Sample records for hierarchical knowledge structure

  1. Materials Knowledge Systems in Python - A Data Science Framework for Accelerated Development of Hierarchical Materials.

    PubMed

    Brough, David B; Wheeler, Daniel; Kalidindi, Surya R

    2017-03-01

    There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.

  2. Materials Knowledge Systems in Python - A Data Science Framework for Accelerated Development of Hierarchical Materials

    PubMed Central

    Brough, David B; Wheeler, Daniel; Kalidindi, Surya R.

    2017-01-01

    There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers. PMID:28690971

  3. Hierarchical LiFePO4 with a controllable growth of the (010) facet for lithium-ion batteries.

    PubMed

    Guo, Binbin; Ruan, Hongcheng; Zheng, Cheng; Fei, Hailong; Wei, Mingdeng

    2013-09-27

    Hierarchically structured LiFePO4 was successfully synthesized by ionic liquid solvothermal method. These hierarchically structured LiFePO4 samples were constructed from nanostructured platelets with their (010) facets mainly exposed. To the best of our knowledge, facet control of a hierarchical LiFePO4 crystal has not been reported yet. Based on a series of experimental results, a tentative mechanism for the formation of these hierarchical structures was proposed. After these hierarchically structured LiFePO4 samples were coated with a thin carbon layer and used as cathode materials for lithium-ion batteries, they exhibited excellent high-rate discharge capability and cycling stability. For instance, a capacity of 95% can be maintained for the LiFePO4 sample at a rate as high as 20 C, even after 1000 cycles.

  4. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine.

    PubMed

    Sun, Ming-Hui; Huang, Shao-Zhuan; Chen, Li-Hua; Li, Yu; Yang, Xiao-Yu; Yuan, Zhong-Yong; Su, Bao-Lian

    2016-06-13

    Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.

  5. Using a matrix-analytical approach to synthesizing evidence solved incompatibility problem in the hierarchy of evidence.

    PubMed

    Walach, Harald; Loef, Martin

    2015-11-01

    The hierarchy of evidence presupposes linearity and additivity of effects, as well as commutativity of knowledge structures. It thereby implicitly assumes a classical theoretical model. This is an argumentative article that uses theoretical analysis based on pertinent literature and known facts to examine the standard view of methodology. We show that the assumptions of the hierarchical model are wrong. The knowledge structures gained by various types of studies are not sequentially indifferent, that is, do not commute. External validity and internal validity are at least partially incompatible concepts. Therefore, one needs a different theoretical structure, typical of quantum-type theories, to model this situation. The consequence of this situation is that the implicit assumptions of the hierarchical model are wrong, if generalized to the concept of evidence in total. The problem can be solved by using a matrix-analytical approach to synthesizing evidence. Here, research methods that produce different types of evidence that complement each other are synthesized to yield the full knowledge. We show by an example how this might work. We conclude that the hierarchical model should be complemented by a broader reasoning in methodology. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Ranking the Difficulty Level of the Knowledge Units Based on Learning Dependency

    ERIC Educational Resources Information Center

    Liu, Jun; Sha, Sha; Zheng, Qinghua; Zhang, Wei

    2012-01-01

    Assigning difficulty level indicators to the knowledge units helps the learners plan their learning activities more efficiently. This paper focuses on how to use the topology of a knowledge map to compute and rank the difficulty levels of knowledge units. Firstly, the authors present the hierarchical structure and properties of the knowledge map.…

  7. Hierarchical coordinate systems for understanding complexity and its evolution, with applications to genetic regulatory networks.

    PubMed

    Egri-Nagy, Attila; Nehaniv, Chrystopher L

    2008-01-01

    Beyond complexity measures, sometimes it is worthwhile in addition to investigate how complexity changes structurally, especially in artificial systems where we have complete knowledge about the evolutionary process. Hierarchical decomposition is a useful way of assessing structural complexity changes of organisms modeled as automata, and we show how recently developed computational tools can be used for this purpose, by computing holonomy decompositions and holonomy complexity. To gain insight into the evolution of complexity, we investigate the smoothness of the landscape structure of complexity under minimal transitions. As a proof of concept, we illustrate how the hierarchical complexity analysis reveals symmetries and irreversible structure in biological networks by applying the methods to the lac operon mechanism in the genetic regulatory network of Escherichia coli.

  8. Operationalizing Levels of Academic Mastery Based on Vygotsky's Theory: The Study of Mathematical Knowledge

    ERIC Educational Resources Information Center

    Nezhnov, Peter; Kardanova, Elena; Vasilyeva, Marina; Ludlow, Larry

    2015-01-01

    The present study tested the possibility of operationalizing levels of knowledge acquisition based on Vygotsky's theory of cognitive growth. An assessment tool (SAM-Math) was developed to capture a hypothesized hierarchical structure of mathematical knowledge consisting of procedural, conceptual, and functional levels. In Study 1, SAM-Math was…

  9. Effects of Prior Knowledge and Concept-Map Structure on Disorientation, Cognitive Load, and Learning

    ERIC Educational Resources Information Center

    Amadieu, Franck; van Gog, Tamara; Paas, Fred; Tricot, Andre; Marine, Claudette

    2009-01-01

    This study explored the effects of prior knowledge (high vs. low; HPK and LPK) and concept-map structure (hierarchical vs. network; HS and NS) on disorientation, cognitive load, and learning from non-linear documents on "the infection process of a retrograde virus (HIV)". Participants in the study were 24 adults. Overall subjective ratings of…

  10. Active vision and image/video understanding with decision structures based on the network-symbolic models

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2003-08-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. The ability of human brain to emulate knowledge structures in the form of networks-symbolic models is found. And that means an important shift of paradigm in our knowledge about brain from neural networks to "cortical software". Symbols, predicates and grammars naturally emerge in such active multilevel hierarchical networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type decision structure created via multilevel hierarchical compression of visual information. Mid-level vision processes like clustering, perceptual grouping, separation of figure from ground, are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models works similar to frames and agents, combines learning, classification, analogy together with higher-level model-based reasoning into a single framework. Such models do not require supercomputers. Based on such principles, and using methods of Computational intelligence, an Image Understanding system can convert images into the network-symbolic knowledge models, and effectively resolve uncertainty and ambiguity, providing unifying representation for perception and cognition. That allows creating new intelligent computer vision systems for robotic and defense industries.

  11. Investigating Educational Systems, Leadership, and School Culture: A Holistic Approach

    ERIC Educational Resources Information Center

    Pratt, Jill Elizabeth

    2014-01-01

    Most populous school districts operate using a bureaucratic hierarchical organizational structure developed primarily for industry, a system structure that has remained intact for a century despite evolving from a manufacturing to a knowledge-based economy. Although strong for efficiency, this system structure is resistant to change and promotes…

  12. Hierarchically Structured Non-Intrusive Sign Language Recognition. Chapter 2

    NASA Technical Reports Server (NTRS)

    Zieren, Jorg; Zieren, Jorg; Kraiss, Karl-Friedrich

    2007-01-01

    This work presents a hierarchically structured approach at the nonintrusive recognition of sign language from a monocular frontal view. Robustness is achieved through sophisticated localization and tracking methods, including a combined EM/CAMSHIFT overlap resolution procedure and the parallel pursuit of multiple hypotheses about hands position and movement. This allows handling of ambiguities and automatically corrects tracking errors. A biomechanical skeleton model and dynamic motion prediction using Kalman filters represents high level knowledge. Classification is performed by Hidden Markov Models. 152 signs from German sign language were recognized with an accuracy of 97.6%.

  13. Exploring physics concepts among novice teachers through CMAP tools

    NASA Astrophysics Data System (ADS)

    Suprapto, N.; Suliyanah; Prahani, B. K.; Jauhariyah, M. N. R.; Admoko, S.

    2018-03-01

    Concept maps are graphical tools for organising, elaborating and representing knowledge. Through Cmap tools software, it can be explored the understanding and the hierarchical structuring of physics concepts among novice teachers. The software helps physics teachers indicated a physics context, focus questions, parking lots, cross-links, branching, hierarchy, and propositions. By using an exploratory quantitative study, a total 13-concept maps with different physics topics created by novice physics teachers were analysed. The main differences of scoring between lecturer and peer-teachers’ scoring were also illustrated. The study offered some implications, especially for physics educators to determine the hierarchical structure of the physics concepts, to construct a physics focus question, and to see how a concept in one domain of knowledge represented on the map is related to a concept in another domain shown on the map.

  14. Application of Bayesian inference to the study of hierarchical organization in self-organized complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Knuth, K. H.

    2001-05-01

    We consider the application of Bayesian inference to the study of self-organized structures in complex adaptive systems. In particular, we examine the distribution of elements, agents, or processes in systems dominated by hierarchical structure. We demonstrate that results obtained by Caianiello [1] on Hierarchical Modular Systems (HMS) can be found by applying Jaynes' Principle of Group Invariance [2] to a few key assumptions about our knowledge of hierarchical organization. Subsequent application of the Principle of Maximum Entropy allows inferences to be made about specific systems. The utility of the Bayesian method is considered by examining both successes and failures of the hierarchical model. We discuss how Caianiello's original statements suffer from the Mind Projection Fallacy [3] and we restate his assumptions thus widening the applicability of the HMS model. The relationship between inference and statistical physics, described by Jaynes [4], is reiterated with the expectation that this realization will aid the field of complex systems research by moving away from often inappropriate direct application of statistical mechanics to a more encompassing inferential methodology.

  15. The research on construction and application of machining process knowledge base

    NASA Astrophysics Data System (ADS)

    Zhao, Tan; Qiao, Lihong; Qie, Yifan; Guo, Kai

    2018-03-01

    In order to realize the application of knowledge in machining process design, from the perspective of knowledge in the application of computer aided process planning(CAPP), a hierarchical structure of knowledge classification is established according to the characteristics of mechanical engineering field. The expression of machining process knowledge is structured by means of production rules and the object-oriented methods. Three kinds of knowledge base models are constructed according to the representation of machining process knowledge. In this paper, the definition and classification of machining process knowledge, knowledge model, and the application flow of the process design based on the knowledge base are given, and the main steps of the design decision of the machine tool are carried out as an application by using the knowledge base.

  16. Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: a review.

    PubMed

    Martínez-Sanz, Marta; Gidley, Michael J; Gilbert, Elliot P

    2015-07-10

    Plant cell walls present an extremely complex structure of hierarchically assembled cellulose microfibrils embedded in a multi-component matrix. The biosynthesis process determines the mechanism of cellulose crystallisation and assembly, as well as the interaction of cellulose with other cell wall components. Thus, a knowledge of cellulose microfibril and bundle architecture, and the structural role of matrix components, is crucial for understanding cell wall functional and technological roles. Small angle scattering techniques, combined with complementary methods, provide an efficient approach to characterise plant cell walls, covering a broad and relevant size range while minimising experimental artefacts derived from sample treatment. Given the system complexity, approaches such as component extraction and the use of plant cell wall analogues are typically employed to enable the interpretation of experimental results. This review summarises the current research status on the characterisation of the hierarchical structure of plant cell walls using small angle scattering techniques. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  17. Learning Additional Languages as Hierarchical Probabilistic Inference: Insights From First Language Processing.

    PubMed

    Pajak, Bozena; Fine, Alex B; Kleinschmidt, Dave F; Jaeger, T Florian

    2016-12-01

    We present a framework of second and additional language (L2/L n ) acquisition motivated by recent work on socio-indexical knowledge in first language (L1) processing. The distribution of linguistic categories covaries with socio-indexical variables (e.g., talker identity, gender, dialects). We summarize evidence that implicit probabilistic knowledge of this covariance is critical to L1 processing, and propose that L2/L n learning uses the same type of socio-indexical information to probabilistically infer latent hierarchical structure over previously learned and new languages. This structure guides the acquisition of new languages based on their inferred place within that hierarchy, and is itself continuously revised based on new input from any language. This proposal unifies L1 processing and L2/L n acquisition as probabilistic inference under uncertainty over socio-indexical structure. It also offers a new perspective on crosslinguistic influences during L2/L n learning, accommodating gradient and continued transfer (both negative and positive) from previously learned to novel languages, and vice versa.

  18. Learning Additional Languages as Hierarchical Probabilistic Inference: Insights From First Language Processing

    PubMed Central

    Pajak, Bozena; Fine, Alex B.; Kleinschmidt, Dave F.; Jaeger, T. Florian

    2015-01-01

    We present a framework of second and additional language (L2/Ln) acquisition motivated by recent work on socio-indexical knowledge in first language (L1) processing. The distribution of linguistic categories covaries with socio-indexical variables (e.g., talker identity, gender, dialects). We summarize evidence that implicit probabilistic knowledge of this covariance is critical to L1 processing, and propose that L2/Ln learning uses the same type of socio-indexical information to probabilistically infer latent hierarchical structure over previously learned and new languages. This structure guides the acquisition of new languages based on their inferred place within that hierarchy, and is itself continuously revised based on new input from any language. This proposal unifies L1 processing and L2/Ln acquisition as probabilistic inference under uncertainty over socio-indexical structure. It also offers a new perspective on crosslinguistic influences during L2/Ln learning, accommodating gradient and continued transfer (both negative and positive) from previously learned to novel languages, and vice versa. PMID:28348442

  19. Gaining the Long View: Reforming Organization and Empowering Knowledge Workers to Improve Strategy and Intelligence

    DTIC Science & Technology

    2017-03-31

    processes. Hierarchal bureaucracies also provide the workforce with a predictable, structured work environment , a sense of status, and other...processes in response to changes in the environment . As they age and acquire a corporate culture, members become more entrenched in their work ...inability of managers and leaders of knowledge workers to foster a work environment that effectively exploits the knowledge worker’s drive to apply his or

  20. The Synthesis Map Is a Multidimensional Educational Tool That Provides Insight into Students' Mental Models and Promotes Students' Synthetic Knowledge Generation

    ERIC Educational Resources Information Center

    Ortega, Ryan A.; Brame, Cynthia J.

    2015-01-01

    Concept mapping was developed as a method of displaying and organizing hierarchical knowledge structures. Using the new, multidimensional presentation software Prezi, we have developed a new teaching technique designed to engage higher-level skills in the cognitive domain. This tool, synthesis mapping, is a natural evolution of concept mapping,…

  1. A Model of Knowledge Based Information Retrieval with Hierarchical Concept Graph.

    ERIC Educational Resources Information Center

    Kim, Young Whan; Kim, Jin H.

    1990-01-01

    Proposes a model of knowledge-based information retrieval (KBIR) that is based on a hierarchical concept graph (HCG) which shows relationships between index terms and constitutes a hierarchical thesaurus as a knowledge base. Conceptual distance between a query and an object is discussed and the use of Boolean operators is described. (25…

  2. Intensity-based hierarchical clustering in CT-scans: application to interactive segmentation in cardiology

    NASA Astrophysics Data System (ADS)

    Hadida, Jonathan; Desrosiers, Christian; Duong, Luc

    2011-03-01

    The segmentation of anatomical structures in Computed Tomography Angiography (CTA) is a pre-operative task useful in image guided surgery. Even though very robust and precise methods have been developed to help achieving a reliable segmentation (level sets, active contours, etc), it remains very time consuming both in terms of manual interactions and in terms of computation time. The goal of this study is to present a fast method to find coarse anatomical structures in CTA with few parameters, based on hierarchical clustering. The algorithm is organized as follows: first, a fast non-parametric histogram clustering method is proposed to compute a piecewise constant mask. A second step then indexes all the space-connected regions in the piecewise constant mask. Finally, a hierarchical clustering is achieved to build a graph representing the connections between the various regions in the piecewise constant mask. This step builds up a structural knowledge about the image. Several interactive features for segmentation are presented, for instance association or disassociation of anatomical structures. A comparison with the Mean-Shift algorithm is presented.

  3. A knowledge-base generating hierarchical fuzzy-neural controller.

    PubMed

    Kandadai, R M; Tien, J M

    1997-01-01

    We present an innovative fuzzy-neural architecture that is able to automatically generate a knowledge base, in an extractable form, for use in hierarchical knowledge-based controllers. The knowledge base is in the form of a linguistic rule base appropriate for a fuzzy inference system. First, we modify Berenji and Khedkar's (1992) GARIC architecture to enable it to automatically generate a knowledge base; a pseudosupervised learning scheme using reinforcement learning and error backpropagation is employed. Next, we further extend this architecture to a hierarchical controller that is able to generate its own knowledge base. Example applications are provided to underscore its viability.

  4. Functional adaptation of crustacean exoskeletal elements through structural and compositional diversity: a combined experimental and theoretical study.

    PubMed

    Fabritius, Helge-Otto; Ziegler, Andreas; Friák, Martin; Nikolov, Svetoslav; Huber, Julia; Seidl, Bastian H M; Ruangchai, Sukhum; Alagboso, Francisca I; Karsten, Simone; Lu, Jin; Janus, Anna M; Petrov, Michal; Zhu, Li-Fang; Hemzalová, Pavlína; Hild, Sabine; Raabe, Dierk; Neugebauer, Jörg

    2016-09-09

    The crustacean cuticle is a composite material that covers the whole animal and forms the continuous exoskeleton. Nano-fibers composed of chitin and protein molecules form most of the organic matrix of the cuticle that, at the macroscale, is organized in up to eight hierarchical levels. At least two of them, the exo- and endocuticle, contain a mineral phase of mainly Mg-calcite, amorphous calcium carbonate and phosphate. The high number of hierarchical levels and the compositional diversity provide a high degree of freedom for varying the physical, in particular mechanical, properties of the material. This makes the cuticle a versatile material ideally suited to form a variety of skeletal elements that are adapted to different functions and the eco-physiological strains of individual species. This review presents our recent analytical, experimental and theoretical studies on the cuticle, summarising at which hierarchical levels structure and composition are modified to achieve the required physical properties. We describe our multi-scale hierarchical modeling approach based on the results from these studies, aiming at systematically predicting the structure-composition-property relations of cuticle composites from the molecular level to the macro-scale. This modeling approach provides a tool to facilitate the development of optimized biomimetic materials within a knowledge-based design approach.

  5. Facial animation on an anatomy-based hierarchical face model

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Prakash, Edmond C.; Sung, Eric

    2003-04-01

    In this paper we propose a new hierarchical 3D facial model based on anatomical knowledge that provides high fidelity for realistic facial expression animation. Like real human face, the facial model has a hierarchical biomechanical structure, incorporating a physically-based approximation to facial skin tissue, a set of anatomically-motivated facial muscle actuators and underlying skull structure. The deformable skin model has multi-layer structure to approximate different types of soft tissue. It takes into account the nonlinear stress-strain relationship of the skin and the fact that soft tissue is almost incompressible. Different types of muscle models have been developed to simulate distribution of the muscle force on the skin due to muscle contraction. By the presence of the skull model, our facial model takes advantage of both more accurate facial deformation and the consideration of facial anatomy during the interactive definition of facial muscles. Under the muscular force, the deformation of the facial skin is evaluated using numerical integration of the governing dynamic equations. The dynamic facial animation algorithm runs at interactive rate with flexible and realistic facial expressions to be generated.

  6. Protein- mediated enamel mineralization

    PubMed Central

    Moradian-Oldak, Janet

    2012-01-01

    Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principals of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties as well as the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth. PMID:22652761

  7. Priming Effects Associated with the Hierarchical Levels of Classification Systems

    ERIC Educational Resources Information Center

    Loehrlein, Aaron J.

    2012-01-01

    The act of categorization produces conceptual representations in memory while knowledge organization (KO) systems provide conceptual representations that are used in information storage and retrieval systems. Previous research has explored how KO systems can be designed to resemble the user's internal conceptual structures. However, the more…

  8. Relating nanoindentation to macroindentation of wood

    Treesearch

    Robert J. Moon; Joseph E. Jakes; Jim F. Beecher; Charles R. Frihart; Donald S. Stone

    2009-01-01

    Wood has several levels of hierarchical structure, spanning from the configuration of growth-rings down to the configuration of the base polymers (cellulose, hemicellulose, and lignin). The bulk properties of wood result from the culmination of interactions over all length scales. Gaps presently exist in the fundamental knowledge relating the contribution of wood...

  9. A knowledge-based object recognition system for applications in the space station

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1988-01-01

    A knowledge-based three-dimensional (3D) object recognition system is being developed. The system uses primitive-based hierarchical relational and structural matching for the recognition of 3D objects in the two-dimensional (2D) image for interpretation of the 3D scene. At present, the pre-processing, low-level preliminary segmentation, rule-based segmentation, and the feature extraction are completed. The data structure of the primitive viewing knowledge-base (PVKB) is also completed. Algorithms and programs based on attribute-trees matching for decomposing the segmented data into valid primitives were developed. The frame-based structural and relational descriptions of some objects were created and stored in a knowledge-base. This knowledge-base of the frame-based descriptions were developed on the MICROVAX-AI microcomputer in LISP environment. The simulated 3D scene of simple non-overlapping objects as well as real camera data of images of 3D objects of low-complexity have been successfully interpreted.

  10. Skill Acquisition: Compilation of Weak-Method Problem Solutions.

    ERIC Educational Resources Information Center

    Anderson, John R.

    According to the ACT theory of skill acquisition, cognitive skills are encoded by a set of productions, which are organized according to a hierarchical goal structure. People solve problems in new domains by applying weak problem-solving procedures to declarative knowledge they have about this domain. From these initial problem solutions,…

  11. L2 Processing of Plural Inflection in English

    ERIC Educational Resources Information Center

    Song, Yoonsang

    2015-01-01

    This study investigates (1) whether late second language (L2) learners can attain native-like knowledge of English plural inflection even when their first language (L1) lacks an equivalent and (2) whether they construct hierarchically structured representations during online sentence processing like native speakers. In a self-paced reading task,…

  12. Development of terminology for mammographic techniques for radiological technologists.

    PubMed

    Yagahara, Ayako; Yokooka, Yuki; Tsuji, Shintaro; Nishimoto, Naoki; Uesugi, Masahito; Muto, Hiroshi; Ohba, Hisateru; Kurowarabi, Kunio; Ogasawara, Katsuhiko

    2011-07-01

    We are developing a mammographic ontology to share knowledge of the mammographic domain for radiologic technologists, with the aim of improving mammographic techniques. As a first step in constructing the ontology, we used mammography reference books to establish mammographic terminology for identifying currently available knowledge. This study proceeded in three steps: (1) determination of the domain and scope of the terminology, (2) lexical extraction, and (3) construction of hierarchical structures. We extracted terms mainly from three reference books and constructed the hierarchical structures manually. We compared features of the terms extracted from the three reference books. We constructed a terminology consisting of 440 subclasses grouped into 19 top-level classes: anatomic entity, image quality factor, findings, material, risk, breast, histological classification of breast tumors, role, foreign body, mammographic technique, physics, purpose of mammography examination, explanation of mammography examination, image development, abbreviation, quality control, equipment, interpretation, and evaluation of clinical imaging. The number of terms that occurred in the subclasses varied depending on which reference book was used. We developed a terminology of mammographic techniques for radiologic technologists consisting of 440 terms.

  13. Conceptual Hierarchies in a Flat Attractor Network

    PubMed Central

    O’Connor, Christopher M.; Cree, George S.; McRae, Ken

    2009-01-01

    The structure of people’s conceptual knowledge of concrete nouns has traditionally been viewed as hierarchical (Collins & Quillian, 1969). For example, superordinate concepts (vegetable) are assumed to reside at a higher level than basic-level concepts (carrot). A feature-based attractor network with a single layer of semantic features developed representations of both basic-level and superordinate concepts. No hierarchical structure was built into the network. In Experiment and Simulation 1, the graded structure of categories (typicality ratings) is accounted for by the flat attractor-network. Experiment and Simulation 2 show that, as with basic-level concepts, such a network predicts feature verification latencies for superordinate concepts (vegetable ). In Experiment and Simulation 3, counterintuitive results regarding the temporal dynamics of similarity in semantic priming are explained by the model. By treating both types of concepts the same in terms of representation, learning, and computations, the model provides new insights into semantic memory. PMID:19543434

  14. Hypertext comprehension of deaf and hard-of-hearing students and students with specific language impairment.

    PubMed

    Blom, Helen; Segers, Eliane; Hermans, Daan; Knoors, Harry; Verhoeven, Ludo

    2017-02-01

    This paper provides insight into the reading comprehension of hierarchically structured hypertexts within D/HH students and students with SLI. To our knowledge, it is the first study on hypertext comprehension in D/HH students and students with SLI, and it also considers the role of working memory. We compared hypertext versus linear text comprehension in D/HH students and students with SLI versus younger students without language problems who had a similar level of decoding and vocabulary. The results demonstrated no difference in text comprehension between the hierarchically structured hypertext and the linear text. Text comprehension of D/HH students and students with SLI was comparable to that of the students without language problems. In addition, there was a similar positive predictive value of visuospatial and not verbal working memory on hypertext comprehension for all three groups. The findings implicate that educational settings can make use of hierarchically structured hypertexts as well as linear texts and that children can navigate in the digital world from young age on, even if language or working memory problems are present. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Automated morphological analysis of bone marrow cells in microscopic images for diagnosis of leukemia: nucleus-plasma separation and cell classification using a hierarchical tree model of hematopoesis

    NASA Astrophysics Data System (ADS)

    Krappe, Sebastian; Wittenberg, Thomas; Haferlach, Torsten; Münzenmayer, Christian

    2016-03-01

    The morphological differentiation of bone marrow is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually under the use of bright field microscopy. This is a time-consuming, subjective, tedious and error-prone process. Furthermore, repeated examinations of a slide may yield intra- and inter-observer variances. For that reason a computer assisted diagnosis system for bone marrow differentiation is pursued. In this work we focus (a) on a new method for the separation of nucleus and plasma parts and (b) on a knowledge-based hierarchical tree classifier for the differentiation of bone marrow cells in 16 different classes. Classification trees are easily interpretable and understandable and provide a classification together with an explanation. Using classification trees, expert knowledge (i.e. knowledge about similar classes and cell lines in the tree model of hematopoiesis) is integrated in the structure of the tree. The proposed segmentation method is evaluated with more than 10,000 manually segmented cells. For the evaluation of the proposed hierarchical classifier more than 140,000 automatically segmented bone marrow cells are used. Future automated solutions for the morphological analysis of bone marrow smears could potentially apply such an approach for the pre-classification of bone marrow cells and thereby shortening the examination time.

  16. Improving Decision Making in Schools through Teacher Participation

    ERIC Educational Resources Information Center

    Mualuko, Ndiku J.; Mukasa, Simiyu A.; Achoka, Judy S. K.

    2009-01-01

    The hierarchical structure that places head teachers at the apex of a pyramid of staff is a common feature in secondary schools in Kenya. In this arrangement, school heads are poised to use their superior knowledge and experience to direct and control the working of the entire school. This negatively affects efficiency and productivity of the…

  17. Translation of Genotype to Phenotype by a Hierarchy of Cell Subsystems.

    PubMed

    Yu, Michael Ku; Kramer, Michael; Dutkowski, Janusz; Srivas, Rohith; Licon, Katherine; Kreisberg, Jason; Ng, Cherie T; Krogan, Nevan; Sharan, Roded; Ideker, Trey

    2016-02-24

    Accurately translating genotype to phenotype requires accounting for the functional impact of genetic variation at many biological scales. Here we present a strategy for genotype-phenotype reasoning based on existing knowledge of cellular subsystems. These subsystems and their hierarchical organization are defined by the Gene Ontology or a complementary ontology inferred directly from previously published datasets. Guided by the ontology's hierarchical structure, we organize genotype data into an "ontotype," that is, a hierarchy of perturbations representing the effects of genetic variation at multiple cellular scales. The ontotype is then interpreted using logical rules generated by machine learning to predict phenotype. This approach substantially outperforms previous, non-hierarchical methods for translating yeast genotype to cell growth phenotype, and it accurately predicts the growth outcomes of two new screens of 2,503 double gene knockouts impacting DNA repair or nuclear lumen. Ontotypes also generalize to larger knockout combinations, setting the stage for interpreting the complex genetics of disease.

  18. Hierarchical mutual information for the comparison of hierarchical community structures in complex networks

    NASA Astrophysics Data System (ADS)

    Perotti, Juan Ignacio; Tessone, Claudio Juan; Caldarelli, Guido

    2015-12-01

    The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust, and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the hierarchical mutual information, which is a generalization of the traditional mutual information and makes it possible to compare hierarchical partitions and hierarchical community structures. The normalized version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies and on the hierarchical community structure of artificial and empirical networks. Furthermore, the experiments illustrate some of the practical applications of the hierarchical mutual information, namely the comparison of different community detection methods and the study of the consistency, robustness, and temporal evolution of the hierarchical modular structure of networks.

  19. Healing and morality: a Javanese example.

    PubMed

    Woodward, M R

    1985-01-01

    Javanese traditional medicine is based on Sufi Muslim notions of personhood, knowledge and magical power. This world view motivates two conflicting modalities of medical practice: one based on the magic powers of curers (dukun), the others on the religiously validated powers of Sufi saints. The association of magical and bio-medical knowledge allows Javanese to interpret traditional and bio-medical cures as components of a unified health care system. Comparison of Javanese medical, religious and political systems suggests that the structural uniformity of cultural domains derives from the hierarchical organization of cultural knowledge and that the study of traditional medicine and medical pluralism can not be undertaken apart from that of world view.

  20. Evidence of an Intelligent Tutoring System as a Mindtool to Promote Strategic Memory of Expository Texts and Comprehension with Children in Grades 4 and 5

    ERIC Educational Resources Information Center

    Wijekumar, Kausalai; Meyer, Bonnie J. F.; Lei, Puiwa; Cheng, Weiyi; Ji, Xuejun; Joshi, R. M.

    2017-01-01

    Reading and comprehending content area texts require learners to effectively select and encode with hierarchically strategic memory structures in order to combine new information with prior knowledge. Unfortunately, evidence from state and national tests shows that children fail to successfully navigate the reading comprehension challenges they…

  1. Graphical Methods for Reducing, Visualizing and Analyzing Large Data Sets Using Hierarchical Terminologies

    PubMed Central

    Jing, Xia; Cimino, James J.

    2011-01-01

    Objective: To explore new graphical methods for reducing and analyzing large data sets in which the data are coded with a hierarchical terminology. Methods: We use a hierarchical terminology to organize a data set and display it in a graph. We reduce the size and complexity of the data set by considering the terminological structure and the data set itself (using a variety of thresholds) as well as contributions of child level nodes to parent level nodes. Results: We found that our methods can reduce large data sets to manageable size and highlight the differences among graphs. The thresholds used as filters to reduce the data set can be used alone or in combination. We applied our methods to two data sets containing information about how nurses and physicians query online knowledge resources. The reduced graphs make the differences between the two groups readily apparent. Conclusions: This is a new approach to reduce size and complexity of large data sets and to simplify visualization. This approach can be applied to any data sets that are coded with hierarchical terminologies. PMID:22195119

  2. Hierarchical representation and machine learning from faulty jet engine behavioral examples to detect real time abnormal conditions

    NASA Technical Reports Server (NTRS)

    Gupta, U. K.; Ali, M.

    1988-01-01

    The theoretical basis and operation of LEBEX, a machine-learning system for jet-engine performance monitoring, are described. The behavior of the engine is modeled in terms of four parameters (the rotational speeds of the high- and low-speed sections and the exhaust and combustion temperatures), and parameter variations indicating malfunction are transformed into structural representations involving instances and events. LEBEX extracts descriptors from a set of training data on normal and faulty engines, represents them hierarchically in a knowledge base, and uses them to diagnose and predict faults on a real-time basis. Diagrams of the system architecture and printouts of typical results are shown.

  3. Meso-Mechanics and Meso-Structures: A Matter of Scale

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Gotsis, P. K.; Mital, S. K.

    1998-01-01

    Meso-mechanics and meso-structures are described in terms of the scales at which they are observed and formulated. Select composite examples are presented to illustrate that meso-mechanics and/or meso-structures are meaningful only when they refer to a specific scale in a hierarchical scale observation/simulation. These examples include different types of composite unit cells, woven fabric unit cells, and progressive fracture as a composite enhanced infrastructure made from reinforced concrete. The results from the select examples indicate that meso-mechanics and meso-structures are elusive terms and depend mainly on the investigators' knowledge and available information.

  4. GARN: Sampling RNA 3D Structure Space with Game Theory and Knowledge-Based Scoring Strategies.

    PubMed

    Boudard, Mélanie; Bernauer, Julie; Barth, Dominique; Cohen, Johanne; Denise, Alain

    2015-01-01

    Cellular processes involve large numbers of RNA molecules. The functions of these RNA molecules and their binding to molecular machines are highly dependent on their 3D structures. One of the key challenges in RNA structure prediction and modeling is predicting the spatial arrangement of the various structural elements of RNA. As RNA folding is generally hierarchical, methods involving coarse-grained models hold great promise for this purpose. We present here a novel coarse-grained method for sampling, based on game theory and knowledge-based potentials. This strategy, GARN (Game Algorithm for RNa sampling), is often much faster than previously described techniques and generates large sets of solutions closely resembling the native structure. GARN is thus a suitable starting point for the molecular modeling of large RNAs, particularly those with experimental constraints. GARN is available from: http://garn.lri.fr/.

  5. Understanding Diffusion in Hierarchical Zeolites with House-of-Cards Nanosheets.

    PubMed

    Bai, Peng; Haldoupis, Emmanuel; Dauenhauer, Paul J; Tsapatsis, Michael; Siepmann, J Ilja

    2016-08-23

    Introducing mesoporosity to conventional microporous sorbents or catalysts is often proposed as a solution to enhance their mass transport rates. Here, we show that diffusion in these hierarchical materials is more complex and exhibits non-monotonic dependence on sorbate loading. Our atomistic simulations of n-hexane in a model system containing microporous nanosheets and mesopore channels indicate that diffusivity can be smaller than in a conventional zeolite with the same micropore structure, and this observation holds true even if we confine the analysis to molecules completely inside the microporous nanosheets. Only at high sorbate loadings or elevated temperatures, when the mesopores begin to be sufficiently populated, does the overall diffusion in the hierarchical material exceed that in conventional microporous zeolites. Our model system is free of structural defects, such as pore blocking or surface disorder, that are typically invoked to explain slower-than-expected diffusion phenomena in experimental measurements. Examination of free energy profiles and visualization of molecular diffusion pathways demonstrates that the large free energy cost (mostly enthalpic in origin) for escaping from the microporous region into the mesopores leads to more tortuous diffusion paths and causes this unusual transport behavior in hierarchical nanoporous materials. This knowledge allows us to re-examine zero-length-column chromatography data and show that these experimental measurements are consistent with the simulation data when the crystallite size instead of the nanosheet thickness is used for the nominal diffusional length.

  6. An Analysis of Prospective Teachers' Knowledge for Constructing Concept Maps

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela

    2015-01-01

    Background: Literature contends that a teacher's knowledge of concept map-based tasks influence how their students perceive the task and execute the creation of acceptable concept maps. Teachers who are skilled concept mappers are able to (1) understand and apply the operational terms to construct a hierarchical/non-hierarchical concept map; (2)…

  7. Measuring the hierarchy of feedforward networks

    NASA Astrophysics Data System (ADS)

    Corominas-Murtra, Bernat; Rodríguez-Caso, Carlos; Goñi, Joaquín; Solé, Ricard

    2011-03-01

    In this paper we explore the concept of hierarchy as a quantifiable descriptor of ordered structures, departing from the definition of three conditions to be satisfied for a hierarchical structure: order, predictability, and pyramidal structure. According to these principles, we define a hierarchical index taking concepts from graph and information theory. This estimator allows to quantify the hierarchical character of any system susceptible to be abstracted in a feedforward causal graph, i.e., a directed acyclic graph defined in a single connected structure. Our hierarchical index is a balance between this predictability and pyramidal condition by the definition of two entropies: one attending the onward flow and the other for the backward reversion. We show how this index allows to identify hierarchical, antihierarchical, and nonhierarchical structures. Our formalism reveals that departing from the defined conditions for a hierarchical structure, feedforward trees and the inverted tree graphs emerge as the only causal structures of maximal hierarchical and antihierarchical systems respectively. Conversely, null values of the hierarchical index are attributed to a number of different configuration networks; from linear chains, due to their lack of pyramid structure, to full-connected feedforward graphs where the diversity of onward pathways is canceled by the uncertainty (lack of predictability) when going backward. Some illustrative examples are provided for the distinction among these three types of hierarchical causal graphs.

  8. Simulating protein folding initiation sites using an alpha-carbon-only knowledge-based force field

    PubMed Central

    Buck, Patrick M.; Bystroff, Christopher

    2015-01-01

    Protein folding is a hierarchical process where structure forms locally first, then globally. Some short sequence segments initiate folding through strong structural preferences that are independent of their three-dimensional context in proteins. We have constructed a knowledge-based force field in which the energy functions are conditional on local sequence patterns, as expressed in the hidden Markov model for local structure (HMMSTR). Carbon-alpha force field (CALF) builds sequence specific statistical potentials based on database frequencies for α-carbon virtual bond opening and dihedral angles, pairwise contacts and hydrogen bond donor-acceptor pairs, and simulates folding via Brownian dynamics. We introduce hydrogen bond donor and acceptor potentials as α-carbon probability fields that are conditional on the predicted local sequence. Constant temperature simulations were carried out using 27 peptides selected as putative folding initiation sites, each 12 residues in length, representing several different local structure motifs. Each 0.6 μs trajectory was clustered based on structure. Simulation convergence or representativeness was assessed by subdividing trajectories and comparing clusters. For 21 of the 27 sequences, the largest cluster made up more than half of the total trajectory. Of these 21 sequences, 14 had cluster centers that were at most 2.6 Å root mean square deviation (RMSD) from their native structure in the corresponding full-length protein. To assess the adequacy of the energy function on nonlocal interactions, 11 full length native structures were relaxed using Brownian dynamics simulations. Equilibrated structures deviated from their native states but retained their overall topology and compactness. A simple potential that folds proteins locally and stabilizes proteins globally may enable a more realistic understanding of hierarchical folding pathways. PMID:19137613

  9. Knowledge categorization affects popularity and quality of Wikipedia articles

    PubMed Central

    Lomi, Alessandro

    2018-01-01

    The existence of a shared classification system is essential to knowledge production, transfer, and sharing. Studies of knowledge classification, however, rarely consider the fact that knowledge categories exist within hierarchical information systems designed to facilitate knowledge search and discovery. This neglect is problematic whenever information about categorical membership is itself used to evaluate the quality of the items that the category contains. The main objective of this paper is to show that the effects of category membership depend on the position that a category occupies in the hierarchical knowledge classification system of Wikipedia—an open knowledge production and sharing platform taking the form of a freely accessible on-line encyclopedia. Using data on all English-language Wikipedia articles, we examine how the position that a category occupies in the classification hierarchy affects the attention that articles in that category attract from Wikipedia editors, and their evaluation of quality of the Wikipedia articles. Specifically, we show that Wikipedia articles assigned to coarse-grained categories (i. e., categories that occupy higher positions in the hierarchical knowledge classification system) garner more attention from Wikipedia editors (i. e., attract a higher volume of text editing activity), but receive lower evaluations (i. e., they are considered to be of lower quality). The negative relation between attention and quality implied by this result is consistent with current theories of social categorization, but it also goes beyond available results by showing that the effects of categorization on evaluation depend on the position that a category occupies in a hierarchical knowledge classification system. PMID:29293627

  10. Knowledge categorization affects popularity and quality of Wikipedia articles.

    PubMed

    Lerner, Jürgen; Lomi, Alessandro

    2018-01-01

    The existence of a shared classification system is essential to knowledge production, transfer, and sharing. Studies of knowledge classification, however, rarely consider the fact that knowledge categories exist within hierarchical information systems designed to facilitate knowledge search and discovery. This neglect is problematic whenever information about categorical membership is itself used to evaluate the quality of the items that the category contains. The main objective of this paper is to show that the effects of category membership depend on the position that a category occupies in the hierarchical knowledge classification system of Wikipedia-an open knowledge production and sharing platform taking the form of a freely accessible on-line encyclopedia. Using data on all English-language Wikipedia articles, we examine how the position that a category occupies in the classification hierarchy affects the attention that articles in that category attract from Wikipedia editors, and their evaluation of quality of the Wikipedia articles. Specifically, we show that Wikipedia articles assigned to coarse-grained categories (i. e., categories that occupy higher positions in the hierarchical knowledge classification system) garner more attention from Wikipedia editors (i. e., attract a higher volume of text editing activity), but receive lower evaluations (i. e., they are considered to be of lower quality). The negative relation between attention and quality implied by this result is consistent with current theories of social categorization, but it also goes beyond available results by showing that the effects of categorization on evaluation depend on the position that a category occupies in a hierarchical knowledge classification system.

  11. Atomic scale chemical tomography of human bone

    NASA Astrophysics Data System (ADS)

    Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn

    2017-01-01

    Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale - the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.

  12. Processing of hierarchical syntactic structure in music.

    PubMed

    Koelsch, Stefan; Rohrmeier, Martin; Torrecuso, Renzo; Jentschke, Sebastian

    2013-09-17

    Hierarchical structure with nested nonlocal dependencies is a key feature of human language and can be identified theoretically in most pieces of tonal music. However, previous studies have argued against the perception of such structures in music. Here, we show processing of nonlocal dependencies in music. We presented chorales by J. S. Bach and modified versions in which the hierarchical structure was rendered irregular whereas the local structure was kept intact. Brain electric responses differed between regular and irregular hierarchical structures, in both musicians and nonmusicians. This finding indicates that, when listening to music, humans apply cognitive processes that are capable of dealing with long-distance dependencies resulting from hierarchically organized syntactic structures. Our results reveal that a brain mechanism fundamental for syntactic processing is engaged during the perception of music, indicating that processing of hierarchical structure with nested nonlocal dependencies is not just a key component of human language, but a multidomain capacity of human cognition.

  13. Adaptive Multi-scale PHM for Robotic Assembly Processes

    PubMed Central

    Choo, Benjamin Y.; Beling, Peter A.; LaViers, Amy E.; Marvel, Jeremy A.; Weiss, Brian A.

    2017-01-01

    Adaptive multiscale prognostics and health management (AM-PHM) is a methodology designed to support PHM in smart manufacturing systems. As a rule, PHM information is not used in high-level decision-making in manufacturing systems. AM-PHM leverages and integrates component-level PHM information with hierarchical relationships across the component, machine, work cell, and production line levels in a manufacturing system. The AM-PHM methodology enables the creation of actionable prognostic and diagnostic intelligence up and down the manufacturing process hierarchy. Decisions are made with the knowledge of the current and projected health state of the system at decision points along the nodes of the hierarchical structure. A description of the AM-PHM methodology with a simulated canonical robotic assembly process is presented. PMID:28664161

  14. The SwissLipids knowledgebase for lipid biology

    PubMed Central

    Liechti, Robin; Hyka-Nouspikel, Nevila; Niknejad, Anne; Gleizes, Anne; Götz, Lou; Kuznetsov, Dmitry; David, Fabrice P.A.; van der Goot, F. Gisou; Riezman, Howard; Bougueleret, Lydie; Xenarios, Ioannis; Bridge, Alan

    2015-01-01

    Motivation: Lipids are a large and diverse group of biological molecules with roles in membrane formation, energy storage and signaling. Cellular lipidomes may contain tens of thousands of structures, a staggering degree of complexity whose significance is not yet fully understood. High-throughput mass spectrometry-based platforms provide a means to study this complexity, but the interpretation of lipidomic data and its integration with prior knowledge of lipid biology suffers from a lack of appropriate tools to manage the data and extract knowledge from it. Results: To facilitate the description and exploration of lipidomic data and its integration with prior biological knowledge, we have developed a knowledge resource for lipids and their biology—SwissLipids. SwissLipids provides curated knowledge of lipid structures and metabolism which is used to generate an in silico library of feasible lipid structures. These are arranged in a hierarchical classification that links mass spectrometry analytical outputs to all possible lipid structures, metabolic reactions and enzymes. SwissLipids provides a reference namespace for lipidomic data publication, data exploration and hypothesis generation. The current version of SwissLipids includes over 244 000 known and theoretically possible lipid structures, over 800 proteins, and curated links to published knowledge from over 620 peer-reviewed publications. We are continually updating the SwissLipids hierarchy with new lipid categories and new expert curated knowledge. Availability: SwissLipids is freely available at http://www.swisslipids.org/. Contact: alan.bridge@isb-sib.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25943471

  15. Rough Set Approach to Incomplete Multiscale Information System

    PubMed Central

    Yang, Xibei; Qi, Yong; Yu, Dongjun; Yu, Hualong; Song, Xiaoning; Yang, Jingyu

    2014-01-01

    Multiscale information system is a new knowledge representation system for expressing the knowledge with different levels of granulations. In this paper, by considering the unknown values, which can be seen everywhere in real world applications, the incomplete multiscale information system is firstly investigated. The descriptor technique is employed to construct rough sets at different scales for analyzing the hierarchically structured data. The problem of unravelling decision rules at different scales is also addressed. Finally, the reduct descriptors are formulated to simplify decision rules, which can be derived from different scales. Some numerical examples are employed to substantiate the conceptual arguments. PMID:25276852

  16. Advanced techniques for the storage and use of very large, heterogeneous spatial databases. The representation of geographic knowledge: Toward a universal framework. [relations (mathematics)

    NASA Technical Reports Server (NTRS)

    Peuquet, Donna J.

    1987-01-01

    A new approach to building geographic data models that is based on the fundamental characteristics of the data is presented. An overall theoretical framework for representing geographic data is proposed. An example of utilizing this framework in a Geographic Information System (GIS) context by combining artificial intelligence techniques with recent developments in spatial data processing techniques is given. Elements of data representation discussed include hierarchical structure, separation of locational and conceptual views, and the ability to store knowledge at variable levels of completeness and precision.

  17. Design of a structural and functional hierarchy for planning and control of telerobotic systems

    NASA Technical Reports Server (NTRS)

    Acar, Levent; Ozguner, Umit

    1989-01-01

    Hierarchical structures offer numerous advantages over conventional structures for the control of telerobotic systems. A hierarchically organized system can be controlled via undetailed task assignments and can easily adapt to changing circumstances. The distributed and modular structure of these systems also enables fast response needed in most telerobotic applications. On the other hand, most of the hierarchical structures proposed in the literature are based on functional properties of a system. These structures work best for a few given functions of a large class of systems. In telerobotic applications, all functions of a single system needed to be explored. This approach requires a hierarchical organization based on physical properties of a system and such a hierarchical organization is introduced. The decomposition, organization, and control of the hierarchical structure are considered, and a system with two robot arms and a camera is presented.

  18. Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales.

    PubMed

    Kurniawan, Nicholas A; Vos, Bart E; Biebricher, Andreas; Wuite, Gijs J L; Peterman, Erwin J G; Koenderink, Gijsje H

    2016-09-06

    Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Fabrication of micro/nano hierarchical structures with analysis on the surface mechanics

    NASA Astrophysics Data System (ADS)

    Jheng, Yu-Sheng; Lee, Yeeu-Chang

    2016-10-01

    Biomimicry refers to the imitation of mechanisms and features found in living creatures using artificial methods. This study used optical lithography, colloidal lithography, and dry etching to mimic the micro/nano hierarchical structures covering the soles of gecko feet. We measured the static contact angle and contact angle hysteresis to reveal the behavior of liquid drops on the hierarchical structures. Pulling tests were also performed to measure the resistance of movement between the hierarchical structures and a testing plate. Our results reveal that hierarchical structures at the micro-/nano-scale are considerably hydrophobic, they provide good flow characteristics, and they generate more contact force than do surfaces with micro-scale cylindrical structures.

  20. Combined expert system/neural networks method for process fault diagnosis

    DOEpatents

    Reifman, Jaques; Wei, Thomas Y. C.

    1995-01-01

    A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.

  1. Combined expert system/neural networks method for process fault diagnosis

    DOEpatents

    Reifman, J.; Wei, T.Y.C.

    1995-08-15

    A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.

  2. A novel method for a multi-level hierarchical composite with brick-and-mortar structure

    PubMed Central

    Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.

    2013-01-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships. PMID:23900554

  3. A novel method for a multi-level hierarchical composite with brick-and-mortar structure.

    PubMed

    Brandt, Kristina; Wolff, Michael F H; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A

    2013-01-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  4. A novel method for a multi-level hierarchical composite with brick-and-mortar structure

    NASA Astrophysics Data System (ADS)

    Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.

    2013-07-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  5. Synthesis of hollow silica spheres with hierarchical shell structure by the dual action of liquid indium microbeads in vapor-liquid-solid growth.

    PubMed

    Wang, Jian-Tao; Wang, Hui; Ou, Xue-Mei; Lee, Chun-Sing; Zhang, Xiao-Hong

    2011-07-05

    Geometry-based adhesion arising from hierarchical surface structure enables microspheres to adhere to cells strongly, which is essential for inorganic microcapsules that function as drug delivery or diagnostic imaging agents. However, constructing a hierarchical structure on the outer shell of the products via the current microcapsule synthesis method is difficult. This work presents a novel approach to fabricating hollow microspheres with a hierarchical shell structure through the vapor-liquid-solid (VLS) process in which liquid indium droplets act as both templates for the formation of silica capsules and catalysts for the growth of hierarchical shell structure. This hierarchical shell structure offers the hollow microsphere an enhanced geometry-based adhesion. The results provide a facile method for fabricating hollow spheres and enriching their function through tailoring the geometry of their outer shells. © 2011 American Chemical Society

  6. Nurses' participation in personal knowledge transfer: the role of leader-member exchange (LMX) and structural empowerment.

    PubMed

    Davies, Alicia; Wong, Carol A; Laschinger, Heather

    2011-07-01

    The purpose of this study was to test Kanter's theory by examining relationships among structural empowerment, leader-member exchange (LMX) quality and nurses' participation in personal knowledge transfer activities. Despite the current emphasis on evidence-based practice in health care, research suggests that implementation of research findings in everyday clinical practice is unsystematic at best with mixed outcomes. This study was a secondary analysis of data collected using a non-experimental, predictive mailed survey design. A random sample of 400 registered nurses who worked in urban tertiary care hospitals in Ontario yielded a final sample of 234 for a 58.5% response rate. Hierarchical multiple linear regression analysis revealed that the combination of LMX and structural empowerment accounted for 9.1% of the variance in personal knowledge transfer but only total empowerment was a significant independent predictor of knowledge transfer (β=0.291, t=4.012, P<0.001). Consistent with Kanter's Theory, higher levels of empowerment and leader-member exchange quality resulted in increased participation in personal knowledge transfer in practice. The results reinforce the pivotal role of nurse managers in supporting empowering work environments that are conducive to transfer of knowledge in practice to provide evidence-based care. © 2011 The Authors. Journal compilation © 2011 Blackwell Publishing Ltd.

  7. Synthesis and morphogenesis of organic polymer materials with hierarchical structures in biominerals.

    PubMed

    Oaki, Yuya; Kijima, Misako; Imai, Hiroaki

    2011-06-08

    Synthesis and morphogenesis of polypyrrole (PPy) with hierarchical structures from nanoscopic to macroscopic scales have been achieved by using hierarchically organized architectures of biominerals. We adopted biominerals, such as a sea urchin spine and nacreous layer, having hierarchical architectures based on mesocrystals as model materials used for synthesis of an organic polymer. A sea urchin spine led to the formation of PPy macroscopic sponge structures consisting of nanosheets less than 100 nm in thickness with the mosaic interior of the nanoparticles. The morphologies of the resultant PPy hierarchical architectures can be tuned by the structural modification of the original biomineral with chemical and thermal treatments. In another case, a nacreous layer provided PPy porous nanosheets consisting of the nanoparticles. Conductive pathways were formed in these PPy hierarchical architectures. The nanoscale interspaces in the mesocrystal structures of biominerals are used for introduction and polymerization of the monomers, leading to the formation of hierarchically organized polymer architectures. These results show that functional organic materials with complex and nanoscale morphologies can be synthesized by using hierarchically organized architectures as observed in biominerals.

  8. How hierarchical is language use?

    PubMed Central

    Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.

    2012-01-01

    It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157

  9. Conventionalism, structuralism and neo-Kantianism in Poincaré's philosophy of science

    NASA Astrophysics Data System (ADS)

    Ivanova, Milena

    2015-11-01

    Poincaré is well known for his conventionalism and structuralism. However, the relationship between these two theses and their place in Poincaré's epistemology of science remain puzzling. In this paper I show the scope of Poincaré's conventionalism and its position in Poincaré's hierarchical approach to scientific theories. I argue that for Poincaré scientific knowledge is relational and made possible by synthetic a priori, empirical and conventional elements, which, however, are not chosen arbitrarily. By examining his geometric conventionalism, his hierarchical account of science and defence of continuity in theory change, I argue that Poincaré defends a complex structuralist position based on synthetic a priori and conventional elements, the mind-dependence of which precludes epistemic access to mind-independent structures. The object of mathematical theories is not to reveal to us the real nature of things; that would be an unreasonable claim. Their only object is to coordinate the physical laws with which physical experiments make us acquainted, the enunciation of which, without the aid of mathematics, would be unable to effect. (Poincaré, 2001, 117)

  10. A hierarchical modeling methodology for the definition and selection of requirements

    NASA Astrophysics Data System (ADS)

    Dufresne, Stephane

    This dissertation describes the development of a requirements analysis methodology that takes into account the concept of operations and the hierarchical decomposition of aerospace systems. At the core of the methodology, the Analytic Network Process (ANP) is used to ensure the traceability between the qualitative and quantitative information present in the hierarchical model. The proposed methodology is implemented to the requirements definition of a hurricane tracker Unmanned Aerial Vehicle. Three research objectives are identified in this work; (1) improve the requirements mapping process by matching the stakeholder expectations with the concept of operations, systems and available resources; (2) reduce the epistemic uncertainty surrounding the requirements and requirements mapping; and (3) improve the requirements down-selection process by taking into account the level of importance of the criteria and the available resources. Several challenges are associated with the identification and definition of requirements. The complexity of the system implies that a large number of requirements are needed to define the systems. These requirements are defined early in the conceptual design, where the level of knowledge is relatively low and the level of uncertainty is large. The proposed methodology intends to increase the level of knowledge and reduce the level of uncertainty by guiding the design team through a structured process. To address these challenges, a new methodology is created to flow-down the requirements from the stakeholder expectations to the systems alternatives. A taxonomy of requirements is created to classify the information gathered during the problem definition. Subsequently, the operational and systems functions and measures of effectiveness are integrated to a hierarchical model to allow the traceability of the information. Monte Carlo methods are used to evaluate the variations of the hierarchical model elements and consequently reduce the epistemic uncertainty. The proposed methodology is applied to the design of a hurricane tracker Unmanned Aerial Vehicles to demonstrate the origin and impact of requirements on the concept of operations and systems alternatives. This research demonstrates that the hierarchical modeling methodology provides a traceable flow-down of the requirements from the problem definition to the systems alternatives phases of conceptual design.

