diffusion-weighted (DW) magnetic resonance imaging (MRI) for differentiating adrenal adenoma from pheochromocytoma. We retrospectively evaluated 52 adrenal tumors (39 adenomas and 13 pheochromocytomas) in 47 patients (21 men, 26 women; mean age, 59.3 years; range, 16-86 years) who underwent DW 3.0T MRI. Histogram parameters of ADC (b-values of 0 and 200 [ADC 200 ], 0 and 400 [ADC 400 ], and 0 and 800 s/mm 2 [ADC 800 ])-mean, variance, coefficient of variation (CV), kurtosis, skewness, and entropy-were compared between adrenal adenomas and pheochromocytomas, using the Mann-Whitney U-test. Receiver operating characteristic (ROC) curves for the histogram parameters were generated to differentiate adrenal adenomas from pheochromocytomas. Sensitivity and specificity were calculated by using a threshold criterion that would maximize the average of sensitivity and specificity. Variance and CV of ADC 800 were significantly higher in pheochromocytomas than in adrenal adenomas (P < 0.001 and P = 0.001, respectively). With all b-value combinations, the entropy of ADC was significantly higher in pheochromocytomas than in adrenal adenomas (all P ≤ 0.001), and showed the highest area under the ROC curve among the ADC histogram parameters for diagnosing adrenal adenomas (ADC 200 , 0.82; ADC 400 , 0.87; and ADC 800 , 0.92), with sensitivity of 84.6% and specificity of 84.6% (cutoff, ≤2.82) with ADC 200 ; sensitivity of 89.7% and specificity of 84.6% (cutoff, ≤2.77) with ADC 400 ; and sensitivity of 94.9% and specificity of 92.3% (cutoff, ≤2.67) with ADC 800 . ADC histogram analysis of DW MRI can help differentiate adrenal adenoma from pheochromocytoma. 3 J. Magn. Reson. Imaging 2017;45:1195-1203. © 2016 International Society for Magnetic Resonance in Medicine.
Robust Audio Watermarking by Using Low-Frequency Histogram
NASA Astrophysics Data System (ADS)
Xiang, Shijun
In continuation to earlier work where the problem of time-scale modification (TSM) has been studied [1] by modifying the shape of audio time domain histogram, here we consider the additional ingredient of resisting additive noise-like operations, such as Gaussian noise, lossy compression and low-pass filtering. In other words, we study the problem of the watermark against both TSM and additive noises. To this end, in this paper we extract the histogram from a Gaussian-filtered low-frequency component for audio watermarking. The watermark is inserted by shaping the histogram in a way that the use of two consecutive bins as a group is exploited for hiding a bit by reassigning their population. The watermarked signals are perceptibly similar to the original one. Comparing with the previous time-domain watermarking scheme [1], the proposed watermarking method is more robust against additive noise, MP3 compression, low-pass filtering, etc.
Hamit, Murat; Yun, Weikang; Yan, Chuanbo; Kutluk, Abdugheni; Fang, Yang; Alip, Elzat
2015-06-01
Image feature extraction is an important part of image processing and it is an important field of research and application of image processing technology. Uygur medicine is one of Chinese traditional medicine and researchers pay more attention to it. But large amounts of Uygur medicine data have not been fully utilized. In this study, we extracted the image color histogram feature of herbal and zooid medicine of Xinjiang Uygur. First, we did preprocessing, including image color enhancement, size normalizition and color space transformation. Then we extracted color histogram feature and analyzed them with statistical method. And finally, we evaluated the classification ability of features by Bayes discriminant analysis. Experimental results showed that high accuracy for Uygur medicine image classification was obtained by using color histogram feature. This study would have a certain help for the content-based medical image retrieval for Xinjiang Uygur medicine.
LSAH: a fast and efficient local surface feature for point cloud registration
NASA Astrophysics Data System (ADS)
Lu, Rongrong; Zhu, Feng; Wu, Qingxiao; Kong, Yanzi
2018-04-01
Point cloud registration is a fundamental task in high level three dimensional applications. Noise, uneven point density and varying point cloud resolutions are the three main challenges for point cloud registration. In this paper, we design a robust and compact local surface descriptor called Local Surface Angles Histogram (LSAH) and propose an effectively coarse to fine algorithm for point cloud registration. The LSAH descriptor is formed by concatenating five normalized sub-histograms into one histogram. The five sub-histograms are created by accumulating a different type of angle from a local surface patch respectively. The experimental results show that our LSAH is more robust to uneven point density and point cloud resolutions than four state-of-the-art local descriptors in terms of feature matching. Moreover, we tested our LSAH based coarse to fine algorithm for point cloud registration. The experimental results demonstrate that our algorithm is robust and efficient as well.
Felfer, Peter; Cairney, Julie
2018-06-01
Analysing the distribution of selected chemical elements with respect to interfaces is one of the most common tasks in data mining in atom probe tomography. This can be represented by 1D concentration profiles, 2D concentration maps or proximity histograms, which represent concentration, density etc. of selected species as a function of the distance from a reference surface/interface. These are some of the most useful tools for the analysis of solute distributions in atom probe data. In this paper, we present extensions to the proximity histogram in the form of 'local' proximity histograms, calculated for selected parts of a surface, and pseudo-2D concentration maps, which are 2D concentration maps calculated on non-flat surfaces. This way, local concentration changes at interfaces or and other structures can be assessed more effectively. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Xijia; Sun, Haiming; Zhang, Lishu; Zhao, Lijun; Lian, Jianshe; Jiang, Qing
2016-08-01
A novel three-dimensional (3D) α-Fe2O3/MoS2 hierarchical nanoheterostructure is effectively synthesized via a facile hydrothermal method. The zero-dimensional (0D) Fe2O3 nanoparticles guide the growth of two-dimensional (2D) MoS2 nanosheets and formed 3D flower-like structures, while MoS2 facilitates the good dispersion of porous Fe2O3 with abundant oxygen vacancies. This charming 3D-structure with perfect match of non-equal dimension exhibits high recyclable photo-Fenton catalytic activity for Methyl orange pollutant and nice specific capacity in reusing as supercapacitor after catalysis. The synergistic effect between Fe2O3 and MoS2, the intermediate nanointerfaces, the 3D porous structures, and the abundant oxygen vacancies both contribute to highly active catalysis, nice electrochemical performance and stable cycling. This strategy is simple, cheap, and feasible for maximizing the value of the materials, as well as eliminating the secondary pollution.
Yang, Xijia; Sun, Haiming; Zhang, Lishu; Zhao, Lijun; Lian, Jianshe; Jiang, Qing
2016-08-16
A novel three-dimensional (3D) α-Fe2O3/MoS2 hierarchical nanoheterostructure is effectively synthesized via a facile hydrothermal method. The zero-dimensional (0D) Fe2O3 nanoparticles guide the growth of two-dimensional (2D) MoS2 nanosheets and formed 3D flower-like structures, while MoS2 facilitates the good dispersion of porous Fe2O3 with abundant oxygen vacancies. This charming 3D-structure with perfect match of non-equal dimension exhibits high recyclable photo-Fenton catalytic activity for Methyl orange pollutant and nice specific capacity in reusing as supercapacitor after catalysis. The synergistic effect between Fe2O3 and MoS2, the intermediate nanointerfaces, the 3D porous structures, and the abundant oxygen vacancies both contribute to highly active catalysis, nice electrochemical performance and stable cycling. This strategy is simple, cheap, and feasible for maximizing the value of the materials, as well as eliminating the secondary pollution.
Histogram contrast analysis and the visual segregation of IID textures.
Chubb, C; Econopouly, J; Landy, M S
1994-09-01
A new psychophysical methodology is introduced, histogram contrast analysis, that allows one to measure stimulus transformations, f, used by the visual system to draw distinctions between different image regions. The method involves the discrimination of images constructed by selecting texture micropatterns randomly and independently (across locations) on the basis of a given micropattern histogram. Different components of f are measured by use of different component functions to modulate the micropattern histogram until the resulting textures are discriminable. When no discrimination threshold can be obtained for a given modulating component function, a second titration technique may be used to measure the contribution of that component to f. The method includes several strong tests of its own assumptions. An example is given of the method applied to visual textures composed of small, uniform squares with randomly chosen gray levels. In particular, for a fixed mean gray level mu and a fixed gray-level variance sigma 2, histogram contrast analysis is used to establish that the class S of all textures composed of small squares with jointly independent, identically distributed gray levels with mean mu and variance sigma 2 is perceptually elementary in the following sense: there exists a single, real-valued function f S of gray level, such that two textures I and J in S are discriminable only if the average value of f S applied to the gray levels in I is significantly different from the average value of f S applied to the gray levels in J. Finally, histogram contrast analysis is used to obtain a seventh-order polynomial approximation of f S.
Nemmi, Federico; Saint-Aubert, Laure; Adel, Djilali; Salabert, Anne-Sophie; Pariente, Jérémie; Barbeau, Emmanuel; Payoux, Pierre; Péran, Patrice
2014-01-01
Purpose AV-45 amyloid biomarker is known to show uptake in white matter in patients with Alzheimer’s disease (AD) but also in healthy population. This binding; thought to be of a non-specific lipophilic nature has not yet been investigated. The aim of this study was to determine the differential pattern of AV-45 binding in healthy and pathological populations in white matter. Methods We recruited 24 patients presenting with AD at early stage and 17 matched, healthy subjects. We used an optimized PET-MRI registration method and an approach based on intensity histogram using several indexes. We compared the results of the intensity histogram analyses with a more canonical approach based on target-to-cerebellum Standard Uptake Value (SUVr) in white and grey matters using MANOVA and discriminant analyses. A cluster analysis on white and grey matter histograms was also performed. Results White matter histogram analysis revealed significant differences between AD and healthy subjects, which were not revealed by SUVr analysis. However, white matter histograms was not decisive to discriminate groups, and indexes based on grey matter only showed better discriminative power than SUVr. The cluster analysis divided our sample in two clusters, showing different uptakes in grey but also in white matter. Conclusion These results demonstrate that AV-45 binding in white matter conveys subtle information not detectable using SUVr approach. Although it is not better than standard SUVr to discriminate AD patients from healthy subjects, this information could reveal white matter modifications. PMID:24573658
Tan, Shan; Zhang, Hao; Zhang, Yongxue; Chen, Wengen; D’Souza, Warren D.; Lu, Wei
2013-01-01
Purpose: A family of fluorine-18 (18F)-fluorodeoxyglucose (18F-FDG) positron-emission tomography (PET) features based on histogram distances is proposed for predicting pathologic tumor response to neoadjuvant chemoradiotherapy (CRT). These features describe the longitudinal change of FDG uptake distribution within a tumor. Methods: Twenty patients with esophageal cancer treated with CRT plus surgery were included in this study. All patients underwent PET/CT scans before (pre-) and after (post-) CRT. The two scans were first rigidly registered, and the original tumor sites were then manually delineated on the pre-PET/CT by an experienced nuclear medicine physician. Two histograms representing the FDG uptake distribution were extracted from the pre- and the registered post-PET images, respectively, both within the delineated tumor. Distances between the two histograms quantify longitudinal changes in FDG uptake distribution resulting from CRT, and thus are potential predictors of tumor response. A total of 19 histogram distances were examined and compared to both traditional PET response measures and Haralick texture features. Receiver operating characteristic analyses and Mann-Whitney U test were performed to assess their predictive ability. Results: Among all tested histogram distances, seven bin-to-bin and seven crossbin distances outperformed traditional PET response measures using maximum standardized uptake value (AUC = 0.70) or total lesion glycolysis (AUC = 0.80). The seven bin-to-bin distances were: L2 distance (AUC = 0.84), χ2 distance (AUC = 0.83), intersection distance (AUC = 0.82), cosine distance (AUC = 0.83), squared Euclidean distance (AUC = 0.83), L1 distance (AUC = 0.82), and Jeffrey distance (AUC = 0.82). The seven crossbin distances were: quadratic-chi distance (AUC = 0.89), earth mover distance (AUC = 0.86), fast earth mover distance (AUC = 0.86), diffusion distance (AUC = 0.88), Kolmogorov-Smirnov distance (AUC = 0.88), quadratic form distance (AUC = 0.87), and match distance (AUC = 0.84). These crossbin histogram distance features showed slightly higher prediction accuracy than texture features on post-PET images. Conclusions: The results suggest that longitudinal patterns in 18F-FDG uptake characterized using histogram distances provide useful information for predicting the pathologic response of esophageal cancer to CRT. PMID:24089897
Wang, G J; Wang, Y; Ye, Y; Chen, F; Lu, Y T; Li, S L
2017-11-07
Objective: To investigate the features of apparent diffusion coefficient (ADC) histogram parameters based on entire tumor volume data in high resolution diffusion weighted imaging of nasopharyngeal carcinoma (NPC) and to evaluate its correlations with cancer stages. Methods: This retrospective study included 154 cases of NPC patients[102 males and 52 females, mean age (48±11) years]who had received readout segmentation of long variable echo trains of MRI scan before radiation therapy. The area of tumor was delineated on each section of axial ADC maps to generate ADC histogram by using Image J. ADC histogram of entire tumor along with the histogram parameters-the tumor voxels, ADC(mean), ADC(25%), ADC(50%), ADC(75%), skewness and kurtosis were obtained by merging all sections with SPSS 22.0 software. Intra-observer repeatability was assessed by using intra-class correlation coefficients (ICC). The patients were subdivided into two groups according to cancer volume: small cancer group (<305 voxels, about 2 cm(3)) and large cancer group (≥2 cm(3)). The correlation between ADC histogram parameters and cancer stages was evaluated with Spearman test. Results: The ICC of measuring ADC histogram parameters of tumor voxels, ADC(mean), ADC(25%), ADC(50%), ADC(75%), skewness, kurtosis was 0.938, 0.861, 0.885, 0.838, 0.836, 0.358 and 0.456, respectively. The tumor voxels was positively correlated with T staging ( r =0.368, P <0.05). There were significant differences in tumor voxels among patients with different T stages ( K =22.306, P <0.05). There were significant differences in the ADC(mean), ADC(25%), ADC(50%) among patients with different T stages in the small cancer group( K =8.409, 8.187, 8.699, all P <0.05), and the up-mentioned three indices were positively correlated with T staging ( r =0.221, 0.209, 0.235, all P <0.05). Skewness and kurtosis differed significantly between the groups with different cancer volume( t =-2.987, Z =-3.770, both P <0.05). Conclusion: The tumor volume, tissue uniformity of NPC are important factors affecting ADC and cancer stages, parameters of ADC histogram (ADC(mean), ADC(25%), ADC(50%)) increases with T staging in NPC smaller than 2 cm(3).
From globally coupled maps to complex-systems biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp
Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.
Deeply learnt hashing forests for content based image retrieval in prostate MR images
NASA Astrophysics Data System (ADS)
Shah, Amit; Conjeti, Sailesh; Navab, Nassir; Katouzian, Amin
2016-03-01
Deluge in the size and heterogeneity of medical image databases necessitates the need for content based retrieval systems for their efficient organization. In this paper, we propose such a system to retrieve prostate MR images which share similarities in appearance and content with a query image. We introduce deeply learnt hashing forests (DL-HF) for this image retrieval task. DL-HF effectively leverages the semantic descriptiveness of deep learnt Convolutional Neural Networks. This is used in conjunction with hashing forests which are unsupervised random forests. DL-HF hierarchically parses the deep-learnt feature space to encode subspaces with compact binary code words. We propose a similarity preserving feature descriptor called Parts Histogram which is derived from DL-HF. Correlation defined on this descriptor is used as a similarity metric for retrieval from the database. Validations on publicly available multi-center prostate MR image database established the validity of the proposed approach. The proposed method is fully-automated without any user-interaction and is not dependent on any external image standardization like image normalization and registration. This image retrieval method is generalizable and is well-suited for retrieval in heterogeneous databases other imaging modalities and anatomies.
Microbubble cloud characterization by nonlinear frequency mixing.
Cavaro, M; Payan, C; Moysan, J; Baqué, F
2011-05-01
In the frame of the fourth generation forum, France decided to develop sodium fast nuclear reactors. French Safety Authority requests the associated monitoring of argon gas into sodium. This implies to estimate the void fraction, and a histogram indicating the bubble population. In this context, the present letter studies the possibility of achieving an accurate determination of the histogram with acoustic methods. A nonlinear, two-frequency mixing technique has been implemented, and a specific optical device has been developed in order to validate the experimental results. The acoustically reconstructed histograms are in excellent agreement with those obtained using optical methods.
The ISI distribution of the stochastic Hodgkin-Huxley neuron.
Rowat, Peter F; Greenwood, Priscilla E
2014-01-01
The simulation of ion-channel noise has an important role in computational neuroscience. In recent years several approximate methods of carrying out this simulation have been published, based on stochastic differential equations, and all giving slightly different results. The obvious, and essential, question is: which method is the most accurate and which is most computationally efficient? Here we make a contribution to the answer. We compare interspike interval histograms from simulated data using four different approximate stochastic differential equation (SDE) models of the stochastic Hodgkin-Huxley neuron, as well as the exact Markov chain model simulated by the Gillespie algorithm. One of the recent SDE models is the same as the Kurtz approximation first published in 1978. All the models considered give similar ISI histograms over a wide range of deterministic and stochastic input. Three features of these histograms are an initial peak, followed by one or more bumps, and then an exponential tail. We explore how these features depend on deterministic input and on level of channel noise, and explain the results using the stochastic dynamics of the model. We conclude with a rough ranking of the four SDE models with respect to the similarity of their ISI histograms to the histogram of the exact Markov chain model.
Wang, Hai-yi; Su, Zi-hua; Xu, Xiao; Sun, Zhi-peng; Duan, Fei-xue; Song, Yuan-yuan; Li, Lu; Wang, Ying-wei; Ma, Xin; Guo, Ai-tao; Ma, Lin; Ye, Hui-yi
2016-01-01
Pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been increasingly used to evaluate the permeability of tumor vessel. Histogram metrics are a recognized promising method of quantitative MR imaging that has been recently introduced in analysis of DCE-MRI pharmacokinetic parameters in oncology due to tumor heterogeneity. In this study, 21 patients with renal cell carcinoma (RCC) underwent paired DCE-MRI studies on a 3.0 T MR system. Extended Tofts model and population-based arterial input function were used to calculate kinetic parameters of RCC tumors. Mean value and histogram metrics (Mode, Skewness and Kurtosis) of each pharmacokinetic parameter were generated automatically using ImageJ software. Intra- and inter-observer reproducibility and scan–rescan reproducibility were evaluated using intra-class correlation coefficients (ICCs) and coefficient of variation (CoV). Our results demonstrated that the histogram method (Mode, Skewness and Kurtosis) was not superior to the conventional Mean value method in reproducibility evaluation on DCE-MRI pharmacokinetic parameters (K trans & Ve) in renal cell carcinoma, especially for Skewness and Kurtosis which showed lower intra-, inter-observer and scan-rescan reproducibility than Mean value. Our findings suggest that additional studies are necessary before wide incorporation of histogram metrics in quantitative analysis of DCE-MRI pharmacokinetic parameters. PMID:27380733
Zhou, Nan; Guo, Tingting; Zheng, Huanhuan; Pan, Xia; Chu, Chen; Dou, Xin; Li, Ming; Liu, Song; Zhu, Lijing; Liu, Baorui; Chen, Weibo; He, Jian; Yan, Jing; Zhou, Zhengyang; Yang, Xiaofeng
2017-01-01
We investigated apparent diffusion coefficient (ADC) histogram analysis to evaluate radiation-induced parotid damage and predict xerostomia degrees in nasopharyngeal carcinoma (NPC) patients receiving radiotherapy. The imaging of bilateral parotid glands in NPC patients was conducted 2 weeks before radiotherapy (time point 1), one month after radiotherapy (time point 2), and four months after radiotherapy (time point 3). From time point 1 to 2, parotid volume, skewness, and kurtosis decreased (P < 0.001, = 0.001, and < 0.001, respectively), but all other ADC histogram parameters increased (all P < 0.001, except P = 0.006 for standard deviation [SD]). From time point 2 to 3, parotid volume continued to decrease (P = 0.022), and SD, 75th and 90th percentiles continued to increase (P = 0.024, 0.010, and 0.006, respectively). Early change rates of parotid ADCmean, ADCmin, kurtosis, and 25th, 50th, 75th, 90th percentiles (from time point 1 to 2) correlated with late parotid atrophy rate (from time point 1 to 3) (all P < 0.05). Multiple linear regression analysis revealed correlations among parotid volume, time point, and ADC histogram parameters. Early mean change rates for bilateral parotid SD and ADCmax could predict late xerostomia degrees at seven months after radiotherapy (three months after time point 3) with AUC of 0.781 and 0.818 (P = 0.014, 0.005, respectively). ADC histogram parameters were reproducible (intraclass correlation coefficient, 0.830 - 0.999). ADC histogram analysis could be used to evaluate radiation-induced parotid damage noninvasively, and predict late xerostomia degrees of NPC patients treated with radiotherapy. PMID:29050274
Histogram Analysis of Diffusion Tensor Imaging Parameters in Pediatric Cerebellar Tumors.
Wagner, Matthias W; Narayan, Anand K; Bosemani, Thangamadhan; Huisman, Thierry A G M; Poretti, Andrea
2016-05-01
Apparent diffusion coefficient (ADC) values have been shown to assist in differentiating cerebellar pilocytic astrocytomas and medulloblastomas. Previous studies have applied only ADC measurements and calculated the mean/median values. Here we investigated the value of diffusion tensor imaging (DTI) histogram characteristics of the entire tumor for differentiation of cerebellar pilocytic astrocytomas and medulloblastomas. Presurgical DTI data were analyzed with a region of interest (ROI) approach to include the entire tumor. For each tumor, histogram-derived metrics including the 25th percentile, 75th percentile, and skewness were calculated for fractional anisotropy (FA) and mean (MD), axial (AD), and radial (RD) diffusivity. The histogram metrics were used as primary predictors of interest in a logistic regression model. Statistical significance levels were set at p < .01. The study population included 17 children with pilocytic astrocytoma and 16 with medulloblastoma (mean age, 9.21 ± 5.18 years and 7.66 ± 4.97 years, respectively). Compared to children with medulloblastoma, children with pilocytic astrocytoma showed higher MD (P = .003 and P = .008), AD (P = .004 and P = .007), and RD (P = .003 and P = .009) values for the 25th and 75th percentile. In addition, histogram skewness showed statistically significant differences for MD between low- and high-grade tumors (P = .008). The 25th percentile for MD yields the best results for the presurgical differentiation between pediatric cerebellar pilocytic astrocytomas and medulloblastomas. The analysis of other DTI metrics does not provide additional diagnostic value. Our study confirms the diagnostic value of the quantitative histogram analysis of DTI data in pediatric neuro-oncology. Copyright © 2015 by the American Society of Neuroimaging.
Lin, Yuning; Li, Hui; Chen, Ziqian; Ni, Ping; Zhong, Qun; Huang, Huijuan; Sandrasegaran, Kumar
2015-05-01
The purpose of this study was to investigate the application of histogram analysis of apparent diffusion coefficient (ADC) in characterizing pathologic features of cervical cancer and benign cervical lesions. This prospective study was approved by the institutional review board, and written informed consent was obtained. Seventy-three patients with cervical cancer (33-69 years old; 35 patients with International Federation of Gynecology and Obstetrics stage IB cervical cancer) and 38 patients (38-61 years old) with normal cervix or cervical benign lesions (control group) were enrolled. All patients underwent 3-T diffusion-weighted imaging (DWI) with b values of 0 and 800 s/mm(2). ADC values of the entire tumor in the patient group and the whole cervix volume in the control group were assessed. Mean ADC, median ADC, 25th and 75th percentiles of ADC, skewness, and kurtosis were calculated. Histogram parameters were compared between different pathologic features, as well as between stage IB cervical cancer and control groups. Mean ADC, median ADC, and 25th percentile of ADC were significantly higher for adenocarcinoma (p = 0.021, 0.006, and 0.004, respectively), and skewness was significantly higher for squamous cell carcinoma (p = 0.011). Median ADC was statistically significantly higher for well or moderately differentiated tumors (p = 0.044), and skewness was statistically significantly higher for poorly differentiated tumors (p = 0.004). No statistically significant difference of ADC histogram was observed between lymphovascular space invasion subgroups. All histogram parameters differed significantly between stage IB cervical cancer and control groups (p < 0.05). Distribution of ADCs characterized by histogram analysis may help to distinguish early-stage cervical cancer from normal cervix or cervical benign lesions and may be useful for evaluating the different pathologic features of cervical cancer.
Bao, Shixing; Watanabe, Yoshiyuki; Takahashi, Hiroto; Tanaka, Hisashi; Arisawa, Atsuko; Matsuo, Chisato; Wu, Rongli; Fujimoto, Yasunori; Tomiyama, Noriyuki
2018-05-31
This study aimed to determine whether whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) and apparent diffusion coefficient (ADC) for contrast-enhancing lesions can be used to differentiate between glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL). From 20 patients, 9 with PCNSL and 11 with GBM without any hemorrhagic lesions, underwent MRI, including diffusion-weighted imaging and dynamic susceptibility contrast perfusion-weighted imaging before surgery. Histogram analysis of nCBV and ADC from whole-tumor voxels in contrast-enhancing lesions was performed. An unpaired t-test was used to compare the mean values for each type of tumor. A multivariate logistic regression model (LRM) was performed to classify GBM and PCNSL using the best parameters of ADC and nCBV. All nCBV histogram parameters of GBMs were larger than those of PCNSLs, but only average nCBV was statistically significant after Bonferroni correction. Meanwhile, ADC histogram parameters were also larger in GBM compared to those in PCNSL, but these differences were not statistically significant. According to receiver operating characteristic curve analysis, the nCBV average and ADC 25th percentile demonstrated the largest area under the curve with values of 0.869 and 0.838, respectively. The LRM combining these two parameters differentiated between GBM and PCNSL with a higher area under the curve value (Logit (P) = -21.12 + 10.00 × ADC 25th percentile (10 -3 mm 2 /s) + 5.420 × nCBV mean, P < 0.001). Our results suggest that whole-tumor histogram analysis of nCBV and ADC combined can be a valuable objective diagnostic method for differentiating between GBM and PCNSL.
Hempel, Johann-Martin; Schittenhelm, Jens; Brendle, Cornelia; Bender, Benjamin; Bier, Georg; Skardelly, Marco; Tabatabai, Ghazaleh; Castaneda Vega, Salvador; Ernemann, Ulrike; Klose, Uwe
2017-10-01
To assess the diagnostic performance of histogram analysis of diffusion kurtosis imaging (DKI) maps for in vivo assessment of the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO) integrated glioma grades. Seventy-seven patients with histopathologically-confirmed glioma who provided written informed consent were retrospectively assessed between 01/2014 and 03/2017 from a prospective trial approved by the local institutional review board. Ten histogram parameters of mean kurtosis (MK) and mean diffusivity (MD) metrics from DKI were independently assessed by two blinded physicians from a volume of interest around the entire solid tumor. One-way ANOVA was used to compare MK and MD histogram parameter values between 2016 CNS WHO-based tumor grades. Receiver operating characteristic analysis was performed on MK and MD histogram parameters for significant results. The 25th, 50th, 75th, and 90th percentiles of MK and average MK showed significant differences between IDH1/2 wild-type gliomas, IDH1/2 mutated gliomas, and oligodendrogliomas with chromosome 1p/19q loss of heterozygosity and IDH1/2 mutation (p<0.001). The 50th, 75th, and 90th percentiles showed a slightly higher diagnostic performance (area under the curve (AUC) range; 0.868-0.991) than average MK (AUC range; 0.855-0.988) in classifying glioma according to the integrated approach of 2016 CNS WHO. Histogram analysis of DKI can stratify gliomas according to the integrated approach of 2016 CNS WHO. The 50th (median), 75th , and the 90th percentiles showed the highest diagnostic performance. However, the average MK is also robust and feasible in routine clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Nan; Guo, Tingting; Zheng, Huanhuan; Pan, Xia; Chu, Chen; Dou, Xin; Li, Ming; Liu, Song; Zhu, Lijing; Liu, Baorui; Chen, Weibo; He, Jian; Yan, Jing; Zhou, Zhengyang; Yang, Xiaofeng
2017-09-19
We investigated apparent diffusion coefficient (ADC) histogram analysis to evaluate radiation-induced parotid damage and predict xerostomia degrees in nasopharyngeal carcinoma (NPC) patients receiving radiotherapy. The imaging of bilateral parotid glands in NPC patients was conducted 2 weeks before radiotherapy (time point 1), one month after radiotherapy (time point 2), and four months after radiotherapy (time point 3). From time point 1 to 2, parotid volume, skewness, and kurtosis decreased ( P < 0.001, = 0.001, and < 0.001, respectively), but all other ADC histogram parameters increased (all P < 0.001, except P = 0.006 for standard deviation [SD]). From time point 2 to 3, parotid volume continued to decrease ( P = 0.022), and SD, 75 th and 90 th percentiles continued to increase ( P = 0.024, 0.010, and 0.006, respectively). Early change rates of parotid ADC mean , ADC min , kurtosis, and 25 th , 50 th , 75 th , 90 th percentiles (from time point 1 to 2) correlated with late parotid atrophy rate (from time point 1 to 3) (all P < 0.05). Multiple linear regression analysis revealed correlations among parotid volume, time point, and ADC histogram parameters. Early mean change rates for bilateral parotid SD and ADC max could predict late xerostomia degrees at seven months after radiotherapy (three months after time point 3) with AUC of 0.781 and 0.818 ( P = 0.014, 0.005, respectively). ADC histogram parameters were reproducible (intraclass correlation coefficient, 0.830 - 0.999). ADC histogram analysis could be used to evaluate radiation-induced parotid damage noninvasively, and predict late xerostomia degrees of NPC patients treated with radiotherapy.
Wang, Feng; Wang, Yuxiang; Zhou, Yan; Liu, Congrong; Xie, Lizhi; Zhou, Zhenyu; Liang, Dong; Shen, Yang; Yao, Zhihang; Liu, Jianyu
2017-12-01
To evaluate the utility of histogram analysis of monoexponential, biexponential, and stretched-exponential models to a dualistic model of epithelial ovarian cancer (EOC). Fifty-two patients with histopathologically proven EOC underwent preoperative magnetic resonance imaging (MRI) (including diffusion-weighted imaging [DWI] with 11 b-values) using a 3.0T system and were divided into two groups: types I and II. Apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudodiffusion coefficient (D*), perfusion fraction (f), distributed diffusion coefficient (DDC), and intravoxel water diffusion heterogeneity (α) histograms were obtained based on solid components of the entire tumor. The following metrics of each histogram were compared between two types: 1) mean; 2) median; 3) 10th percentile and 90th percentile. Conventional MRI morphological features were also recorded. Significant morphological features for predicting EOC type were maximum diameter (P = 0.007), texture of lesion (P = 0.001), and peritoneal implants (P = 0.001). For ADC, D, f, DDC, and α, all metrics were significantly lower in type II than type I (P < 0.05). Mean, median, 10th, and 90th percentile of D* were not significantly different (P = 0.336, 0.154, 0.779, and 0.203, respectively). Most histogram metrics of ADC, D, and DDC had significantly higher area under the receiver operating characteristic curve values than those of f and α (P < 0.05) CONCLUSION: It is feasible to grade EOC by morphological features and three models with histogram analysis. ADC, D, and DDC have better performance than f and α; f and α may provide additional information. 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1797-1809. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Zha, N.; Capaldi, D. P. I.; Pike, D.; McCormack, D. G.; Cunningham, I. A.; Parraga, G.
2015-03-01
Pulmonary x-ray computed tomography (CT) may be used to characterize emphysema and airways disease in patients with chronic obstructive pulmonary disease (COPD). One analysis approach - parametric response mapping (PMR) utilizes registered inspiratory and expiratory CT image volumes and CT-density-histogram thresholds, but there is no consensus regarding the threshold values used, or their clinical meaning. Principal-component-analysis (PCA) of the CT density histogram can be exploited to quantify emphysema using data-driven CT-density-histogram thresholds. Thus, the objective of this proof-of-concept demonstration was to develop a PRM approach using PCA-derived thresholds in COPD patients and ex-smokers without airflow limitation. Methods: Fifteen COPD ex-smokers and 5 normal ex-smokers were evaluated. Thoracic CT images were also acquired at full inspiration and full expiration and these images were non-rigidly co-registered. PCA was performed for the CT density histograms, from which the components with the highest eigenvalues greater than one were summed. Since the values of the principal component curve correlate directly with the variability in the sample, the maximum and minimum points on the curve were used as threshold values for the PCA-adjusted PRM technique. Results: A significant correlation was determined between conventional and PCA-adjusted PRM with 3He MRI apparent diffusion coefficient (p<0.001), with CT RA950 (p<0.0001), as well as with 3He MRI ventilation defect percent, a measurement of both small airways disease (p=0.049 and p=0.06, respectively) and emphysema (p=0.02). Conclusions: PRM generated using PCA thresholds of the CT density histogram showed significant correlations with CT and 3He MRI measurements of emphysema, but not airways disease.
NASA Astrophysics Data System (ADS)
Underwood, T. S. A.; Sung, W.; McFadden, C. H.; McMahon, S. J.; Hall, D. C.; McNamara, A. L.; Paganetti, H.; Sawakuchi, G. O.; Schuemann, J.
2017-04-01
Whilst Monte Carlo (MC) simulations of proton energy deposition have been well-validated at the macroscopic level, their microscopic validation remains lacking. Equally, no gold-standard yet exists for experimental metrology of individual proton tracks. In this work we compare the distributions of stochastic proton interactions simulated using the TOPAS-nBio MC platform against confocal microscope data for Al2O3:C,Mg fluorescent nuclear track detectors (FNTDs). We irradiated 8× 4× 0.5 mm3 FNTD chips inside a water phantom, positioned at seven positions along a pristine proton Bragg peak with a range in water of 12 cm. MC simulations were implemented in two stages: (1) using TOPAS to model the beam properties within a water phantom and (2) using TOPAS-nBio with Geant4-DNA physics to score particle interactions through a water surrogate of Al2O3:C,Mg. The measured median track integrated brightness (IB) was observed to be strongly correlated to both (i) voxelized track-averaged linear energy transfer (LET) and (ii) frequency mean microdosimetric lineal energy, \\overline{{{y}F}} , both simulated in pure water. Histograms of FNTD track IB were compared against TOPAS-nBio histograms of the number of terminal electrons per proton, scored in water with mass-density scaled to mimic Al2O3:C,Mg. Trends between exposure depths observed in TOPAS-nBio simulations were experimentally replicated in the study of FNTD track IB. Our results represent an important first step towards the experimental validation of MC simulations on the sub-cellular scale and suggest that FNTDs can enable experimental study of the microdosimetric properties of individual proton tracks.
Underwood, T S A; Sung, W; McFadden, C H; McMahon, S J; Hall, D C; McNamara, A L; Paganetti, H; Sawakuchi, G O; Schuemann, J
2017-04-21
Whilst Monte Carlo (MC) simulations of proton energy deposition have been well-validated at the macroscopic level, their microscopic validation remains lacking. Equally, no gold-standard yet exists for experimental metrology of individual proton tracks. In this work we compare the distributions of stochastic proton interactions simulated using the TOPAS-nBio MC platform against confocal microscope data for Al 2 O 3 :C,Mg fluorescent nuclear track detectors (FNTDs). We irradiated [Formula: see text] mm 3 FNTD chips inside a water phantom, positioned at seven positions along a pristine proton Bragg peak with a range in water of 12 cm. MC simulations were implemented in two stages: (1) using TOPAS to model the beam properties within a water phantom and (2) using TOPAS-nBio with Geant4-DNA physics to score particle interactions through a water surrogate of Al 2 O 3 :C,Mg. The measured median track integrated brightness (IB) was observed to be strongly correlated to both (i) voxelized track-averaged linear energy transfer (LET) and (ii) frequency mean microdosimetric lineal energy, [Formula: see text], both simulated in pure water. Histograms of FNTD track IB were compared against TOPAS-nBio histograms of the number of terminal electrons per proton, scored in water with mass-density scaled to mimic Al 2 O 3 :C,Mg. Trends between exposure depths observed in TOPAS-nBio simulations were experimentally replicated in the study of FNTD track IB. Our results represent an important first step towards the experimental validation of MC simulations on the sub-cellular scale and suggest that FNTDs can enable experimental study of the microdosimetric properties of individual proton tracks.
NASA Astrophysics Data System (ADS)
Boehm, Holger F.; Fischer, Tanja; Riosk, Dororthea; Britsch, Stefanie; Reiser, Maximilian
2008-03-01
With an estimated life-time-risk of about 10%, breast cancer is the most common cancer among women in western societies. Extensive mammography-screening programs have been implemented for diagnosis of the disease at an early stage. Several algorithms for computer-aided detection (CAD) have been proposed to help radiologists manage the increasing number of mammographic image-data and identify new cases of cancer. However, a major issue with most CAD-solutions is the fact that performance strongly depends on the structure and density of the breast tissue. Prior information about the global tissue quality in a patient would be helpful for selecting the most effective CAD-approach in order to increase the sensitivity of lesion-detection. In our study, we propose an automated method for textural evaluation of digital mammograms using the Minkowski Functionals in 2D. 80 mammograms are consensus-classified by two experienced readers as fibrosis, involution/atrophy, or normal. For each case, the topology of graylevel distribution is evaluated within a retromamillary image-section of 512 x 512 pixels. In addition, we obtain parameters from the graylevel-histogram (20th percentile, median and mean graylevel intensity). As a result, correct classification of the mammograms based on the densitometic parameters is achieved in between 38 and 48%, whereas topological analysis increases the rate to 83%. The findings demonstrate the effectiveness of the proposed algorithm. Compared to features obtained from graylevel histograms and comparable studies, we draw the conclusion that the presented method performs equally good or better. Our future work will be focused on the characterization of the mammographic tissue according to the Breast Imaging Reporting and Data System (BI-RADS). Moreover, other databases will be tested for an in-depth evaluation of the efficiency of our proposal.
Hassanein, Mohamed; El-Sheimy, Naser
2018-01-01
Over the last decade, the use of unmanned aerial vehicle (UAV) technology has evolved significantly in different applications as it provides a special platform capable of combining the benefits of terrestrial and aerial remote sensing. Therefore, such technology has been established as an important source of data collection for different precision agriculture (PA) applications such as crop health monitoring and weed management. Generally, these PA applications depend on performing a vegetation segmentation process as an initial step, which aims to detect the vegetation objects in collected agriculture fields’ images. The main result of the vegetation segmentation process is a binary image, where vegetations are presented in white color and the remaining objects are presented in black. Such process could easily be performed using different vegetation indexes derived from multispectral imagery. Recently, to expand the use of UAV imagery systems for PA applications, it was important to reduce the cost of such systems through using low-cost RGB cameras Thus, developing vegetation segmentation techniques for RGB images is a challenging problem. The proposed paper introduces a new vegetation segmentation methodology for low-cost UAV RGB images, which depends on using Hue color channel. The proposed methodology follows the assumption that the colors in any agriculture field image can be distributed into vegetation and non-vegetations colors. Therefore, four main steps are developed to detect five different threshold values using the hue histogram of the RGB image, these thresholds are capable to discriminate the dominant color, either vegetation or non-vegetation, within the agriculture field image. The achieved results for implementing the proposed methodology showed its ability to generate accurate and stable vegetation segmentation performance with mean accuracy equal to 87.29% and standard deviation as 12.5%. PMID:29670055
Hierarchical porous photoanode based on acid boric catalyzed sol for dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Maleki, Khatereh; Abdizadeh, Hossein; Golobostanfard, Mohammad Reza; Adelfar, Razieh
2017-02-01
The hierarchical porous photoanode of the dye sensitized solar cell (DSSC) is synthesized through non-aqueous sol-gel method based on H3BO3 as an acid catalyst and the efficiencies of the fabricated DSSC based on these photoanodes are compared. The sol parameters of 0.17 M, water mole ratio of 4.5, acid mole ratio of 0.45, and solvent type of ethanol are introduced as optimum parameters for photoanode formation without any detectable cracks. The optimized hierarchical photoanode mainly contains anatase phase with slight shift toward higher angles, confirming the doping of boron into titania structure. Moreover, the porous structure involves two ranges of average pore sizes of 20 and 635 nm. The diffuse reflectance spectroscopy (DRS) shows the proper scattering and blueshift in band gap. The paste parameters of solid:liquid, TiO2:ethyl cellulose, and terpineol:ethanol equal to 11:89, 3.5:7.5, and 25:64, respectively, are assigned as optimized parameters for this novel paste. The photovoltaic properties of short circuit current density, open circuit voltage, fill factor, and efficiency of 5.89 mA/cm2, 703 mV, 0.7, and 2.91% are obtained for the optimized sample, respectively. The relatively higher short circuit current of the main sample compared to other samples is mainly due to higher dye adsorption in this sample corresponding to its higher surface area and presumably higher charge transfer confirmed by low RS and Rct in electrochemical impedance spectroscopy data. Boric acid as a catalyst in titania sol not only forms hierarchical porous structure, but also dopes the titania lattice, which results in appreciated performance in this device.
NASA Astrophysics Data System (ADS)
Rajakaruna, Harshana; VandenByllaardt, Julie; Kydd, Jocelyn; Bailey, Sarah
2018-03-01
The International Maritime Organization (IMO) has set limits on allowable plankton concentrations in ballast water discharge to minimize aquatic invasions globally. Previous guidance on ballast water sampling and compliance decision thresholds was based on the assumption that probability distributions of plankton are Poisson when spatially homogenous, or negative binomial when heterogeneous. We propose a hierarchical probability model, which incorporates distributions at the level of particles (i.e., discrete individuals plus colonies per unit volume) and also within particles (i.e., individuals per particle) to estimate the average plankton concentration in ballast water. We examined the performance of the models using data for plankton in the size class ≥ 10 μm and < 50 μm, collected from five different depths of a ballast tank of a commercial ship in three independent surveys. We show that the data fit to the negative binomial and the hierarchical probability models equally well, with both models performing better than the Poisson model at the scale of our sampling. The hierarchical probability model, which accounts for both the individuals and the colonies in a sample, reduces the uncertainty associated with the concentration estimation, and improves the power of rejecting the decision on ship's compliance when a ship does not truly comply with the standard. We show examples of how to test ballast water compliance using the above models.
Psychological autonomy and hierarchical relatedness as organizers of developmental pathways
Keller, Heidi
2016-01-01
The definition of self and others can be regarded as embodying the two dimensions of autonomy and relatedness. Autonomy and relatedness are two basic human needs and cultural constructs at the same time. This implies that they may be differently defined yet remain equally important. The respective understanding of autonomy and relatedness is socialized during the everyday experiences of daily life routines from birth on. In this paper, two developmental pathways are portrayed that emphasize different conceptions of autonomy and relatedness that are adaptive in two different environmental contexts with very different affordances and constraints. Western middle-class children are socialized towards psychological autonomy, i.e. the primacy of own intentions, wishes, individual preferences and emotions affording a definition of relatedness as psychological negotiable construct. Non-Western subsistence farmer children are socialized towards hierarchical relatedness, i.e. positioning oneself into the hierarchical structure of a communal system affording a definition of autonomy as action oriented, based on responsibility and obligations. Infancy can be regarded as a cultural lens through which to study the different socialization agendas. Parenting strategies that aim at supporting these different socialization goals in German and Euro-American parents on the one hand and Nso farmers from North Western Cameroon on the other hand are described. It is concluded that different pathways need to be considered in order to understand human psychology from a global perspective. PMID:26644589
Psychological autonomy and hierarchical relatedness as organizers of developmental pathways.
Keller, Heidi
2016-01-19
The definition of self and others can be regarded as embodying the two dimensions of autonomy and relatedness. Autonomy and relatedness are two basic human needs and cultural constructs at the same time. This implies that they may be differently defined yet remain equally important. The respective understanding of autonomy and relatedness is socialized during the everyday experiences of daily life routines from birth on. In this paper, two developmental pathways are portrayed that emphasize different conceptions of autonomy and relatedness that are adaptive in two different environmental contexts with very different affordances and constraints. Western middle-class children are socialized towards psychological autonomy, i.e. the primacy of own intentions, wishes, individual preferences and emotions affording a definition of relatedness as psychological negotiable construct. Non-Western subsistence farmer children are socialized towards hierarchical relatedness, i.e. positioning oneself into the hierarchical structure of a communal system affording a definition of autonomy as action oriented, based on responsibility and obligations. Infancy can be regarded as a cultural lens through which to study the different socialization agendas. Parenting strategies that aim at supporting these different socialization goals in German and Euro-American parents on the one hand and Nso farmers from North Western Cameroon on the other hand are described. It is concluded that different pathways need to be considered in order to understand human psychology from a global perspective. © 2015 The Author(s).
Cortical Representations of Speech in a Multitalker Auditory Scene.
Puvvada, Krishna C; Simon, Jonathan Z
2017-09-20
The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory scene, with both attended and unattended speech streams represented with almost equal fidelity. We also show that higher-order auditory cortical areas, by contrast, represent an attended speech stream separately from, and with significantly higher fidelity than, unattended speech streams. Furthermore, the unattended background streams are represented as a single undivided background object rather than as distinct background objects. Copyright © 2017 the authors 0270-6474/17/379189-08$15.00/0.
Local intensity area descriptor for facial recognition in ideal and noise conditions
NASA Astrophysics Data System (ADS)
Tran, Chi-Kien; Tseng, Chin-Dar; Chao, Pei-Ju; Ting, Hui-Min; Chang, Liyun; Huang, Yu-Jie; Lee, Tsair-Fwu
2017-03-01
We propose a local texture descriptor, local intensity area descriptor (LIAD), which is applied for human facial recognition in ideal and noisy conditions. Each facial image is divided into small regions from which LIAD histograms are extracted and concatenated into a single feature vector to represent the facial image. The recognition is performed using a nearest neighbor classifier with histogram intersection and chi-square statistics as dissimilarity measures. Experiments were conducted with LIAD using the ORL database of faces (Olivetti Research Laboratory, Cambridge), the Face94 face database, the Georgia Tech face database, and the FERET database. The results demonstrated the improvement in accuracy of our proposed descriptor compared to conventional descriptors [local binary pattern (LBP), uniform LBP, local ternary pattern, histogram of oriented gradients, and local directional pattern]. Moreover, the proposed descriptor was less sensitive to noise and had low histogram dimensionality. Thus, it is expected to be a powerful texture descriptor that can be used for various computer vision problems.
Massoudieh, Arash; Visser, Ate; Sharifi, Soroosh; ...
2013-10-15
The mixing of groundwaters with different ages in aquifers, groundwater age is more appropriately represented by a distribution rather than a scalar number. To infer a groundwater age distribution from environmental tracers, a mathematical form is often assumed for the shape of the distribution and the parameters of the mathematical distribution are estimated using deterministic or stochastic inverse methods. We found that the prescription of the mathematical form limits the exploration of the age distribution to the shapes that can be described by the selected distribution. In this paper, the use of freeform histograms as groundwater age distributions is evaluated.more » A Bayesian Markov Chain Monte Carlo approach is used to estimate the fraction of groundwater in each histogram bin. This method was able to capture the shape of a hypothetical gamma distribution from the concentrations of four age tracers. The number of bins that can be considered in this approach is limited based on the number of tracers available. The histogram method was also tested on tracer data sets from Holten (The Netherlands; 3H, 3He, 85Kr, 39Ar) and the La Selva Biological Station (Costa-Rica; SF 6, CFCs, 3H, 4He and 14C), and compared to a number of mathematical forms. According to standard Bayesian measures of model goodness, the best mathematical distribution performs better than the histogram distributions in terms of the ability to capture the observed tracer data relative to their complexity. Among the histogram distributions, the four bin histogram performs better in most of the cases. The Monte Carlo simulations showed strong correlations in the posterior estimates of bin contributions, indicating that these bins cannot be well constrained using the available age tracers. The fact that mathematical forms overall perform better than the freeform histogram does not undermine the benefit of the freeform approach, especially for the cases where a larger amount of observed data is available and when the real groundwater distribution is more complex than can be represented by simple mathematical forms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massoudieh, Arash; Visser, Ate; Sharifi, Soroosh
The mixing of groundwaters with different ages in aquifers, groundwater age is more appropriately represented by a distribution rather than a scalar number. To infer a groundwater age distribution from environmental tracers, a mathematical form is often assumed for the shape of the distribution and the parameters of the mathematical distribution are estimated using deterministic or stochastic inverse methods. We found that the prescription of the mathematical form limits the exploration of the age distribution to the shapes that can be described by the selected distribution. In this paper, the use of freeform histograms as groundwater age distributions is evaluated.more » A Bayesian Markov Chain Monte Carlo approach is used to estimate the fraction of groundwater in each histogram bin. This method was able to capture the shape of a hypothetical gamma distribution from the concentrations of four age tracers. The number of bins that can be considered in this approach is limited based on the number of tracers available. The histogram method was also tested on tracer data sets from Holten (The Netherlands; 3H, 3He, 85Kr, 39Ar) and the La Selva Biological Station (Costa-Rica; SF 6, CFCs, 3H, 4He and 14C), and compared to a number of mathematical forms. According to standard Bayesian measures of model goodness, the best mathematical distribution performs better than the histogram distributions in terms of the ability to capture the observed tracer data relative to their complexity. Among the histogram distributions, the four bin histogram performs better in most of the cases. The Monte Carlo simulations showed strong correlations in the posterior estimates of bin contributions, indicating that these bins cannot be well constrained using the available age tracers. The fact that mathematical forms overall perform better than the freeform histogram does not undermine the benefit of the freeform approach, especially for the cases where a larger amount of observed data is available and when the real groundwater distribution is more complex than can be represented by simple mathematical forms.« less
Choi, Young Jun; Lee, Jeong Hyun; Kim, Hye Ok; Kim, Dae Yoon; Yoon, Ra Gyoung; Cho, So Hyun; Koh, Myeong Ju; Kim, Namkug; Kim, Sang Yoon; Baek, Jung Hwan
2016-01-01
To explore the added value of histogram analysis of apparent diffusion coefficient (ADC) values over magnetic resonance (MR) imaging and fluorine 18 ((18)F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) for the detection of occult palatine tonsil squamous cell carcinoma (SCC) in patients with cervical nodal metastasis from a cancer of an unknown primary site. The institutional review board approved this retrospective study, and the requirement for informed consent was waived. Differences in the bimodal histogram parameters of the ADC values were assessed among occult palatine tonsil SCC (n = 19), overt palatine tonsil SCC (n = 20), and normal palatine tonsils (n = 20). One-way analysis of variance was used to analyze differences among the three groups. Receiver operating characteristic curve analysis was used to determine the best differentiating parameters. The increased sensitivity of histogram analysis over MR imaging and (18)F-FDG PET/CT for the detection of occult palatine tonsil SCC was evaluated as added value. Histogram analysis showed statistically significant differences in the mean, standard deviation, and 50th and 90th percentile ADC values among the three groups (P < .0045). Occult palatine tonsil SCC had a significantly higher standard deviation for the overall curves, mean and standard deviation of the higher curves, and 90th percentile ADC value, compared with normal palatine tonsils (P < .0167). Receiver operating characteristic curve analysis showed that the standard deviation of the overall curve best delineated occult palatine tonsil SCC from normal palatine tonsils, with a sensitivity of 78.9% (15 of 19 patients) and a specificity of 60% (12 of 20 patients). The added value of ADC histogram analysis was 52.6% over MR imaging alone and 15.8% over combined conventional MR imaging and (18)F-FDG PET/CT. Adding ADC histogram analysis to conventional MR imaging can improve the detection sensitivity for occult palatine tonsil SCC in patients with a cervical nodal metastasis originating from a cancer of an unknown primary site. © RSNA, 2015.
Kim, Hyungjin; Choi, Seung Hong; Kim, Ji-Hoon; Ryoo, Inseon; Kim, Soo Chin; Yeom, Jeong A.; Shin, Hwaseon; Jung, Seung Chai; Lee, A. Leum; Yun, Tae Jin; Park, Chul-Kee; Sohn, Chul-Ho; Park, Sung-Hye
2013-01-01
Background Glioma grading assumes significant importance in that low- and high-grade gliomas display different prognoses and are treated with dissimilar therapeutic strategies. The objective of our study was to retrospectively assess the usefulness of a cumulative normalized cerebral blood volume (nCBV) histogram for glioma grading based on 3 T MRI. Methods From February 2010 to April 2012, 63 patients with astrocytic tumors underwent 3 T MRI with dynamic susceptibility contrast perfusion-weighted imaging. Regions of interest containing the entire tumor volume were drawn on every section of the co-registered relative CBV (rCBV) maps and T2-weighted images. The percentile values from the cumulative nCBV histograms and the other histogram parameters were correlated with tumor grades. Cochran’s Q test and the McNemar test were used to compare the diagnostic accuracies of the histogram parameters after the receiver operating characteristic curve analysis. Using the parameter offering the highest diagnostic accuracy, a validation process was performed with an independent test set of nine patients. Results The 99th percentile of the cumulative nCBV histogram (nCBV C99), mean and peak height differed significantly between low- and high-grade gliomas (P = <0.001, 0.014 and <0.001, respectively) and between grade III and IV gliomas (P = <0.001, 0.001 and <0.001, respectively). The diagnostic accuracy of nCBV C99 was significantly higher than that of the mean nCBV (P = 0.016) in distinguishing high- from low-grade gliomas and was comparable to that of the peak height (P = 1.000). Validation using the two cutoff values of nCBV C99 achieved a diagnostic accuracy of 66.7% (6/9) for the separation of all three glioma grades. Conclusion Cumulative histogram analysis of nCBV using 3 T MRI can be a useful method for preoperative glioma grading. The nCBV C99 value is helpful in distinguishing high- from low-grade gliomas and grade IV from III gliomas. PMID:23704910
Zhang, Yu-Dong; Wu, Chen-Jiang; Wang, Qing; Zhang, Jing; Wang, Xiao-Ning; Liu, Xi-Sheng; Shi, Hai-Bin
2015-08-01
The purpose of this study was to compare histogram analysis of apparent diffusion coefficient (ADC) and R2* for differentiating low-grade from high-grade clear cell renal cell carcinoma (RCC). Forty-six patients with pathologically confirmed clear cell RCC underwent preoperative BOLD and DWI MRI of the kidneys. ADCs based on the entire tumor volume were calculated with b value combinations of 0 and 800 s/mm(2). ROI-based R2* was calculated with eight TE combinations of 6.7-22.8 milliseconds. Histogram analysis of tumor ADCs and R2* values was performed to obtain mean; median; width; and fifth, 10th, 90th, and 95th percentiles and histogram inhomogeneity, kurtosis, and skewness for all lesions. Thirty-three low-grade and 13 high-grade clear cell RCCs were found at pathologic examination. The TNM classification and tumor volume of clear cell RCC significantly correlated with histogram ADC and R2* (ρ = -0.317 to 0.506; p < 0.05). High-grade clear cell RCC had significantly lower mean, median, and 10th percentile ADCs but higher inhomogeneity and median R2* than low-grade clear cell RCC (all p < 0.05). Compared with other histogram ADC and R2* indexes, 10th percentile ADC had the highest accuracy (91.3%) in discriminating low- from high-grade clear cell RCC. R2* in discriminating hemorrhage was achieved with a threshold of 68.95 Hz. At this threshold, high-grade clear cell RCC had a significantly higher prevalence of intratumor hemorrhage (high-grade, 76.9%; low-grade, 45.4%; p < 0.05) and larger hemorrhagic area than low-grade clear cell RCC (high-grade, 34.9% ± 31.6%; low-grade, 8.9 ± 16.8%; p < 0.05). A close relation was found between MRI indexes and pathologic findings. Histogram analysis of ADC and R2* allows differentiation of low- from high-grade clear cell RCC with high accuracy.
Kong, Ling-Yan; Zhang, Wei; Zhou, Yue; Xu, Hai; Shi, Hai-Bin; Feng, Qing; Xu, Xiao-Quan; Yu, Tong-Fu
2018-04-01
To investigate the value of apparent diffusion coefficients (ADCs) histogram analysis for assessing World Health Organization (WHO) pathological classification and Masaoka clinical stages of thymic epithelial tumours. 37 patients with histologically confirmed thymic epithelial tumours were enrolled. ADC measurements were performed using hot-spot ROI (ADC HS-ROI ) and histogram-based approach. ADC histogram parameters included mean ADC (ADC mean ), median ADC (ADC median ), 10 and 90 percentile of ADC (ADC 10 and ADC 90 ), kurtosis and skewness. One-way ANOVA, independent-sample t-test, and receiver operating characteristic were used for statistical analyses. There were significant differences in ADC mean , ADC median , ADC 10 , ADC 90 and ADC HS-ROI among low-risk thymoma (type A, AB, B1; n = 14), high-risk thymoma (type B2, B3; n = 9) and thymic carcinoma (type C, n = 14) groups (all p-values <0.05), while no significant difference in skewness (p = 0.181) and kurtosis (p = 0.088). ADC 10 showed best differentiating ability (cut-off value, ≤0.689 × 10 -3 mm 2 s -1 ; AUC, 0.957; sensitivity, 95.65%; specificity, 92.86%) for discriminating low-risk thymoma from high-risk thymoma and thymic carcinoma. Advanced Masaoka stages (Stage III and IV; n = 24) tumours showed significant lower ADC parameters and higher kurtosis than early Masaoka stage (Stage I and II; n = 13) tumours (all p-values <0.05), while no significant difference on skewness (p = 0.063). ADC 10 showed best differentiating ability (cut-off value, ≤0.689 × 10 -3 mm 2 s -1 ; AUC, 0.913; sensitivity, 91.30%; specificity, 85.71%) for discriminating advanced and early Masaoka stage epithelial tumours. ADC histogram analysis may assist in assessing the WHO pathological classification and Masaoka clinical stages of thymic epithelial tumours. Advances in knowledge: 1. ADC histogram analysis could help to assess WHO pathological classification of thymic epithelial tumours. 2. ADC histogram analysis could help to evaluate Masaoka clinical stages of thymic epithelial tumours. 3. ADC 10 might be a promising imaging biomarker for assessing and characterizing thymic epithelial tumours.
Hoffman, David H; Ream, Justin M; Hajdu, Christina H; Rosenkrantz, Andrew B
2017-04-01
To evaluate whole-lesion ADC histogram metrics for assessing the malignant potential of pancreatic intraductal papillary mucinous neoplasms (IPMNs), including in comparison with conventional MRI features. Eighteen branch-duct IPMNs underwent MRI with DWI prior to resection (n = 16) or FNA (n = 2). A blinded radiologist placed 3D volumes-of-interest on the entire IPMN on the ADC map, from which whole-lesion histogram metrics were generated. The reader also assessed IPMN size, mural nodularity, and adjacent main-duct dilation. Benign (low-to-intermediate grade dysplasia; n = 10) and malignant (high-grade dysplasia or invasive adenocarcinoma; n = 8) IPMNs were compared. Whole-lesion ADC histogram metrics demonstrating significant differences between benign and malignant IPMNs were: entropy (5.1 ± 0.2 vs. 5.4 ± 0.2; p = 0.01, AUC = 86%); mean of the bottom 10th percentile (2.2 ± 0.4 vs. 1.6 ± 0.7; p = 0.03; AUC = 81%); and mean of the 10-25th percentile (2.8 ± 0.4 vs. 2.3 ± 0.6; p = 0.04; AUC = 79%). The overall mean ADC, skewness, and kurtosis were not significantly different between groups (p ≥ 0.06; AUC = 50-78%). For entropy (highest performing histogram metric), an optimal threshold of >5.3 achieved a sensitivity of 100%, a specificity of 70%, and an accuracy of 83% for predicting malignancy. No significant difference (p = 0.18-0.64) was observed between benign and malignant IPMNs for cyst size ≥3 cm, adjacent main-duct dilatation, or mural nodule. At multivariable analysis of entropy in combination with all other ADC histogram and conventional MRI features, entropy was the only significant independent predictor of malignancy (p = 0.004). Although requiring larger studies, ADC entropy obtained from 3D whole-lesion histogram analysis may serve as a biomarker for identifying the malignant potential of IPMNs, independent of conventional MRI features.
ERIC Educational Resources Information Center
Englehard, George, Jr.
1996-01-01
Data presented in figure three of the article cited may be misleading in that the automatic scaling procedure used by the computer program that generated the histogram highlighted spikes that would look different with different histogram methods. (SLD)
Using Computer Graphics in Statistics.
ERIC Educational Resources Information Center
Kerley, Lyndell M.
1990-01-01
Described is software which allows a student to use simulation to produce analytical output as well as graphical results. The results include a frequency histogram of a selected population distribution, a frequency histogram of the distribution of the sample means, and test the normality distributions of the sample means. (KR)
2014-01-01
Background EDTA-dependent pseudothrombocytopenia (EDTA-PTCP) is a common laboratory phenomenon with a prevalence ranging from 0.1-2% in hospitalized patients to 15-17% in outpatients evaluated for isolated thrombocytopenia. Despite its harmlessness, EDTA-PTCP frequently leads to time-consuming, costly and even invasive diagnostic investigations. EDTA-PTCP is often overlooked because blood smears are not evaluated visually in routine practice and histograms as well as warning flags of hematology analyzers are not interpreted correctly. Nonetheless, EDTA-PTCP may be diagnosed easily even by general practitioners without any experiences in blood film examinations. This is the first report illustrating the typical patterns of a platelet (PLT) and white blood cell (WBC) histograms of hematology analyzers. Case presentation A 37-year-old female patient of Caucasian origin was referred with suspected acute leukemia and the crew of the emergency unit arranged extensive investigations for work-up. However, examination of EDTA blood sample revealed atypical lymphocytes and an isolated thrombocytopenia together with typical patterns of WBC and PLT histograms: a serrated curve of the platelet histogram and a peculiar peak on the left side of the WBC histogram. EDTA-PTCP was confirmed by a normal platelet count when examining citrated blood. Conclusion Awareness of typical PLT and WBC patterns may alert to the presence of EDTA-PTCP in routine laboratory practice helping to avoid unnecessary investigations and over-treatment. PMID:24808761
NASA Technical Reports Server (NTRS)
Garbeff, Theodore J., II; Panda, Jayanta; Ross, James C.