  11. Hierarchically organized behavior and its neural foundations: A reinforcement-learning perspective

    PubMed Central

    Botvinick, Matthew M.; Niv, Yael; Barto, Andrew C.

    2009-01-01

    Research on human and animal behavior has long emphasized its hierarchical structure — the divisibility of ongoing behavior into discrete tasks, which are comprised of subtask sequences, which in turn are built of simple actions. The hierarchical structure of behavior has also been of enduring interest within neuroscience, where it has been widely considered to reflect prefrontal cortical functions. In this paper, we reexamine behavioral hierarchy and its neural substrates from the point of view of recent developments in computational reinforcement learning. Specifically, we consider a set of approaches known collectively as hierarchical reinforcement learning, which extend the reinforcement learning paradigm by allowing the learning agent to aggregate actions into reusable subroutines or skills. A close look at the components of hierarchical reinforcement learning suggests how they might map onto neural structures, in particular regions within the dorsolateral and orbital prefrontal cortex. It also suggests specific ways in which hierarchical reinforcement learning might provide a complement to existing psychological models of hierarchically structured behavior. A particularly important question that hierarchical reinforcement learning brings to the fore is that of how learning identifies new action routines that are likely to provide useful building blocks in solving a wide range of future problems. Here and at many other points, hierarchical reinforcement learning offers an appealing framework for investigating the computational and neural underpinnings of hierarchically structured behavior. PMID:18926527

  12. Linking knowledge and action through mental models of sustainable agriculture.

    PubMed

    Hoffman, Matthew; Lubell, Mark; Hillis, Vicken

    2014-09-09

    Linking knowledge to action requires understanding how decision-makers conceptualize sustainability. This paper empirically analyzes farmer "mental models" of sustainability from three winegrape-growing regions of California where local extension programs have focused on sustainable agriculture. The mental models are represented as networks where sustainability concepts are nodes, and links are established when a farmer mentions two concepts in their stated definition of sustainability. The results suggest that winegrape grower mental models of sustainability are hierarchically structured, relatively similar across regions, and strongly linked to participation in extension programs and adoption of sustainable farm practices. We discuss the implications of our findings for the debate over the meaning of sustainability, and the role of local extension programs in managing knowledge systems.

  13. Linking knowledge and action through mental models of sustainable agriculture

    PubMed Central

    Hoffman, Matthew; Lubell, Mark; Hillis, Vicken

    2014-01-01

    Linking knowledge to action requires understanding how decision-makers conceptualize sustainability. This paper empirically analyzes farmer “mental models” of sustainability from three winegrape-growing regions of California where local extension programs have focused on sustainable agriculture. The mental models are represented as networks where sustainability concepts are nodes, and links are established when a farmer mentions two concepts in their stated definition of sustainability. The results suggest that winegrape grower mental models of sustainability are hierarchically structured, relatively similar across regions, and strongly linked to participation in extension programs and adoption of sustainable farm practices. We discuss the implications of our findings for the debate over the meaning of sustainability, and the role of local extension programs in managing knowledge systems. PMID:25157158

  14. Modeling Of Object- And Scene-Prototypes With Hierarchically Structured Classes

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Jensch, P.; Ameling, W.

    1989-03-01

    The success of knowledge-based image analysis methodology and implementation tools depends largely on an appropriately and efficiently built model wherein the domain-specific context information about and the inherent structure of the observed image scene have been encoded. For identifying an object in an application environment a computer vision system needs to know firstly the description of the object to be found in an image or in an image sequence, secondly the corresponding relationships between object descriptions within the image sequence. This paper presents models of image objects scenes by means of hierarchically structured classes. Using the topovisual formalism of graph and higraph, we are currently studying principally the relational aspect and data abstraction of the modeling in order to visualize the structural nature resident in image objects and scenes, and to formalize. their descriptions. The goal is to expose the structure of image scene and the correspondence of image objects in the low level image interpretation. process. The object-based system design approach has been applied to build the model base. We utilize the object-oriented programming language C + + for designing, testing and implementing the abstracted entity classes and the operation structures which have been modeled topovisually. The reference images used for modeling prototypes of objects and scenes are from industrial environments as'well as medical applications.

  15. A Hierarchical Multi-Model Approach for Uncertainty Segregation, Prioritization and Comparative Evaluation of Competing Modeling Propositions

    NASA Astrophysics Data System (ADS)

    Tsai, F. T.; Elshall, A. S.; Hanor, J. S.

    2012-12-01

    Subsurface modeling is challenging because of many possible competing propositions for each uncertain model component. How can we judge that we are selecting the correct proposition for an uncertain model component out of numerous competing propositions? How can we bridge the gap between synthetic mental principles such as mathematical expressions on one hand, and empirical observation such as observation data on the other hand when uncertainty exists on both sides? In this study, we introduce hierarchical Bayesian model averaging (HBMA) as a multi-model (multi-proposition) framework to represent our current state of knowledge and decision for hydrogeological structure modeling. The HBMA framework allows for segregating and prioritizing different sources of uncertainty, and for comparative evaluation of competing propositions for each source of uncertainty. We applied the HBMA to a study of hydrostratigraphy and uncertainty propagation of the Southern Hills aquifer system in the Baton Rouge area, Louisiana. We used geophysical data for hydrogeological structure construction through indictor hydrostratigraphy method and used lithologic data from drillers' logs for model structure calibration. However, due to uncertainty in model data, structure and parameters, multiple possible hydrostratigraphic models were produced and calibrated. The study considered four sources of uncertainties. To evaluate mathematical structure uncertainty, the study considered three different variogram models and two geological stationarity assumptions. With respect to geological structure uncertainty, the study considered two geological structures with respect to the Denham Springs-Scotlandville fault. With respect to data uncertainty, the study considered two calibration data sets. These four sources of uncertainty with their corresponding competing modeling propositions resulted in 24 calibrated models. The results showed that by segregating different sources of uncertainty, HBMA analysis provided insights on uncertainty priorities and propagation. In addition, it assisted in evaluating the relative importance of competing modeling propositions for each uncertain model component. By being able to dissect the uncertain model components and provide weighted representation of the competing propositions for each uncertain model component based on the background knowledge, the HBMA functions as an epistemic framework for advancing knowledge about the system under study.

  16. Syntactic Structure and Artificial Grammar Learning: The Learnability of Embedded Hierarchical Structures

    ERIC Educational Resources Information Center

    de Vries, Meinou H.; Monaghan, Padraic; Knecht, Stefan; Zwitserlood, Pienie

    2008-01-01

    Embedded hierarchical structures, such as "the rat the cat ate was brown", constitute a core generative property of a natural language theory. Several recent studies have reported learning of hierarchical embeddings in artificial grammar learning (AGL) tasks, and described the functional specificity of Broca's area for processing such structures.…

  17. The Neural Correlates of Hierarchical Predictions for Perceptual Decisions.

    PubMed

    Weilnhammer, Veith A; Stuke, Heiner; Sterzer, Philipp; Schmack, Katharina

    2018-05-23

    Sensory information is inherently noisy, sparse, and ambiguous. In contrast, visual experience is usually clear, detailed, and stable. Bayesian theories of perception resolve this discrepancy by assuming that prior knowledge about the causes underlying sensory stimulation actively shapes perceptual decisions. The CNS is believed to entertain a generative model aligned to dynamic changes in the hierarchical states of our volatile sensory environment. Here, we used model-based fMRI to study the neural correlates of the dynamic updating of hierarchically structured predictions in male and female human observers. We devised a crossmodal associative learning task with covertly interspersed ambiguous trials in which participants engaged in hierarchical learning based on changing contingencies between auditory cues and visual targets. By inverting a Bayesian model of perceptual inference, we estimated individual hierarchical predictions, which significantly biased perceptual decisions under ambiguity. Although "high-level" predictions about the cue-target contingency correlated with activity in supramodal regions such as orbitofrontal cortex and hippocampus, dynamic "low-level" predictions about the conditional target probabilities were associated with activity in retinotopic visual cortex. Our results suggest that our CNS updates distinct representations of hierarchical predictions that continuously affect perceptual decisions in a dynamically changing environment. SIGNIFICANCE STATEMENT Bayesian theories posit that our brain entertains a generative model to provide hierarchical predictions regarding the causes of sensory information. Here, we use behavioral modeling and fMRI to study the neural underpinnings of such hierarchical predictions. We show that "high-level" predictions about the strength of dynamic cue-target contingencies during crossmodal associative learning correlate with activity in orbitofrontal cortex and the hippocampus, whereas "low-level" conditional target probabilities were reflected in retinotopic visual cortex. Our findings empirically corroborate theorizations on the role of hierarchical predictions in visual perception and contribute substantially to a longstanding debate on the link between sensory predictions and orbitofrontal or hippocampal activity. Our work fundamentally advances the mechanistic understanding of perceptual inference in the human brain. Copyright © 2018 the authors 0270-6474/18/385008-14$15.00/0.

  18. A two-level structure for advanced space power system automation

    NASA Technical Reports Server (NTRS)

    Loparo, Kenneth A.; Chankong, Vira

    1990-01-01

    The tasks to be carried out during the three-year project period are: (1) performing extensive simulation using existing mathematical models to build a specific knowledge base of the operating characteristics of space power systems; (2) carrying out the necessary basic research on hierarchical control structures, real-time quantitative algorithms, and decision-theoretic procedures; (3) developing a two-level automation scheme for fault detection and diagnosis, maintenance and restoration scheduling, and load management; and (4) testing and demonstration. The outlines of the proposed system structure that served as a master plan for this project, work accomplished, concluding remarks, and ideas for future work are also addressed.

  19. 1986 Year End Report for Road Following at Carnegie-Mellon

    DTIC Science & Technology

    1987-05-01

    how to make them work efficiently. We designed a hierarchical structure and a monitor module which manages all parts of the hierarchy (see figure 1...database, called the Local Map, is managed by a program known as the Local Map Builder (LMB). Each module stores and retrieves information in the...knowledge-intensive modules, and a database manager that synchronizes the modules-is characteristic of a traditional blackboard system. Such a system is

  20. A Very Large Area Network (VLAN) knowledge-base applied to space communication problems

    NASA Technical Reports Server (NTRS)

    Zander, Carol S.

    1988-01-01

    This paper first describes a hierarchical model for very large area networks (VLAN). Space communication problems whose solution could profit by the model are discussed and then an enhanced version of this model incorporating the knowledge needed for the missile detection-destruction problem is presented. A satellite network or VLAN is a network which includes at least one satellite. Due to the complexity, a compromise between fully centralized and fully distributed network management has been adopted. Network nodes are assigned to a physically localized group, called a partition. Partitions consist of groups of cell nodes with one cell node acting as the organizer or master, called the Group Master (GM). Coordinating the group masters is a Partition Master (PM). Knowledge is also distributed hierarchically existing in at least two nodes. Each satellite node has a back-up earth node. Knowledge must be distributed in such a way so as to minimize information loss when a node fails. Thus the model is hierarchical both physically and informationally.

  1. Using XML and XSLT for flexible elicitation of mental-health risk knowledge.

    PubMed

    Buckingham, C D; Ahmed, A; Adams, A E

    2007-03-01

    Current tools for assessing risks associated with mental-health problems require assessors to make high-level judgements based on clinical experience. This paper describes how new technologies can enhance qualitative research methods to identify lower-level cues underlying these judgements, which can be collected by people without a specialist mental-health background. Content analysis of interviews with 46 multidisciplinary mental-health experts exposed the cues and their interrelationships, which were represented by a mind map using software that stores maps as XML. All 46 mind maps were integrated into a single XML knowledge structure and analysed by a Lisp program to generate quantitative information about the numbers of experts associated with each part of it. The knowledge was refined by the experts, using software developed in Flash to record their collective views within the XML itself. These views specified how the XML should be transformed by XSLT, a technology for rendering XML, which resulted in a validated hierarchical knowledge structure associating patient cues with risks. Changing knowledge elicitation requirements were accommodated by flexible transformations of XML data using XSLT, which also facilitated generation of multiple data-gathering tools suiting different assessment circumstances and levels of mental-health knowledge.

  2. Microfabrication of hierarchical structures for engineered mechanical materials

    NASA Astrophysics Data System (ADS)

    Vera Canudas, Marc

    Materials found in nature present, in some cases, unique properties from their constituents that are of great interest in engineered materials for applications ranging from structural materials for the construction of bridges, canals and buildings to the fabrication of new lightweight composites for airplane and automotive bodies, to protective thin film coatings, amongst other fields. Research in the growing field of biomimetic materials indicates that the micro-architectures present in natural materials are critical to their macroscopic mechanical properties. A better understanding of the effect that structure and hierarchy across scales have on the material properties will enable engineered materials with enhanced properties. At the moment, very few theoretical models predict mechanical properties of simple materials based on their microstructures. Moreover these models are based on observations from complex biological systems. One way to overcome this challenge is through the use of microfabrication techniques to design and fabricate simple materials, more appropriate for the study of hierarchical organizations and microstructured materials. Arrays of structures with controlled geometry and dimension can be designed and fabricated at different length scales, ranging from a few hundred nanometers to centimeters, in order to mimic similar systems found in nature. In this thesis, materials have been fabricated in order to gain fundamental insight into the complex hierarchical materials found in nature and to engineer novel materials with enhanced mechanical properties. The materials fabricated here were mechanically characterized and compared to simple mechanics models to describe their behavior with the goal of applying the knowledge acquired to the design and synthesis of future engineered materials with novel properties.

  3. An effective immunization strategy for airborne epidemics in modular and hierarchical social contact network

    NASA Astrophysics Data System (ADS)

    Song, Zhichao; Ge, Yuanzheng; Luo, Lei; Duan, Hong; Qiu, Xiaogang

    2015-12-01

    Social contact between individuals is the chief factor for airborne epidemic transmission among the crowd. Social contact networks, which describe the contact relationships among individuals, always exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated. We find that traditional global targeted immunization strategy would lose its superiority in controlling the epidemic propagation in the social contact networks with modular and hierarchical structure. Therefore, we propose a hierarchical targeted immunization strategy to settle this problem. In this novel strategy, importance of the hierarchical structure is considered. Transmission control experiments of influenza H1N1 are carried out based on a modular and hierarchical network model. Results obtained indicate that hierarchical structure of the network is more critical than the degrees of the immunized targets and the modular network layer is the most important for the epidemic propagation control. Finally, the efficacy and stability of this novel immunization strategy have been validated as well.

  4. Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.

    PubMed

    Nitta, Tohru

    2017-10-01

    We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).

  5. Image/video understanding systems based on network-symbolic models

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2004-03-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.

  6. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    PubMed

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-05

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  7. Evaluating Hierarchical Structure in Music Annotations

    PubMed Central

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M.; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement. PMID:28824514

  8. Adaptive Multi-scale Prognostics and Health Management for Smart Manufacturing Systems

    PubMed Central

    Choo, Benjamin Y.; Adams, Stephen C.; Weiss, Brian A.; Marvel, Jeremy A.; Beling, Peter A.

    2017-01-01

    The Adaptive Multi-scale Prognostics and Health Management (AM-PHM) is a methodology designed to enable PHM in smart manufacturing systems. In application, PHM information is not yet fully utilized in higher-level decision-making in manufacturing systems. AM-PHM leverages and integrates lower-level PHM information such as from a machine or component with hierarchical relationships across the component, machine, work cell, and assembly line levels in a manufacturing system. The AM-PHM methodology enables the creation of actionable prognostic and diagnostic intelligence up and down the manufacturing process hierarchy. Decisions are then made with the knowledge of the current and projected health state of the system at decision points along the nodes of the hierarchical structure. To overcome the issue of exponential explosion of complexity associated with describing a large manufacturing system, the AM-PHM methodology takes a hierarchical Markov Decision Process (MDP) approach into describing the system and solving for an optimized policy. A description of the AM-PHM methodology is followed by a simulated industry-inspired example to demonstrate the effectiveness of AM-PHM. PMID:28736651

  9. Local Design Methodologies for a Hierarchic Control Architecture

    DTIC Science & Technology

    1990-04-12

    regional (in the sense of knowledge and influence) controllers which are distributed throughout the structure [9,39,54,56,65,68]. Many decentralized...occurs, it is necessary that - gpk = gk > 0 (3.74) I which is true provided Hk > 0 and gt 0 0. These conditions will be met near a strong minimum, but...Astronautics, 19763 Semester spent at Leningrad State University, 1975 PROFESSIONAL SUMMARY Current major area of teaching and research is in the design and

  10. A Decision Support System for Control and Automation of Dynamical Processes

    DTIC Science & Technology

    1990-03-01

    would like to thank my Advisor, Asok Ray , for giving me the opportunity to become involved in the Artificial Intelligence field, and for his guidance in...Applications, IEEE Computer Society, December 1984, pp 460-464. 76 [Ray87) Ray , A., Joshi, S. M., Whitney, C. K., Jow, H. N., "Information...Thomp88] Thompson, D. R., Ray , A., Kumara, S., "A Hierarchically Structured Knowledge-Based System for Welding Automation and Control", Journal of

  11. Matriarch: A Python Library for Materials Architecture.

    PubMed

    Giesa, Tristan; Jagadeesan, Ravi; Spivak, David I; Buehler, Markus J

    2015-10-12

    Biological materials, such as proteins, often have a hierarchical structure ranging from basic building blocks at the nanoscale (e.g., amino acids) to assembled structures at the macroscale (e.g., fibers). Current software for materials engineering allows the user to specify polypeptide chains and simple secondary structures prior to molecular dynamics simulation, but is not flexible in terms of the geometric arrangement of unequilibrated structures. Given some knowledge of a larger-scale structure, instructing the software to create it can be very difficult and time-intensive. To this end, the present paper reports a mathematical language, using category theory, to describe the architecture of a material, i.e., its set of building blocks and instructions for combining them. While this framework applies to any hierarchical material, here we concentrate on proteins. We implement this mathematical language as an open-source Python library called Matriarch. It is a domain-specific language that gives the user the ability to create almost arbitrary structures with arbitrary amino acid sequences and, from them, generate Protein Data Bank (PDB) files. In this way, Matriarch is more powerful than commercial software now available. Matriarch can be used in tandem with molecular dynamics simulations and helps engineers design and modify biologically inspired materials based on their desired functionality. As a case study, we use our software to alter both building blocks and building instructions for tropocollagen, and determine their effect on its structure and mechanical properties.

  12. The Synthesis Map Is a Multidimensional Educational Tool That Provides Insight into Students’ Mental Models and Promotes Students’ Synthetic Knowledge Generation

    PubMed Central

    Ortega, Ryan A.; Brame, Cynthia J.

    2015-01-01

    Concept mapping was developed as a method of displaying and organizing hierarchical knowledge structures. Using the new, multidimensional presentation software Prezi, we have developed a new teaching technique designed to engage higher-level skills in the cognitive domain. This tool, synthesis mapping, is a natural evolution of concept mapping, which utilizes embedding to layer information within concepts. Prezi’s zooming user interface lets the author of the presentation use both depth as well as distance to show connections between data, ideas, and concepts. Students in the class Biology of Cancer created synthesis maps to illustrate their knowledge of tumorigenesis. Students used multiple organizational schemes to build their maps. We present an analysis of student work, placing special emphasis on organization within student maps and how the organization of knowledge structures in student maps can reveal strengths and weaknesses in student understanding or instruction. We also provide a discussion of best practices for instructors who would like to implement synthesis mapping in their classrooms. PMID:25917385

  13. Interface methods for using intranet portal organizational memory information system.

    PubMed

    Ji, Yong Gu; Salvendy, Gavriel

    2004-12-01

    In this paper, an intranet portal is considered as an information infrastructure (organizational memory information system, OMIS) supporting organizational learning. The properties and the hierarchical structure of information and knowledge in an intranet portal OMIS was identified as a problem for navigation tools of an intranet portal interface. The problem relates to navigation and retrieval functions of intranet portal OMIS and is expected to adversely affect user performance, satisfaction, and usefulness. To solve the problem, a conceptual model for navigation tools of an intranet portal interface was proposed and an experiment using a crossover design was conducted with 10 participants. In the experiment, a separate access method (tabbed tree tool) was compared to an unified access method (single tree tool). The results indicate that each information/knowledge repository for which a user has a different structural knowledge should be handled separately with a separate access to increase user satisfaction and the usefulness of the OMIS and to improve user performance in navigation.

  14. Controllable synthesis of layered Co-Ni hydroxide hierarchical structures for high-performance hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Yuan, Peng; Zhang, Ning; Zhang, Dan; Liu, Tao; Chen, Limiao; Ma, Renzhi; Qiu, Guanzhou; Liu, Xiaohe

    2016-01-01

    A facile solvothermal method is developed for synthesizing layered Co-Ni hydroxide hierarchical structures by using hexamethylenetetramine (HMT) as alkaline reagent. The electrochemical measurements reveal that the specific capacitances of layered bimetallic (Co-Ni) hydroxides are generally superior to those of layered monometallic (Co, Ni) hydroxides. The as-prepared Co0.5Ni0.5 hydroxide hierarchical structures possesses the highest specific capacitance of 1767 F g-1 at a galvanic current density of 1 A g-1 and an outstanding specific capacitance retention of 87% after 1000 cycles. In comparison with the dispersed nanosheets of Co-Ni hydroxide, layered hydroxide hierarchical structures show much superior electrochemical performance. This study provides a promising method to construct hierarchical structures with controllable transition-metal compositions for enhancing the electrochemical performance in hybrid supercapacitors.

  15. Design and Analysis Tools for Concurrent Blackboard Systems

    NASA Technical Reports Server (NTRS)

    McManus, John W.

    1991-01-01

    A blackboard system consists of a set of knowledge sources, a blackboard data structure, and a control strategy used to activate the knowledge sources. The blackboard model of problem solving is best described by Dr. H. Penny Nii of the Stanford University AI Laboratory: "A Blackboard System can be viewed as a collection of intelligent agents who are gathered around a blackboard, looking at pieces of information written on it, thinking about the current state of the solution, and writing their conclusions on the blackboard as they generate them. " The blackboard is a centralized global data structure, often partitioned in a hierarchical manner, used to represent the problem domain. The blackboard is also used to allow inter-knowledge source communication and acts as a shared memory visible to all of the knowledge sources. A knowledge source is a highly specialized, highly independent process that takes inputs from the blackboard data structure, performs a computation, and places the results of the computation in the blackboard data structure. This design allows for an opportunistic control strategy. The opportunistic problem-solving technique allows a knowledge source to contribute towards the solution of the current problem without knowing which of the other knowledge sources will use the information. The use of opportunistic problem-solving allows the data transfers on the blackboard to determine which processes are active at a given time. Designing and developing blackboard systems is a difficult process. The designer is trying to balance several conflicting goals and achieve a high degree of concurrent knowledge source execution while maintaining both knowledge and semantic consistency on the blackboard. Blackboard systems have not attained their apparent potential because there are no established tools or methods to guide in their construction or analyze their performance.

  16. FEX: A Knowledge-Based System For Planimetric Feature Extraction

    NASA Astrophysics Data System (ADS)

    Zelek, John S.

    1988-10-01

    Topographical planimetric features include natural surfaces (rivers, lakes) and man-made surfaces (roads, railways, bridges). In conventional planimetric feature extraction, a photointerpreter manually interprets and extracts features from imagery on a stereoplotter. Visual planimetric feature extraction is a very labour intensive operation. The advantages of automating feature extraction include: time and labour savings; accuracy improvements; and planimetric data consistency. FEX (Feature EXtraction) combines techniques from image processing, remote sensing and artificial intelligence for automatic feature extraction. The feature extraction process co-ordinates the information and knowledge in a hierarchical data structure. The system simulates the reasoning of a photointerpreter in determining the planimetric features. Present efforts have concentrated on the extraction of road-like features in SPOT imagery. Keywords: Remote Sensing, Artificial Intelligence (AI), SPOT, image understanding, knowledge base, apars.

  17. On Hierarchical Threshold Access Structures

    DTIC Science & Technology

    2010-11-01

    One of the recent generalizations of (t, n) secret sharing for hierarchical threshold access structures is given by Tassa, where he answers the...of theoretical background. We give a conceptually simpler alternative for the understanding of the realization of hierarchical threshold access

  18. RHSEG and Subdue: Background and Preliminary Approach for Combining these Technologies for Enhanced Image Data Analysis, Mining and Knowledge Discovery

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Cook, Diane J.

    2008-01-01

    Under a project recently selected for funding by NASA's Science Mission Directorate under the Applied Information Systems Research (AISR) program, Tilton and Cook will design and implement the integration of the Subdue graph based knowledge discovery system, developed at the University of Texas Arlington and Washington State University, with image segmentation hierarchies produced by the RHSEG software, developed at NASA GSFC, and perform pilot demonstration studies of data analysis, mining and knowledge discovery on NASA data. Subdue represents a method for discovering substructures in structural databases. Subdue is devised for general-purpose automated discovery, concept learning, and hierarchical clustering, with or without domain knowledge. Subdue was developed by Cook and her colleague, Lawrence B. Holder. For Subdue to be effective in finding patterns in imagery data, the data must be abstracted up from the pixel domain. An appropriate abstraction of imagery data is a segmentation hierarchy: a set of several segmentations of the same image at different levels of detail in which the segmentations at coarser levels of detail can be produced from simple merges of regions at finer levels of detail. The RHSEG program, a recursive approximation to a Hierarchical Segmentation approach (HSEG), can produce segmentation hierarchies quickly and effectively for a wide variety of images. RHSEG and HSEG were developed at NASA GSFC by Tilton. In this presentation we provide background on the RHSEG and Subdue technologies and present a preliminary analysis on how RHSEG and Subdue may be combined to enhance image data analysis, mining and knowledge discovery.

  19. 3D Printing of Hierarchical Silk Fibroin Structures.

    PubMed

    Sommer, Marianne R; Schaffner, Manuel; Carnelli, Davide; Studart, André R

    2016-12-21

    Like many other natural materials, silk is hierarchically structured from the amino acid level up to the cocoon or spider web macroscopic structures. Despite being used industrially in a number of applications, hierarchically structured silk fibroin objects with a similar degree of architectural control as in natural structures have not been produced yet due to limitations in fabrication processes. In a combined top-down and bottom-up approach, we exploit the freedom in macroscopic design offered by 3D printing and the template-guided assembly of ink building blocks at the meso- and nanolevel to fabricate hierarchical silk porous materials with unprecedented structural control. Pores with tunable sizes in the range 40-350 μm are generated by adding sacrificial organic microparticles as templates to a silk fibroin-based ink. Commercially available wax particles or monodisperse polycaprolactone made by microfluidics can be used as microparticle templates. Since closed pores are generated after template removal, an ultrasonication treatment can optionally be used to achieve open porosity. Such pore templating particles can be further modified with nanoparticles to create a hierarchical template that results in porous structures with a defined nanotopography on the pore walls. The hierarchically porous silk structures obtained with this processing technique can potentially be utilized in various application fields from structural materials to thermal insulation to tissue engineering scaffolds.

  20. Application of a hierarchical structure stochastic learning automation

    NASA Technical Reports Server (NTRS)

    Neville, R. G.; Chrystall, M. S.; Mars, P.

    1979-01-01

    A hierarchical structure automaton was developed using a two state stochastic learning automato (SLA) in a time shared model. Application of the hierarchical SLA to systems with multidimensional, multimodal performance criteria is described. Results of experiments performed with the hierarchical SLA using a performance index with a superimposed noise component of ? or - delta distributed uniformly over the surface are discussed.

  1. Wetting and Dewetting Transitions on Submerged Superhydrophobic Surfaces with Hierarchical Structures.

    PubMed

    Wu, Huaping; Yang, Zhe; Cao, Binbin; Zhang, Zheng; Zhu, Kai; Wu, Bingbing; Jiang, Shaofei; Chai, Guozhong

    2017-01-10

    The wetting transition on submersed superhydrophobic surfaces with hierarchical structures and the influence of trapped air on superhydrophobic stability are predicted based on the thermodynamics and mechanical analyses. The dewetting transition on the hierarchically structured surfaces is investigated, and two necessary thermodynamic conditions and a mechanical balance condition for dewetting transition are proposed. The corresponding thermodynamic phase diagram of reversible transition and the critical reversed pressure well explain the experimental results reported previously. Our theory provides a useful guideline for precise controlling of breaking down and recovering of superhydrophobicity by designing superhydrophobic surfaces with hierarchical structures under water.

  2. Materials with structural hierarchy

    NASA Technical Reports Server (NTRS)

    Lakes, Roderic

    1993-01-01

    The role of structural hierarchy in determining bulk material properties is examined. Dense hierarchical materials are discussed, including composites and polycrystals, polymers, and biological materials. Hierarchical cellular materials are considered, including cellular solids and the prediction of strength and stiffness in hierarchical cellular materials.

  3. Design Rules for Tailoring Antireflection Properties of Hierarchical Optical Structures

    DOE PAGES

    Leon, Juan J. Diaz; Hiszpanski, Anna M.; Bond, Tiziana C.; ...

    2017-05-18

    Hierarchical structures consisting of small sub-wavelength features stacked atop larger structures have been demonstrated as an effective means of reducing the reflectance of surfaces. However, optical devices require different antireflective properties depending on the application, and general unifying guidelines on hierarchical structures' design to attain a desired antireflection spectral response are still lacking. The type of reflectivity (diffuse, specular, or total/hemispherical) and its angular- and spectral-dependence are all dictated by the structural parameters. Through computational and experimental studies, guidelines have been devised to modify these various aspects of reflectivity across the solar spectrum by proper selection of the features ofmore » hierarchical structures. In this wavelength regime, micrometer-scale substructures dictate the long-wavelength spectral response and effectively reduce specular reflectance, whereas nanometer-scale substructures dictate primarily the visible wavelength spectral response and reduce diffuse reflectance. Coupling structures having these two length scales into hierarchical arrays impressively reduces surfaces' hemispherical reflectance across a broad spectrum of wavelengths and angles. Furthermore, such hierarchical structures in silicon are demonstrated having an average total reflectance across the solar spectrum of 1.1% (average weighted reflectance of 1% in the 280–2500 nm range of the AM 1.5 G spectrum) and specular reflectance <1% even at angles of incidence as high as 67°.« less

  4. Culture Modulates the Brain Response to Harmonic Violations: An EEG Study on Hierarchical Syntactic Structure in Music.

    PubMed

    Akrami, Haleh; Moghimi, Sahar

    2017-01-01

    We investigated the role of culture in processing hierarchical syntactic structures in music. We examined whether violation of non-local dependencies manifest in event related potentials (ERP) for Western and Iranian excerpts by recording EEG while participants passively listened to sequences of modified/original excerpts. We also investigated oscillatory and synchronization properties of brain responses during processing of hierarchical structures. For the Western excerpt, subjective ratings of conclusiveness were marginally significant and the difference in the ERP components fell short of significance. However, ERP and behavioral results showed that while listening to culturally familiar music, subjects comprehended whether or not the hierarchical syntactic structure was fulfilled. Irregularities in the hierarchical structures of the Iranian excerpt elicited an early negativity in the central regions bilaterally, followed by two later negativities from 450-700 to 750-950 ms. The latter manifested throughout the scalp. Moreover, violations of hierarchical structure in the Iranian excerpt were associated with (i) an early decrease in the long range alpha phase synchronization, (ii) an early increase in the oscillatory activity in the beta band over the central areas, and (iii) a late decrease in the theta band phase synchrony between left anterior and right posterior regions. Results suggest that rhythmic structures and melodic fragments, representative of Iranian music, created a familiar context in which recognition of complex non-local syntactic structures was feasible for Iranian listeners. Processing of neural responses to the Iranian excerpt indicated neural mechanisms for processing of hierarchical syntactic structures in music at different levels of cortical integration.

  5. Masking effects of speech and music: does the masker's hierarchical structure matter?

    PubMed

    Shi, Lu-Feng; Law, Yvonne

    2010-04-01

    Speech and music are time-varying signals organized by parallel hierarchical rules. Through a series of four experiments, this study compared the masking effects of single-talker speech and instrumental music on speech perception while manipulating the complexity of hierarchical and temporal structures of the maskers. Listeners' word recognition was found to be similar between hierarchically intact and disrupted speech or classical music maskers (Experiment 1). When sentences served as the signal, significantly greater masking effects were observed with disrupted than intact speech or classical music maskers (Experiment 2), although not with jazz or serial music maskers, which differed from the classical music masker in their hierarchical structures (Experiment 3). Removing the classical music masker's temporal dynamics or partially restoring it affected listeners' sentence recognition; yet, differences in performance between intact and disrupted maskers remained robust (Experiment 4). Hence, the effect of structural expectancy was largely present across maskers when comparing them before and after their hierarchical structure was purposefully disrupted. This effect seemed to lend support to the auditory stream segregation theory.

  6. Support vector machine prediction of enzyme function with conjoint triad feature and hierarchical context.

    PubMed

    Wang, Yong-Cui; Wang, Yong; Yang, Zhi-Xia; Deng, Nai-Yang

    2011-06-20

    Enzymes are known as the largest class of proteins and their functions are usually annotated by the Enzyme Commission (EC), which uses a hierarchy structure, i.e., four numbers separated by periods, to classify the function of enzymes. Automatically categorizing enzyme into the EC hierarchy is crucial to understand its specific molecular mechanism. In this paper, we introduce two key improvements in predicting enzyme function within the machine learning framework. One is to introduce the efficient sequence encoding methods for representing given proteins. The second one is to develop a structure-based prediction method with low computational complexity. In particular, we propose to use the conjoint triad feature (CTF) to represent the given protein sequences by considering not only the composition of amino acids but also the neighbor relationships in the sequence. Then we develop a support vector machine (SVM)-based method, named as SVMHL (SVM for hierarchy labels), to output enzyme function by fully considering the hierarchical structure of EC. The experimental results show that our SVMHL with the CTF outperforms SVMHL with the amino acid composition (AAC) feature both in predictive accuracy and Matthew's correlation coefficient (MCC). In addition, SVMHL with the CTF obtains the accuracy and MCC ranging from 81% to 98% and 0.82 to 0.98 when predicting the first three EC digits on a low-homologous enzyme dataset. We further demonstrate that our method outperforms the methods which do not take account of hierarchical relationship among enzyme categories and alternative methods which incorporate prior knowledge about inter-class relationships. Our structure-based prediction model, SVMHL with the CTF, reduces the computational complexity and outperforms the alternative approaches in enzyme function prediction. Therefore our new method will be a useful tool for enzyme function prediction community.

  7. Mathematical Methods of System Analysis in Construction Materials

    NASA Astrophysics Data System (ADS)

    Garkina, Irina; Danilov, Alexander

    2017-10-01

    System attributes of construction materials are defined: complexity of an object, integrity of set of elements, existence of essential, stable relations between elements defining integrative properties of system, existence of structure, etc. On the basis of cognitive modelling (intensive and extensive properties; the operating parameters) materials (as difficult systems) and creation of the cognitive map the hierarchical modular structure of criteria of quality is under construction. It actually is a basis for preparation of the specification on development of material (the required organization and properties). Proceeding from a modern paradigm (model of statement of problems and their decisions) of development of materials, levels and modules are specified in structure of material. It when using the principles of the system analysis allows to considered technological process as the difficult system consisting of elements of the distinguished specification level: from atomic before separate process. Each element of system depending on an effective objective is considered as separate system with more detailed levels of decomposition. Among them, semantic and qualitative analyses of an object (are considered a research objective, decomposition levels, separate elements and communications between them come to light). Further formalization of the available knowledge in the form of mathematical models (structural identification) is carried out; communications between input and output parameters (parametrical identification) are defined. Hierarchical structures of criteria of quality are under construction for each allocated level. On her the relevant hierarchical structures of system (material) are under construction. Regularities of structurization and formation of properties, generally are considered at the levels from micro to a macrostructure. The mathematical model of material is represented as set of the models corresponding to private criteria by which separate modules and their levels (the mathematical description, a decision algorithm) are defined. Adequacy is established (compliance of results of modelling to experimental data; is defined by the level of knowledge of process and validity of the accepted assumptions). The global criterion of quality of material is considered as a set of private criteria (properties). Synthesis of material is carried out on the basis of one-criteria optimization on each of the chosen private criteria. Results of one-criteria optimization are used at multicriteria optimization. The methods of developing materials as single-purpose, multi-purpose, including contradictory, systems are indicated. The scheme of synthesis of composite materials as difficult systems is developed. The specified system approach effectively was used in case of synthesis of composite materials with special properties.

  8. An Analysis of Turkey's PISA 2015 Results Using Two-Level Hierarchical Linear Modelling

    ERIC Educational Resources Information Center

    Atas, Dogu; Karadag, Özge

    2017-01-01

    In the field of education, most of the data collected are multi-level structured. Cities, city based schools, school based classes and finally students in the classrooms constitute a hierarchical structure. Hierarchical linear models give more accurate results compared to standard models when the data set has a structure going far as individuals,…

  9. Ray tracing a three-dimensional scene using a hierarchical data structure

    DOEpatents

    Wald, Ingo; Boulos, Solomon; Shirley, Peter

    2012-09-04

    Ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. One example embodiment is a method for ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. In this example embodiment, the hierarchical data structure includes at least a parent node and a corresponding plurality of child nodes. The method includes a first act of determining that a first active ray in the packet hits the parent node and a second act of descending to each of the plurality of child nodes.

  10. Tubular structured hierarchical mesoporous titania material derived from natural cellulosic substances and application as photocatalyst for degradation of methylene blue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo, E-mail: jghuang@zju.edu.cn

    Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template andmore » cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.« less

  11. Hierarchical macroscopic fibrillar adhesives: in situ study of buckling and adhesion mechanisms on wavy substrates.

    PubMed

    Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard

    2015-10-23

    Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3-4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.

  12. Effects of hierarchical structures and insulating liquid media on adhesion

    NASA Astrophysics Data System (ADS)

    Yang, Weixu; Wang, Xiaoli; Li, Hanqing; Song, Xintao

    2017-11-01

    Effects of hierarchical structures and insulating liquid media on adhesion are investigated through a numerical adhesive contact model established in this paper, in which hierarchical structures are considered by introducing the height distribution into the surface gap equation, and media are taken into account through the Hamaker constant in Lifshitz-Hamaker approach. Computational methods such as inexact Newton method, bi-conjugate stabilized (Bi-CGSTAB) method and fast Fourier transform (FFT) technique are employed to obtain the adhesive force. It is shown that hierarchical structured surface exhibits excellent anti-adhesive properties compared with flat, micro or nano structured surfaces. Adhesion force is more dependent on the sizes of nanostructures than those of microstructures, and the optimal ranges of nanostructure pitch and maximum height for small adhesion force are presented. Insulating liquid media effectively decrease the adhesive interaction and 1-bromonaphthalene exhibits the smallest adhesion force among the five selected media. In addition, effects of hierarchical structures with optimal sizes on reducing adhesion are more obvious than those of the selected insulating liquid media.

  13. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs.

    PubMed

    Ng, Wei Long; Goh, Min Hao; Yeong, Wai Yee; Naing, May Win

    2018-02-27

    Native tissues and/or organs possess complex hierarchical porous structures that confer highly-specific cellular functions. Despite advances in fabrication processes, it is still very challenging to emulate the hierarchical porous collagen architecture found in most native tissues. Hence, the ability to recreate such hierarchical porous structures would result in biomimetic tissue-engineered constructs. Here, a single-step drop-on-demand (DOD) bioprinting strategy is proposed to fabricate hierarchical porous collagen-based hydrogels. Printable macromolecule-based bio-inks (polyvinylpyrrolidone, PVP) have been developed and printed in a DOD manner to manipulate the porosity within the multi-layered collagen-based hydrogels by altering the collagen fibrillogenesis process. The experimental results have indicated that hierarchical porous collagen structures could be achieved by controlling the number of macromolecule-based bio-ink droplets printed on each printed collagen layer. This facile single-step bioprinting process could be useful for the structural design of collagen-based hydrogels for various tissue engineering applications.

  14. CuO-Decorated ZnO Hierarchical Nanostructures as Efficient and Established Sensing Materials for H2S Gas Sensors

    PubMed Central

    Vuong, Nguyen Minh; Chinh, Nguyen Duc; Huy, Bui The; Lee, Yong-Ill

    2016-01-01

    Highly sensitive hydrogen sulfide (H2S) gas sensors were developed from CuO-decorated ZnO semiconducting hierarchical nanostructures. The ZnO hierarchical nanostructure was fabricated by an electrospinning method following hydrothermal and heat treatment. CuO decoration of ZnO hierarchical structures was carried out by a wet method. The H2S gas-sensing properties were examined at different working temperatures using various quantities of CuO as the variable. CuO decoration of the ZnO hierarchical structure was observed to promote sensitivity for H2S gas higher than 30 times at low working temperature (200 °C) compared with that in the nondecorated hierarchical structure. The sensing mechanism of the hybrid sensor structure is also discussed. The morphology and characteristics of the samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis absorption, photoluminescence (PL), and electrical measurements. PMID:27231026

  15. An exactly solvable model of hierarchical self-assembly

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-06-01

    Many living and nonliving structures in the natural world form by hierarchical organization, but physical theories that describe this type of organization are scarce. To address this problem, a model of equilibrium self-assembly is formulated in which dynamically associating species organize into hierarchical structures that preserve their shape at each stage of assembly. In particular, we consider symmetric m-gons that associate at their vertices into Sierpinski gasket structures involving the hierarchical association of triangles, squares, hexagons, etc., at their corner vertices, thereby leading to fractal structures after many generations of assembly. This rather idealized model of hierarchical assembly yields an infinite sequence of self-assembly transitions as the morphology progressively organizes to higher levels of the hierarchy, and these structures coexists at dynamic equilibrium, as found in real hierarchically self-assembling systems such as amyloid fiber forming proteins. Moreover, the transition sharpness progressively grows with increasing m, corresponding to larger and larger loops in the assembled structures. Calculations are provided for several basic thermodynamic properties (including the order parameters for assembly for each stage of the hierarchy, average mass of clusters, specific heat, transition sharpness, etc.) that are required for characterizing the interaction parameters governing this type of self-assembly and for elucidating other basic qualitative aspects of these systems. Our idealized model of hierarchical assembly gives many insights into this ubiquitous type of self-organization process.

  16. Fast hierarchical knowledge-based approach for human face detection in color images

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Gong, Jie; Zhang, Guilin; Hu, Ruolan

    2001-09-01

    This paper presents a fast hierarchical knowledge-based approach for automatically detecting multi-scale upright faces in still color images. The approach consists of three levels. At the highest level, skin-like regions are determinated by skin model, which is based on the color attributes hue and saturation in HSV color space, as well color attributes red and green in normalized color space. In level 2, a new eye model is devised to select human face candidates in segmented skin-like regions. An important feature of the eye model is that it is independent of the scale of human face. So it is possible for finding human faces in different scale with scanning image only once, and it leads to reduction the computation time of face detection greatly. In level 3, a human face mosaic image model, which is consistent with physical structure features of human face well, is applied to judge whether there are face detects in human face candidate regions. This model includes edge and gray rules. Experiment results show that the approach has high robustness and fast speed. It has wide application perspective at human-computer interactions and visual telephone etc.

  17. The Analysis of Image Segmentation Hierarchies with a Graph-based Knowledge Discovery System

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Cooke, diane J.; Ketkar, Nikhil; Aksoy, Selim

    2008-01-01

    Currently available pixel-based analysis techniques do not effectively extract the information content from the increasingly available high spatial resolution remotely sensed imagery data. A general consensus is that object-based image analysis (OBIA) is required to effectively analyze this type of data. OBIA is usually a two-stage process; image segmentation followed by an analysis of the segmented objects. We are exploring an approach to OBIA in which hierarchical image segmentations provided by the Recursive Hierarchical Segmentation (RHSEG) software developed at NASA GSFC are analyzed by the Subdue graph-based knowledge discovery system developed by a team at Washington State University. In this paper we discuss out initial approach to representing the RHSEG-produced hierarchical image segmentations in a graphical form understandable by Subdue, and provide results on real and simulated data. We also discuss planned improvements designed to more effectively and completely convey the hierarchical segmentation information to Subdue and to improve processing efficiency.

  18. Reflecting on the structure of soil classification systems: insights from a proposal for integrating subsoil data into soil information systems

    NASA Astrophysics Data System (ADS)

    Dondeyne, Stefaan; Juilleret, Jérôme; Vancampenhout, Karen; Deckers, Jozef; Hissler, Christophe

    2017-04-01

    Classification of soils in both World Reference Base for soil resources (WRB) and Soil Taxonomy hinges on the identification of diagnostic horizons and characteristics. However as these features often occur within the first 100 cm, these classification systems convey little information on subsoil characteristics. An integrated knowledge of the soil, soil-to-substratum and deeper substratum continuum is required when dealing with environmental issues such as vegetation ecology, water quality or the Critical Zone in general. Therefore, we recently proposed a classification system of the subsolum complementing current soil classification systems. By reflecting on the structure of the subsoil classification system which is inspired by WRB, we aim at fostering a discussion on some potential future developments of WRB. For classifying the subsolum we define Regolite, Saprolite, Saprock and Bedrock as four Subsolum Reference Groups each corresponding to different weathering stages of the subsoil. Principal qualifiers can be used to categorize intergrades of these Subsoil Reference Groups while morphologic and lithologic characteristics can be presented with supplementary qualifiers. We argue that adopting a low hierarchical structure - akin to WRB and in contrast to a strong hierarchical structure as in Soil Taxonomy - offers the advantage of having an open classification system avoiding the need for a priori knowledge of all possible combinations which may be encountered in the field. Just as in WRB we also propose to use principal and supplementary qualifiers as a second level of classification. However, in contrast to WRB we propose to reserve the principal qualifiers for intergrades and to regroup the supplementary qualifiers into thematic categories (morphologic or lithologic). Structuring the qualifiers in this manner should facilitate the integration and handling of both soil and subsoil classification units into soil information systems and calls for paying attention to these structural issues in future developments of WRB.

  19. Causal reasoning with forces

    PubMed Central

    Wolff, Phillip; Barbey, Aron K.

    2015-01-01

    Causal composition allows people to generate new causal relations by combining existing causal knowledge. We introduce a new computational model of such reasoning, the force theory, which holds that people compose causal relations by simulating the processes that join forces in the world, and compare this theory with the mental model theory (Khemlani et al., 2014) and the causal model theory (Sloman et al., 2009), which explain causal composition on the basis of mental models and structural equations, respectively. In one experiment, the force theory was uniquely able to account for people's ability to compose causal relationships from complex animations of real-world events. In three additional experiments, the force theory did as well as or better than the other two theories in explaining the causal compositions people generated from linguistically presented causal relations. Implications for causal learning and the hierarchical structure of causal knowledge are discussed. PMID:25653611

  20. Graph-based real-time fault diagnostics

    NASA Technical Reports Server (NTRS)

    Padalkar, S.; Karsai, G.; Sztipanovits, J.

    1988-01-01

    A real-time fault detection and diagnosis capability is absolutely crucial in the design of large-scale space systems. Some of the existing AI-based fault diagnostic techniques like expert systems and qualitative modelling are frequently ill-suited for this purpose. Expert systems are often inadequately structured, difficult to validate and suffer from knowledge acquisition bottlenecks. Qualitative modelling techniques sometimes generate a large number of failure source alternatives, thus hampering speedy diagnosis. In this paper we present a graph-based technique which is well suited for real-time fault diagnosis, structured knowledge representation and acquisition and testing and validation. A Hierarchical Fault Model of the system to be diagnosed is developed. At each level of hierarchy, there exist fault propagation digraphs denoting causal relations between failure modes of subsystems. The edges of such a digraph are weighted with fault propagation time intervals. Efficient and restartable graph algorithms are used for on-line speedy identification of failure source components.

  1. Support-vector-machine tree-based domain knowledge learning toward automated sports video classification

    NASA Astrophysics Data System (ADS)

    Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin

    2010-12-01

    We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.

  2. Do People Know I’m Poz?: Factors Associated with Knowledge of Serostatus among HIV-positive African Americans’ Social Network Members

    PubMed Central

    Hoover, Matthew A.; Green, Harold D.; Bogart, Laura M.; Wagner, Glenn J.; Mutchler, Matt G.; Galvan, Frank H.; McDavitt, Bryce

    2015-01-01

    We examined how functional social support, HIV-related discrimination, internalized HIV stigma, and social network structure and composition were cross-sectionally associated with network members’ knowledge of respondents’ serostatus among 244 HIV-positive African Americans in Los Angeles. Results of a generalized hierarchical linear model indicated people in respondents’ networks who were highly trusted, well-known to others (high degree centrality), HIV-positive, or sex partners were more likely to know respondents’ HIV serostatus; African American network members were less likely to know respondents’ serostatus, as were drug-using partners. Greater internalized stigma among respondents living with HIV was associated with less knowledge of their seropositivity within their social network whereas greater respondent-level HIV discrimination was associated with more knowledge of seropositivity within the network. Additional research is needed to understand the causal mechanisms and mediating processes associated with serostatus disclosure as well as the long-term consequences of disclosure and network members’ knowledge of respondents’ serostatus. PMID:25903505

  3. Do People Know I'm Poz?: Factors Associated with Knowledge of Serostatus Among HIV-Positive African Americans' Social Network Members.

    PubMed

    Hoover, Matthew A; Green, Harold D; Bogart, Laura M; Wagner, Glenn J; Mutchler, Matt G; Galvan, Frank H; McDavitt, Bryce

    2016-01-01

    We examined how functional social support, HIV-related discrimination, internalized HIV stigma, and social network structure and composition were cross-sectionally associated with network members' knowledge of respondents' serostatus among 244 HIV-positive African Americans in Los Angeles. Results of a generalized hierarchical linear model indicated people in respondents' networks who were highly trusted, well-known to others (high degree centrality), HIV-positive, or sex partners were more likely to know respondents' HIV serostatus; African American network members were less likely to know respondents' serostatus, as were drug-using partners. Greater internalized stigma among respondents living with HIV was associated with less knowledge of their seropositivity within their social network whereas greater respondent-level HIV discrimination was associated with more knowledge of seropositivity within the network. Additional research is needed to understand the causal mechanisms and mediating processes associated with serostatus disclosure as well as the long-term consequences of disclosure and network members' knowledge of respondents' serostatus.

  4. Managing changes in distributed biomedical ontologies using hierarchical distributed graph transformation.

    PubMed

    Shaban-Nejad, Arash; Haarslev, Volker

    2015-01-01

    The issue of ontology evolution and change management is inadequately addressed by available tools and algorithms, mostly due to the lack of suitable knowledge representation formalisms to deal with temporal abstract notations and the overreliance on human factors. Also most of the current approaches have been focused on changes within the internal structure of ontologies and interactions with other existing ontologies have been widely neglected. In our research, after revealing and classifying some of the common alterations in a number of popular biomedical ontologies, we present a novel agent-based framework, Represent, Legitimate and Reproduce (RLR), to semi-automatically manage the evolution of bio-ontologies, with emphasis on the FungalWeb Ontology, with minimal human intervention. RLR assists and guides ontology engineers through the change management process in general and aids in tracking and representing the changes, particularly through the use of category theory and hierarchical graph transformation.

  5. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    NASA Astrophysics Data System (ADS)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  6. Hierarchical classification with a competitive evolutionary neural tree.

    PubMed

    Adams, R G.; Butchart, K; Davey, N

    1999-04-01

    A new, dynamic, tree structured network, the Competitive Evolutionary Neural Tree (CENT) is introduced. The network is able to provide a hierarchical classification of unlabelled data sets. The main advantage that the CENT offers over other hierarchical competitive networks is its ability to self determine the number, and structure, of the competitive nodes in the network, without the need for externally set parameters. The network produces stable classificatory structures by halting its growth using locally calculated heuristics. The results of network simulations are presented over a range of data sets, including Anderson's IRIS data set. The CENT network demonstrates its ability to produce a representative hierarchical structure to classify a broad range of data sets.

  7. Method and system for rendering and interacting with an adaptable computing environment

    DOEpatents

    Osbourn, Gordon Cecil [Albuquerque, NM; Bouchard, Ann Marie [Albuquerque, NM

    2012-06-12

    An adaptable computing environment is implemented with software entities termed "s-machines", which self-assemble into hierarchical data structures capable of rendering and interacting with the computing environment. A hierarchical data structure includes a first hierarchical s-machine bound to a second hierarchical s-machine. The first hierarchical s-machine is associated with a first layer of a rendering region on a display screen and the second hierarchical s-machine is associated with a second layer of the rendering region overlaying at least a portion of the first layer. A screen element s-machine is linked to the first hierarchical s-machine. The screen element s-machine manages data associated with a screen element rendered to the display screen within the rendering region at the first layer.

  8. The Advantages of Hierarchical Linear Modeling. ERIC/AE Digest.

    ERIC Educational Resources Information Center

    Osborne, Jason W.

    This digest introduces hierarchical data structure, describes how hierarchical models work, and presents three approaches to analyzing hierarchical data. Hierarchical, or nested data, present several problems for analysis. People or creatures that exist within hierarchies tend to be more similar to each other than people randomly sampled from the…

  9. Automated Lipid A Structure Assignment from Hierarchical Tandem Mass Spectrometry Data

    NASA Astrophysics Data System (ADS)

    Ting, Ying S.; Shaffer, Scott A.; Jones, Jace W.; Ng, Wailap V.; Ernst, Robert K.; Goodlett, David R.

    2011-05-01

    Infusion-based electrospray ionization (ESI) coupled to multiple-stage tandem mass spectrometry (MS n ) is a standard methodology for investigating lipid A structural diversity (Shaffer et al. J. Am. Soc. Mass. Spectrom. 18(6), 1080-1092, 2007). Annotation of these MS n spectra, however, has remained a manual, expert-driven process. In order to keep up with the data acquisition rates of modern instruments, we devised a computational method to annotate lipid A MS n spectra rapidly and automatically, which we refer to as hierarchical tandem mass spectrometry (HiTMS) algorithm. As a first-pass tool, HiTMS aids expert interpretation of lipid A MS n data by providing the analyst with a set of candidate structures that may then be confirmed or rejected. HiTMS deciphers the signature ions (e.g., A-, Y-, and Z-type ions) and neutral losses of MS n spectra using a species-specific library based on general prior structural knowledge of the given lipid A species under investigation. Candidates are selected by calculating the correlation between theoretical and acquired MS n spectra. At a false discovery rate of less than 0.01, HiTMS correctly assigned 85% of the structures in a library of 133 manually annotated Francisella tularensis subspecies novicida lipid A structures. Additionally, HiTMS correctly assigned 85% of the structures in a smaller library of lipid A species from Yersinia pestis demonstrating that it may be used across species.