2017-01-01
Time-Resolved shadowgraph and infrared (IR) imaging were performed to investigate off-body and on-body flow features of a generic, 'hammer-head' launch vehicle geometry previously tested by Coe and Nute (1962). The measurements discussed here were one part of a large range of wind tunnel test techniques that included steady-state pressure sensitive paint (PSP), dynamic PSP, unsteady surface pressures, and unsteady force measurements. Image data was captured over a Mach number range of 0.6 less than or equal to M less than or equal to 1.2 at a Reynolds number of 3 million per foot. Both shadowgraph and IR imagery were captured in conjunction with unsteady pressures and forces and correlated with IRIG-B timing. High-speed shadowgraph imagery was used to identify wake structure and reattachment behind the payload fairing of the vehicle. Various data processing strategies were employed and ultimately these results correlated well with the location and magnitude of unsteady surface pressure measurements. Two research grade IR cameras were positioned to image boundary layer transition at the vehicle nose and flow reattachment behind the payload fairing. The poor emissivity of the model surface treatment (fast PSP) proved to be challenging for the infrared measurement. Reference image subtraction and contrast limited adaptive histogram equalization (CLAHE) were used to analyze this dataset. Ultimately turbulent boundary layer transition was observed and located forward of the trip dot line at the model sphere-cone junction. Flow reattachment location was identified behind the payload fairing in both steady and unsteady thermal data. As demonstrated in this effort, recent advances in high-speed and thermal imaging technology have modernized classical techniques providing a new viewpoint for the modern researcher
Gaze Fluctuations Are Not Additively Decomposable: Reply to Bogartz and Staub
ERIC Educational Resources Information Center
Kelty-Stephen, Damian G.; Mirman, Daniel
2013-01-01
Our previous work interpreted single-lognormal fits to inter-gaze distance (i.e., "gaze steps") histograms as evidence of multiplicativity and hence interactions across scales in visual cognition. Bogartz and Staub (2012) proposed that gaze steps are additively decomposable into fixations and saccades, matching the histograms better and…
Rosandić, Marija; Vlahović, Ines; Glunčić, Matko; Paar, Vladimir
2016-07-01
For almost 50 years the conclusive explanation of Chargaff's second parity rule (CSPR), the equality of frequencies of nucleotides A=T and C=G or the equality of direct and reverse complement trinucleotides in the same DNA strand, has not been determined yet. Here, we relate CSPR to the interstrand mirror symmetry in 20 symbolic quadruplets of trinucleotides (direct, reverse complement, complement, and reverse) mapped to double-stranded genome. The symmetries of Q-box corresponding to quadruplets can be obtained as a consequence of Watson-Crick base pairing and CSPR together. Alternatively, assuming Natural symmetry law for DNA creation that each trinucleotide in one strand of DNA must simultaneously appear also in the opposite strand automatically leads to Q-box direct-reverse mirror symmetry which in conjunction with Watson-Crick base pairing generates CSPR. We demonstrate quadruplet's symmetries in chromosomes of wide range of organisms, from Escherichia coli to Neanderthal and human genomes, introducing novel quadruplet-frequency histograms and 3D-diagrams with combined interstrand frequencies. These "landscapes" are mutually similar in all mammals, including extinct Neanderthals, and somewhat different in most of older species. In human chromosomes 1-12, and X, Y the "landscapes" are almost identical and slightly different in the remaining smaller and telocentric chromosomes. Quadruplet frequencies could provide a new robust tool for characterization and classification of genomes and their evolutionary trajectories.
Milles, Julien; Zhu, Yue Min; Gimenez, Gérard; Guttmann, Charles R G; Magnin, Isabelle E
2007-03-01
A novel approach for correcting intensity nonuniformity in magnetic resonance imaging (MRI) is presented. This approach is based on the simultaneous use of spatial and gray-level histogram information. Spatial information about intensity nonuniformity is obtained using cubic B-spline smoothing. Gray-level histogram information of the image corrupted by intensity nonuniformity is exploited from a frequential point of view. The proposed correction method is illustrated using both physical phantom and human brain images. The results are consistent with theoretical prediction, and demonstrate a new way of dealing with intensity nonuniformity problems. They are all the more significant as the ground truth on intensity nonuniformity is unknown in clinical images.
NASA Astrophysics Data System (ADS)
Mansourian, Leila; Taufik Abdullah, Muhamad; Nurliyana Abdullah, Lili; Azman, Azreen; Mustaffa, Mas Rina
2017-02-01
Pyramid Histogram of Words (PHOW), combined Bag of Visual Words (BoVW) with the spatial pyramid matching (SPM) in order to add location information to extracted features. However, different PHOW extracted from various color spaces, and they did not extract color information individually, that means they discard color information, which is an important characteristic of any image that is motivated by human vision. This article, concatenated PHOW Multi-Scale Dense Scale Invariant Feature Transform (MSDSIFT) histogram and a proposed Color histogram to improve the performance of existing image classification algorithms. Performance evaluation on several datasets proves that the new approach outperforms other existing, state-of-the-art methods.
Application of Markov Models for Analysis of Development of Psychological Characteristics
ERIC Educational Resources Information Center
Kuravsky, Lev S.; Malykh, Sergey B.
2004-01-01
A technique to study combined influence of environmental and genetic factors on the base of changes in phenotype distributions is presented. Histograms are exploited as base analyzed characteristics. A continuous time, discrete state Markov process with piece-wise constant interstate transition rates is associated with evolution of each histogram.…
Post-Modeling Histogram Matching of Maps Produced Using Regression Trees
Andrew J. Lister; Tonya W. Lister
2006-01-01
Spatial predictive models often use statistical techniques that in some way rely on averaging of values. Estimates from linear modeling are known to be susceptible to truncation of variance when the independent (predictor) variables are measured with error. A straightforward post-processing technique (histogram matching) for attempting to mitigate this effect is...
Microprocessor-Based Neural-Pulse-Wave Analyzer
NASA Technical Reports Server (NTRS)
Kojima, G. K.; Bracchi, F.
1983-01-01
Microprocessor-based system analyzes amplitudes and rise times of neural waveforms. Displaying histograms of measured parameters helps researchers determine how many nerves contribute to signal and specify waveform characteristics of each. Results are improved noise rejection, full or partial separation of overlapping peaks, and isolation and identification of related peaks in different histograms. 2
USDA-ARS?s Scientific Manuscript database
Thresholding is an important step in the segmentation of image features, and the existing methods are not all effective when the image histogram exhibits a unimodal pattern, which is common in defect detection of fruit. This study was aimed at developing a general automatic thresholding methodology ...
Sharma, Harshita; Zerbe, Norman; Klempert, Iris; Hellwich, Olaf; Hufnagl, Peter
2017-11-01
Deep learning using convolutional neural networks is an actively emerging field in histological image analysis. This study explores deep learning methods for computer-aided classification in H&E stained histopathological whole slide images of gastric carcinoma. An introductory convolutional neural network architecture is proposed for two computerized applications, namely, cancer classification based on immunohistochemical response and necrosis detection based on the existence of tumor necrosis in the tissue. Classification performance of the developed deep learning approach is quantitatively compared with traditional image analysis methods in digital histopathology requiring prior computation of handcrafted features, such as statistical measures using gray level co-occurrence matrix, Gabor filter-bank responses, LBP histograms, gray histograms, HSV histograms and RGB histograms, followed by random forest machine learning. Additionally, the widely known AlexNet deep convolutional framework is comparatively analyzed for the corresponding classification problems. The proposed convolutional neural network architecture reports favorable results, with an overall classification accuracy of 0.6990 for cancer classification and 0.8144 for necrosis detection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Distribution of a suite of elements including arsenic and mercury in Alabama coal
Goldhaber, Martin B.; Bigelow, R.C.; Hatch, J.R.; Pashin, J.C.
2000-01-01
Arsenic and other elements are unusually abundant in Alabama coal. This conclusion is based on chemical analyses of coal in the U.S. Geological Survey's National Coal Resources Data System (NCRDS; Bragg and others, 1994). According to NCRDS data, the average concentration of arsenic in Alabama coal (72 ppm) is three times higher than is the average for all U.S. coal (24 ppm). Of the U.S. coal analyses for arsenic that are at least 3 standard deviations above the mean, approximately 90% are from the coal fields of Alabama. Figure 1 contrasts the abundance of arsenic in coal of the Warrior field of Alabama (histogram C) with that of coal of the Powder River Basin, Wyoming (histogram A), and the Eastern Interior Province including the Illinois Basin and nearby areas (histogram B). The Warrior field is by far the largest in Alabama. On the histogram, the large 'tail' of very high values (> 200 ppm) in the Warrior coal contrasts with the other two regions that have very few analyses greater than 200 ppm.
Real-Time Tracking by Double Templates Matching Based on Timed Motion History Image with HSV Feature
Li, Zhiyong; Li, Pengfei; Yu, Xiaoping; Hashem, Mervat
2014-01-01
It is a challenge to represent the target appearance model for moving object tracking under complex environment. This study presents a novel method with appearance model described by double templates based on timed motion history image with HSV color histogram feature (tMHI-HSV). The main components include offline template and online template initialization, tMHI-HSV-based candidate patches feature histograms calculation, double templates matching (DTM) for object location, and templates updating. Firstly, we initialize the target object region and calculate its HSV color histogram feature as offline template and online template. Secondly, the tMHI-HSV is used to segment the motion region and calculate these candidate object patches' color histograms to represent their appearance models. Finally, we utilize the DTM method to trace the target and update the offline template and online template real-timely. The experimental results show that the proposed method can efficiently handle the scale variation and pose change of the rigid and nonrigid objects, even in illumination change and occlusion visual environment. PMID:24592185
Stark, J A; Hladky, S B
2000-02-01
Dwell-time histograms are often plotted as part of patch-clamp investigations of ion channel currents. The advantages of plotting these histograms with a logarithmic time axis were demonstrated by, J. Physiol. (Lond.). 378:141-174), Pflügers Arch. 410:530-553), and, Biophys. J. 52:1047-1054). Sigworth and Sine argued that the interpretation of such histograms is simplified if the counts are presented in a manner similar to that of a probability density function. However, when ion channel records are recorded as a discrete time series, the dwell times are quantized. As a result, the mapping of dwell times to logarithmically spaced bins is highly irregular; bins may be empty, and significant irregularities may extend beyond the duration of 100 samples. Using simple approximations based on the nature of the binning process and the transformation rules for probability density functions, we develop adjustments for the display of the counts to compensate for this effect. Tests with simulated data suggest that this procedure provides a faithful representation of the data.
Coma Recovery Scale-Revised: evidentiary support for hierarchical grading of level of consciousness.
Gerrard, Paul; Zafonte, Ross; Giacino, Joseph T
2014-12-01
To investigate the neurobehavioral pattern of recovery of consciousness as reflected by performance on the subscales of the Coma Recovery Scale-Revised (CRS-R). Retrospective item response theory (IRT) and factor analysis. Inpatient rehabilitation facilities. Rehabilitation inpatients (N=180) with posttraumatic disturbance in consciousness who participated in a double-blinded, randomized, controlled drug trial. Not applicable. Scores on CRS-R subscales. The CRS-R was found to fit factor analytic models adhering to the assumptions of unidimensionality and monotonicity. In addition, subscales were mutually independent based on residual correlations. Nonparametric IRT reaffirmed the finding of monotonicity. A highly constrained confirmatory factor analysis model, which imposed equal factor loadings on all items, was found to fit the data well and was used to estimate a 1-parameter IRT model. This study provides evidence of the unidimensionality of the CRS-R and supports the hierarchical structure of the CRS-R subscales, suggesting that it is an effective tool for establishing diagnosis and monitoring recovery of consciousness after severe traumatic brain injury. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Chen, Yu; Song, Guobao; Yang, Fenglin; Zhang, Shushen; Zhang, Yun; Liu, Zhenyu
2012-01-01
According to risk systems theory and the characteristics of the chemical industry, an index system was established for risk assessment of enterprises in chemical industrial parks (CIPs) based on the inherent risk of the source, effectiveness of the prevention and control mechanism, and vulnerability of the receptor. A comprehensive risk assessment method based on catastrophe theory was then proposed and used to analyze the risk levels of ten major chemical enterprises in the Songmu Island CIP, China. According to the principle of equal distribution function, the chemical enterprise risk level was divided into the following five levels: 1.0 (very safe), 0.8 (safe), 0.6 (generally recognized as safe, GRAS), 0.4 (unsafe), 0.2 (very unsafe). The results revealed five enterprises (50%) with an unsafe risk level, and another five enterprises (50%) at the generally recognized as safe risk level. This method solves the multi-objective evaluation and decision-making problem. Additionally, this method involves simple calculations and provides an effective technique for risk assessment and hierarchical risk management of enterprises in CIPs. PMID:23208298
[Supply services at health facilities: measuring performance].
Dacosta Claro, I
2001-01-01
Performance measurement, in their different meanings--either balance scorecard or outputs measurement--have become an essential tool in today's organizations (World-Class organizations) to improve service quality and reduce costs. This paper presents a performance measurement system for the hospital supply chain. The system is organized in different levels and groups of indicators in order to show a hierarchical, coherent and integrated vision of the processes. Thus, supply services performance is measured according to (1) financial aspects, (2) customers satisfaction aspects and (3) internal aspects of the processes performed. Since the informational needs of the managers vary within the administrative structure, the performance measurement system is defined in three hierarchical levels. Firstly, the whole supply chain, with the different interrelation of activities. Secondly, the three main processes of the chain--physical management of products, purchasing and negotiation processes and the local storage units. And finally, the performance measurement of each activity involved. The system and the indicators have been evaluated with the participation of 17 health services of Quebec (Canada), however, and due to the similarities of the operation, could be equally implemented in Spanish hospitals.
Jang, Jinhee; Kim, Tae-Won; Hwang, Eo-Jin; Choi, Hyun Seok; Koo, Jaseong; Shin, Yong Sam; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-Soo
2017-01-01
The purpose of this study was to compare the histogram analysis and visual scores in 3T MRI assessment of middle cerebral arterial wall enhancement in patients with acute stroke, for the differentiation of parent artery disease (PAD) from small artery disease (SAD). Among the 82 consecutive patients in a tertiary hospital for one year, 25 patients with acute infarcts in middle cerebral artery (MCA) territory were included in this study including 15 patients with PAD and 10 patients with SAD. Three-dimensional contrast-enhanced T1-weighted turbo spin echo MR images with black-blood preparation at 3T were analyzed both qualitatively and quantitatively. The degree of MCA stenosis, and visual and histogram assessments on MCA wall enhancement were evaluated. A statistical analysis was performed to compare diagnostic accuracy between qualitative and quantitative metrics. The degree of stenosis, visual enhancement score, geometric mean (GM), and the 90th percentile (90P) value from the histogram analysis were significantly higher in PAD than in SAD ( p = 0.006 for stenosis, < 0.001 for others). The receiver operating characteristic curve area of GM and 90P were 1 (95% confidence interval [CI], 0.86-1.00). A histogram analysis of a relevant arterial wall enhancement allows differentiation between PAD and SAD in patients with acute stroke within the MCA territory.
Takahashi, Masahiro; Kozawa, Eito; Tanisaka, Megumi; Hasegawa, Kousei; Yasuda, Masanori; Sakai, Fumikazu
2016-06-01
We explored the role of histogram analysis of apparent diffusion coefficient (ADC) maps for discriminating uterine carcinosarcoma and endometrial carcinoma. We retrospectively evaluated findings in 13 patients with uterine carcinosarcoma and 50 patients with endometrial carcinoma who underwent diffusion-weighted imaging (b = 0, 500, 1000 s/mm(2) ) at 3T with acquisition of corresponding ADC maps. We derived histogram data from regions of interest drawn on all slices of the ADC maps in which tumor was visualized, excluding areas of necrosis and hemorrhage in the tumor. We used the Mann-Whitney test to evaluate the capacity of histogram parameters (mean ADC value, 5th to 95th percentiles, skewness, kurtosis) to discriminate uterine carcinosarcoma and endometrial carcinoma and analyzed the receiver operating characteristic (ROC) curve to determine the optimum threshold value for each parameter and its corresponding sensitivity and specificity. Carcinosarcomas demonstrated significantly higher mean vales of ADC, 95th, 90th, 75th, 50th, 25th percentiles and kurtosis than endometrial carcinomas (P < 0.05). ROC curve analysis of the 75th percentile yielded the best area under the ROC curve (AUC; 0.904), sensitivity of 100%, and specificity of 78.0%, with a cutoff value of 1.034 × 10(-3) mm(2) /s. Histogram analysis of ADC maps might be helpful for discriminating uterine carcinosarcomas and endometrial carcinomas. J. Magn. Reson. Imaging 2016;43:1301-1307. © 2015 Wiley Periodicals, Inc.
Min, Xiangde; Feng, Zhaoyan; Wang, Liang; Cai, Jie; Yan, Xu; Li, Basen; Ke, Zan; Zhang, Peipei; You, Huijuan
2018-01-01
To assess the values of parameters derived from whole-lesion histograms of the apparent diffusion coefficient (ADC) at 3T for the characterization of testicular germ cell tumors (TGCTs). A total of 24 men with TGCTs underwent 3T diffusion-weighted imaging. Fourteen tumors were pathologically confirmed as seminomas, and ten tumors were pathologically confirmed as nonseminomas. Whole-lesion histogram analysis of the ADC values was performed. A Mann-Whitney U test was employed to compare the differences in ADC histogram parameters between seminomas and nonseminomas. Receiver operating characteristic analysis was used to identify the cutoff values for each parameter for differentiating seminomas from nonseminomas; furthermore, the area under the curve (AUC) was calculated to evaluate the diagnostic accuracy. The median of 10th, 25th, 50th, 75th, and 90th percentiles and mean, minimum and maximum ADC values were all significantly reduced for seminomas compared with nonseminomas (p<0.05 for all). In contrast, the median of kurtosis and skewness of ADC values of seminomas were both significantly increased compared with those of nonseminomas (p=0.003 and 0.001, respectively). For differentiating nonseminomas from seminomas, the 10th percentile ADC yielded the highest AUC with a sensitivity and specificity of 100% and 92.86%, respectively. Whole-lesion histogram analysis of ADCs might be used for preoperative characterization of TGCTs. Copyright © 2017 Elsevier B.V. All rights reserved.
Fried, Itzhak; Koch, Christof
2014-01-01
Peristimulus time histograms are a widespread form of visualizing neuronal responses. Kernel convolution methods transform these histograms into a smooth, continuous probability density function. This provides an improved estimate of a neuron's actual response envelope. We here develop a classifier, called the h-coefficient, to determine whether time-locked fluctuations in the firing rate of a neuron should be classified as a response or as random noise. Unlike previous approaches, the h-coefficient takes advantage of the more precise response envelope estimation provided by the kernel convolution method. The h-coefficient quantizes the smoothed response envelope and calculates the probability of a response of a given shape to occur by chance. We tested the efficacy of the h-coefficient in a large data set of Monte Carlo simulated smoothed peristimulus time histograms with varying response amplitudes, response durations, trial numbers, and baseline firing rates. Across all these conditions, the h-coefficient significantly outperformed more classical classifiers, with a mean false alarm rate of 0.004 and a mean hit rate of 0.494. We also tested the h-coefficient's performance in a set of neuronal responses recorded in humans. The algorithm behind the h-coefficient provides various opportunities for further adaptation and the flexibility to target specific parameters in a given data set. Our findings confirm that the h-coefficient can provide a conservative and powerful tool for the analysis of peristimulus time histograms with great potential for future development. PMID:25475352
Using color histogram normalization for recovering chromatic illumination-changed images.
Pei, S C; Tseng, C L; Wu, C C
2001-11-01
We propose a novel image-recovery method using the covariance matrix of the red-green-blue (R-G-B) color histogram and tensor theories. The image-recovery method is called the color histogram normalization algorithm. It is known that the color histograms of an image taken under varied illuminations are related by a general affine transformation of the R-G-B coordinates when the illumination is changed. We propose a simplified affine model for application with illumination variation. This simplified affine model considers the effects of only three basic forms of distortion: translation, scaling, and rotation. According to this principle, we can estimate the affine transformation matrix necessary to recover images whose color distributions are varied as a result of illumination changes. We compare the normalized color histogram of the standard image with that of the tested image. By performing some operations of simple linear algebra, we can estimate the matrix of the affine transformation between two images under different illuminations. To demonstrate the performance of the proposed algorithm, we divide the experiments into two parts: computer-simulated images and real images corresponding to illumination changes. Simulation results show that the proposed algorithm is effective for both types of images. We also explain the noise-sensitive skew-rotation estimation that exists in the general affine model and demonstrate that the proposed simplified affine model without the use of skew rotation is better than the general affine model for such applications.
Nguyen-Kim, Thi Dan Linh; Maurer, Britta; Suliman, Yossra A; Morsbach, Fabian; Distler, Oliver; Frauenfelder, Thomas
2018-04-01
To evaluate usability of slice-reduced sequential computed tomography (CT) compared to standard high-resolution CT (HRCT) in patients with systemic sclerosis (SSc) for qualitative and quantitative assessment of interstitial lung disease (ILD) with respect to (I) detection of lung parenchymal abnormalities, (II) qualitative and semiquantitative visual assessment, (III) quantification of ILD by histograms and (IV) accuracy for the 20%-cut off discrimination. From standard chest HRCT of 60 SSc patients sequential 9-slice-computed tomography (reduced HRCT) was retrospectively reconstructed. ILD was assessed by visual scoring and quantitative histogram parameters. Results from standard and reduced HRCT were compared using non-parametric tests and analysed by univariate linear regression analyses. With respect to the detection of parenchymal abnormalities, only the detection of intrapulmonary bronchiectasis was significantly lower in reduced HRCT compared to standard HRCT (P=0.039). No differences were found comparing visual scores for fibrosis severity and extension from standard and reduced HRCT (P=0.051-0.073). All scores correlated significantly (P<0.001) to histogram parameters derived from both, standard and reduced HRCT. Significant higher values of kurtosis and skewness for reduced HRCT were found (both P<0.001). In contrast to standard HRCT histogram parameters from reduced HRCT showed significant discrimination at cut-off 20% fibrosis (sensitivity 88% kurtosis and skewness; specificity 81% kurtosis and 86% skewness; cut-off kurtosis ≤26, cut-off skewness ≤4; both P<0.001). Reduced HRCT is a robust method to assess lung fibrosis in SSc with minimal radiation dose with no difference in scoring assessment of lung fibrosis severity and extension in comparison to standard HRCT. In contrast to standard HRCT histogram parameters derived from the approach of reduced HRCT could discriminate at a threshold of 20% lung fibrosis with high sensitivity and specificity. Hence it might be used to detect early disease progression of lung fibrosis in context of monitoring and treatment of SSc patients.
Meyer, Hans Jonas; Höhn, Annekathrin; Surov, Alexey
2018-04-06
Functional imaging modalities like Diffusion-weighted imaging are increasingly used to predict tumor behavior like cellularity and vascularity in different tumors. Histogram analysis is an emergent imaging analysis, in which every voxel is used to obtain a histogram and therefore statistically information about tumors can be provided. The purpose of this study was to elucidate possible associations between ADC histogram parameters and several immunhistochemical features in rectal cancer. Overall, 11 patients with histologically proven rectal cancer were included into the study. There were 2 (18.18%) females and 9 males with a mean age of 67.1 years. KI 67-index, expression of p53, EGFR, VEGF, and Hif1-alpha were semiautomatically estimated. The tumors were divided into PD1-positive and PD1-negative lesions. ADC histogram analysis was performed as a whole lesion measurement using an in-house matlab application. Spearman's correlation analysis revealed a strong correlation between EGFR expression and ADCmax (p=0.72, P=0.02). None of the vascular parameters (VEGF, Hif1-alpha) correlated with ADC parameters. Kurtosis and skewness correlated inversely with p53 expression (p=-0.64, P=0.03 and p=-0.81, P=0.002, respectively). ADCmedian and ADCmode correlated with Ki67 (p=-0.62, P=0.04 and p=-0.65, P=0.03, respectively). PD1-positive tumors showed statistically significant lower ADCmax values in comparison to PD1-negative tumors, 1.93 ± 0.36 vs 2.32 ± 0.47×10 -3 mm 2 /s, p=0.04. Several associations were identified between histogram parameter derived from ADC maps and EGFR, KI 67 and p53 expression in rectal cancer. Furthermore, ADCmax was different between PD1 positive and PD1 negative tumors indicating an important role of ADC parameters for possible future treatment prediction.
Meyer, Hans Jonas; Höhn, Annekathrin; Surov, Alexey
2018-01-01
Functional imaging modalities like Diffusion-weighted imaging are increasingly used to predict tumor behavior like cellularity and vascularity in different tumors. Histogram analysis is an emergent imaging analysis, in which every voxel is used to obtain a histogram and therefore statistically information about tumors can be provided. The purpose of this study was to elucidate possible associations between ADC histogram parameters and several immunhistochemical features in rectal cancer. Overall, 11 patients with histologically proven rectal cancer were included into the study. There were 2 (18.18%) females and 9 males with a mean age of 67.1 years. KI 67-index, expression of p53, EGFR, VEGF, and Hif1-alpha were semiautomatically estimated. The tumors were divided into PD1-positive and PD1-negative lesions. ADC histogram analysis was performed as a whole lesion measurement using an in-house matlab application. Spearman's correlation analysis revealed a strong correlation between EGFR expression and ADCmax (p=0.72, P=0.02). None of the vascular parameters (VEGF, Hif1-alpha) correlated with ADC parameters. Kurtosis and skewness correlated inversely with p53 expression (p=-0.64, P=0.03 and p=-0.81, P=0.002, respectively). ADCmedian and ADCmode correlated with Ki67 (p=-0.62, P=0.04 and p=-0.65, P=0.03, respectively). PD1-positive tumors showed statistically significant lower ADCmax values in comparison to PD1-negative tumors, 1.93 ± 0.36 vs 2.32 ± 0.47×10−3mm2/s, p=0.04. Several associations were identified between histogram parameter derived from ADC maps and EGFR, KI 67 and p53 expression in rectal cancer. Furthermore, ADCmax was different between PD1 positive and PD1 negative tumors indicating an important role of ADC parameters for possible future treatment prediction. PMID:29719621
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shusharina, N; Choi, N; Bortfeld, T
2016-06-15
Purpose: To determine whether the difference in cumulative 18F-FDG uptake histogram of lung treated with either IMRT or PSPT is associated with radiation pneumonitis (RP) in patients with inoperable stage II and III NSCLC. Methods: We analyzed 24 patients from a prospective randomized trial to compare IMRT (n=12) with vs. PSPT (n=12) for inoperable NSCLC. All patients underwent PET-CT imaging between 35 and 88 days post-therapy. Post-treatment PET-CT was aligned with planning 4D CT to establish a voxel-to-voxel correspondence between post-treatment PET and planning dose images. 18F-FDG uptake as a function of radiation dose to normal lung was obtained formore » each patient. Distribution of the standard uptake value (SUV) was analyzed using a volume histogram method. The image quantitative characteristics and DVH measures were correlated with clinical symptoms of pneumonitis. Results: Patients with RP were present in both groups: 5 in the IMRT and 6 in the PSPT. The analysis of cumulative SUV histograms showed significantly higher relative volumes of the normal lung having higher SUV uptake in the PSPT patients for both symptomatic and asymptomatic cases (VSUV=2: 10% for IMRT vs 16% for proton RT and VSUV=1: 10% for IMRT vs 23% for proton RT). In addition, the SUV histograms for symptomatic cases in PSPT patients exhibited a significantly longer tail at the highest SUV. The absolute volume of the lung receiving the dose >70 Gy was larger in the PSPT patients. Conclusion: 18F-FDG uptake – radiation dose response correlates with RP in both groups of patients by means of the linear regression slope. SUV is higher for the PSPT patients for both symptomatic and asymptomatic cases. Higher uptake after PSPT patients is explained by larger volumes of the lung receiving high radiation dose.« less
NASA Astrophysics Data System (ADS)
Burri, Samuel; Homulle, Harald; Bruschini, Claudio; Charbon, Edoardo
2016-04-01
LinoSPAD is a reconfigurable camera sensor with a 256×1 CMOS SPAD (single-photon avalanche diode) pixel array connected to a low cost Xilinx Spartan 6 FPGA. The LinoSPAD sensor's line of pixels has a pitch of 24 μm and 40% fill factor. The FPGA implements an array of 64 TDCs and histogram engines capable of processing up to 8.5 giga-photons per second. The LinoSPAD sensor measures 1.68 mm×6.8 mm and each pixel has a direct digital output to connect to the FPGA. The chip is bonded on a carrier PCB to connect to the FPGA motherboard. 64 carry chain based TDCs sampled at 400 MHz can generate a timestamp every 7.5 ns with a mean time resolution below 25 ps per code. The 64 histogram engines provide time-of-arrival histograms covering up to 50 ns. An alternative mode allows the readout of 28 bit timestamps which have a range of up to 4.5 ms. Since the FPGA TDCs have considerable non-linearity we implemented a correction module capable of increasing histogram linearity at real-time. The TDC array is interfaced to a computer using a super-speed USB3 link to transfer over 150k histograms per second for the 12.5 ns reference period used in our characterization. After characterization and subsequent programming of the post-processing we measure an instrument response histogram shorter than 100 ps FWHM using a strong laser pulse with 50 ps FWHM. A timing resolution that when combined with the high fill factor makes the sensor well suited for a wide variety of applications from fluorescence lifetime microscopy over Raman spectroscopy to 3D time-of-flight.
Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit
2017-02-01
To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.
Yang, Xiaofeng; Tridandapani, Srini; Beitler, Jonathan J; Yu, David S; Chen, Zhengjia; Kim, Sungjin; Bruner, Deborah W; Curran, Walter J; Liu, Tian
2014-10-01
To investigate the diagnostic accuracy of ultrasound histogram features in the quantitative assessment of radiation-induced parotid gland injury and to identify potential imaging biomarkers for radiation-induced xerostomia (dry mouth)-the most common and debilitating side effect after head-and-neck radiotherapy (RT). Thirty-four patients, who have developed xerostomia after RT for head-and-neck cancer, were enrolled. Radiation-induced xerostomia was defined by the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer morbidity scale. Ultrasound scans were performed on each patient's parotids bilaterally. The 34 patients were stratified into the acute-toxicity groups (16 patients, ≤ 3 months after treatment) and the late-toxicity group (18 patients, > 3 months after treatment). A separate control group of 13 healthy volunteers underwent similar ultrasound scans of their parotid glands. Six sonographic features were derived from the echo-intensity histograms to assess acute and late toxicity of the parotid glands. The quantitative assessments were compared to a radiologist's clinical evaluations. The diagnostic accuracy of these ultrasonic histogram features was evaluated with the receiver operating characteristic (ROC) curve. With an area under the ROC curve greater than 0.90, several histogram features demonstrated excellent diagnostic accuracy for evaluation of acute and late toxicity of parotid glands. Significant differences (P < .05) in all six sonographic features were demonstrated between the control, acute-toxicity, and late-toxicity groups. However, subjective radiologic evaluation cannot distinguish between acute and late toxicity of parotid glands. We demonstrated that ultrasound histogram features could be used to measure acute and late toxicity of the parotid glands after head-and-neck cancer RT, which may be developed into a low-cost imaging method for xerostomia monitoring and assessment. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Gaing, Byron; Sigmund, Eric E; Huang, William C; Babb, James S; Parikh, Nainesh S; Stoffel, David; Chandarana, Hersh
2015-03-01
The aim of this study was to determine if voxel-based histogram analysis of intravoxel incoherent motion imaging (IVIM) parameters can differentiate various subtypes of renal tumors, including benign and malignant lesions. A total of 44 patients with renal tumors who underwent surgery and had histopathology available were included in this Health Insurance Portability and Accountability Act-compliant, institutional review board-approved, single-institution prospective study. In addition to routine renal magnetic resonance imaging examination performed on a 1.5-T system, all patients were imaged with axial diffusion-weighted imaging using 8 b values (range, 0-800 s/mm). A biexponential model was fitted to the diffusion signal data using a segmented algorithm to extract the IVIM parameters perfusion fraction (fp), tissue diffusivity (Dt), and pseudodiffusivity (Dp) for each voxel. Mean and histogram measures of heterogeneity (standard deviation, skewness, and kurtosis) of IVIM parameters were correlated with pathology results of tumor subtype using unequal variance t tests to compare subtypes in terms of each measure. Correction for multiple comparisons was accomplished using the Tukey honestly significant difference procedure. A total of 44 renal tumors including 23 clear cell (ccRCC), 4 papillary (pRCC), 5 chromophobe, and 5 cystic renal cell carcinomas, as well as benign lesions, 4 oncocytomas (Onc) and 3 angiomyolipomas (AMLs), were included in our analysis. Mean IVIM parameters fp and Dt differentiated 8 of 15 pairs of renal tumors. Histogram analysis of IVIM parameters differentiated 9 of 15 subtype pairs. One subtype pair (ccRCC vs pRCC) was differentiated by mean analysis but not by histogram analysis. However, 2 other subtype pairs (AML vs Onc and ccRCC vs Onc) were differentiated by histogram distribution parameters exclusively. The standard deviation of Dt [σ(Dt)] differentiated ccRCC (0.362 ± 0.136 × 10 mm/s) from AML (0.199 ± 0.043 × 10 mm/s) (P = 0.002). Kurtosis of fp separated Onc (2.767 ± 1.299) from AML (-0.325 ± 0.279; P = 0.001), ccRCC (0.612 ± 1.139; P = 0.042), and pRCC (0.308 ± 0.730; P = 0.025). Intravoxel incoherent motion imaging parameters with inclusion of histogram measures of heterogeneity can help differentiate malignant from benign lesions as well as various subtypes of renal cancers.
A tone mapping operator based on neural and psychophysical models of visual perception
NASA Astrophysics Data System (ADS)
Cyriac, Praveen; Bertalmio, Marcelo; Kane, David; Vazquez-Corral, Javier
2015-03-01
High dynamic range imaging techniques involve capturing and storing real world radiance values that span many orders of magnitude. However, common display devices can usually reproduce intensity ranges only up to two to three orders of magnitude. Therefore, in order to display a high dynamic range image on a low dynamic range screen, the dynamic range of the image needs to be compressed without losing details or introducing artefacts, and this process is called tone mapping. A good tone mapping operator must be able to produce a low dynamic range image that matches as much as possible the perception of the real world scene. We propose a two stage tone mapping approach, in which the first stage is a global method for range compression based on a gamma curve that equalizes the lightness histogram the best, and the second stage performs local contrast enhancement and color induction using neural activity models for the visual cortex.
Enhancing the pictorial content of digital holograms at 100 frames per second.
Tsang, P W M; Poon, T-C; Cheung, K W K
2012-06-18
We report a low complexity, non-iterative method for enhancing the sharpness, brightness, and contrast of the pictorial content that is recorded in a digital hologram, without the need of re-generating the latter from the original object scene. In our proposed method, the hologram is first back-projected to a 2-D virtual diffraction plane (VDP) which is located at close proximity to the original object points. Next the field distribution on the VDP, which shares similar optical properties as the object scene, is enhanced. Subsequently, the processed VDP is expanded into a full hologram. We demonstrate two types of enhancement: a modified histogram equalization to improve the brightness and contrast, and localized high-boost-filtering (LHBF) to increase the sharpness. Experiment results have demonstrated that our proposed method is capable of enhancing a 2048x2048 hologram at a rate of around 100 frames per second. To the best of our knowledge, this is the first time real-time image enhancement is considered in the context of digital holography.
Khan, Faisal Nadeem; Zhong, Kangping; Zhou, Xian; Al-Arashi, Waled Hussein; Yu, Changyuan; Lu, Chao; Lau, Alan Pak Tao
2017-07-24
We experimentally demonstrate the use of deep neural networks (DNNs) in combination with signals' amplitude histograms (AHs) for simultaneous optical signal-to-noise ratio (OSNR) monitoring and modulation format identification (MFI) in digital coherent receivers. The proposed technique automatically extracts OSNR and modulation format dependent features of AHs, obtained after constant modulus algorithm (CMA) equalization, and exploits them for the joint estimation of these parameters. Experimental results for 112 Gbps polarization-multiplexed (PM) quadrature phase-shift keying (QPSK), 112 Gbps PM 16 quadrature amplitude modulation (16-QAM), and 240 Gbps PM 64-QAM signals demonstrate OSNR monitoring with mean estimation errors of 1.2 dB, 0.4 dB, and 1 dB, respectively. Similarly, the results for MFI show 100% identification accuracy for all three modulation formats. The proposed technique applies deep machine learning algorithms inside standard digital coherent receiver and does not require any additional hardware. Therefore, it is attractive for cost-effective multi-parameter estimation in next-generation elastic optical networks (EONs).
Multivariate statistical model for 3D image segmentation with application to medical images.
John, Nigel M; Kabuka, Mansur R; Ibrahim, Mohamed O
2003-12-01
In this article we describe a statistical model that was developed to segment brain magnetic resonance images. The statistical segmentation algorithm was applied after a pre-processing stage involving the use of a 3D anisotropic filter along with histogram equalization techniques. The segmentation algorithm makes use of prior knowledge and a probability-based multivariate model designed to semi-automate the process of segmentation. The algorithm was applied to images obtained from the Center for Morphometric Analysis at Massachusetts General Hospital as part of the Internet Brain Segmentation Repository (IBSR). The developed algorithm showed improved accuracy over the k-means, adaptive Maximum Apriori Probability (MAP), biased MAP, and other algorithms. Experimental results showing the segmentation and the results of comparisons with other algorithms are provided. Results are based on an overlap criterion against expertly segmented images from the IBSR. The algorithm produced average results of approximately 80% overlap with the expertly segmented images (compared with 85% for manual segmentation and 55% for other algorithms).
Optimal nonlinear codes for the perception of natural colours.
von der Twer, T; MacLeod, D I
2001-08-01
We discuss how visual nonlinearity can be optimized for the precise representation of environmental inputs. Such optimization leads to neural signals with a compressively nonlinear input-output function the gradient of which is matched to the cube root of the probability density function (PDF) of the environmental input values (and not to the PDF directly as in histogram equalization). Comparisons between theory and psychophysical and electrophysiological data are roughly consistent with the idea that parvocellular (P) cells are optimized for precision representation of colour: their contrast-response functions span a range appropriately matched to the environmental distribution of natural colours along each dimension of colour space. Thus P cell codes for colour may have been selected to minimize error in the perceptual estimation of stimulus parameters for natural colours. But magnocellular (M) cells have a much stronger than expected saturating nonlinearity; this supports the view that the function of M cells is mainly to detect boundaries rather than to specify contrast or lightness.
Complex adaptation-based LDR image rendering for 3D image reconstruction
NASA Astrophysics Data System (ADS)
Lee, Sung-Hak; Kwon, Hyuk-Ju; Sohng, Kyu-Ik
2014-07-01
A low-dynamic tone-compression technique is developed for realistic image rendering that can make three-dimensional (3D) images similar to realistic scenes by overcoming brightness dimming in the 3D display mode. The 3D surround provides varying conditions for image quality, illuminant adaptation, contrast, gamma, color, sharpness, and so on. In general, gain/offset adjustment, gamma compensation, and histogram equalization have performed well in contrast compression; however, as a result of signal saturation and clipping effects, image details are removed and information is lost on bright and dark areas. Thus, an enhanced image mapping technique is proposed based on space-varying image compression. The performance of contrast compression is enhanced with complex adaptation in a 3D viewing surround combining global and local adaptation. Evaluating local image rendering in view of tone and color expression, noise reduction, and edge compensation confirms that the proposed 3D image-mapping model can compensate for the loss of image quality in the 3D mode.
An application of viola jones method for face recognition for absence process efficiency
NASA Astrophysics Data System (ADS)
Rizki Damanik, Rudolfo; Sitanggang, Delima; Pasaribu, Hendra; Siagian, Hendrik; Gulo, Frisman
2018-04-01
Absence was a list of documents that the company used to record the attendance time of each employee. The most common problem in a fingerprint machine is the identification of a slow sensor or a sensor not recognizing a finger. The employees late to work because they get difficulties at fingerprint system, they need about 3 – 5 minutes to absence when the condition of finger is wet or not fit. To overcome this problem, this research tried to utilize facial recognition for attendance process. The method used for facial recognition was Viola Jones. Through the processing phase of the RGB face image was converted into a histogram equalization face image for the next stage of recognition. The result of this research was the absence process could be done less than 1 second with a maximum slope of ± 700 and a distance of 20-200 cm. After implement facial recognition the process of absence is more efficient, just take less 1 minute to absence.
Boundary segmentation for fluorescence microscopy using steerable filters
NASA Astrophysics Data System (ADS)
Ho, David Joon; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.
2017-02-01
Fluorescence microscopy is used to image multiple subcellular structures in living cells which are not readily observed using conventional optical microscopy. Moreover, two-photon microscopy is widely used to image structures deeper in tissue. Recent advancement in fluorescence microscopy has enabled the generation of large data sets of images at different depths, times, and spectral channels. Thus, automatic object segmentation is necessary since manual segmentation would be inefficient and biased. However, automatic segmentation is still a challenging problem as regions of interest may not have well defined boundaries as well as non-uniform pixel intensities. This paper describes a method for segmenting tubular structures in fluorescence microscopy images of rat kidney and liver samples using adaptive histogram equalization, foreground/background segmentation, steerable filters to capture directional tendencies, and connected-component analysis. The results from several data sets demonstrate that our method can segment tubular boundaries successfully. Moreover, our method has better performance when compared to other popular image segmentation methods when using ground truth data obtained via manual segmentation.
Discrete Walsh Hadamard transform based visible watermarking technique for digital color images
NASA Astrophysics Data System (ADS)
Santhi, V.; Thangavelu, Arunkumar
2011-10-01
As the size of the Internet is growing enormously the illegal manipulation of digital multimedia data become very easy with the advancement in technology tools. In order to protect those multimedia data from unauthorized access the digital watermarking system is used. In this paper a new Discrete walsh Hadamard Transform based visible watermarking system is proposed. As the watermark is embedded in transform domain, the system is robust to many signal processing attacks. Moreover in this proposed method the watermark is embedded in tiling manner in all the range of frequencies to make it robust to compression and cropping attack. The robustness of the algorithm is tested against noise addition, cropping, compression, Histogram equalization and resizing attacks. The experimental results show that the algorithm is robust to common signal processing attacks and the observed peak signal to noise ratio (PSNR) of watermarked image is varying from 20 to 30 db depends on the size of the watermark.
NASA Astrophysics Data System (ADS)
Gui, Chen; Wang, Kan; Li, Chao; Dai, Xuan; Cui, Daxiang
2014-02-01
Immunochromatographic assays are widely used to detect many analytes. CagA is proved to be associated closely with initiation of gastric carcinoma. Here, we reported that a charge-coupled device (CCD)-based test strip reader combined with CdS quantum dot-labeled lateral flow strips for quantitative detection of CagA was developed, which used 365-nm ultraviolet LED as the excitation light source, and captured the test strip images through an acquisition module. Then, the captured image was transferred to the computer and was processed by a software system. A revised weighted threshold histogram equalization (WTHE) image processing algorithm was applied to analyze the result. CdS quantum dot-labeled lateral flow strips for detection of CagA were prepared. One hundred sera samples from clinical patients with gastric cancer and healthy people were prepared for detection, which demonstrated that the device could realize rapid, stable, and point-of-care detection, with a sensitivity of 20 pg/mL.
NASA Astrophysics Data System (ADS)
Kusyk, Janusz; Eskicioglu, Ahmet M.
2005-10-01
Digital watermarking is considered to be a major technology for the protection of multimedia data. Some of the important applications are broadcast monitoring, copyright protection, and access control. In this paper, we present a semi-blind watermarking scheme for embedding a logo in color images using the DFT domain. After computing the DFT of the luminance layer of the cover image, the magnitudes of DFT coefficients are compared, and modified. A given watermark is embedded in three frequency bands: Low, middle, and high. Our experiments show that the watermarks extracted from the lower frequencies have the best visual quality for low pass filtering, adding Gaussian noise, JPEG compression, resizing, rotation, and scaling, and the watermarks extracted from the higher frequencies have the best visual quality for cropping, intensity adjustment, histogram equalization, and gamma correction. Extractions from the fragmented and translated image are identical to extractions from the unattacked watermarked image. The collusion and rewatermarking attacks do not provide the hacker with useful tools.
On algorithmic optimization of histogramming functions for GEM systems
NASA Astrophysics Data System (ADS)
Krawczyk, Rafał D.; Czarski, Tomasz; Kolasinski, Piotr; Poźniak, Krzysztof T.; Linczuk, Maciej; Byszuk, Adrian; Chernyshova, Maryna; Juszczyk, Bartlomiej; Kasprowicz, Grzegorz; Wojenski, Andrzej; Zabolotny, Wojciech
2015-09-01
This article concerns optimization methods for data analysis for the X-ray GEM detector system. The offline analysis of collected samples was optimized for MATLAB computations. Compiled functions in C language were used with MEX library. Significant speedup was received for both ordering-preprocessing and for histogramming of samples. Utilized techniques with obtained results are presented.
ERIC Educational Resources Information Center
Cooper, Linda L.; Shore, Felice S.
2008-01-01
This paper identifies and discusses misconceptions that students have in making judgments of center and variability when data are presented graphically. An assessment addressing interpreting center and variability in histograms and stem-and-leaf plots was administered to, and follow-up interviews were conducted with, undergraduates enrolled in…
Texture and phase analysis of deformed SUS304 by using HIPPO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takajo, Shigehiro; Vogel, Sven C.
2016-11-15
These slides represent the author's research activity at Los Alamos National Laboratory (LANL), which is about texture and phase analysis of deformed SUS304 by using HIPPO. The following topics are covered: diffraction histogram at each sample position, diffraction histogram (all bank data averaged), possiblity of ε-phase, MAUD analysis with including ε-phase.
Shift-Invariant Image Reconstruction of Speckle-Degraded Images Using Bispectrum Estimation
1990-05-01
process with the requisite negative exponential pelf. I call this model the Negative Exponential Model ( NENI ). The NENI flowchart is seen in Figure 6...Figure ]3d-g. Statistical Histograms and Phase for the RPj NG EXP FDF MULT METHOD FILuteC 14a. Truth Object Speckled Via the NENI HISTOGRAM OF SPECKLE
Damage Proxy Map from Interferometric Synthetic Aperture Radar Coherence
NASA Technical Reports Server (NTRS)
Webb, Frank H. (Inventor); Yun, Sang-Ho (Inventor); Fielding, Eric Jameson (Inventor); Simons, Mark (Inventor)
2015-01-01
A method, apparatus, and article of manufacture provide the ability to generate a damage proxy map. A master coherence map and a slave coherence map, for an area prior and subsequent to (including) a damage event are obtained. The slave coherence map is registered to the master coherence map. Pixel values of the slave coherence map are modified using histogram matching to provide a first histogram of the master coherence map that exactly matches a second histogram of the slave coherence map. A coherence difference between the slave coherence map and the master coherence map is computed to produce a damage proxy map. The damage proxy map is displayed with the coherence difference displayed in a visually distinguishable manner.
Hierarchy, Dominance, and Deliberation: Egalitarian Values Require Mental Effort.
Van Berkel, Laura; Crandall, Christian S; Eidelman, Scott; Blanchar, John C
2015-09-01
Hierarchy and dominance are ubiquitous. Because social hierarchy is early learned and highly rehearsed, the value of hierarchy enjoys relative ease over competing egalitarian values. In six studies, we interfere with deliberate thinking and measure endorsement of hierarchy and egalitarianism. In Study 1, bar patrons' blood alcohol content was correlated with hierarchy preference. In Study 2, cognitive load increased the authority/hierarchy moral foundation. In Study 3, low-effort thought instructions increased hierarchy endorsement and reduced equality endorsement. In Study 4, ego depletion increased hierarchy endorsement and caused a trend toward reduced equality endorsement. In Study 5, low-effort thought instructions increased endorsement of hierarchical attitudes among those with a sense of low personal power. In Study 6, participants' thinking quickly allocated more resources to high-status groups. Across five operationalizations of impaired deliberative thought, hierarchy endorsement increased and egalitarianism receded. These data suggest hierarchy may persist in part because it has a psychological advantage. © 2015 by the Society for Personality and Social Psychology, Inc.
Representation learning: a unified deep learning framework for automatic prostate MR segmentation.
Liao, Shu; Gao, Yaozong; Oto, Aytekin; Shen, Dinggang
2013-01-01
Image representation plays an important role in medical image analysis. The key to the success of different medical image analysis algorithms is heavily dependent on how we represent the input data, namely features used to characterize the input image. In the literature, feature engineering remains as an active research topic, and many novel hand-crafted features are designed such as Haar wavelet, histogram of oriented gradient, and local binary patterns. However, such features are not designed with the guidance of the underlying dataset at hand. To this end, we argue that the most effective features should be designed in a learning based manner, namely representation learning, which can be adapted to different patient datasets at hand. In this paper, we introduce a deep learning framework to achieve this goal. Specifically, a stacked independent subspace analysis (ISA) network is adopted to learn the most effective features in a hierarchical and unsupervised manner. The learnt features are adapted to the dataset at hand and encode high level semantic anatomical information. The proposed method is evaluated on the application of automatic prostate MR segmentation. Experimental results show that significant segmentation accuracy improvement can be achieved by the proposed deep learning method compared to other state-of-the-art segmentation approaches.
Sabin, Guilherme P; Lozano, Valeria A; Rocha, Werickson F C; Romão, Wanderson; Ortiz, Rafael S; Poppi, Ronei J
2013-11-01
The chemical imaging technique by near infrared spectroscopy was applied for characterization of formulations in tablets of sildenafil citrate of six different sources. Five formulations were provided by Brazilian Federal Police and correspond to several trademarks of prohibited marketing and one was an authentic sample of Viagra. In a first step of the study, multivariate curve resolution was properly chosen for the estimation of the distribution map of concentration of the active ingredient in tablets of different sources, where the chemical composition of all excipients constituents was not truly known. In such cases, it is very difficult to establish an appropriate calibration technique, so that only the information of sildenafil is considered independently of the excipients. This determination was possible only by reaching the second-order advantage, where the analyte quantification can be performed in the presence of unknown interferences. In a second step, the normalized histograms of images from active ingredient were grouped according to their similarities by hierarchical cluster analysis. Finally it was possible to recognize the patterns of distribution maps of concentration of sildenafil citrate, distinguishing the true formulation of Viagra. This concept can be used to improve the knowledge of industrial products and processes, as well as, for characterization of counterfeit drugs. Copyright © 2013. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Xie, Huan; Luo, Xin; Xu, Xiong; Wang, Chen; Pan, Haiyan; Tong, Xiaohua; Liu, Shijie
2016-10-01
Water body is a fundamental element in urban ecosystems and water mapping is critical for urban and landscape planning and management. As remote sensing has increasingly been used for water mapping in rural areas, this spatially explicit approach applied in urban area is also a challenging work due to the water bodies mainly distributed in a small size and the spectral confusion widely exists between water and complex features in the urban environment. Water index is the most common method for water extraction at pixel level, and spectral mixture analysis (SMA) has been widely employed in analyzing urban environment at subpixel level recently. In this paper, we introduce an automatic subpixel water mapping method in urban areas using multispectral remote sensing data. The objectives of this research consist of: (1) developing an automatic land-water mixed pixels extraction technique by water index; (2) deriving the most representative endmembers of water and land by utilizing neighboring water pixels and adaptive iterative optimal neighboring land pixel for respectively; (3) applying a linear unmixing model for subpixel water fraction estimation. Specifically, to automatically extract land-water pixels, the locally weighted scatter plot smoothing is firstly used to the original histogram curve of WI image . And then the Ostu threshold is derived as the start point to select land-water pixels based on histogram of the WI image with the land threshold and water threshold determination through the slopes of histogram curve . Based on the previous process at pixel level, the image is divided into three parts: water pixels, land pixels, and mixed land-water pixels. Then the spectral mixture analysis (SMA) is applied to land-water mixed pixels for water fraction estimation at subpixel level. With the assumption that the endmember signature of a target pixel should be more similar to adjacent pixels due to spatial dependence, the endmember of water and land are determined by neighboring pure land or pure water pixels within a distance. To obtaining the most representative endmembers in SMA, we designed an adaptive iterative endmember selection method based on the spatial similarity of adjacent pixels. According to the spectral similarity in a spatial adjacent region, the spectrum of land endmember is determined by selecting the most representative land pixel in a local window, and the spectrum of water endmember is determined by calculating an average of the water pixels in the local window. The proposed hierarchical processing method based on WI and SMA (WISMA) is applied to urban areas for reliability evaluation using the Landsat-8 Operational Land Imager (OLI) images. For comparison, four methods at pixel level and subpixel level were chosen respectively. Results indicate that the water maps generated by the proposed method correspond as closely with the truth water maps with subpixel precision. And the results showed that the WISMA achieved the best performance in water mapping with comprehensive analysis of different accuracy evaluation indexes (RMSE and SE).
Motor Oil Classification using Color Histograms and Pattern Recognition Techniques.
Ahmadi, Shiva; Mani-Varnosfaderani, Ahmad; Habibi, Biuck
2018-04-20
Motor oil classification is important for quality control and the identification of oil adulteration. In thiswork, we propose a simple, rapid, inexpensive and nondestructive approach based on image analysis and pattern recognition techniques for the classification of nine different types of motor oils according to their corresponding color histograms. For this, we applied color histogram in different color spaces such as red green blue (RGB), grayscale, and hue saturation intensity (HSI) in order to extract features that can help with the classification procedure. These color histograms and their combinations were used as input for model development and then were statistically evaluated by using linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM) techniques. Here, two common solutions for solving a multiclass classification problem were applied: (1) transformation to binary classification problem using a one-against-all (OAA) approach and (2) extension from binary classifiers to a single globally optimized multilabel classification model. In the OAA strategy, LDA, QDA, and SVM reached up to 97% in terms of accuracy, sensitivity, and specificity for both the training and test sets. In extension from binary case, despite good performances by the SVM classification model, QDA and LDA provided better results up to 92% for RGB-grayscale-HSI color histograms and up to 93% for the HSI color map, respectively. In order to reduce the numbers of independent variables for modeling, a principle component analysis algorithm was used. Our results suggest that the proposed method is promising for the identification and classification of different types of motor oils.
Nakajo, Masanori; Fukukura, Yoshihiko; Hakamada, Hiroto; Yoneyama, Tomohide; Kamimura, Kiyohisa; Nagano, Satoshi; Nakajo, Masayuki; Yoshiura, Takashi
2018-02-22
Apparent diffusion coefficient (ADC) histogram analyses have been used to differentiate tumor grades and predict therapeutic responses in various anatomic sites with moderate success. To determine the ability of diffusion-weighted imaging (DWI) with a whole-tumor ADC histogram analysis to differentiate benign peripheral neurogenic tumors (BPNTs) from soft tissue sarcomas (STSs). Retrospective study, single institution. In all, 25 BPNTs and 31 STSs. Two-b value DWI (b-values = 0, 1000s/mm 2 ) was at 3.0T. The histogram parameters of whole-tumor for ADC were calculated by two radiologists and compared between BPNTs and STSs. Nonparametric tests were performed for comparisons between BPNTs and STSs. P < 0.05 was considered statistically significant. The ability of each parameter to differentiate STSs from BPNTs was evaluated using area under the curve (AUC) values derived from a receiver operating characteristic curve analysis. The mean ADC and all percentile parameters were significantly lower in STSs than in BPNTs (P < 0.001-0.009), with AUCs of 0.703-0.773. However, the coefficient of variation (P = 0.020 and AUC = 0.682) and skewness (P = 0.012 and AUC = 0.697) were significantly higher in STSs than in BPNTs. Kurtosis (P = 0.295) and entropy (P = 0.604) did not differ significantly between BPNTs and STSs. Whole-tumor ADC histogram parameters except kurtosis and entropy differed significantly between BPNTs and STSs. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Histogram Matching Extends Acceptable Signal Strength Range on Optical Coherence Tomography Images
Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A.; Sigal, Ian A.; Kagemann, Larry; Schuman, Joel S.
2015-01-01
Purpose. We minimized the influence of image quality variability, as measured by signal strength (SS), on optical coherence tomography (OCT) thickness measurements using the histogram matching (HM) method. Methods. We scanned 12 eyes from 12 healthy subjects with the Cirrus HD-OCT device to obtain a series of OCT images with a wide range of SS (maximal range, 1–10) at the same visit. For each eye, the histogram of an image with the highest SS (best image quality) was set as the reference. We applied HM to the images with lower SS by shaping the input histogram into the reference histogram. Retinal nerve fiber layer (RNFL) thickness was automatically measured before and after HM processing (defined as original and HM measurements), and compared to the device output (device measurements). Nonlinear mixed effects models were used to analyze the relationship between RNFL thickness and SS. In addition, the lowest tolerable SSs, which gave the RNFL thickness within the variability margin of manufacturer recommended SS range (6–10), were determined for device, original, and HM measurements. Results. The HM measurements showed less variability across a wide range of image quality than the original and device measurements (slope = 1.17 vs. 4.89 and 1.72 μm/SS, respectively). The lowest tolerable SS was successfully reduced to 4.5 after HM processing. Conclusions. The HM method successfully extended the acceptable SS range on OCT images. This would qualify more OCT images with low SS for clinical assessment, broadening the OCT application to a wider range of subjects. PMID:26066749
Qi, Xi-Xun; Shi, Da-Fa; Ren, Si-Xie; Zhang, Su-Ya; Li, Long; Li, Qing-Chang; Guan, Li-Ming
2018-04-01
To investigate the value of histogram analysis of diffusion kurtosis imaging (DKI) maps in the evaluation of glioma grading. A total of 39 glioma patients who underwent preoperative magnetic resonance imaging (MRI) were classified into low-grade (13 cases) and high-grade (26 cases) glioma groups. Parametric DKI maps were derived, and histogram metrics between low- and high-grade gliomas were analysed. The optimum diagnostic thresholds of the parameters, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were achieved using a receiver operating characteristic (ROC). Significant differences were observed not only in 12 metrics of histogram DKI parameters (P<0.05), but also in mean diffusivity (MD) and mean kurtosis (MK) values, including age as a covariate (F=19.127, P<0.001 and F=20.894, P<0.001, respectively), between low- and high-grade gliomas. Mean MK was the best independent predictor of differentiating glioma grades (B=18.934, 22.237 adjusted for age, P<0.05). The partial correlation coefficient between fractional anisotropy (FA) and kurtosis fractional anisotropy (KFA) was 0.675 (P<0.001). The AUC of the mean MK, sensitivity, and specificity were 0.925, 88.5% and 84.6%, respectively. DKI parameters can effectively distinguish between low- and high-grade gliomas. Mean MK is the best independent predictor of differentiating glioma grades. • DKI is a new and important method. • DKI can provide additional information on microstructural architecture. • Histogram analysis of DKI may be more effective in glioma grading.
Cui, Yanfen; Yang, Xiaotang; Du, Xiaosong; Zhuo, Zhizheng; Xin, Lei; Cheng, Xintao
2018-04-01
To investigate potential relationships between diffusion kurtosis imaging (DKI)-derived parameters using whole-tumour volume histogram analysis and clinicopathological prognostic factors in patients with rectal adenocarcinoma. 79 consecutive patients who underwent MRI examination with rectal adenocarcinoma were retrospectively evaluated. Parameters D, K and conventional ADC were measured using whole-tumour volume histogram analysis. Student's t-test or Mann-Whitney U-test, receiver operating characteristic curves and Spearman's correlation were used for statistical analysis. Almost all the percentile metrics of K were correlated positively with nodal involvement, higher histological grades, the presence of lymphangiovascular invasion (LVI) and circumferential margin (CRM) (p<0.05), with the exception of between K 10th , K 90th and histological grades. In contrast, significant negative correlations were observed between 25th, 50th percentiles and mean values of ADC and D, as well as ADC 10th , with tumour T stages (p< 0.05). Meanwhile, lower 75th and 90th percentiles of ADC and D values were also correlated inversely with nodal involvement (p< 0.05). K mean showed a relatively higher area under the curve (AUC) and higher specificity than other percentiles for differentiation of lesions with nodal involvement. DKI metrics with whole-tumour volume histogram analysis, especially K parameters, were associated with important prognostic factors of rectal cancer. • K correlated positively with some important prognostic factors of rectal cancer. • K mean showed higher AUC and specificity for differentiation of nodal involvement. • DKI metrics with whole-tumour volume histogram analysis depicted tumour heterogeneity.
Poussaint, Tina Young; Vajapeyam, Sridhar; Ricci, Kelsey I.; Panigrahy, Ashok; Kocak, Mehmet; Kun, Larry E.; Boyett, James M.; Pollack, Ian F.; Fouladi, Maryam
2016-01-01
Background Diffuse intrinsic pontine glioma (DIPG) is associated with poor survival regardless of therapy. We used volumetric apparent diffusion coefficient (ADC) histogram metrics to determine associations with progression-free survival (PFS) and overall survival (OS) at baseline and after radiation therapy (RT). Methods Baseline and post-RT quantitative ADC histograms were generated from fluid-attenuated inversion recovery (FLAIR) images and enhancement regions of interest. Metrics assessed included number of peaks (ie, unimodal or bimodal), mean and median ADC, standard deviation, mode, skewness, and kurtosis. Results Based on FLAIR images, the majority of tumors had unimodal peaks with significantly shorter average survival. Pre-RT FLAIR mean, mode, and median values were significantly associated with decreased risk of progression; higher pre-RT ADC values had longer PFS on average. Pre-RT FLAIR skewness and standard deviation were significantly associated with increased risk of progression; higher pre-RT FLAIR skewness and standard deviation had shorter PFS. Nonenhancing tumors at baseline showed higher ADC FLAIR mean values, lower kurtosis, and higher PFS. For enhancing tumors at baseline, bimodal enhancement histograms had much worse PFS and OS than unimodal cases and significantly lower mean peak values. Enhancement in tumors only after RT led to significantly shorter PFS and OS than in patients with baseline or no baseline enhancement. Conclusions ADC histogram metrics in DIPG demonstrate significant correlations between diffusion metrics and survival, with lower diffusion values (increased cellularity), increased skewness, and enhancement associated with shorter survival, requiring future investigations in large DIPG clinical trials. PMID:26487690
Issues around Creating a Reusable Learning Object to Support Statistics Teaching
ERIC Educational Resources Information Center
Gilchrist, Mollie
2007-01-01
Although our health professional students have some experience of simple charts, such as pie and bar, and some intuition of histograms, they do not appear to have much knowledge or understanding about box and whisker plots and their relation to the data they are describing or compared to histograms. The boxplot is a versatile charting tool, useful…
ERIC Educational Resources Information Center
CASE, C. MARSTON
THIS PAPER IS CONCERNED WITH GRAPHIC PRESENTATION AND ANALYSIS OF GROUPED OBSERVATIONS. IT PRESENTS A METHOD AND SUPPORTING THEORY FOR THE CONSTRUCTION OF AN AREA-CONSERVING, MINIMAL LENGTH FREQUENCY POLYGON CORRESPONDING TO A GIVEN HISTOGRAM. TRADITIONALLY, THE CONCEPT OF A FREQUENCY POLYGON CORRESPONDING TO A GIVEN HISTOGRAM HAS REFERRED TO THAT…
Methods for Determining Particle Size Distributions from Nuclear Detonations.
1987-03-01
Debris . . . 30 IV. Summary of Sample Preparation Method . . . . 35 V. Set Parameters for PCS ... ........... 39 VI. Analysis by Vendors...54 XV. Results From Brookhaven Analysis Using The Method of Cumulants ... ........... . 54 XVI. Results From Brookhaven Analysis of Sample...R-3 Using Histogram Method ......... .55 XVII. Results From Brookhaven Analysis of Sample R-8 Using Histogram Method ........... 56 XVIII.TEM Particle
Schob, Stefan; Beeskow, Anne; Dieckow, Julia; Meyer, Hans-Jonas; Krause, Matthias; Frydrychowicz, Clara; Hirsch, Franz-Wolfgang; Surov, Alexey
2018-05-31
Medulloblastomas are the most common central nervous system tumors in childhood. Treatment and prognosis strongly depend on histology and transcriptomic profiling. However, the proliferative potential also has prognostical value. Our study aimed to investigate correlations between histogram profiling of diffusion-weighted images and further microarchitectural features. Seven patients (age median 14.6 years, minimum 2 years, maximum 20 years; 5 male, 2 female) were included in this retrospective study. Using a Matlab-based analysis tool, histogram analysis of whole apparent diffusion coefficient (ADC) volumes was performed. ADC entropy revealed a strong inverse correlation with the expression of the proliferation marker Ki67 (r = - 0.962, p = 0.009) and with total nuclear area (r = - 0.888, p = 0.044). Furthermore, ADC percentiles, most of all ADCp90, showed significant correlations with Ki67 expression (r = 0.902, p = 0.036). Diffusion histogram profiling of medulloblastomas provides valuable in vivo information which potentially can be used for risk stratification and prognostication. First of all, entropy revealed to be the most promising imaging biomarker. However, further studies are warranted.