  10. Correlation between the hierarchical structures and nanomechanical properties of amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Lee, Gyudo; Lee, Wonseok; Baik, Seunghyun; Kim, Yong Ho; Eom, Kilho; Kwon, Taeyun

    2018-07-01

    Amyloid fibrils have recently been highlighted due to their excellent mechanical properties, which not only play a role in their biological functions but also imply their applications in biomimetic material design. Despite recent efforts to unveil how the excellent mechanical properties of amyloid fibrils originate, it has remained elusive how the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils are determined. Here, we characterize the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils using atomic force microscopy experiments and atomistic simulations. It is shown that the hierarchical structure of amyloid fibrils plays a crucial role in determining their radial elastic property but does not make any effect on their bending elastic property. This is attributed to the role of intermolecular force acting between the filaments (constituting the fibril) on the radial elastic modulus of amyloid fibrils. Our finding illustrates how the hierarchical structure of amyloid fibrils encodes their anisotropic nanomechanical properties. Our study provides key design principles of amyloid fibrils, which endow valuable insight into the underlying mechanisms of amyloid mechanics.

  11. Hierarchical video summarization based on context clustering

    NASA Astrophysics Data System (ADS)

    Tseng, Belle L.; Smith, John R.

    2003-11-01

    A personalized video summary is dynamically generated in our video personalization and summarization system based on user preference and usage environment. The three-tier personalization system adopts the server-middleware-client architecture in order to maintain, select, adapt, and deliver rich media content to the user. The server stores the content sources along with their corresponding MPEG-7 metadata descriptions. In this paper, the metadata includes visual semantic annotations and automatic speech transcriptions. Our personalization and summarization engine in the middleware selects the optimal set of desired video segments by matching shot annotations and sentence transcripts with user preferences. Besides finding the desired contents, the objective is to present a coherent summary. There are diverse methods for creating summaries, and we focus on the challenges of generating a hierarchical video summary based on context information. In our summarization algorithm, three inputs are used to generate the hierarchical video summary output. These inputs are (1) MPEG-7 metadata descriptions of the contents in the server, (2) user preference and usage environment declarations from the user client, and (3) context information including MPEG-7 controlled term list and classification scheme. In a video sequence, descriptions and relevance scores are assigned to each shot. Based on these shot descriptions, context clustering is performed to collect consecutively similar shots to correspond to hierarchical scene representations. The context clustering is based on the available context information, and may be derived from domain knowledge or rules engines. Finally, the selection of structured video segments to generate the hierarchical summary efficiently balances between scene representation and shot selection.

  12. An approach to separating the levels of hierarchical structure building in language and mathematics.

    PubMed

    Makuuchi, Michiru; Bahlmann, Jörg; Friederici, Angela D

    2012-07-19

    We aimed to dissociate two levels of hierarchical structure building in language and mathematics, namely 'first-level' (the build-up of hierarchical structure with externally given elements) and 'second-level' (the build-up of hierarchical structure with internally represented elements produced by first-level processes). Using functional magnetic resonance imaging, we investigated these processes in three domains: sentence comprehension, arithmetic calculation (using Reverse Polish notation, which gives two operands followed by an operator) and a working memory control task. All tasks required the build-up of hierarchical structures at the first- and second-level, resulting in a similar computational hierarchy across language and mathematics, as well as in a working memory control task. Using a novel method that estimates the difference in the integration cost for conditions of different trial durations, we found an anterior-to-posterior functional organization in the prefrontal cortex, according to the level of hierarchy. Common to all domains, the ventral premotor cortex (PMv) supports first-level hierarchy building, while the dorsal pars opercularis (POd) subserves second-level hierarchy building, with lower activation for language compared with the other two tasks. These results suggest that the POd and the PMv support domain-general mechanisms for hierarchical structure building, with the POd being uniquely efficient for language.

  13. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    NASA Astrophysics Data System (ADS)

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi

    2017-12-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.

  14. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    PubMed Central

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan

    2017-01-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials. PMID:29308265

  15. Modular and hierarchical structure of social contact networks

    NASA Astrophysics Data System (ADS)

    Ge, Yuanzheng; Song, Zhichao; Qiu, Xiaogang; Song, Hongbin; Wang, Yong

    2013-10-01

    Social contact networks exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated nature. We propose a mixing pattern of modular and growing hierarchical structures to reconstruct social contact networks by using an individual’s geospatial distribution information in the real world. The hierarchical structure of social contact networks is defined based on the spatial distance between individuals, and edges among individuals are added in turn from the modular layer to the highest layer. It is a gradual process to construct the hierarchical structure: from the basic modular model up to the global network. The proposed model not only shows hierarchically increasing degree distribution and large clustering coefficients in communities, but also exhibits spatial clustering features of individual distributions. As an evaluation of the method, we reconstruct a hierarchical contact network based on the investigation data of a university. Transmission experiments of influenza H1N1 are carried out on the generated social contact networks, and results show that the constructed network is efficient to reproduce the dynamic process of an outbreak and evaluate interventions. The reproduced spread process exhibits that the spatial clustering of infection is accordant with the clustering of network topology. Moreover, the effect of individual topological character on the spread of influenza is analyzed, and the experiment results indicate that the spread is limited by individual daily contact patterns and local clustering topology rather than individual degree.

  16. Hierarchically Organized Behavior and Its Neural Foundations: A Reinforcement Learning Perspective

    ERIC Educational Resources Information Center

    Botvinick, Matthew M.; Niv, Yael; Barto, Andrew C.

    2009-01-01

    Research on human and animal behavior has long emphasized its hierarchical structure--the divisibility of ongoing behavior into discrete tasks, which are comprised of subtask sequences, which in turn are built of simple actions. The hierarchical structure of behavior has also been of enduring interest within neuroscience, where it has been widely…

  17. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    NASA Astrophysics Data System (ADS)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  18. The Impact of Hierarchical Positions on Communities of Learning

    ERIC Educational Resources Information Center

    Rehm, Martin; Gijselaers, Wim; Segers, Mien

    2015-01-01

    "Communities of Learning" (CoL) are an innovative methodological tool to stimulate knowledge creation and diffusion within organizations. However, past research has largely overlooked how participants' hierarchical positions influence their behavior within CoL. We address this shortcoming and provide empirical evidence on 25 CoL for a…

  19. Argument structure hierarchy system and method for facilitating analysis and decision-making processes

    DOEpatents

    Janssen, Terry

    2000-01-01

    A system and method for facilitating decision-making comprising a computer program causing linkage of data representing a plurality of argument structure units into a hierarchical argument structure. Each argument structure unit comprises data corresponding to a hypothesis and its corresponding counter-hypothesis, data corresponding to grounds that provide a basis for inference of the hypothesis or its corresponding counter-hypothesis, data corresponding to a warrant linking the grounds to the hypothesis or its corresponding counter-hypothesis, and data corresponding to backing that certifies the warrant. The hierarchical argument structure comprises a top level argument structure unit and a plurality of subordinate level argument structure units. Each of the plurality of subordinate argument structure units comprises at least a portion of the grounds of the argument structure unit to which it is subordinate. Program code located on each of a plurality of remote computers accepts input from one of a plurality of contributors. Each input comprises data corresponding to an argument structure unit in the hierarchical argument structure and supports the hypothesis or its corresponding counter-hypothesis. A second programming code is adapted to combine the inputs into a single hierarchical argument structure. A third computer program code is responsive to the second computer program code and is adapted to represent a degree of support for the hypothesis and its corresponding counter-hypothesis in the single hierarchical argument structure.

  20. High-Reproducibility and High-Accuracy Method for Automated Topic Classification

    NASA Astrophysics Data System (ADS)

    Lancichinetti, Andrea; Sirer, M. Irmak; Wang, Jane X.; Acuna, Daniel; Körding, Konrad; Amaral, Luís A. Nunes

    2015-01-01

    Much of human knowledge sits in large databases of unstructured text. Leveraging this knowledge requires algorithms that extract and record metadata on unstructured text documents. Assigning topics to documents will enable intelligent searching, statistical characterization, and meaningful classification. Latent Dirichlet allocation (LDA) is the state of the art in topic modeling. Here, we perform a systematic theoretical and numerical analysis that demonstrates that current optimization techniques for LDA often yield results that are not accurate in inferring the most suitable model parameters. Adapting approaches from community detection in networks, we propose a new algorithm that displays high reproducibility and high accuracy and also has high computational efficiency. We apply it to a large set of documents in the English Wikipedia and reveal its hierarchical structure.

  1. Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell

    NASA Astrophysics Data System (ADS)

    Song, Jingru; Fan, Cuncai; Ma, Hansong; Wei, Yueguang

    2015-06-01

    In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated biomaterial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar" structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variation-section pillars sized on the order of several tens of microns. The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.

  2. Hierarchical multiple regression modelling on predictors of behavior and sexual practices at Takoradi Polytechnic, Ghana.

    PubMed

    Turkson, Anthony Joe; Otchey, James Eric

    2015-01-14

    Various psychosocial studies on health related lifestyles lay emphasis on the fact that the perception one has of himself as being at risk of HIV/AIDS infection was a necessary condition for preventive behaviors to be adopted. Hierarchical Multiple Regression models was used to examine the relationship between eight independent variables and one dependent variable to isolate predictors which have significant influence on behavior and sexual practices. A Cross-sectional design was used for the study. Structured close-ended interviewer-administered questionnaire was used to collect primary data. Multistage stratified technique was used to sample views from 380 students from Takoradi Polytechnic, Ghana. A Hierarchical multiple regression model was used to ascertain the significance of certain predictors of sexual behavior and practices. The variables that were extracted from the multiple regression were; for the constant; Beta=14.202, t=2.279, p=0.023, variable is significant; for the marital status; Beta=0.092, t=1.996, p<0.05, variable is significant; for the knowledge on AIDs; Beta=0.090, t=1.996, p<0.05, variable is significant; for the attitude towards HIV/AIDs; =0.486, t=10.575, p<0.001, variable is highly significant. Thus, the best fitting model for predicting behavior and sexual practices was a linear combination of the constant, one's marital status, knowledge on HIV/AIDs and Attitude towards HIV/AIDs., Y(Behavior and sexual practies)= Beta0+Beta1(Marital status)+Beta2(Knowledge on HIV/AIDs issues)+Beta3(Attitude towards HIV/AIDs issues) Beta0, Beta1, Beta2 and Beta3 are respectively 14.201, 2.038, 0.148 and 0.486; the higher the better. Attitude and behavior change education on HIV/AIDs should be intensified in the institution so that students could adopt better lifestyles.

  3. Bermuda Triangle or three to tango: generation Y, e-health and knowledge management.

    PubMed

    Yee, Kwang Chien

    2007-01-01

    Generation Y workers are slowly gathering critical mass in the healthcare sector. The sustainability of future healthcare is highly dependent on this group of workers. This generation of workers loves technology and thrives in stimulating environments. They have great thirst for life-experience and therefore they move from one working environment to the other. The healthcare system has a hierarchical operational, information and knowledge structure, which unfortunately might not be the ideal ground to integrate with generation Y. The challenges ahead present a fantastic opportunity for electronic health implementation and knowledge management to flourish. Generation Y workers, however, have very different expectation of technology utilisation, technology design and knowledge presentation. This paper will argue that a clear understanding of this group of workers is essential for researchers in health informatics and knowledge management in order to provide socio-technical integrated solution for this group of future workers. The sustainability of a quality healthcare system will depend upon the integration of generation Y, health informatics and knowledge management strategies in a re-invented healthcare system.

  4. Action detection by double hierarchical multi-structure space-time statistical matching model

    NASA Astrophysics Data System (ADS)

    Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang

    2018-03-01

    Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.

  5. Action detection by double hierarchical multi-structure space–time statistical matching model

    NASA Astrophysics Data System (ADS)

    Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang

    2018-06-01

    Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.

  6. On the importance of avoiding shortcuts in applying cognitive models to hierarchical data.

    PubMed

    Boehm, Udo; Marsman, Maarten; Matzke, Dora; Wagenmakers, Eric-Jan

    2018-06-12

    Psychological experiments often yield data that are hierarchically structured. A number of popular shortcut strategies in cognitive modeling do not properly accommodate this structure and can result in biased conclusions. To gauge the severity of these biases, we conducted a simulation study for a two-group experiment. We first considered a modeling strategy that ignores the hierarchical data structure. In line with theoretical results, our simulations showed that Bayesian and frequentist methods that rely on this strategy are biased towards the null hypothesis. Secondly, we considered a modeling strategy that takes a two-step approach by first obtaining participant-level estimates from a hierarchical cognitive model and subsequently using these estimates in a follow-up statistical test. Methods that rely on this strategy are biased towards the alternative hypothesis. Only hierarchical models of the multilevel data lead to correct conclusions. Our results are particularly relevant for the use of hierarchical Bayesian parameter estimates in cognitive modeling.

  7. Toward Scalable Fabrication of Hierarchical Silica Capsules with Integrated Micro-, Meso-, and Macropores.

    PubMed

    Zhou, Weizheng; Tong, Gangsheng; Wang, Dali; Zhu, Bangshang; Ren, Yu; Butler, Michael; Pelan, Eddie; Yan, Deyue; Zhu, Xinyuan; Stoyanov, Simeon D

    2016-04-06

    Hierarchical porous structures are ubiquitous in biological organisms and inorganic systems. Although such structures have been replicated, designed, and fabricated, they are often inferior to naturally occurring analogues. Apart from the complexity and multiple functionalities developed by the biological systems, the controllable and scalable production of hierarchically porous structures and building blocks remains a technological challenge. Herein, a facile and scalable approach is developed to fabricate hierarchical hollow spheres with integrated micro-, meso-, and macropores ranging from 1 nm to 100 μm (spanning five orders of magnitude). (Macro)molecules, micro-rods (which play a key role for the creation of robust capsules), and emulsion droplets have been successfully employed as multiple length scale templates, allowing the creation of hierarchical porous macrospheres. Thanks to their specific mechanical strength, these hierarchical porous spheres could be incorporated and assembled as higher level building blocks in various novel materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hierarchical virtual screening approaches in small molecule drug discovery.

    PubMed

    Kumar, Ashutosh; Zhang, Kam Y J

    2015-01-01

    Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Delineating the joint hierarchical structure of clinical and personality disorders in an outpatient psychiatric sample.

    PubMed

    Forbes, Miriam K; Kotov, Roman; Ruggero, Camilo J; Watson, David; Zimmerman, Mark; Krueger, Robert F

    2017-11-01

    A large body of research has focused on identifying the optimal number of dimensions - or spectra - to model individual differences in psychopathology. Recently, it has become increasingly clear that ostensibly competing models with varying numbers of spectra can be synthesized in empirically derived hierarchical structures. We examined the convergence between top-down (bass-ackwards or sequential principal components analysis) and bottom-up (hierarchical agglomerative cluster analysis) statistical methods for elucidating hierarchies to explicate the joint hierarchical structure of clinical and personality disorders. Analyses examined 24 clinical and personality disorders based on semi-structured clinical interviews in an outpatient psychiatric sample (n=2900). The two methods of hierarchical analysis converged on a three-tier joint hierarchy of psychopathology. At the lowest tier, there were seven spectra - disinhibition, antagonism, core thought disorder, detachment, core internalizing, somatoform, and compulsivity - that emerged in both methods. These spectra were nested under the same three higher-order superspectra in both methods: externalizing, broad thought dysfunction, and broad internalizing. In turn, these three superspectra were nested under a single general psychopathology spectrum, which represented the top tier of the hierarchical structure. The hierarchical structure mirrors and extends upon past research, with the inclusion of a novel compulsivity spectrum, and the finding that psychopathology is organized in three superordinate domains. This hierarchy can thus be used as a flexible and integrative framework to facilitate psychopathology research with varying levels of specificity (i.e., focusing on the optimal level of detailed information, rather than the optimal number of factors). Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Preferences and needs of patients with a rheumatic disease regarding the structure and content of online self-management support.

    PubMed

    Ammerlaan, Judy W; van Os-Medendorp, Harmieke; de Boer-Nijhof, Nienke; Maat, Bertha; Scholtus, Lieske; Kruize, Aike A; Bijlsma, Johannes W J; Geenen, Rinie

    2017-03-01

    Aim of this study was to investigate preferences and needs regarding the structure and content of a person-centered online self-management support intervention for patients with a rheumatic disease. A four step procedure, consisting of online focus group interviews, consensus meetings with patient representatives, card sorting task and hierarchical cluster analysis was used to identify the preferences and needs. Preferences concerning the structure involved 1) suitability to individual needs and questions, 2) fit to the life stage 3) creating the opportunity to share experiences, be in contact with others, 4) have an expert patient as trainer, 5) allow for doing the training at one's own pace and 6) offer a brief intervention. Hierarchical cluster analysis of 55 content needs comprised eleven clusters: 1) treatment knowledge, 2) societal procedures, 3) physical activity, 4) psychological distress, 5) self-efficacy, 6) provider, 7) fluctuations, 8) dealing with rheumatic disease, 9) communication, 10) intimate relationship, and 11) having children. A comprehensive assessment of preferences and needs in patients with a rheumatic disease is expected to contribute to motivation, adherence to and outcome of self-management-support programs. The overview of preferences and needs can be used to build an online-line self-management intervention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. A Hierarchical Clustering Methodology for the Estimation of Toxicity

    EPA Science Inventory

    A Quantitative Structure Activity Relationship (QSAR) methodology based on hierarchical clustering was developed to predict toxicological endpoints. This methodology utilizes Ward's method to divide a training set into a series of structurally similar clusters. The structural sim...

  12. Generating Hierarchical Document Indices from Common Denominators in Large Document Collections.

    ERIC Educational Resources Information Center

    O'Kane, Kevin C.

    1996-01-01

    Describes an algorithm for computer generation of hierarchical indexes for document collections. The resulting index, when presented with a graphical interface, provides users with a view of a document collection that permits general browsing and informal search activities via an access method that requires no keyboard entry or prior knowledge of…

  13. Total quality management and nursing: a shared vision.

    PubMed

    Morey, W

    1996-09-01

    The application of the Total Quality Management (TQM) philosophy within the health care sector would enhance the development of nursing power, leadership and knowledge. TQM challenges conventional management techniques as it requires a participative management style in order to be effective. There are many potential benefits for nurses, when quality assurance monitoring within a hierarchical management structure, is replaced with a focus on continuous quality improvement by every member of staff. These benefits are described within the context of both organisational and personal commitment to Total Quality Management.

  14. Construction of hierarchical porous NiCo{sub 2}O{sub 4} films composed of nanowalls as cathode materials for high-performance supercapacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Qingyun, E-mail: hizhengqingyun@126.com; Zhang, Xiangyang; Shen, Youming

    Graphical abstract: Hydrothermal-synthesized NiCo{sub 2}O{sub 4} mesowall films exhibit porous structure and high capacity as well as good cycling life for supercapacitor application. - Highlights: • Hierarchical porous NiCo{sub 2}O{sub 4} nanowall films are prepared by a hydrothermal method. • NiCo{sub 2}O{sub 4} nanowall films show excellent electrochemical performance. • Hierarchical porous film structure is favorable for fast ion/electron transfer. - Abstract: Hierarchical porous NiCo{sub 2}O{sub 4} films composed of nanowalls on nickel foam are synthesized via a facile hydrothermal method. Besides the mesoporous walls, the NiCo{sub 2}O{sub 4} nanowalls are interconnected with each other to form hierarchical porous structure.more » These unique porous structured films possess a high specific surface area. The supercapacitor performance of the hierarchical porous NiCo{sub 2}O{sub 4} film is fully characterized. A high capacity of 130 mA h g{sup −1} is achieved at 2 A g{sup −1} with 97% capacity maintained after 2,000 cycles. Importantly, 75.6% of capacity is retained when the current density changes from 3 A g{sup −1} to 36 A g{sup −1}. The superior electrochemical performance is mainly due to the unique hierarchical porous structure with large surface area as well as shorter diffusion length for ion and charge transport.« less

  15. Chemical grafting of the superhydrophobic surface on copper with hierarchical microstructure and its formation mechanism

    NASA Astrophysics Data System (ADS)

    Cai, Junyan; Wang, Shuhui; Zhang, Junhong; Liu, Yang; Hang, Tao; Ling, Huiqin; Li, Ming

    2018-04-01

    In this paper, a superhydrophobic surface with hierarchical structure was fabricated by chemical deposition of Cu micro-cones array, followed by chemical grafting of poly(methyl methacrylate) (PMMA). Water contact measurements give contact angle of 131.0° on these surfaces after PMMA grafting of 2 min and 165.2° after 6 min. The superhydrophobicity results from two factors: (1) the hierarchical structure due to Cu micro-cones array and the second level structure caused by intergranular corrosion during grafting of PMMA (confirmed by the scanning electron microscopy) and (2) the chemical modification of a low surface energy PMMA layer (confirmed by Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy). In the chemical grafting process, the spontaneous reduction of nitrobenzene diazonium (NBD) tetrafluoroborate not only causes the corrosion of the Cu surface that leads to a hierarchical structure, but also initiates the polymerization of methyl methacrylate (MMA) monomers and thus the low free energy surface. Such a robust approach to fabricate the hierarchical structured surface with superhydrophobicity is expected to have practical application in anti-corrosion industry.

  16. The study of dynamic force acted on water strider leg departing from water surface

    NASA Astrophysics Data System (ADS)

    Sun, Peiyuan; Zhao, Meirong; Jiang, Jile; Zheng, Yelong

    2018-01-01

    Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.

  17. Correlation between the hierarchical structures and nanomechanical properties of amyloid fibrils.

    PubMed

    Lee, Gyudo; Lee, Wonseok; Baik, Seunghyun; Kim, Yong Ho; Eom, Kilho; Kwon, Taeyun

    2018-04-12

    Amyloid fibrils have recently been highlighted due to their excellent mechanical properties, which not only play a role in their biological functions but also imply their applications in biomimetic material design. Despite recent efforts to unveil how the excellent mechanical properties of amyloid fibrils originate, it has remained elusive how the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils are determined. Here, we characterize the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils using atomic force microscopy (AFM) experiments and atomistic simulations. It is shown that the hierarchical structure of amyloid fibrils plays a crucial role in determining their radial elastic property but does not make any effect on their radial bending elastic property. This is attributed to the role of intermolecular force acting between the filaments (constituting the fibril) on the radial elastic modulus of amyloid fibrils. Our finding illustrates how the hierarchical structure of amyloid fibrils encodes their anisotropic nanomechanical properties. Our study provides key design principles of amyloid fibrils, which endow valuable insight into the underlying mechanisms of amyloid mechanics. © 2018 IOP Publishing Ltd.

  18. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations

    DOE PAGES

    Chen, Yanyu; Li, Tiantian; Jia, Zian; ...

    2017-10-12

    Here, we describe the in-plane compressive performance of a new type of hierarchical cellular structure created by replacing cell walls in regular honeycombs with triangular lattice configurations. The fabrication of this relatively complex material architecture with size features spanning from micrometer to centimeter is facilitated by the availability of commercial 3D printers. We apply to these hierarchical honeycombs a thermal treatment that facilitates the shape preservation and structural integrity of the structures under large compressive loading. The proposed hierarchical honeycombs exhibit a progressive failure mode, along with improved stiffness and energy absorption under uniaxial compression. High energy dissipation and shapemore » integrity at large imposed strains (up to 60%) have also been observed in these hierarchical honeycombs under cyclic loading. Experimental and numerical studies suggest that these anomalous mechanical behaviors are attributed to the introduction of a structural hierarchy, intrinsically controlled by the cell wall slenderness of the triangular lattice and by the shape memory effect induced by the thermal and mechanical compressive treatment.« less

  19. Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method

    NASA Astrophysics Data System (ADS)

    Wu, Zhijing; Li, Fengming; Zhang, Chuanzeng

    2018-05-01

    Inspired by the hierarchical structures of butterfly wing surfaces, a new kind of lattice structures with a two-order hierarchical periodicity is proposed and designed, and the band-gap properties are investigated by the spectral element method (SEM). The equations of motion of the whole structure are established considering the macro and micro periodicities of the system. The efficiency of the SEM is exploited in the modeling process and validated by comparing the results with that of the finite element method (FEM). Based on the highly accurate results in the frequency domain, the dynamic behaviors of the proposed two-order hierarchical structures are analyzed. An original and interesting finding is the existence of the distinct macro and micro stop-bands in the given frequency domain. The mechanisms for these two types of band-gaps are also explored. Finally, the relations between the hierarchical periodicities and the different types of the stop-bands are investigated by analyzing the parametrical influences.

  20. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanyu; Li, Tiantian; Jia, Zian

    Here, we describe the in-plane compressive performance of a new type of hierarchical cellular structure created by replacing cell walls in regular honeycombs with triangular lattice configurations. The fabrication of this relatively complex material architecture with size features spanning from micrometer to centimeter is facilitated by the availability of commercial 3D printers. We apply to these hierarchical honeycombs a thermal treatment that facilitates the shape preservation and structural integrity of the structures under large compressive loading. The proposed hierarchical honeycombs exhibit a progressive failure mode, along with improved stiffness and energy absorption under uniaxial compression. High energy dissipation and shapemore » integrity at large imposed strains (up to 60%) have also been observed in these hierarchical honeycombs under cyclic loading. Experimental and numerical studies suggest that these anomalous mechanical behaviors are attributed to the introduction of a structural hierarchy, intrinsically controlled by the cell wall slenderness of the triangular lattice and by the shape memory effect induced by the thermal and mechanical compressive treatment.« less

  1. The Design Manager's Aid for Intelligent Decomposition (DeMAID)

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    1994-01-01

    Before the design of new complex systems such as large space platforms can begin, the possible interactions among subsystems and their parts must be determined. Once this is completed, the proposed system can be decomposed to identify its hierarchical structure. The design manager's aid for intelligent decomposition (DeMAID) is a knowledge based system for ordering the sequence of modules and identifying a possible multilevel structure for design. Although DeMAID requires an investment of time to generate and refine the list of modules for input, it could save considerable money and time in the total design process, particularly in new design problems where the ordering of the modules has not been defined.

  2. Self Assembled Structures by Directional Solidification of Eutectics

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2004-01-01

    Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.

  3. Construction of anatase/rutile TiO2 hollow boxes for highly efficient photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Jia, Changchao; Zhang, Xiao; Yang, Ping

    2018-02-01

    Hollow TiO2 hierarchical boxes with suitable anatase and rutile ratios were designed for photocatalysis. The unique hierarchical structure was fabricated via a Topotactic synthetic method. CaTiO3 cubes were acted as the sacrificial templates to create TiO2 hollow hierarchical boxes with well-defined phase distribution. The phase composition of the hollow TiO2 hierarchical boxes is similar to that of TiO2 P25 nanoparticles (∼80% anatase, and 20% rutile). Compared with nanaoparticles, TiO2 hollow boxes with hierarchical structures exhibited an excellent performance in the photocatalytic degradation of methylene blue organic pollutant. Quantificationally, the degradation rate of the hollow boxes is higher than that of TiO2 P25 nanoparticles by a factor of 2.7. This is ascribed that hollow structure provide an opportunity for using incident light more efficiently. The surface hierarchical and well-organized porous structures are beneficial to supply more active sites and enough transport channels for reactant molecules. The boxes consist of single crystal anatase and rutile combined well with each other, which gives photon-generated carriers transfer efficiently.

  4. Recognition and characterization of hierarchical interstellar structure. II - Structure tree statistics

    NASA Technical Reports Server (NTRS)

    Houlahan, Padraig; Scalo, John

    1992-01-01

    A new method of image analysis is described, in which images partitioned into 'clouds' are represented by simplified skeleton images, called structure trees, that preserve the spatial relations of the component clouds while disregarding information concerning their sizes and shapes. The method can be used to discriminate between images of projected hierarchical (multiply nested) and random three-dimensional simulated collections of clouds constructed on the basis of observed interstellar properties, and even intermediate systems formed by combining random and hierarchical simulations. For a given structure type, the method can distinguish between different subclasses of models with different parameters and reliably estimate their hierarchical parameters: average number of children per parent, scale reduction factor per level of hierarchy, density contrast, and number of resolved levels. An application to a column density image of the Taurus complex constructed from IRAS data is given. Moderately strong evidence for a hierarchical structural component is found, and parameters of the hierarchy, as well as the average volume filling factor and mass efficiency of fragmentation per level of hierarchy, are estimated. The existence of nested structure contradicts models in which large molecular clouds are supposed to fragment, in a single stage, into roughly stellar-mass cores.

  5. Image understanding systems based on the unifying representation of perceptual and conceptual information and the solution of mid-level and high-level vision problems

    NASA Astrophysics Data System (ADS)

    Kuvychko, Igor

    2001-10-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/networks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the cortical software. Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently unexplainable results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes in both what and where visual pathways. Such systems can open new horizons for robotic and computer vision industries.

  6. Structured Semantic Knowledge Can Emerge Automatically from Predicting Word Sequences in Child-Directed Speech

    PubMed Central

    Huebner, Philip A.; Willits, Jon A.

    2018-01-01

    Previous research has suggested that distributional learning mechanisms may contribute to the acquisition of semantic knowledge. However, distributional learning mechanisms, statistical learning, and contemporary “deep learning” approaches have been criticized for being incapable of learning the kind of abstract and structured knowledge that many think is required for acquisition of semantic knowledge. In this paper, we show that recurrent neural networks, trained on noisy naturalistic speech to children, do in fact learn what appears to be abstract and structured knowledge. We trained two types of recurrent neural networks (Simple Recurrent Network, and Long Short-Term Memory) to predict word sequences in a 5-million-word corpus of speech directed to children ages 0–3 years old, and assessed what semantic knowledge they acquired. We found that learned internal representations are encoding various abstract grammatical and semantic features that are useful for predicting word sequences. Assessing the organization of semantic knowledge in terms of the similarity structure, we found evidence of emergent categorical and hierarchical structure in both models. We found that the Long Short-term Memory (LSTM) and SRN are both learning very similar kinds of representations, but the LSTM achieved higher levels of performance on a quantitative evaluation. We also trained a non-recurrent neural network, Skip-gram, on the same input to compare our results to the state-of-the-art in machine learning. We found that Skip-gram achieves relatively similar performance to the LSTM, but is representing words more in terms of thematic compared to taxonomic relations, and we provide reasons why this might be the case. Our findings show that a learning system that derives abstract, distributed representations for the purpose of predicting sequential dependencies in naturalistic language may provide insight into emergence of many properties of the developing semantic system. PMID:29520243

  7. A novel snowflake-like SnO2 hierarchical architecture with superior gas sensing properties

    NASA Astrophysics Data System (ADS)

    Li, Yanqiong

    2018-02-01

    Snowflake-like SnO2 hierarchical architecture has been synthesized via a facile hydrothermal method and followed by calcination. The SnO2 hierarchical structures are assembled with thin nanoflakes blocks, which look like snowflake shape. A possible mechanism for the formation of the SnO2 hierarchical structures is speculated. Moreover, gas sensing tests show that the sensor based on snowflake-like SnO2 architectures exhibited excellent gas sensing properties. The enhancement may be attributed to its unique structures, in which the porous feature on the snowflake surface could further increase the active surface area of the materials and provide facile pathways for the target gas.

  8. Organizational and Spatial Dynamics of Attentional Focusing in Hierarchically Structured Objects

    ERIC Educational Resources Information Center

    Yeari, Menahem; Goldsmith, Morris

    2011-01-01

    Is the focusing of visual attention object-based, space-based, both, or neither? Attentional focusing latencies in hierarchically structured compound-letter objects were examined, orthogonally manipulating global size (larger vs. smaller) and organizational complexity (two-level structure vs. three-level structure). In a dynamic focusing task,…

  9. NASA thesaurus. Volume 1: Hierarchical listing

    NASA Technical Reports Server (NTRS)

    1985-01-01

    There are 16,835 postable terms and 3,765 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary.

  10. NASA Thesaurus. Volume 1: Hierarchical listing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    There are 16,713 postable terms and 3,716 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary.

  11. Adaptive variable structure hierarchical fuzzy control for a class of high-order nonlinear dynamic systems.

    PubMed

    Mansouri, Mohammad; Teshnehlab, Mohammad; Aliyari Shoorehdeli, Mahdi

    2015-05-01

    In this paper, a novel adaptive hierarchical fuzzy control system based on the variable structure control is developed for a class of SISO canonical nonlinear systems in the presence of bounded disturbances. It is assumed that nonlinear functions of the systems be completely unknown. Switching surfaces are incorporated into the hierarchical fuzzy control scheme to ensure the system stability. A fuzzy soft switching system decides the operation area of the hierarchical fuzzy control and variable structure control systems. All the nonlinearly appeared parameters of conclusion parts of fuzzy blocks located in different layers of the hierarchical fuzzy control system are adjusted through adaptation laws deduced from the defined Lyapunov function. The proposed hierarchical fuzzy control system reduces the number of rules and consequently the number of tunable parameters with respect to the ordinary fuzzy control system. Global boundedness of the overall adaptive system and the desired precision are achieved using the proposed adaptive control system. In this study, an adaptive hierarchical fuzzy system is used for two objectives; it can be as a function approximator or a control system based on an intelligent-classic approach. Three theorems are proven to investigate the stability of the nonlinear dynamic systems. The important point about the proposed theorems is that they can be applied not only to hierarchical fuzzy controllers with different structures of hierarchical fuzzy controller, but also to ordinary fuzzy controllers. Therefore, the proposed algorithm is more general. To show the effectiveness of the proposed method four systems (two mechanical, one mathematical and one chaotic) are considered in simulations. Simulation results demonstrate the validity, efficiency and feasibility of the proposed approach to control of nonlinear dynamic systems. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Ways of looking ahead: hierarchical planning in language production.

    PubMed

    Lee, Eun-Kyung; Brown-Schmidt, Sarah; Watson, Duane G

    2013-12-01

    It is generally assumed that language production proceeds incrementally, with chunks of linguistic structure planned ahead of speech. Extensive research has examined the scope of language production and suggests that the size of planned chunks varies across contexts (Ferreira & Swets, 2002; Wagner & Jescheniak, 2010). By contrast, relatively little is known about the structure of advance planning, specifically whether planning proceeds incrementally according to the surface structure of the utterance, or whether speakers plan according to the hierarchical relationships between utterance elements. In two experiments, we examine the structure and scope of lexical planning in language production using a picture description task. Analyses of speech onset times and word durations show that speakers engage in hierarchical planning such that structurally dependent lexical items are planned together and that hierarchical planning occurs for both direct and indirect dependencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Conceptual Structure within and between Modalities

    PubMed Central

    Dilkina, Katia; Lambon Ralph, Matthew A.

    2012-01-01

    Current views of semantic memory share the assumption that conceptual representations are based on multimodal experience, which activates distinct modality-specific brain regions. This proposition is widely accepted, yet little is known about how each modality contributes to conceptual knowledge and how the structure of this contribution varies across these multiple information sources. We used verbal feature lists, features from drawings, and verbal co-occurrence statistics from latent semantic analysis to examine the informational structure in four domains of knowledge: perceptual, functional, encyclopedic, and verbal. The goals of the analysis were three-fold: (1) to assess the structure within individual modalities; (2) to compare structures between modalities; and (3) to assess the degree to which concepts organize categorically or randomly. Our results indicated significant and unique structure in all four modalities: perceptually, concepts organize based on prominent features such as shape, size, color, and parts; functionally, they group based on use and interaction; encyclopedically, they arrange based on commonality in location or behavior; and verbally, they group associatively or relationally. Visual/perceptual knowledge gives rise to the strongest hierarchical organization and is closest to classic taxonomic structure. Information is organized somewhat similarly in the perceptual and encyclopedic domains, which differs significantly from the structure in the functional and verbal domains. Notably, the verbal modality has the most unique organization, which is not at all categorical but also not random. The idiosyncrasy and complexity of conceptual structure across modalities raise the question of how all of these modality-specific experiences are fused together into coherent, multifaceted yet unified concepts. Accordingly, both methodological and theoretical implications of the present findings are discussed. PMID:23293593

  14. Self organising hypothesis networks: a new approach for representing and structuring SAR knowledge

    PubMed Central

    2014-01-01

    Background Combining different sources of knowledge to build improved structure activity relationship models is not easy owing to the variety of knowledge formats and the absence of a common framework to interoperate between learning techniques. Most of the current approaches address this problem by using consensus models that operate at the prediction level. We explore the possibility to directly combine these sources at the knowledge level, with the aim to harvest potentially increased synergy at an earlier stage. Our goal is to design a general methodology to facilitate knowledge discovery and produce accurate and interpretable models. Results To combine models at the knowledge level, we propose to decouple the learning phase from the knowledge application phase using a pivot representation (lingua franca) based on the concept of hypothesis. A hypothesis is a simple and interpretable knowledge unit. Regardless of its origin, knowledge is broken down into a collection of hypotheses. These hypotheses are subsequently organised into hierarchical network. This unification permits to combine different sources of knowledge into a common formalised framework. The approach allows us to create a synergistic system between different forms of knowledge and new algorithms can be applied to leverage this unified model. This first article focuses on the general principle of the Self Organising Hypothesis Network (SOHN) approach in the context of binary classification problems along with an illustrative application to the prediction of mutagenicity. Conclusion It is possible to represent knowledge in the unified form of a hypothesis network allowing interpretable predictions with performances comparable to mainstream machine learning techniques. This new approach offers the potential to combine knowledge from different sources into a common framework in which high level reasoning and meta-learning can be applied; these latter perspectives will be explored in future work. PMID:24959206

  15. Distinct Photovoltaic Performance of Hierarchical Nanostructures Self-Assembled from Multiblock Copolymers.

    PubMed

    Xu, Zhanwen; Lin, Jiaping; Zhang, Liangshun; Wang, Liquan; Wang, Gengchao; Tian, Xiaohui; Jiang, Tao

    2018-06-14

    We applied a multi-scale approach coupling dissipative particle dynamics method with a drift-diffusion model to elucidate the photovoltaic properties of multiblock copolymers consisting of alternating electron donor and acceptor blocks. A series of hierarchical lamellae-in-lamellar structures were obtained from the self-assembly of the multiblock copolymers. A distinct improvement in photovoltaic performance upon the morphology transformation from lamella to lamellae-in-lamella was observed. The hierarchical lamellae-in-lamellar structures significantly enhanced exciton dissociation and charge carrier transport, which consequently contributed to the improved photovoltaic performance. Based on our theoretical calculations, the hierarchical nanostructures can achieve a much enhanced energy conversion efficiency, improved by around 25% compared with that of general ones, through structure modulation on number and size of the small-length-scale domains. Our findings are supported by recent experimental evidence and yield guidelines for designing hierarchical materials with improved photovoltaic properties.

  16. Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgopolova, Ekaterina A.; Ejegbavwo, Otega A.; Martin, Corey R.

    Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures towards fundamental understanding of mechanisms involved in actinide integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials were built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with “unsaturated” metal nodes. The first successfulmore » attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt% in mono- and bi-actinide frameworks with minimal structural density. Overall, combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures, and therefore, shed light on possible optimization of nuclear waste administration.« less

  17. Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal-Organic Frameworks.

    PubMed

    Dolgopolova, Ekaterina A; Ejegbavwo, Otega A; Martin, Corey R; Smith, Mark D; Setyawan, Wahyu; Karakalos, Stavros G; Henager, Charles H; Zur Loye, Hans-Conrad; Shustova, Natalia B

    2017-11-22

    Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures toward fundamental understanding of mechanisms involved in actinide (An) integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials was built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with "unsaturated" metal nodes. The first successful attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt % in mono- and biactinide frameworks with minimal structural density. Overall, the combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures and, therefore, shed light on possible optimization of nuclear waste administration.

  18. Emergence of the interplay between hierarchy and contact splitting in biological adhesion highlighted through a hierarchical shear lag model.

    PubMed

    Brely, Lucas; Bosia, Federico; Pugno, Nicola M

    2018-06-20

    Contact unit size reduction is a widely studied mechanism as a means to improve adhesion in natural fibrillar systems, such as those observed in beetles or geckos. However, these animals also display complex structural features in the way the contact is subdivided in a hierarchical manner. Here, we study the influence of hierarchical fibrillar architectures on the load distribution over the contact elements of the adhesive system, and the corresponding delamination behaviour. We present an analytical model to derive the load distribution in a fibrillar system loaded in shear, including hierarchical splitting of contacts, i.e. a "hierarchical shear-lag" model that generalizes the well-known shear-lag model used in mechanics. The influence on the detachment process is investigated introducing a numerical procedure that allows the derivation of the maximum delamination force as a function of the considered geometry, including statistical variability of local adhesive energy. Our study suggests that contact splitting generates improved adhesion only in the ideal case of extremely compliant contacts. In real cases, to produce efficient adhesive performance, contact splitting needs to be coupled with hierarchical architectures to counterbalance high load concentrations resulting from contact unit size reduction, generating multiple delamination fronts and helping to avoid detrimental non-uniform load distributions. We show that these results can be summarized in a generalized adhesion scaling scheme for hierarchical structures, proving the beneficial effect of multiple hierarchical levels. The model can thus be used to predict the adhesive performance of hierarchical adhesive structures, as well as the mechanical behaviour of composite materials with hierarchical reinforcements.

  19. Segregating the core computational faculty of human language from working memory.

    PubMed

    Makuuchi, Michiru; Bahlmann, Jörg; Anwander, Alfred; Friederici, Angela D

    2009-05-19

    In contrast to simple structures in animal vocal behavior, hierarchical structures such as center-embedded sentences manifest the core computational faculty of human language. Previous artificial grammar learning studies found that the left pars opercularis (LPO) subserves the processing of hierarchical structures. However, it is not clear whether this area is activated by the structural complexity per se or by the increased memory load entailed in processing hierarchical structures. To dissociate the effect of structural complexity from the effect of memory cost, we conducted a functional magnetic resonance imaging study of German sentence processing with a 2-way factorial design tapping structural complexity (with/without hierarchical structure, i.e., center-embedding of clauses) and working memory load (long/short distance between syntactically dependent elements; i.e., subject nouns and their respective verbs). Functional imaging data revealed that the processes for structure and memory operate separately but co-operatively in the left inferior frontal gyrus; activities in the LPO increased as a function of structural complexity, whereas activities in the left inferior frontal sulcus (LIFS) were modulated by the distance over which the syntactic information had to be transferred. Diffusion tensor imaging showed that these 2 regions were interconnected through white matter fibers. Moreover, functional coupling between the 2 regions was found to increase during the processing of complex, hierarchically structured sentences. These results suggest a neuroanatomical segregation of syntax-related aspects represented in the LPO from memory-related aspects reflected in the LIFS, which are, however, highly interconnected functionally and anatomically.

  20. Exploring the Free Energy Landscape: From Dynamics to Networks and Back

    PubMed Central

    Prada-Gracia, Diego; Gómez-Gardeñes, Jesús; Echenique, Pablo; Falo, Fernando

    2009-01-01

    Knowledge of the Free Energy Landscape topology is the essential key to understanding many biochemical processes. The determination of the conformers of a protein and their basins of attraction takes a central role for studying molecular isomerization reactions. In this work, we present a novel framework to unveil the features of a Free Energy Landscape answering questions such as how many meta-stable conformers there are, what the hierarchical relationship among them is, or what the structure and kinetics of the transition paths are. Exploring the landscape by molecular dynamics simulations, the microscopic data of the trajectory are encoded into a Conformational Markov Network. The structure of this graph reveals the regions of the conformational space corresponding to the basins of attraction. In addition, handling the Conformational Markov Network, relevant kinetic magnitudes as dwell times and rate constants, or hierarchical relationships among basins, completes the global picture of the landscape. We show the power of the analysis studying a toy model of a funnel-like potential and computing efficiently the conformers of a short peptide, dialanine, paving the way to a systematic study of the Free Energy Landscape in large peptides. PMID:19557191

  1. Exploring the free energy landscape: from dynamics to networks and back.

    PubMed

    Prada-Gracia, Diego; Gómez-Gardeñes, Jesús; Echenique, Pablo; Falo, Fernando

    2009-06-01

    Knowledge of the Free Energy Landscape topology is the essential key to understanding many biochemical processes. The determination of the conformers of a protein and their basins of attraction takes a central role for studying molecular isomerization reactions. In this work, we present a novel framework to unveil the features of a Free Energy Landscape answering questions such as how many meta-stable conformers there are, what the hierarchical relationship among them is, or what the structure and kinetics of the transition paths are. Exploring the landscape by molecular dynamics simulations, the microscopic data of the trajectory are encoded into a Conformational Markov Network. The structure of this graph reveals the regions of the conformational space corresponding to the basins of attraction. In addition, handling the Conformational Markov Network, relevant kinetic magnitudes as dwell times and rate constants, or hierarchical relationships among basins, completes the global picture of the landscape. We show the power of the analysis studying a toy model of a funnel-like potential and computing efficiently the conformers of a short peptide, dialanine, paving the way to a systematic study of the Free Energy Landscape in large peptides.

  2. Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells.

    PubMed

    Ho, Cheng-Han; Lien, Der-Hsien; Chang, Hung-Chih; Lin, Chin-An; Kang, Chen-Fang; Hsing, Meng-Kai; Lai, Kun-Yu; He, Jr-Hau

    2012-12-07

    We experimentally and theoretically demonstrated the hierarchical structure of SiO(2) nanorod arrays/p-GaN microdomes as a light harvesting scheme for InGaN-based multiple quantum well solar cells. The combination of nano- and micro-structures leads to increased internal multiple reflection and provides an intermediate refractive index between air and GaN. Cells with the hierarchical structure exhibit improved short-circuit current densities and fill factors, rendering a 1.47 fold efficiency enhancement as compared to planar cells.

  3. The Hierarchical Structure of Formal Operational Tasks.

    ERIC Educational Resources Information Center

    Bart, William M.; Mertens, Donna M.

    1979-01-01

    The hierarchical structure of the formal operational period of Piaget's theory of cognitive development was explored through the application of ordering theoretical methods to a set of data that systematically utilized the various formal operational schemes. Results suggested a common structure underlying task performance. (Author/BH)

  4. Mechanically durable superoleophobic aluminum surfaces with microstep and nanoreticula hierarchical structure for self-cleaning and anti-smudge properties.

    PubMed

    Peng, Shan; Bhushan, Bharat

    2016-01-01

    Superoleophobic aluminum surfaces are of interest for self-cleaning, anti-smudge (fingerprint resistance), anti-fouling, and corrosion resistance applications. In the published literature on superoleophobic aluminum surfaces, mechanical durability, self-cleaning, and anti-smudge properties data are lacking. Microstep structure has often been used to prepare superhydrophobic aluminum surfaces which produce the microstructure. The nanoreticula structure has also been used, and is reported to be able to trap air-pockets, which are desirable for a high contact angle. In this work, the microstep and nanoreticula structures were produced on aluminum surfaces to form a hierarchical micro/nanostructure by a simple two-step chemical etching process. The hierarchical structure, when modified with fluorosilane, made the surface superoleophobic. The effect of nanostructure, microstructure, and hierarchical structure on wettability and durability were studied and compared. The superoleophobic aluminum surfaces were found to be wear resistant, self-cleaning, and have anti-smudge and corrosion resistance properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. New insight in magnetic saturation behavior of nickel hierarchical structures

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Zhang, Jianxing; Liu, Chunting; Chen, Kezheng

    2017-09-01

    It is unanimously accepted that non-ferromagnetic inclusions in a ferromagnetic system will lower down total saturation magnetization in unit of emu/g. In this study, ;lattice strain; was found to be another key factor to have critical impact on magnetic saturation behavior of the system. The lattice strain determined assembling patterns of primary nanoparticles in hierarchical structures and was intimately related with the formation process of these architectures. Therefore, flower-necklace-like and cauliflower-like nickel hierarchical structures were used as prototype systems to evidence the relationship between assembling patterns of primary nanoparticles and magnetic saturation behaviors of these architectures. It was found that the influence of lattice strain on saturation magnetization outperformed that of non-ferromagnetic inclusions in these hierarchical structures. This will enable new insights into fundamental understanding of related magnetic effects.

  6. Hierarchical structure graphitic-like/MoS2 film as superlubricity material

    NASA Astrophysics Data System (ADS)

    Gong, Zhenbin; Jia, Xiaolong; Ma, Wei; Zhang, Bin; Zhang, Junyan

    2017-08-01

    Friction and wear result in a great amount of energy loss and the invalidation of mechanical parts, thus it is necessary to minimize friction in practical application. In this study, the graphitic-like/MoS2 films with hierarchical structure were synthesized by the combination of pulse current plasma chemical-vapor deposition and medium frequency unbalanced magnetron sputtering in preheated environment. This hierarchical structure composite with multilayer nano sheets endows the films excellent tribological performance, which easily achieves macro superlubricity (friction coefficient ∼0.004) under humid air. Furthermore, it is expected that hierarchical structure of graphitic-like/MoS2 films could match the requirements of large scale, high bear-capacity and wear-resistance of actual working conditions, which could be widely used in the industrial production as a promising superlubricity material.

  7. TiO2 with controlled nanoring/nanotube hierarchical structure: Multiabsorption oscillating peaks and photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Sang, Lixia; Zhao, Yangbo; Niu, Youchen; Bai, Guangmei

    2018-02-01

    TiO2 with Nanoring/Nanotube (R/T) hierarchical structure can be prepared by tuning the oxidation time and oxidation voltage in the second step anodization. The resulting multiabsorption oscillating peaks in the visible light region present a strong dependence on the tube length which are derived from the interference of light reflected from the top nanorings and the bottom Ti substrate, and the optical path length in TiO2 R/T hierarchical structure can be estimated as about 2 μm. The tube length of the as-prepared TiO2 photoelectrode affects greatly its saturation photocurrent density, and the different tube-wall thickness can change the photocurrent-saturation potential. Under simulated AM 1.5 irradiation (100 mW/cm2), TiO2 R/T hierarchical structure with tube diameters of 20-40 nm and tube length of about 1.5 μm shows higher photocurrent density and hydrogen production rate at the bias of 0 V (vs. Ag/AgCl). The results from the IPCE plots and I-t curves verify that TiO2 R/T hierarchical structure can exhibit the visible light activity, which is more related to the absorption induced by the defects rather than oscillating peaks. Based on the unique multiple light reflection in TiO2 R/T hierarchical structure, surface treatment will pave a way for the better utilization of oscillating peaks in the visible light region.

  8. A Bayesian hierarchical model for mortality data from cluster-sampling household surveys in humanitarian crises.

    PubMed

    Heudtlass, Peter; Guha-Sapir, Debarati; Speybroeck, Niko

    2018-05-31

    The crude death rate (CDR) is one of the defining indicators of humanitarian emergencies. When data from vital registration systems are not available, it is common practice to estimate the CDR from household surveys with cluster-sampling design. However, sample sizes are often too small to compare mortality estimates to emergency thresholds, at least in a frequentist framework. Several authors have proposed Bayesian methods for health surveys in humanitarian crises. Here, we develop an approach specifically for mortality data and cluster-sampling surveys. We describe a Bayesian hierarchical Poisson-Gamma mixture model with generic (weakly informative) priors that could be used as default in absence of any specific prior knowledge, and compare Bayesian and frequentist CDR estimates using five different mortality datasets. We provide an interpretation of the Bayesian estimates in the context of an emergency threshold and demonstrate how to interpret parameters at the cluster level and ways in which informative priors can be introduced. With the same set of weakly informative priors, Bayesian CDR estimates are equivalent to frequentist estimates, for all practical purposes. The probability that the CDR surpasses the emergency threshold can be derived directly from the posterior of the mean of the mixing distribution. All observation in the datasets contribute to the estimation of cluster-level estimates, through the hierarchical structure of the model. In a context of sparse data, Bayesian mortality assessments have advantages over frequentist ones already when using only weakly informative priors. More informative priors offer a formal and transparent way of combining new data with existing data and expert knowledge and can help to improve decision-making in humanitarian crises by complementing frequentist estimates.

  9. Intelligent Hierarchical Modal Control of a Novel Manipulator with Slewing and Deployable Links

    NASA Astrophysics Data System (ADS)

    Modi, V. J.; Zhang, J.; de Silva, C. W.