Tuckley, Kushal
2017-01-01
In telemedicine systems, critical medical data is shared on a public communication channel. This increases the risk of unauthorised access to patient's information. This underlines the importance of secrecy and authentication for the medical data. This paper presents two innovative variations of classical histogram shift methods to increase the hiding capacity. The first technique divides the image into nonoverlapping blocks and embeds the watermark individually using the histogram method. The second method separates the region of interest and embeds the watermark only in the region of noninterest. This approach preserves the medical information intact. This method finds its use in critical medical cases. The high PSNR (above 45 dB) obtained for both techniques indicates imperceptibility of the approaches. Experimental results illustrate superiority of the proposed approaches when compared with other methods based on histogram shifting techniques. These techniques improve embedding capacity by 5–15% depending on the image type, without affecting the quality of the watermarked image. Both techniques also enable lossless reconstruction of the watermark and the host medical image. A higher embedding capacity makes the proposed approaches attractive for medical image watermarking applications without compromising the quality of the image. PMID:29104744
Meng, Jie; Zhu, Lijing; Zhu, Li; Xie, Li; Wang, Huanhuan; Liu, Song; Yan, Jing; Liu, Baorui; Guan, Yue; He, Jian; Ge, Yun; Zhou, Zhengyang; Yang, Xiaofeng
2017-11-03
To explore the value of whole-lesion apparent diffusion coefficient (ADC) histogram and texture analysis in predicting tumor recurrence of advanced cervical cancer treated with concurrent chemo-radiotherapy (CCRT). 36 women with pathologically confirmed advanced cervical squamous carcinomas were enrolled in this prospective study. 3.0 T pelvic MR examinations including diffusion weighted imaging (b = 0, 800 s/mm 2 ) were performed before CCRT (pre-CCRT) and at the end of 2nd week of CCRT (mid-CCRT). ADC histogram and texture features were derived from the whole volume of cervical cancers. With a mean follow-up of 25 months (range, 11 ∼ 43), 10/36 (27.8%) patients ended with recurrence. Pre-CCRT 75th, 90th, correlation, autocorrelation and mid-CCRT ADC mean , 10th, 25th, 50th, 75th, 90th, autocorrelation can effectively differentiate the recurrence from nonrecurrence group with area under the curve ranging from 0.742 to 0.850 (P values range, 0.001 ∼ 0.038). Pre- and mid-treatment whole-lesion ADC histogram and texture analysis hold great potential in predicting tumor recurrence of advanced cervical cancer treated with CCRT.
NASA Astrophysics Data System (ADS)
Zhang, Min; Zhou, Xiangrong; Goshima, Satoshi; Chen, Huayue; Muramatsu, Chisako; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Fujita, Hiroshi
2013-03-01
In this paper, we present a texture classification method based on texton learned via sparse representation (SR) with new feature histogram maps in the classification of emphysema. First, an overcomplete dictionary of textons is learned via KSVD learning on every class image patches in the training dataset. In this stage, high-pass filter is introduced to exclude patches in smooth area to speed up the dictionary learning process. Second, 3D joint-SR coefficients and intensity histograms of the test images are used for characterizing regions of interest (ROIs) instead of conventional feature histograms constructed from SR coefficients of the test images over the dictionary. Classification is then performed using a classifier with distance as a histogram dissimilarity measure. Four hundreds and seventy annotated ROIs extracted from 14 test subjects, including 6 paraseptal emphysema (PSE) subjects, 5 centrilobular emphysema (CLE) subjects and 3 panlobular emphysema (PLE) subjects, are used to evaluate the effectiveness and robustness of the proposed method. The proposed method is tested on 167 PSE, 240 CLE and 63 PLE ROIs consisting of mild, moderate and severe pulmonary emphysema. The accuracy of the proposed system is around 74%, 88% and 89% for PSE, CLE and PLE, respectively.
Efficient reversible data hiding in encrypted image with public key cryptosystem
NASA Astrophysics Data System (ADS)
Xiang, Shijun; Luo, Xinrong
2017-12-01
This paper proposes a new reversible data hiding scheme for encrypted images by using homomorphic and probabilistic properties of Paillier cryptosystem. The proposed method can embed additional data directly into encrypted image without any preprocessing operations on original image. By selecting two pixels as a group for encryption, data hider can retrieve the absolute differences of groups of two pixels by employing a modular multiplicative inverse method. Additional data can be embedded into encrypted image by shifting histogram of the absolute differences by using the homomorphic property in encrypted domain. On the receiver side, legal user can extract the marked histogram in encrypted domain in the same way as data hiding procedure. Then, the hidden data can be extracted from the marked histogram and the encrypted version of original image can be restored by using inverse histogram shifting operations. Besides, the marked absolute differences can be computed after decryption for extraction of additional data and restoration of original image. Compared with previous state-of-the-art works, the proposed scheme can effectively avoid preprocessing operations before encryption and can efficiently embed and extract data in encrypted domain. The experiments on the standard image files also certify the effectiveness of the proposed scheme.
NASA Astrophysics Data System (ADS)
Szu, Harold H.
1999-03-01
The early vision principle of redundancy reduction of 108 sensor excitations is understandable from computer vision viewpoint toward sparse edge maps. It is only recently derived using a truly unsupervised learning paradigm of artificial neural networks (ANN). In fact, the biological vision, Hubel- Wiesel edge maps, is reproduced seeking the underlying independent components analyses (ICA) among 102 image samples by maximizing the ANN output entropy (partial)H(V)/(partial)[W] equals (partial)[W]/(partial)t. When a pair of newborn eyes or ears meet the bustling and hustling world without supervision, they seek ICA by comparing 2 sensory measurements (x1(t), x2(t))T equalsV X(t). Assuming a linear and instantaneous mixture model of the external world X(t) equals [A] S(t), where both the mixing matrix ([A] equalsV [a1, a2] of ICA vectors and the source percentages (s1(t), s2(t))T equalsV S(t) are unknown, we seek the independent sources approximately equals [I] where the approximated sign indicates that higher order statistics (HOS) may not be trivial. Without a teacher, the ANN weight matrix [W] equalsV [w1, w2] adjusts the outputs V(t) equals tanh([W]X(t)) approximately equals [W]X(t) until no desired outputs except the (Gaussian) 'garbage' (neither YES '1' nor NO '-1' but at linear may-be range 'origin 0') defined by Gaussian covariance at the fixed point (partial)E/(partial)wi equals 0 resulted in an exact Toplitz matrix inversion for a stationary covariance assumption. We generalize AR by a nonlinear output vi(t+1) equals tanh(wiTX(t)) within E equals <[x(t+1) - vi(t+1)]2>, and the gradient descent (partial)E/(partial)wi equals - (partial)wi/(partial)t. Further generalization is possible because of specific image/speech having a specific histogram whose gray scale statistics departs from that of Gaussian random variable and can be measured by the fourth order cumulant, Kurtosis K(vi) equals
NASA Astrophysics Data System (ADS)
Peng, Yahui; Ma, Xiao; Gao, Xinyu; Zhou, Fangxu
2015-12-01
Computer vision is an important tool for sports video processing. However, its application in badminton match analysis is very limited. In this study, we proposed a straightforward but robust histogram-based background estimation and player detection methods for badminton video clips, and compared the results with the naive averaging method and the mixture of Gaussians methods, respectively. The proposed method yielded better background estimation results than the naive averaging method and more accurate player detection results than the mixture of Gaussians player detection method. The preliminary results indicated that the proposed histogram-based method could estimate the background and extract the players accurately. We conclude that the proposed method can be used for badminton player tracking and further studies are warranted for automated match analysis.
Machine assisted histogram classification
NASA Astrophysics Data System (ADS)
Benyó, B.; Gaspar, C.; Somogyi, P.
2010-04-01
LHCb is one of the four major experiments under completion at the Large Hadron Collider (LHC). Monitoring the quality of the acquired data is important, because it allows the verification of the detector performance. Anomalies, such as missing values or unexpected distributions can be indicators of a malfunctioning detector, resulting in poor data quality. Spotting faulty or ageing components can be either done visually using instruments, such as the LHCb Histogram Presenter, or with the help of automated tools. In order to assist detector experts in handling the vast monitoring information resulting from the sheer size of the detector, we propose a graph based clustering tool combined with machine learning algorithm and demonstrate its use by processing histograms representing 2D hitmaps events. We prove the concept by detecting ion feedback events in the LHCb experiment's RICH subdetector.
Faint blue counts from formation of dwarf galaxies at z approximately equals 1
NASA Technical Reports Server (NTRS)
Babul, Arif; Rees, Martin J.
1993-01-01
The nature of faint blue objects (FBO's) has been a source of much speculation since their detection in deep CCD images of the sky. Their high surface density argues against them being progenitors of present-day bright galaxies and since they are only weakly clustered on small scales, they cannot be entities that merged together to form present-day galaxies. Babul & Rees (1992) have suggested that the observed faint blue counts may be due to dwarf elliptical galaxies undergoing their initial starburst at z is approximately equal to 1. In generic hierarchical clustering scenarios, however, dwarf galaxy halos (M is approximately 10(exp 9) solar mass) are expected to form at an earlier epoch; for example, typical 10(exp 9) solar mass halos will virialize at z is approximately equal to 2.3 if the power-spectrum for the density fluctuations is that of the standard b = 2 cold dark matter (CDM) model. Under 'ordinary conditions' the gas would rapidly cool, collect in the cores, and undergo star-formation. Conditions at high redshifts are far from 'ordinary'. The intense UV background will prevent the gas in the dwarf halos from cooling, the halos being released from their suspended state only when the UV flux has diminished sufficiently.
A novel trauma leadership model reflective of changing times.
DʼHuyvetter, Cecile; Cogbill, Thomas H
2014-01-01
As a result of generational changes in the health care workforce, we sought to evaluate our current Trauma Medical Director Leadership model. We assessed the responsibilities, accountability, time requirements, cost, and provider satisfaction with the current leadership model. Three new providers who had recently completed fellowship training were hired, each with unique professional desires, skill sets, and experience. Our goal was to establish a comprehensive, cost-effective, accountable leadership model that enabled provider satisfaction and equalized leadership responsibilities. A 3-pronged team model was established with a Medical Director title and responsibilities rotating per the American College of Surgeons verification cycle to develop leadership skills and lessen hierarchical differences.
Wavelets and molecular structure
NASA Astrophysics Data System (ADS)
Carson, Mike
1996-08-01
The wavelet method offers possibilities for display, editing, and topological comparison of proteins at a user-specified level of detail. Wavelets are a mathematical tool that first found application in signal processing. The multiresolution analysis of a signal via wavelets provides a hierarchical series of `best' lower-resolution approximations. B-spline ribbons model the protein fold, with one control point per residue. Wavelet analysis sets limits on the information required to define the winding of the backbone through space, suggesting a recognizable fold is generated from a number of points equal to 1/4 or less the number of residues. Wavelets applied to surfaces and volumes show promise in structure-based drug design.
Wildfire Detection using by Multi Dimensional Histogram in Boreal Forest
NASA Astrophysics Data System (ADS)
Honda, K.; Kimura, K.; Honma, T.
2008-12-01
Early detection of wildfires is an issue for reduction of damage to environment and human. There are some attempts to detect wildfires by using satellite imagery, which are mainly classified into three methods: Dozier Method(1981-), Threshold Method(1986-) and Contextual Method(1994-). However, the accuracy of these methods is not enough: some commission and omission errors are included in the detected results. In addition, it is not so easy to analyze satellite imagery with high accuracy because of insufficient ground truth data. Kudoh and Hosoi (2003) developed the detection method by using three-dimensional (3D) histogram from past fire data with the NOAA-AVHRR imagery. But their method is impractical because their method depends on their handworks to pick up past fire data from huge data. Therefore, the purpose of this study is to collect fire points as hot spots efficiently from satellite imagery and to improve the method to detect wildfires with the collected data. As our method, we collect past fire data with the Alaska Fire History data obtained by the Alaska Fire Service (AFS). We select points that are expected to be wildfires, and pick up the points inside the fire area of the AFS data. Next, we make 3D histogram with the past fire data. In this study, we use Bands 1, 21 and 32 of MODIS. We calculate the likelihood to detect wildfires with the three-dimensional histogram. As our result, we select wildfires with the 3D histogram effectively. We can detect the troidally spreading wildfire. This result shows the evidence of good wildfire detection. However, the area surrounding glacier tends to rise brightness temperature. It is a false alarm. Burnt area and bare ground are sometimes indicated as false alarms, so that it is necessary to improve this method. Additionally, we are trying various combinations of MODIS bands as the better method to detect wildfire effectively. So as to adjust our method in another area, we are applying our method to tropical forest in Kalimantan, Indonesia and around Chiang Mai, Thailand. But the ground truth data in these areas is lesser than the one in Alaska. Our method needs lots of accurate observed data to make multi-dimensional histogram in the same area. In this study, we can show the system to select wildfire data efficiently from satellite imagery. Furthermore, the development of multi-dimensional histogram from past fire data makes it possible to detect wildfires accurately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, J; Harb, J; Jawad, M
2014-06-15
Purpose: In follow-up T2-weighted MR images of spinal tumor patients treated with stereotactic body radiation therapy (SBRT), high intensity features embedded in dark surroundings may suggest a local failure (LF). We investigated image intensity histogram in imaging features to predict LF and local control (LC). Methods: Sixty-seven spinal tumors were treated with SBRT at our institution with scheduled follow-up MR T2-weighted (TR 3200–6600ms; TE 75-132ms) imaging. The LF group included 10 tumors with 8.7 months median follow-up, while the LC group had 11 tumors with 24.1 months median follow-up. The follow-up images were fused to the planning CT. Image intensitymore » histograms of the GTV were calculated. Voxels in greater than 90% (V90), 80% (V80), and peak (Vpeak) of the histogram were grouped into sub-ROIs to determine the best feature histogram. The intensity of each sub-ROI was evaluated using the mean T2-weighted signal ratio (intensity in sub-ROI / intensity in normal vertebrae). An ROC curve in predicting LF for each sub-ROI was calculated to determine the best feature histogram parameter for LF prediction. Results: Mean T2-weighted signal ratio in the LF group was significantly higher than that in the LC group for all sub-ROIs (1.1±0.4 vs. 0.7±0.2, 1.2±0.4 vs. 0.8±0.2, 1.4±0.5 vs. 0.8±0.2, for V90, V80, and Vpeak, p=0.02, 0.02, and 0.002, respectively). The corresponding areas-under-curve (AUC) of ROC were 0.78, 0.80, and 0.87, p=0.02, 0.03, 0.004, respectively. No correlation was found between T2-weighted signal ratio in Vpeak and follow-up time (Pearson's ρ=0.15). Conclusion: Increased T2-weighted signal can be used to identify local failure while decreased signal indicates local control after spinal SBRT. By choosing the best histogram parameter (here the Vpeak), the AUC of the ROC can be substantially improved, which implies reliable prediction of LC and LF. These results are being further studied and validated with large multi-institutional data.« less
Kaur, Taranjit; Saini, Barjinder Singh; Gupta, Savita
2018-03-01
In the present paper, a hybrid multilevel thresholding technique that combines intuitionistic fuzzy sets and tsallis entropy has been proposed for the automatic delineation of the tumor from magnetic resonance images having vague boundaries and poor contrast. This novel technique takes into account both the image histogram and the uncertainty information for the computation of multiple thresholds. The benefit of the methodology is that it provides fast and improved segmentation for the complex tumorous images with imprecise gray levels. To further boost the computational speed, the mutation based particle swarm optimization is used that selects the most optimal threshold combination. The accuracy of the proposed segmentation approach has been validated on simulated, real low-grade glioma tumor volumes taken from MICCAI brain tumor segmentation (BRATS) challenge 2012 dataset and the clinical tumor images, so as to corroborate its generality and novelty. The designed technique achieves an average Dice overlap equal to 0.82010, 0.78610 and 0.94170 for three datasets. Further, a comparative analysis has also been made between the eight existing multilevel thresholding implementations so as to show the superiority of the designed technique. In comparison, the results indicate a mean improvement in Dice by an amount equal to 4.00% (p < 0.005), 9.60% (p < 0.005) and 3.58% (p < 0.005), respectively in contrast to the fuzzy tsallis approach.
NASA Astrophysics Data System (ADS)
Matheus, B.; Verçosa, L. B.; Barufaldi, B.; Schiabel, H.
2014-03-01
With the absolute prevalence of digital images in mammography several new tools became available for radiologist; such as CAD schemes, digital zoom and contrast alteration. This work focuses in contrast variation and how the radiologist reacts to these changes when asked to evaluated image quality. Three contrast enhancing techniques were used in this study: conventional equalization, CCB Correction [1] - a digitization correction - and value subtraction. A set of 100 images was used in tests from some available online mammographic databases. The tests consisted of the presentation of all four versions of an image (original plus the three contrast enhanced images) to the specialist, requested to rank each one from the best up to worst quality for diagnosis. Analysis of results has demonstrated that CCB Correction [1] produced better images in almost all cases. Equalization, which mathematically produces a better contrast, was considered the worst for mammography image quality enhancement in the majority of cases (69.7%). The value subtraction procedure produced images considered better than the original in 84% of cases. Tests indicate that, for the radiologist's perception, it seems more important to guaranty full visualization of nuances than a high contrast image. Another result observed is that the "ideal" scanner curve does not yield the best result for a mammographic image. The important contrast range is the middle of the histogram, where nodules and masses need to be seen and clearly distinguished.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, Douglas A.
2007-10-08
A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.
DIF Testing with an Empirical-Histogram Approximation of the Latent Density for Each Group
ERIC Educational Resources Information Center
Woods, Carol M.
2011-01-01
This research introduces, illustrates, and tests a variation of IRT-LR-DIF, called EH-DIF-2, in which the latent density for each group is estimated simultaneously with the item parameters as an empirical histogram (EH). IRT-LR-DIF is used to evaluate the degree to which items have different measurement properties for one group of people versus…
An Automated Energy Detection Algorithm Based on Kurtosis-Histogram Excision
2018-01-01
ARL-TR-8269 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Kurtosis-Histogram Excision...needed. Do not return it to the originator. ARL-TR-8269 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, X; Schott, D; Song, Y
Purpose: In an effort of early assessment of treatment response, we investigate radiation induced changes in CT number histogram of GTV during the delivery of chemoradiation therapy (CRT) for pancreatic cancer. Methods: Diagnostic-quality CT data acquired daily during routine CT-guided CRT using a CT-on-rails for 20 pancreatic head cancer patients were analyzed. All patients were treated with a radiation dose of 50.4 in 28 fractions. On each daily CT set, the contours of the pancreatic head and the spinal cord were delineated. The Hounsfiled Units (HU) histogram in these contourswere extracted and processed using MATLAB. Eight parameters of the histogrammore » including the mean HU over all the voxels, peak position, volume, standard deviation (SD), skewness, kurtosis, energy, and entropy were calculated for each fraction. The significances were inspected using paired two-tailed t-test and the correlations were analyzed using Spearman rank correlation tests. Results: In general, HU histogram in pancreatic head (but not in spinal cord) changed during the CRT delivery. Changes from the first to the last fraction in mean HU in pancreatic head ranged from −13.4 to 3.7 HU with an average of −4.4 HU, which was significant (P<0.001). Among other quantities, the volume decreased, the skewness increased (less skewed), and the kurtosis decreased (less sharp) during the CRT delivery. The changes of mean HU, volume, skewness, and kurtosis became significant after two weeks of treatment. Patient pathological response status is associated with the changes of SD (ΔSD), i.e., ΔSD= 1.85 (average of 7 patients) for good reponse, −0.08 (average of 6 patients) for moderate and poor response. Conclusion: Significant changes in HU histogram and the histogram-based metrics (e.g., meam HU, skewness, and kurtosis) in tumor were observed during the course of chemoradiation therapy for pancreas cancer. These changes may be potentially used for early assessment of treatment response.« less
Hu, Fubi; Yang, Ru; Huang, Zixing; Wang, Min; Zhang, Hanmei; Yan, Xu; Song, Bin
2017-12-01
To retrospectively determine the feasibility of intravoxel incoherent motion (IVIM) imaging based on histogram analysis for the staging of liver fibrosis (LF) using histopathologic findings as the reference standard. 56 consecutive patients (14 men, 42 women; age range, 15-76, years) with chronic liver diseases (CLDs) were studied using IVIM-DWI with 9 b-values (0, 25, 50, 75, 100, 150, 200, 500, 800 s/mm 2 ) at 3.0 T. Fibrosis stage was evaluated using the METAVIR scoring system. Histogram metrics including mean, standard deviation (Std), skewness, kurtosis, minimum (Min), maximum (Max), range, interquartile (Iq) range, and percentiles (10, 25, 50, 75, 90th) were extracted from apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) maps. All histogram metrics among different fibrosis groups were compared using one-way analysis of variance or nonparametric Kruskal-Wallis test. For significant parameters, receivers operating characteristic curve (ROC) analyses were further performed for the staging of LF. Based on their METAVIR stage, the 56 patients were reclassified into three groups as follows: F0-1 group (n = 25), F2-3 group (n = 21), and F4 group (n = 10). The mean, Iq range, percentiles (50, 75, and 90th) of D* maps between the groups were significant differences (all P < 0.05). Area under the ROC curve (AUC) of the mean, Iq range, 50, 75, and 90th percentile of D* maps for identifying significant LF (≥F2 stage) was 0.901, 0.859, 0.876, 0.943, and 0.886 (all P < 0.0001), respectively; for diagnosing severe fibrosis or cirrhosis (F4), AUC was 0.917, 0.922, 0.943, 0.985, and 0.939 (all P < 0.0001), respectively. The histogram metrics of ADC, D, and f maps demonstrated no significant difference among the groups (all P > 0.05). Histogram analysis of D* map derived from IVIM can be used to stage liver fibrosis in patients with CLDs and provide more quantitative information beyond the mean value.
Maurer, Britta; Suliman, Yossra A.; Morsbach, Fabian; Distler, Oliver; Frauenfelder, Thomas
2018-01-01
Background To evaluate usability of slice-reduced sequential computed tomography (CT) compared to standard high-resolution CT (HRCT) in patients with systemic sclerosis (SSc) for qualitative and quantitative assessment of interstitial lung disease (ILD) with respect to (I) detection of lung parenchymal abnormalities, (II) qualitative and semiquantitative visual assessment, (III) quantification of ILD by histograms and (IV) accuracy for the 20%-cut off discrimination. Methods From standard chest HRCT of 60 SSc patients sequential 9-slice-computed tomography (reduced HRCT) was retrospectively reconstructed. ILD was assessed by visual scoring and quantitative histogram parameters. Results from standard and reduced HRCT were compared using non-parametric tests and analysed by univariate linear regression analyses. Results With respect to the detection of parenchymal abnormalities, only the detection of intrapulmonary bronchiectasis was significantly lower in reduced HRCT compared to standard HRCT (P=0.039). No differences were found comparing visual scores for fibrosis severity and extension from standard and reduced HRCT (P=0.051–0.073). All scores correlated significantly (P<0.001) to histogram parameters derived from both, standard and reduced HRCT. Significant higher values of kurtosis and skewness for reduced HRCT were found (both P<0.001). In contrast to standard HRCT histogram parameters from reduced HRCT showed significant discrimination at cut-off 20% fibrosis (sensitivity 88% kurtosis and skewness; specificity 81% kurtosis and 86% skewness; cut-off kurtosis ≤26, cut-off skewness ≤4; both P<0.001). Conclusions Reduced HRCT is a robust method to assess lung fibrosis in SSc with minimal radiation dose with no difference in scoring assessment of lung fibrosis severity and extension in comparison to standard HRCT. In contrast to standard HRCT histogram parameters derived from the approach of reduced HRCT could discriminate at a threshold of 20% lung fibrosis with high sensitivity and specificity. Hence it might be used to detect early disease progression of lung fibrosis in context of monitoring and treatment of SSc patients. PMID:29850118
Colombi, Davide; Dinkel, Julien; Weinheimer, Oliver; Obermayer, Berenike; Buzan, Teodora; Nabers, Diana; Bauer, Claudia; Oltmanns, Ute; Palmowski, Karin; Herth, Felix; Kauczor, Hans Ulrich; Sverzellati, Nicola
2015-01-01
Objectives To describe changes over time in extent of idiopathic pulmonary fibrosis (IPF) at multidetector computed tomography (MDCT) assessed by semi-quantitative visual scores (VSs) and fully automatic histogram-based quantitative evaluation and to test the relationship between these two methods of quantification. Methods Forty IPF patients (median age: 70 y, interquartile: 62-75 years; M:F, 33:7) that underwent 2 MDCT at different time points with a median interval of 13 months (interquartile: 10-17 months) were retrospectively evaluated. In-house software YACTA quantified automatically lung density histogram (10th-90th percentile in 5th percentile steps). Longitudinal changes in VSs and in the percentiles of attenuation histogram were obtained in 20 untreated patients and 20 patients treated with pirfenidone. Pearson correlation analysis was used to test the relationship between VSs and selected percentiles. Results In follow-up MDCT, visual overall extent of parenchymal abnormalities (OE) increased in median by 5 %/year (interquartile: 0 %/y; +11 %/y). Substantial difference was found between treated and untreated patients in HU changes of the 40th and of the 80th percentiles of density histogram. Correlation analysis between VSs and selected percentiles showed higher correlation between the changes (Δ) in OE and Δ 40th percentile (r=0.69; p<0.001) as compared to Δ 80th percentile (r=0.58; p<0.001); closer correlation was found between Δ ground-glass extent and Δ 40th percentile (r=0.66, p<0.001) as compared to Δ 80th percentile (r=0.47, p=0.002), while the Δ reticulations correlated better with the Δ 80th percentile (r=0.56, p<0.001) in comparison to Δ 40th percentile (r=0.43, p=0.003). Conclusions There is a relevant and fully automatically measurable difference at MDCT in VSs and in histogram analysis at one year follow-up of IPF patients, whether treated or untreated: Δ 40th percentile might reflect the change in overall extent of lung abnormalities, notably of ground-glass pattern; furthermore Δ 80th percentile might reveal the course of reticular opacities. PMID:26110421
Liu, Chunling; Wang, Kun; Li, Xiaodan; Zhang, Jine; Ding, Jie; Spuhler, Karl; Duong, Timothy; Liang, Changhong; Huang, Chuan
2018-06-01
Diffusion-weighted imaging (DWI) has been studied in breast imaging and can provide more information about diffusion, perfusion and other physiological interests than standard pulse sequences. The stretched-exponential model has previously been shown to be more reliable than conventional DWI techniques, but different diagnostic sensitivities were found from study to study. This work investigated the characteristics of whole-lesion histogram parameters derived from the stretched-exponential diffusion model for benign and malignant breast lesions, compared them with conventional apparent diffusion coefficient (ADC), and further determined which histogram metrics can be best used to differentiate malignant from benign lesions. This was a prospective study. Seventy females were included in the study. Multi-b value DWI was performed on a 1.5T scanner. Histogram parameters of whole lesions for distributed diffusion coefficient (DDC), heterogeneity index (α), and ADC were calculated by two radiologists and compared among benign lesions, ductal carcinoma in situ (DCIS), and invasive carcinoma confirmed by pathology. Nonparametric tests were performed for comparisons among invasive carcinoma, DCIS, and benign lesions. Comparisons of receiver operating characteristic (ROC) curves were performed to show the ability to discriminate malignant from benign lesions. The majority of histogram parameters (mean/min/max, skewness/kurtosis, 10-90 th percentile values) from DDC, α, and ADC were significantly different among invasive carcinoma, DCIS, and benign lesions. DDC 10% (area under curve [AUC] = 0.931), ADC 10% (AUC = 0.893), and α mean (AUC = 0.787) were found to be the best metrics in differentiating benign from malignant tumors among all histogram parameters derived from ADC and α, respectively. The combination of DDC 10% and α mean , using logistic regression, yielded the highest sensitivity (90.2%) and specificity (95.5%). DDC 10% and α mean derived from the stretched-exponential model provides more information and better diagnostic performance in differentiating malignancy from benign lesions than ADC parameters derived from a monoexponential model. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1701-1710. © 2017 International Society for Magnetic Resonance in Medicine.
Quantitative computed tomography applied to interstitial lung diseases.
Obert, Martin; Kampschulte, Marian; Limburg, Rebekka; Barańczuk, Stefan; Krombach, Gabriele A
2018-03-01
To evaluate a new image marker that retrieves information from computed tomography (CT) density histograms, with respect to classification properties between different lung parenchyma groups. Furthermore, to conduct a comparison of the new image marker with conventional markers. Density histograms from 220 different subjects (normal = 71; emphysema = 73; fibrotic = 76) were used to compare the conventionally applied emphysema index (EI), 15 th percentile value (PV), mean value (MV), variance (V), skewness (S), kurtosis (K), with a new histogram's functional shape (HFS) method. Multinomial logistic regression (MLR) analyses was performed to calculate predictions of different lung parenchyma group membership using the individual methods, as well as combinations thereof, as covariates. Overall correct assigned subjects (OCA), sensitivity (sens), specificity (spec), and Nagelkerke's pseudo R 2 (NR 2 ) effect size were estimated. NR 2 was used to set up a ranking list of the different methods. MLR indicates the highest classification power (OCA of 92%; sens 0.95; spec 0.89; NR 2 0.95) when all histogram analyses methods were applied together in the MLR. Highest classification power among individually applied methods was found using the HFS concept (OCA 86%; sens 0.93; spec 0.79; NR 2 0.80). Conventional methods achieved lower classification potential on their own: EI (OCA 69%; sens 0.95; spec 0.26; NR 2 0.52); PV (OCA 69%; sens 0.90; spec 0.37; NR 2 0.57); MV (OCA 65%; sens 0.71; spec 0.58; NR 2 0.61); V (OCA 66%; sens 0.72; spec 0.53; NR 2 0.66); S (OCA 65%; sens 0.88; spec 0.26; NR 2 0.55); and K (OCA 63%; sens 0.90; spec 0.16; NR 2 0.48). The HFS method, which was so far applied to a CT bone density curve analysis, is also a remarkable information extraction tool for lung density histograms. Presumably, being a principle mathematical approach, the HFS method can extract valuable health related information also from histograms from complete different areas. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiner, Caecilia S., E-mail: caecilia.reiner@usz.ch; Gordic, Sonja; Puippe, Gilbert
2016-03-15
PurposeTo evaluate in patients with hepatocellular carcinoma (HCC), whether assessment of tumor heterogeneity by histogram analysis of computed tomography (CT) perfusion helps predicting response to transarterial radioembolization (TARE).Materials and MethodsSixteen patients (15 male; mean age 65 years; age range 47–80 years) with HCC underwent CT liver perfusion for treatment planning prior to TARE with Yttrium-90 microspheres. Arterial perfusion (AP) derived from CT perfusion was measured in the entire tumor volume, and heterogeneity was analyzed voxel-wise by histogram analysis. Response to TARE was evaluated on follow-up imaging (median follow-up, 129 days) based on modified Response Evaluation Criteria in Solid Tumors (mRECIST). Results of histogrammore » analysis and mean AP values of the tumor were compared between responders and non-responders. Receiver operating characteristics were calculated to determine the parameters’ ability to discriminate responders from non-responders.ResultsAccording to mRECIST, 8 patients (50 %) were responders and 8 (50 %) non-responders. Comparing responders and non-responders, the 50th and 75th percentile of AP derived from histogram analysis was significantly different [AP 43.8/54.3 vs. 27.6/34.3 mL min{sup −1} 100 mL{sup −1}); p < 0.05], while the mean AP of HCCs (43.5 vs. 27.9 mL min{sup −1} 100 mL{sup −1}; p > 0.05) was not. Further heterogeneity parameters from histogram analysis (skewness, coefficient of variation, and 25th percentile) did not differ between responders and non-responders (p > 0.05). If the cut-off for the 75th percentile was set to an AP of 37.5 mL min{sup −1} 100 mL{sup −1}, therapy response could be predicted with a sensitivity of 88 % (7/8) and specificity of 75 % (6/8).ConclusionVoxel-wise histogram analysis of pretreatment CT perfusion indicating tumor heterogeneity of HCC improves the pretreatment prediction of response to TARE.« less
A comparison of methods using optical coherence tomography to detect demineralized regions in teeth
Sowa, Michael G.; Popescu, Dan P.; Friesen, Jeri R.; Hewko, Mark D.; Choo-Smith, Lin-P’ing
2013-01-01
Optical coherence tomography (OCT) is a three- dimensional optical imaging technique that can be used to identify areas of early caries formation in dental enamel. The OCT signal at 850 nm back-reflected from sound enamel is attenuated stronger than the signal back-reflected from demineralized regions. To quantify this observation, the OCT signal as a function of depth into the enamel (also known as the A-scan intensity), the histogram of the A-scan intensities and three summary parameters derived from the A-scan are defined and their diagnostic potential compared. A total of 754 OCT A-scans were analyzed. The three summary parameters derived from the A-scans, the OCT attenuation coefficient as well as the mean and standard deviation of the lognormal fit to the histogram of the A-scan ensemble show statistically significant differences (p < 0.01) when comparing parameters from sound enamel and caries. Furthermore, these parameters only show a modest correlation. Based on the area under the curve (AUC) of the receiver operating characteristics (ROC) plot, the OCT attenuation coefficient shows higher discriminatory capacity (AUC=0.98) compared to the parameters derived from the lognormal fit to the histogram of the A-scan. However, direct analysis of the A-scans or the histogram of A-scan intensities using linear support vector machine classification shows diagnostic discrimination (AUC = 0.96) comparable to that achieved using the attenuation coefficient. These findings suggest that either direct analysis of the A-scan, its intensity histogram or the attenuation coefficient derived from the descending slope of the OCT A-scan have high capacity to discriminate between regions of caries and sound enamel. PMID:22052833
Yi, Jisook; Lee, Young Han; Kim, Sang Kyum; Kim, Seung Hyun; Song, Ho-Taek; Shin, Kyoo-Ho; Suh, Jin-Suck
2018-05-01
This study aimed to compare computed tomography (CT) features, including tumor size and textural and histogram measurements, of giant-cell tumors of bone (GCTBs) before and after denosumab treatment and determine their applicability in monitoring GCTB response to denosumab treatment. This retrospective study included eight patients (male, 3; female, 5; mean age, 33.4 years) diagnosed with GCTB, who had received treatment by denosumab and had undergone pre- and post-treatment non-contrast CT between January 2010 and December 2016. This study was approved by the institutional review board. Pre- and post-treatment size, histogram, and textural parameters of GCTBs were compared by the Wilcoxon signed-rank test. Pathological findings of five patients who underwent surgery after denosumab treatment were evaluated for assessment of treatment response. Relative to the baseline values, the tumor size had decreased, while the mean attenuation, standard deviation, entropy (all, P = 0.017), and skewness (P = 0.036) of the GCTBs had significantly increased post-treatment. Although the difference was statistically insignificant, the tumors also exhibited increased kurtosis, contrast, and inverse difference moment (P = 0.123, 0.327, and 0.575, respectively) post-treatment. Histologic findings revealed new bone formation and complete depletion or decrease in the number of osteoclast-like giant cells. The histogram and textural parameters of GCTBs changed significantly after denosumab treatment. Knowledge of the tendency towards increased mean attenuation and heterogeneity but increased local homogeneity in post-treatment CT histogram and textural features of GCTBs might aid in treatment planning and tumor response evaluation during denosumab treatment. Copyright © 2018. Published by Elsevier B.V.
Arisawa, Atsuko; Watanabe, Yoshiyuki; Tanaka, Hisashi; Takahashi, Hiroto; Matsuo, Chisato; Fujiwara, Takuya; Fujiwara, Masahiro; Fujimoto, Yasunori; Tomiyama, Noriyuki
2018-06-01
Arterial spin labeling (ASL) is a non-invasive perfusion technique that may be an alternative to dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) for assessment of brain tumors. To our knowledge, there have been no reports on histogram analysis of ASL. The purpose of this study was to determine whether ASL is comparable with DSC-MRI in terms of differentiating high-grade and low-grade gliomas by evaluating the histogram analysis of cerebral blood flow (CBF) in the entire tumor. Thirty-four patients with pathologically proven glioma underwent ASL and DSC-MRI. High-signal areas on contrast-enhanced T 1 -weighted images or high-intensity areas on fluid-attenuated inversion recovery images were designated as the volumes of interest (VOIs). ASL-CBF, DSC-CBF, and DSC-cerebral blood volume maps were constructed and co-registered to the VOI. Perfusion histogram analyses of the whole VOI and statistical analyses were performed to compare the ASL and DSC images. There was no significant difference in the mean values for any of the histogram metrics in both of the low-grade gliomas (n = 15) and the high-grade gliomas (n = 19). Strong correlations were seen in the 75th percentile, mean, median, and standard deviation values between the ASL and DSC images. The area under the curve values tended to be greater for the DSC images than for the ASL images. DSC-MRI is superior to ASL for distinguishing high-grade from low-grade glioma. ASL could be an alternative evaluation method when DSC-MRI cannot be used, e.g., in patients with renal failure, those in whom repeated examination is required, and in children.
Hao, Yonghong; Pan, Chu; Chen, WeiWei; Li, Tao; Zhu, WenZhen; Qi, JianPin
2016-12-01
To explore the usefulness of whole-lesion histogram analysis of apparent diffusion coefficient (ADC) derived from reduced field-of-view (r-FOV) diffusion-weighted imaging (DWI) in differentiating malignant and benign thyroid nodules and stratifying papillary thyroid cancer (PTC) with aggressive histological features. This Institutional Review Board-approved, retrospective study included 93 patients with 101 pathologically proven thyroid nodules. All patients underwent preoperative r-FOV DWI at 3T. The whole-lesion ADC assessments were performed for each patient. Histogram-derived ADC parameters between different subgroups (pathologic type, extrathyroidal extension, lymph node metastasis) were compared. Receiver operating characteristic curve analysis was used to determine optimal histogram parameters in differentiating benign and malignant nodules and predicting aggressiveness of PTC. Mean ADC, median ADC, 5 th percentile ADC, 25 th percentile ADC, 75 th percentile ADC, 95 th percentile ADC (all P < 0.001), and kurtosis (P = 0.001) were significantly lower in malignant thyroid nodules, and mean ADC achieved the highest AUC (0.919) with a cutoff value of 1842.78 × 10 -6 mm 2 /s in differentiating malignant and benign nodules. Compared to the PTCs without extrathyroidal extension, PTCs with extrathyroidal extension showed significantly lower median ADC, 5 th percentile ADC, and 25 th percentile ADC. The 5 th percentile ADC achieved the highest AUC (0.757) with cutoff value of 911.5 × 10 -6 mm 2 /s for differentiating between PTCs with and without extrathyroidal extension. Whole-lesion ADC histogram analysis might help to differentiate malignant nodules from benign ones and show the PTCs with extrathyroidal extension. J. Magn. Reson. Imaging 2016;44:1546-1555. © 2016 International Society for Magnetic Resonance in Medicine.
Hu, Xin-Xing; Yang, Zhao-Xia; Liang, He-Yue; Ding, Ying; Grimm, Robert; Fu, Cai-Xia; Liu, Hui; Yan, Xu; Ji, Yuan; Zeng, Meng-Su; Rao, Sheng-Xiang
2017-08-01
To evaluate whether whole-tumor histogram-derived parameters for an apparent diffusion coefficient (ADC) map and contrast-enhanced magnetic resonance imaging (MRI) could aid in assessing Ki-67 labeling index (LI) of hepatocellular carcinoma (HCC). In all, 57 patients with HCC who underwent pretreatment MRI with a 3T MR scanner were included retrospectively. Histogram parameters including mean, median, standard deviation, skewness, kurtosis, and percentiles (5 th , 25 th , 75 th , 95 th ) were derived from the ADC map and MR enhancement. Correlations between histogram parameters and Ki-67 LI were evaluated and differences between low Ki-67 (≤10%) and high Ki-67 (>10%) groups were assessed. Mean, median, 5 th , 25 th , 75 th percentiles of ADC, and mean, median, 25 th , 75 th , 95 th percentiles of enhancement of arterial phase (AP) demonstrated significant inverse correlations with Ki-67 LI (rho up to -0.48 for ADC, -0.43 for AP) and showed significant differences between low and high Ki-67 groups (P < 0.001-0.04). Areas under the receiver operator characteristics (ROC) curve for identification of high Ki-67 were 0.78, 0.77, 0.79, 0.82, and 0.76 for mean, median, 5 th , 25 th , 75 th percentiles of ADC, respectively, and 0.74, 0.81, 0.76, 0.82, 0.69 for mean, median, 25 th , 75 th , 95 th percentiles of AP, respectively. Histogram-derived parameters of ADC and AP were potentially helpful for predicting Ki-67 LI of HCC. 3 Technical Efficacy: Stage 3 J. MAGN. RESON. IMAGING 2017;46:383-392. © 2016 International Society for Magnetic Resonance in Medicine.
Cho, Seung Hyun; Kim, Gab Chul; Jang, Yun-Jin; Ryeom, Hunkyu; Kim, Hye Jung; Shin, Kyung-Min; Park, Jun Seok; Choi, Gyu-Seog; Kim, See Hyung
2015-09-01
The value of diffusion-weighted imaging (DWI) for reliable differentiation between pathologic complete response (pCR) and residual tumor is still unclear. Recently, a few studies reported that histogram analysis can be helpful to monitor the therapeutic response in various cancer research. To investigate whether post-chemoradiotherapy (CRT) apparent diffusion coefficient (ADC) histogram analysis can be helpful to predict a pCR in locally advanced rectal cancer (LARC). Fifty patients who underwent preoperative CRT followed by surgery were enrolled in this retrospective study, non-pCR (n = 41) and pCR (n = 9), respectively. ADC histogram analysis encompassing the whole tumor was performed on two post-CRT ADC600 and ADC1000 (b factors 0, 600 vs. 0, 1000 s/mm(2)) maps. Mean, minimum, maximum, SD, mode, 10th, 25th, 50th, 75th, 90th percentile ADCs, skewness, and kurtosis were derived. Diagnostic performance for predicting pCR was evaluated and compared. On both maps, 10th and 25th ADCs showed better diagnostic performance than that using mean ADC. Tenth percentile ADCs revealed the best diagnostic performance on both ADC600 (AZ 0.841, sensitivity 100%, specificity 70.7%) and ADC1000 (AZ 0.821, sensitivity 77.8%, specificity 87.8%) maps. In comparison between 10th percentile and mean ADC, the specificity was significantly improved on both ADC600 (70.7% vs. 53.7%; P = 0.031) and ADC1000 (87.8% vs. 73.2%; P = 0.039) maps. Post-CRT ADC histogram analysis is helpful for predicting pCR in LARC, especially, in improving the specificity, compared with mean ADC. © The Foundation Acta Radiologica 2014.
Zhang, Wei; Zhou, Yue; Xu, Xiao-Quan; Kong, Ling-Yan; Xu, Hai; Yu, Tong-Fu; Shi, Hai-Bin; Feng, Qing
2018-01-01
To assess the performance of a whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps in differentiating thymic carcinoma from lymphoma, and compare it with that of a commonly used hot-spot region-of-interest (ROI)-based ADC measurement. Diffusion weighted imaging data of 15 patients with thymic carcinoma and 13 patients with lymphoma were retrospectively collected and processed with a mono-exponential model. ADC measurements were performed by using a histogram-based and hot-spot-ROI-based approach. In the histogram-based approach, the following parameters were generated: mean ADC (ADC mean ), median ADC (ADC median ), 10th and 90th percentile of ADC (ADC 10 and ADC 90 ), kurtosis, and skewness. The difference in ADCs between thymic carcinoma and lymphoma was compared using a t test. Receiver operating characteristic analyses were conducted to determine and compare the differentiating performance of ADCs. Lymphoma demonstrated significantly lower ADC mean , ADC median , ADC 10 , ADC 90 , and hot-spot-ROI-based mean ADC than those found in thymic carcinoma (all p values < 0.05). There were no differences found in the kurtosis ( p = 0.412) and skewness ( p = 0.273). The ADC 10 demonstrated optimal differentiating performance (cut-off value, 0.403 × 10 -3 mm 2 /s; area under the receiver operating characteristic curve [AUC], 0.977; sensitivity, 92.3%; specificity, 93.3%), followed by the ADC mean , ADC median , ADC 90 , and hot-spot-ROI-based mean ADC. The AUC of ADC 10 was significantly higher than that of the hot spot ROI based ADC (0.977 vs. 0.797, p = 0.036). Compared with the commonly used hot spot ROI based ADC measurement, a histogram analysis of ADC maps can improve the differentiating performance between thymic carcinoma and lymphoma.
Xu, Xiao-Quan; Li, Yan; Hong, Xun-Ning; Wu, Fei-Yun; Shi, Hai-Bin
2017-02-01
To assess the role of whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps in differentiating radiological indeterminate vestibular schwannoma (VS) from meningioma in cerebellopontine angle (CPA). Diffusion-weighted (DW) images (b = 0 and 1000 s/mm 2 ) of pathologically confirmed and radiological indeterminate CPA meningioma (CPAM) (n = 27) and VS (n = 12) were retrospectively collected and processed with mono-exponential model. Whole-tumor regions of interest were drawn on all slices of the ADC maps to obtain histogram parameters, including the mean ADC (ADC mean ), median ADC (ADC median ), 10th/25th/75th/90th percentile ADC (ADC 10 , ADC 25 , ADC 75 and ADC 90 ), skewness and kurtosis. The differences of ADC histogram parameters between CPAM and VS were compared using unpaired t-test. Multiple receiver operating characteristic (ROC) curves analysis was used to determine and compare the diagnostic value of each significant parameter. Significant differences were found on the ADC mean , ADC median , ADC 10 , ADC 25 , ADC 75 and ADC 90 between CPAM and VS (all p values < 0.001), while no significant difference was found on kurtosis (p = 0.562) and skewness (p = 0.047). ROC curves analysis revealed, a cut-off value of 1.126 × 10 -3 mm 2 /s for the ADC 90 value generated highest area under curves (AUC) for differentiating CPAM from VS (AUC, 0.975; sensitivity, 100%; specificity, 88.9%). Histogram analysis of ADC maps based on whole tumor can be a useful tool for differentiating radiological indeterminate CPAM from VS. The ADC 90 value was the most promising parameter for differentiating these two entities.
Atherogenic lipid phenotype in a general group of subjects.
Van, Joanne; Pan, Jianqiu; Charles, M Arthur; Krauss, Ronald; Wong, Nathan; Wu, Xiaoshan
2007-11-01
The atherogenic lipid phenotype is a major cardiovascular risk factor, but normal values do not exist derived from 1 analysis in a general study group. To determine normal values of all of the atherogenic lipid phenotype parameters using subjects from a general study group. One hundred two general subjects were used to determine their atherogenic lipid phenotype using polyacrylamide gradient gels. Low-density lipoprotein (LDL) size revealed 24% of subjects express LDL phenotype B, defined as average LDL peak particle size 258 A or less; however, among the Chinese subjects, the expression of the B phenotype was higher at 44% (P = .02). For the total group, mean LDL size was 265 +/- 11 A (1 SD); however, histograms were bimodal in both men and women. After excluding subjects expressing LDL phenotype B, because they are at increased cardiovascular risk and thus are not completely healthy, LDL histograms were unimodal and the mean LDL size was 270 +/- 7 A. A small, dense LDL concentration histogram (total group) revealed skewing; thus, phenotype B subjects were excluded, for the rationale described previously, and the mean value was 13 +/- 9 mg/dL (0.33 +/- 0.23 mmol/L). High-density lipoprotein (HDL) cholesterol histograms were bimodal in both sexes. After removing subjects as described previously or if HDL cholesterol levels were less than 45 mg/dL, histograms were unimodal and revealed a mean HDL cholesterol value of 61 +/- 12 mg/dL (1.56 +/- 0.31 mmol/L). HDL 2, HDL 2a, and HDL 2b were similarly evaluated. Approximate normal values for the atherogenic lipid phenotype, similar to those derived from cardiovascular endpoint trials, can be determined if those high proportions of subjects with dyslipidemic cardiovascular risk are excluded.
Feasibility of histogram analysis of susceptibility-weighted MRI for staging of liver fibrosis
Yang, Zhao-Xia; Liang, He-Yue; Hu, Xin-Xing; Huang, Ya-Qin; Ding, Ying; Yang, Shan; Zeng, Meng-Su; Rao, Sheng-Xiang
2016-01-01
PURPOSE We aimed to evaluate whether histogram analysis of susceptibility-weighted imaging (SWI) could quantify liver fibrosis grade in patients with chronic liver disease (CLD). METHODS Fifty-three patients with CLD who underwent multi-echo SWI (TEs of 2.5, 5, and 10 ms) were included. Histogram analysis of SWI images were performed and mean, variance, skewness, kurtosis, and the 1st, 10th, 50th, 90th, and 99th percentiles were derived. Quantitative histogram parameters were compared. For significant parameters, further receiver operating characteristic (ROC) analyses were performed to evaluate the potential diagnostic performance for differentiating liver fibrosis stages. RESULTS The number of patients in each pathologic fibrosis grade was 7, 3, 5, 5, and 33 for F0, F1, F2, F3, and F4, respectively. The results of variance (TE: 10 ms), 90th percentile (TE: 10 ms), and 99th percentile (TE: 10 and 5 ms) in F0–F3 group were significantly lower than in F4 group, with areas under the ROC curves (AUCs) of 0.84 for variance and 0.70–0.73 for the 90th and 99th percentiles, respectively. The results of variance (TE: 10 and 5 ms), 99th percentile (TE: 10 ms), and skewness (TE: 2.5 and 5 ms) in F0–F2 group were smaller than those of F3/F4 group, with AUCs of 0.88 and 0.69 for variance (TE: 10 and 5 ms, respectively), 0.68 for 99th percentile (TE: 10 ms), and 0.73 and 0.68 for skewness (TE: 2.5 and 5 ms, respectively). CONCLUSION Magnetic resonance histogram analysis of SWI, particularly the variance, is promising for predicting advanced liver fibrosis and cirrhosis. PMID:27113421
HoDOr: histogram of differential orientations for rigid landmark tracking in medical images
NASA Astrophysics Data System (ADS)
Tiwari, Abhishek; Patwardhan, Kedar Anil
2018-03-01
Feature extraction plays a pivotal role in pattern recognition and matching. An ideal feature should be invariant to image transformations such as translation, rotation, scaling, etc. In this work, we present a novel rotation-invariant feature, which is based on Histogram of Oriented Gradients (HOG). We compare performance of the proposed approach with the HOG feature on 2D phantom data, as well as 3D medical imaging data. We have used traditional histogram comparison measures such as Bhattacharyya distance and Normalized Correlation Coefficient (NCC) to assess efficacy of the proposed approach under effects of image rotation. In our experiments, the proposed feature performs 40%, 20%, and 28% better than the HOG feature on phantom (2D), Computed Tomography (CT-3D), and Ultrasound (US-3D) data for image matching, and landmark tracking tasks respectively.
NASA Astrophysics Data System (ADS)
von Secker, Clare Elaine
The study of students at risk is a major topic of science education policy and discussion. Much research has focused on describing conditions and problems associated with the statistical risk of low science achievement among individuals who are members of groups characterized by problems such as poverty and social disadvantage. But outcomes attributed to these factors do not explain the nature and extent of mechanisms that account for differences in performance among individuals at risk. There is ample theoretical and empirical evidence that demographic differences should be conceptualized as social contexts, or collections of variables, that alter the psychological significance and social demands of life events, and affect subsequent relationships between risk and resilience. The hierarchical linear growth models used in this dissertation provide greater specification of the role of social context and the protective effects of attitude, expectations, parenting practices, peer influences, and learning opportunities on science achievement. While the individual influences of these protective factors on science achievement were small, their cumulative effect was substantial. Meta-analysis conducted on the effects associated with psychological and environmental processes that mediate risk mechanisms in sixteen social contexts revealed twenty-two significant differences between groups of students. Positive attitudes, high expectations, and more intense science course-taking had positive effects on achievement of all students, although these factors were not equally protective in all social contexts. In general, effects associated with authoritative parenting and peer influences were negative, regardless of social context. An evaluation comparing the performance and stability of hierarchical linear growth models with traditional repeated measures models is included as well.
Fast Time-Varying Volume Rendering Using Time-Space Partition (TSP) Tree
NASA Technical Reports Server (NTRS)
Shen, Han-Wei; Chiang, Ling-Jen; Ma, Kwan-Liu
1999-01-01
We present a new, algorithm for rapid rendering of time-varying volumes. A new hierarchical data structure that is capable of capturing both the temporal and the spatial coherence is proposed. Conventional hierarchical data structures such as octrees are effective in characterizing the homogeneity of the field values existing in the spatial domain. However, when treating time merely as another dimension for a time-varying field, difficulties frequently arise due to the discrepancy between the field's spatial and temporal resolutions. In addition, treating spatial and temporal dimensions equally often prevents the possibility of detecting the coherence that is unique in the temporal domain. Using the proposed data structure, our algorithm can meet the following goals. First, both spatial and temporal coherence are identified and exploited for accelerating the rendering process. Second, our algorithm allows the user to supply the desired error tolerances at run time for the purpose of image-quality/rendering-speed trade-off. Third, the amount of data that are required to be loaded into main memory is reduced, and thus the I/O overhead is minimized. This low I/O overhead makes our algorithm suitable for out-of-core applications.
Hierarchical programming for data storage and visualization
Donovan, John M.; Smith, Peter E.; ,
2001-01-01
Graphics software is an essential tool for interpreting, analyzing, and presenting data from multidimensional hydrodynamic models used in estuarine and coastal ocean studies. The post-processing of time-varying three-dimensional model output presents unique requirements for data visualization because of the large volume of data that can be generated and the multitude of time scales that must be examined. Such data can relate to estuarine or coastal ocean environments and come from numerical models or field instruments. One useful software tool for the display, editing, visualization, and printing of graphical data is the Gr application, written by the first author for use in U.S. Geological Survey San Francisco Bay Program. The Gr application has been made available to the public via the Internet since the year 2000. The Gr application is written in the Java (Sun Microsystems, Nov. 29, 2001) programming language and uses the Extensible Markup Language standard for hierarchical data storage. Gr presents a hierarchy of objects to the user that can be edited using a common interface. Java's object-oriented capabilities allow Gr to treat data, graphics, and tools equally and to save them all to a single XML file.
Costello, Ruth; Patel, Rikesh; Humphreys, Jennifer; McBeth, John; Dixon, William G
2017-04-03
To identify the side effects most important to glucocorticoid (GC) users through a survey of a UK online health community (Healthunlocked.com). Online cross-sectional survey. Participants were recruited through Healthunlocked.com, an online social network for health. Adults who were currently taking GCs, or had taken GCs in the past month. Responders scored the importance of listed side effects from 1 to 10, with 10 being of high importance to them. For each side effect, histograms were plotted, and the median rating and IQR were determined. Side effects were ranked by median ranking (largest to smallest) and then IQR (smallest to largest). The scores were categorised as low (scores 1-3), medium (scores 4-7) and high (scores 8-10) importance. 604 responders completed the survey. Histograms of side effect scores showed a skew towards high importance for weight gain, a U-shaped distribution for cardiovascular disease (CVD), diabetes, eye disease and infections, and a skew towards low importance for acne. When ranked, the side effect of most importance to responders was weight gain (median score=9, IQR 6-10) followed by insomnia and moon face with equal median score (8) and IQR (5-10). Three serious side effects, CVD, diabetes and infections, were ranked of lower importance overall but had wide ranging scores (median score=8, IQR 1-10). The three most highly rated side effects were not clinically serious but remained important to patients, perhaps reflecting their impact on quality of life and high prevalence. This should be taken into consideration when discussing treatment options and planning future GC safety studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
[The value of spectral frequency analysis by Doppler examination (author's transl)].
Boccalon, H; Reggi, M; Lozes, A; Canal, C; Jausseran, J M; Courbier, R; Puel, P; Enjalbert, A
1981-01-01
Arterial stenoses of moderate extent may involve modifications of the blood flow. Arterial shading is not always examined at the best incident angle to assess the extent of the stenosis. Spectral frequency analysis by Doppler examination is a good means of evaluating the effect of moderate arterial lesions. The present study was carried out with a Doppler effect having an acoustic spectrum, which is shown in a histogram having 16 frequency bands. The values were recorded on the two femoral arteries. A study was also made of 49 normal subjects so as to establish a normal envelope histogram, taking into account the following parameters: maximum peak (800 Hz), low cut-off frequency (420 Hz), high cut-off frequency (2,600 Hz); the first peak was found to be present in 81 % of the subjects (at 375 Hz) and the second peak in 75 % of the subjects (2,020 Hz). Thirteen patients with iliac lesions of different extent were included in the study; details of these lesions were established in all cases by aortography. None of the recorded frequency histograms were located within the normal envelope. Two cases of moderate iliac stenoses were noted ( Less Than 50 % of the diameter) which interfered with the histogram, even though the femoral velocity signal was normal.
Differentially Private Histogram Publication For Dynamic Datasets: An Adaptive Sampling Approach
Li, Haoran; Jiang, Xiaoqian; Xiong, Li; Liu, Jinfei
2016-01-01
Differential privacy has recently become a de facto standard for private statistical data release. Many algorithms have been proposed to generate differentially private histograms or synthetic data. However, most of them focus on “one-time” release of a static dataset and do not adequately address the increasing need of releasing series of dynamic datasets in real time. A straightforward application of existing histogram methods on each snapshot of such dynamic datasets will incur high accumulated error due to the composibility of differential privacy and correlations or overlapping users between the snapshots. In this paper, we address the problem of releasing series of dynamic datasets in real time with differential privacy, using a novel adaptive distance-based sampling approach. Our first method, DSFT, uses a fixed distance threshold and releases a differentially private histogram only when the current snapshot is sufficiently different from the previous one, i.e., with a distance greater than a predefined threshold. Our second method, DSAT, further improves DSFT and uses a dynamic threshold adaptively adjusted by a feedback control mechanism to capture the data dynamics. Extensive experiments on real and synthetic datasets demonstrate that our approach achieves better utility than baseline methods and existing state-of-the-art methods. PMID:26973795
Helmer, K G; Chou, M-C; Preciado, R I; Gimi, B; Rollins, N K; Song, A; Turner, J; Mori, S
2016-02-27
MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables.
Liu, Song; Zhang, Yujuan; Xia, Jie; Chen, Ling; Guan, Wenxian; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang
2017-10-01
To explore the application of histogram analysis in preoperative T and N staging of gastric cancers, with a focus on characteristic parameters of apparent diffusion coefficient (ADC) maps. Eighty-seven patients with gastric cancers underwent diffusion weighted magnetic resonance imaging (b=0, 1000s/mm 2 ), which generated ADC maps. Whole-volume histogram analysis was performed on ADC maps and 7 characteristic parameters were obtained. All those patients underwent surgery and postoperative pathologic T and N stages were determined. Four parameters, including skew, kurtosis, s-sD av and sample number, showed significant differences among gastric cancers at different T and N stages. Most parameters correlated with T and N stages significantly and worked in differentiating gastric cancers at different T or N stages. Especially skew yielded a sensitivity of 0.758, a specificity of 0.810, and an area under the curve (AUC) of 0.802 for differentiating gastric cancers with and without lymph node metastasis (P<0.001). All the parameters, except AUC low , showed good or excellent inter-observer agreement with intra-class correlation coefficients ranging from 0.710 to 0.991. Characteristic parameters derived from whole-volume ADC histogram analysis could help assessing preoperative T and N stages of gastric cancers. Copyright © 2017. Published by Elsevier Inc.
Winter, Karsten; Richter, Cindy; Hoehn, Anna-Kathrin
2018-01-01
Our purpose was to analyze associations between apparent diffusion coefficient (ADC) histogram analysis parameters and histopathologicalfeatures in head and neck squamous cell carcinoma (HNSCC). The study involved 32 patients with primary HNSCC. For every tumor, the following histogram analysis parameters were calculated: ADCmean, ADCmax, ADCmin, ADCmedian, ADCmode, P10, P25, P75, P90, kurtosis, skewness, and entropy. Furthermore, proliferation index KI 67, cell count, total and average nucleic areas were estimated. Spearman's correlation coefficient (p) was used to analyze associations between investigated parameters. In overall sample, all ADC values showed moderate inverse correlations with KI 67. All ADC values except ADCmax correlated inversely with tumor cellularity. Slightly correlations were identified between total/average nucleic area and ADCmean, ADCmin, ADCmedian, and P25. In G1/2 tumors, only ADCmode correlated well with Ki67. No statistically significant correlations between ADC parameters and cellularity were found. In G3 tumors, Ki 67 correlated with all ADC parameters except ADCmode. Cell count correlated well with all ADC parameters except ADCmax. Total nucleic area correlated inversely with ADCmean, ADCmin, ADCmedian, P25, and P90. ADC histogram parameters reflect proliferation potential and cellularity in HNSCC. The associations between histopathology and imaging depend on tumor grading. PMID:29805759
Universal and adapted vocabularies for generic visual categorization.
Perronnin, Florent
2008-07-01
Generic Visual Categorization (GVC) is the pattern classification problem which consists in assigning labels to an image based on its semantic content. This is a challenging task as one has to deal with inherent object/scene variations as well as changes in viewpoint, lighting and occlusion. Several state-of-the-art GVC systems use a vocabulary of visual terms to characterize images with a histogram of visual word counts. We propose a novel practical approach to GVC based on a universal vocabulary, which describes the content of all the considered classes of images, and class vocabularies obtained through the adaptation of the universal vocabulary using class-specific data. The main novelty is that an image is characterized by a set of histograms - one per class - where each histogram describes whether the image content is best modeled by the universal vocabulary or the corresponding class vocabulary. This framework is applied to two types of local image features: low-level descriptors such as the popular SIFT and high-level histograms of word co-occurrences in a spatial neighborhood. It is shown experimentally on two challenging datasets (an in-house database of 19 categories and the PASCAL VOC 2006 dataset) that the proposed approach exhibits state-of-the-art performance at a modest computational cost.
Statistical Properties of Line Centroid Velocity Increments in the rho Ophiuchi Cloud
NASA Technical Reports Server (NTRS)
Lis, D. C.; Keene, Jocelyn; Li, Y.; Phillips, T. G.; Pety, J.
1998-01-01
We present a comparison of histograms of CO (2-1) line centroid velocity increments in the rho Ophiuchi molecular cloud with those computed for spectra synthesized from a three-dimensional, compressible, but non-starforming and non-gravitating hydrodynamic simulation. Histograms of centroid velocity increments in the rho Ophiuchi cloud show clearly non-Gaussian wings, similar to those found in histograms of velocity increments and derivatives in experimental studies of laboratory and atmospheric flows, as well as numerical simulations of turbulence. The magnitude of these wings increases monotonically with decreasing separation, down to the angular resolution of the data. This behavior is consistent with that found in the phase of the simulation which has most of the properties of incompressible turbulence. The time evolution of the magnitude of the non-Gaussian wings in the histograms of centroid velocity increments in the simulation is consistent with the evolution of the vorticity in the flow. However, we cannot exclude the possibility that the wings are associated with the shock interaction regions. Moreover, in an active starforming region like the rho Ophiuchi cloud, the effects of shocks may be more important than in the simulation. However, being able to identify shock interaction regions in the interstellar medium is also important, since numerical simulations show that vorticity is generated in shock interactions.
Analysis of dose heterogeneity using a subvolume-DVH
NASA Astrophysics Data System (ADS)
Said, M.; Nilsson, P.; Ceberg, C.