    1. Introduction The Space Shuttle based Canada arm has vividly demonstrated its application in launching of satellites as well as retrieval of disabled spacecraft for repair. There have been proposals for free flying robotic systems with appropriate instrumentation to monitor health of spacecraft, identify problems and even perform corrective measures. Most of these applications involve multilink manipulators with revolute joints for which there is a vast body of literature [1]. On the other hand, manipulators with revolute as well as prismatic joints, permitting slewing as well as deployment/retrieval of links, have received relatively little attention [2]. Such variable geometry, snake-like manipulators have distinct advantages of reduced coupling effects leading to simpler equations of motion and inverse kinematics, less number of singularity conditions, and ease of obstacle avoidance [3]. 2. Hierarchical Structure The control system developed for the deployable manipulator has a three-level structure. This hierarchical structure takes the advantages of a crisp controller; specially, a modal controller, with those of a soft, knowledge-based, supervisory control . The overall structure can be separated and developed as three main layers. The first layer is the lowest layer of the control system. It deals with information coming from sensors attached to the plant ( manipulator). This type of information is characterized by a large amount of individual data points of high resolution, produced and collected at high frequency. The crisp controller that is used is a state feedback regulator with its feedback gain matrix determined using the eigenstructure assignment approach. The data processing for monitoring and evaluation of the system performance occurs in this intermediate or second layer. Here high-resolution, crisp data from sensors are filtered to afford representation of the current state of the manipulator. This servo-expert layer acts as an interface between the crisp controller, which regulates the servomotors at the bottom layer, and the knowledge-based controller at the top layer. The third uppermost layer of the control system has the knowledge-base and inference engine to make decisions, which achieve the overall control objective, particularly by improving the performance of low-level direct control. This layer can serve such functions as monitoring the performance of the overall system, assessment of the quality of operation, tuning of the low-level direct controller, and general supervisory control. In this layer, there is a high degree of information fuzziness and a relatively low control bandwidth. 3. Typical Simulation Results This hierarchical control system is used to suppress vibrations of the manipulator with flexible joint and links as well as supported by a flexible orbiting platform. The effectiveness of the control system is assessed through simulation studies by investigating how the vibrations caused by different initial disturbances are suppressed. The resutls showed that when regulated by the hieraicyical controller, the joint vibrations were eliminated much faster than that by the LQR. The hierauchical control system was found to reduce the amplitude of the vibraiton significantly in comparison with those by the LQR. [1]Nagata, T., Modi, V. J., and Matsuo, H., " An Approach to Dynamics and Control of Flexible Systems", Collection [2]Caron, M., " Planar Dynamics and Control of Space-Based Flexible Manipulators with Slewing and Deployable [3]Chu, M. S. T., " Design, Construction and Operation of a Variable Geometry Manipulator", M. A. Sc. Thesis, The

  10. Bio-inspired Fabrication of Complex Hierarchical Structure in Silicon.

    PubMed

    Gao, Yang; Peng, Zhengchun; Shi, Tielin; Tan, Xianhua; Zhang, Deqin; Huang, Qiang; Zou, Chuanping; Liao, Guanglan

    2015-08-01

    In this paper, we developed a top-down method to fabricate complex three dimensional silicon structure, which was inspired by the hierarchical micro/nanostructure of the Morpho butterfly scales. The fabrication procedure includes photolithography, metal masking, and both dry and wet etching techniques. First, microscale photoresist grating pattern was formed on the silicon (111) wafer. Trenches with controllable rippled structures on the sidewalls were etched by inductively coupled plasma reactive ion etching Bosch process. Then, Cr film was angled deposited on the bottom of the ripples by electron beam evaporation, followed by anisotropic wet etching of the silicon. The simple fabrication method results in large scale hierarchical structure on a silicon wafer. The fabricated Si structure has multiple layers with uniform thickness of hundreds nanometers. We conducted both light reflection and heat transfer experiments on this structure. They exhibited excellent antireflection performance for polarized ultraviolet, visible and near infrared wavelengths. And the heat flux of the structure was significantly enhanced. As such, we believe that these bio-inspired hierarchical silicon structure will have promising applications in photovoltaics, sensor technology and photonic crystal devices.

  11. Operationalizing Levels of Academic Mastery Based on Vygotsky’s Theory

    PubMed Central

    Nezhnov, Peter; Kardanova, Elena; Ludlow, Larry

    2014-01-01

    The present study tested the possibility of operationalizing levels of knowledge acquisition based on Vygotsky’s theory of cognitive growth. An assessment tool (SAM-Math) was developed to capture a hypothesized hierarchical structure of mathematical knowledge consisting of procedural, conceptual, and functional levels. In Study 1, SAM-Math was administered to 4th-grade students (N = 2,216). The results of Rasch analysis indicated that the test provided an operational definition for the construct of mathematical competence that included the three levels of mastery corresponding to the theoretically based hierarchy of knowledge. In Study 2, SAM-Math was administered to students in 4th, 6th, 8th, and 10th grades (N = 396) to examine developmental changes in the levels of mathematics knowledge. The results showed that the mastery of mathematical concepts presented in elementary school continued to deepen beyond elementary school, as evidenced by a significant growth in conceptual and functional levels of knowledge. The findings are discussed in terms of their implications for psychological theory, test design, and educational practice. PMID:29795820

  12. Au functionalized ZnO rose-like hierarchical structures and their enhanced NO2 sensing performance

    NASA Astrophysics Data System (ADS)

    Shingange, K.; Swart, H. C.; Mhlongo, G. H.

    2018-04-01

    Herein, we present ZnO rose-like hierarchical nanostructures employed as support to Au nanoparticles to produce Au functionalized three dimensional (3D) ZnO hierarchical nanostructures (Au/ZnO) for NO2 detection using a microwave-assisted method. Comparative analysis of NO2 sensing performance between the pristine ZnO and Au/ZnO rose-like structures at 300 °C revealed improved NO2 response and rapid response-recovery times with Au incorporation owing to a combination of high surface accessibility induced by hierarchical nanostructure design and catalytic activity of the small Au nanoparticles. Structural and optical analyses acquired from X-ray diffraction, scanning electron microscopy, transmission electron microscope and photoluminescence spectroscopy were also performed.

  13. Hierarchical and hybrid energy storage devices in data centers: Architecture, control and provisioning.

    PubMed

    Sun, Mengshu; Xue, Yuankun; Bogdan, Paul; Tang, Jian; Wang, Yanzhi; Lin, Xue

    2018-01-01

    Recently, a new approach has been introduced that leverages and over-provisions energy storage devices (ESDs) in data centers for performing power capping and facilitating capex/opex reductions, without performance overhead. To fully realize the potential benefits of the hierarchical ESD structure, we propose a comprehensive design, control, and provisioning framework including (i) designing power delivery architecture supporting hierarchical ESD structure and hybrid ESDs for some levels, as well as (ii) control and provisioning of the hierarchical ESD structure including run-time ESD charging/discharging control and design-time determination of ESD types, homogeneous/hybrid options, ESD provisioning at each level. Experiments have been conducted using real Google data center workloads based on realistic data center specifications.

  14. Hierarchical and hybrid energy storage devices in data centers: Architecture, control and provisioning

    PubMed Central

    Xue, Yuankun; Bogdan, Paul; Tang, Jian; Wang, Yanzhi; Lin, Xue

    2018-01-01

    Recently, a new approach has been introduced that leverages and over-provisions energy storage devices (ESDs) in data centers for performing power capping and facilitating capex/opex reductions, without performance overhead. To fully realize the potential benefits of the hierarchical ESD structure, we propose a comprehensive design, control, and provisioning framework including (i) designing power delivery architecture supporting hierarchical ESD structure and hybrid ESDs for some levels, as well as (ii) control and provisioning of the hierarchical ESD structure including run-time ESD charging/discharging control and design-time determination of ESD types, homogeneous/hybrid options, ESD provisioning at each level. Experiments have been conducted using real Google data center workloads based on realistic data center specifications. PMID:29351553

  15. Emerging Hierarchical Aerogels: Self-Assembly of Metal and Semiconductor Nanocrystals.

    PubMed

    Cai, Bin; Sayevich, Vladimir; Gaponik, Nikolai; Eychmüller, Alexander

    2018-06-19

    Aerogels assembled from colloidal metal or semiconductor nanocrystals (NCs) feature large surface area, ultralow density, and high porosity, thus rendering them attractive in various applications, such as catalysis, sensors, energy storage, and electronic devices. Morphological and structural modification of the aerogel backbones while maintaining the aerogel properties enables a second stage of the aerogel research, which is defined as hierarchical aerogels. Different from the conventional aerogels with nanowire-like backbones, those hierarchical aerogels are generally comprised of at least two levels of architectures, i.e., an interconnected porous structure on the macroscale and a specially designed configuration at local backbones at the nanoscale. This combination "locks in" the inherent properties of the NCs, so that the beneficial genes obtained by nanoengineering are retained in the resulting monolithic hierarchical aerogels. Herein, groundbreaking advances in the design, synthesis, and physicochemical properties of the hierarchical aerogels are reviewed and organized in three sections: i) pure metallic hierarchical aerogels, ii) semiconductor hierarchical aerogels, and iii) metal/semiconductor hybrid hierarchical aerogels. This report aims to define and demonstrate the concept, potential, and challenges of the hierarchical aerogels, thereby providing a perspective on the further development of these materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hierarchical core-shell structure of ZnO nanorod@NiO/MoO₂ composite nanosheet arrays for high-performance supercapacitors.

    PubMed

    Hou, Sucheng; Zhang, Guanhua; Zeng, Wei; Zhu, Jian; Gong, Feilong; Li, Feng; Duan, Huigao

    2014-08-27

    A hierarchical core-shell structure of ZnO nanorod@NiO/MoO2 composite nanosheet arrays on nickel foam substrate for high-performance supercapacitors was constructed by a two-step solution-based method involving two hydrothermal processes followed by a calcination treatment. Compared to one composed of pure NiO/MoO2 composite nanosheets, the hierarchical core-shell structure electrode displays better pseudocapacitive behaviors in 2 M KOH, including high areal specific capacitance values of 1.18 F cm(-2) at 5 mA cm(-2) and 0.6 F cm(-2) at 30 mA cm(-2) as well as relatively good rate capability at high current densities. Furthermore, it also shows remarkable cycle stability, remaining at 91.7% of the initial value even after 4000 cycles at a current density of 10 mA cm(-2). The enhanced pseudocapacitive behaviors are mainly due to the unique hierarchical core-shell structure and the synergistic effect of combining ZnO nanorod arrays and NiO/MoO2 composite nanosheets. This novel hierarchical core-shell structure shows promise for use in next-generation supercapacitors.

  17. Pore-scale study of effects of macroscopic pores and their distributions on reactive transport in hierarchical porous media

    DOE PAGES

    Chen, Li; Zhang, Ruiyuan; Min, Ting; ...

    2018-05-19

    For applications of reactive transport in porous media, optimal porous structures should possess both high surface area for reactive sites loading and low mass transport resistance. Hierarchical porous media with a combination of pores at different scales are designed for this purpose. In this paper, using the lattice Boltzmann method, pore-scale numerical studies are conducted to investigate diffusion-reaction processes in 2D hierarchical porous media generated by self-developed reconstruction scheme. Complex interactions between porous structures and reactive transport are revealed under different conditions. Simulation results show that adding macropores can greatly enhance the mass transport, but at the same time reducemore » the reactive surface, leading to complex change trend of the total reaction rate. Effects of gradient distribution of macropores within the porous medium are also investigated. It is found that a front-loose, back-tight (FLBT) hierarchical structure is desirable for enhancing mass transport, increasing total reaction rate, and improving catalyst utilization. Finally, on the whole, from the viewpoint of reducing cost and improving material performance, hierarchical porous structures, especially gradient structures with the size of macropores gradually decreasing along the transport direction, are desirable for catalyst application.« less

  18. Hierarchical structural health monitoring system combining a fiber optic spinal cord network and distributed nerve cell devices

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo

    2009-03-01

    This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.

  19. Pore-scale study of effects of macroscopic pores and their distributions on reactive transport in hierarchical porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; Zhang, Ruiyuan; Min, Ting

    For applications of reactive transport in porous media, optimal porous structures should possess both high surface area for reactive sites loading and low mass transport resistance. Hierarchical porous media with a combination of pores at different scales are designed for this purpose. In this paper, using the lattice Boltzmann method, pore-scale numerical studies are conducted to investigate diffusion-reaction processes in 2D hierarchical porous media generated by self-developed reconstruction scheme. Complex interactions between porous structures and reactive transport are revealed under different conditions. Simulation results show that adding macropores can greatly enhance the mass transport, but at the same time reducemore » the reactive surface, leading to complex change trend of the total reaction rate. Effects of gradient distribution of macropores within the porous medium are also investigated. It is found that a front-loose, back-tight (FLBT) hierarchical structure is desirable for enhancing mass transport, increasing total reaction rate, and improving catalyst utilization. Finally, on the whole, from the viewpoint of reducing cost and improving material performance, hierarchical porous structures, especially gradient structures with the size of macropores gradually decreasing along the transport direction, are desirable for catalyst application.« less

  20. NASA thesaurus. Volume 1: Hierarchical Listing

    NASA Technical Reports Server (NTRS)

    1988-01-01

    There are over 17,000 postable terms and nearly 4,000 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary and Volume 3 - Definitions.

  1. Hierarchical structure in sharply divided phase space for the piecewise linear map

    NASA Astrophysics Data System (ADS)

    Akaishi, Akira; Aoki, Kazuki; Shudo, Akira

    2017-05-01

    We have studied a two-dimensional piecewise linear map to examine how the hierarchical structure of stable regions affects the slow dynamics in Hamiltonian systems. In the phase space there are infinitely many stable regions, each of which is polygonal-shaped, and the rest is occupied by chaotic orbits. By using symbolic representation of stable regions, a procedure to compute the edges of the polygons is presented. The stable regions are hierarchically distributed in phase space and the edges of the stable regions show the marginal instability. The cumulative distribution of the recurrence time obeys a power law as ˜t-2 , the same as the one for the system with phase space, which is composed of a single stable region and chaotic components. By studying the symbol sequence of recurrence trajectories, we show that the hierarchical structure of stable regions has no significant effect on the power-law exponent and that only the marginal instability on the boundary of stable regions is responsible for determining the exponent. We also discuss the relevance of the hierarchical structure to those in more generic chaotic systems.

  2. Fabrication of Advanced Thermoelectric Materials by Hierarchical Nanovoid Generation

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Elliott, James R. (Inventor); Stoakley, Diane M. (Inventor); Chu, Sang-Hyon (Inventor); King, Glen C. (Inventor); Kim, Jae-Woo (Inventor); Choi, Sang Hyouk (Inventor); Lillehei, Peter T. (Inventor)

    2011-01-01

    A novel method to prepare an advanced thermoelectric material has hierarchical structures embedded with nanometer-sized voids which are key to enhancement of the thermoelectric performance. Solution-based thin film deposition technique enables preparation of stable film of thermoelectric material and void generator (voigen). A subsequent thermal process creates hierarchical nanovoid structure inside the thermoelectric material. Potential application areas of this advanced thermoelectric material with nanovoid structure are commercial applications (electronics cooling), medical and scientific applications (biological analysis device, medical imaging systems), telecommunications, and defense and military applications (night vision equipments).

  3. Reading Content Knowledge: What Do Teachers Need to Know and How Can We Assess Their Knowledge?

    ERIC Educational Resources Information Center

    Lilienthal, Linda K.

    2008-01-01

    The purpose of this study was to investigate preservice teachers' reading content knowledge, to develop a definition of reading, and to develop an informal test of teachers' reading content knowledge. A content analysis of two contemporary reading textbooks used in university reading courses was the source of a six-tier, hierarchical definition of…

  4. Fragmented Knowledge and Missing Connections between Knowledge from Different Hierarchical Organisational Levels of Reproduction among Adolescents and Young Adults

    ERIC Educational Resources Information Center

    Šorgo, Andrej; Šiling, Rebeka

    2017-01-01

    Based on the responses of our sample (N = 310) of adolescents and young adults from Slovenia (students of secondary and tertiary schools, university students) to a number of tasks covering reproduction, from the molecular to organismal levels, it can be concluded that their knowledge is seriously flawed. Correlations of knowledge between…

  5. One wouldn't expect an expert bowler to hit only two pins: Hierarchical predictive processing of agent-caused events.

    PubMed

    Heil, Lieke; Kwisthout, Johan; van Pelt, Stan; van Rooij, Iris; Bekkering, Harold

    2018-01-01

    Evidence is accumulating that our brains process incoming information using top-down predictions. If lower level representations are correctly predicted by higher level representations, this enhances processing. However, if they are incorrectly predicted, additional processing is required at higher levels to "explain away" prediction errors. Here, we explored the potential nature of the models generating such predictions. More specifically, we investigated whether a predictive processing model with a hierarchical structure and causal relations between its levels is able to account for the processing of agent-caused events. In Experiment 1, participants watched animated movies of "experienced" and "novice" bowlers. The results are in line with the idea that prediction errors at a lower level of the hierarchy (i.e., the outcome of how many pins fell down) slow down reporting of information at a higher level (i.e., which agent was throwing the ball). Experiments 2 and 3 suggest that this effect is specific to situations in which the predictor is causally related to the outcome. Overall, the study supports the idea that a hierarchical predictive processing model can account for the processing of observed action outcomes and that the predictions involved are specific to cases where action outcomes can be predicted based on causal knowledge.

  6. The failure of formal rights and equality in the clinic: a critique of bioethics.

    PubMed

    Atkins, Chloe G K

    2005-01-01

    For communities which espouse egalitarian principles, the hierarchical nature of care-giving relationships poses an extraordinary challenge. Patients' accounts of their illnesses and of their medical care capture the latent tension which exists between notional, political equality and the need for dependency on care from others. I believe that the power imbalance in doctor-patient relationships has broad implications for liberal democracies. Professional and care-giving relationships almost always consist of an imbalance of knowledge and expertise which no template of egalitarian moralism can suppress. When we seek help or guidance from authority figures, we are at a disadvantage politically even though we may be equal citizens theoretically and legally. Hierarchic relationships persist within democracies. Moreover, they tend to exist within a realm of privacy which is only partially visible from the social realm. In the end, traditional notions of liberal autonomy and egalitarianism do not properly describe or monitor these interactions. Liberal rhetoric (i.e., terms such as equality, rights, consent, etc.) pervades much of bioethical literature and interventions but, this very language tends to mask the persistence of structural hierarchies in the clinic. The doctor-patient relationship forces democratic communities to confront the problem of continuing hierarchic power relations and challenges liberalism to revise its understanding of individual autonomies.

  7. Architecture for reactive planning of robot actions

    NASA Astrophysics Data System (ADS)

    Riekki, Jukka P.; Roening, Juha

    1995-01-01

    In this article, a reactive system for planning robot actions is described. The described hierarchical control system architecture consists of planning-executing-monitoring-modelling elements (PEMM elements). A PEMM element is a goal-oriented, combined processing and data element. It includes a planner, an executor, a monitor, a modeler, and a local model. The elements form a tree-like structure. An element receives tasks from its ancestor and sends subtasks to its descendants. The model knowledge is distributed into the local models, which are connected to each other. The elements can be synchronized. The PEMM architecture is strictly hierarchical. It integrated planning, sensing, and modelling into a single framework. A PEMM-based control system is reactive, as it can cope with asynchronous events and operate under time constraints. The control system is intended to be used primarily to control mobile robots and robot manipulators in dynamic and partially unknown environments. It is suitable especially for applications consisting of physically separated devices and computing resources.

  8. Patterns of Hierarchical Structure in the Medical Lexicon

    PubMed Central

    Michael, Patricia A.; Cole, William G.; Stewart, James; Blois, Marsden S.

    1987-01-01

    Concepts in basic and clinical medical science cover a wide range of levels of description, from the subatomic level to the level of the patient as a whole. Medical language may have usage regularities consistent with this hierarchical nature of medical knowledge. Preliminary studies of word occurrence in abstracts drawn from three medical journals representing three broadly defined levels of description (chemical system, physiologic system, and patient as a whole) demonstrated a nonuniform word usage, with many words unique to one or another journal. In this present study, word occurrence was examined in an expanded pool of medical text consisting of sixteen textbooks representing ten different levels of description: atom/ion, micromolecule, macromolecule, organelle, cell, tissue, organ, physiologic system, major body part (or multiple physiologic systems) and patient as a whole. Word usage was found to be nonuniform, with many words unique to specific levels. The presence of such usage regularities may provide a basis for facilitating the automatic classification and retrieval of medical text.

  9. Delineating the Structure of Normal and Abnormal Personality: An Integrative Hierarchical Approach

    PubMed Central

    Markon, Kristian E.; Krueger, Robert F.; Watson, David

    2008-01-01

    Increasing evidence indicates that normal and abnormal personality can be treated within a single structural framework. However, identification of a single integrated structure of normal and abnormal personality has remained elusive. Here, a constructive replication approach was used to delineate an integrative hierarchical account of the structure of normal and abnormal personality. This hierarchical structure, which integrates many Big Trait models proposed in the literature, replicated across a meta-analysis as well as an empirical study, and across samples of participants as well as measures. The proposed structure resembles previously suggested accounts of personality hierarchy and provides insight into the nature of personality hierarchy more generally. Potential directions for future research on personality and psychopathology are discussed. PMID:15631580

  10. Delineating the structure of normal and abnormal personality: an integrative hierarchical approach.

    PubMed

    Markon, Kristian E; Krueger, Robert F; Watson, David

    2005-01-01

    Increasing evidence indicates that normal and abnormal personality can be treated within a single structural framework. However, identification of a single integrated structure of normal and abnormal personality has remained elusive. Here, a constructive replication approach was used to delineate an integrative hierarchical account of the structure of normal and abnormal personality. This hierarchical structure, which integrates many Big Trait models proposed in the literature, replicated across a meta-analysis as well as an empirical study, and across samples of participants as well as measures. The proposed structure resembles previously suggested accounts of personality hierarchy and provides insight into the nature of personality hierarchy more generally. Potential directions for future research on personality and psychopathology are discussed.

  11. A spatial analysis of hierarchical waste transport structures under growing demand.

    PubMed

    Tanguy, Audrey; Glaus, Mathias; Laforest, Valérie; Villot, Jonathan; Hausler, Robert

    2016-10-01

    The design of waste management systems rarely accounts for the spatio-temporal evolution of the demand. However, recent studies suggest that this evolution affects the planning of waste management activities like the choice and location of treatment facilities. As a result, the transport structure could also be affected by these changes. The objective of this paper is to study the influence of the spatio-temporal evolution of the demand on the strategic planning of a waste transport structure. More particularly this study aims at evaluating the effect of varying spatial parameters on the economic performance of hierarchical structures (with one transfer station). To this end, three consecutive generations of three different spatial distributions were tested for hierarchical and non-hierarchical transport structures based on costs minimization. Results showed that a hierarchical structure is economically viable for large and clustered spatial distributions. The distance parameter was decisive but the loading ratio of trucks and the formation of clusters of sources also impacted the attractiveness of the transfer station. Thus the territories' morphology should influence strategies as regards to the installation of transfer stations. The use of spatial-explicit tools such as the transport model presented in this work that take into account the territory's evolution are needed to help waste managers in the strategic planning of waste transport structures. © The Author(s) 2016.

  12. Segregating the core computational faculty of human language from working memory

    PubMed Central

    Makuuchi, Michiru; Bahlmann, Jörg; Anwander, Alfred; Friederici, Angela D.

    2009-01-01

    In contrast to simple structures in animal vocal behavior, hierarchical structures such as center-embedded sentences manifest the core computational faculty of human language. Previous artificial grammar learning studies found that the left pars opercularis (LPO) subserves the processing of hierarchical structures. However, it is not clear whether this area is activated by the structural complexity per se or by the increased memory load entailed in processing hierarchical structures. To dissociate the effect of structural complexity from the effect of memory cost, we conducted a functional magnetic resonance imaging study of German sentence processing with a 2-way factorial design tapping structural complexity (with/without hierarchical structure, i.e., center-embedding of clauses) and working memory load (long/short distance between syntactically dependent elements; i.e., subject nouns and their respective verbs). Functional imaging data revealed that the processes for structure and memory operate separately but co-operatively in the left inferior frontal gyrus; activities in the LPO increased as a function of structural complexity, whereas activities in the left inferior frontal sulcus (LIFS) were modulated by the distance over which the syntactic information had to be transferred. Diffusion tensor imaging showed that these 2 regions were interconnected through white matter fibers. Moreover, functional coupling between the 2 regions was found to increase during the processing of complex, hierarchically structured sentences. These results suggest a neuroanatomical segregation of syntax-related aspects represented in the LPO from memory-related aspects reflected in the LIFS, which are, however, highly interconnected functionally and anatomically. PMID:19416819

  13. Hierarchical structure of stock price fluctuations in financial markets

    NASA Astrophysics Data System (ADS)

    Gao, Ya-Chun; Cai, Shi-Min; Wang, Bing-Hong

    2012-12-01

    The financial market and turbulence have been broadly compared on account of the same quantitative methods and several common stylized facts they share. In this paper, the She-Leveque (SL) hierarchy, proposed to explain the anomalous scaling exponents deviating from Kolmogorov monofractal scaling of the velocity fluctuation in fluid turbulence, is applied to study and quantify the hierarchical structure of stock price fluctuations in financial markets. We therefore observed certain interesting results: (i) the hierarchical structure related to multifractal scaling generally presents in all the stock price fluctuations we investigated. (ii) The quantitatively statistical parameters that describe SL hierarchy are different between developed financial markets and emerging ones, distinctively. (iii) For the high-frequency stock price fluctuation, the hierarchical structure varies with different time periods. All these results provide a novel analogy in turbulence and financial market dynamics and an insight to deeply understand multifractality in financial markets.

  14. Hierarchical structure for audio-video based semantic classification of sports video sequences

    NASA Astrophysics Data System (ADS)

    Kolekar, M. H.; Sengupta, S.

    2005-07-01

    A hierarchical structure for sports event classification based on audio and video content analysis is proposed in this paper. Compared to the event classifications in other games, those of cricket are very challenging and yet unexplored. We have successfully solved cricket video classification problem using a six level hierarchical structure. The first level performs event detection based on audio energy and Zero Crossing Rate (ZCR) of short-time audio signal. In the subsequent levels, we classify the events based on video features using a Hidden Markov Model implemented through Dynamic Programming (HMM-DP) using color or motion as a likelihood function. For some of the game-specific decisions, a rule-based classification is also performed. Our proposed hierarchical structure can easily be applied to any other sports. Our results are very promising and we have moved a step forward towards addressing semantic classification problems in general.

  15. Leading virtual teams: hierarchical leadership, structural supports, and shared team leadership.

    PubMed

    Hoch, Julia E; Kozlowski, Steve W J

    2014-05-01

    Using a field sample of 101 virtual teams, this research empirically evaluates the impact of traditional hierarchical leadership, structural supports, and shared team leadership on team performance. Building on Bell and Kozlowski's (2002) work, we expected structural supports and shared team leadership to be more, and hierarchical leadership to be less, strongly related to team performance when teams were more virtual in nature. As predicted, results from moderation analyses indicated that the extent to which teams were more virtual attenuated relations between hierarchical leadership and team performance but strengthened relations for structural supports and team performance. However, shared team leadership was significantly related to team performance regardless of the degree of virtuality. Results are discussed in terms of needed research extensions for understanding leadership processes in virtual teams and practical implications for leading virtual teams. (c) 2014 APA, all rights reserved.

  16. Highly Transparent Water-Repelling Surfaces based on Biomimetic Hierarchical Structure

    NASA Astrophysics Data System (ADS)

    Wooh, Sanghyuk; Koh, Jai; Yoon, Hyunsik; Char, Kookheon

    2013-03-01

    Nature is a great source of inspiration for creating unique structures with special functions. The representative examples of water-repelling surfaces in nature, such as lotus leaves, rose petals, and insect wings, consist of an array of bumps (or long hairs) and nanoscale surface features with different dimension scales. Herein, we introduced a method of realizing multi-dimensional hierarchical structures and water-repellancy of the surfaces with different drop impact scenarios. The multi-dimensional hierarchical structures were fabricated by soft imprinting method with TiO2 nanoparticle pastes. In order to achieve the enhanced hydrophobicity, fluorinated moieties were attached to the etched surfaces to lower the surface energy. As a result, super-hydrophobic surfaces with high transparency were realized (over 176° water contact angle), and for further investigation, these hierarchical surfaces with different drop impact scenarios were characterized by varying the impact speed, drop size, and the geometry of the surfaces.

  17. Metal hierarchical patterning by direct nanoimprint lithography

    PubMed Central

    Radha, Boya; Lim, Su Hui; Saifullah, Mohammad S. M.; Kulkarni, Giridhar U.

    2013-01-01

    Three-dimensional hierarchical patterning of metals is of paramount importance in diverse fields involving photonics, controlling surface wettability and wearable electronics. Conventionally, this type of structuring is tedious and usually involves layer-by-layer lithographic patterning. Here, we describe a simple process of direct nanoimprint lithography using palladium benzylthiolate, a versatile metal-organic ink, which not only leads to the formation of hierarchical patterns but also is amenable to layer-by-layer stacking of the metal over large areas. The key to achieving such multi-faceted patterning is hysteretic melting of ink, enabling its shaping. It undergoes transformation to metallic palladium under gentle thermal conditions without affecting the integrity of the hierarchical patterns on micro- as well as nanoscale. A metallic rice leaf structure showing anisotropic wetting behavior and woodpile-like structures were thus fabricated. Furthermore, this method is extendable for transferring imprinted structures to a flexible substrate to make them robust enough to sustain numerous bending cycles. PMID:23446801

  18. Fabrication of porous hierarchical polymer/ceramic composites by electron irradiation of organic/inorganic polymers: route to a highly durable, large-area superhydrophobic coating.

    PubMed

    Lee, Eun Je; Kim, Jae Joon; Cho, Sung Oh

    2010-03-02

    Polymer/ceramic composite films with micro- and nanocombined hierarchical structures are fabricated by electron irradiation of poly(methyl methacrylate) (PMMA) microspheres/silicone grease. Electron irradiation induces volume contraction of PMMA microspheres and simultaneously transforms silicone grease into a ceramic material of silicon oxycarbide with many nanobumps. As a result, highly porous structures that consist of micrometer-sized pores and microparticles decorated with nanobumps are created. The fabricated films with the porous hierarchical structure exhibit good superhydrophobicity with excellent self-cleaning and antiadhesion properties after surface treatment with fluorosilane. In addition, the porous hierarchical structures are covered with silicon oxycarbide, and thus the superhydrophobic coatings have high hardness and strong adhesion to the substrate. The presented technique provides a straightforward route to producing large-area, mechanically robust superhydrophobic films on various substrate materials.

  19. An Investigation of the Relations between Student Knowledge, Personal Contact, and Attitudes toward Individuals with Schizophrenia

    ERIC Educational Resources Information Center

    Eack, Shaun M.; Newhill, Christina E.

    2008-01-01

    A survey of 118 MSW students was conducted to examine the relationship between social work students' knowledge about, contact with, and attitudes toward persons with schizophrenia. Hierarchical regression analyses indicated that students' knowledge about and contact with persons with schizophrenia were significantly related to better attitudes…

  20. Mental structures and hierarchical brain processing. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    NASA Astrophysics Data System (ADS)

    Petkov, C. I.

    2014-09-01

    Fitch proposes an appealing hypothesis that humans are dendrophiles, who constantly build mental trees supported by analogous hierarchical brain processes [1]. Moreover, it is argued that, by comparison, nonhuman animals build flat or more compact behaviorally-relevant structures. Should we thus expect less impressive hierarchical brain processes in other animals? Not necessarily.

  1. The hierarchical structure of self-reported impulsivity

    PubMed Central

    Kirby, Kris N.; Finch, Julia C.

    2010-01-01

    The hierarchical structure of 95 self-reported impulsivity items, along with delay-discount rates for money, was examined. A large sample of college students participated in the study (N = 407). Items represented every previously proposed dimension of self-reported impulsivity. Exploratory PCA yielded at least 7 interpretable components: Prepared/Careful, Impetuous, Divertible, Thrill and Risk Seeking, Happy-Go-Lucky, Impatiently Pleasure Seeking, and Reserved. Discount rates loaded on Impatiently Pleasure Seeking, and correlated with the impulsiveness and venturesomeness scales from the I7 (Eysenck, Pearson, Easting, & Allsopp, 1985). The hierarchical emergence of the components was explored, and we show how this hierarchical structure may help organize conflicting dimensions found in previous analyses. Finally, we argue that the discounting model (Ainslie, 1975) provides a qualitative framework for understanding the dimensions of impulsivity. PMID:20224803

  2. Relation between financial market structure and the real economy: comparison between clustering methods.

    PubMed

    Musmeci, Nicoló; Aste, Tomaso; Di Matteo, T

    2015-01-01

    We quantify the amount of information filtered by different hierarchical clustering methods on correlations between stock returns comparing the clustering structure with the underlying industrial activity classification. We apply, for the first time to financial data, a novel hierarchical clustering approach, the Directed Bubble Hierarchical Tree and we compare it with other methods including the Linkage and k-medoids. By taking the industrial sector classification of stocks as a benchmark partition, we evaluate how the different methods retrieve this classification. The results show that the Directed Bubble Hierarchical Tree can outperform other methods, being able to retrieve more information with fewer clusters. Moreover,we show that the economic information is hidden at different levels of the hierarchical structures depending on the clustering method. The dynamical analysis on a rolling window also reveals that the different methods show different degrees of sensitivity to events affecting financial markets, like crises. These results can be of interest for all the applications of clustering methods to portfolio optimization and risk hedging [corrected].

  3. Personality in Chimpanzees (Pan troglodytes): Exploring the Hierarchical Structure and Associations with the Vasopressin V1A Receptor Gene

    PubMed Central

    Latzman, Robert D.; Hopkins, William D.; Keebaugh, Alaine C.; Young, Larry J.

    2014-01-01

    One of the major contributions of recent personality psychology is the finding that traits are related to each other in an organized hierarchy. To date, however, researchers have yet to investigate this hierarchy in nonhuman primates. Such investigations are critical in confirming the cross-species nature of trait personality helping to illuminate personality as neurobiologically-based and evolutionarily-derived dimensions of primate disposition. Investigations of potential genetic polymorphisms associated with hierarchical models of personality among nonhuman primates represent a critical first step. The current study examined the hierarchical structure of chimpanzee personality as well as sex-specific associations with a polymorphism in the promoter region of the vasopressin V1a receptor gene (AVPR1A), a gene associated with dispositional traits, among 174 chimpanzees. Results confirmed a hierarchical structure of personality across species and, despite differences in early rearing experiences, suggest a sexually dimorphic role of AVPR1A polymorphisms on hierarchical personality profiles at a higher-order level. PMID:24752497

  4. Hierarchical flexural strength of enamel: transition from brittle to damage-tolerant behaviour

    PubMed Central

    Bechtle, Sabine; Özcoban, Hüseyin; Lilleodden, Erica T.; Huber, Norbert; Schreyer, Andreas; Swain, Michael V.; Schneider, Gerold A.

    2012-01-01

    Hard, biological materials are generally hierarchically structured from the nano- to the macro-scale in a somewhat self-similar manner consisting of mineral units surrounded by a soft protein shell. Considerable efforts are underway to mimic such materials because of their structurally optimized mechanical functionality of being hard and stiff as well as damage-tolerant. However, it is unclear how different hierarchical levels interact to achieve this performance. In this study, we consider dental enamel as a representative, biological hierarchical structure and determine its flexural strength and elastic modulus at three levels of hierarchy using focused ion beam (FIB) prepared cantilevers of micrometre size. The results are compared and analysed using a theoretical model proposed by Jäger and Fratzl and developed by Gao and co-workers. Both properties decrease with increasing hierarchical dimension along with a switch in mechanical behaviour from linear-elastic to elastic-inelastic. We found Gao's model matched the results very well. PMID:22031729

  5. Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods

    PubMed Central

    Musmeci, Nicoló; Aste, Tomaso; Di Matteo, T.

    2015-01-01

    We quantify the amount of information filtered by different hierarchical clustering methods on correlations between stock returns comparing the clustering structure with the underlying industrial activity classification. We apply, for the first time to financial data, a novel hierarchical clustering approach, the Directed Bubble Hierarchical Tree and we compare it with other methods including the Linkage and k-medoids. By taking the industrial sector classification of stocks as a benchmark partition, we evaluate how the different methods retrieve this classification. The results show that the Directed Bubble Hierarchical Tree can outperform other methods, being able to retrieve more information with fewer clusters. Moreover, we show that the economic information is hidden at different levels of the hierarchical structures depending on the clustering method. The dynamical analysis on a rolling window also reveals that the different methods show different degrees of sensitivity to events affecting financial markets, like crises. These results can be of interest for all the applications of clustering methods to portfolio optimization and risk hedging. PMID:25786703

  6. A hierarchical clustering methodology for the estimation of toxicity.

    PubMed

    Martin, Todd M; Harten, Paul; Venkatapathy, Raghuraman; Das, Shashikala; Young, Douglas M

    2008-01-01

    ABSTRACT A quantitative structure-activity relationship (QSAR) methodology based on hierarchical clustering was developed to predict toxicological endpoints. This methodology utilizes Ward's method to divide a training set into a series of structurally similar clusters. The structural similarity is defined in terms of 2-D physicochemical descriptors (such as connectivity and E-state indices). A genetic algorithm-based technique is used to generate statistically valid QSAR models for each cluster (using the pool of descriptors described above). The toxicity for a given query compound is estimated using the weighted average of the predictions from the closest cluster from each step in the hierarchical clustering assuming that the compound is within the domain of applicability of the cluster. The hierarchical clustering methodology was tested using a Tetrahymena pyriformis acute toxicity data set containing 644 chemicals in the training set and with two prediction sets containing 339 and 110 chemicals. The results from the hierarchical clustering methodology were compared to the results from several different QSAR methodologies.

  7. Predictors and Effects of Knowledge Management in U.S. Colleges and Schools of Pharmacy

    NASA Astrophysics Data System (ADS)

    Watcharadamrongkun, Suntaree

    Public demands for accountability in higher education have placed increasing pressure on institutions to document their achievement of critical outcomes. These demands also have had wide-reaching implications for the development and enforcement of accreditation standards, including those governing pharmacy education. The knowledge management (KM) framework provides perspective for understanding how organizations evaluate themselves and guidance for how to improve their performance. In this study, we explore knowledge management processes, how these processes are affected by organizational structure and by information technology resources, and how these processes affect organizational performance. This is done in the context of Accreditation Standards and Guidelines for the Professional Program in Pharmacy Leading to the Doctor of Pharmacy Degree (Standards 2007). Data were collected using an online census survey of 121 U.S. Colleges and Schools of Pharmacy and supplemented with archival data. A key informant method was used with CEO Deans and Assessment leaders serving as respondents. The survey yielded a 76.0% (92/121) response rate. Exploratory factor analysis was used to construct scales (and scales) describing core KM processes: Knowledge Acquisition, Knowledge Integration, and Institutionalization; all scale reliabilities were found to be acceptable. Analysis showed that, as expected, greater Knowledge Acquisition predicts greater Knowledge Integration and greater Knowledge Integration predicts greater Institutionalization. Predictive models were constructed using hierarchical multiple regression and path analysis. Overall, information technology resources had stronger effects on KM processes than did characteristics of organizational structure. Greater Institutionalization predicted better outcomes related to direct measures of performance (i.e., NAPLEX pass rates, Accreditation actions) but Institutionalization was unrelated to an indirect measure of performance (i.e., USNWR ratings). Several organizational structure characteristics (i.e., size, age, and being part of an academic health center) were significant predictors of organizational performance; in contrast, IT resources had no direct effects on performance. Findings suggest that knowledge management processes, organizational structures and IT resources are related to better performance for Colleges and Schools of Pharmacy. Further research is needed to understand mechanisms through which specific knowledge management processes translate into better performance and, relatedly, to establish how enhancing KM processes can be used to improve institutional quality.

  8. Using music to study the evolution of cognitive mechanisms relevant to language.

    PubMed

    Patel, Aniruddh D

    2017-02-01

    This article argues that music can be used in cross-species research to study the evolution of cognitive mechanisms relevant to spoken language. This is because music and language share certain cognitive processing mechanisms and because music offers specific advantages for cross-species research. Music has relatively simple building blocks (tones without semantic properties), yet these building blocks are combined into rich hierarchical structures that engage complex cognitive processing. I illustrate this point with regard to the processing of musical harmonic structure. Because the processing of musical harmonic structure has been shown to interact with linguistic syntactic processing in humans, it is of interest to know if other species can acquire implicit knowledge of harmonic structure through extended exposure to music during development (vs. through explicit training). I suggest that domestic dogs would be a good species to study in addressing this question.

  9. Governance Structures for Open Innovation: A Preliminary Framework

    NASA Astrophysics Data System (ADS)

    Feller, Joseph; Finnegan, Patrick; Hayes, Jeremy; O'Reilly, Philip

    This research-in-progress paper presents a preliminary framework of four open innovation governance structures. The study seeks to describe four distinct ways in which firms utilize hierarchical relationships, organizational intermediaries, and the market system to supply and acquire intellectual property and/or innovation capabilities from sources external to the firm. This paper reports on phase one of the study, which involved an analysis of six open innovation exemplars based on public data. This phase of the study reveals that governance structures for open innovation can be categorized based on whether they (1) are mediated or direct or (2) seek to acquire intellectual property or innovation capability. We analyze the differences in four governance structures along seven dimensions, and reveal the importance of knowledge dispersion and uncertainty to the use of open innovation hierarchies, brokerages, and markets. The paper concludes by examining the implications of the findings and outlining the next phase of the study.

  10. Hierarchically Patterned Noncovalent Functionalization of 2D Materials by Controlled Langmuir-Schaefer Conversion.

    PubMed

    Davis, Tyson C; Bang, Jae Jin; Brooks, Jacob T; McMillan, David G; Claridge, Shelley A

    2018-01-30

    Noncovalent monolayer chemistries are often used to functionalize 2D materials. Nanoscopic ligand ordering has been widely demonstrated (e.g., lying-down lamellar phases of functional alkanes); however, combining this control with micro- and macroscopic patterning for practical applications remains a significant challenge. A few reports have demonstrated that standing phase Langmuir films on water can be converted into nanoscopic lying-down molecular domains on 2D substrates (e.g., graphite), using horizontal dipping (Langmuir-Schaefer, LS, transfer). Molecular patterns are known to form at scales up to millimeters in Langmuir films, suggesting the possibility of transforming such structures into functional patterns on 2D materials. However, to our knowledge, this approach has not been investigated, and the rules governing LS conversion are not well understood. In part, this is because the conversion process is mechanistically very different from classic LS transfer of standing phases; challenges also arise due to the need to characterize structure in noncovalently adsorbed ligand layers <0.5 nm thick, at scales ranging from millimeters to nanometers. Here, we show that scanning electron microscopy enables diynoic acid lying-down phases to be imaged across this range of scales; using this structural information, we establish conditions for LS conversion to create hierarchical microscopic and nanoscopic functional patterns. Such control opens the door to tailoring noncovalent surface chemistry of 2D materials to pattern local interactions with the environment.

  11. Dimensional and Componential Structure of a Hierarchical Organization of Pain-Related Anxiety Constructs

    ERIC Educational Resources Information Center

    Vancleef, Linda M. G.; Vlaeyen, Johan W. S.; Peters, Madelon L.

    2009-01-01

    Research has identified several anxiety and fear constructs that contribute directly or indirectly to the chronic course of pain. One way to gain insight into the frequently observed interrelations between these constructs may be by conceptualizing them within a hierarchical structure. In this structure, general and specific constructs are…

  12. Drag reduction using metallic engineered surfaces with highly ordered hierarchical topographies: nanostructures on micro-riblets

    NASA Astrophysics Data System (ADS)

    Kim, Taekyung; Shin, Ryung; Jung, Myungki; Lee, Jinhyung; Park, Changsu; Kang, Shinill

    2016-03-01

    Durable drag-reduction surfaces have recently received much attention, due to energy-saving and power-consumption issues associated with harsh environment applications, such as those experienced by piping infrastructure, ships, aviation, underwater vehicles, and high-speed ground vehicles. In this study, a durable, metallic surface with highly ordered hierarchical structures was used to enhance drag-reduction properties, by combining two passive drag-reduction strategies: an air-layer effect induced by nanostructures and secondary vortex generation by micro-riblet structures. The nanostructures and micro-riblet structures were designed to increase slip length. The top-down fabrication method used to form the metallic hierarchical structures combined laser interference lithography, photolithography, thermal reflow, nanoimprinting, and pulse-reverse-current electrochemical deposition. The surfaces were formed from nickel, which has high hardness and corrosion resistance, making it suitable for use in harsh environments. The drag-reduction properties of various metal surfaces were investigated based on the surface structure: a bare surface, a nanostructured surface, a micro-riblet surface, and a hierarchically structured surface of nanostructures on micro-riblets.

  13. NASA Thesaurus. Volume 1: Hierarchical listing. Volume 2: Access vocabulary. Volume 3: Definitions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    There are over 17,500 postable terms and some 4,000 nonpostable terms approved for use in the NASA Scientific and Technical Information Database in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary and Volume 3 - Definitions.

  14. Hierarchical Bi2Te3 Nanostrings: Green Synthesis and Their Thermoelectric Properties.

    PubMed

    Song, Shuyan; Liu, Yu; Wang, Qishun; Pan, Jing; Sun, Yabin; Zhang, Lingling

    2018-05-20

    Bi2Te3 hierarchical nanostrings have been synthesized through a solvothermal approach with the assistance of sucrose. The hierarchical Bi2Te3 was supposed to be fabricated through a self-assembly process. Te nanorods first emerge with the reduction of TeO32- followed by heterogeneous nucleation of Bi2Te3 nanoplates on the surface and tips of Te nanorods. Te nanorods further transform into Bi2Te3 nanorods simultaneously with the nanoplates' growth leading to a hierarchical structure. Through controlling the reaction kinetics by adding different amount of ethylene glycol, the length of nanorods and the number of nanoplates could be tailored. The use of sucrose is vital to the formation of hierarchical structure because it not only serves as a template for the well-defined growth of Te nanorods but also promotes the heterogeneous nucleation of Bi2Te3 in the self-assembly process. The Bi2Te3 nanomaterial shows a moderate thermoelectric performance because of its hierarchical structure. This study shows a promising way to synthesize Bi2Te3-based nanostructures through environmental friendly approach. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hierarchical photonic structured stimuli-responsive materials as high-performance colorimetric sensors

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Zhu, Shenmin; Chen, Zhixin; Wang, Wanlin; Zhang, Wang; Zhang, Di

    2016-05-01

    Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures.Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01875k

  16. Target recognition and scene interpretation in image/video understanding systems based on network-symbolic models

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2004-08-01

    Vision is only a part of a system that converts visual information into knowledge structures. These structures drive the vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, which is an interpretation of visual information in terms of these knowledge models. These mechanisms provide a reliable recognition if the object is occluded or cannot be recognized as a whole. It is hard to split the entire system apart, and reliable solutions to the target recognition problems are possible only within the solution of a more generic Image Understanding Problem. Brain reduces informational and computational complexities, using implicit symbolic coding of features, hierarchical compression, and selective processing of visual information. Biologically inspired Network-Symbolic representation, where both systematic structural/logical methods and neural/statistical methods are parts of a single mechanism, is the most feasible for such models. It converts visual information into relational Network-Symbolic structures, avoiding artificial precise computations of 3-dimensional models. Network-Symbolic Transformations derive abstract structures, which allows for invariant recognition of an object as exemplar of a class. Active vision helps creating consistent models. Attention, separation of figure from ground and perceptual grouping are special kinds of network-symbolic transformations. Such Image/Video Understanding Systems will be reliably recognizing targets.

  17. The inner formal structure of the H-T-P drawings: an exploratory study.

    PubMed

    Vass, Z

    1998-08-01

    The study describes some interrelated patterns of traits of the House-Tree-Person (H-T-P) drawings with the instruments of hierarchical cluster analysis. First, according to the literature 1 7 formal or structural aspects of the projective drawings were collected, after which a detailed manual for coding was compiled. Second, the interrater reliability and the consistency of this manual was tested. Third, the hierarchical cluster structure of the reliable and consistent formal aspects was analysed. Results are: (a) a psychometrically tested coding manual of the investigated formal-structural aspects, each of them illustrated with drawings that showed the highest interrater agreement; and (b) the hierarchic cluster structure of the formal aspects of the H-T-P drawings of "normal" adults.

  18. A school based cluster randomised health education intervention trial for improving knowledge and attitudes related to Taenia solium cysticercosis and taeniasis in Mbulu district, northern Tanzania.

    PubMed

    Mwidunda, Sylvester A; Carabin, Hélène; Matuja, William B M; Winkler, Andrea S; Ngowi, Helena A

    2015-01-01

    Taenia solium causes significant economic and public health impacts in endemic countries. This study determined effectiveness of a health education intervention at improving school children's knowledge and attitudes related to T. solium cysticercosis and taeniasis in Tanzania. A cluster randomised controlled health education intervention trial was conducted in 60 schools (30 primary, 30 secondary) in Mbulu district. Baseline data were collected using a structured questionnaire in the 60 schools and group discussions in three other schools. The 60 schools stratified by baseline knowledge were randomised to receive the intervention or serve as control. The health education consisted of an address by a trained teacher, a video show and a leaflet given to each pupil. Two post-intervention re-assessments (immediately and 6 months post-intervention) were conducted in all schools and the third (12 months post-intervention) was conducted in 28 secondary schools. Data were analysed using Bayesian hierarchical log-binomial models for individual knowledge and attitude questions and Bayesian hierarchical linear regression models for scores. The overall score (percentage of correct answers) improved by about 10% in all schools after 6 months, but was slightly lower among secondary schools. Monitoring alone was associated with improvement in scores by about 6%. The intervention was linked to improvements in knowledge regarding taeniasis, porcine cysticercosis, human cysticercosis, epilepsy, the attitude of condemning infected meat but it reduced the attitude of contacting a veterinarian if a pig was found to be infected with cysticercosis. Monitoring alone was linked to an improvement in how best to raise pigs. This study demonstrates the potential value of school children as targets for health messages to control T. solium cysticercosis and taeniasis in endemic areas. Studies are needed to assess effectiveness of message transmission from children to parents and the general community and their impacts in improving behaviours facilitating disease transmission.

  19. A School Based Cluster Randomised Health Education Intervention Trial for Improving Knowledge and Attitudes Related to Taenia solium Cysticercosis and Taeniasis in Mbulu District, Northern Tanzania

    PubMed Central

    Mwidunda, Sylvester A.; Carabin, Hélène; Matuja, William B. M.; Winkler, Andrea S.; Ngowi, Helena A.

    2015-01-01

    Taenia solium causes significant economic and public health impacts in endemic countries. This study determined effectiveness of a health education intervention at improving school children’s knowledge and attitudes related to T. solium cysticercosis and taeniasis in Tanzania. A cluster randomised controlled health education intervention trial was conducted in 60 schools (30 primary, 30 secondary) in Mbulu district. Baseline data were collected using a structured questionnaire in the 60 schools and group discussions in three other schools. The 60 schools stratified by baseline knowledge were randomised to receive the intervention or serve as control. The health education consisted of an address by a trained teacher, a video show and a leaflet given to each pupil. Two post-intervention re-assessments (immediately and 6 months post-intervention) were conducted in all schools and the third (12 months post-intervention) was conducted in 28 secondary schools. Data were analysed using Bayesian hierarchical log-binomial models for individual knowledge and attitude questions and Bayesian hierarchical linear regression models for scores. The overall score (percentage of correct answers) improved by about 10% in all schools after 6 months, but was slightly lower among secondary schools. Monitoring alone was associated with improvement in scores by about 6%. The intervention was linked to improvements in knowledge regarding taeniasis, porcine cysticercosis, human cysticercosis, epilepsy, the attitude of condemning infected meat but it reduced the attitude of contacting a veterinarian if a pig was found to be infected with cysticercosis. Monitoring alone was linked to an improvement in how best to raise pigs. This study demonstrates the potential value of school children as targets for health messages to control T. solium cysticercosis and taeniasis in endemic areas. Studies are needed to assess effectiveness of message transmission from children to parents and the general community and their impacts in improving behaviours facilitating disease transmission. PMID:25719902

  20. Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings

    NASA Astrophysics Data System (ADS)

    Kasatkin, D. V.; Yanchuk, S.; Schöll, E.; Nekorkin, V. I.

    2017-12-01

    We report the phenomenon of self-organized emergence of hierarchical multilayered structures and chimera states in dynamical networks with adaptive couplings. This process is characterized by a sequential formation of subnetworks (layers) of densely coupled elements, the size of which is ordered in a hierarchical way, and which are weakly coupled between each other. We show that the hierarchical structure causes the decoupling of the subnetworks. Each layer can exhibit either a two-cluster state, a periodic traveling wave, or an incoherent state, and these states can coexist on different scales of subnetwork sizes.

  1. Electroactive nanoparticle directed assembly of functionalized graphene nanosheets into hierarchical structures with hybrid compositions for flexible supercapacitors.

    PubMed

    Choi, Bong Gill; Huh, Yun Suk; Hong, Won Hi; Erickson, David; Park, Ho Seok

    2013-05-07

    Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR microspheres consisting of the aggregates of CMG/Nafion (CMGN) nanosheets and RuO2 NPs provided large surface area and facile ion accessibility to storage sites, while the interconnected nanosheets offered continuous electron pathways and mechanical integrity. The synergistic effect of CMGNR hybrids on the supercapacitor (SC) performance was derived from the hybrid composition of pseudocapacitive RuO2 NPs with the conductive CMGNs as well as from structural features. Consequently, the CMGNR-SCs showed a specific capacitance as high as 160 F g(-1), three-fold higher than that of conventional graphene SCs, and a capacitance retention of >95% of the maximum value even after severe bending and 1000 charge-discharge tests due to the structural and compositional features.

  2. Electroactive nanoparticle directed assembly of functionalized graphene nanosheets into hierarchical structures with hybrid compositions for flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Choi, Bong Gill; Huh, Yun Suk; Hong, Won Hi; Erickson, David; Park, Ho Seok

    2013-04-01

    Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR microspheres consisting of the aggregates of CMG/Nafion (CMGN) nanosheets and RuO2 NPs provided large surface area and facile ion accessibility to storage sites, while the interconnected nanosheets offered continuous electron pathways and mechanical integrity. The synergistic effect of CMGNR hybrids on the supercapacitor (SC) performance was derived from the hybrid composition of pseudocapacitive RuO2 NPs with the conductive CMGNs as well as from structural features. Consequently, the CMGNR-SCs showed a specific capacitance as high as 160 F g-1, three-fold higher than that of conventional graphene SCs, and a capacitance retention of >95% of the maximum value even after severe bending and 1000 charge-discharge tests due to the structural and compositional features.Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR microspheres consisting of the aggregates of CMG/Nafion (CMGN) nanosheets and RuO2 NPs provided large surface area and facile ion accessibility to storage sites, while the interconnected nanosheets offered continuous electron pathways and mechanical integrity. The synergistic effect of CMGNR hybrids on the supercapacitor (SC) performance was derived from the hybrid composition of pseudocapacitive RuO2 NPs with the conductive CMGNs as well as from structural features. Consequently, the CMGNR-SCs showed a specific capacitance as high as 160 F g-1, three-fold higher than that of conventional graphene SCs, and a capacitance retention of >95% of the maximum value even after severe bending and 1000 charge-discharge tests due to the structural and compositional features. Electronic supplementary information (ESI) available: Electrodeposition procedure, TEM, SEM, and AFM images, XPS, FT-IR, and XRD spectra, mechanical strain-stress curve, textural and conductive properties, and impedance spectroscopy. See DOI: 10.1039/c3nr33674c

  3. Quantifying the Hierarchical Order in Self-Aligned Carbon Nanotubes from Atomic to Micrometer Scale.

    PubMed

    Meshot, Eric R; Zwissler, Darwin W; Bui, Ngoc; Kuykendall, Tevye R; Wang, Cheng; Hexemer, Alexander; Wu, Kuang Jen J; Fornasiero, Francesco

    2017-06-27

    Fundamental understanding of structure-property relationships in hierarchically organized nanostructures is crucial for the development of new functionality, yet quantifying structure across multiple length scales is challenging. In this work, we used nondestructive X-ray scattering to quantitatively map the multiscale structure of hierarchically self-organized carbon nanotube (CNT) "forests" across 4 orders of magnitude in length scale, from 2.0 Å to 1.5 μm. Fully resolved structural features include the graphitic honeycomb lattice and interlayer walls (atomic), CNT diameter (nano), as well as the greater CNT ensemble (meso) and large corrugations (micro). Correlating orientational order across hierarchical levels revealed a cascading decrease as we probed finer structural feature sizes with enhanced sensitivity to small-scale disorder. Furthermore, we established qualitative relationships for single-, few-, and multiwall CNT forest characteristics, showing that multiscale orientational order is directly correlated with number density spanning 10 9 -10 12 cm -2 , yet order is inversely proportional to CNT diameter, number of walls, and atomic defects. Lastly, we captured and quantified ultralow-q meridional scattering features and built a phenomenological model of the large-scale CNT forest morphology, which predicted and confirmed that these features arise due to microscale corrugations along the vertical forest direction. Providing detailed structural information at multiple length scales is important for design and synthesis of CNT materials as well as other hierarchically organized nanostructures.

  4. Nanowire-Assembled Hierarchical ZnCo2O4 Microstructure Integrated with a Low-Power Microheater for Highly Sensitive Formaldehyde Detection.

    PubMed

    Long, Hu; Harley-Trochimczyk, Anna; Cheng, Siyi; Hu, Hao; Chi, Won Seok; Rao, Ameya; Carraro, Carlo; Shi, Tielin; Tang, Zirong; Maboudian, Roya

    2016-11-23

    Nanowire-assembled 3D hierarchical ZnCo 2 O 4 microstructure is synthesized by a facile hydrothermal route and a subsequent annealing process. In comparison to simple nanowires, the resulting dandelion-like structure yields more open spaces between nanowires, which allow for better gas diffusion and provide more active sites for gas adsorption while maintaining good electrical conductivity. The hierarchical ZnCo 2 O 4 microstructure is integrated on a low-power microheater platform without using binders or conductive additives. The hierarchical structure of the ZnCo 2 O 4 sensing material provides reliable electrical connection across the sensing electrodes. The resulting sensor exhibits an ultralow detection limit of 3 ppb toward formaldehyde with fast response and recovery as well as good selectivity to CO, H 2 , and hydrocarbons such as n-pentane, propane, and CH 4 . The sensor only consumes ∼5.7 mW for continuous operation at 300 °C with good long-term stability. The excellent sensing performance of this hierarchical structure based sensor suggests the advantages of combining such structures with microfabricated heaters for practical low-power sensing applications.

  5. Traditional knowledge among Zapotecs of Sierra Madre Del Sur, Oaxaca. Does it represent a base for plant resources management and conservation?

    PubMed

    Luna-José, Azucena de Lourdes; Aguilar, Beatriz Rendón

    2012-07-12

    Traditional classification systems represent cognitive processes of human cultures in the world. It synthesizes specific conceptions of nature, as well as cumulative learning, beliefs and customs that are part of a particular human community or society. Traditional knowledge has been analyzed from different viewpoints, one of which corresponds to the analysis of ethnoclassifications. In this work, a brief analysis of the botanical traditional knowledge among Zapotecs of the municipality of San Agustin Loxicha, Oaxaca was conducted. The purposes of this study were: a) to analyze the traditional ecological knowledge of local plant resources through the folk classification of both landscapes and plants and b) to determine the role that this knowledge has played in plant resource management and conservation. The study was developed in five communities of San Agustín Loxicha. From field trips, plant specimens were collected and showed to local people in order to get the Spanish or Zapotec names; through interviews with local people, we obtained names and identified classification categories of plants, vegetation units, and soil types. We found a logic structure in Zapotec plant names, based on linguistic terms, as well as morphological and ecological caracteristics. We followed the classification principles proposed by Berlin [6] in order to build a hierarchical structure of life forms, names and other characteristics mentioned by people. We recorded 757 plant names. Most of them (67%) have an equivalent Zapotec name and the remaining 33% had mixed names with Zapotec and Spanish terms. Plants were categorized as native plants, plants introduced in pre-Hispanic times, or plants introduced later. All of them are grouped in a hierarchical classification, which include life form, generic, specific, and varietal categories. Monotypic and polytypic names are used to further classify plants. This holistic classification system plays an important role for local people in many aspects: it helps to organize and make sense of the diversity, to understand the interrelation among plants-soil-vegetation and to classify their physical space since they relate plants with a particular vegetation unit and a kind of soil. The locals also make a rational use of these elements, because they know which crops can grow in any vegetation unit, or which places are indicated to recollect plants. These aspects are interconnected and could be fundamental for a rational use and management of plant resources.

  6. Indirect estimates of natal dispersal distance from genetic data in a stream-dwelling fish (Mogurnda adspersa).

    PubMed

    Shipham, Ashlee; Schmidt, Daniel J; Hughes, Jane M

    2013-01-01

    Recent work has highlighted the need to account for hierarchical patterns of genetic structure when estimating evolutionary and ecological parameters of interest. This caution is particularly relevant to studies of riverine organisms, where hierarchical structure appears to be commonplace. Here, we indirectly estimate dispersal distance in a hierarchically structured freshwater fish, Mogurnda adspersa. Microsatellite and mitochondrial DNA (mtDNA) data were obtained for 443 individuals across 27 sites separated by an average of 1.3 km within creeks of southeastern Queensland, Australia. Significant genetic structure was found among sites (mtDNA Φ(ST) = 0.508; microsatellite F(ST) = 0.225, F'(ST) = 0.340). Various clustering methods produced congruent patterns of hierarchical structure reflecting stream architecture. Partial mantel tests identified contiguous sets of sample sites where isolation by distance (IBD) explained F(ST) variation without significant contribution of hierarchical structure. Analysis of mean natal dispersal distance (σ) within sets of IBD-linked sample sites suggested most dispersal occurs over less than 1 km, and the average effective density (D(e)) was estimated at 11.5 individuals km(-1); indicating sedentary behavior and small effective population size are responsible for the remarkable patterns of genetic structure observed. Our results demonstrate that Rousset's regression-based method is applicable to estimating the scale of dispersal in riverine organisms and that identifying contiguous populations that satisfy the assumptions of this model is achievable with genetic clustering methods and partial correlations.

  7. Hierarchical Co-based Porous Layered Double Hydroxide Arrays Derived via Alkali Etching for High-performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming

    2015-08-01

    Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm-2 or 1734 F g-1 at 5 mA cm-2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application.

  8. Hierarchical Co-based Porous Layered Double Hydroxide Arrays Derived via Alkali Etching for High-performance Supercapacitors

    PubMed Central

    Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming

    2015-01-01

    Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm−2 or 1734 F g−1 at 5 mA cm−2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application. PMID:26278334

  9. A unique patterned diamond stamp for a periodically hierarchical nanoarray structure.

    PubMed

    Wang, Yi; Shen, Yanting; Xu, Weiqing; Xu, Shuping; Li, Hongdong

    2016-09-23

    A diamond stamp with a hierarchical pattern was designed for the direct preparation of a periodic nanoarray structure, which was prepared by the reactive ion etching technique with a hierarchical ultrathin alumina membrane (HUTAM) as a mask. The optimal etching conditions for fabricating the diamond stamp were discussed in order to realize a vertical nanopore structure, avoiding structural damage from lateral etching. By using this diamond stamp, a polymer film with the desired hierarchical nanorod array structure can be obtained easily via the simple stamping process, which greatly simplifies the processing procedure. More importantly, the stamp is reusable because of its super-hardness, which ensures the reproducibility of the nanorod array pattern. Another merit is that the smooth surface of the etched diamond can avoid the use of a release agent. Our results prove that this hard stamp can be used for quick preparation of an elaborate periodic nanoarray structure. This study is significant in that it solves the problems of high cost and easy damage of stamps in nanoimprint lithography, and it might inspire more sophisticated applications of such an ordered structure in nanoplasmonics, biochemical sensing and nanophotonic devices.

  10. Physics and Mathematics as Interwoven Disciplines in Science Education

    NASA Astrophysics Data System (ADS)

    Galili, Igal

    2018-03-01

    The relationship between physics and mathematics is reviewed upgrading the common in physics classes' perspective of mathematics as a toolkit for physics. The nature of the physics-mathematics relationship is considered along a certain historical path. The triadic hierarchical structure of discipline-culture helps to identify different ways in which mathematics is used in physics and to appreciate its contribution, to recognize the difference between mathematics and physics as disciplines in approaches, values, methods, and forms. We mentioned certain forms of mathematical knowledge important for physics but often missing in school curricula. The geometrical mode of codification of mathematical knowledge is compared with the analytical one in context of teaching school physics and mathematics; their complementarity is exemplified. Teaching may adopt the examples facilitating the claims of the study to reach science literacy and meaningful learning.

  11. Asymmetric block copolymer membranes with ultrahigh porosity and hierarchical pore structure by plain solvent evaporation.

    PubMed

    Yu, H; Qiu, X; Behzad, A R; Musteata, V; Smilgies, D-M; Nunes, S P; Peinemann, K-V

    2016-10-04

    Membranes with a hierarchical porous structure could be manufactured from a block copolymer blend by pure solvent evaporation. Uniform pores in a 30 nm thin skin layer supported by a macroporous structure were formed. This new process is attractive for membrane production because of its simplicity and the lack of liquid waste.

  12. Hierarchical Dirichlet process model for gene expression clustering

    PubMed Central

    2013-01-01

    Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this article, we propose a clustering algorithm based on the hierarchical Dirichlet processes (HDP). The HDP clustering introduces a hierarchical structure in the statistical model which captures the hierarchical features prevalent in biological data such as the gene express data. We develop a Gibbs sampling algorithm based on the Chinese restaurant metaphor for the HDP clustering. We apply the proposed HDP algorithm to both regulatory network segmentation and gene expression clustering. The HDP algorithm is shown to outperform several popular clustering algorithms by revealing the underlying hierarchical structure of the data. For the yeast cell cycle data, we compare the HDP result to the standard result and show that the HDP algorithm provides more information and reduces the unnecessary clustering fragments. PMID:23587447

  13. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity

    PubMed Central

    Ma, Ming-Guo

    2012-01-01

    Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of hierarchically nanosized HA with flower-like structure assembled from nanosheets consisting of nanorod building blocks. The HA with the hierarchical nanostructure was formed via a soft-template assisted self-assembly mechanism. The hierarchically nanostructured HA has a good biocompatibility and essentially no in-vitro cytotoxicity. PMID:22619527

  14. Knowledge-based machine indexing from natural language text: Knowledge base design, development, and maintenance

    NASA Technical Reports Server (NTRS)

    Genuardi, Michael T.

    1993-01-01

    One strategy for machine-aided indexing (MAI) is to provide a concept-level analysis of the textual elements of documents or document abstracts. In such systems, natural-language phrases are analyzed in order to identify and classify concepts related to a particular subject domain. The overall performance of these MAI systems is largely dependent on the quality and comprehensiveness of their knowledge bases. These knowledge bases function to (1) define the relations between a controlled indexing vocabulary and natural language expressions; (2) provide a simple mechanism for disambiguation and the determination of relevancy; and (3) allow the extension of concept-hierarchical structure to all elements of the knowledge file. After a brief description of the NASA Machine-Aided Indexing system, concerns related to the development and maintenance of MAI knowledge bases are discussed. Particular emphasis is given to statistically-based text analysis tools designed to aid the knowledge base developer. One such tool, the Knowledge Base Building (KBB) program, presents the domain expert with a well-filtered list of synonyms and conceptually-related phrases for each thesaurus concept. Another tool, the Knowledge Base Maintenance (KBM) program, functions to identify areas of the knowledge base affected by changes in the conceptual domain (for example, the addition of a new thesaurus term). An alternate use of the KBM as an aid in thesaurus construction is also discussed.

  15. Representing Human Expertise by the OWL Web Ontology Language to Support Knowledge Engineering in Decision Support Systems.

    PubMed

    Ramzan, Asia; Wang, Hai; Buckingham, Christopher

    2014-01-01

    Clinical decision support systems (CDSSs) often base their knowledge and advice on human expertise. Knowledge representation needs to be in a format that can be easily understood by human users as well as supporting ongoing knowledge engineering, including evolution and consistency of knowledge. This paper reports on the development of an ontology specification for managing knowledge engineering in a CDSS for assessing and managing risks associated with mental-health problems. The Galatean Risk and Safety Tool, GRiST, represents mental-health expertise in the form of a psychological model of classification. The hierarchical structure was directly represented in the machine using an XML document. Functionality of the model and knowledge management were controlled using attributes in the XML nodes, with an accompanying paper manual for specifying how end-user tools should behave when interfacing with the XML. This paper explains the advantages of using the web-ontology language, OWL, as the specification, details some of the issues and problems encountered in translating the psychological model to OWL, and shows how OWL benefits knowledge engineering. The conclusions are that OWL can have an important role in managing complex knowledge domains for systems based on human expertise without impeding the end-users' understanding of the knowledge base. The generic classification model underpinning GRiST makes it applicable to many decision domains and the accompanying OWL specification facilitates its implementation.

  16. CoMn2O4 Spinel Hierarchical Microspheres Assembled with Porous Nanosheets as Stable Anodes for Lithium-ion Batteries

    PubMed Central

    Hu, Lin; Zhong, Hao; Zheng, Xinrui; Huang, Yimin; Zhang, Ping; Chen, Qianwang

    2012-01-01

    Herein, we report the feasibility to enhance the capacity and stability of CoMn2O4 anode materials by fabricating hierarchical mesoporous structure. The open space between neighboring nanosheets allows for easy diffusion of the electrolyte. The hierarchical microspheres assembled with nanosheets can ensure that every nanosheet participates in the electrochemical reaction, because every nanosheet is contacted with the electrolyte solution. The hierarchical structure and well interconnected pores on the surface of nanosheets will enhance the CoMn2O4/electrolyte contact area, shorten the Li+ ion diffusion length in the nanosheets, and accommodate the strain induced by the volume change during the electrochemical reaction. The last, hierarchical architecture with spherical morphology possesses relatively low surface energy, which results in less extent of self-aggregation during charge/discharge process. As a result, CoMn2O4 hierarchical microspheres can achieve a good cycle ability and high rate capability. PMID:23248749

  17. Intra-patient semi-automated segmentation of the cervix-uterus in CT-images for adaptive radiotherapy of cervical cancer

    NASA Astrophysics Data System (ADS)

    Luiza Bondar, M.; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben

    2013-08-01

    For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.

  18. Intra-patient semi-automated segmentation of the cervix-uterus in CT-images for adaptive radiotherapy of cervical cancer.

    PubMed

    Bondar, M Luiza; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben

    2013-08-07

    For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.

  19. Explorers of the Universe: Metacognitive Tools for Learning Science Concepts

    NASA Technical Reports Server (NTRS)

    Alvarez, Marino C.

    1998-01-01

    Much of school learning consists of rote memorization of facts with little emphasis on meaningful interpretations. Knowledge construction is reduced to factual knowledge production with little regard for critical thinking, problem solving, or clarifying misconceptions. An important role of a middle and secondary teacher when teaching science is to aid students' ability to reflect upon what they know about a given topic and make available strategies that will enhance their understanding of text and science experiments. Developing metacognition, the ability to monitor one's own knowledge about a topic of study and to activate appropriate strategies, enhances students' learning when faced with reading, writing and problem solving situations. Two instructional strategies that can involve students in developing metacognitive awareness are hierarchical concept mapping, and Vee diagrams. Concept maps enable students to organize their ideas and reveal visually these ideas to others. A Vee diagram is a structured visual means of relating the methodological aspects of an activity to its underlying conceptual aspect in ways that aid learners in meaningful understanding of scientific investigations.

  20. Hierarchical drivers of reef-fish metacommunity structure.

    PubMed

    MacNeil, M Aaron; Graham, Nicholas A J; Polunin, Nicholas V C; Kulbicki, Michel; Galzin, René; Harmelin-Vivien, Mireille; Rushton, Steven P

    2009-01-01

    Coral reefs are highly complex ecological systems, where multiple processes interact across scales in space and time to create assemblages of exceptionally high biodiversity. Despite the increasing frequency of hierarchically structured sampling programs used in coral-reef science, little progress has been made in quantifying the relative importance of processes operating across multiple scales. The vast majority of reef studies are conducted, or at least analyzed, at a single spatial scale, ignoring the implicitly hierarchical structure of the overall system in favor of small-scale experiments or large-scale observations. Here we demonstrate how alpha (mean local number of species), beta diversity (degree of species dissimilarity among local sites), and gamma diversity (overall species richness) vary with spatial scale, and using a hierarchical, information-theoretic approach, we evaluate the relative importance of site-, reef-, and atoll-level processes driving the fish metacommunity structure among 10 atolls in French Polynesia. Process-based models, representing well-established hypotheses about drivers of reef-fish community structure, were assembled into a candidate set of 12 hierarchical linear models. Variation in fish abundance, biomass, and species richness were unevenly distributed among transect, reef, and atoll levels, establishing the relative contribution of variation at these spatial scales to the structure of the metacommunity. Reef-fish biomass, species richness, and the abundance of most functional-groups corresponded primarily with transect-level habitat diversity and atoll-lagoon size, whereas detritivore and grazer abundances were largely correlated with potential covariates of larval dispersal. Our findings show that (1) within-transect and among-atoll factors primarily drive the relationship between alpha and gamma diversity in this reef-fish metacommunity; (2) habitat is the primary correlate with reef-fish metacommunity structure at multiple spatial scales; and (3) inter-atoll connectedness was poorly correlated with the nonrandom clustering of reef-fish species. These results demonstrate the importance of modeling hierarchical data and processes in understanding reef-fish metacommunity structure.

  1. Cognitive Diagnostic Analysis Using Hierarchically Structured Skills

    ERIC Educational Resources Information Center

    Su, Yu-Lan

    2013-01-01

    This dissertation proposes two modified cognitive diagnostic models (CDMs), the deterministic, inputs, noisy, "and" gate with hierarchy (DINA-H) model and the deterministic, inputs, noisy, "or" gate with hierarchy (DINO-H) model. Both models incorporate the hierarchical structures of the cognitive skills in the model estimation…

  2. Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor.

    PubMed

    Du, Pengcheng; Dong, Yuman; Liu, Chang; Wei, Wenli; Liu, Dong; Liu, Peng

    2018-05-15

    Hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets is fabricated by a facile hydrothermal process with the existence of trimesic acid and nickel ions. Various structures of Ni-MOFs can be obtained through adjusting the molar ratio of trimesic acid and nickel ion, the obtained hierarchical porous Ni-MOF exhibits optimal porous structure, which also possesses largest specific surface area. The hierarchical porous structure constructed with nanosheets can supply more active sites for electrochemical reactions to realize the excellent electrochemical properties, thus the hierarchical porous Ni-MOF reveals an outstanding specific capacitance of 1057 F/g at current density of 1 A/g, and delivers high specific capacitance of 649 F/g at current density of 30 A/g, indicating that it exhibits good rate capability of 63.4% even up to 30 A/g. The hierarchical porous Ni-MOF keeps 70% of its original value up to 2 500 charge-discharge cycles at the current density of 10 A/g. Furthermore, asymmetric supercapacitors (ASCs) were assembled based on hierarchical porous Ni-MOF and activated carbon (AC), the ASCs reveal specific capacitance of 87 F/g at current density of 0.5 A/g, and exhibit high energy density of 21.05 Wh/kg and power density of 6.03 kW/kg. Additionally, the tandem ASCs can light up a red LED. The hierarchical porous Ni-MOF exhibits promising applications in high performance supercapacitors. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures

    NASA Astrophysics Data System (ADS)

    Tseng, Peter; Napier, Bradley; Zhao, Siwei; Mitropoulos, Alexander N.; Applegate, Matthew B.; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.

    2017-05-01

    In natural systems, directed self-assembly of structural proteins produces complex, hierarchical materials that exhibit a unique combination of mechanical, chemical and transport properties. This controlled process covers dimensions ranging from the nano- to the macroscale. Such materials are desirable to synthesize integrated and adaptive materials and systems. We describe a bio-inspired process to generate hierarchically defined structures with multiscale morphology by using regenerated silk fibroin. The combination of protein self-assembly and microscale mechanical constraints is used to form oriented, porous nanofibrillar networks within predesigned macroscopic structures. This approach allows us to predefine the mechanical and physical properties of these materials, achieved by the definition of gradients in nano- to macroscale order. We fabricate centimetre-scale material geometries including anchors, cables, lattices and webs, as well as functional materials with structure-dependent strength and anisotropic thermal transport. Finally, multiple three-dimensional geometries and doped nanofibrillar constructs are presented to illustrate the facile integration of synthetic and natural additives to form functional, interactive, hierarchical networks.

  4. Multi-scale, Hierarchically Nested Young Stellar Structures in LEGUS Galaxies

    NASA Astrophysics Data System (ADS)

    Thilker, David A.; LEGUS Team

    2017-01-01

    The study of star formation in galaxies has predominantly been limited to either young stellar clusters and HII regions, or much larger kpc-scale morphological features such as spiral arms. The HST Legacy ExtraGalactic UV Survey (LEGUS) provides a rare opportunity to link these scales in a diverse sample of nearby galaxies and obtain a more comprehensive understanding of their co-evolution for comparison against model predictions. We have utilized LEGUS stellar photometry to identify young, resolved stellar populations belonging to several age bins and then defined nested hierarchical structures as traced by these subsamples of stars. Analagous hierarchical structures were also defined using LEGUS catalogs of unresolved young stellar clusters. We will present our emerging results concerning the physical properties (e.g. area, star counts, stellar mass, star formation rate, ISM characteristics), occupancy statistics (e.g. clusters per substructure versus age and scale, parent/child demographics) and relation to overall galaxy morphology/mass for these building blocks of hierarchical star-forming structure.

  5. Constrained hierarchical least square nonlinear equation solvers. [for indefinite stiffness and large structural deformations

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Lackney, J.

    1986-01-01

    The current paper develops a constrained hierarchical least square nonlinear equation solver. The procedure can handle the response behavior of systems which possess indefinite tangent stiffness characteristics. Due to the generality of the scheme, this can be achieved at various hierarchical application levels. For instance, in the case of finite element simulations, various combinations of either degree of freedom, nodal, elemental, substructural, and global level iterations are possible. Overall, this enables a solution methodology which is highly stable and storage efficient. To demonstrate the capability of the constrained hierarchical least square methodology, benchmarking examples are presented which treat structure exhibiting highly nonlinear pre- and postbuckling behavior wherein several indefinite stiffness transitions occur.

  6. Morphology evolution of hierarchical ZnO nanostructures modulated by supersaturation and growth temperature

    NASA Astrophysics Data System (ADS)

    Yan, Youguo; Zhou, Lixia; Yu, Lianqing; Zhang, Ye

    2008-07-01

    Three kinds of ZnO hierarchical structures, nanocombs with tube- and needle-shaped teeth and hierarchical nanorod arrays, were successfully synthesized through the chemical vapor deposition method. Combining the experimental parameters, the microcosmic growing conditions (growth temperature and supersaturation) along the flux was discussed at length, and, based on the conclusions, three reasonable growth processes were proposed. The results and discussions were beneficial to further realize the relation between the growing behavior of the nanomaterial and microcosmic conditions, and the hierarchical nanostructures obtained were also expected to have potential applications as functional blocks in future nanodevices. Furthermore, the study of photoluminescence further indicated that the physical properties were strongly dependent on the crystal structure.

  7. The hierarchical nature of the spin alignment of dark matter haloes in filaments

    NASA Astrophysics Data System (ADS)

    Aragon-Calvo, M. A.; Yang, Lin Forrest

    2014-05-01

    Dark matter haloes in cosmological filaments and walls have (in average) their spin vector aligned with their host structure. While haloes in walls are aligned with the plane of the wall independently of their mass, haloes in filaments present a mass-dependent two-regime orientation. Here, we show that the transition mass determining the change in the alignment regime (from parallel to perpendicular) depends on the hierarchical level in which the halo is located, reflecting the hierarchical nature of the Cosmic Web. By explicitly exposing the hierarchical structure of the Cosmic Web, we are able to identify the contributions of different components of the filament network to the alignment signal. We propose a unifying picture of angular momentum acquisition that is based on the results presented here and previous results found by other authors. In order to do a hierarchical characterization of the Cosmic Web, we introduce a new implementation of the multiscale morphology filter, the MMF-2, that significantly improves the identification of structures and explicitly describes their hierarchy. L36

  8. Use of Bennett's Hierarchical Model in the Evaluation of the Extension Education Program for Cacao Farmers in the Northeast Region of the Dominican Republic. Summary of Research 54.

    ERIC Educational Resources Information Center

    De los Santos, Saturnino; Norland, Emmalou Van Tilburg

    A study evaluated the cacao farmer training program in the Dominican Republic by testing hypothesized relationships among reactions, knowledge and skills, attitudes, aspirations, and some selected demographic characteristics of farmers who attended programs. Bennett's hierarchical model of program evaluation was used as the framework of the study.…

  9. Control Centrality and Hierarchical Structure in Complex Networks

    PubMed Central

    Liu, Yang-Yu; Slotine, Jean-Jacques; Barabási, Albert-László

    2012-01-01

    We introduce the concept of control centrality to quantify the ability of a single node to control a directed weighted network. We calculate the distribution of control centrality for several real networks and find that it is mainly determined by the network’s degree distribution. We show that in a directed network without loops the control centrality of a node is uniquely determined by its layer index or topological position in the underlying hierarchical structure of the network. Inspired by the deep relation between control centrality and hierarchical structure in a general directed network, we design an efficient attack strategy against the controllability of malicious networks. PMID:23028542

  10. Cognitive algorithms: dynamic logic, working of the mind, evolution of consciousness and cultures

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.

    2007-04-01

    The paper discusses evolution of consciousness driven by the knowledge instinct, a fundamental mechanism of the mind which determines its higher cognitive functions. Dynamic logic mathematically describes the knowledge instinct. It overcomes past mathematical difficulties encountered in modeling intelligence and relates it to mechanisms of concepts, emotions, instincts, consciousness and unconscious. The two main aspects of the knowledge instinct are differentiation and synthesis. Differentiation is driven by dynamic logic and proceeds from vague and unconscious states to more crisp and conscious states, from less knowledge to more knowledge at each hierarchical level of the mind. Synthesis is driven by dynamic logic operating in a hierarchical organization of the mind; it strives to achieve unity and meaning of knowledge: every concept finds its deeper and more general meaning at a higher level. These mechanisms are in complex relationship of symbiosis and opposition, which leads to complex dynamics of evolution of consciousness and cultures. Modeling this dynamics in a population leads to predictions for the evolution of consciousness, and cultures. Cultural predictive models can be compared to experimental data and used for improvement of human conditions. We discuss existing evidence and future research directions.

  11. From genomics to chemical genomics: new developments in KEGG

    PubMed Central

    Kanehisa, Minoru; Goto, Susumu; Hattori, Masahiro; Aoki-Kinoshita, Kiyoko F.; Itoh, Masumi; Kawashima, Shuichi; Katayama, Toshiaki; Araki, Michihiro; Hirakawa, Mika

    2006-01-01

    The increasing amount of genomic and molecular information is the basis for understanding higher-order biological systems, such as the cell and the organism, and their interactions with the environment, as well as for medical, industrial and other practical applications. The KEGG resource () provides a reference knowledge base for linking genomes to biological systems, categorized as building blocks in the genomic space (KEGG GENES) and the chemical space (KEGG LIGAND), and wiring diagrams of interaction networks and reaction networks (KEGG PATHWAY). A fourth component, KEGG BRITE, has been formally added to the KEGG suite of databases. This reflects our attempt to computerize functional interpretations as part of the pathway reconstruction process based on the hierarchically structured knowledge about the genomic, chemical and network spaces. In accordance with the new chemical genomics initiatives, the scope of KEGG LIGAND has been significantly expanded to cover both endogenous and exogenous molecules. Specifically, RPAIR contains curated chemical structure transformation patterns extracted from known enzymatic reactions, which would enable analysis of genome-environment interactions, such as the prediction of new reactions and new enzyme genes that would degrade new environmental compounds. Additionally, drug information is now stored separately and linked to new KEGG DRUG structure maps. PMID:16381885

  12. Hierarchical and Well-Ordered Porous Copper for Liquid Transport Properties Control.

    PubMed

    Pham, Quang N; Shao, Bowen; Kim, Yongsung; Won, Yoonjin

    2018-05-09

    Liquid delivery through interconnected pore network is essential for various interfacial transport applications ranging from energy storage to evaporative cooling. The liquid transport performance in porous media can be significantly improved through the use of hierarchical morphology that leverages transport phenomena at different length scales. Traditional surface engineering techniques using chemical or thermal reactions often show nonuniform surface nanostructuring within three-dimensional pore network due to uncontrollable diffusion and reactivity in geometrically complex porous structures. Here, we demonstrate hierarchical architectures on the basis of crystalline copper inverse opals using an electrochemistry approach, which offers volumetric controllability of structural and surface properties within the complex porous metal. The electrochemical process sequentially combines subtractive and additive steps-electrochemical polishing and electrochemical oxidation-to improve surface wetting properties without sacrificing structural permeability. We report the transport performance of the hierarchical inverse opals by measuring the capillary-driven liquid rise. The capillary performance parameter of hierarchically engineered inverse opal ( K/ R eff = ∼5 × 10 -3 μm) is shown to be higher than that of a typical crystalline inverse opal ( K/ R eff = ∼1 × 10 -3 μm) owing to the enhancement in fluid permeable and hydrophilic pathways. The new surface engineering method presented in this work provides a rational approach in designing hierarchical porous copper for transport performance enhancements.

  13. Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr).

    PubMed

    Demessence, Aude; Horcajada, Patricia; Serre, Christian; Boissière, Cédric; Grosso, David; Sanchez, Clément; Férey, Gérard

    2009-12-14

    Stable nanoparticles dispersions of the porous hybrid MIL-101(Cr) allow dip-coating of high quality optical thin films with dual hierarchical porous structure. Moreover, for the first time, mechanical and sorption properties of mesoporous MOFs based thin films are evaluated.

  14. Zinc oxide hierarchical nanostructures for photocatalysis

    NASA Astrophysics Data System (ADS)

    Yukhnovets, O.; Semenova, A. A.; Levkevich, E. A.; Maximov, A. I.; Moshnikov, V. A.

    2018-03-01

    In this work, we perform the study of zinc oxide hierarchical structures synthesized by the low-temperature hydrothermal method. The paper considers morphological properties of obtained structures. Photocatalytic activity of samples was analysed by methyl orange degradation under UV irradiation. The sufficient decrease in methyl orange has been demonstrated.

  15. Hierarchical structure and dynamics of oligocarbonate-functionalized PEG block copolymer gels

    NASA Astrophysics Data System (ADS)

    Prabhu, Vivek; Wei, Guangmin; Ali, Samim; Venkataraman, Shrinivas; Yang, Yi Yan; Hedrick, James

    Hierarchical, self-assembled block copolymers in aqueous solutions provide advanced materials for biomaterial applications. Recent advancements in the synthesis of aliphatic polycarbonates have shown nontraditional micellar and hierarchical structures driven by the supramolecular assembly of the carbonate block functionality that includes cholesterol, vitamin D, and fluorene. This presentation shall describe the supramolecular assembly structure and dynamics observed by static and dynamic light scattering, small-angle neutron scattering and transmission electron microscopy in a model pi-pi stacking driven fluorene system. The combination of real-space and reciprocal space methods to develop appropriate models that quantify the structure from the micelle to transient gel network will be discussed. 1) Biomedical Research Council, Agency for Science, Technology and Research, Singapore, 2) NIST Materials Genome Initiative.

  16. Synthesis of multi-hierarchical structured yttria-stabilized zirconia powders and their enhanced thermophysical properties

    NASA Astrophysics Data System (ADS)

    Cao, Fengmei; Gao, Yanfeng; Chen, Hongfei; Liu, Xinling; Tang, Xiaoping; Luo, Hongjie

    2013-06-01

    Multi-hierarchical structured yttria-stabilized zirconia (YSZ) powders were successfully synthesized by a hydrothermal-calcination process. The morphology, crystallinity, and microstructure of the products were characterized by SEM, XRD, TEM, and BET. A possible formation mechanism of the unique structure formed during hydrothermal processing was also investigated. The measured thermophysical results indicated that the prepared YSZ powders had a low thermal conductivity (0.63-1.27 W m-1 K-1), good short-term high-temperature stability up to 1300 °C. The influence of the morphology and microstructure on their thermophysical properties was briefly discussed. The unique multi-hierarchical structure makes the prepared YSZ powders candidates for use in enhanced applications involving thermal barrier coatings.

  17. Spine-like Nanostructured Carbon Interconnected by Graphene for High-performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-08-01

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp2 carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp2 carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance.

  18. Spine-like nanostructured carbon interconnected by graphene for high-performance supercapacitors.

    PubMed

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-08-19

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp(2) carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp(2) carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance.

  19. Spine-like Nanostructured Carbon Interconnected by Graphene for High-performance Supercapacitors

    PubMed Central

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-01-01

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp2 carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp2 carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance. PMID:25134517

  20. Examining the Factor Structure and Hierarchical Nature of the Quality of Life Construct

    ERIC Educational Resources Information Center

    Wang, Mian; Schalock, Robert L.; Verdugo, Miguel A.; Jenaro, Christina

    2010-01-01

    There is considerable debate in the area of individual quality of life research regarding the factor structure and hierarchical nature of the quality of life construct. Our purpose in this study was to test via structural equation modeling an a priori quality of life model consisting of eight first-order factors and one second-order factor. Data…

  1. Hierarchical structure and mechanical properties of remineralized dentin.

    PubMed

    Chen, Yi; Wang, Jianming; Sun, Jian; Mao, Caiyun; Wang, Wei; Pan, Haihua; Tang, Ruikang; Gu, Xinhua

    2014-12-01

    It is widely accepted that the mechanical properties of dentin are significantly determined by its hierarchical structure. The current correlation between the mechanical properties and the hierarchical structure was mainly established by studying altered forms of dentin, which limits the potential outcome of the research. In this study, dentins with three different hierarchical structures were obtained via two different remineralization procedures and at different remineralization stages: (1) a dentin structure with amorphous minerals incorporated into the collagen fibrils, (2) a dentin with crystallized nanominerals incorporated into the collagen fibrils, and (3) a dentin with an out-of-order mineral layer filling the collagen fibrils matrix. Nanoindentation tests were performed to investigate the mechanical behavior of the remineralized dentin slides. The results showed that the incorporation of the crystallized nanominerals into the acid-etched demineralized organic fibrils resulted in a remarkable improvement of the mechanical properties of the dentin. In contrast, for the other two structures, i.e. the amorphous minerals inside the collagen fibrils and the out-of-order mineral layer within the collagen fibrils matrix, the excellent mechanical properties of dentin could not be restored. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Multilevel Higher-Order Item Response Theory Models

    ERIC Educational Resources Information Center

    Huang, Hung-Yu; Wang, Wen-Chung

    2014-01-01

    In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…

  3. Scale of association: hierarchical linear models and the measurement of ecological systems

    Treesearch

    Sean M. McMahon; Jeffrey M. Diez

    2007-01-01

    A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...

  4. User-centered ecotourism development.

    PubMed

    Talsma, L; Molenbroek, J F M

    2012-01-01

    The transfer of knowledge in an ecotourism project is never a one-way affair. An approach connected to bottom-up development is the submersion into another culture, while creating a new organizational structure. For co-creation, patterns that are often latent, such as leadership roles, the association with business, or even the color of education can be revealed by carefully facilitated brainstorms or workshops. Especially in countries with a different hierarchical structure, such as Indonesia compared to Holland, a careful analysis is needed before starting cooperation. Although a case is only a temporary view on a situation and not a guarantee for a truly sustainable system, the bottom-up approach tested has interesting starting points for an ecotourism system. Two cases were conducted in Bali, Indonesia, which resulted in guidelines on how to approach user-centered ecotourism development.

  5. Hierarchically porous LaFeO3 perovskite prepared from the pomelo peel bio-template for catalytic oxidation of NO

    NASA Astrophysics Data System (ADS)

    Zhao, Shaojun; Wang, Li; Wang, Ying; Li, Xing

    2018-05-01

    In this paper, pomelo peel was used as biological template to obtain hierarchically porous LaFeO3 perovskite for the catalytic oxidation of NO to NO2. In addition, X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption-desorption analyses, X-ray photoelectron spectra (XPS), NO temperature-programmed desorption (NO-TPD), oxygen temperature-programmed desorption (O2-TPD) and hydrogen temperature-programmed reduction (H2-TPR) were used to investigate the micro-structure and the redox properties of the hierarchically porous LaFeO3 perovskite prepared from pomelo peel biological template and the LaFeO3 perovskite without the biological template. The results indicated that the hierarchically porous LaFeO3 perovskite successfully replicated the porous structure of pomelo peel with high specific surface area. Compared to the LaFeO3 perovskite prepared without the pomelo peel template, the hierarchically porous LaFeO3 perovskite showed better catalytic oxidization of NO to NO2 under the same conditions. The maximum NO conversions for LaFeO3 prepared with and without template were 90% at 305 °C and 76% at 313 °C, respectively. This is mainly attributed to the higher ratio of Fe4+/Fe3+, the hierarchically porous structure with more adsorbed oxygen species and higher surface area for the hierarchically porous LaFeO3 perovskite compared with the sample prepared without the pomelo peel template.

  6. Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets.

    PubMed

    Wang, Meng; Li, Guangda; Xu, Huayun; Qian, Yitai; Yang, Jian

    2013-02-01

    MoS(2), because of its layered structure and high theoretical capacity, has been regarded as a potential candidate for electrode materials in lithium secondary batteries. But it suffers from the poor cycling stability and low rate capability. Here, hierarchical hollow nanoparticles of MoS(2) nanosheets with an increased interlayer distance are synthesized by a simple solvothermal reaction at a low temperature. The formation of hierarchical hollow nanoparticles is based on the intermediate, K(2)NaMoO(3)F(3), as a self-sacrificed template. These hollow nanoparticles exhibit a reversible capacity of 902 mA h g(-1) at 100 mA g(-1) after 80 cycles, much higher than the solid counterpart. At a current density of 1000 mA g(-1), the reversible capacity of the hierarchical hollow nanoparticles could be still maintained at 780 mAh g(-1). The enhanced lithium storage performances of the hierarchical hollow nanoparticles in reversible capacities, cycling stability and rate performances can be attributed to their hierarchical surface, hollow structure feature and increased layer distance of S-Mo-S. Hierarchical hollow nanoparticles as an ensemble of these features, could be applied to other electrode materials for the superior electrochemical performance.

  7. Perception of hierarchical boundaries in music and its modulation by expertise.

    PubMed

    Zhang, Jingjing; Jiang, Cunmei; Zhou, Linshu; Yang, Yufang

    2016-10-01

    Hierarchical structure with units of different timescales is a key feature of music. For the perception of such structures, the detection of each boundary is crucial. Here, using electroencephalography (EEG), we explore the perception of hierarchical boundaries in music, and test whether musical expertise modifies such processing. Musicians and non-musicians were presented with musical excerpts containing boundaries at three hierarchical levels, including section, phrase and period boundaries. Non-boundary was chosen as a baseline condition. Recordings from musicians showed CPS (closure positive shift) was evoked at all the three boundaries, and their amplitude increased as the hierarchical level became higher, which suggest that musicians could represent music events at different timescales in a hierarchical way. For non-musicians, the CPS was only elicited at the period boundary and undistinguishable negativities were induced at all the three boundaries. The results indicate that a different and less clear way was used by non-musicians in boundary perception. Our findings reveal, for the first time, an ERP correlate of perceiving hierarchical boundaries in music, and show that the phrasing ability could be enhanced by musical expertise. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Controllable synthesis of mesoporous multi-shelled ZnO microspheres as efficient photocatalysts for NO oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolang; Zhang, Huiqiang; Zhang, Dieqing; Miao, Yingchun; Li, Guisheng

    2018-03-01

    The successful application of hierarchically porous structure in environmental treatment has provided new insights for solving environmental problems. Hierarchically structured semiconductor materials were considered as promising photocatalysts for NO oxidation in gas phase. Multi-shelled ZnO microspheres (MMSZ) were controllably shaped with hierarchically porous structures via a facile hydrothermal route using amino acid (N-Acetyl-D-Proline) as template and post-calcination treatment. Symmetric Ostwald ripening was used to explain the morphological evolution of hierarchical nanostructure. MMSZ was proved highly efficient for oxidizing NO (400 ppb) in gas phase under UV light irradiation with a much higher photocatalytic removal rate (77.3%) than that of the as-obtained ZnO crystals with other hierachically porous structures, owing to its higher photocurrent intensity. Such greatly enhanced photocatalytic activity can be assigned to the enhanced crystallinity of ZnO, mesopores and unique multi-shelled structure. Enhanced crystallinity promotes photogenerated charges under light irradiation. Mesoporous porosity can ensure enough light scattering between the shells. Multi-shelled structure endows ZnO with higher specific surface area and high frequency of multiple light reflection, resulting in more exposed active sites, higher light utilization efficiency, and fast separation efficiency of photogenerated charge carriers. The experimental results demonstrated that the photogenerated holes (h+) are the main active species. Hierarchically structured ZnO is not only contributed to directly use solar energy to solving various problems caused by atmospheric pollution, but also has potential applications in energy converse and storage including solar cells, lithium batteries, water-splitting, etc.

  9. The Hierarchical Personality Structure of Aspiring Creative Writers

    ERIC Educational Resources Information Center

    Maslej, Marta M.; Rain, Marina; Fong, Katrina; Oatley, Keith; Mar, Raymond A.

    2014-01-01

    Empirical studies of personality traits in creative writers have demonstrated mixed findings, perhaps due to issues of sampling, measurement, and the reporting of statistical information. The goal of this study is to quantify the personality structure of aspiring creative writers according to a modern hierarchal model of trait personality. A…

  10. Multilevel Analysis of Structural Equation Models via the EM Algorithm.

    ERIC Educational Resources Information Center

    Jo, See-Heyon

    The question of how to analyze unbalanced hierarchical data generated from structural equation models has been a common problem for researchers and analysts. Among difficulties plaguing statistical modeling are estimation bias due to measurement error and the estimation of the effects of the individual's hierarchical social milieu. This paper…

  11. Air Force Officer Qualifying Test Form T: Initial Item-, Test-, Factor-, and Composite-Level Analyses

    DTIC Science & Technology

    2016-12-01

    five lower-order factors representing verbal, math , spatial, perceptual speed, and aviation knowledge, and a hierarchical general factor showed the...Academic Aptitude Verbal Quant. Verbal Analogies 25 X X X Arithmetic Reasoning 25 X X Word Knowledge 25 X X X Math Knowledge 25 X X...Reasoning (AR) uses word problems to assess the ability to understand arithmetic relations. Math Knowledge (MK) assesses the ability to use

  12. Hierarchical semantic structures for medical NLP.

    PubMed

    Taira, Ricky K; Arnold, Corey W

    2013-01-01

    We present a framework for building a medical natural language processing (NLP) system capable of deep understanding of clinical text reports. The framework helps developers understand how various NLP-related efforts and knowledge sources can be integrated. The aspects considered include: 1) computational issues dealing with defining layers of intermediate semantic structures to reduce the dimensionality of the NLP problem; 2) algorithmic issues in which we survey the NLP literature and discuss state-of-the-art procedures used to map between various levels of the hierarchy; and 3) implementation issues to software developers with available resources. The objective of this poster is to educate readers to the various levels of semantic representation (e.g., word level concepts, ontological concepts, logical relations, logical frames, discourse structures, etc.). The poster presents an architecture for which diverse efforts and resources in medical NLP can be integrated in a principled way.

  13. Hierarchical Structure of Articular Bone-Cartilage Interface and Its Potential Application for Osteochondral Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Bian, Weiguo; Qin, Lian; Li, Dichen; Wang, Jin; Jin, Zhongmin

    2010-09-01

    The artificial biodegradable osteochondral construct is one of mostly promising lifetime substitute in the joint replacement. And the complex hierarchical structure of natural joint is important in developing the osteochondral construct. However, the architecture features of the interface between cartilage and bone, in particular those at the micro-and nano-structural level, remain poorly understood. This paper investigates these structural data of the cartilage-bone interface by micro computerized tomography (μCT) and Scanning Electron Microscope (SEM). The result of μCT shows that important bone parameters and the density of articular cartilage are all related to the position in the hierarchical structure. The conjunctions of bone and cartilage were defined by SEM. All of the study results would be useful for the design of osteochondral construct further manufactured by nano-tech. A three-dimensional model with gradient porous structure is constructed in the environment of Pro/ENGINEERING software.

  14. Supramolecular structure of polymer binders and composites: targeted control based on the hierarchy

    NASA Astrophysics Data System (ADS)

    Matveeva, Larisa; Belentsov, Yuri

    2017-10-01

    The article discusses the problem of targeted control over properties by modifying the supramolecular structure of polymer binders and composites based on their hierarchy. Control over the structure formation of polymers and introduction of modifying additives should be tailored to the specific hierarchical structural levels. Characteristics of polymer materials are associated with structural defects, which also display a hierarchical pattern. Classification of structural defects in polymers is presented. The primary structural level (nano level) of supramolecular formations is of great importance to the reinforcement and regulation of strength characteristics.

  15. Fabrication of controlled hierarchical wrinkle structures on polydimethylsiloxane via one-step C4F8 plasma treatment

    NASA Astrophysics Data System (ADS)

    Miao, Liming; Cheng, Xiaoliang; Chen, Haotian; Song, Yu; Guo, Hang; Zhang, Jinxin; Chen, Xuexian; Zhang, Haixia

    2018-01-01

    We report a simple method for fabricating two-dimensional and nested hierarchical wrinkle structures on polydimethylsiloxane surfaces via one-step C4F8 plasma treatment that innovatively combines two approaches to monolayer wrinkle structure fabrication. The wavelengths of the two dimensions of the wrinkle structures can be controlled by plasma treatment (radio frequency (RF) power and plasma treatment time) and stretching (stretching strain and axial stretching), respectively. We also analyze the different interactions between the two dimensions of wrinkle structures with different wavelengths and explain the phenomenon using Fourier waveform superposition. The character of the two dimensions and hierarchy is obvious when the wavelengths of the two wrinkles are different. In surface wetting tests, the hierarchical wrinkle shows great hydrophobicity and keeps the stretching property under 25%.

  16. Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors.

    PubMed

    Meng, Yuena; Wang, Kai; Zhang, Yajie; Wei, Zhixiang

    2013-12-23

    A highly flexible graphene free-standing film with hierarchical structure is prepared by a facile template method. With a porous structure, the film can be easily bent and cut, and forms a composite with another material as a scaffold. The 3D graphene film exhibits excellent rate capability and its capacitance is further improved by forming a composite with polyaniline nanowire arrays. The flexible hierarchical composite proves to be an excellent electrode material for flexible supercapacitors. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Using semantic data modeling techniques to organize an object-oriented database for extending the mass storage model

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Short, Nicholas M., Jr.; Roelofs, Larry H.; Dorfman, Erik

    1991-01-01

    A methodology for optimizing organization of data obtained by NASA earth and space missions is discussed. The methodology uses a concept based on semantic data modeling techniques implemented in a hierarchical storage model. The modeling is used to organize objects in mass storage devices, relational database systems, and object-oriented databases. The semantic data modeling at the metadata record level is examined, including the simulation of a knowledge base and semantic metadata storage issues. The semantic data model hierarchy and its application for efficient data storage is addressed, as is the mapping of the application structure to the mass storage.

  18. Speech recognition: Acoustic-phonetic knowledge acquisition and representation

    NASA Astrophysics Data System (ADS)

    Zue, Victor W.

    1988-09-01

    The long-term research goal is to develop and implement speaker-independent continuous speech recognition systems. It is believed that the proper utilization of speech-specific knowledge is essential for such advanced systems. This research is thus directed toward the acquisition, quantification, and representation, of acoustic-phonetic and lexical knowledge, and the application of this knowledge to speech recognition algorithms. In addition, we are exploring new speech recognition alternatives based on artificial intelligence and connectionist techniques. We developed a statistical model for predicting the acoustic realization of stop consonants in various positions in the syllable template. A unification-based grammatical formalism was developed for incorporating this model into the lexical access algorithm. We provided an information-theoretic justification for the hierarchical structure of the syllable template. We analyzed segmented duration for vowels and fricatives in continuous speech. Based on contextual information, we developed durational models for vowels and fricatives that account for over 70 percent of the variance, using data from multiple, unknown speakers. We rigorously evaluated the ability of human spectrogram readers to identify stop consonants spoken by many talkers and in a variety of phonetic contexts. Incorporating the declarative knowledge used by the readers, we developed a knowledge-based system for stop identification. We achieved comparable system performance to that to the readers.

  19. Facile method for preparing superoleophobic surfaces with hierarchical microcubic/nanowire structures

    NASA Astrophysics Data System (ADS)

    Kwak, Wonshik; Hwang, Woonbong

    2016-02-01

    To facilitate the fabrication of superoleophobic surfaces having hierarchical microcubic/nanowire structures (HMNS), even for low surface tension liquids including octane (surface tension = 21.1 mN m-1), and to understand the influences of surface structures on the oleophobicity, we developed a convenient method to achieve superoleophobic surfaces on aluminum substrates using chemical acid etching, anodization and fluorination treatment. The liquid repellency of the structured surface was validated through observable experimental results the contact and sliding angle measurements. The etching condition required to ensure high surface roughness was established, and an optimal anodizing condition was determined, as a critical parameter in building the superoleophobicity. The microcubic structures formed by acid etching are essential for achieving the formation of the hierarchical structure, and therefore, the nanowire structures formed by anodization lead to an enhancement of the superoleophobicity for low surface tension liquids. Under optimized morphology by microcubic/nanowire structures with fluorination treatment, the contact angle over 150° and the sliding angle less than 10° are achieved even for octane.

  20. A self-defining hierarchical data system

    NASA Technical Reports Server (NTRS)

    Bailey, J.

    1992-01-01

    The Self-Defining Data System (SDS) is a system which allows the creation of self-defining hierarchical data structures in a form which allows the data to be moved between different machine architectures. Because the structures are self-defining they can be used for communication between independent modules in a distributed system. Unlike disk-based hierarchical data systems such as Starlink's HDS, SDS works entirely in memory and is very fast. Data structures are created and manipulated as internal dynamic structures in memory managed by SDS itself. A structure may then be exported into a caller supplied memory buffer in a defined external format. This structure can be written as a file or sent as a message to another machine. It remains static in structure until it is reimported into SDS. SDS is written in portable C and has been run on a number of different machine architectures. Structures are portable between machines with SDS looking after conversion of byte order, floating point format, and alignment. A Fortran callable version is also available for some machines.

  1. Higher-Order Item Response Models for Hierarchical Latent Traits

    ERIC Educational Resources Information Center

    Huang, Hung-Yu; Wang, Wen-Chung; Chen, Po-Hsi; Su, Chi-Ming

    2013-01-01

    Many latent traits in the human sciences have a hierarchical structure. This study aimed to develop a new class of higher order item response theory models for hierarchical latent traits that are flexible in accommodating both dichotomous and polytomous items, to estimate both item and person parameters jointly, to allow users to specify…

  2. Using Hierarchical Folders and Tags for File Management

    ERIC Educational Resources Information Center

    Ma, Shanshan

    2010-01-01

    Hierarchical folders have been widely used for managing digital files. A well constructed hierarchical structure can keep files organized. A parent folder can have several subfolders and one subfolder can only reside in one parent folder. Files are stored in folders or subfolders. Files can be found by traversing a given path, going through…

  3. Robust Real-Time Music Transcription with a Compositional Hierarchical Model.

    PubMed

    Pesek, Matevž; Leonardis, Aleš; Marolt, Matija

    2017-01-01

    The paper presents a new compositional hierarchical model for robust music transcription. Its main features are unsupervised learning of a hierarchical representation of input data, transparency, which enables insights into the learned representation, as well as robustness and speed which make it suitable for real-world and real-time use. The model consists of multiple layers, each composed of a number of parts. The hierarchical nature of the model corresponds well to hierarchical structures in music. The parts in lower layers correspond to low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level representations into more complex concepts (tones, chords). The layers are learned in an unsupervised manner from music signals. Parts in each layer are compositions of parts from previous layers based on statistical co-occurrences as the driving force of the learning process. In the paper, we present the model's structure and compare it to other hierarchical approaches in the field of music information retrieval. We evaluate the model's performance for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of the model towards other music information retrieval tasks.

  4. Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light-driven photocatalytic activity.

    PubMed

    Yu, Jiaguo; Qi, Lifang

    2009-09-30

    Hierarchically flower-like tungsten trioxide assemblies were fabricated on a large scale by a simple hydrothermal treatment of sodium tungstate in aqueous solution of nitric acid. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy and N(2) adsorption-desorption measurements. The photocatalytic activity was evaluated by photocatalytic decolorization of rhodamine B aqueous solution under visible-light irradiation. It was found that the three-dimensional tungsten trioxide assemblies were constructed from two-dimensional layers, which were further composed of a large number of interconnected lathy nanoplates with different sizes. Such flower-like assemblies exhibited hierarchically porous structure and higher visible-light photocatalytic activity than the samples without such hierarchical structures due to their specific hierarchical pores that served as the transport paths for light and reactants. After five recycles for the photodegradation of RhB, the catalyst did not exhibit any great loss in activity, confirming hierarchically flower-like tungsten trioxide was stability and not photocorroded. This study may provide new insight into environmentally benign preparation and design of novel photocatalytic materials and enhancement of photocatalytic activity.

  5. Enhanced lithium storage performance of hierarchical CuO nanomaterials with surface fractal characteristics

    NASA Astrophysics Data System (ADS)

    Li, Ang; He, Renyue; Bian, Zhuo; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng

    2018-06-01

    Self-assembled hierarchical CuO nanostructures with fractal structures were prepared by a mild method and exhibited excellent lithium storage properties, certain of which even demonstrated a high reversible capacity of 827 mAh g-1 at a rate of 0.1 C. An interesting phenomenon was observed that the electrochemical performance varies along with the structure complexity, and the products with higher surface factal dimensions exhibited larger capability and better cyclability. Structural and electrochemical analysis methods were used to explore the lithiation kinetics of the samples and the reasons for the outstanding electrochemical performances related to the complexities of hierarchical nanostructures and the irregularities of surface and mass distribution.