2017-11-01
The dose-volume histogram (DVH) is universally used in radiation therapy for its highly efficient way of summarizing three-dimensional dose distributions. An apparent limitation that is inherent to standard histograms is the loss of spatial information, e.g. it is no longer possible to tell where low- and high-dose regions are, and whether they are connected or disjoint. Two methods for overcoming the spatial fragmentation of low- and high-dose regions are presented, both based on the gray-level size zone matrix, which is a two-dimensional histogram describing the frequencies of connected regions of similar intensities. The first approach is a quantitative metric which can be likened to a homogeneity index. The large cold spot metric (LCS) is here defined to emphasize large contiguous regions receiving too low a dose; emphasis is put on both size, and deviation from the prescribed dose. In contrast, the subvolume-DVH (sDVH) is an extension to the standard DVH and allows for a qualitative evaluation of the degree of dose heterogeneity. The information retained from the two-dimensional histogram is overlaid on top of the DVH and the two are presented simultaneously. Both methods gauge the underlying heterogeneity in ways that the DVH alone cannot, and both have their own merits—the sDVH being more intuitive and the LCS being quantitative.
Digital image classification with the help of artificial neural network by simple histogram.
Dey, Pranab; Banerjee, Nirmalya; Kaur, Rajwant
2016-01-01
Visual image classification is a great challenge to the cytopathologist in routine day-to-day work. Artificial neural network (ANN) may be helpful in this matter. In this study, we have tried to classify digital images of malignant and benign cells in effusion cytology smear with the help of simple histogram data and ANN. A total of 404 digital images consisting of 168 benign cells and 236 malignant cells were selected for this study. The simple histogram data was extracted from these digital images and an ANN was constructed with the help of Neurointelligence software [Alyuda Neurointelligence 2.2 (577), Cupertino, California, USA]. The network architecture was 6-3-1. The images were classified as training set (281), validation set (63), and test set (60). The on-line backpropagation training algorithm was used for this study. A total of 10,000 iterations were done to train the ANN system with the speed of 609.81/s. After the adequate training of this ANN model, the system was able to identify all 34 malignant cell images and 24 out of 26 benign cells. The ANN model can be used for the identification of the individual malignant cells with the help of simple histogram data. This study will be helpful in the future to identify malignant cells in unknown situations.
Liang, Alice L W; Vavasour, Irene M; Mädler, Burkhard; Traboulsee, Anthony L; Lang, Donna J; Li, David K B; MacKay, Alex L; Laule, Cornelia
2012-06-01
The presence of diffuse and widespread abnormalities within the 'normal appearing' white matter (NAWM) of multiple sclerosis (MS) brain has been established. T(1) histogram analysis has revealed increased T(1) (related to water content) in segmented NAWM, while quantitative assessment of T(2) relaxation measures has demonstrated decreased myelin water fraction (MWF, related to myelin content) and increased geometric mean T(2) (GMT(2)) of the intra/extracellular water pool. Previous studies with follow-up periods of 1-5 years have demonstrated longitudinal changes in T(1) histogram metrics over time; however, longitudinal changes in MWF and GMT(2) of segmented NAWM have not been examined. We examined the short-term evolution of MWF, GMT(2) and T(1) in MS NAWM based on monthly scanning over 6 months in 18 relapsing remitting (RR) MS subjects. Histogram metrics demonstrated short-term stability of T(1), MWF and remitting (RR) MS subjects. We observed no change in MWF, GMT(2) or T(1) histogram metrics in NAWM in RRMS over the course of 6 months. Longer follow-up periods may be required to establish demonstrable changes in NAWM based on of MWF, GMT(2) and T(1) metrics.
Slope histogram distribution-based parametrisation of Martian geomorphic features
NASA Astrophysics Data System (ADS)
Balint, Zita; Székely, Balázs; Kovács, Gábor
2014-05-01
The application of geomorphometric methods on the large Martian digital topographic datasets paves the way to analyse the Martian areomorphic processes in more detail. One of the numerous methods is the analysis is to analyse local slope distributions. To this implementation a visualization program code was developed that allows to calculate the local slope histograms and to compare them based on Kolmogorov distance criterion. As input data we used the digital elevation models (DTMs) derived from HRSC high-resolution stereo camera image from various Martian regions. The Kolmogorov-criterion based discrimination produces classes of slope histograms that displayed using coloration obtaining an image map. In this image map the distribution can be visualized by their different colours representing the various classes. Our goal is to create a local slope histogram based classification for large Martian areas in order to obtain information about general morphological characteristics of the region. This is a contribution of the TMIS.ascrea project, financed by the Austrian Research Promotion Agency (FFG). The present research is partly realized in the frames of TÁMOP 4.2.4.A/2-11-1-2012-0001 high priority "National Excellence Program - Elaborating and Operating an Inland Student and Researcher Personal Support System convergence program" project's scholarship support, using Hungarian state and European Union funds and cofinances from the European Social Fund.
ADC Histogram Analysis of Cervical Cancer Aids Detecting Lymphatic Metastases-a Preliminary Study.
Schob, Stefan; Meyer, Hans Jonas; Pazaitis, Nikolaos; Schramm, Dominik; Bremicker, Kristina; Exner, Marc; Höhn, Anne Kathrin; Garnov, Nikita; Surov, Alexey
2017-12-01
Apparent diffusion coefficient (ADC) histogram analysis has been used to some extent in cervical cancer (CC) to distinguish between low-grade and high-grade tumors. Although this differentiation is undoubtedly helpful, it would be even more crucial in the presurgical setting to determine whether a tumor already gained the potential to metastasize via the lymphatic system. So far, no studies investigated the potential of 3T ADC histogram analysis in CC to differentiate between nodal-positive and nodal-negative entities. Therefore, the principal aim of our study was to investigate the potential of 3T ADC histogram analysis to differentiate between CC with and without lymph node metastasis. The second aim was to elucidate possible differences in ADC histogram parameters between CC with limited vs. advanced tumor stages and well-differentiated vs. undifferentiated lesions. Finally, correlations of p53 expression and Ki-67 index with ADC parameters were analyzed. Eighteen female patients (mean age 55.4 years, range 32-79 years) with histopathologically confirmed cervical squamous cell carcinoma of the uterine cervix were prospectively enrolled. Tumor stages, tumor grading, status of metastatic dissemination, Ki67-index, and p53 expression were assessed in these patients. Diffusion weighted imaging (DWI) was obtained in a 3T scanner using the following b values: b0 and b1000 s/mm 2 . Group comparisons using Mann-Whitney U test revealed the following findings: nodal-positive CC had statistically significant lower ADC parameters (ADCmin, ADCmean, median ADC, Mode, p10, p25, p75, and p90) in comparison to nodal-negative CC (all p < 0.05). ADCentropy was significantly elevated (p = 0.046) in tumors with advanced T stages (T3/4) compared to tumors with limited T stage (T2). ADCmin values were different in a statistically significant manner comparing G1/G2 and G3 tumors (40.45 ± 18.63 vs. 65.0 ± 23.63 × 10-5 mm2 s -1 , p = 0.035). Furthermore, Spearman Rho calculation identified an inverse correlation between ADCentropy and p53 expression (r = -0.472, p = 0.048). The main finding of our study is the discriminability of nodal-positive from nodal-negative CC using ADC histogram analysis in 3T DWI. This information is crucial for the gynecological surgeon to identify the optimal treatment strategy for patients suffering from CC. Furthermore, ADCentropy was identified as a potential imaging biomarker for tumor heterogeneity and might be able to indicate further molecular changes like loss of p53 expression, which is associated with EMT and consequentially indicates a poor prognosis in CC. Finally, our study confirmed the findings of previous works, which indicated that histogram analysis of ADC maps can distinguish between low-grade and high-grade CC. In conclusion, it can be stated that ADC histogram analysis provides additional, prognostically important information on tumor biology in CC.
Biological hierarchies and the nature of extinction.
Congreve, Curtis R; Falk, Amanda R; Lamsdell, James C
2018-05-01
Hierarchy theory recognises that ecological and evolutionary units occur in a nested and interconnected hierarchical system, with cascading effects occurring between hierarchical levels. Different biological disciplines have routinely come into conflict over the primacy of different forcing mechanisms behind evolutionary and ecological change. These disconnects arise partly from differences in perspective (with some researchers favouring ecological forcing mechanisms while others favour developmental/historical mechanisms), as well as differences in the temporal framework in which workers operate. In particular, long-term palaeontological data often show that large-scale (macro) patterns of evolution are predominantly dictated by shifts in the abiotic environment, while short-term (micro) modern biological studies stress the importance of biotic interactions. We propose that thinking about ecological and evolutionary interactions in a hierarchical framework is a fruitful way to resolve these conflicts. Hierarchy theory suggests that changes occurring at lower hierarchical levels can have unexpected, complex effects at higher scales due to emergent interactions between simple systems. In this way, patterns occurring on short- and long-term time scales are equally valid, as changes that are driven from lower levels will manifest in different forms at higher levels. We propose that the dual hierarchy framework fits well with our current understanding of evolutionary and ecological theory. Furthermore, we describe how this framework can be used to understand major extinction events better. Multi-generational attritional loss of reproductive fitness (MALF) has recently been proposed as the primary mechanism behind extinction events, whereby extinction is explainable solely through processes that result in extirpation of populations through a shutdown of reproduction. While not necessarily explicit, the push to explain extinction through solely population-level dynamics could be used to suggest that environmentally mediated patterns of extinction or slowed speciation across geological time are largely artefacts of poor preservation or a coarse temporal scale. We demonstrate how MALF fits into a hierarchical framework, showing that MALF can be a primary forcing mechanism at lower scales that still results in differential survivorship patterns at the species and clade level which vary depending upon the initial environmental forcing mechanism. Thus, even if MALF is the primary mechanism of extinction across all mass extinction events, the primary environmental cause of these events will still affect the system and result in differential responses. Therefore, patterns at both temporal scales are relevant. © 2017 Cambridge Philosophical Society.
Strong influence of variable treatment on the performance of numerically defined ecological regions.
Snelder, Ton; Lehmann, Anthony; Lamouroux, Nicolas; Leathwick, John; Allenbach, Karin
2009-10-01
Numerical clustering has frequently been used to define hierarchically organized ecological regionalizations, but there has been little robust evaluation of their performance (i.e., the degree to which regions discriminate areas with similar ecological character). In this study we investigated the effect of the weighting and treatment of input variables on the performance of regionalizations defined by agglomerative clustering across a range of hierarchical levels. For this purpose, we developed three ecological regionalizations of Switzerland of increasing complexity using agglomerative clustering. Environmental data for our analysis were drawn from a 400 m grid and consisted of estimates of 11 environmental variables for each grid cell describing climate, topography and lithology. Regionalization 1 was defined from the environmental variables which were given equal weights. We used the same variables in Regionalization 2 but weighted and transformed them on the basis of a dissimilarity model that was fitted to land cover composition data derived for a random sample of cells from interpretation of aerial photographs. Regionalization 3 was a further two-stage development of Regionalization 2 where specific classifications, also weighted and transformed using dissimilarity models, were applied to 25 small scale "sub-domains" defined by Regionalization 2. Performance was assessed in terms of the discrimination of land cover composition for an independent set of sites using classification strength (CS), which measured the similarity of land cover composition within classes and the dissimilarity between classes. Regionalization 2 performed significantly better than Regionalization 1, but the largest gains in performance, compared to Regionalization 1, occurred at coarse hierarchical levels (i.e., CS did not increase significantly beyond the 25-region level). Regionalization 3 performed better than Regionalization 2 beyond the 25-region level and CS values continued to increase to the 95-region level. The results show that the performance of regionalizations defined by agglomerative clustering are sensitive to variable weighting and transformation. We conclude that large gains in performance can be achieved by training classifications using dissimilarity models. However, these gains are restricted to a narrow range of hierarchical levels because agglomerative clustering is unable to represent the variation in importance of variables at different spatial scales. We suggest that further advances in the numerical definition of hierarchically organized ecological regionalizations will be possible with techniques developed in the field of statistical modeling of the distribution of community composition.
Flare Activity of Wide Binary Stars with Kepler
NASA Astrophysics Data System (ADS)
Clarke, Riley W.; Davenport, James R. A.; Covey, Kevin R.; Baranec, Christoph
2018-01-01
We present an analysis of flare activity in wide binary stars using a combination of value-added data sets from the NASA Kepler mission. The target list contains a set of previously discovered wide binary star systems identified by proper motions in the Kepler field. We cross-matched these systems with estimates of flare activity for ∼200,000 stars in the Kepler field, allowing us to compare relative flare luminosity between stars in coeval binaries. From a sample of 184 previously known wide binaries in the Kepler field, we find 58 with detectable flare activity in at least 1 component, 33 of which are similar in mass (q > 0.8). Of these 33 equal-mass binaries, the majority display similar (±1 dex) flare luminosity between both stars, as expected for stars of equal mass and age. However, we find two equal-mass pairs where the secondary (lower mass) star is more active than its counterpart, and two equal-mass pairs where the primary star is more active. The stellar rotation periods are also anomalously fast for stars with elevated flare activity. Pairs with discrepant rotation and activity qualitatively seem to have lower mass ratios. These outliers may be due to tidal spin-up, indicating these wide binaries could be hierarchical triple systems. We additionally present high-resolution adaptive optics images for two wide binary systems to test this hypothesis. The demographics of stellar rotation and magnetic activity between stars in wide binaries may be useful indicators for discerning the formation scenarios of these systems.
Ocean Wave Slope Statistics from Automated Analysis of Sun Glitter Photographs
1985-06-01
8217*.... . .. , .. . .. I 1 SCONTROL MAPCROSSREF.LAdEf_ 2 Si4OuTINE HDSPLY ( HTST . No NAME. XO. XSTEPI 3 C 4 C SIUBROUTINE TO nISPLAY A UNIVARIATE HISTOGRAM...LYRANON. CSC, FESRUARV ?6s 1qA0. 7 C a C HTST z HISTOGRAM ARRAY. 9 C NT 0 ROW DIMFNSION OF HIST. to C N.1 x COLUMN DIMENSTnN OF MIST. it C 12 REAL HIST
Sample Training Based Wildfire Segmentation by 2D Histogram θ-Division with Minimum Error
Dong, Erqian; Sun, Mingui; Jia, Wenyan; Zhang, Dengyi; Yuan, Zhiyong
2013-01-01
A novel wildfire segmentation algorithm is proposed with the help of sample training based 2D histogram θ-division and minimum error. Based on minimum error principle and 2D color histogram, the θ-division methods were presented recently, but application of prior knowledge on them has not been explored. For the specific problem of wildfire segmentation, we collect sample images with manually labeled fire pixels. Then we define the probability function of error division to evaluate θ-division segmentations, and the optimal angle θ is determined by sample training. Performances in different color channels are compared, and the suitable channel is selected. To further improve the accuracy, the combination approach is presented with both θ-division and other segmentation methods such as GMM. Our approach is tested on real images, and the experiments prove its efficiency for wildfire segmentation. PMID:23878526
Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.
2014-01-01
Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.
High frequency measurements of shot noise suppression in atomic-scale metal contacts
NASA Astrophysics Data System (ADS)
Wheeler, Patrick J.; Evans, Kenneth; Russom, Jeffrey; King, Nicholas; Natelson, Douglas
2009-03-01
Shot noise provides a means of assessing the number and transmission coefficients of transmitting channels in atomic- and molecular-scale junctions. Previous experiments at low temperatures in metal and semiconductor point contacts have demonstrated the expected suppression of shot noise when junction conductance is near an integer multiple of the conductance quantum, G0≡2e^2/h. Using high frequency techniques, we demonstrate the high speed acquisition of such data at room temperature in mechanical break junctions. In clean Au contacts conductance histograms with clear peaks at G0, 2G0, and 3G0 are acquired within hours, and histograms of simultaneous measurements of the shot noise show clear suppression at those conductance values. We describe the dependence of the noise on bias voltage and analyze the noise vs. conductance histograms in terms of a model that averages over transmission coefficients.
Lindemann histograms as a new method to analyse nano-patterns and phases
NASA Astrophysics Data System (ADS)
Makey, Ghaith; Ilday, Serim; Tokel, Onur; Ibrahim, Muhamet; Yavuz, Ozgun; Pavlov, Ihor; Gulseren, Oguz; Ilday, Omer
The detection, observation, and analysis of material phases and atomistic patterns are of great importance for understanding systems exhibiting both equilibrium and far-from-equilibrium dynamics. As such, there is intense research on phase transitions and pattern dynamics in soft matter, statistical and nonlinear physics, and polymer physics. In order to identify phases and nano-patterns, the pair correlation function is commonly used. However, this approach is limited in terms of recognizing competing patterns in dynamic systems, and lacks visualisation capabilities. In order to solve these limitations, we introduce Lindemann histogram quantification as an alternative method to analyse solid, liquid, and gas phases, along with hexagonal, square, and amorphous nano-pattern symmetries. We show that the proposed approach based on Lindemann parameter calculated per particle maps local number densities to material phase or particles pattern. We apply the Lindemann histogram method on dynamical colloidal self-assembly experimental data and identify competing patterns.
NASA Astrophysics Data System (ADS)
Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Chen, C.
2018-04-01
In view of the traditional change detection algorithm mainly depends on the spectral information image spot, failed to effectively mining and fusion of multi-image feature detection advantage, the article borrows the ideas of object oriented analysis proposed a multi feature fusion of remote sensing image change detection algorithm. First by the multi-scale segmentation of image objects based; then calculate the various objects of color histogram and linear gradient histogram; utilizes the color distance and edge line feature distance between EMD statistical operator in different periods of the object, using the adaptive weighted method, the color feature distance and edge in a straight line distance of combination is constructed object heterogeneity. Finally, the curvature histogram analysis image spot change detection results. The experimental results show that the method can fully fuse the color and edge line features, thus improving the accuracy of the change detection.
Efficient HIK SVM learning for image classification.
Wu, Jianxin
2012-10-01
Histograms are used in almost every aspect of image processing and computer vision, from visual descriptors to image representations. Histogram intersection kernel (HIK) and support vector machine (SVM) classifiers are shown to be very effective in dealing with histograms. This paper presents contributions concerning HIK SVM for image classification. First, we propose intersection coordinate descent (ICD), a deterministic and scalable HIK SVM solver. ICD is much faster than, and has similar accuracies to, general purpose SVM solvers and other fast HIK SVM training methods. We also extend ICD to the efficient training of a broader family of kernels. Second, we show an important empirical observation that ICD is not sensitive to the C parameter in SVM, and we provide some theoretical analyses to explain this observation. ICD achieves high accuracies in many problems, using its default parameters. This is an attractive property for practitioners, because many image processing tasks are too large to choose SVM parameters using cross-validation.
A method for real-time implementation of HOG feature extraction
NASA Astrophysics Data System (ADS)
Luo, Hai-bo; Yu, Xin-rong; Liu, Hong-mei; Ding, Qing-hai
2011-08-01
Histogram of oriented gradient (HOG) is an efficient feature extraction scheme, and HOG descriptors are feature descriptors which is widely used in computer vision and image processing for the purpose of biometrics, target tracking, automatic target detection(ATD) and automatic target recognition(ATR) etc. However, computation of HOG feature extraction is unsuitable for hardware implementation since it includes complicated operations. In this paper, the optimal design method and theory frame for real-time HOG feature extraction based on FPGA were proposed. The main principle is as follows: firstly, the parallel gradient computing unit circuit based on parallel pipeline structure was designed. Secondly, the calculation of arctangent and square root operation was simplified. Finally, a histogram generator based on parallel pipeline structure was designed to calculate the histogram of each sub-region. Experimental results showed that the HOG extraction can be implemented in a pixel period by these computing units.
NASA Astrophysics Data System (ADS)
Phan, Raymond; Androutsos, Dimitrios
2008-01-01
In this paper, we present a logo and trademark retrieval system for unconstrained color image databases that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme. We introduce more accurate information to the CECH, by virtue of incorporating color edge detection using vector order statistics. This produces a more accurate representation of edges in color images, in comparison to the simple color pixel difference classification of edges as seen in the CECH. Our proposed method is thus reliant on edge gradient information, and as such, we call this the Color Edge Gradient Co-occurrence Histogram (CEGCH). We use this as the main mechanism for our unconstrained color logo and trademark retrieval scheme. Results illustrate that the proposed retrieval system retrieves logos and trademarks with good accuracy, and outperforms the CECH object detection scheme with higher precision and recall.
Zukotynski, Katherine A; Vajapeyam, Sridhar; Fahey, Frederic H; Kocak, Mehmet; Brown, Douglas; Ricci, Kelsey I; Onar-Thomas, Arzu; Fouladi, Maryam; Poussaint, Tina Young
2017-08-01
The purpose of this study was to describe baseline 18 F-FDG PET voxel characteristics in pediatric diffuse intrinsic pontine glioma (DIPG) and to correlate these metrics with baseline MRI apparent diffusion coefficient (ADC) histogram metrics, progression-free survival (PFS), and overall survival. Methods: Baseline brain 18 F-FDG PET and MRI scans were obtained in 33 children from Pediatric Brain Tumor Consortium clinical DIPG trials. 18 F-FDG PET images, postgadolinium MR images, and ADC MR images were registered to baseline fluid attenuation inversion recovery MR images. Three-dimensional regions of interest on fluid attenuation inversion recovery MR images and postgadolinium MR images and 18 F-FDG PET and MR ADC histograms were generated. Metrics evaluated included peak number, skewness, and kurtosis. Correlation between PET and MR ADC histogram metrics was evaluated. PET pixel values within the region of interest for each tumor were plotted against MR ADC values. The association of these imaging markers with survival was described. Results: PET histograms were almost always unimodal (94%, vs. 6% bimodal). None of the PET histogram parameters (skewness or kurtosis) had a significant association with PFS, although a higher PET postgadolinium skewness tended toward a less favorable PFS (hazard ratio, 3.48; 95% confidence interval [CI], 0.75-16.28 [ P = 0.11]). There was a significant association between higher MR ADC postgadolinium skewness and shorter PFS (hazard ratio, 2.56; 95% CI, 1.11-5.91 [ P = 0.028]), and there was the suggestion that this also led to shorter overall survival (hazard ratio, 2.18; 95% CI, 0.95-5.04 [ P = 0.067]). Higher MR ADC postgadolinium kurtosis tended toward shorter PFS (hazard ratio, 1.30; 95% CI, 0.98-1.74 [ P = 0.073]). PET and MR ADC pixel values were negatively correlated using the Pearson correlation coefficient. Further, the level of PET and MR ADC correlation was significantly positively associated with PFS; tumors with higher values of ADC-PET correlation had more favorable PFS (hazard ratio, 0.17; 95% CI, 0.03-0.89 [ P = 0.036]), suggesting that a higher level of negative ADC-PET correlation leads to less favorable PFS. A more significant negative correlation may indicate higher-grade elements within the tumor leading to poorer outcomes. Conclusion: 18 F-FDG PET and MR ADC histogram metrics in pediatric DIPG demonstrate different characteristics with often a negative correlation between PET and MR ADC pixel values. A higher negative correlation is associated with a worse PFS, which may indicate higher-grade elements within the tumor. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Freudberg, Halima; Contractor, Sana; Das, Abhijit; Kemp, Christopher G; Nevin, Paul E; Phadiyal, Ashima; Lal, Jagdish; Rao, Deepa
2018-02-01
This paper reports on the results of a process and impact evaluation to assess the effects of a project aiming to engage men in changing gender stereotypes and improving health outcomes for women in villages in Rajasthan, India. We conducted seven focus group discussions with participants in the programme and six in-depth interviews with intervention group leaders. We also conducted 137 pre- and 70 post-intervention surveys to assess participant and community knowledge, attitudes and behaviours surrounding gender, violence and sexuality. We used thematic analysis to identify process and impact themes, and hierarchical mixed linear regression for the primary outcome analysis of survey responses. Post-intervention, significant changes in knowledge and attitudes regarding gender, sexuality and violence were made on the individual level by participants, as well as in the community. Moderate behavioural changes were seen in individuals and in the community. Study findings offer a strong model for prevention programmes working with young men to create a community effect in encouraging gender equality in social norms.
Engineering Social Justice into Traffic Control for Self-Driving Vehicles?
Mladenovic, Milos N; McPherson, Tristram
2016-08-01
The convergence of computing, sensing, and communication technology will soon permit large-scale deployment of self-driving vehicles. This will in turn permit a radical transformation of traffic control technology. This paper makes a case for the importance of addressing questions of social justice in this transformation, and sketches a preliminary framework for doing so. We explain how new forms of traffic control technology have potential implications for several dimensions of social justice, including safety, sustainability, privacy, efficiency, and equal access. Our central focus is on efficiency and equal access as desiderata for traffic control design. We explain the limitations of conventional traffic control in meeting these desiderata, and sketch a preliminary vision for a next-generation traffic control tailored to address better the demands of social justice. One component of this vision is cooperative, hierarchically distributed self-organization among vehicles. Another component of this vision is a priority system enabling selection of priority levels by the user for each vehicle trip in the network, based on the supporting structure of non-monetary credits.
Little, Chelsea J; Altermatt, Florian
2018-04-11
Abiotic conditions have long been considered essential in structuring freshwater macroinvertebrate communities. Ecological drift, dispersal and biotic interactions also structure communities, and although these mechanisms are more difficult to detect, they may be of equal importance in natural communities. Here, we hypothesized that in 10 naturally replicated headwater streams in eastern Switzerland, locally dominant amphipod species would be associated with differences in environmental conditions. We conducted repeated surveys of amphipods and used a hierarchical joint species distribution model to assess the influence of different drivers on species co-occurrences. The species had unique environmental requirements, but a distinct spatial structure in their distributions was unrelated to habitat. Species co-occurred much less frequently than predicted by the model, which was surprising because laboratory and field evidence suggests they are capable of coexisting in equal densities. We suggest that niche preemption may limit their distribution and that a blocking effect related to the specific linear configuration of streams determines which species colonizes and dominates a given stream catchment, thus suggesting a new solution a long-standing conundrum in freshwater ecology. © 2018 The Author(s).
On the Relationship Between Neighborhood Perception, Length of Residence and Co-Ethnic Concentration
Saenz, Joseph
2014-01-01
We investigate how co-ethnic concentration and length of residence are related to neighborhood perception in aged Mexican Americans, and discuss sources of information for measuring social environments. Neighborhood perception scale, length of residence in current home, and all individual-level covariates in a hierarchical linear model are derived from data on community-dwelling older adults. Tract-level measures are obtained from Census data. We find no relationship between co-ethnic concentration and positive neighborhood perception, and find a direct relationship between length of residence and positive neighborhood perception. Until further evidence is found, different sources of information when measuring place should be treated equally. PMID:25057331
Renormalization group invariant of lepton Yukawa couplings
NASA Astrophysics Data System (ADS)
Tsuyuki, Takanao
2015-04-01
By using quark Yukawa matrices only, we can construct renormalization invariants that are exact at the one-loop level in the standard model. One of them, Iq, is accidentally consistent with unity, even though quark masses are strongly hierarchical. We calculate a lepton version of the invariant Il for Dirac and Majorana neutrino cases and find that Il can also be close to unity. For the Dirac neutrino and inverted hierarchy case, if the lightest neutrino mass is 3.0 meV to 8.8 meV, an equality Iq=Il can be satisfied. These invariants are not changed even if new particles couple to the standard model particles, as long as those couplings are generation independent.
NASA Astrophysics Data System (ADS)
Pal, S. K.; Majumdar, T. J.; Bhattacharya, Amit K.
Fusion of optical and synthetic aperture radar data has been attempted in the present study for mapping of various lithologic units over a part of the Singhbhum Shear Zone (SSZ) and its surroundings. ERS-2 SAR data over the study area has been enhanced using Fast Fourier Transformation (FFT) based filtering approach, and also using Frost filtering technique. Both the enhanced SAR imagery have been then separately fused with histogram equalized IRS-1C LISS III image using Principal Component Analysis (PCA) technique. Later, Feature-oriented Principal Components Selection (FPCS) technique has been applied to generate False Color Composite (FCC) images, from which corresponding geological maps have been prepared. Finally, GIS techniques have been successfully used for change detection analysis in the lithological interpretation between the published geological map and the fusion based geological maps. In general, there is good agreement between these maps over a large portion of the study area. Based on the change detection studies, few areas could be identified which need attention for further detailed ground-based geological studies.
Angular relational signature-based chest radiograph image view classification.
Santosh, K C; Wendling, Laurent
2018-01-22
In a computer-aided diagnosis (CAD) system, especially for chest radiograph or chest X-ray (CXR) screening, CXR image view information is required. Automatically separating CXR image view, frontal and lateral can ease subsequent CXR screening process, since the techniques may not equally work for both views. We present a novel technique to classify frontal and lateral CXR images, where we introduce angular relational signature through force histogram to extract features and apply three different state-of-the-art classifiers: multi-layer perceptron, random forest, and support vector machine to make a decision. We validated our fully automatic technique on a set of 8100 images hosted by the U.S. National Library of Medicine (NLM), National Institutes of Health (NIH), and achieved an accuracy close to 100%. Our method outperforms the state-of-the-art methods in terms of processing time (less than or close to 2 s for the whole test data) while the accuracies can be compared, and therefore, it justifies its practicality. Graphical Abstract Interpreting chest X-ray (CXR) through the angular relational signature.
Olea, Ricardo A.; Luppens, James A.
2012-01-01
There are multiple ways to characterize uncertainty in the assessment of coal resources, but not all of them are equally satisfactory. Increasingly, the tendency is toward borrowing from the statistical tools developed in the last 50 years for the quantitative assessment of other mineral commodities. Here, we briefly review the most recent of such methods and formulate a procedure for the systematic assessment of multi-seam coal deposits taking into account several geological factors, such as fluctuations in thickness, erosion, oxidation, and bed boundaries. A lignite deposit explored in three stages is used for validating models based on comparing a first set of drill holes against data from infill and development drilling. Results were fully consistent with reality, providing a variety of maps, histograms, and scatterplots characterizing the deposit and associated uncertainty in the assessments. The geostatistical approach was particularly informative in providing a probability distribution modeling deposit wide uncertainty about total resources and a cumulative distribution of coal tonnage as a function of local uncertainty.
A novel retinal vessel extraction algorithm based on matched filtering and gradient vector flow
NASA Astrophysics Data System (ADS)
Yu, Lei; Xia, Mingliang; Xuan, Li
2013-10-01
The microvasculature network of retina plays an important role in the study and diagnosis of retinal diseases (age-related macular degeneration and diabetic retinopathy for example). Although it is possible to noninvasively acquire high-resolution retinal images with modern retinal imaging technologies, non-uniform illumination, the low contrast of thin vessels and the background noises all make it difficult for diagnosis. In this paper, we introduce a novel retinal vessel extraction algorithm based on gradient vector flow and matched filtering to segment retinal vessels with different likelihood. Firstly, we use isotropic Gaussian kernel and adaptive histogram equalization to smooth and enhance the retinal images respectively. Secondly, a multi-scale matched filtering method is adopted to extract the retinal vessels. Then, the gradient vector flow algorithm is introduced to locate the edge of the retinal vessels. Finally, we combine the results of matched filtering method and gradient vector flow algorithm to extract the vessels at different likelihood levels. The experiments demonstrate that our algorithm is efficient and the intensities of vessel images exactly represent the likelihood of the vessels.
NASA Astrophysics Data System (ADS)
Hsieh, Cheng-Ta; Huang, Kae-Horng; Lee, Chang-Hsing; Han, Chin-Chuan; Fan, Kuo-Chin
2017-12-01
Robust face recognition under illumination variations is an important and challenging task in a face recognition system, particularly for face recognition in the wild. In this paper, a face image preprocessing approach, called spatial adaptive shadow compensation (SASC), is proposed to eliminate shadows in the face image due to different lighting directions. First, spatial adaptive histogram equalization (SAHE), which uses face intensity prior model, is proposed to enhance the contrast of each local face region without generating visible noises in smooth face areas. Adaptive shadow compensation (ASC), which performs shadow compensation in each local image block, is then used to produce a wellcompensated face image appropriate for face feature extraction and recognition. Finally, null-space linear discriminant analysis (NLDA) is employed to extract discriminant features from SASC compensated images. Experiments performed on the Yale B, Yale B extended, and CMU PIE face databases have shown that the proposed SASC always yields the best face recognition accuracy. That is, SASC is more robust to face recognition under illumination variations than other shadow compensation approaches.