  6. Modern Conditions and the Impacts of the Creation of Architectural Environment

    NASA Astrophysics Data System (ADS)

    Abyzov, Vadym

    2017-10-01

    The purpose of this research is an attempt to identify and analyse the modern conditions and impacts of the creation of architectural environment and on this basis to determine the main directions and tasks of the development of architecture at the appropriate hierarchical levels. A comprehensive review and structural analysis of all impact factors and different current conditions that lead to the sustainable architecture design are conducted in the proposal. The main groups of factors and conditions such as social-economical, natural-geographic, urban, ergonomics, ecological, typological, technical, cultural, and aesthetics are determined in accordance with their contemporary specifics. This analysis provides an opportunity to define the appropriative hierarchical levels of the modern trends and prospects of creation an effective, attractive and friendly architectural environment. Some examples of author’s projects and implementations is presented in the article. Such methodological approach will help to create a holistic view of the creation architectural environment, will allow to systematize existing knowledges and concepts, practices and prospects of the means and methods of its formation and development.

  7. A Bayesian generative model for learning semantic hierarchies

    PubMed Central

    Mittelman, Roni; Sun, Min; Kuipers, Benjamin; Savarese, Silvio

    2014-01-01

    Building fine-grained visual recognition systems that are capable of recognizing tens of thousands of categories, has received much attention in recent years. The well known semantic hierarchical structure of categories and concepts, has been shown to provide a key prior which allows for optimal predictions. The hierarchical organization of various domains and concepts has been subject to extensive research, and led to the development of the WordNet domains hierarchy (Fellbaum, 1998), which was also used to organize the images in the ImageNet (Deng et al., 2009) dataset, in which the category count approaches the human capacity. Still, for the human visual system, the form of the hierarchy must be discovered with minimal use of supervision or innate knowledge. In this work, we propose a new Bayesian generative model for learning such domain hierarchies, based on semantic input. Our model is motivated by the super-subordinate organization of domain labels and concepts that characterizes WordNet, and accounts for several important challenges: maintaining context information when progressing deeper into the hierarchy, learning a coherent semantic concept for each node, and modeling uncertainty in the perception process. PMID:24904452

  8. Analyzing Tibetan Monastic Conceptions of the Universe Through Individual Drawings

    NASA Astrophysics Data System (ADS)

    Sonam, Tenzin; Impey, Chris David

    2017-01-01

    Every culture and tradition has its own representation of the universe that continues to evolve due to the influence of new technologies, discoveries, and cultural exchanges. With the recent introduction of Western science into the Tibetan Buddhist monasteries in India, this study explores monastic conceptions of the universe prior to formal instruction in astronomy. The drawings of 59 Buddhist monks and nuns were analyzed using Tversky’s three criteria for drawing analysis—segmentation, order, and hierarchical structure of knowledge. We found that 22 out of 59 monastics drew a geocentric model of the universe with the Solar System as the dominant physical system, reflecting little influence of modern astronomical knowledge. Only six monastics drew the traditional Buddhist model of the world, generally known as the Mount Meru Cosmology. The implication of the monastics' representation of the universe for their assimilation into modern science is discussed.

  9. Factors of empowerment for women in recovery from substance use.

    PubMed

    Hunter, Bronwyn A; Jason, Leonard A; Keys, Christopher B

    2013-03-01

    Empowerment is an interdisciplinary construct heavily grounded in the theories of community psychology. Although empowerment has a strong theoretical foundation, few context-specific quantitative measures have been designed to evaluate empowerment for specific populations. The present study explored the factor structure of a modified empowerment scale with a cross-sectional sample of 296 women in recovery from substance use who lived in recovery homes located throughout the United States. Results from an exploratory factor analysis identified three factors of psychological empowerment which were closely related to previous conceptualizations of psychological empowerment: self-perception, resource knowledge and participation. Further analyses demonstrated a hierarchical relationship among the three factors, with resource knowledge predicting participation when controlling for self-perception. Finally, a correlational analysis demonstrated the initial construct validity of each factor, as each factor of empowerment was significantly and positively related to self-esteem. Implications for the application of psychological empowerment theory and research are discussed.

  10. Analyzing Tibetan Monastics Conception of Universe Through Their Drawings

    NASA Astrophysics Data System (ADS)

    Sonam, Tenzin; Chris Impey

    2016-06-01

    Every culture and tradition has their own representation of the universe that continues to evolve through new technologies and discoveries, and as a result of cultural exchange. With the recent introduction of Western science into the Tibetan Buddhist monasteries in India, this study explores the monastics’ conception of the universe prior to their formal instruction in science. Their drawings were analyzed using Tversky’s three criteria for drawing analysis namely—segmentation, order, and hierarchical structure of knowledge. Among the sixty Buddhist monastics included in this study, we find that most of them draw a geocentric model of the universe with the Solar System as the dominant physical system, reflecting little influence of modern astronomical knowledge. A few monastics draw the traditional Buddhist model of the world. The implications of the monastics' representation of the universe for their assimilation of modern science is discussed.

  11. Factors of Empowerment for Women in Recovery from Substance Use

    PubMed Central

    Hunter, Bronwyn A.; Jason, Leonard A.; Keys, Christopher B.

    2014-01-01

    Empowerment is an interdisciplinary construct heavily grounded in the theories of community psychology. Although empowerment has a strong theoretical foundation, few context-specific quantitative measures have been designed to evaluate empowerment for specific populations. The present study explored the factor structure of a modified empowerment scale with a cross-sectional sample of 296 women in recovery from substance use who lived in recovery homes located throughout the United States. Results from an exploratory factor analysis identified three factors of psychological empowerment which were closely related to previous conceptualizations of psychological empowerment: self perception, resource knowledge and participation. Further analyses demonstrated a hierarchical relationship among the three factors, with resource knowledge predicting participation when controlling for self-perception. Finally, a correlational analysis demonstrated the initial construct validity of each factor, as each factor of empowerment was significantly and positively related to self-esteem. Implications for the application of psychological empowerment theory and research are discussed. PMID:22392193

  12. Biomimetic cellular metals-using hierarchical structuring for energy absorption.

    PubMed

    Bührig-Polaczek, A; Fleck, C; Speck, T; Schüler, P; Fischer, S F; Caliaro, M; Thielen, M

    2016-07-19

    Fruit walls as well as nut and seed shells typically perform a multitude of functions. One of the biologically most important functions consists in the direct or indirect protection of the seeds from mechanical damage or other negative environmental influences. This qualifies such biological structures as role models for the development of new materials and components that protect commodities and/or persons from damage caused for example by impacts due to rough handling or crashes. We were able to show how the mechanical properties of metal foam based components can be improved by altering their structure on various hierarchical levels inspired by features and principles important for the impact and/or puncture resistance of the biological role models, rather than by tuning the properties of the bulk material. For this various investigation methods have been established which combine mechanical testing with different imaging methods, as well as with in situ and ex situ mechanical testing methods. Different structural hierarchies especially important for the mechanical deformation and failure behaviour of the biological role models, pomelo fruit (Citrus maxima) and Macadamia integrifolia, were identified. They were abstracted and transferred into corresponding structural principles and thus hierarchically structured bio-inspired metal foams have been designed. A production route for metal based bio-inspired structures by investment casting was successfully established. This allows the production of complex and reliable structures, by implementing and combining different hierarchical structural elements found in the biological concept generators, such as strut design and integration of fibres, as well as by minimising casting defects. To evaluate the structural effects, similar investigation methods and mechanical tests were applied to both the biological role models and the metallic foams. As a result an even deeper quantitative understanding of the form-structure-function relationship of the biological concept generators as well as the bio-inspired metal foams was achieved, on deeper hierarchical levels and overarching different levels.

  13. Hierarchically macro–mesoporous TiO{sub 2} film via self-assembled strategy for enhanced efficiency of dye sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ping; Wang, Jin; Yu, Huogen, E-mail: yuhuogen@whut.edu.cn

    2016-02-15

    Highlights: • A new hierarchically macro–mesoporous TiO{sub 2} film is fabricated via TiF{sub 4} hydrolysis. • TiF{sub 4} hydrolysis is accompanied with self-assembled process of TiO{sub 2} nanoparticles. • The hierarchically porous TiO{sub 2} films show higher performance than nonporous film. - Abstract: The hierarchically porous structure of TiO{sub 2} film plays an important role on improved photoelectric conversion efficiency in dye-sensitized solar cells (DSSCs). It is highly required to develop a facile strategy to prepare the hierarchical porous photoelectrode. In this study, a novel hierarchically macro–mesoporous TiO{sub 2} film as photoelectrode of DSSCs is fabricated by a self-assembled processmore » of TiO{sub 2} nanoparticles via TiF{sub 4} hydrolysis. The hydrolysis of TiF{sub 4} is accompanied with self-assembled process of TiO{sub 2} nanoparticles on the surface of electrophoretic-deposited titanate nanotube film which provides effective active sites for the deposition of TiO{sub 2} nanoparticles owing to a large amount of hydroxyl groups, resulting in the formation of hierarchically porous structures. The hierarchically porous TiO{sub 2} film is mainly composed of mesopores with a size of 2–50 nm and macropores with a wide range of 0.5–5 μm, which contribute to an obviously higher conversion performance (6.70%) than nonporous P25-TiO{sub 2} film (4.01%). The main reasons for enhanced conversion efficiency of hierarchically porous TiO{sub 2} film can be attributed to adsorption of more dye molecules, rapid diffusion and efficient transport of electrolyte, and longer electron lifetime. This work may provide new insights into preparing porous structure of TiO{sub 2} films in DSSCs for modification of photoelectric conversion efficiency.« less

  14. Growth Mechanism of Pumpkin-Shaped Vaterite Hierarchical Structures

    NASA Astrophysics Data System (ADS)

    Ma, Guobin; Xu, Yifei; Wang, Mu

    2015-03-01

    CaCO3-based biominerals possess sophisticated hierarchical structures and promising mechanical properties. Recent researches imply that vaterite may play an important role in formation of CaCO3-based biominerals. However, as a less common polymorph of CaCO3, the growth mechanism of vaterite remains not very clear. Here we report the growth of a pumpkin-shaped vaterite hierarchical structure with a six-fold symmetrical axis and lamellar microstructure. We demonstrate that the growth is controlled by supersaturation and the intrinsic crystallographic anisotropy of vaterite. For the scenario of high supersaturation, the nucleation rate is higher than the lateral extension rate, favoring the ``double-leaf'' spherulitic growth. Meanwhile, nucleation occurs preferentially in < 11 2 0 > as determined by the crystalline structure of vaterite, modulating the grown products with a hexagonal symmetry. The results are beneficial for an in-depth understanding of the biomineralization of CaCO3. The growth mechanism may also be applicable to interpret the formation of similar hierarchical structures of other materials. The authors gratefully acknowledge the financial support from National Science Foundation of China (Grant Nos. 51172104 and 50972057) and National Key Basic Research Program of China (Grant No. 2010CB630705).

  15. Hierarchical organization of brain functional networks during visual tasks.

    PubMed

    Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie

    2011-09-01

    The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.

  16. Hierarchically structured materials for lithium batteries

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Ji-Guang

    2013-10-01

    The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg-1), new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime.

  17. Development of ultralight, super-elastic, hierarchical metallic meta-structures with i3DP technology

    NASA Astrophysics Data System (ADS)

    Zhang, Dongxing; Xiao, Junfeng; Moorlag, Carolyn; Guo, Qiuquan; Yang, Jun

    2017-11-01

    Lightweight and mechanically robust materials show promising applications in thermal insulation, energy absorption, and battery catalyst supports. This study demonstrates an effective method for creation of ultralight metallic structures based on initiator-integrated 3D printing technology (i3DP), which provides a possible platform to design the materials with the best geometric parameters and desired mechanical performance. In this study, ultralight Ni foams with 3D interconnected hollow tubes were fabricated, consisting of hierarchical features spanning three scale orders ranging from submicron to centimeter. The resultant materials can achieve an ultralight density of as low as 5.1 mg cm-3 and nearly recover after significant compression up to 50%. Due to a high compression ratio, the hierarchical structure exhibits superior properties in terms of energy absorption and mechanical efficiency. The relationship of structural parameters and mechanical response was established. The ability of achieving ultralight density <10 mg cm-3 and the stable \\bar{E}˜ {\\bar{ρ }}2 scaling through all range of relative density, indicates an advantage over the previous stochastic metal foams. Overall, this initiator-integrated 3D printing approach provides metallic structures with substantial benefits from the hierarchical design and fabrication flexibility to ultralight applications.

  18. Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions.

    PubMed

    Sun, Junming; Karim, Ayman M; Li, Xiaohong Shari; Rainbolt, James; Kovarik, Libor; Shin, Yongsoon; Wang, Yong

    2015-12-04

    We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.

  19. Content Consumption and Hierarchical Structures of Web-Supported Courses

    ERIC Educational Resources Information Center

    Hershkovitz, Arnon; Hardof-Jaffe, Sharon; Nachmias, Rafi

    2014-01-01

    This study presents an empirical investigation of the relationship between the hierarchical structure of content delivered to students within a Learning Management System (LMS) and its actual consumption. To this end, campus-wide data relating to 1,203 courses were collected from the LMS' servers and were subsequently analyzed using data mining…

  20. Testing Theories of Linguistic Constituency with Configural Learning: The Case of the English Syllable

    ERIC Educational Resources Information Center

    Kapatsinski, Vsevolod

    2009-01-01

    This article proposes and tests an experimental method to assess the psychological reality of hierarchical theories of constituent structure in particular domains. I show that a hierarchical theory of constituent structure necessarily makes the prediction that an association between constituents should be easier to learn than an association…

  1. Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Karim, Ayman M.; Li, Xiaohong S.

    2015-09-29

    We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.

  2. Statistical Significance for Hierarchical Clustering

    PubMed Central

    Kimes, Patrick K.; Liu, Yufeng; Hayes, D. Neil; Marron, J. S.

    2017-01-01

    Summary Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis of high dimensional datasets. Among methods for clustering, hierarchical approaches have enjoyed substantial popularity in genomics and other fields for their ability to simultaneously uncover multiple layers of clustering structure. A critical and challenging question in cluster analysis is whether the identified clusters represent important underlying structure or are artifacts of natural sampling variation. Few approaches have been proposed for addressing this problem in the context of hierarchical clustering, for which the problem is further complicated by the natural tree structure of the partition, and the multiplicity of tests required to parse the layers of nested clusters. In this paper, we propose a Monte Carlo based approach for testing statistical significance in hierarchical clustering which addresses these issues. The approach is implemented as a sequential testing procedure guaranteeing control of the family-wise error rate. Theoretical justification is provided for our approach, and its power to detect true clustering structure is illustrated through several simulation studies and applications to two cancer gene expression datasets. PMID:28099990

  3. Overlapping communities detection based on spectral analysis of line graphs

    NASA Astrophysics Data System (ADS)

    Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan

    2018-05-01

    Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.

  4. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure.

    PubMed

    Li, Yingzhi; Zhang, Qinghua; Zhang, Junxian; Jin, Lei; Zhao, Xin; Xu, Ting

    2015-09-23

    Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific capacitance of 204 F g(-1) at 1 A g(-1); good rate capability, as indicated by the residual initial capacitance of 85.5% at 10 A g(-1); and a long cycle life. These performance characteristics are attributed to the outstanding hierarchical structures of the electrode material. Appropriate carbonization conditions enable the bio-carbon materials to inherit the inherent hierarchical texture of the original biomass, thereby facilitating effective channels for fast ion transfer. The macropores and mesopores that result from chemical activation significantly increase the specific surface area and also play the role of temporary ion-buffering reservoirs, further shortening the ionic diffusion distance.

  5. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.

    PubMed

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-18

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  6. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach

    NASA Astrophysics Data System (ADS)

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-01

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  7. Unveiling Surface Redox Charge Storage of Interacting Two-Dimensional Hetero-Nanosheets in Hierarchical Architectures

    DOE PAGES

    Mahmood, Qasim; Bak, Seong-Min; Kim, Min G.; ...

    2015-03-03

    Two-dimensional (2D) heteronanosheets are currently the focus of intense study due to the unique properties that emerge from the interplay between two low-dimensional nanomaterials with different properties. However, the properties and new phenomena based on the two 2D heteronanosheets interacting in a 3D hierarchical architecture have yet to be explored. Here, we unveil the surface redox charge storage mechanism of surface-exposed WS2 nanosheets assembled in a 3D hierarchical heterostructure using in situ synchrotron X-ray absorption and Raman spectroscopic methods. The surface dominating redox charge storage of WS2 is manifested in a highly reversible and ultrafast capacitive fashion due to themore » interaction of heteronanosheets and the 3D connectivity of the hierarchical structure. In contrast, compositionally identical 2D WS2 structures fail to provide a fast and high capacitance with different modes of lattice vibration. The distinctive surface capacitive behavior of 3D hierarchically structured heteronanosheets is associated with rapid proton accommodation into the in-plane W–S lattice (with the softening of the E2g bands), the reversible redox transition of the surface-exposed intralayers residing in the electrochemically active 1T phase of WS2 (with the reversible change in the interatomic distance and peak intensity of W–W bonds), and the change in the oxidation state during the proton insertion/deinsertion process. This proposed mechanism agrees with the dramatic improvement in the capacitive performance of the two heteronanosheets coupled in the hierarchical structure.« less

  8. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China.

    PubMed

    Liu, Chunping; Tsuda, Yoshiaki; Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST  = 0.073; G'ST  = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.

  9. Genetic Structure and Hierarchical Population Divergence History of Acer mono var. mono in South and Northeast China

    PubMed Central

    Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species’ evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST = 0.073; G′ST = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species’ more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study. PMID:24498039

  10. Self-cleaning efficiency of artificial superhydrophobic surfaces.

    PubMed

    Bhushan, Bharat; Jung, Yong Chae; Koch, Kerstin

    2009-03-03

    The hierarchical structured surface of the lotus (Nelumbo nucifera, Gaertn.) leaf provides a model for the development of biomimetic self-cleaning surfaces. On these water-repellent surfaces, water droplets move easily at a low inclination of the leaf and collect dirt particles adhering to the leaf surface. Flat hydrophilic and hydrophobic, nanostructured, microstructured, and hierarchical structured superhydrophobic surfaces were fabricated, and a systematic study of wettability and adhesion properties was carried out. The influence of contact angle hysteresis on self-cleaning by water droplets was studied at different tilt angles (TA) of the specimen surfaces (3 degrees for Lotus wax, 10 degrees for n-hexatriacontane, as well as 45 degrees for both types of surfaces). At 3 degrees and 10 degrees TA, no surfaces were cleaned by moving water applied onto the surfaces with nearly zero kinetic energy, but most particles were removed from hierarchical structured surfaces, and a certain amount of particles were captured between the asperities of the micro- and hierarchical structured surfaces. After an increase of the TA to 45 degrees (larger than the tilt angles of all structured surfaces), as usually used for industrial self-cleaning tests, all nanostructured surfaces were cleaned by water droplets moving over the surfaces followed by hierarchical and microstructures. Droplets applied onto the surfaces with some pressure removed particles residues and led to self-cleaning by a combination of sliding and rolling droplets. Geometrical scale effects were responsible for superior performance of nanostructured surfaces.

  11. Template-free synthesis of nitrogen-doped hierarchical porous carbons for CO2 adsorption and supercapacitor electrodes.

    PubMed

    Bing, Xuefeng; Wei, Yanju; Wang, Mei; Xu, Sheng; Long, Donghui; Wang, Jitong; Qiao, Wenming; Ling, Licheng

    2017-02-15

    Nitrogen-doped hierarchical porous carbons (NHPCs) with controllable nitrogen content were prepared via a template-free method by direct carbonization of melamine-resorcinol-terephthaldehyde networks. The synthetic approach is facile and gentle, resulting in a hierarchical pore structure with modest micropores and well-developed meso-/macropores, and allowing the easy adjusting of the nitrogen content in the carbon framework. The micropore structure was generated within the highly cross-linked networks of polymer chains, while the mesopore and macropore structure were formed from the interconnected 3D gel network. The as-prepared NHPC has a large specific surface area of 1150m 2 ·g -1 , and a high nitrogen content of 14.5wt.%. CO 2 adsorption performances were measured between 0°C and 75°C, and a high adsorption capacity of 3.96mmol·g -1 was achieved at 1bar and 0°C. Moreover, these nitrogen-doped hierarchical porous carbons exhibit a great potential to act as electrode materials for supercapacitors, which could deliver high specific capacitance of 214.0F·g -1 with an excellent rate capability of 74.7% from 0.1 to 10 A·g -1 . The appropriate nitrogen doping and well-developed hierarchical porosity could accelerate the ion diffusion and the frequency response for excellent capacitive performance. This kind of new nitrogen-doped hierarchical porous carbons with controllable hierarchical porosity and chemical composition may have a good potential in the future applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Correlation between Hierarchical Structure and Processing Control of Large-area Spray-coated Polymer Solar Cells toward High Performance

    PubMed Central

    Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U-Ser; Chen, Charn-Ying

    2016-01-01

    The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm2. The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes. PMID:26817585

  13. Fabrication of hierarchical polymer surfaces with superhydrophobicity by injection molding from nature and function-oriented design

    NASA Astrophysics Data System (ADS)

    Weng, Can; Wang, Fei; Zhou, Mingyong; Yang, Dongjiao; Jiang, Bingyan

    2018-04-01

    A comparison of processes and wettability characteristics was presented for injection molded superhydrophobic polypropylene surfaces from two fabricating strategies. One is the biomimetic replication of patterns from indocalamus leaf in nature. The contact angle of water sitting on this PP surface was measured as 152 ± 2°, with comparable wetting behavior to natural indocalamus leaf surface. The other strategy is the fabrication of superhydrophobic structure by combining methods that produce structures at different length scales. Regarding both the machinability of mold inserts and function-oriented design, three micro-quadrangular arrays and one hierarchical micro-nano cylinder array were designed with the goal of superhydrophobicity. Particularly, a simple approach to the fabrication of hierarchical structures was proposed by combining the anodized plate and the punching plate. The function-oriented design targets as superhydrophobicity were all reached for the designed four structures. The measured contact angles of droplet for these structures were almost consistent with the calculated equilibrium contact angles from thermodynamic analysis. Among them, the contact angle of droplet on the surface of designed hierarchical structure reached about 163° with the sliding angle of 5°, resulting in self-cleaning characteristic. The superhydrophobicity of function-oriented designed polymer surfaces could be modified and controlled, which is exactly the limitation of replicating from natural organisms.

  14. Hierarchical structures of amorphous solids characterized by persistent homology

    PubMed Central

    Hiraoka, Yasuaki; Nakamura, Takenobu; Hirata, Akihiko; Escolar, Emerson G.; Matsue, Kaname; Nishiura, Yasumasa

    2016-01-01

    This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods. PMID:27298351

  15. Insights into the hierarchical structure and digestion rate of alkali-modulated starches with different amylose contents.

    PubMed

    Qiao, Dongling; Yu, Long; Liu, Hongsheng; Zou, Wei; Xie, Fengwei; Simon, George; Petinakis, Eustathios; Shen, Zhiqi; Chen, Ling

    2016-06-25

    Combined analytical techniques were used to explore the effects of alkali treatment on the multi-scale structure and digestion behavior of starches with different amylose/amylopectin ratios. Alkali treatment disrupted the amorphous matrix, and partial lamellae and crystallites, which weakened starch molecular packing and eventually enhanced the susceptibility of starch to alkali. Stronger alkali treatment (0.5% w/w) made this effect more prominent and even transformed the dual-phase digestion of starch into a triple-phase pattern. Compared with high-amylose starch, regular maize starch, which possesses some unique structure characteristics typically as pores and crystallite weak points, showed evident changes of hierarchical structure and in digestion rate. Thus, alkali treatment has been demonstrated as a simple method to modulate starch hierarchical structure and thus to realize the rational development of starch-based food products with desired digestibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Nanomechanical strength mechanisms of hierarchical biological materials and tissues.

    PubMed

    Buehler, Markus J; Ackbarow, Theodor

    2008-12-01

    Biological protein materials (BPMs), intriguing hierarchical structures formed by assembly of chemical building blocks, are crucial for critical functions of life. The structural details of BPMs are fascinating: They represent a combination of universally found motifs such as alpha-helices or beta-sheets with highly adapted protein structures such as cytoskeletal networks or spider silk nanocomposites. BPMs combine properties like strength and robustness, self-healing ability, adaptability, changeability, evolvability and others into multi-functional materials at a level unmatched in synthetic materials. The ability to achieve these properties depends critically on the particular traits of these materials, first and foremost their hierarchical architecture and seamless integration of material and structure, from nano to macro. Here, we provide a brief review of this field and outline new research directions, along with a review of recent research results in the development of structure-property relationships of biological protein materials exemplified in a study of vimentin intermediate filaments.

  17. Latent Variable Regression 4-Level Hierarchical Model Using Multisite Multiple-Cohorts Longitudinal Data. CRESST Report 801

    ERIC Educational Resources Information Center

    Choi, Kilchan

    2011-01-01

    This report explores a new latent variable regression 4-level hierarchical model for monitoring school performance over time using multisite multiple-cohorts longitudinal data. This kind of data set has a 4-level hierarchical structure: time-series observation nested within students who are nested within different cohorts of students. These…

  18. A Hierarchical Rater Model for Constructed Responses, with a Signal Detection Rater Model

    ERIC Educational Resources Information Center

    DeCarlo, Lawrence T.; Kim, YoungKoung; Johnson, Matthew S.

    2011-01-01

    The hierarchical rater model (HRM) recognizes the hierarchical structure of data that arises when raters score constructed response items. In this approach, raters' scores are not viewed as being direct indicators of examinee proficiency but rather as indicators of essay quality; the (latent categorical) quality of an examinee's essay in turn…

  19. Complex Applications of HLM in Studies of Science and Mathematics Achievement: Cross-Classified Random Effects Models

    ERIC Educational Resources Information Center

    Moreno, Mario; Harwell, Michael; Guzey, S. Selcen; Phillips, Alison; Moore, Tamara J.

    2016-01-01

    Hierarchical linear models have become a familiar method for accounting for a hierarchical data structure in studies of science and mathematics achievement. This paper illustrates the use of cross-classified random effects models (CCREMs), which are likely less familiar. The defining characteristic of CCREMs is a hierarchical data structure…

  20. Modelling habitat associations with fingernail clam (Family: Sphaeriidae) counts at multiple spatial scales using hierarchical count models

    USGS Publications Warehouse

    Gray, B.R.; Haro, R.J.; Rogala, J.T.; Sauer, J.S.

    2005-01-01

    1. Macroinvertebrate count data often exhibit nested or hierarchical structure. Examples include multiple measurements along each of a set of streams, and multiple synoptic measurements from each of a set of ponds. With data exhibiting hierarchical structure, outcomes at both sampling (e.g. Within stream) and aggregated (e.g. Stream) scales are often of interest. Unfortunately, methods for modelling hierarchical count data have received little attention in the ecological literature. 2. We demonstrate the use of hierarchical count models using fingernail clam (Family: Sphaeriidae) count data and habitat predictors derived from sampling and aggregated spatial scales. The sampling scale corresponded to that of a standard Ponar grab (0.052 m(2)) and the aggregated scale to impounded and backwater regions within 38-197 km reaches of the Upper Mississippi River. Impounded and backwater regions were resampled annually for 10 years. Consequently, measurements on clams were nested within years. Counts were treated as negative binomial random variates, and means from each resampling event as random departures from the impounded and backwater region grand means. 3. Clam models were improved by the addition of covariates that varied at both the sampling and regional scales. Substrate composition varied at the sampling scale and was associated with model improvements, and reductions (for a given mean) in variance at the sampling scale. Inorganic suspended solids (ISS) levels, measured in the summer preceding sampling, also yielded model improvements and were associated with reductions in variances at the regional rather than sampling scales. ISS levels were negatively associated with mean clam counts. 4. Hierarchical models allow hierarchically structured data to be modelled without ignoring information specific to levels of the hierarchy. In addition, information at each hierarchical level may be modelled as functions of covariates that themselves vary by and within levels. As a result, hierarchical models provide researchers and resource managers with a method for modelling hierarchical data that explicitly recognises both the sampling design and the information contained in the corresponding data.

  1. Implementing a Knowledge-Based Library Information System with Typed Horn Logic.

    ERIC Educational Resources Information Center

    Ait-Kaci, Hassan; And Others

    1990-01-01

    Describes a prototype library expert system called BABEL which uses a new programing language, LOGIN, that combines the idea of attribute inheritance with logic programing. Use of hierarchical classification of library objects to build a knowledge base for a library information system is explained, and further research is suggested. (11…

  2. Hierarchically ordered mesoporous Co3O4 materials for high performance Li-ion batteries.

    PubMed

    Sun, Shijiao; Zhao, Xiangyu; Yang, Meng; Wu, Linlin; Wen, Zhaoyin; Shen, Xiaodong

    2016-01-19

    Highly ordered mesoporous Co3O4 materials have been prepared via a nanocasting route with three-dimensional KIT-6 and two-dimensional SBA-15 ordered mesoporous silicas as templates and Co(NO3)2 · 6H2O as precursor. Through changing the hydrothermal treating temperature of the silica template, ordered mesoporous Co3O4 materials with hierarchical structures have been developed. The larger pores around 10 nm provide an efficient transport for Li ions, while the smaller pores between 3-5 nm offer large electrochemically active areas. Electrochemical impedance analysis proves that the hierarchical structure contributes to a lower charge transfer resistance in the mesoporous Co3O4 electrode than the mono-sized structure. High reversible capacities around 1141 mAh g(-1) of the hierarchically mesoporous Co3O4 materials are obtained, implying their potential applications for high performance Li-ion batteries.

  3. Hierarchical Tubular Structures Composed of Co3 O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage.

    PubMed

    Chen, Yu Ming; Yu, Le; Lou, Xiong Wen David

    2016-05-10

    Hierarchical tubular structures composed of Co3 O4 hollow nanoparticles and carbon nanotubes (CNTs) have been synthesized by an efficient multi-step route. Starting from polymer-cobalt acetate (Co(Ac)2 ) composite nanofibers, uniform polymer-Co(Ac)2 @zeolitic imidazolate framework-67 (ZIF-67) core-shell nanofibers are first synthesized via partial phase transformation with 2-methylimidazole in ethanol. After the selective dissolution of polymer-Co(Ac)2 cores, the resulting ZIF-67 tubular structures can be converted into hierarchical CNTs/Co-carbon hybrids by annealing in Ar/H2 atmosphere. Finally, the hierarchical CNT/Co3 O4 microtubes are obtained by a subsequent thermal treatment in air. Impressively, the as-prepared nanocomposite delivers a high reversible capacity of 1281 mAh g(-1) at 0.1 A g(-1) with exceptional rate capability and long cycle life over 200 cycles as an anode material for lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hierarchical CaCO3 chromatography: a stationary phase based on biominerals.

    PubMed

    Sato, Kosuke; Oaki, Yuya; Takahashi, Daisuke; Toshima, Kazunobu; Imai, Hiroaki

    2015-03-23

    In biomineralization, acidic macromolecules play important roles for the growth control of crystals through a specific interaction. Inspired by this interaction, we report on an application of the hierarchical structures in CaCO3 biominerals to a stationary phase of chromatography. The separation and purification of acidic small organic molecules are achieved by thin-layer chromatography and flash chromatography using the powder of biominerals as the stationary phase. The unit nanocrystals and their oriented assembly, the hierarchical structure, are suitable for the adsorption site of the target organic molecules and the flow path of the elution solvents, respectively. The separation mode is ascribed to the specific adsorption of the acidic molecules on the crystal face and the coordination of the functional groups to the calcium ions. The results imply that a new family of stationary phase of chromatography can be developed by the fine tuning of hierarchical structures in CaCO3 materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Efficiently computing and deriving topological relation matrices between complex regions with broad boundaries

    NASA Astrophysics Data System (ADS)

    Du, Shihong; Guo, Luo; Wang, Qiao; Qin, Qimin

    The extended 9-intersection matrix is used to formalize topological relations between uncertain regions while it is designed to satisfy the requirements at a concept level, and to deal with the complex regions with broad boundaries (CBBRs) as a whole without considering their hierarchical structures. In contrast to simple regions with broad boundaries, CBBRs have complex hierarchical structures. Therefore, it is necessary to take into account the complex hierarchical structure and to represent the topological relations between all regions in CBBRs as a relation matrix, rather than using the extended 9-intersection matrix to determine topological relations. In this study, a tree model is first used to represent the intrinsic configuration of CBBRs hierarchically. Then, the reasoning tables are presented for deriving topological relations between child, parent and sibling regions from the relations between two given regions in CBBRs. Finally, based on the reasoning, efficient methods are proposed to compute and derive the topological relation matrix. The proposed methods can be incorporated into spatial databases to facilitate geometric-oriented applications.

  6. In-plane crashworthiness of bio-inspired hierarchical honeycombs

    DOE PAGES

    Yin, Hanfeng; Huang, Xiaofei; Scarpa, Fabrizio; ...

    2018-03-13

    Biological tissues like bone, wood, and sponge possess hierarchical cellular topologies, which are lightweight and feature an excellent energy absorption capability. Here we present a system of bio-inspired hierarchical honeycomb structures based on hexagonal, Kagome, and triangular tessellations. The hierarchical designs and a reference regular honeycomb configuration are subjected to simulated in-plane impact using the nonlinear finite element code LS-DYNA. The numerical simulation results show that the triangular hierarchical honeycomb provides the best performance compared to the other two hierarchical honeycombs, and features more than twice the energy absorbed by the regular honeycomb under similar loading conditions. We also proposemore » a parametric study correlating the microstructure parameters (hierarchical length ratio r and the number of sub cells N) to the energy absorption capacity of these hierarchical honeycombs. The triangular hierarchical honeycomb with N = 2 and r = 1/8 shows the highest energy absorption capacity among all the investigated cases, and this configuration could be employed as a benchmark for the design of future safety protective systems.« less

  7. In-plane crashworthiness of bio-inspired hierarchical honeycombs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Hanfeng; Huang, Xiaofei; Scarpa, Fabrizio

    Biological tissues like bone, wood, and sponge possess hierarchical cellular topologies, which are lightweight and feature an excellent energy absorption capability. Here we present a system of bio-inspired hierarchical honeycomb structures based on hexagonal, Kagome, and triangular tessellations. The hierarchical designs and a reference regular honeycomb configuration are subjected to simulated in-plane impact using the nonlinear finite element code LS-DYNA. The numerical simulation results show that the triangular hierarchical honeycomb provides the best performance compared to the other two hierarchical honeycombs, and features more than twice the energy absorbed by the regular honeycomb under similar loading conditions. We also proposemore » a parametric study correlating the microstructure parameters (hierarchical length ratio r and the number of sub cells N) to the energy absorption capacity of these hierarchical honeycombs. The triangular hierarchical honeycomb with N = 2 and r = 1/8 shows the highest energy absorption capacity among all the investigated cases, and this configuration could be employed as a benchmark for the design of future safety protective systems.« less

  8. Fabrication of free-standing hierarchical carbon nanofiber/graphene oxide/polyaniline films for supercapacitors.

    PubMed

    Xu, Dongdong; Xu, Qun; Wang, Kaixi; Chen, Jun; Chen, Zhimin

    2014-01-08

    A hierarchical high-performance electrode with nanoacanthine-style polyaniline (PANI) deposited onto a carbon nanofiber/graphene oxide (CNF/GO) template was successfully prepared via an in situ polymerization process. The morphology analysis shows that introducing one-dimensional (1D) CNF could significantly decrease/inhibit the staking of laminated GO to form an open-porous CNF/GO architecture. Followed with in situ facial deposition of PANI, the as-synthesized PANI modified CNF/GO exhibits three-dimensional (3D) hierarchical layered nanoarchitecture, which favors the diffusion of the electrolyte ions into the inner region of active materials. The hierarchical free-standing electrodes were directly fabricated into sandwich structured supercapacitors using 1 M H2SO4 as the electrolyte showing a significant specific capacitance of 450.2 F/g at the voltage scan rate of 10 mV/s. The electrochemical properties of the hierarchical structure can be further improved by a reduction procedure of GO before the deposition of PANI.

  9. Simultaneous formation of multiscale hierarchical surface morphologies through sequential wrinkling and folding

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sun, Qingyang; Xiao, Jianliang

    2018-02-01

    Highly organized hierarchical surface morphologies possess various intriguing properties that could find important potential applications. In this paper, we demonstrate a facile approach to simultaneously form multiscale hierarchical surface morphologies through sequential wrinkling. This method combines surface wrinkling induced by thermal expansion and mechanical strain on a three-layer structure composed of an aluminum film, a hard Polydimethylsiloxane (PDMS) film, and a soft PDMS substrate. Deposition of the aluminum film on hard PDMS induces biaxial wrinkling due to thermal expansion mismatch, and recovering the prestrain in the soft PDMS substrate leads to wrinkling of the hard PDMS film. In total, three orders of wrinkling patterns form in this process, with wavelength and amplitude spanning 3 orders of magnitude in length scale. By increasing the prestrain in the soft PDMS substrate, a hierarchical wrinkling-folding structure was also obtained. This approach can be easily extended to other thin films for fabrication of multiscale hierarchical surface morphologies with potential applications in different areas.

  10. Graphene--nanotube--iron hierarchical nanostructure as lithium ion battery anode.

    PubMed

    Lee, Si-Hwa; Sridhar, Vadahanambi; Jung, Jung-Hwan; Karthikeyan, Kaliyappan; Lee, Yun-Sung; Mukherjee, Rahul; Koratkar, Nikhil; Oh, Il-Kwon

    2013-05-28

    In this study, we report a novel route via microwave irradiation to synthesize a bio-inspired hierarchical graphene--nanotube--iron three-dimensional nanostructure as an anode material in lithium-ion batteries. The nanostructure comprises vertically aligned carbon nanotubes grown directly on graphene sheets along with shorter branches of carbon nanotubes stemming out from both the graphene sheets and the vertically aligned carbon nanotubes. This bio-inspired hierarchical structure provides a three-dimensional conductive network for efficient charge-transfer and prevents the agglomeration and restacking of the graphene sheets enabling Li-ions to have greater access to the electrode material. In addition, functional iron-oxide nanoparticles decorated within the three-dimensional hierarchical structure provides outstanding lithium storage characteristics, resulting in very high specific capacities. The anode material delivers a reversible capacity of ~1024 mA · h · g(-1) even after prolonged cycling along with a Coulombic efficiency in excess of 99%, which reflects the ability of the hierarchical network to prevent agglomeration of the iron-oxide nanoparticles.

  11. A solid with a hierarchical tetramodal micro-meso-macro pore size distribution

    PubMed Central

    Ren, Yu; Ma, Zhen; Morris, Russell E.; Liu, Zheng; Jiao, Feng; Dai, Sheng; Bruce, Peter G.

    2013-01-01

    Porous solids have an important role in addressing some of the major energy-related problems facing society. Here we describe a porous solid, α-MnO2, with a hierarchical tetramodal pore size distribution spanning the micro-, meso- and macro pore range, centred at 0.48, 4.0, 18 and 70 nm. The hierarchical tetramodal structure is generated by the presence of potassium ions in the precursor solution within the channels of the porous silica template; the size of the potassium ion templates the microporosity of α-MnO2, whereas their reactivity with silica leads to larger mesopores and macroporosity, without destroying the mesostructure of the template. The hierarchical tetramodal pore size distribution influences the properties of α-MnO2 as a cathode in lithium batteries and as a catalyst, changing the behaviour, compared with its counterparts with only micropores or bimodal micro/mesopores. The approach has been extended to the preparation of LiMn2O4 with a hierarchical pore structure. PMID:23764887

  12. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    NASA Astrophysics Data System (ADS)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  13. Preparation of hierarchical structured nano-sized/porous poly(lactic acid) composite fibrous membranes for air filtration

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Pan, Zhijuan

    2015-11-01

    Hierarchical structured nano-sized/porous poly(lactic acid) (PLA-N/PLA-P) composite fibrous membranes with excellent air filtration performance were prepared via an electrospinning technique. Firstly, PLA-P fibers with different morphology were fabricated by varying the relative humidity, and the nanopores on fiber surface played a key role in improving the specific surface area and filtration performance of the resultant membranes. Secondly, hierarchical structure of PLA-N/PLA-P interlaced structured membranes and PLA-N/PLA-P double-layer structured membranes with different mass ratios for further enhanced air filtration performance were also successfully prepared by combining PLA-N fibers with PLA-P fibers. Filtration tests by measuring the penetration of sodium chloride (NaCl) aerosol particles with a 260 nm mass median diameter revealed that a moderate mass ratio of PLA-P fibers and PLA-N fibers contributed to improving the filtration performance of the hierarchical structured PLA-N/PLA-P composite membrane, and the double-layer structured PLA-N/PLA-P membrane possessed a higher filtration efficiency and quality factor than that of an interlaced structured PLA-N/PLA-P membrane with the same mass ratio. The as-prepared PLA-N/PLA-P double-layer structured membrane with a mass ratio of 1/5 showed a high filtration efficiency (99.999%) and a relatively low pressure drop (93.3 Pa) at the face velocity of 5.3 cm/s.

  14. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks.

    PubMed

    Mullen, Lindy B; Arthur Woods, H; Schwartz, Michael K; Sepulveda, Adam J; Lowe, Winsor H

    2010-03-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in-stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.

  15. Self-Concepts in Reading, Writing, Listening, and Speaking: A Multidimensional and Hierarchical Structure and Its Generalizability across Native and Foreign Languages

    ERIC Educational Resources Information Center

    Arens, A. Katrin; Jansen, Malte

    2016-01-01

    Academic self-concept has been conceptualized as a multidimensional and hierarchical construct. Previous research has mostly focused on its multidimensionality, distinguishing between verbal and mathematical self-concept domains, and only a few studies have examined the factorial structure within specific self-concept domains. The present study…

  16. A hierarchical linear model for tree height prediction.

    Treesearch

    Vicente J. Monleon

    2003-01-01

    Measuring tree height is a time-consuming process. Often, tree diameter is measured and height is estimated from a published regression model. Trees used to develop these models are clustered into stands, but this structure is ignored and independence is assumed. In this study, hierarchical linear models that account explicitly for the clustered structure of the data...

  17. What Is Wrong with ANOVA and Multiple Regression? Analyzing Sentence Reading Times with Hierarchical Linear Models

    ERIC Educational Resources Information Center

    Richter, Tobias

    2006-01-01

    Most reading time studies using naturalistic texts yield data sets characterized by a multilevel structure: Sentences (sentence level) are nested within persons (person level). In contrast to analysis of variance and multiple regression techniques, hierarchical linear models take the multilevel structure of reading time data into account. They…

  18. Physical Self-Concept in Adolescence: Generalizability of a Multidimensional, Hierarchical Model Across Gender and Grade

    ERIC Educational Resources Information Center

    Hagger, Martin S.; Biddle, Stuart J. H.; John Wang, C. K.

    2005-01-01

    This study tests the generalizability of the factor pattern, structural parameters, and latent mean structure of a multidimensional, hierarchical model of physical self-concept in adolescents across gender and grade. A children's version of the Physical Self-Perception Profile (C-PSPP) was administered to seventh-, eighth- and ninth-grade high…

  19. ERP Responses to Violations in the Hierarchical Structure of Functional Categories in Japanese Verb Conjugation

    ERIC Educational Resources Information Center

    Kobayashi, Yuki; Sugioka, Yoko; Ito, Takane

    2018-01-01

    An event-related potential experiment was conducted in order to investigate readers' response to violations in the hierarchical structure of functional categories in Japanese, an agglutinative language where functional heads like Negation (Neg) as well as Tense (Tns) are realized as suffixes. A left-lateralized negativity followed by a P600 was…

  20. The Impact of Adjacent-Dependencies and Staged-Input on the Learnability of Center-Embedded Hierarchical Structures

    ERIC Educational Resources Information Center

    Lai, Jun; Poletiek, Fenna H.

    2011-01-01

    A theoretical debate in artificial grammar learning (AGL) regards the learnability of hierarchical structures. Recent studies using an A[superscript n]B[superscript n] grammar draw conflicting conclusions ([Bahlmann and Friederici, 2006] and [De Vries et al., 2008]). We argue that 2 conditions crucially affect learning A[superscript…

  1. Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics.

    PubMed

    Han, Bing; Peng, Qiang; Li, Ruopeng; Rong, Qikun; Ding, Yang; Akinoglu, Eser Metin; Wu, Xueyuan; Wang, Xin; Lu, Xubing; Wang, Qianming; Zhou, Guofu; Liu, Jun-Ming; Ren, Zhifeng; Giersig, Michael; Herczynski, Andrzej; Kempa, Krzysztof; Gao, Jinwei

    2016-09-26

    An ideal network window electrode for photovoltaic applications should provide an optimal surface coverage, a uniform current density into and/or from a substrate, and a minimum of the overall resistance for a given shading ratio. Here we show that metallic networks with quasi-fractal structure provides a near-perfect practical realization of such an ideal electrode. We find that a leaf venation network, which possesses key characteristics of the optimal structure, indeed outperforms other networks. We further show that elements of hierarchal topology, rather than details of the branching geometry, are of primary importance in optimizing the networks, and demonstrate this experimentally on five model artificial hierarchical networks of varied levels of complexity. In addition to these structural effects, networks containing nanowires are shown to acquire transparency exceeding the geometric constraint due to the plasmonic refraction.

  2. A new hierarchical method to find community structure in networks

    NASA Astrophysics Data System (ADS)

    Saoud, Bilal; Moussaoui, Abdelouahab

    2018-04-01

    Community structure is very important to understand a network which represents a context. Many community detection methods have been proposed like hierarchical methods. In our study, we propose a new hierarchical method for community detection in networks based on genetic algorithm. In this method we use genetic algorithm to split a network into two networks which maximize the modularity. Each new network represents a cluster (community). Then we repeat the splitting process until we get one node at each cluster. We use the modularity function to measure the strength of the community structure found by our method, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our method are highly effective at discovering community structure in both computer-generated and real-world network data.

  3. Complexity and dynamics of topological and community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Berec, Vesna

    2017-07-01

    Complexity is highly susceptible to variations in the network dynamics, reflected on its underlying architecture where topological organization of cohesive subsets into clusters, system's modular structure and resulting hierarchical patterns, are cross-linked with functional dynamics of the system. Here we study connection between hierarchical topological scales of the simplicial complexes and the organization of functional clusters - communities in complex networks. The analysis reveals the full dynamics of different combinatorial structures of q-th-dimensional simplicial complexes and their Laplacian spectra, presenting spectral properties of resulting symmetric and positive semidefinite matrices. The emergence of system's collective behavior from inhomogeneous statistical distribution is induced by hierarchically ordered topological structure, which is mapped to simplicial complex where local interactions between the nodes clustered into subcomplexes generate flow of information that characterizes complexity and dynamics of the full system.

  4. Silk-regulated hierarchical hollow magnetite/carbon nanocomposite spheroids for lithium-ion battery anodes.

    PubMed

    Sheng, Weiqin; Zhu, Guobin; Kaplan, David L; Cao, Chuanbao; Zhu, Hesun; Lu, Qiang

    2015-03-20

    Hierarchical olive-like structured carbon-Fe3O4 nanocomposite particles composed of a hollow interior and a carbon coated surface are prepared by a facile, silk protein-assisted hydrothermal method. Silk nanofibers as templates and carbon precursors first regulate the formation of hollow Fe2O3 microspheres and then they are converted into carbon by a reduction process into Fe3O4. This process significantly simplifies the fabrication and carbon coating processes to form complex hollow structures. When tested as anode materials for lithium-ion batteries, these hollow carbon-coated particles exhibit high capacity (900 mAh g(-1)), excellent cycle stability (180 cycles) and rate performance due to their unique hierarchical hollow structure and carbon coating.

  5. Broadband locally resonant metamaterials with graded hierarchical architecture

    NASA Astrophysics Data System (ADS)

    Liu, Chenchen; Reina, Celia

    2018-03-01

    We investigate the effect of hierarchical designs on the bandgap structure of periodic lattice systems with inner resonators. A detailed parameter study reveals various interesting features of structures with two levels of hierarchy as compared with one level systems with identical static mass. In particular: (i) their overall bandwidth is approximately equal, yet bounded above by the bandwidth of the single-resonator system; (ii) the number of bandgaps increases with the level of hierarchy; and (iii) the spectrum of bandgap frequencies is also enlarged. Taking advantage of these features, we propose graded hierarchical structures with ultra-broadband properties. These designs are validated over analogous continuum models via finite element simulations, demonstrating their capability to overcome the bandwidth narrowness that is typical of resonant metamaterials.

  6. Image processing and applications based on visualizing navigation service

    NASA Astrophysics Data System (ADS)

    Hwang, Chyi-Wen

    2015-07-01

    When facing the "overabundant" of semantic web information, in this paper, the researcher proposes the hierarchical classification and visualizing RIA (Rich Internet Application) navigation system: Concept Map (CM) + Semantic Structure (SS) + the Knowledge on Demand (KOD) service. The aim of the Multimedia processing and empirical applications testing, was to investigating the utility and usability of this visualizing navigation strategy in web communication design, into whether it enables the user to retrieve and construct their personal knowledge or not. Furthermore, based on the segment markets theory in the Marketing model, to propose a User Interface (UI) classification strategy and formulate a set of hypermedia design principles for further UI strategy and e-learning resources in semantic web communication. These research findings: (1) Irrespective of whether the simple declarative knowledge or the complex declarative knowledge model is used, the "CM + SS + KOD navigation system" has a better cognition effect than the "Non CM + SS + KOD navigation system". However, for the" No web design experience user", the navigation system does not have an obvious cognition effect. (2) The essential of classification in semantic web communication design: Different groups of user have a diversity of preference needs and different cognitive styles in the CM + SS + KOD navigation system.

  7. Hierarchical Cu4V2.15O9.38 micro-/nanostructures: a lithium intercalating electrode material

    NASA Astrophysics Data System (ADS)

    Zhou, Liang; Cui, Wangjun; Wu, Jiamin; Zhao, Qingfei; Li, Hexing; Xia, Yongyao; Wang, Yunhua; Yu, Chengzhong

    2011-03-01

    Hierarchical Cu4V2.15O9.38 micro-/nanostructures have been prepared by a facile ``forced hydrolysis'' method, from an aqueous peroxovanadate and cupric nitrate solution in the presence of urea. The hierarchical architectures with diameters of 10-20 µm are assembled from flexible nanosheets and rigid nanoplates with widths of 2-4 µm and lengths of 5-10 µm in a radiative way. The preliminary electrochemical properties of Cu4V2.15O9.38 have been investigated for the first time and correlated with its structure. This material delivers a large discharge capacity of 471 mA h g-1 above 1.5 V, thus making it an interesting electrode material for primary lithium ion batteries used in implantable cardioverter defibrillators.Hierarchical Cu4V2.15O9.38 micro-/nanostructures have been prepared by a facile ``forced hydrolysis'' method, from an aqueous peroxovanadate and cupric nitrate solution in the presence of urea. The hierarchical architectures with diameters of 10-20 µm are assembled from flexible nanosheets and rigid nanoplates with widths of 2-4 µm and lengths of 5-10 µm in a radiative way. The preliminary electrochemical properties of Cu4V2.15O9.38 have been investigated for the first time and correlated with its structure. This material delivers a large discharge capacity of 471 mA h g-1 above 1.5 V, thus making it an interesting electrode material for primary lithium ion batteries used in implantable cardioverter defibrillators. Electronic supplementary information (ESI) available: SEM images of hierarchical Cu4V2.15O9.38, CV curves of the electrode and discharge profiles of the cell made from Cu4V2.15O9.38 hierarchical structures, XRD pattern and SEM images of layered vanadium oxide hydrate, structure model of Cu4V2.15O9.38. See DOI: 10.1039/c0nr00657b

  8. Substrate dependent hierarchical structures of RF sputtered ZnS films

    NASA Astrophysics Data System (ADS)

    Chalana, S. R.; Mahadevan Pillai, V. P.

    2018-05-01

    RF magnetron sputtering technique was employed to fabricate ZnS nanostructures with special emphasis given to study the effect of substrates (quartz, glass and quartz substrate pre-coated with Au, Ag, Cu and Pt) on the structure, surface evolution and optical properties. Type of substrate has a significant influence on the crystalline phase, film morphology, thickness and surface roughness. The present study elucidates the suitability of quartz substrate for the deposition of stable and highly crystalline ZnS films. We found that the role of metal layer on quartz substrate is substantial in the preparation of hierarchical ZnS structures and these structures are of great importance due to its high specific area and potential applications in various fields. A mechanism for morphological evolution of ZnS structures is also presented based on the roughness of substrates and primary nonlocal effects in sputtering. Furthermore, the findings suggest that a controlled growth of hierarchical ZnS structures may be achieved with an ordinary RF sputtering technique by changing the substrate type.

  9. A Hierarchical Modeling Approach to Data Analysis and Study Design in a Multi-Site Experimental fMRI Study

    ERIC Educational Resources Information Center

    Zhou, Bo; Konstorum, Anna; Duong, Thao; Tieu, Kinh H.; Wells, William M.; Brown, Gregory G.; Stern, Hal S.; Shahbaba, Babak

    2013-01-01

    We propose a hierarchical Bayesian model for analyzing multi-site experimental fMRI studies. Our method takes the hierarchical structure of the data (subjects are nested within sites, and there are multiple observations per subject) into account and allows for modeling between-site variation. Using posterior predictive model checking and model…

  10. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration

    NASA Astrophysics Data System (ADS)

    Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.

    2014-03-01

    This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.

  11. Traditional knowledge among Zapotecs of Sierra Madre Del Sur, Oaxaca. Does it represent a base for plant resources management and conservation?