NASA Astrophysics Data System (ADS)
Paramanandham, Nirmala; Rajendiran, Kishore
2018-01-01
A novel image fusion technique is presented for integrating infrared and visible images. Integration of images from the same or various sensing modalities can deliver the required information that cannot be delivered by viewing the sensor outputs individually and consecutively. In this paper, a swarm intelligence based image fusion technique using discrete cosine transform (DCT) domain is proposed for surveillance application which integrates the infrared image with the visible image for generating a single informative fused image. Particle swarm optimization (PSO) is used in the fusion process for obtaining the optimized weighting factor. These optimized weighting factors are used for fusing the DCT coefficients of visible and infrared images. Inverse DCT is applied for obtaining the initial fused image. An enhanced fused image is obtained through adaptive histogram equalization for a better visual understanding and target detection. The proposed framework is evaluated using quantitative metrics such as standard deviation, spatial frequency, entropy and mean gradient. The experimental results demonstrate the outperformance of the proposed algorithm over many other state- of- the- art techniques reported in literature.
Classification of stroke disease using convolutional neural network
NASA Astrophysics Data System (ADS)
Marbun, J. T.; Seniman; Andayani, U.
2018-03-01
Stroke is a condition that occurs when the blood supply stop flowing to the brain because of a blockage or a broken blood vessel. A symptoms that happen when experiencing stroke, some of them is a dropped consciousness, disrupted vision and paralyzed body. The general examination is being done to get a picture of the brain part that have stroke using Computerized Tomography (CT) Scan. The image produced from CT will be manually checked and need a proper lighting by doctor to get a type of stroke. That is why it needs a method to classify stroke from CT image automatically. A method proposed in this research is Convolutional Neural Network. CT image of the brain is used as the input for image processing. The stage before classification are image processing (Grayscaling, Scaling, Contrast Limited Adaptive Histogram Equalization, then the image being classified with Convolutional Neural Network. The result then showed that the method significantly conducted was able to be used as a tool to classify stroke disease in order to distinguish the type of stroke from CT image.
Rehm, K; Seeley, G W; Dallas, W J; Ovitt, T W; Seeger, J F
1990-01-01
One of the goals of our research in the field of digital radiography has been to develop contrast-enhancement algorithms for eventual use in the display of chest images on video devices with the aim of preserving the diagnostic information presently available with film, some of which would normally be lost because of the smaller dynamic range of video monitors. The ASAHE algorithm discussed in this article has been tested by investigating observer performance in a difficult detection task involving phantoms and simulated lung nodules, using film as the output medium. The results of the experiment showed that the algorithm is successful in providing contrast-enhanced, natural-looking chest images while maintaining diagnostic information. The algorithm did not effect an increase in nodule detectability, but this was not unexpected because film is a medium capable of displaying a wide range of gray levels. It is sufficient at this stage to show that there is no degradation in observer performance. Future tests will evaluate the performance of the ASAHE algorithm in preparing chest images for video display.
A novel method for segmentation of Infrared Scanning Laser Ophthalmoscope (IR-SLO) images of retina.
Ajaz, Aqsa; Aliahmad, Behzad; Kumar, Dinesh K
2017-07-01
Retinal vessel segmentation forms an essential element of automatic retinal disease screening systems. The development of multimodal imaging system with IR-SLO and OCT could help in studying the early stages of retinal disease. The advantages of IR-SLO to examine the alterations in the structure of retina and direct correlation with OCT can be useful for assessment of various diseases. This paper presents an automatic method for segmentation of IR-SLO fundus images based on the combination of morphological filters and image enhancement techniques. As a first step, the retinal vessels are contrasted using morphological filters followed by background exclusion using Contrast Limited Adaptive Histogram Equalization (CLAHE) and Bilateral filtering. The final segmentation is obtained by using Isodata technique. Our approach was tested on a set of 26 IR-SLO images and results were compared to two set of gold standard images. The performance of the proposed method was evaluated in terms of sensitivity, specificity and accuracy. The system has an average accuracy of 0.90 for both the sets.
NASA Technical Reports Server (NTRS)
Malila, W. A. (Principal Investigator)
1983-01-01
Two full frames of radiometrically corrected LANDSAT-4 MSS data were examined to determine a number of radiometric properties. It was found that LANDSAT-4 MSS produces data of good quality with dynamic ranges and target responses qualitatively similar to those of previous MSS sensors. Banding appears to be quite well corrected, with a residual rms error of about 0.3 digital counts being measured; the histogram equalization algorithm appears to be working as advertised. A low level coherent noise effect was found in all bands, appearing in uniform areas as a diagonal striping pattern. The principle component of this noise was found by Fourier analysis to be a highly consistent wavelength of 3.6 pixels along a scan line (28 KHz). The magnitude of this effect ranged from about 0.75 of one count in the worst band (Band 1) to only about 0.25 counts in the best band (Band 4). Preparations were made for establishing a relative radiometric calibration from MSS 4 data with respect to MSS 3.
Development of digital interactive processing system for NOAA satellites AVHRR data
NASA Astrophysics Data System (ADS)
Gupta, R. K.; Murthy, N. N.
The paper discusses the digital image processing system for NOAA/AVHRR data including Land applications - configured around VAX 11/750 host computer supported with FPS 100 Array Processor, Comtal graphic display and HP Plotting devices; wherein the system software for relational Data Base together with query and editing facilities, Man-Machine Interface using form, menu and prompt inputs including validation of user entries for data type and range; preprocessing software for data calibration, Sun-angle correction, Geometric Corrections for Earth curvature effect and Earth rotation offsets and Earth location of AVHRR image have been accomplished. The implemented image enhancement techniques such as grey level stretching, histogram equalization and convolution are discussed. The software implementation details for the computation of vegetative index and normalized vegetative index using NOAA/AVHRR channels 1 and 2 data together with output are presented; scientific background for such computations and obtainability of similar indices from Landsat/MSS data are also included. The paper concludes by specifying the further software developments planned and the progress envisaged in the field of vegetation index studies.
PuffinPlot: A versatile, user-friendly program for paleomagnetic analysis
NASA Astrophysics Data System (ADS)
Lurcock, P. C.; Wilson, G. S.
2012-06-01
PuffinPlot is a user-friendly desktop application for analysis of paleomagnetic data, offering a unique combination of features. It runs on several operating systems, including Windows, Mac OS X, and Linux; supports both discrete and long core data; and facilitates analysis of very weakly magnetic samples. As well as interactive graphical operation, PuffinPlot offers batch analysis for large volumes of data, and a Python scripting interface for programmatic control of its features. Available data displays include demagnetization/intensity, Zijderveld, equal-area (for sample, site, and suite level demagnetization data, and for magnetic susceptibility anisotropy data), a demagnetization data table, and a natural remanent magnetization intensity histogram. Analysis types include principal component analysis, Fisherian statistics, and great-circle path intersections. The results of calculations can be exported as CSV (comma-separated value) files; graphs can be printed, and can also be saved as publication-quality vector files in SVG or PDF format. PuffinPlot is free, and the program, user manual, and fully documented source code may be downloaded from http://code.google.com/p/puffinplot/.
Iris double recognition based on modified evolutionary neural network
NASA Astrophysics Data System (ADS)
Liu, Shuai; Liu, Yuan-Ning; Zhu, Xiao-Dong; Huo, Guang; Liu, Wen-Tao; Feng, Jia-Kai
2017-11-01
Aiming at multicategory iris recognition under illumination and noise interference, this paper proposes a method of iris double recognition based on a modified evolutionary neural network. An equalization histogram and Laplace of Gaussian operator are used to process the iris to suppress illumination and noise interference and Haar wavelet to convert the iris feature to binary feature encoding. Calculate the Hamming distance for the test iris and template iris , and compare with classification threshold, determine the type of iris. If the iris cannot be identified as a different type, there needs to be a secondary recognition. The connection weights in back-propagation (BP) neural network use modified evolutionary neural network to adaptively train. The modified neural network is composed of particle swarm optimization with mutation operator and BP neural network. According to different iris libraries in different circumstances of experimental results, under illumination and noise interference, the correct recognition rate of this algorithm is higher, the ROC curve is closer to the coordinate axis, the training and recognition time is shorter, and the stability and the robustness are better.
Jaafar, Haryati; Ibrahim, Salwani; Ramli, Dzati Athiar
2015-01-01
Mobile implementation is a current trend in biometric design. This paper proposes a new approach to palm print recognition, in which smart phones are used to capture palm print images at a distance. A touchless system was developed because of public demand for privacy and sanitation. Robust hand tracking, image enhancement, and fast computation processing algorithms are required for effective touchless and mobile-based recognition. In this project, hand tracking and the region of interest (ROI) extraction method were discussed. A sliding neighborhood operation with local histogram equalization, followed by a local adaptive thresholding or LHEAT approach, was proposed in the image enhancement stage to manage low-quality palm print images. To accelerate the recognition process, a new classifier, improved fuzzy-based k nearest centroid neighbor (IFkNCN), was implemented. By removing outliers and reducing the amount of training data, this classifier exhibited faster computation. Our experimental results demonstrate that a touchless palm print system using LHEAT and IFkNCN achieves a promising recognition rate of 98.64%. PMID:26113861
NASA Astrophysics Data System (ADS)
Elshahaby, Fatma E. A.; Ghaly, Michael; Jha, Abhinav K.; Frey, Eric C.
2015-03-01
Model Observers are widely used in medical imaging for the optimization and evaluation of instrumentation, acquisition parameters and image reconstruction and processing methods. The channelized Hotelling observer (CHO) is a commonly used model observer in nuclear medicine and has seen increasing use in other modalities. An anthropmorphic CHO consists of a set of channels that model some aspects of the human visual system and the Hotelling Observer, which is the optimal linear discriminant. The optimality of the CHO is based on the assumption that the channel outputs for data with and without the signal present have a multivariate normal distribution with equal class covariance matrices. The channel outputs result from the dot product of channel templates with input images and are thus the sum of a large number of random variables. The central limit theorem is thus often used to justify the assumption that the channel outputs are normally distributed. In this work, we aim to examine this assumption for realistically simulated nuclear medicine images when various types of signal variability are present.
Voids and constraints on nonlinear clustering of galaxies
NASA Technical Reports Server (NTRS)
Vogeley, Michael S.; Geller, Margaret J.; Park, Changbom; Huchra, John P.
1994-01-01
Void statistics of the galaxy distribution in the Center for Astrophysics Redshift Survey provide strong constraints on galaxy clustering in the nonlinear regime, i.e., on scales R equal to or less than 10/h Mpc. Computation of high-order moments of the galaxy distribution requires a sample that (1) densely traces the large-scale structure and (2) covers sufficient volume to obtain good statistics. The CfA redshift survey densely samples structure on scales equal to or less than 10/h Mpc and has sufficient depth and angular coverage to approach a fair sample on these scales. In the nonlinear regime, the void probability function (VPF) for CfA samples exhibits apparent agreement with hierarchical scaling (such scaling implies that the N-point correlation functions for N greater than 2 depend only on pairwise products of the two-point function xi(r)) However, simulations of cosmological models show that this scaling in redshift space does not necessarily imply such scaling in real space, even in the nonlinear regime; peculiar velocities cause distortions which can yield erroneous agreement with hierarchical scaling. The underdensity probability measures the frequency of 'voids' with density rho less than 0.2 -/rho. This statistic reveals a paucity of very bright galaxies (L greater than L asterisk) in the 'voids.' Underdensities are equal to or greater than 2 sigma more frequent in bright galaxy samples than in samples that include fainter galaxies. Comparison of void statistics of CfA samples with simulations of a range of cosmological models favors models with Gaussian primordial fluctuations and Cold Dark Matter (CDM)-like initial power spectra. Biased models tend to produce voids that are too empty. We also compare these data with three specific models of the Cold Dark Matter cosmogony: an unbiased, open universe CDM model (omega = 0.4, h = 0.5) provides a good match to the VPF of the CfA samples. Biasing of the galaxy distribution in the 'standard' CDM model (omega = 1, b = 1.5; see below for definitions) and nonzero cosmological constant CDM model (omega = 0.4, h = 0.6 lambda(sub 0) = 0.6, b = 1.3) produce voids that are too empty. All three simulations match the observed VPF and underdensity probability for samples of very bright (M less than M asterisk = -19.2) galaxies, but produce voids that are too empty when compared with samples that include fainter galaxies.
Redshift distortions of galaxy correlation functions
NASA Technical Reports Server (NTRS)
Fry, J. N.; Gaztanaga, Enrique
1994-01-01
To examine how peculiar velocities can affect the two-, three-, and four-point redshift correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize redshift distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r(sub 0) and power index gamma of the two-point correlations, bar-xi(sub 0) = (r(sub 0)/r)(exp gamma), and as the hierarchical amplitudes of the three- and four-point functions, S(sub 3) = bar-xi(sub 3)/bar-xi(exp 2)(sub 2) and S(sub 4) = bar-xi(sub 4)/bar-xi(exp 3)(sub 2). We find a characteristic distortion for bar-xi(sub 2), the slope gamma is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions 'move' correlations from small to large scales. At the largest scales (up to 12 Mpc), the extra power in the redshift distribution is compatible with Omega(exp 4/7)/b approximately equal to 1. We estimate Omega(exp 4/7)/b to be 0.53 +/- 0.15, 1.10 +/- 0.16, and 0.84 +/- 0.45 for the CfA, SSRS, and IRAS catalogs. Higher order correlations bar-xi(sub 3) and bar-xi(sub 4) suffer similar redshift distortions but in such a way that, within the accuracy of our ananlysis, the normalized amplitudes S(sub 3) and S(sub 4) are insensitive to this effect. The hierarchical amplitudes S(sub 3) and S(sub 4) are constant as a function of scale between 1 and 12 Mpc and have similar values in all samples and catalogs, S(sub 3) approximately equal to 2 and S(sub 4) approximately equal to 6, despite the fact that bar-xi(sub 2), bar-xi(sub 3), and bar-xi(sub 4) differ from one sample to another by large factors (up to a factor of 4 in bar-xi(sub 2), 8 for bar-xi(sub 3), and 12 for bar-xi(sub 4)). The agreement between the independent estimations of S(sub 3) and S(sub 4) is remarkable given the different criteria in the selection of galaxies and also the difference in the resulting range of densities, luminosities, and locations between samples.
Li, Xiaoxia; Yuan, Ying; Ren, Jiliang; Shi, Yiqian; Tao, Xiaofeng
2018-03-26
We aimed to investigate the incremental prognostic value of apparent diffusion coefficient (ADC) histogram analysis in patients with head and neck squamous cell carcinoma (HNSCC) and integrate it into a multivariate prognostic model. A retrospective review of magnetic resonance imaging findings was conducted in patients with pathologically confirmed HNSCC between June 2012 and December 2015. For each tumor, six histogram parameters were derived: the 10th, 50th, and 90th percentiles of ADC (ADC 10 , ADC 50 , and ADC 90 ); mean ADC values (ADC mean ); kurtosis; and skewness. The clinical variables included age, sex, smoking status, tumor volume, and tumor node metastasis stage. The association of these histogram and clinical variables with overall survival (OS) was determined. Further validation of the histogram parameters as independent biomarkers was performed using multivariate Cox proportional hazard models combined with clinical variables, which was compared to the clinical model. Models were assessed with C index and receiver operating characteristic curve analyses for the 12- and 36-month OS. Ninety-six patients were eligible for analysis. Median follow-up was 877 days (range, 54-1516 days). A total of 29 patients died during follow-up (30%). Patients with higher ADC values (ADC 10 > 0.958 × 10 -3 mm 2 /s, ADC 50 > 1.089 × 10 -3 mm 2 /s, ADC 90 > 1.152 × 10 -3 mm 2 /s, ADC mean > 1.047 × 10 -3 mm 2 /s) and lower kurtosis (≤0.967) were significant predictors of poor OS (P < .100 for all). After adjusting for sex and tumor node metastasis stage, the ADC 90 and kurtosis are both significant predictors of OS with hazard ratios = 1.00 (95% confidence interval: 1.001-1.004) and 0.58 (95% confidence interval: 0.37-0.90), respectively. By adding the ADC parameters into the clinical model, the C index and diagnostic accuracies for the 12- and 36-month OS showed significant improvement. ADC histogram analysis has incremental prognostic value in patients with HNSCC and increases the performance of a multivariable prognostic model in addition to clinical variables. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Measuring kinetics of complex single ion channel data using mean-variance histograms.
Patlak, J B
1993-07-01
The measurement of single ion channel kinetics is difficult when those channels exhibit subconductance events. When the kinetics are fast, and when the current magnitudes are small, as is the case for Na+, Ca2+, and some K+ channels, these difficulties can lead to serious errors in the estimation of channel kinetics. I present here a method, based on the construction and analysis of mean-variance histograms, that can overcome these problems. A mean-variance histogram is constructed by calculating the mean current and the current variance within a brief "window" (a set of N consecutive data samples) superimposed on the digitized raw channel data. Systematic movement of this window over the data produces large numbers of mean-variance pairs which can be assembled into a two-dimensional histogram. Defined current levels (open, closed, or sublevel) appear in such plots as low variance regions. The total number of events in such low variance regions is estimated by curve fitting and plotted as a function of window width. This function decreases with the same time constants as the original dwell time probability distribution for each of the regions. The method can therefore be used: 1) to present a qualitative summary of the single channel data from which the signal-to-noise ratio, open channel noise, steadiness of the baseline, and number of conductance levels can be quickly determined; 2) to quantify the dwell time distribution in each of the levels exhibited. In this paper I present the analysis of a Na+ channel recording that had a number of complexities. The signal-to-noise ratio was only about 8 for the main open state, open channel noise, and fast flickers to other states were present, as were a substantial number of subconductance states. "Standard" half-amplitude threshold analysis of these data produce open and closed time histograms that were well fitted by the sum of two exponentials, but with apparently erroneous time constants, whereas the mean-variance histogram technique provided a more credible analysis of the open, closed, and subconductance times for the patch. I also show that the method produces accurate results on simulated data in a wide variety of conditions, whereas the half-amplitude method, when applied to complex simulated data shows the same errors as were apparent in the real data. The utility and the limitations of this new method are discussed.
Nanocubes for real-time exploration of spatiotemporal datasets.
Lins, Lauro; Klosowski, James T; Scheidegger, Carlos
2013-12-01
Consider real-time exploration of large multidimensional spatiotemporal datasets with billions of entries, each defined by a location, a time, and other attributes. Are certain attributes correlated spatially or temporally? Are there trends or outliers in the data? Answering these questions requires aggregation over arbitrary regions of the domain and attributes of the data. Many relational databases implement the well-known data cube aggregation operation, which in a sense precomputes every possible aggregate query over the database. Data cubes are sometimes assumed to take a prohibitively large amount of space, and to consequently require disk storage. In contrast, we show how to construct a data cube that fits in a modern laptop's main memory, even for billions of entries; we call this data structure a nanocube. We present algorithms to compute and query a nanocube, and show how it can be used to generate well-known visual encodings such as heatmaps, histograms, and parallel coordinate plots. When compared to exact visualizations created by scanning an entire dataset, nanocube plots have bounded screen error across a variety of scales, thanks to a hierarchical structure in space and time. We demonstrate the effectiveness of our technique on a variety of real-world datasets, and present memory, timing, and network bandwidth measurements. We find that the timings for the queries in our examples are dominated by network and user-interaction latencies.
Historical Temporal Shipping (HITS)
1978-06-28
Histogram Cells 45 El Figure 4-3 Projection of Area onto Route Perpendicular 45 Figure 4-4 Single Column Cut of Route Envelope 46ii Figure 4-5 Histogram of...Resources, "Super" Bulk Carriers, and Deepwater Port Development." Naval Postgraduate School . June 1974. 8. Gulland, J.A. "The Fish Resources of the Ocean...sailing reports from the various harbour masters. The completeness of the data thus depends in most cases upon the diligence of a single reporting source
Hardware solution for continuous time-resolved burst detection of single molecules in flow
NASA Astrophysics Data System (ADS)
Wahl, Michael; Erdmann, Rainer; Lauritsen, Kristian; Rahn, Hans-Juergen
1998-04-01
Time Correlated Single Photon Counting (TCSPC) is a valuable tool for Single Molecule Detection (SMD). However, existing TCSPC systems did not support continuous data collection and processing as is desirable for applications such as SMD for e.g. DNA-sequencing in a liquid flow. First attempts at using existing instrumentation in this kind of operation mode required additional routing hardware to switch between several memory banks and were not truly continuous. We have designed a hard- and software system to perform continuous real-time TCSPC based upon a modern solid state Time to Digital Converter (TDC). Short dead times of the fully digital TDC design combined with fast Field Programmable Gay Array logic permit a continuous data throughput as high as 3 Mcounts/sec. The histogramming time may be set as short as 100 microsecond(s) . Every histogram or every single fluorescence photon can be real-time tagged at 200 ns resolution in addition to recording its arrival time relative to the excitation pulse. Continuous switching between memory banks permits concurrent histogramming and data read-out. The instrument provides a time resolution of 60 ps and up to 4096 histogram channels. The overall instrument response function in combination with a low cost picosecond diode laser and an inexpensive photomultiplier tube was found to be 180 ps and well sufficient to measure sub-nanosecond fluorescence lifetimes.
Digital image classification with the help of artificial neural network by simple histogram
Dey, Pranab; Banerjee, Nirmalya; Kaur, Rajwant
2016-01-01
Background: Visual image classification is a great challenge to the cytopathologist in routine day-to-day work. Artificial neural network (ANN) may be helpful in this matter. Aims and Objectives: In this study, we have tried to classify digital images of malignant and benign cells in effusion cytology smear with the help of simple histogram data and ANN. Materials and Methods: A total of 404 digital images consisting of 168 benign cells and 236 malignant cells were selected for this study. The simple histogram data was extracted from these digital images and an ANN was constructed with the help of Neurointelligence software [Alyuda Neurointelligence 2.2 (577), Cupertino, California, USA]. The network architecture was 6-3-1. The images were classified as training set (281), validation set (63), and test set (60). The on-line backpropagation training algorithm was used for this study. Result: A total of 10,000 iterations were done to train the ANN system with the speed of 609.81/s. After the adequate training of this ANN model, the system was able to identify all 34 malignant cell images and 24 out of 26 benign cells. Conclusion: The ANN model can be used for the identification of the individual malignant cells with the help of simple histogram data. This study will be helpful in the future to identify malignant cells in unknown situations. PMID:27279679
Heinrich, Andreas; Teichgräber, Ulf K; Güttler, Felix V
2015-12-01
The standard ASTM F2119 describes a test method for measuring the size of a susceptibility artifact based on the example of a passive implant. A pixel in an image is considered to be a part of an image artifact if the intensity is changed by at least 30% in the presence of a test object, compared to a reference image in which the test object is absent (reference value). The aim of this paper is to simplify and accelerate the test method using a histogram-based reference value. Four test objects were scanned parallel and perpendicular to the main magnetic field, and the largest susceptibility artifacts were measured using two methods of reference value determination (reference image-based and histogram-based reference value). The results between both methods were compared using the Mann-Whitney U-test. The difference between both reference values was 42.35 ± 23.66. The difference of artifact size was 0.64 ± 0.69 mm. The artifact sizes of both methods did not show significant differences; the p-value of the Mann-Whitney U-test was between 0.710 and 0.521. A standard-conform method for a rapid, objective, and reproducible evaluation of susceptibility artifacts could be implemented. The result of the histogram-based method does not significantly differ from the ASTM-conform method.
Surov, Alexey; Meyer, Hans Jonas; Winter, Karsten; Richter, Cindy; Hoehn, Anna-Kathrin
2018-05-04
Our purpose was to analyze associations between apparent diffusion coefficient (ADC) histogram analysis parameters and histopathologicalfeatures in head and neck squamous cell carcinoma (HNSCC). The study involved 32 patients with primary HNSCC. For every tumor, the following histogram analysis parameters were calculated: ADCmean, ADCmax, ADC min , ADC median , ADC mode , P10, P25, P75, P90, kurtosis, skewness, and entropy. Furthermore, proliferation index KI 67, cell count, total and average nucleic areas were estimated. Spearman's correlation coefficient (p) was used to analyze associations between investigated parameters. In overall sample, all ADC values showed moderate inverse correlations with KI 67. All ADC values except ADCmax correlated inversely with tumor cellularity. Slightly correlations were identified between total/average nucleic area and ADC mean , ADC min , ADC median , and P25. In G1/2 tumors, only ADCmode correlated well with Ki67. No statistically significant correlations between ADC parameters and cellularity were found. In G3 tumors, Ki 67 correlated with all ADC parameters except ADCmode. Cell count correlated well with all ADC parameters except ADCmax. Total nucleic area correlated inversely with ADC mean , ADC min , ADC median , P25, and P90. ADC histogram parameters reflect proliferation potential and cellularity in HNSCC. The associations between histopathology and imaging depend on tumor grading.
Helmer, K. G.; Chou, M-C.; Preciado, R. I.; Gimi, B.; Rollins, N. K.; Song, A.; Turner, J.; Mori, S.
2016-01-01
MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables. PMID:27350723
Differential diagnosis of normal pressure hydrocephalus by MRI mean diffusivity histogram analysis.
Ivkovic, M; Liu, B; Ahmed, F; Moore, D; Huang, C; Raj, A; Kovanlikaya, I; Heier, L; Relkin, N
2013-01-01
Accurate diagnosis of normal pressure hydrocephalus is challenging because the clinical symptoms and radiographic appearance of NPH often overlap those of other conditions, including age-related neurodegenerative disorders such as Alzheimer and Parkinson diseases. We hypothesized that radiologic differences between NPH and AD/PD can be characterized by a robust and objective MR imaging DTI technique that does not require intersubject image registration or operator-defined regions of interest, thus avoiding many pitfalls common in DTI methods. We collected 3T DTI data from 15 patients with probable NPH and 25 controls with AD, PD, or dementia with Lewy bodies. We developed a parametric model for the shape of intracranial mean diffusivity histograms that separates brain and ventricular components from a third component composed mostly of partial volume voxels. To accurately fit the shape of the third component, we constructed a parametric function named the generalized Voss-Dyke function. We then examined the use of the fitting parameters for the differential diagnosis of NPH from AD, PD, and DLB. Using parameters for the MD histogram shape, we distinguished clinically probable NPH from the 3 other disorders with 86% sensitivity and 96% specificity. The technique yielded 86% sensitivity and 88% specificity when differentiating NPH from AD only. An adequate parametric model for the shape of intracranial MD histograms can distinguish NPH from AD, PD, or DLB with high sensitivity and specificity.
Illusory Late Heavy Bombardments
NASA Astrophysics Data System (ADS)
Boehnke, Patrick; Harrison, T. Mark
2016-09-01
The Late Heavy Bombardment (LHB), a hypothesized impact spike at ˜3.9 Ga, is one of the major scientific concepts to emerge from Apollo-era lunar exploration. A significant portion of the evidence for the existence of the LHB comes from histograms of 40Ar/39Ar “plateau” ages (i.e., regions selected on the basis of apparent isochroneity). However, due to lunar magmatism and overprinting from subsequent impact events, virtually all Apollo-era samples show evidence for 40Ar/39Ar age spectrum disturbances, leaving open the possibility that partial 40Ar* resetting could bias interpretation of bombardment histories due to plateaus yielding misleadingly young ages. We examine this possibility through a physical model of 40Ar* diffusion in Apollo samples and test the uniqueness of the impact histories obtained by inverting plateau age histograms. Our results show that plateau histograms tend to yield age peaks, even in those cases where the input impact curve did not contain such a spike, in part due to the episodic nature of lunar crust or parent body formation. Restated, monotonically declining impact histories yield apparent age peaks that could be misinterpreted as LHB-type events. We further conclude that the assignment of apparent 40Ar/39Ar plateau ages bears an undesirably high degree of subjectivity. When compounded by inappropriate interpretations of histograms constructed from plateau ages, interpretation of apparent, but illusory, impact spikes is likely.
Illusory Late Heavy Bombardments
Boehnke, Patrick; Harrison, T. Mark
2016-01-01
The Late Heavy Bombardment (LHB), a hypothesized impact spike at ∼3.9 Ga, is one of the major scientific concepts to emerge from Apollo-era lunar exploration. A significant portion of the evidence for the existence of the LHB comes from histograms of 40Ar/39Ar “plateau” ages (i.e., regions selected on the basis of apparent isochroneity). However, due to lunar magmatism and overprinting from subsequent impact events, virtually all Apollo-era samples show evidence for 40Ar/39Ar age spectrum disturbances, leaving open the possibility that partial 40Ar* resetting could bias interpretation of bombardment histories due to plateaus yielding misleadingly young ages. We examine this possibility through a physical model of 40Ar* diffusion in Apollo samples and test the uniqueness of the impact histories obtained by inverting plateau age histograms. Our results show that plateau histograms tend to yield age peaks, even in those cases where the input impact curve did not contain such a spike, in part due to the episodic nature of lunar crust or parent body formation. Restated, monotonically declining impact histories yield apparent age peaks that could be misinterpreted as LHB-type events. We further conclude that the assignment of apparent 40Ar/39Ar plateau ages bears an undesirably high degree of subjectivity. When compounded by inappropriate interpretations of histograms constructed from plateau ages, interpretation of apparent, but illusory, impact spikes is likely. PMID:27621460
Control system of hexacopter using color histogram footprint and convolutional neural network
NASA Astrophysics Data System (ADS)
Ruliputra, R. N.; Darma, S.
2017-07-01
The development of unmanned aerial vehicles (UAV) has been growing rapidly in recent years. The use of logic thinking which is implemented into the program algorithms is needed to make a smart system. By using visual input from a camera, UAV is able to fly autonomously by detecting a target. However, some weaknesses arose as usage in the outdoor environment might change the target's color intensity. Color histogram footprint overcomes the problem because it divides color intensity into separate bins that make the detection tolerant to the slight change of color intensity. Template matching compare its detection result with a template of the reference image to determine the target position and use it to position the vehicle in the middle of the target with visual feedback control based on Proportional-Integral-Derivative (PID) controller. Color histogram footprint method localizes the target by calculating the back projection of its histogram. It has an average success rate of 77 % from a distance of 1 meter. It can position itself in the middle of the target by using visual feedback control with an average positioning time of 73 seconds. After the hexacopter is in the middle of the target, Convolutional Neural Networks (CNN) classifies a number contained in the target image to determine a task depending on the classified number, either landing, yawing, or return to launch. The recognition result shows an optimum success rate of 99.2 %.
Holzwarth, Frédéric; Rüger, Nadja; Wirth, Christian
2015-01-01
Biodiversity and ecosystem functioning (BEF) research has progressed from the detection of relationships to elucidating their drivers and underlying mechanisms. In this context, replacing taxonomic predictors by trait-based measures of functional composition (FC)—bridging functions of species and of ecosystems—is a widely used approach. The inherent challenge of trait-based approaches is the multi-faceted, dynamic and hierarchical nature of trait influence: (i) traits may act via different facets of their distribution in a community, (ii) their influence may change over time and (iii) traits may influence processes at different levels of the natural hierarchy of organization. Here, we made use of the forest ecosystem model ‘LPJ-GUESS’ parametrized with empirical trait data, which creates output of individual performance, community assembly, stand-level states and processes. To address the three challenges, we resolved the dynamics of the top-level ecosystem function ‘annual biomass change’ hierarchically into its various component processes (growth, leaf and root turnover, recruitment and mortality) and states (stand structures, water stress) and traced the influence of different facets of FC along this hierarchy in a path analysis. We found an independent influence of functional richness, dissimilarity and identity on ecosystem states and processes and hence biomass change. Biodiversity effects were only positive during early succession and later turned negative. Unexpectedly, resource acquisition (growth, recruitment) and conservation (mortality, turnover) played an equally important role throughout the succession. These results add to a mechanistic understanding of biodiversity effects and place a caveat on simplistic approaches omitting hierarchical levels when analysing BEF relationships. They support the view that BEF relationships experience dramatic shifts over successional time that should be acknowledged in mechanistic theories. PMID:26064620