    PubMed Central

    2012-01-01

    Traditional classification systems represent cognitive processes of human cultures in the world. It synthesizes specific conceptions of nature, as well as cumulative learning, beliefs and customs that are part of a particular human community or society. Traditional knowledge has been analyzed from different viewpoints, one of which corresponds to the analysis of ethnoclassifications. In this work, a brief analysis of the botanical traditional knowledge among Zapotecs of the municipality of San Agustin Loxicha, Oaxaca was conducted. The purposes of this study were: a) to analyze the traditional ecological knowledge of local plant resources through the folk classification of both landscapes and plants and b) to determine the role that this knowledge has played in plant resource management and conservation. The study was developed in five communities of San Agustín Loxicha. From field trips, plant specimens were collected and showed to local people in order to get the Spanish or Zapotec names; through interviews with local people, we obtained names and identified classification categories of plants, vegetation units, and soil types. We found a logic structure in Zapotec plant names, based on linguistic terms, as well as morphological and ecological caracteristics. We followed the classification principles proposed by Berlin [6] in order to build a hierarchical structure of life forms, names and other characteristics mentioned by people. We recorded 757 plant names. Most of them (67%) have an equivalent Zapotec name and the remaining 33% had mixed names with Zapotec and Spanish terms. Plants were categorized as native plants, plants introduced in pre-Hispanic times, or plants introduced later. All of them are grouped in a hierarchical classification, which include life form, generic, specific, and varietal categories. Monotypic and polytypic names are used to further classify plants. This holistic classification system plays an important role for local people in many aspects: it helps to organize and make sense of the diversity, to understand the interrelation among plants–soil–vegetation and to classify their physical space since they relate plants with a particular vegetation unit and a kind of soil. The locals also make a rational use of these elements, because they know which crops can grow in any vegetation unit, or which places are indicated to recollect plants. These aspects are interconnected and could be fundamental for a rational use and management of plant resources. PMID:22789155

  12. Durable and mass producible polymer surface structures with different combinations of micro-micro hierarchy

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.

    2016-01-01

    Extensive studies have been performed with the aim of fabricating hierarchical surface structures inspired by nature. However, synthetic hierarchical structures have to sacrifice mechanical resistance to functionality by introducing finer scaled structures. Therefore, surfaces are less durable. Surface micro-micro hierarchy has been proven to be effective in replacing micro-nano hierarchy in the sense of superhydrophobicity. However, less attention has been paid to the combined micro-micro hierarchies with surface pillars and pits incorporated together. The fabrication of this type of hierarchy may be less straightforward, with the possibility of being a complicated multi-step process. In this study, we present a simple yet mass producible fabrication method for hierarchical structures with different combinations of surface pillars and pits. The fabrication was based on only one aluminum (Al) mold with sequential mountings. The fabricated structures exhibit high mechanical durability and structural stabilities with a normal load up to 100 kg. In addition, the theoretical estimation of the wetting state shows a promising way of stabilizing a water droplet on the surface pit structures with a more stable Cassie-Baxter state.

  13. Personalising e-learning modules: targeting Rasmussen levels using XML.

    PubMed

    Renard, J M; Leroy, S; Camus, H; Picavet, M; Beuscart, R

    2003-01-01

    The development of Internet technologies has made it possible to increase the number and the diversity of on-line resources for teachers and students. Initiatives like the French-speaking Virtual Medical University Project (UMVF) try to organise the access to these resources. But both teachers and students are working on a partly redundant subset of knowledge. From the analysis of some French courses we propose a model for knowledge organisation derived from Rasmussen's stepladder. In the context of decision-making Rasmussen has identified skill-based, rule-based and knowledge-based levels for the mental process. In the medical context of problem-solving, we apply these three levels to the definition of three students levels: beginners, intermediate-level learners, experts. Based on our model, we build a representation of the hierarchical structure of data using XML language. We use XSLT Transformation Language in order to filter relevant data according to student level and to propose an appropriate display on students' terminal. The model and the XML implementation we define help to design tools for building personalised e-learning modules.

  14. Synthesis of hierarchical ZnV2O6 nanosheets with enhanced activity and stability for visible light driven CO2 reduction to solar fuels

    NASA Astrophysics Data System (ADS)

    Bafaqeer, Abdullah; Tahir, Muhammad; Amin, Nor Aishah Saidina

    2018-03-01

    Hierarchical nanostructures have lately garnered enormous attention because of their remarkable performances in energy storage and catalysis applications. In this study, novel hierarchical ZnV2O6 nanosheets, formulated by one-step solvothermal method, for enhanced photocatalytic CO2 reduction with H2O to solar fuels has been investigated. The structure and properties of the catalysts were characterized by XRD, FESEM, TEM, BET, UV-vis, Raman and PL spectroscopy. The hierarchical ZnV2O6 nanosheets show excellent performance towards photoreduction of CO2 with H2O to CH3OH, CH3COOH and HCOOH under visible light. The main product yield, CH3OH of 3253.84 μmol g-cat-1 was obtained over ZnV2O6, 3.4 times the amount of CH3OH produced over the ZnO/V2O5 composite (945.28 μmol g-cat-1). In addition, CH3OH selectivity of 39.96% achieved over ZnO/V2O5, increased to 48.78% in ZnV2O6 nanosheets. This significant improvement in photo-activity over ZnV2O6 structure was due to hierarchical structure with enhanced charge separation by V2O5. The obtained ZnV2O6 hierarchical nanosheets exhibited excellent photocatalytic stability for selective CH3OH production.

  15. Topology of the correlation networks among major currencies using hierarchical structure methods

    NASA Astrophysics Data System (ADS)

    Keskin, Mustafa; Deviren, Bayram; Kocakaplan, Yusuf

    2011-02-01

    We studied the topology of correlation networks among 34 major currencies using the concept of a minimal spanning tree and hierarchical tree for the full years of 2007-2008 when major economic turbulence occurred. We used the USD (US Dollar) and the TL (Turkish Lira) as numeraires in which the USD was the major currency and the TL was the minor currency. We derived a hierarchical organization and constructed minimal spanning trees (MSTs) and hierarchical trees (HTs) for the full years of 2007, 2008 and for the 2007-2008 period. We performed a technique to associate a value of reliability to the links of MSTs and HTs by using bootstrap replicas of data. We also used the average linkage cluster analysis for obtaining the hierarchical trees in the case of the TL as the numeraire. These trees are useful tools for understanding and detecting the global structure, taxonomy and hierarchy in financial data. We illustrated how the minimal spanning trees and their related hierarchical trees developed over a period of time. From these trees we identified different clusters of currencies according to their proximity and economic ties. The clustered structure of the currencies and the key currency in each cluster were obtained and we found that the clusters matched nicely with the geographical regions of corresponding countries in the world such as Asia or Europe. As expected the key currencies were generally those showing major economic activity.

  16. A hierarchically distributed architecture for fault isolation expert systems on the space station

    NASA Technical Reports Server (NTRS)

    Miksell, Steve; Coffer, Sue

    1987-01-01

    The Space Station Axiomatic Fault Isolating Expert Systems (SAFTIES) system deals with the hierarchical distribution of control and knowledge among independent expert systems doing fault isolation and scheduling of Space Station subsystems. On its lower level, fault isolation is performed on individual subsystems. These fault isolation expert systems contain knowledge about the performance requirements of their particular subsystem and corrective procedures which may be involved in repsonse to certain performance errors. They can control the functions of equipment in their system and coordinate system task schedules. On a higher level, the Executive contains knowledge of all resources, task schedules for all systems, and the relative priority of all resources and tasks. The executive can override any subsystem task schedule in order to resolve use conflicts or resolve errors that require resources from multiple subsystems. Interprocessor communication is implemented using the SAFTIES Communications Interface (SCI). The SCI is an application layer protocol which supports the SAFTIES distributed multi-level architecture.

  17. HIERARCHICAL STRUCTURE OF MAGNETOHYDRODYNAMIC TURBULENCE IN POSITION-POSITION-VELOCITY SPACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhart, Blakesley; Lazarian, A.; Goodman, Alyssa

    2013-06-20

    Magnetohydrodynamic turbulence is able to create hierarchical structures in the interstellar medium (ISM) that are correlated on a wide range of scales via the energy cascade. We use hierarchical tree diagrams known as dendrograms to characterize structures in synthetic position-position-velocity (PPV) emission cubes of isothermal magnetohydrodynamic turbulence. We show that the structures and degree of hierarchy observed in PPV space are related to the presence of self-gravity and the global sonic and Alfvenic Mach numbers. Simulations with higher Alfvenic Mach number, self-gravity and supersonic flows display enhanced hierarchical structure. We observe a strong dependency on the sonic and Alfvenic Machmore » numbers and self-gravity when we apply the statistical moments (i.e., mean, variance, skewness, kurtosis) to the leaf and node distribution of the dendrogram. Simulations with self-gravity, larger magnetic field and higher sonic Mach number have dendrogram distributions with higher statistical moments. Application of the dendrogram to three-dimensional density cubes, also known as position-position-position (PPP) cubes, reveals that the dominant emission contours in PPP and PPV are related for supersonic gas but not for subsonic. We also explore the effects of smoothing, thermal broadening, and velocity resolution on the dendrograms in order to make our study more applicable to observational data. These results all point to hierarchical tree diagrams as being a promising additional tool for studying ISM turbulence and star forming regions for obtaining information on the degree of self-gravity, the Mach numbers and the complicated relationship between PPV and PPP data.« less

  18. Models as Relational Categories

    NASA Astrophysics Data System (ADS)

    Kokkonen, Tommi

    2017-11-01

    Model-based learning (MBL) has an established position within science education. It has been found to enhance conceptual understanding and provide a way for engaging students in authentic scientific activity. Despite ample research, few studies have examined the cognitive processes regarding learning scientific concepts within MBL. On the other hand, recent research within cognitive science has examined the learning of so-called relational categories. Relational categories are categories whose membership is determined on the basis of the common relational structure. In this theoretical paper, I argue that viewing models as relational categories provides a well-motivated cognitive basis for MBL. I discuss the different roles of models and modeling within MBL (using ready-made models, constructive modeling, and generative modeling) and discern the related cognitive aspects brought forward by the reinterpretation of models as relational categories. I will argue that relational knowledge is vital in learning novel models and in the transfer of learning. Moreover, relational knowledge underlies the coherent, hierarchical knowledge of experts. Lastly, I will examine how the format of external representations may affect the learning of models and the relevant relations. The nature of the learning mechanisms underlying students' mental representations of models is an interesting open question to be examined. Furthermore, the ways in which the expert-like knowledge develops and how to best support it is in need of more research. The discussion and conceptualization of models as relational categories allows discerning students' mental representations of models in terms of evolving relational structures in greater detail than previously done.

  19. The synthesis map is a multidimensional educational tool that provides insight into students' mental models and promotes students' synthetic knowledge generation.

    PubMed

    Ortega, Ryan A; Brame, Cynthia J

    2015-01-01

    Concept mapping was developed as a method of displaying and organizing hierarchical knowledge structures. Using the new, multidimensional presentation software Prezi, we have developed a new teaching technique designed to engage higher-level skills in the cognitive domain. This tool, synthesis mapping, is a natural evolution of concept mapping, which utilizes embedding to layer information within concepts. Prezi's zooming user interface lets the author of the presentation use both depth as well as distance to show connections between data, ideas, and concepts. Students in the class Biology of Cancer created synthesis maps to illustrate their knowledge of tumorigenesis. Students used multiple organizational schemes to build their maps. We present an analysis of student work, placing special emphasis on organization within student maps and how the organization of knowledge structures in student maps can reveal strengths and weaknesses in student understanding or instruction. We also provide a discussion of best practices for instructors who would like to implement synthesis mapping in their classrooms. © 2015 R. A. Ortega and C. J. Brame et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Metal-Organic Frameworks-Derived Hierarchical Co3O4 Structures as Efficient Sensing Materials for Acetone Detection.

    PubMed

    Zhang, Rui; Zhou, Tingting; Wang, Lili; Zhang, Tong

    2018-03-21

    Highly sensitive and stable gas sensors have attracted much attention because they are the key to innovations in the fields of environment, health, energy savings and security, etc. Sensing materials, which influence the practical sensing performance, are the crucial parts for gas sensors. Metal-organic frameworks (MOFs) are considered as alluring sensing materials for gas sensors because of the possession of high specific surface area, unique morphology, abundant metal sites, and functional linkers. Herein, four kinds of porous hierarchical Co 3 O 4 structures have been selectively controlled by optimizing the thermal decomposition (temperature, rate, and atmosphere) using ZIF-67 as precursor that was obtained from coprecipitation method with the co-assistance of cobalt salt and 2-methylimidazole in the solution of methanol. These hierarchical Co 3 O 4 structures, with controllable cross-linked channels, meso-/micropores, and adjustable surface area, are efficient catalytic materials for gas sensing. Benefits from structural advantages, core-shell, and porous core-shell Co 3 O 4 exhibit enhanced sensing performance compared to those of porous popcorn and nanoparticle Co 3 O 4 to acetone gas. These novel MOF-templated Co 3 O 4 hierarchical structures are so fantastic that they can be expected to be efficient sensing materials for development of low-temperature operating gas sensors.

  1. A Facile Method to Fabricate Anisotropic Hydrogels with Perfectly Aligned Hierarchical Fibrous Structures.

    PubMed

    Mredha, Md Tariful Islam; Guo, Yun Zhou; Nonoyama, Takayuki; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping

    2018-03-01

    Natural structural materials (such as tendons and ligaments) are comprised of multiscale hierarchical architectures, with dimensions ranging from nano- to macroscale, which are difficult to mimic synthetically. Here a bioinspired, facile method to fabricate anisotropic hydrogels with perfectly aligned multiscale hierarchical fibrous structures similar to those of tendons and ligaments is reported. The method includes drying a diluted physical hydrogel in air by confining its length direction. During this process, sufficiently high tensile stress is built along the length direction to align the polymer chains and multiscale fibrous structures (from nano- to submicro- to microscale) are spontaneously formed in the bulk material, which are well-retained in the reswollen gel. The method is useful for relatively rigid polymers (such as alginate and cellulose), which are susceptible to mechanical signal. By controlling the drying with or without prestretching, the degree of alignment, size of superstructures, and the strength of supramolecular interactions can be tuned, which sensitively influence the strength and toughness of the hydrogels. The mechanical properties are comparable with those of natural ligaments. This study provides a general strategy for designing hydrogels with highly ordered hierarchical structures, which opens routes for the development of many functional biomimetic materials for biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The well-designed hierarchical structure of Musa basjoo for supercapacitors

    PubMed Central

    Zheng, Kaiwen; Fan, Xiaorong; Mao, Yingzhu; Lin, Jingkai; Dai, Wenxuan; Zhang, Junying; Cheng, Jue

    2016-01-01

    Application of biological structure is one of the hottest topics in the field of science and technology. The unimaginable and excellent architectures of living beings supporting their vital activities have attracted the interests of worldwide researchers. An intriguing example is Musa basjoo which belongs to the herb, while appears like a tree. The profound mystery of structure and potential application of Musa basjoo have not been probed. Here we show the finding of the hierarchical structure of Musa basjoo and the outstanding electrochemical performance of the super-capacitors fabricated through the simple carbonization of Musa basjoo followed by KOH activation. Musa basjoo has three layers of structure: nanometer-level, micrometer-level and millimeter-level. The nanometer-level structure constructs the micrometer-level structure, while the micrometer-level structure constructs the millimeter-level structure. Based on this hierarchical structure, Musa basjoo reduces the unnecessary weight and therefore supports its huge body. The super-capacitors derived from Musa basjoo display a high specific capacitance and a good cycling stability. This enlightening work opens a window for the applications of the natural structure and we hope that more and more people could pay attention to the bio-inspired materials. PMID:26842714

  3. The well-designed hierarchical structure of Musa basjoo for supercapacitors.

    PubMed

    Zheng, Kaiwen; Fan, Xiaorong; Mao, Yingzhu; Lin, Jingkai; Dai, Wenxuan; Zhang, Junying; Cheng, Jue

    2016-02-04

    Application of biological structure is one of the hottest topics in the field of science and technology. The unimaginable and excellent architectures of living beings supporting their vital activities have attracted the interests of worldwide researchers. An intriguing example is Musa basjoo which belongs to the herb, while appears like a tree. The profound mystery of structure and potential application of Musa basjoo have not been probed. Here we show the finding of the hierarchical structure of Musa basjoo and the outstanding electrochemical performance of the super-capacitors fabricated through the simple carbonization of Musa basjoo followed by KOH activation. Musa basjoo has three layers of structure: nanometer-level, micrometer-level and millimeter-level. The nanometer-level structure constructs the micrometer-level structure, while the micrometer-level structure constructs the millimeter-level structure. Based on this hierarchical structure, Musa basjoo reduces the unnecessary weight and therefore supports its huge body. The super-capacitors derived from Musa basjoo display a high specific capacitance and a good cycling stability. This enlightening work opens a window for the applications of the natural structure and we hope that more and more people could pay attention to the bio-inspired materials.

  4. The well-designed hierarchical structure of Musa basjoo for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zheng, Kaiwen; Fan, Xiaorong; Mao, Yingzhu; Lin, Jingkai; Dai, Wenxuan; Zhang, Junying; Cheng, Jue

    2016-02-01

    Application of biological structure is one of the hottest topics in the field of science and technology. The unimaginable and excellent architectures of living beings supporting their vital activities have attracted the interests of worldwide researchers. An intriguing example is Musa basjoo which belongs to the herb, while appears like a tree. The profound mystery of structure and potential application of Musa basjoo have not been probed. Here we show the finding of the hierarchical structure of Musa basjoo and the outstanding electrochemical performance of the super-capacitors fabricated through the simple carbonization of Musa basjoo followed by KOH activation. Musa basjoo has three layers of structure: nanometer-level, micrometer-level and millimeter-level. The nanometer-level structure constructs the micrometer-level structure, while the micrometer-level structure constructs the millimeter-level structure. Based on this hierarchical structure, Musa basjoo reduces the unnecessary weight and therefore supports its huge body. The super-capacitors derived from Musa basjoo display a high specific capacitance and a good cycling stability. This enlightening work opens a window for the applications of the natural structure and we hope that more and more people could pay attention to the bio-inspired materials.

  5. Sequence-specific bias correction for RNA-seq data using recurrent neural networks.

    PubMed

    Zhang, Yao-Zhong; Yamaguchi, Rui; Imoto, Seiya; Miyano, Satoru

    2017-01-25

    The recent success of deep learning techniques in machine learning and artificial intelligence has stimulated a great deal of interest among bioinformaticians, who now wish to bring the power of deep learning to bare on a host of bioinformatical problems. Deep learning is ideally suited for biological problems that require automatic or hierarchical feature representation for biological data when prior knowledge is limited. In this work, we address the sequence-specific bias correction problem for RNA-seq data redusing Recurrent Neural Networks (RNNs) to model nucleotide sequences without pre-determining sequence structures. The sequence-specific bias of a read is then calculated based on the sequence probabilities estimated by RNNs, and used in the estimation of gene abundance. We explore the application of two popular RNN recurrent units for this task and demonstrate that RNN-based approaches provide a flexible way to model nucleotide sequences without knowledge of predetermined sequence structures. Our experiments show that training a RNN-based nucleotide sequence model is efficient and RNN-based bias correction methods compare well with the-state-of-the-art sequence-specific bias correction method on the commonly used MAQC-III data set. RNNs provides an alternative and flexible way to calculate sequence-specific bias without explicitly pre-determining sequence structures.

  6. EPA Web Taxonomy

    EPA Pesticide Factsheets

    EPA's Web Taxonomy is a faceted hierarchical vocabulary used to tag web pages with terms from a controlled vocabulary. Tagging enables search and discovery of EPA's Web based information assests. EPA's Web Taxonomy is being provided in Simple Knowledge Organization System (SKOS) format. SKOS is a standard for sharing and linking knowledge organization systems that promises to make Federal terminology resources more interoperable.

  7. Task Switching in a Hierarchical Task Structure: Evidence for the Fragility of the Task Repetition Benefit

    ERIC Educational Resources Information Center

    Lien, Mei-Ching; Ruthruff, Eric

    2004-01-01

    This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms.…

  8. Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces.

    PubMed

    Jung, Woo-Bin; Cho, Kyeong Min; Lee, Won-Kyu; Odom, Teri W; Jung, Hee-Tae

    2018-01-10

    One of the most interesting topics in physical science and materials science is the creation of complex wrinkled structures on thin-film surfaces because of their several advantages of high surface area, localized strain, and stress tolerance. In this study, a significant step was taken toward solving limitations imposed by the fabrication of previous artificial wrinkles. A universal method for preparing hierarchical three-dimensional wrinkle structures of thin films on a multiple scale (e.g., nanometers to micrometers) by sequential wrinkling with different skin layers was developed. Notably, this method was not limited to specific materials, and it was applicable to fabricating hierarchical wrinkles on all of the thin-film surfaces tested thus far, including those of metals, two-dimensional and one-dimensional materials, and polymers. The hierarchical wrinkles with multiscale structures were prepared by sequential wrinkling, in which a sacrificial layer was used as the additional skin layer between sequences. For example, a hierarchical MoS 2 wrinkle exhibited highly enhanced catalytic behavior because of the superaerophobicity and effective surface area, which are related to topological effects. As the developed method can be adopted to a majority of thin films, it is thought to be a universal method for enhancing the physical properties of various materials.

  9. Extended Full Computation-Tree Logic with Sequence Modal Operator: Representing Hierarchical Tree Structures

    NASA Astrophysics Data System (ADS)

    Kamide, Norihiro; Kaneiwa, Ken

    An extended full computation-tree logic, CTLS*, is introduced as a Kripke semantics with a sequence modal operator. This logic can appropriately represent hierarchical tree structures where sequence modal operators in CTLS* are applied to tree structures. An embedding theorem of CTLS* into CTL* is proved. The validity, satisfiability and model-checking problems of CTLS* are shown to be decidable. An illustrative example of biological taxonomy is presented using CTLS* formulas.

  10. Bio-inspired fabrication of stimuli-responsive photonic crystals with hierarchical structures and their applications

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Peng, Wenhong; Zhu, Shenmin; Zhang, Di

    2016-03-01

    When the constitutive materials of photonic crystals (PCs) are stimuli-responsive, the resultant PCs exhibit optical properties that can be tuned by the stimuli. This can be exploited for promising applications in colour displays, biological and chemical sensors, inks and paints, and many optically active components. However, the preparation of the required photonic structures is the first issue to be solved. In the past two decades, approaches such as microfabrication and self-assembly have been developed to incorporate stimuli-responsive materials into existing periodic structures for the fabrication of PCs, either as the initial building blocks or as the surrounding matrix. Generally, the materials that respond to thermal, pH, chemical, optical, electrical, or magnetic stimuli are either soft or aggregate, which is why the manufacture of three-dimensional hierarchical photonic structures with responsive properties is a great challenge. Recently, inspired by biological PCs in nature which exhibit both flexible and responsive properties, researchers have developed various methods to synthesize metals and metal oxides with hierarchical structures by using a biological PC as the template. This review will focus on the recent developments in this field. In particular, PCs with biological hierarchical structures that can be tuned by external stimuli have recently been successfully fabricated. These findings offer innovative insights into the design of responsive PCs and should be of great importance for future applications of these materials.

  11. From symptoms to causes: diversity effects in diagnostic reasoning.

    PubMed

    Kim, Nancy S; Keil, Frank C

    2003-01-01

    A single causal agent can often give rise to a cascade of consequences that can be envisioned as a branching pathway in which symptoms are the terminal nodes. In three studies, we investigated whether reasoning about root causes on the basis of such symptoms would conform to a diversity effect analogous to that found in inductive reasoning about properties of hierarchically organized categories. A strong diversity effect was found both for reasoning about medical diseases that drew on existing background knowledge and for reasoning that did not. Specifically, the presence of a root cause was more likely to be induced when the symptoms present were further apart in the branching structure.

  12. Web-Based Collaborative Publications System: R&Tserve

    NASA Technical Reports Server (NTRS)

    Abrams, Steve

    1997-01-01

    R&Tserve is a publications system based on 'commercial, off-the-shelf' (COTS) software that provides a persistent, collaborative workspace for authors and editors to support the entire publication development process from initial submission, through iterative editing in a hierarchical approval structure, and on to 'publication' on the WWW. It requires no specific knowledge of the WWW (beyond basic use) or HyperText Markup Language (HTML). Graphics and URLs are automatically supported. The system includes a transaction archive, a comments utility, help functionality, automated graphics conversion, automated table generation, and an email-based notification system. It may be configured and administered via the WWW and can support publications ranging from single page documents to multiple-volume 'tomes'.

  13. Managing and Querying Image Annotation and Markup in XML.

    PubMed

    Wang, Fusheng; Pan, Tony; Sharma, Ashish; Saltz, Joel

    2010-01-01

    Proprietary approaches for representing annotations and image markup are serious barriers for researchers to share image data and knowledge. The Annotation and Image Markup (AIM) project is developing a standard based information model for image annotation and markup in health care and clinical trial environments. The complex hierarchical structures of AIM data model pose new challenges for managing such data in terms of performance and support of complex queries. In this paper, we present our work on managing AIM data through a native XML approach, and supporting complex image and annotation queries through native extension of XQuery language. Through integration with xService, AIM databases can now be conveniently shared through caGrid.

  14. Managing and Querying Image Annotation and Markup in XML

    PubMed Central

    Wang, Fusheng; Pan, Tony; Sharma, Ashish; Saltz, Joel

    2010-01-01

    Proprietary approaches for representing annotations and image markup are serious barriers for researchers to share image data and knowledge. The Annotation and Image Markup (AIM) project is developing a standard based information model for image annotation and markup in health care and clinical trial environments. The complex hierarchical structures of AIM data model pose new challenges for managing such data in terms of performance and support of complex queries. In this paper, we present our work on managing AIM data through a native XML approach, and supporting complex image and annotation queries through native extension of XQuery language. Through integration with xService, AIM databases can now be conveniently shared through caGrid. PMID:21218167

  15. Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics

    PubMed Central

    Han, Bing; Peng, Qiang; Li, Ruopeng; Rong, Qikun; Ding, Yang; Akinoglu, Eser Metin; Wu, Xueyuan; Wang, Xin; Lu, Xubing; Wang, Qianming; Zhou, Guofu; Liu, Jun-Ming; Ren, Zhifeng; Giersig, Michael; Herczynski, Andrzej; Kempa, Krzysztof; Gao, Jinwei

    2016-01-01

    An ideal network window electrode for photovoltaic applications should provide an optimal surface coverage, a uniform current density into and/or from a substrate, and a minimum of the overall resistance for a given shading ratio. Here we show that metallic networks with quasi-fractal structure provides a near-perfect practical realization of such an ideal electrode. We find that a leaf venation network, which possesses key characteristics of the optimal structure, indeed outperforms other networks. We further show that elements of hierarchal topology, rather than details of the branching geometry, are of primary importance in optimizing the networks, and demonstrate this experimentally on five model artificial hierarchical networks of varied levels of complexity. In addition to these structural effects, networks containing nanowires are shown to acquire transparency exceeding the geometric constraint due to the plasmonic refraction. PMID:27667099

  16. Monodisperse Carbon Nanospheres with Hierarchical Porous Structure as Electrode Material for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Yang, Xiutao; Xia, Hui; Liang, Zhongguan; Li, Haiyan; Yu, Hongwen

    2017-09-01

    Carbon nanospheres with distinguishable microstructure were prepared by carbonization and subsequent KOH activation of F108/resorcinol-formaldehyde composites. The dosage of triblock copolymer Pluronic F108 is crucial to the microstructure differences. With the adding of F108, the polydisperse carbon nanospheres (PCNS) with microporous structure, monodisperse carbon nanospheres (MCNS) with hierarchical porous structure, and agglomerated carbon nanospheres (ACNS) were obtained. Their microstructure and capacitance properties were carefully compared. As a result of the synergetic effect of mono-dispersion spheres and hierarchical porous structures, the MCNS sample shows improved electrochemical performance, i.e., the highest specific capacitance of 224 F g-1 (0.2 A g-1), the best rate capability (73% retention at 20 A g-1), and the most excellent capacitance retention of 93% over 10,000 cycles, making it to be the promising electrode material for high-performance supercapacitors.

  17. Dependency structure and scaling properties of financial time series are related

    PubMed Central

    Morales, Raffaello; Di Matteo, T.; Aste, Tomaso

    2014-01-01

    We report evidence of a deep interplay between cross-correlations hierarchical properties and multifractality of New York Stock Exchange daily stock returns. The degree of multifractality displayed by different stocks is found to be positively correlated to their depth in the hierarchy of cross-correlations. We propose a dynamical model that reproduces this observation along with an array of other empirical properties. The structure of this model is such that the hierarchical structure of heterogeneous risks plays a crucial role in the time evolution of the correlation matrix, providing an interpretation to the mechanism behind the interplay between cross-correlation and multifractality in financial markets, where the degree of multifractality of stocks is associated to their hierarchical positioning in the cross-correlation structure. Empirical observations reported in this paper present a new perspective towards the merging of univariate multi scaling and multivariate cross-correlation properties of financial time series. PMID:24699417

  18. Semiconductor hierarchically structured flower-like clusters for dye-sensitized solar cells with nearly 100% charge collection efficiency.

    PubMed

    Xin, Xukai; Liu, Hsiang-Yu; Ye, Meidan; Lin, Zhiqun

    2013-11-21

    By combining the ease of producing ZnO nanoflowers with the advantageous chemical stability of TiO2, hierarchically structured hollow TiO2 flower-like clusters were yielded via chemical bath deposition (CBD) of ZnO nanoflowers, followed by their conversion into TiO2 flower-like clusters in the presence of TiO2 precursors. The effects of ZnO precursor concentration, precursor amount, and reaction time on the formation of ZnO nanoflowers were systematically explored. Dye-sensitized solar cells fabricated by utilizing these hierarchically structured ZnO and TiO2 flower clusters exhibited a power conversion efficiency of 1.16% and 2.73%, respectively, under 100 mW cm(-2) illumination. The intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) studies suggested that flower-like structures had a fast electron transit time and their charge collection efficiency was nearly 100%.

  19. Dependency structure and scaling properties of financial time series are related

    NASA Astrophysics Data System (ADS)

    Morales, Raffaello; Di Matteo, T.; Aste, Tomaso

    2014-04-01

    We report evidence of a deep interplay between cross-correlations hierarchical properties and multifractality of New York Stock Exchange daily stock returns. The degree of multifractality displayed by different stocks is found to be positively correlated to their depth in the hierarchy of cross-correlations. We propose a dynamical model that reproduces this observation along with an array of other empirical properties. The structure of this model is such that the hierarchical structure of heterogeneous risks plays a crucial role in the time evolution of the correlation matrix, providing an interpretation to the mechanism behind the interplay between cross-correlation and multifractality in financial markets, where the degree of multifractality of stocks is associated to their hierarchical positioning in the cross-correlation structure. Empirical observations reported in this paper present a new perspective towards the merging of univariate multi scaling and multivariate cross-correlation properties of financial time series.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong; State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080; Zhu, Qingshan, E-mail: qszhu@home.ipe.ac.cn

    {beta}-Ni(OH){sub 2} hierarchical micro-flowers, hierarchical hollow microspheres and nanosheets were synthesized via a facile, single-step and selected-control hydrothermal method. Both hierarchical micro-flowers and hierarchical hollow microspheres were built from two-dimensional nanosheets with thickness of 50-100 nm. The as-obtained products were characterized by Brunauer-Emmett-Teller (BET) surface area analysis, X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM). It was observed that marked morphological changes in {beta}-Ni(OH){sub 2} depended on the initial concentrations of Ni{sup 2+} ions and glycine. A possible growth mechanism was proposed based on experimental results. In addition, the effect of morphology on the electrochemical properties wasmore » also investigated. Both hierarchical micro-flowers and hierarchical hollow microspheres exhibited enhanced specific capacity and high-rate discharge ability as compared with pure Ni(OH){sub 2} nanosheets. Investigations confirmed that hierarchical structures had a pronounced influence upon the electrochemical performance of nickel hydroxide.« less

  1. Fabrication of hierarchically branched SnO2 nanowires by two-step deposition method and their applications to electrocatalyst support and Li ion electrode

    NASA Astrophysics Data System (ADS)

    Lee, Sang Ho; Jo, Yong-Ryun; Noh, Yuseong; Kim, Bong-Joong; Kim, Won Bae

    2017-11-01

    This paper reports hierarchically branched structures of tin dioxide nanowires for use in electrochemical energy conversion and storage electrode systems. The shallow tin dioxide branches are epitaxially grown on the tin dioxide nanowire backbones that are directly formed on current collectors. The branched tin dioxide nanowires are applied as anode electrodes for lithium-ion batteries, while palladium-incorporated branched nanowires are utilized as electrocatalysts for ethanol electrooxidation reactions. The structural benefits of these hierarchical platforms, such as enlarged electrochemical active surface area, void space formed between the branched structures, and conformal contact of the electroactive materials with current collectors, play important roles in improving the electrochemical Li-ion storage as well as electrocatalytic activity.

  2. Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity.

    PubMed

    Chen, Chao; Yang, Seung-Tae; Ahn, Wha-Seung; Ryoo, Ryong

    2009-06-28

    A polyethylenimine-impregnated hierarchical silica monolith exhibited significantly higher CO(2) capturing capacity than other silica-supported amine sorbents, and produced a reversible and durable sorption performance.

  3. Glycol-modified silanes: novel possibilities for the synthesis of hierarchically organized (hybrid) porous materials.

    PubMed

    Hartmann, Sarah; Brandhuber, Doris; Hüsing, Nicola

    2007-09-01

    The preparation of porous hierarchical architectures that have structural features spanning from the nanometer to micrometer and even larger dimensions and that exhibit certain functionalities is one of the new challenging frontiers in materials chemistry. The sol-gel process is one of the most promising synthesis routes toward such materials because it not only offers the possibility to incorporate organic functions into the porous host but also offers the possibility to deliberately tailor the pore structure. In this Account, the opportunities given by the application of novel diol-modified silanes are discussed for the synthesis of hierarchically organized inorganic and also inorganic-organic porous monoliths.

  4. Fabrication of hierarchical feather-mimetic polymer nanofibres

    NASA Astrophysics Data System (ADS)

    Ouyang, Shenshen; Wang, Tao; Zhong, Longgang; Peng, Meiling; Yao, Juming; Wang, Sheng

    2018-01-01

    In this study, hierarchically feather-mimetic structures formed of poly(m-phenylene isophthalamide) (PMIA) nanofibres were prepared by electrospinning and subsequent crystallisation for superwettability applications. X-ray diffraction measurementsand scanning electron microscopy show that a feather-mimetic structure of crystallised nanoflakes was formed following a hydrothermal treatment process. The nanoflakes formed a nanosized fine texture on top of a coarser-textured membrane, which greatly improved the membrane roughness and yielded a hierarchical topography. After fluorination, the membrane exhibited superamphiphobicity, with surface contact angles of 151° and 136° for water and hexadecane, respectively. The method provides new insight for the design and development of functional bionic membranes based on PMIA.

  5. Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness

    NASA Astrophysics Data System (ADS)

    Barthwal, Sumit; Lim, Si-Hyung

    2015-02-01

    We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.

  6. Dynamic knowledge representation using agent-based modeling: ontology instantiation and verification of conceptual models.

    PubMed

    An, Gary

    2009-01-01

    The sheer volume of biomedical research threatens to overwhelm the capacity of individuals to effectively process this information. Adding to this challenge is the multiscale nature of both biological systems and the research community as a whole. Given this volume and rate of generation of biomedical information, the research community must develop methods for robust representation of knowledge in order for individuals, and the community as a whole, to "know what they know." Despite increasing emphasis on "data-driven" research, the fact remains that researchers guide their research using intuitively constructed conceptual models derived from knowledge extracted from publications, knowledge that is generally qualitatively expressed using natural language. Agent-based modeling (ABM) is a computational modeling method that is suited to translating the knowledge expressed in biomedical texts into dynamic representations of the conceptual models generated by researchers. The hierarchical object-class orientation of ABM maps well to biomedical ontological structures, facilitating the translation of ontologies into instantiated models. Furthermore, ABM is suited to producing the nonintuitive behaviors that often "break" conceptual models. Verification in this context is focused at determining the plausibility of a particular conceptual model, and qualitative knowledge representation is often sufficient for this goal. Thus, utilized in this fashion, ABM can provide a powerful adjunct to other computational methods within the research process, as well as providing a metamodeling framework to enhance the evolution of biomedical ontologies.

  7. Structure and mechanical behavior of human hair.

    PubMed

    Yu, Yang; Yang, Wen; Wang, Bin; Meyers, Marc André

    2017-04-01

    The understanding of the mechanical behavior of hair under various conditions broadens our knowledge in biological materials science and contributes to the cosmetic industry. The hierarchical organization of hair is studied from the intermediate filament to the structural levels. The effects of strain rate, relative humidity, and temperature are evaluated. Hair exhibits a high tensile strength, 150-270MPa, which is significantly dependent on strain rate and humidity. The strain-rate sensitivity, approximately 0.06-0.1, is comparable to that of other keratinous materials and common synthetic polymers. The structures of the internal cortex and surface cuticle are affected by the large tensile extension. One distinguishing feature, the unwinding of the α-helix and the possible transformation to β-sheet structure of keratin under tension, which affects the ductility of hair, is analytically evaluated and incorporated into a constitutive equation. A good agreement with the experimental results is obtained. This model elucidates the tensile response of the α-keratin fibers. The contributions of elastic and plastic strains on reloading are evaluated and correlated to structural changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins

    PubMed Central

    Wei, Yujie; Li, Yongqiang; Zhu, Lianchun; Liu, Yao; Lei, Xianqi; Wang, Gang; Wu, Yanxin; Mi, Zhenli; Liu, Jiabin; Wang, Hongtao; Gao, Huajian

    2014-01-01

    The strength–ductility trade-off has been a long-standing dilemma in materials science. This has limited the potential of many structural materials, steels in particular. Here we report a way of enhancing the strength of twinning-induced plasticity steel at no ductility trade-off. After applying torsion to cylindrical twinning-induced plasticity steel samples to generate a gradient nanotwinned structure along the radial direction, we find that the yielding strength of the material can be doubled at no reduction in ductility. It is shown that this evasion of strength–ductility trade-off is due to the formation of a gradient hierarchical nanotwinned structure during pre-torsion and subsequent tensile deformation. A series of finite element simulations based on crystal plasticity are performed to understand why the gradient twin structure can cause strengthening and ductility retention, and how sequential torsion and tension lead to the observed hierarchical nanotwinned structure through activation of different twinning systems. PMID:24686581

  9. Self-assembled hierarchically structured organic-inorganic composite systems.

    PubMed

    Tritschler, Ulrich; Cölfen, Helmut

    2016-05-13

    Designing bio-inspired, multifunctional organic-inorganic composite materials is one of the most popular current research objectives. Due to the high complexity of biocomposite structures found in nacre and bone, for example, a one-pot scalable and versatile synthesis approach addressing structural key features of biominerals and affording bio-inspired, multifunctional organic-inorganic composites with advanced physical properties is highly challenging. This article reviews recent progress in synthesizing organic-inorganic composite materials via various self-assembly techniques and in this context highlights a recently developed bio-inspired synthesis concept for the fabrication of hierarchically structured, organic-inorganic composite materials. This one-step self-organization concept based on simultaneous liquid crystal formation of anisotropic inorganic nanoparticles and a functional liquid crystalline polymer turned out to be simple, fast, scalable and versatile, leading to various (multi-)functional composite materials, which exhibit hierarchical structuring over several length scales. Consequently, this synthesis approach is relevant for further progress and scientific breakthrough in the research field of bio-inspired and biomimetic materials.

  10. High energy density and efficiency achieved in nanocomposite film capacitors via structure modulation

    NASA Astrophysics Data System (ADS)

    Zeng, Yi; Shen, Zhong-Hui; Shen, Yang; Lin, Yuanhua; Nan, Ce-Wen

    2018-03-01

    Flexible dielectric polymer films with high energy storage density and high charge-discharge efficiency have been considered as promising materials for electrical power applications. Here, we design hierarchical structured nanocomposite films using nonlinear polymer poly(vinylidene fluoride-HFP) [P(VDF-HFP)] with inorganic h-boron nitride (h-BN) nanosheets by electrospinning and hot-pressing methods. Our results show that the addition of h-BN nanosheets and the design of the hierarchical multilayer structure in the nanocomposites can remarkably enhance the charge-discharge efficiency and energy density. A high charge-discharge efficiency of 78% and an energy density of 21 J/cm3 can be realized in the 12-layered PVDF/h-BN nanocomposite films. Phase-field simulation results reveal that the spatial distribution of the electric field in these hierarchical structured films affects the charge-discharge efficiency and energy density. This work provides a feasible route, i.e., structure modulation, to improve the energy storage performances for nanocomposite films.

  11. Hydrothermal Fabrication of WO3 Hierarchical Architectures: Structure, Growth and Response

    PubMed Central

    Wu, Chuan-Sheng

    2015-01-01

    Recently hierarchical architectures, consisting of two-dimensional (2D) nanostructures, are of great interest for potential applications in energy and environmental. Here, novel rose-like WO3 hierarchical architectures were successfully synthesized via a facile hydrothermal method. The as-prepared WO3 hierarchical architectures were in fact assembled by numerous nanosheets with an average thickness of ~30 nm. We found that the oxalic acid played a significant role in governing morphologies of WO3 during hydrothermal process. Based on comparative studies, a possible formation mechanism was also proposed in detail. Furthermore, gas-sensing measurement showed that the well-defined 3D WO3 hierarchical architectures exhibited the excellent gas sensing properties towards CO. PMID:28347062

  12. A taxonomy of possible reasons for and against sperm donation.

    PubMed

    Bossema, Ercolie R; Janssens, Pim M W; Landwehr, Frieda; Treucker, Roswitha G L; van Duinen, Kor; Nap, Annemiek W; Geenen, Rinie

    2013-06-01

    Various reasons may guide the decision of men to become a sperm donor. Our aim was to identify a comprehensive set of possible reasons for and against sperm donation. Concept mapping. Assisted reproduction clinics. Nine sperm donors and seven non-sperm donors. Interviews to obtain statements for and against sperm donation, card-sorting tasks to categorize these statements according to similarity, and hierarchical cluster analysis to structure these categorizations. Hierarchical structure with reasons for and against sperm donation. The hierarchical structure with 91 reasons comprised selfishness (including narcissism and procreation), psychosocial drives (including altruism, detached procreation, and sexual/financial satisfaction), and psychosocial barriers (including normative and moral barriers related to oneself, one's spouse, the donor child, and society). The identified hierarchical overview of reasons for and against sperm donation may help potential sperm donors when considering becoming a sperm donor, enable more systematic counseling of potential sperm donors, and guide further research on reasons for and against sperm donation. © 2013 The Authors Acta Obstetricia et Gynecologica Scandinavica © 2013 Nordic Federation of Societies of Obstetrics and Gynecology.

  13. On the origin of biological construction, with a focus on multicellularity.

    PubMed

    van Gestel, Jordi; Tarnita, Corina E

    2017-10-17

    Biology is marked by a hierarchical organization: all life consists of cells; in some cases, these cells assemble into groups, such as endosymbionts or multicellular organisms; in turn, multicellular organisms sometimes assemble into yet other groups, such as primate societies or ant colonies. The construction of new organizational layers results from hierarchical evolutionary transitions, in which biological units (e.g., cells) form groups that evolve into new units of biological organization (e.g., multicellular organisms). Despite considerable advances, there is no bottom-up, dynamical account of how, starting from the solitary ancestor, the first groups originate and subsequently evolve the organizing principles that qualify them as new units. Guided by six central questions, we propose an integrative bottom-up approach for studying the dynamics underlying hierarchical evolutionary transitions, which builds on and synthesizes existing knowledge. This approach highlights the crucial role of the ecology and development of the solitary ancestor in the emergence and subsequent evolution of groups, and it stresses the paramount importance of the life cycle: only by evaluating groups in the context of their life cycle can we unravel the evolutionary trajectory of hierarchical transitions. These insights also provide a starting point for understanding the types of subsequent organizational complexity. The central research questions outlined here naturally link existing research programs on biological construction (e.g., on cooperation, multilevel selection, self-organization, and development) and thereby help integrate knowledge stemming from diverse fields of biology.

  14. Superhydrophobic surfaces

    DOEpatents

    Wang, Evelyn N; McCarthy, Matthew; Enright, Ryan; Culver, James N; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2015-03-24

    Surfaces having a hierarchical structure--having features of both microscale and nanoscale dimensions--can exhibit superhydrophobic properties and advantageous condensation and heat transfer properties. The hierarchical surfaces can be fabricated using biological nanostructures, such as viruses as a self-assembled nanoscale template.

  15. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities

    USGS Publications Warehouse

    Royle, J. Andrew; Dorazio, Robert M.

    2008-01-01

    A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.

  16. Growth of hierarchical GaN nanowires for optoelectronic device applications

    NASA Astrophysics Data System (ADS)

    Raj, Rishabh; Vignesh, Veeramuthu; Ra, Yong-Ho; Nirmala, Rajkumar; Lee, Cheul-Ro; Navamathavan, Rangaswamy

    2017-01-01

    Gallium nitride nanostructures have been receiving considerable attention as building blocks for nanophotonic technologies due to their unique high aspect ratios, promising the realization of photonic and biological nanodevices such as blue light emitting diodes (LEDs), short-wavelength ultraviolet nanolasers, and nanofluidic biochemical sensors. We report on the growth of hierarchical GaN nanowires (NWs) by dynamically adjusting the growth parameters using the pulsed flow metal-organic chemical vapor deposition technique. We carried out two step growth processes to grow hierarchical GaN NWs. In the first step, the GaN NWs were grown at 950°C, and in the second, we suitably decreased the growth temperature to 630°C and 710°C to grow the hierarchical structures. The surface morphology and optical characterization of the grown GaN NWs were studied by field-emission scanning electron microscopy, high-resolution transmission electron microscopy, photoluminescence, and cathodoluminescence measurements. These kinds of hierarchical GaN NWs are promising for allowing flat band quantum structures that are shown to improve the efficiency of LEDs.

  17. A low-cost hierarchical nanostructured beta-titanium alloy with high strength

    PubMed Central

    Devaraj, Arun; Joshi, Vineet V.; Srivastava, Ankit; Manandhar, Sandeep; Moxson, Vladimir; Duz, Volodymyr A.; Lavender, Curt

    2016-01-01

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti–1Al–8V–5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale α-phase precipitates in the β-phase matrix is due to ω assisted nucleation of α resulting in high tensile strength, greater than any current commercial titanium alloy. Thus hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications. PMID:27034109

  18. Hierarchical cluster-tendency analysis of the group structure in the foreign exchange market

    NASA Astrophysics Data System (ADS)

    Wu, Xin-Ye; Zheng, Zhi-Gang

    2013-08-01

    A hierarchical cluster-tendency (HCT) method in analyzing the group structure of networks of the global foreign exchange (FX) market is proposed by combining the advantages of both the minimal spanning tree (MST) and the hierarchical tree (HT). Fifty currencies of the top 50 World GDP in 2010 according to World Bank's database are chosen as the underlying system. By using the HCT method, all nodes in the FX market network can be "colored" and distinguished. We reveal that the FX networks can be divided into two groups, i.e., the Asia-Pacific group and the Pan-European group. The results given by the hierarchical cluster-tendency method agree well with the formerly observed geographical aggregation behavior in the FX market. Moreover, an oil-resource aggregation phenomenon is discovered by using our method. We find that gold could be a better numeraire for the weekly-frequency FX data.

  19. Merging K-means with hierarchical clustering for identifying general-shaped groups.

    PubMed

    Peterson, Anna D; Ghosh, Arka P; Maitra, Ranjan

    2018-01-01

    Clustering partitions a dataset such that observations placed together in a group are similar but different from those in other groups. Hierarchical and K -means clustering are two approaches but have different strengths and weaknesses. For instance, hierarchical clustering identifies groups in a tree-like structure but suffers from computational complexity in large datasets while K -means clustering is efficient but designed to identify homogeneous spherically-shaped clusters. We present a hybrid non-parametric clustering approach that amalgamates the two methods to identify general-shaped clusters and that can be applied to larger datasets. Specifically, we first partition the dataset into spherical groups using K -means. We next merge these groups using hierarchical methods with a data-driven distance measure as a stopping criterion. Our proposal has the potential to reveal groups with general shapes and structure in a dataset. We demonstrate good performance on several simulated and real datasets.

  20. Deep hierarchical attention network for video description

    NASA Astrophysics Data System (ADS)

    Li, Shuohao; Tang, Min; Zhang, Jun

    2018-03-01

    Pairing video to natural language description remains a challenge in computer vision and machine translation. Inspired by image description, which uses an encoder-decoder model for reducing visual scene into a single sentence, we propose a deep hierarchical attention network for video description. The proposed model uses convolutional neural network (CNN) and bidirectional LSTM network as encoders while a hierarchical attention network is used as the decoder. Compared to encoder-decoder models used in video description, the bidirectional LSTM network can capture the temporal structure among video frames. Moreover, the hierarchical attention network has an advantage over single-layer attention network on global context modeling. To make a fair comparison with other methods, we evaluate the proposed architecture with different types of CNN structures and decoders. Experimental results on the standard datasets show that our model has a more superior performance than the state-of-the-art techniques.

  1. Task switching in a hierarchical task structure: evidence for the fragility of the task repetition benefit.

    PubMed

    Lien, Mei-Ching; Ruthruff, Eric

    2004-05-01

    This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms. In Experiments 2-5, adjacent task elements were grouped temporally and/or spatially (forming an ensemble) to create a hierarchical task organization. Results indicate that the effect of switching at the ensemble level dominated the effect of switching at the element level. Experiments 6 and 7, using an ensemble of 3 task elements, revealed that the element-level switch cost was virtually absent between ensembles but was large within an ensemble. The authors conclude that the element-level task repetition benefit is fragile and can be eliminated in a hierarchical task organization.

  2. Task switching in a hierarchical task structure: evidence for the fragility of the task repetition benefit

    NASA Technical Reports Server (NTRS)

    Lien, Mei-Ching; Ruthruff, Eric

    2004-01-01

    This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms. In Experiments 2-5, adjacent task elements were grouped temporally and/or spatially (forming an ensemble) to create a hierarchical task organization. Results indicate that the effect of switching at the ensemble level dominated the effect of switching at the element level. Experiments 6 and 7, using an ensemble of 3 task elements, revealed that the element-level switch cost was virtually absent between ensembles but was large within an ensemble. The authors conclude that the element-level task repetition benefit is fragile and can be eliminated in a hierarchical task organization.

  3. A Conceptual and Procedural Research on the Hierarchical Structure of Mathematics Emerging in the Minds of University Students: An Example of Limit-Continuity-Integral-Derivative

    ERIC Educational Resources Information Center

    Dane, Arif; Çetin, Ömer Faruk; Bas, Fatih; Sagirli, Meryem Özturan

    2016-01-01

    In this present study, it was aimed to investigate whether the hierarchical structure of mathematics emerged in university students' minds or not, considering the concepts of limit, continuity derivative and integral from the perspective of students in the department of secondary school mathematics teacher training and the department of…

  4. Hierarchical Structure in Polymeric Solids and Its Influence on Properties.

    DTIC Science & Technology

    1988-03-01

    AD-l4193 538 NI U*CHLCAL cIUI8 IN~~ EIS LIDIANDtIIS 1/ UMCLASSrIrIDq foMS) r/G 7𔃽 ML UU P1. barkel (1.25) AD-A193 538 HIERARCHICAL STRUCTURE IN... upecer sequence anoula DsOM Identifiable# which In turn shouldcorrelate with the scheme of mesogen spacer packing established during S previous period

  5. Biomimetic "Cactus Spine" with Hierarchical Groove Structure for Efficient Fog Collection.

    PubMed

    Bai, Fan; Wu, Juntao; Gong, Guangming; Guo, Lin

    2015-07-01

    A biomimetic "cactus spine" with hierarchical groove structure is designed and fabricated using simple electrospinning. This novel artificial cactus spine possesses excellent fog collection and water transportation ability. A model cactus equipped with artificial spines also shows a great water storage capacity. The results can be helpful in the development of water collectors and may make a contribution to the world water crisis.

  6. DNA Architectures for Templated Material Growth

    DTIC Science & Technology

    2011-09-01

    Solubilization of the DNA in non-aqueous solvents is achieved by replacing charge stabilizing salts with surfactants. Retention of DNA hierarchical structure...solvents is achieved by replacing charge stabilizing salts with surfactants. Retention of DNA hierarchical structure under both conditions will be...studied and explained, and is only being reproduced in this experiment.12-14 Both CTAB and CTAC, were reacted with the reconstituted DNA (salmon sperm

  7. Method and system for knowledge discovery using non-linear statistical analysis and a 1st and 2nd tier computer program

    DOEpatents

    Hively, Lee M [Philadelphia, TN

    2011-07-12

    The invention relates to a method and apparatus for simultaneously processing different sources of test data into informational data and then processing different categories of informational data into knowledge-based data. The knowledge-based data can then be communicated between nodes in a system of multiple computers according to rules for a type of complex, hierarchical computer system modeled on a human brain.

  8. A new intrusion prevention model using planning knowledge graph

    NASA Astrophysics Data System (ADS)

    Cai, Zengyu; Feng, Yuan; Liu, Shuru; Gan, Yong

    2013-03-01

    Intelligent plan is a very important research in artificial intelligence, which has applied in network security. This paper proposes a new intrusion prevention model base on planning knowledge graph and discuses the system architecture and characteristics of this model. The Intrusion Prevention based on plan knowledge graph is completed by plan recognition based on planning knowledge graph, and the Intrusion response strategies and actions are completed by the hierarchical task network (HTN) planner in this paper. Intrusion prevention system has the advantages of intelligent planning, which has the advantage of the knowledge-sharing, the response focused, learning autonomy and protective ability.

  9. System and method for knowledge based matching of users in a network

    DOEpatents

    Verspoor, Cornelia Maria [Santa Fe, NM; Sims, Benjamin Hayden [Los Alamos, NM; Ambrosiano, John Joseph [Los Alamos, NM; Cleland, Timothy James [Los Alamos, NM

    2011-04-26

    A knowledge-based system and methods to matchmaking and social network extension are disclosed. The system is configured to allow users to specify knowledge profiles, which are collections of concepts that indicate a certain topic or area of interest selected from an. The system utilizes the knowledge model as the semantic space within which to compare similarities in user interests. The knowledge model is hierarchical so that indications of interest in specific concepts automatically imply interest in more general concept. Similarity measures between profiles may then be calculated based on suitable distance formulas within this space.

  10. Trajectories of Family Management Practices and Early Adolescent Behavioral Outcomes

    PubMed Central

    Wang, Ming-Te; Dishion, Thomas J.; Stormshak, Elizabeth A.; Willett, John B.

    2013-01-01

    Stage– environment fit theory was used to examine the reciprocal lagged relations between family management practices and early adolescent problem behavior during the middle school years. In addition, the potential moderating roles of family structure and of gender were explored. Hierarchical linear modeling was used to describe patterns of growth in family management practices and adolescents’ behavioral outcomes and to detect predictors of interindividual differences in initial status and rate of change. The sample comprised approximately 1,000 adolescents between ages 11 years and 15 years. The results indicated that adolescents’ antisocial behaviors and substance use increased and their positive behavioral engagement decreased over time. As adolescent age increased, parental knowledge of their adolescent’s activities decreased, as did parental rule making and support. The level and rate of change in family management and adolescent behavioral outcomes varied by family structure and by gender. Reciprocal longitudinal associations between parenting practices and adolescent problem behavior were found. Specifically, parenting practices predicted subsequent adolescent behavior, and adolescent behavior predicted subsequent parenting practices. In addition, parental warmth moderated the effects of parental knowledge and rule making on adolescent antisocial behavior and substance use over time. PMID:21688899

  11. Past makes future: role of pFC in prediction.

    PubMed

    Fuster, Joaquín M; Bressler, Steven L

    2015-04-01

    The pFC enables the essential human capacities for predicting future events and preadapting to them. These capacities rest on both the structure and dynamics of the human pFC. Structurally, pFC, together with posterior association cortex, is at the highest hierarchical level of cortical organization, harboring neural networks that represent complex goal-directed actions. Dynamically, pFC is at the highest level of the perception-action cycle, the circular processing loop through the cortex that interfaces the organism with the environment in the pursuit of goals. In its predictive and preadaptive roles, pFC supports cognitive functions that are critical for the temporal organization of future behavior, including planning, attentional set, working memory, decision-making, and error monitoring. These functions have a common future perspective and are dynamically intertwined in goal-directed action. They all utilize the same neural infrastructure: a vast array of widely distributed, overlapping, and interactive cortical networks of personal memory and semantic knowledge, named cognits, which are formed by synaptic reinforcement in learning and memory acquisition. From this cortex-wide reservoir of memory and knowledge, pFC generates purposeful, goal-directed actions that are preadapted to predicted future events.

  12. A Graph-Embedding Approach to Hierarchical Visual Word Mergence.

    PubMed

    Wang, Lei; Liu, Lingqiao; Zhou, Luping

    2017-02-01

    Appropriately merging visual words are an effective dimension reduction method for the bag-of-visual-words model in image classification. The approach of hierarchically merging visual words has been extensively employed, because it gives a fully determined merging hierarchy. Existing supervised hierarchical merging methods take different approaches and realize the merging process with various formulations. In this paper, we propose a unified hierarchical merging approach built upon the graph-embedding framework. Our approach is able to merge visual words for any scenario, where a preferred structure and an undesired structure are defined, and, therefore, can effectively attend to all kinds of requirements for the word-merging process. In terms of computational efficiency, we show that our algorithm can seamlessly integrate a fast search strategy developed in our previous work and, thus, well maintain the state-of-the-art merging speed. To the best of our survey, the proposed approach is the first one that addresses the hierarchical visual word mergence in such a flexible and unified manner. As demonstrated, it can maintain excellent image classification performance even after a significant dimension reduction, and outperform all the existing comparable visual word-merging methods. In a broad sense, our work provides an open platform for applying, evaluating, and developing new criteria for hierarchical word-merging tasks.

  13. EBM

    PubMed Central

    Isaac, Carol A.; Franceschi, Amy

    2008-01-01

    The purpose of this paper is to explore new perspectives about difficulties academicians may have communicating with clinicians, obtaining subjects, and gaining compliance for their research. Sackett et al1 defined evidence-based medicine (EBM) as an integration of best research evidence, clinical expertise, and patient values. However, Guyatt et al2 places clinical observation and experience last in the evidence hierarchy with the randomized controlled trial held as the standard for clinical intervention. The hierarchical discourse of medical knowledge produces opposition rather than collaboration between researcher, clinician, and patient. Foucault gave new perspectives describing how power circulates through individuals within organizational discourse.3 Drawing on literature and experience, this paper describes how the hierarchical model of power in the research community obstructs new areas of knowledge, and how clinicians create resistance. Alleviating perceptions of dominance and creating connections produces cohesion within medical communities. PMID:19018888

  14. Self-Reconstructed Formation of a One-Dimensional Hierarchical Porous Nanostructure Assembled by Ultrathin TiO2 Nanobelts for Fast and Stable Lithium Storage.

    PubMed

    Liu, Yuan; Yan, Xiaodong; Xu, Bingqing; Lan, Jinle; Yu, Yunhua; Yang, Xiaoping; Lin, Yuanhua; Nan, Cewen

    2018-06-06

    Owing to their unique structural advantages, TiO 2 hierarchical nanostructures assembled by low-dimensional (LD) building blocks have been extensively used in the energy-storage/-conversion field. However, it is still a big challenge to produce such advanced structures by current synthetic techniques because of the harsh conditions needed to generate primary LD subunits. Herein, a novel one-dimensional (1D) TiO 2 hierarchical porous fibrous nanostructure constructed by TiO 2 nanobelts is synthesized by combining a room-temperature aqueous solution growth mechanism with the electrospinning technology. The nanobelt-constructed 1D hierarchical nanoarchitecture is evolves directly from the amorphous TiO 2 /SiO 2 composite fibers in alkaline solutions at ambient conditions without any catalyst and other reactant. Benefiting from the unique structural features such as 1D nanoscale building blocks, large surface area, and numerous interconnected pores, as well as mixed phase anatase-TiO 2 (B), the optimum 1D TiO 2 hierarchical porous nanostructure shows a remarkable high-rate performance when tested as an anode material for lithium-ion batteries (107 mA h g -1 at ∼10 A g -1 ) and can be used in a hybrid lithium-ion supercapacitor with very stable lithium-storage performance (a capacity retention of ∼80% after 3000 cycles at 2 A g -1 ). The current work presents a scalable and cost-effective method for the synthesis of advanced TiO 2 hierarchical materials for high-power and stable energy-storage/-conversion devices.

  15. In-situ preparation of Fe{sub 2}O{sub 3} hierarchical arrays on stainless steel substrate for high efficient catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zeheng, E-mail: zehengyang@hfut.edu.cn; Wang, Kun; Shao, Zongming

    Hierarchical array catalysts with micro/nano structures on substrates not only possess high reactivity from large surface area and suitable interface, but intensify mass transfer through shortening the diffusion paths of both reactants and products for high catalytic efficiency. Herein, we first demonstrate fabrication of Fe{sub 2}O{sub 3} hierarchical arrays grown on stainless-steel substrates via in-situ hydrothermal chemical oxidation followed by heat treatment in N{sub 2} atmosphere. As a Fenton-like catalyst, Fe{sub 2}O{sub 3} hierarchical arrays exhibit excellent catalytic activity and life cycle performance for methylene blue (MB) dye degradation in aqueous solution in the presence of H{sub 2}O{sub 2}. Themore » Fe{sub 2}O{sub 3} catalyst with unique hierarchical structures and efficient transport channels, effectively activates H{sub 2}O{sub 2} to generate large quantity of • OH radicals and highly promotes reaction kinetics between MB and • OH radicals. Immobilization of hierarchical array catalysts on stainless-steel can prevent particles agglomeration, facilitate the recovery and reuse of the catalysts, which is expected promising applications in wastewater remediation. - Graphical abstract: The in-situ synthesis of Fe{sub 2}O{sub 3} hierarchical arrays on stainless-steel substrates was reported for the first time, which exhibit excellent catalytic activity performance for methylene blue (MB) dye degradation in aqueous solution in the presence of H{sub 2}O{sub 2}. - Highlights: • Fe{sub 2}O{sub 3} hierarchical arrays was prepared by in-situ hydrothermal chemical oxidation. • F{sup −} ions play an important role in the formation of the Fe{sub 2}O{sub 3} hierarchical arrays. • Fe{sub 2}O{sub 3} hierarchical arrays show high catalytic activity to methylene blue degradation.« less

  16. Accurate airway centerline extraction based on topological thinning using graph-theoretic analysis.

    PubMed

    Bian, Zijian; Tan, Wenjun; Yang, Jinzhu; Liu, Jiren; Zhao, Dazhe

    2014-01-01

    The quantitative analysis of the airway tree is of critical importance in the CT-based diagnosis and treatment of popular pulmonary diseases. The extraction of airway centerline is a precursor to identify airway hierarchical structure, measure geometrical parameters, and guide visualized detection. Traditional methods suffer from extra branches and circles due to incomplete segmentation results, which induce false analysis in applications. This paper proposed an automatic and robust centerline extraction method for airway tree. First, the centerline is located based on the topological thinning method; border voxels are deleted symmetrically to preserve topological and geometrical properties iteratively. Second, the structural information is generated using graph-theoretic analysis. Then inaccurate circles are removed with a distance weighting strategy, and extra branches are pruned according to clinical anatomic knowledge. The centerline region without false appendices is eventually determined after the described phases. Experimental results show that the proposed method identifies more than 96% branches and keep consistency across different cases and achieves superior circle-free structure and centrality.

  17. [The future of hospitals and the hospitals in the future].

    PubMed

    Illés, S Tamás

    2016-07-01

    By the end of the 20th century the vertically organized hospitals formed into a closed hierarchical system, in which the healthcare supply significantly fragmented. The existing hospitals in the current organization are not prepared for the increase in longevity, nor for the high growth in the number of chronic and long-term illnesses and the multi-morbidity since they were not designed for extended carry treatments. The fast incorporation of high-tech and very expensive technologies into healthcare generates an economic crisis. Solving the supply and economic crisis at the same time cannot be achieved without changing the structure of hospitals. Future hospitals will be organized in a network, conducting special treatments according to disease profiles. According to present knowledge, this is the only structure that allows for economies in scale, the proper spending of the ever-shrinking resources, and to ensure the effective patient care required after the changing of disorder structures and patient corporate identities. Orv. Hetil., 2016, 157(28), 1099-1104.

  18. The methodology of multi-viewpoint clustering analysis

    NASA Technical Reports Server (NTRS)

    Mehrotra, Mala; Wild, Chris

    1993-01-01

    One of the greatest challenges facing the software engineering community is the ability to produce large and complex computer systems, such as ground support systems for unmanned scientific missions, that are reliable and cost effective. In order to build and maintain these systems, it is important that the knowledge in the system be suitably abstracted, structured, and otherwise clustered in a manner which facilitates its understanding, manipulation, testing, and utilization. Development of complex mission-critical systems will require the ability to abstract overall concepts in the system at various levels of detail and to consider the system from different points of view. Multi-ViewPoint - Clustering Analysis MVP-CA methodology has been developed to provide multiple views of large, complicated systems. MVP-CA provides an ability to discover significant structures by providing an automated mechanism to structure both hierarchically (from detail to abstract) and orthogonally (from different perspectives). We propose to integrate MVP/CA into an overall software engineering life cycle to support the development and evolution of complex mission critical systems.

  19. Screening of matrix metalloproteinases available from the protein data bank: insights into biological functions, domain organization, and zinc binding groups.

    PubMed

    Nicolotti, Orazio; Miscioscia, Teresa Fabiola; Leonetti, Francesco; Muncipinto, Giovanni; Carotti, Angelo

    2007-01-01

    A total of 142 matrix metalloproteinase (MMP) X-ray crystallographic structures were retrieved from the Protein Data Bank (PDB) and analyzed by an automated and efficient routine, developed in-house, with a series of bioinformatic tools. Highly informative heat maps and hierarchical clusterograms provided a reliable and comprehensive representation of the relationships existing among MMPs, enlarging and complementing the current knowledge in the field. Multiple sequence and structural alignments permitted better location and display of key MMP motifs and quantification of the residue consensus at each amino acid position in the most critical binding subsites of MMPs. The MMP active site consensus sequences, the C-alpha root-mean-square deviation (RMSd) analysis of diverse enzymatic subsites, and the examination of the chemical nature, binding topologies, and zinc binding groups (ZBGs) of ligands extracted from crystallographic complexes provided useful insights on the structural arrangements of the most potent MMP inhibitors.

  20. Fabrication of multi-scale periodic surface structures on Ti-6Al-4V by direct laser writing and direct laser interference patterning for modified wettability applications

    NASA Astrophysics Data System (ADS)

    Huerta-Murillo, D.; Aguilar-Morales, A. I.; Alamri, S.; Cardoso, J. T.; Jagdheesh, R.; Lasagni, A. F.; Ocaña, J. L.

    2017-11-01

    In this work, hierarchical surface patterns fabricated on Ti-6Al-4V alloy combining two laser micro-machining techniques are presented. The used technologies are based on nanosecond Direct Laser Writing and picosecond Direct Laser Interference Patterning. Squared shape micro-cells with different hatch distances were produced by Direct Laser Writing with depths values in the micro-scale, forming a well-defined closed packet. Subsequently, cross-like periodic patterns were fabricated by means of Direct Laser Interference Patterning using a two-beam configuration, generating a dual-scale periodic surface structure in both micro- and nano-scale due to the formation of Laser-Induced Periodic Surface Structure after the picosecond process. As a result a triple hierarchical periodic surface structure was generated. The surface morphology of the irradiated area was characterized with scanning electron microscopy and confocal microscopy. Additionally, static contact angle measurements were made to analyze the wettability behavior of the structures, showing a hydrophobic behavior for the hierarchical structures.

  1. Prediction of Solvent Physical Properties using the Hierarchical Clustering Method

    EPA Science Inventory

    Recently a QSAR (Quantitative Structure Activity Relationship) method, the hierarchical clustering method, was developed to estimate acute toxicity values for large, diverse datasets. This methodology has now been applied to the estimate solvent physical properties including sur...

  2. Local in Practice: Professional Distinctions in Angolan Development Work

    PubMed Central

    Peters, Rebecca Warne

    2017-01-01

    Development workers employed by international nongovernmental organizations (NGOs) are commonly classified as national (local) or international (expatriate) staff members. The distinction is presumed to reflect the varieties of expertise required for the work and the workers’ different biographies. I examine the experiences of Angolans working in an international democratization program to demonstrate how some professionals at the lowest tiers of international development NGOs engage in social practices that strategically emphasize or conceal certain skills, kinds of knowledge, or family circumstances to fulfill industry expectations of “local staff.” Doing so allows them access to employment with international organizations and pursuit of a variety of personal and professional goals. These practices reinforce hierarchical inequalities within the development industry, however, limiting these workers’ influence over programmatic action. I argue that professional distinctions among development workers are social achievements and instruments of strategic manipulation by individuals and NGOs rather than accurate reflections of work or workers. The case study provides insight into the institutional reproduction of hierarchical inequalities and the complexly social reasons why those who suffer their limitations may act in ways that reinforce, rather than resist, unequal social structures. PMID:29430019

  3. HERB: A production system for programming with hierarchical expert rule bases: User's manual, HERB Version 1. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummel, K.E.

    1987-12-01

    Expert systems are artificial intelligence programs that solve problems requiring large amounts of heuristic knowledge, based on years of experience and tradition. Production systems are domain-independent tools that support the development of rule-based expert systems. This document describes a general purpose production system known as HERB. This system was developed to support the programming of expert systems using hierarchically structured rule bases. HERB encourages the partitioning of rules into multiple rule bases and supports the use of multiple conflict resolution strategies. Multiple rule bases can also be placed on a system stack and simultaneously searched during each interpreter cycle. Bothmore » backward and forward chaining rules are supported by HERB. The condition portion of each rule can contain both patterns, which are matched with facts in a data base, and LISP expressions, which are explicitly evaluated in the LISP environment. Properties of objects can also be stored in the HERB data base and referenced within the scope of each rule. This document serves both as an introduction to the principles of LISP-based production systems and as a user's manual for the HERB system. 6 refs., 17 figs.« less

  4. Learning representation hierarchies by sharing visual features: a computational investigation of Persian character recognition with unsupervised deep learning.

    PubMed

    Sadeghi, Zahra; Testolin, Alberto

    2017-08-01

    In humans, efficient recognition of written symbols is thought to rely on a hierarchical processing system, where simple features are progressively combined into more abstract, high-level representations. Here, we present a computational model of Persian character recognition based on deep belief networks, where increasingly more complex visual features emerge in a completely unsupervised manner by fitting a hierarchical generative model to the sensory data. Crucially, high-level internal representations emerging from unsupervised deep learning can be easily read out by a linear classifier, achieving state-of-the-art recognition accuracy. Furthermore, we tested the hypothesis that handwritten digits and letters share many common visual features: A generative model that captures the statistical structure of the letters distribution should therefore also support the recognition of written digits. To this aim, deep networks trained on Persian letters were used to build high-level representations of Persian digits, which were indeed read out with high accuracy. Our simulations show that complex visual features, such as those mediating the identification of Persian symbols, can emerge from unsupervised learning in multilayered neural networks and can support knowledge transfer across related domains.

  5. Hierarchical extraction of urban objects from mobile laser scanning data

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Dong, Zhen; Zhao, Gang; Dai, Wenxia

    2015-01-01

    Point clouds collected in urban scenes contain a huge number of points (e.g., billions), numerous objects with significant size variability, complex and incomplete structures, and variable point densities, raising great challenges for the automated extraction of urban objects in the field of photogrammetry, computer vision, and robotics. This paper addresses these challenges by proposing an automated method to extract urban objects robustly and efficiently. The proposed method generates multi-scale supervoxels from 3D point clouds using the point attributes (e.g., colors, intensities) and spatial distances between points, and then segments the supervoxels rather than individual points by combining graph based segmentation with multiple cues (e.g., principal direction, colors) of the supervoxels. The proposed method defines a set of rules for merging segments into meaningful units according to types of urban objects and forms the semantic knowledge of urban objects for the classification of objects. Finally, the proposed method extracts and classifies urban objects in a hierarchical order ranked by the saliency of the segments. Experiments show that the proposed method is efficient and robust for extracting buildings, streetlamps, trees, telegraph poles, traffic signs, cars, and enclosures from mobile laser scanning (MLS) point clouds, with an overall accuracy of 92.3%.

  6. AzTEC Survey of the Central Molecular Zone: Modeling Dust SEDs and N-PDF with Hierarchical Bayesian Analysis

    NASA Astrophysics Data System (ADS)

    Tang, Yuping; Wang, Daniel; Wilson, Grant; Gutermuth, Robert; Heyer, Mark

    2018-01-01

    We present the AzTEC/LMT survey of dust continuum at 1.1mm on the central ˜ 200pc (CMZ) of our Galaxy. A joint SED analysis of all existing dust continuum surveys on the CMZ is performed, from 160µm to 1.1mm. Our analysis follows a MCMC sampling strategy incorporating the knowledge of PSFs in different maps, which provides unprecedented spacial resolution on distributions of dust temperature, column density and emissivity index. The dense clumps in the CMZ typically show low dust temperature ( 20K), with no significant sign of buried star formation, and a weak evolution of higher emissivity index toward dense peak. A new model is proposed, allowing for varying dust temperature inside a cloud and self-shielding of dust emission, which leads to similar conclusions on dust temperature and grain properties. We further apply a hierarchical Bayesian analysis to infer the column density probability distribution function (N-PDF), while simultaneously removing the Galactic foreground and background emission. The N-PDF shows a steep power-law profile with α > 3, indicating that formation of dense structures are suppressed.

  7. Depressive symptoms and untreated dental caries in older independently living South Brazilians.

    PubMed

    Hugo, F N; Hilgert, J B; de Sousa, M D L R; Cury, J A

    2012-01-01

    The importance of psychological reactions in modifying oral health behaviors and salivary immunity has been shown previously, but few studies assessed whether psychological reactions are associated with caries in populations. Thus, the aim of this study was to examine the association of depressive symptoms with untreated caries using a hierarchal approach. In this cross-sectional study, a random sample of 390 South Brazilians aged 60 years or more was evaluated using a structured questionnaire assessing sociodemographic, behavior, health and depressive symptoms (Geriatric Depression Scale) data. Oral examinations were carried out in order to assess: (1) dental status, using the DMFT index; (2) dental plaque, using the Visible Plaque Index, and (3) unstimulated saliva flow, using the spit method. A hierarchical model based on the framework of caries was carried out to assess whether depressive symptoms were associated with prevalent untreated dental caries (or D >0). Depressive symptoms, number of teeth and plaque accumulation were significant predictors of caries with respect to the D >0 outcome. Our findings suggest that depressive symptoms may act as determinants of caries, adding to the body of knowledge supporting the importance of psychological reactions in oral health/disease processes. Copyright © 2012 S. Karger AG, Basel.

  8. A multistage motion vector processing method for motion-compensated frame interpolation.

    PubMed

    Huang, Ai- Mei; Nguyen, Truong Q

    2008-05-01

    In this paper, a novel, low-complexity motion vector processing algorithm at the decoder is proposed for motion-compensated frame interpolation or frame rate up-conversion. We address the problems of having broken edges and deformed structures in an interpolated frame by hierarchically refining motion vectors on different block sizes. Our method explicitly considers the reliability of each received motion vector and has the capability of preserving the structure information. This is achieved by analyzing the distribution of residual energies and effectively merging blocks that have unreliable motion vectors. The motion vector reliability information is also used as a prior knowledge in motion vector refinement using a constrained vector median filter to avoid choosing identical unreliable one. We also propose using chrominance information in our method. Experimental results show that the proposed scheme has better visual quality and is also robust, even in video sequences with complex scenes and fast motion.

  9. A discrete control model of PLANT

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M.

    1985-01-01

    A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.

  10. Structure-mechanical function relations at nano-scale in heat-affected human dental tissue.

    PubMed

    Sui, Tan; Sandholzer, Michael A; Le Bourhis, Eric; Baimpas, Nikolaos; Landini, Gabriel; Korsunsky, Alexander M

    2014-04-01

    The knowledge of the mechanical properties of dental materials related to their hierarchical structure is essential for understanding and predicting the effect of microstructural alterations on the performance of dental tissues in the context of forensic and archaeological investigation as well as laser irradiation treatment of caries. So far, few studies have focused on the nano-scale structure-mechanical function relations of human teeth altered by chemical or thermal treatment. The response of dental tissues to thermal treatment is thought to be strongly affected by the mineral crystallite size, their spatial arrangement and preferred orientation. In this study, synchrotron-based small and wide angle X-ray scattering (SAXS/WAXS) techniques were used to investigate the micro-structural alterations (mean crystalline thickness, crystal perfection and degree of alignment) of heat-affected dentine and enamel in human dental teeth. Additionally, nanoindentation mapping was applied to detect the spatial and temperature-dependent nano-mechanical properties variation. The SAXS/WAXS results revealed that the mean crystalline thickness distribution in dentine was more uniform compared with that in enamel. Although in general the mean crystalline thickness increased both in dentine and enamel as the temperature increased, the local structural variations gradually reduced. Meanwhile, the hardness and reduced modulus in enamel decreased as the temperature increased, while for dentine, the tendency reversed at high temperature. The analysis of the correlation between the ultrastructure and mechanical properties coupled with the effect of temperature demonstrates the effect of mean thickness and orientation on the local variation of mechanical property. This structural-mechanical property alteration is likely to be due to changes of HAp crystallites, thus dentine and enamel exhibit different responses at different temperatures. Our results enable an improved understanding of the mechanical properties correlation in hierarchical biological materials, and human dental tissue in particular. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Electrospun nanofibres to mimic natural hierarchical structure of tissues: application in musculoskeletal regeneration.

    PubMed

    Sankar, Sharanya; Sharma, Chandra S; Rath, Subha N; Ramakrishna, Seeram

    2018-01-01

    Biomimetic scaffolds mimicking the natural hierarchical structure of tissues have recently attracted the interest of researchers and provide a promising strategy to resemble the nonhomogeneous property of tissues. This review provides an overview of the various hierarchical length scales in the native tissues of the musculoskeletal system. It further focuses on electrospinning as a technique to mimic the tissue structures with specific emphasis on bone. The effect of cellular alignment, infiltration, vascularisation, and differentiation in these nanostructures has also been discussed. An outline of the various additive manufacturing techniques in combination with electrospinning has been elaborated. The review concludes with the challenges and future directions to understand the intricacies of bottom-up approach to engineer the systems at a macroscale. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Biominerals- hierarchical nanocomposites: the example of bone

    PubMed Central

    Beniash, Elia

    2010-01-01

    Many organisms incorporate inorganic solids in their tissues to enhance their functional, primarily mechanical, properties. These mineralized tissues, also called biominerals, are unique organo-mineral nanocomposites, organized at several hierarchical levels, from nano- to macroscale. Unlike man made composite materials, which often are simple physical blends of their components, the organic and inorganic phases in biominerals interface at the molecular level. Although these tissues are made of relatively weak components at ambient conditions, their hierarchical structural organization and intimate interactions between different elements lead to superior mechanical properties. Understanding basic principles of formation, structure and functional properties of these tissues might lead to novel bioinspired strategies for material design and better treatments for diseases of the mineralized tissues. This review focuses on general principles of structural organization, formation and functional properties of biominerals on the example the bone tissues. PMID:20827739

  13. Predicting allergic contact dermatitis: a hierarchical structure activity relationship (SAR) approach to chemical classification using topological and quantum chemical descriptors

    NASA Astrophysics Data System (ADS)

    Basak, Subhash C.; Mills, Denise; Hawkins, Douglas M.

    2008-06-01

    A hierarchical classification study was carried out based on a set of 70 chemicals—35 which produce allergic contact dermatitis (ACD) and 35 which do not. This approach was implemented using a regular ridge regression computer code, followed by conversion of regression output to binary data values. The hierarchical descriptor classes used in the modeling include topostructural (TS), topochemical (TC), and quantum chemical (QC), all of which are based solely on chemical structure. The concordance, sensitivity, and specificity are reported. The model based on the TC descriptors was found to be the best, while the TS model was extremely poor.

  14. Hierarchical meso/macro-porous carbon fabricated from dual MgO templates for direct electron transfer enzymatic electrodes.

    PubMed

    Funabashi, Hiroto; Takeuchi, Satoshi; Tsujimura, Seiya

    2017-03-23

    We designed a three-dimensional (3D) hierarchical pore structure to improve the current production efficiency and stability of direct electron transfer-type biocathodes. The 3D hierarchical electrode structure was fabricated using a MgO-templated porous carbon framework produced from two MgO templates with sizes of 40 and 150 nm. The results revealed that the optimal pore composition for a bilirubin oxidase-catalysed oxygen reduction cathode was a mixture of 33% macropores and 67% mesopores (MgOC 33 ). The macropores improve mass transfer inside the carbon material, and the mesopores improve the electron transfer efficiency of the enzyme by surrounding the enzyme with carbon.

  15. Hierarchical meso/macro-porous carbon fabricated from dual MgO templates for direct electron transfer enzymatic electrodes

    NASA Astrophysics Data System (ADS)

    Funabashi, Hiroto; Takeuchi, Satoshi; Tsujimura, Seiya

    2017-03-01

    We designed a three-dimensional (3D) hierarchical pore structure to improve the current production efficiency and stability of direct electron transfer-type biocathodes. The 3D hierarchical electrode structure was fabricated using a MgO-templated porous carbon framework produced from two MgO templates with sizes of 40 and 150 nm. The results revealed that the optimal pore composition for a bilirubin oxidase-catalysed oxygen reduction cathode was a mixture of 33% macropores and 67% mesopores (MgOC33). The macropores improve mass transfer inside the carbon material, and the mesopores improve the electron transfer efficiency of the enzyme by surrounding the enzyme with carbon.

  16. Hierarchical structure of biological systems

    PubMed Central

    Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M

    2014-01-01

    A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems. PMID:24145961

  17. Hierarchical structure of biological systems: a bioengineering approach.

    PubMed

    Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M

    2014-01-01

    A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems.

  18. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles.

    PubMed

    Lin, Naibo; Liu, Xiang Yang

    2015-11-07

    This review examines how the concepts and ideas of crystallization can be extended further and applied to the field of mesoscopic soft materials. It concerns the structural characteristics vs. the macroscopic performance, and the formation mechanism of crystal networks. Although this subject can be discussed in a broad sense across the area of mesoscopic soft materials, our main focus is on supramolecular materials, spider and silkworm silks, and biominerals. First, the occurrence of a hierarchical structure, i.e. crystal network and domain network structures, will facilitate the formation kinetics of mesoscopic phases and boost up the macroscopic performance of materials in some cases (i.e. spider silk fibres). Second, the structure and performance of materials can be correlated in some way by the four factors: topology, correlation length, symmetry/ordering, and strength of association of crystal networks. Moreover, four different kinetic paths of crystal network formation are identified, namely, one-step process of assembly, two-step process of assembly, mixed mode of assembly and foreign molecule mediated assembly. Based on the basic mechanisms of crystal nucleation and growth, the formation of crystal networks, such as crystallographic mismatch (or noncrystallographic) branching (tip branching and fibre side branching) and fibre/polymeric side merging, are reviewed. This facilitates the rational design and construction of crystal networks in supramolecular materials. In this context, the (re-)construction of a hierarchical crystal network structure can be implemented by thermal, precipitate, chemical, and sonication stimuli. As another important class of soft materials, the unusual mechanical performance of spider and silkworm silk fibres are reviewed in comparison with the regenerated silk protein derivatives. It follows that the considerably larger breaking stress and unusual breaking strain of spider silk fibres vs. silkworm silk fibres can be interpreted according to the synergistically correlated hierarchical structures of the domain and crystal networks, which can be quantified by the hierarchical structural correlation and the four structural parameters. Based on the concept of crystal networks, the new understanding acquired will transfer the research and engineering of mesoscopic materials, particularly, soft functional materials, to a new phase.

  19. Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: one-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air.

    PubMed

    Dong, Fan; Lee, S C; Wu, Zhongbiao; Huang, Yu; Fu, Min; Ho, Wing-Kei; Zou, Shichun; Wang, Bo

    2011-11-15

    Rose-like monodisperse hierarchical (BiO)(2)CO(3) hollow microspheres are fabricated by a one-pot template-free method for the first time based on hydrothermal treatment of ammonia bismuth citrate and urea in water. The microstructure and band structure of the as-prepared (BiO)(2)CO(3) superstructure are characterized in detail by X-ray diffraction, Raman spectroscopy, Fourier transform-infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, N(2) adsorption-desorption isotherms, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The monodisperse hierarchical (BiO)(2)CO(3) microspheres are constructed by the self-assembly of single-crystalline nanosheets. The aggregation of nanosheets result in the formation of three dimensional hierarchical framework containing mesopores and macropores, which is favorable for efficient transport of reaction molecules and harvesting of photo-energy. The result reveals the existence of special two-band-gap structure (3.25 and 2.0 eV) for (BiO)(2)CO(3). The band gap of 3.25 eV is intrinsic and the formation of smaller band gap of 2.0 eV can be ascribed to the in situ doped nitrogen in lattice. The performance of hierarchical (BiO)(2)CO(3) microspheres as efficient photocatalyst are further demonstrated in the removal of NO in indoor air under both visible light and UV irradiation. It is found that the hierarchical (BiO)(2)CO(3) microspheres not only exhibit excellent photocatalytic activity but also high photochemical stability during long term photocatalytic reaction. The special microstructure, the high charge separation efficiency due to the inductive effect, and two-band-gap structure in all contribute to the outstanding photocatalytic activities. The discovery of monodisperse hierarchical nitrogen doped (BiO)(2)CO(3) hollow structure is significant because of its potential applications in environmental pollution control, solar energy conversion, catalysis and other related areas. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. New Materials and Methods for Hierarchically Structured Tissue Scaffolds

    DTIC Science & Technology

    2005-01-01

    to the fabrication of hierarchically structured scaffolds. In order to achieve this goal, photopolymerizable materials must be developed that are... photopolymerizable materials that can also be selectively chemically modified during the SL part building process. This paper provides an update on our work...which uses a laser to "write" patterns into a vat containing a photopolymerizable resin. The first step in performing SL is generating a computer

  1. Hierarchical Porous Carbon Materials Derived from Sheep Manure for High-Capacity Supercapacitors.

    PubMed

    Zhang, Caiyun; Zhu, Xiaohong; Cao, Min; Li, Menglin; Li, Na; Lai, Liuqin; Zhu, Jiliang; Wei, Dacheng

    2016-05-10

    3 D capacitance: Hierarchical porous carbon-based electrode materials with a composite structure are prepared from a biomass waste by a facile carbonization and activation process without using any additional templates. Benefiting from the composite structure, the ions experience a variety of environments, which contribute significantly to the excellent electrochemical properties of supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Bioinspired fabrication of hierarchically structured, pH-tunable photonic crystals with unique transition.

    PubMed

    Yang, Qingqing; Zhu, Shenmin; Peng, Wenhong; Yin, Chao; Wang, Wanlin; Gu, Jiajun; Zhang, Wang; Ma, Jun; Deng, Tao; Feng, Chuanliang; Zhang, Di

    2013-06-25

    We herein report a new class of photonic crystals with hierarchical structures, which are of color tunability over pH. The materials were fabricated through the deposition of polymethylacrylic acid (PMAA) onto a Morpho butterfly wing template by using a surface bonding and polymerization route. The amine groups of chitosan in Morpho butterfly wings provide reaction sites for the MAA monomer, resulting in hydrogen bonding between the template and MAA. Subsequent polymerization results in PMAA layers coating homogenously on the hierarchical photonic structures of the biotemplate. The pH-induced color change was detected by reflectance spectra as well as optical observation. A distinct U transition with pH was observed, demonstrating PMAA content-dependent properties. The appearance of the unique U transition results from electrostatic interaction between the -NH3(+) of chitosan and the -COO(-) groups of PMAA formed, leading to a special blue-shifted point at the pH value of the U transition, and the ionization of the two functional groups in the alkali and acid environment separately, resulting in a red shift. This work sets up a strategy for the design and fabrication of tunable photonic crystals with hierarchical structures, which provides a route for combining functional polymers with biotemplates for wide potential use in many fields.

  3. Inferring a District-Based Hierarchical Structure of Social Contacts from Census Data

    PubMed Central

    Yu, Zhiwen; Liu, Jiming; Zhu, Xianjun

    2015-01-01

    Researchers have recently paid attention to social contact patterns among individuals due to their useful applications in such areas as epidemic evaluation and control, public health decisions, chronic disease research and social network research. Although some studies have estimated social contact patterns from social networks and surveys, few have considered how to infer the hierarchical structure of social contacts directly from census data. In this paper, we focus on inferring an individual’s social contact patterns from detailed census data, and generate various types of social contact patterns such as hierarchical-district-structure-based, cross-district and age-district-based patterns. We evaluate newly generated contact patterns derived from detailed 2011 Hong Kong census data by incorporating them into a model and simulation of the 2009 Hong Kong H1N1 epidemic. We then compare the newly generated social contact patterns with the mixing patterns that are often used in the literature, and draw the following conclusions. First, the generation of social contact patterns based on a hierarchical district structure allows for simulations at different district levels. Second, the newly generated social contact patterns reflect individuals social contacts. Third, the newly generated social contact patterns improve the accuracy of the SEIR-based epidemic model. PMID:25679787

  4. Hierarchical Bayesian modeling of heterogeneous variances in average daily weight gain of commercial feedlot cattle.

    PubMed

    Cernicchiaro, N; Renter, D G; Xiang, S; White, B J; Bello, N M

    2013-06-01

    Variability in ADG of feedlot cattle can affect profits, thus making overall returns more unstable. Hence, knowledge of the factors that contribute to heterogeneity of variances in animal performance can help feedlot managers evaluate risks and minimize profit volatility when making managerial and economic decisions in commercial feedlots. The objectives of the present study were to evaluate heteroskedasticity, defined as heterogeneity of variances, in ADG of cohorts of commercial feedlot cattle, and to identify cattle demographic factors at feedlot arrival as potential sources of variance heterogeneity, accounting for cohort- and feedlot-level information in the data structure. An operational dataset compiled from 24,050 cohorts from 25 U. S. commercial feedlots in 2005 and 2006 was used for this study. Inference was based on a hierarchical Bayesian model implemented with Markov chain Monte Carlo, whereby cohorts were modeled at the residual level and feedlot-year clusters were modeled as random effects. Forward model selection based on deviance information criteria was used to screen potentially important explanatory variables for heteroskedasticity at cohort- and feedlot-year levels. The Bayesian modeling framework was preferred as it naturally accommodates the inherently hierarchical structure of feedlot data whereby cohorts are nested within feedlot-year clusters. Evidence for heterogeneity of variance components of ADG was substantial and primarily concentrated at the cohort level. Feedlot-year specific effects were, by far, the greatest contributors to ADG heteroskedasticity among cohorts, with an estimated ∼12-fold change in dispersion between most and least extreme feedlot-year clusters. In addition, identifiable demographic factors associated with greater heterogeneity of cohort-level variance included smaller cohort sizes, fewer days on feed, and greater arrival BW, as well as feedlot arrival during summer months. These results support that heterogeneity of variances in ADG is prevalent in feedlot performance and indicate potential sources of heteroskedasticity. Further investigation of factors associated with heteroskedasticity in feedlot performance is warranted to increase consistency and uniformity in commercial beef cattle production and subsequent profitability.

  5. Hierarchical porous ZnO microflowers with ultra-high ethanol gas-sensing at low concentration

    NASA Astrophysics Data System (ADS)

    Song, Liming; Yue, He; Li, Haiying; Liu, Li; Li, Yu; Du, Liting; Duan, Haojie; Klyui, N. I.

    2018-05-01

    Hierarchical porous and non-porous ZnO microflowers have been successfully fabricated by hydrothermal method. Their crystal structure, morphology and gas-sensing properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical gas sensing intelligent analysis system (CGS). Compared with hierarchical non-porous ZnO microflowers, hierarchical porous ZnO microflowers exhibited ultra-high sensitivity with 50 ppm ethanol at 260 °C and the response is 110, which is 1.8 times higher than that of non-porous ZnO microflowers. Moreover, the lowest concentration limit of hierarchical porous ZnO microflowers (non-porous ZnO microflowers) to ethanol is 0.1 (1) ppm, the response value is 1.6 (1).

  6. Construction of mammographic examination process ontology using bottom-up hierarchical task analysis.

    PubMed

    Yagahara, Ayako; Yokooka, Yuki; Jiang, Guoqian; Tsuji, Shintarou; Fukuda, Akihisa; Nishimoto, Naoki; Kurowarabi, Kunio; Ogasawara, Katsuhiko

    2018-03-01

    Describing complex mammography examination processes is important for improving the quality of mammograms. It is often difficult for experienced radiologic technologists to explain the process because their techniques depend on their experience and intuition. In our previous study, we analyzed the process using a new bottom-up hierarchical task analysis and identified key components of the process. Leveraging the results of the previous study, the purpose of this study was to construct a mammographic examination process ontology to formally describe the relationships between the process and image evaluation criteria to improve the quality of mammograms. First, we identified and created root classes: task, plan, and clinical image evaluation (CIE). Second, we described an "is-a" relation referring to the result of the previous study and the structure of the CIE. Third, the procedural steps in the ontology were described using the new properties: "isPerformedBefore," "isPerformedAfter," and "isPerformedAfterIfNecessary." Finally, the relationships between tasks and CIEs were described using the "isAffectedBy" property to represent the influence of the process on image quality. In total, there were 219 classes in the ontology. By introducing new properties related to the process flow, a sophisticated mammography examination process could be visualized. In relationships between tasks and CIEs, it became clear that the tasks affecting the evaluation criteria related to positioning were greater in number than those for image quality. We developed a mammographic examination process ontology that makes knowledge explicit for a comprehensive mammography process. Our research will support education and help promote knowledge sharing about mammography examination expertise.

  7. Context and the leadership experiences and perceptions of professionals: a review of the nursing profession.

    PubMed

    Jefferson, Therese; Klass, Des; Lord, Linley; Nowak, Margaret; Thomas, Gail

    2014-01-01

    Leadership studies which focus on categorising leadership styles have been critiqued for failure to consider the lived experience of leadership. The purpose of this paper is to use the framework of Jepson's model of contextual dynamics to explore whether this framework assists understanding of the "how and why" of lived leadership experience within the nursing profession. Themes for a purposeful literature search and review, having regard to the Jepson model, are drawn from the contemporary and dynamic context of nursing. Government reports, coupled with preliminary interviews with a nurseleadership team, guided selection of contextual issues. The contextual interactions arising from managerialism, existing hierarchical models of leadership and increasing knowledge work provided insights into leadership experience in nursing, in the contexts of professional identity and changing educational and generational profiles of nurses. The authors conclude that employing a contextual frame provides insights in studying leadership experience. The author propose additions to the cultural and institutional dimensions of Jepson's model. The findings have implications for structuring and communicating key roles and policies relevant to nursing leadership. These include the need to: address perceptions around the legitimacy of current nursing leaders to provide clinical leadership; modify hierarchical models of nursing leadership; address implications of the role of the knowledge workers. Observing nursing leadership through the lens of Jepson's model of contextual dynamics confirms that this is an important way of exploring how leadership is enacted. The authors found, however, the model also provided a useful frame for considering the experience and understanding of leadership by those to be led.

  8. Syntax in language and music: what is the right level of comparison?

    PubMed Central

    Asano, Rie; Boeckx, Cedric

    2015-01-01

    It is often claimed that music and language share a process of hierarchical structure building, a mental “syntax.” Although several lines of research point to commonalities, and possibly a shared syntactic component, differences between “language syntax” and “music syntax” can also be found at several levels: conveyed meaning, and the atoms of combination, for example. To bring music and language closer to one another, some researchers have suggested a comparison between music and phonology (“phonological syntax”), but here too, one quickly arrives at a situation of intriguing similarities and obvious differences. In this paper, we suggest that a fruitful comparison between the two domains could benefit from taking the grammar of action into account. In particular, we suggest that what is called “syntax” can be investigated in terms of goal of action, action planning, motor control, and sensory-motor integration. At this level of comparison, we suggest that some of the differences between language and music could be explained in terms of different goals reflected in the hierarchical structures of action planning: the hierarchical structures of music arise to achieve goals with a strong relation to the affective-gestural system encoding tension-relaxation patterns as well as socio-intentional system, whereas hierarchical structures in language are embedded in a conceptual system that gives rise to compositional meaning. Similarities between music and language are most clear in the way several hierarchical plans for executing action are processed in time and sequentially integrated to achieve various goals. PMID:26191034

  9. Low temperature oxidative desulfurization with hierarchically mesoporous titaniumsilicate Ti-SBA-2 single crystals.

    PubMed

    Shi, Chengxiang; Wang, Wenxuan; Liu, Ni; Xu, Xueyan; Wang, Danhong; Zhang, Minghui; Sun, Pingchuan; Chen, Tiehong

    2015-07-21

    Hierarchically porous Ti-SBA-2 with high framework Ti content (up to 5 wt%) was firstly synthesized by employing organic mesomorphous complexes of a cationic surfactant (CTAB) and an anionic polyelectrolyte (PAA) as templates. The material exhibited excellent performance in oxidative desulfurization of diesel fuel at low temperature (40 °C or 25 °C) due to the unique hierarchically porous structure and high framework Ti content.

  10. Leveraging medical taxonomies to improve knowledge management within online communities of practice: The knowledge maps system.

    PubMed

    Stewart, Samuel Alan; Abidi, Syed Sibte Raza

    2017-05-01

    Online communities of practice contain a wealth of information, stored in the free text of shared communications between community members. The Knowledge Maps (KMaps) system is designed to facilitate Knowledge Translation in online communities through multi-level analyses of the shared messages of these communications. Using state-of-the-art semantic mapping technologies (Metamap) the contents of the messages shared within an online community are mapped to terms from the MeSH medical lexicon, providing a multi-level topic-specific summary of the knowledge being shared within the community. Using the inherent hierarchical structure of the lexicon important insights can be found within the community. The KMaps system was applied to two medical mailing lists, the PPML (archives from 2009-02 to 2013-02) and SURGINET (archives from 2012-01 to 2013-04), identifying 27,924 and 50,597 medical terms respectively. KMaps identified content areas where both communities found interest, specifically around Diseases, 22% and 24% of the total terms, while also identifying field-specific areas that were more popular: SURGINET expressed an interest in Anatomy (14% vs 4%) while the PPML was more interested in Drugs (19% vs 9%). At the level of the individual KMaps identified 6 PPML users and 9 SURGINET users that had noticeably more contributions to the community than their peers, and investigated their personal areas of interest. The KMaps system provides valuable insights into the structure of both communities, identifying topics of interest/shared content areas and defining content-profiles for individual community members. The system provides a valuable addition to the online KT process. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Reuse: A knowledge-based approach

    NASA Technical Reports Server (NTRS)

    Iscoe, Neil; Liu, Zheng-Yang; Feng, Guohui

    1992-01-01

    This paper describes our research in automating the reuse process through the use of application domain models. Application domain models are explicit formal representations of the application knowledge necessary to understand, specify, and generate application programs. Furthermore, they provide a unified repository for the operational structure, rules, policies, and constraints of a specific application area. In our approach, domain models are expressed in terms of a transaction-based meta-modeling language. This paper has described in detail the creation and maintenance of hierarchical structures. These structures are created through a process that includes reverse engineering of data models with supplementary enhancement from application experts. Source code is also reverse engineered but is not a major source of domain model instantiation at this time. In the second phase of the software synthesis process, program specifications are interactively synthesized from an instantiated domain model. These specifications are currently integrated into a manual programming process but will eventually be used to derive executable code with mechanically assisted transformations. This research is performed within the context of programming-in-the-large types of systems. Although our goals are ambitious, we are implementing the synthesis system in an incremental manner through which we can realize tangible results. The client/server architecture is capable of supporting 16 simultaneous X/Motif users and tens of thousands of attributes and classes. Domain models have been partially synthesized from five different application areas. As additional domain models are synthesized and additional knowledge is gathered, we will inevitably add to and modify our representation. However, our current experience indicates that it will scale and expand to meet our modeling needs.

  12. Statistical mechanics of protein structural transitions: Insights from the island model

    PubMed Central

    Kobayashi, Yukio

    2016-01-01

    The so-called island model of protein structural transition holds that hydrophobic interactions are the key to both the folding and function of proteins. Herein, the genesis and statistical mechanical basis of the island model of transitions are reviewed, by presenting the results of simulations of such transitions. Elucidating the physicochemical mechanism of protein structural formation is the foundation for understanding the hierarchical structure of life at the microscopic level. Based on the results obtained to date using the island model, remaining problems and future work in the field of protein structures are discussed, referencing Professor Saitô’s views on the hierarchic structure of science. PMID:28409078

  13. Hierarchical Rhetorical Sentence Categorization for Scientific Papers

    NASA Astrophysics Data System (ADS)

    Rachman, G. H.; Khodra, M. L.; Widyantoro, D. H.

    2018-03-01

    Important information in scientific papers can be composed of rhetorical sentences that is structured from certain categories. To get this information, text categorization should be conducted. Actually, some works in this task have been completed by employing word frequency, semantic similarity words, hierarchical classification, and the others. Therefore, this paper aims to present the rhetorical sentence categorization from scientific paper by employing TF-IDF and Word2Vec to capture word frequency and semantic similarity words and employing hierarchical classification. Every experiment is tested in two classifiers, namely Naïve Bayes and SVM Linear. This paper shows that hierarchical classifier is better than flat classifier employing either TF-IDF or Word2Vec, although it increases only almost 2% from 27.82% when using flat classifier until 29.61% when using hierarchical classifier. It shows also different learning model for child-category can be built by hierarchical classifier.

  14. Fractal multi-level organisation of human groups in a virtual world.

    PubMed

    Fuchs, Benedikt; Sornette, Didier; Thurner, Stefan

    2014-10-06

    Humans are fundamentally social. They form societies which consist of hierarchically layered nested groups of various quality, size, and structure. The anthropologic literature has classified these groups as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups, and so on. Anthropologic data show that, on average, each group consists of approximately three subgroups. However, a general understanding of the structural dependence of groups at different layers is largely missing. We extend these early findings to a very large high-precision large-scale internet-based social network data. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of an open-ended massive multiplayer online game for which we know all about their various group memberships at different layers. Remarkably, the online players' society exhibits the same type of structured hierarchical layers as found in hunter-gatherer societies. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology.

  15. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries

    NASA Astrophysics Data System (ADS)

    Odziomek, Mateusz; Chaput, Frédéric; Rutkowska, Anna; Świerczek, Konrad; Olszewska, Danuta; Sitarz, Maciej; Lerouge, Frédéric; Parola, Stephane

    2017-05-01

    High-performance Li-ion batteries require materials with well-designed and controlled structures on nanometre and micrometre scales. Electrochemical properties can be enhanced by reducing crystallite size and by manipulating structure and morphology. Here we show a method for preparing hierarchically structured Li4Ti5O12 yielding nano- and microstructure well-suited for use in lithium-ion batteries. Scalable glycothermal synthesis yields well-crystallized primary 4-8 nm nanoparticles, assembled into porous secondary particles. X-ray photoelectron spectroscopy reveals presence of Ti+4 only; combined with chemical analysis showing lithium deficiency, this suggests oxygen non-stoichiometry. Electron microscopy confirms hierarchical morphology of the obtained material. Extended cycling tests in half cells demonstrates capacity of 170 mAh g-1 and no sign of capacity fading after 1,000 cycles at 50C rate (charging completed in 72 s). The particular combination of nanostructure, microstructure and non-stoichiometry for the prepared lithium titanate is believed to underlie the observed electrochemical performance of material.

  16. Fractal multi-level organisation of human groups in a virtual world

    PubMed Central

    Fuchs, Benedikt; Sornette, Didier; Thurner, Stefan

    2014-01-01

    Humans are fundamentally social. They form societies which consist of hierarchically layered nested groups of various quality, size, and structure. The anthropologic literature has classified these groups as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups, and so on. Anthropologic data show that, on average, each group consists of approximately three subgroups. However, a general understanding of the structural dependence of groups at different layers is largely missing. We extend these early findings to a very large high-precision large-scale internet-based social network data. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of an open-ended massive multiplayer online game for which we know all about their various group memberships at different layers. Remarkably, the online players' society exhibits the same type of structured hierarchical layers as found in hunter-gatherer societies. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology. PMID:25283998

  17. Biomedical application of hierarchically built structures based on metal oxides

    NASA Astrophysics Data System (ADS)

    Korovin, M. S.; Fomenko, A. N.

    2017-12-01

    Nowadays, the use of hierarchically built structures in biology and medicine arouses much interest. The aim of this work is to review and summarize the available literature data about hierarchically organized structures in biomedical application. Nanoparticles can serve as an example of such structures. Medicine holds a special place among various application methods of similar systems. Special attention is paid to inorganic nanoparticles based on different metal oxides and hydroxides, such as iron, zinc, copper, and aluminum. Our investigations show that low-dimensional nanostructures based on aluminum oxides and hydroxides have an inhibitory effect on tumor cells and possess an antimicrobial activity. At the same time, it is obvious that the large-scale use of nanoparticles by humans needs to thoroughly study their properties. Special attention should be paid to the study of nanoparticle interaction with living biological objects. The numerous data show that there is no clear understanding of interaction mechanisms between nanoparticles and various cell types.

  18. Fractal multi-level organisation of human groups in a virtual world

    NASA Astrophysics Data System (ADS)

    Fuchs, Benedikt; Sornette, Didier; Thurner, Stefan

    2014-10-01

    Humans are fundamentally social. They form societies which consist of hierarchically layered nested groups of various quality, size, and structure. The anthropologic literature has classified these groups as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups, and so on. Anthropologic data show that, on average, each group consists of approximately three subgroups. However, a general understanding of the structural dependence of groups at different layers is largely missing. We extend these early findings to a very large high-precision large-scale internet-based social network data. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of an open-ended massive multiplayer online game for which we know all about their various group memberships at different layers. Remarkably, the online players' society exhibits the same type of structured hierarchical layers as found in hunter-gatherer societies. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology.

  19. Corneal structure and transparency

    PubMed Central

    Meek, Keith M.; Knupp, Carlo

    2015-01-01

    The corneal stroma plays several pivotal roles within the eye. Optically, it is the main refracting lens and thus has to combine almost perfect transmission of visible light with precise shape, in order to focus incoming light. Furthermore, mechanically it has to be extremely tough to protect the inner contents of the eye. These functions are governed by its structure at all hierarchical levels. The basic principles of corneal structure and transparency have been known for some time, but in recent years X-ray scattering and other methods have revealed that the details of this structure are far more complex than previously thought and that the intricacy of the arrangement of the collagenous lamellae provides the shape and the mechanical properties of the tissue. At the molecular level, modern technologies and theoretical modelling have started to explain exactly how the collagen fibrils are arranged within the stromal lamellae and how proteoglycans maintain this ultrastructure. In this review we describe the current state of knowledge about the three-dimensional stromal architecture at the microscopic level, and about the control mechanisms at the nanoscopic level that lead to optical transparency. PMID:26145225

  20. Implicit Learning of Recursive Context-Free Grammars

    PubMed Central

    Rohrmeier, Martin; Fu, Qiufang; Dienes, Zoltan

    2012-01-01

    Context-free grammars are fundamental for the description of linguistic syntax. However, most artificial grammar learning experiments have explored learning of simpler finite-state grammars, while studies exploring context-free grammars have not assessed awareness and implicitness. This paper explores the implicit learning of context-free grammars employing features of hierarchical organization, recursive embedding and long-distance dependencies. The grammars also featured the distinction between left- and right-branching structures, as well as between centre- and tail-embedding, both distinctions found in natural languages. People acquired unconscious knowledge of relations between grammatical classes even for dependencies over long distances, in ways that went beyond learning simpler relations (e.g. n-grams) between individual words. The structural distinctions drawn from linguistics also proved important as performance was greater for tail-embedding than centre-embedding structures. The results suggest the plausibility of implicit learning of complex context-free structures, which model some features of natural languages. They support the relevance of artificial grammar learning for probing mechanisms of language learning and challenge existing theories and computational models of implicit learning. PMID:23094021

  1. Hierarchical graphs for rule-based modeling of biochemical systems

    PubMed Central

    2011-01-01

    Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal) of an edge represents a class of association (dissociation) reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR) complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for specifying rule-based models, such as the BioNetGen language (BNGL). Thus, the proposed use of hierarchical graphs should promote clarity and better understanding of rule-based models. PMID:21288338

  2. Multilevel modelling: Beyond the basic applications.

    PubMed

    Wright, Daniel B; London, Kamala

    2009-05-01

    Over the last 30 years statistical algorithms have been developed to analyse datasets that have a hierarchical/multilevel structure. Particularly within developmental and educational psychology these techniques have become common where the sample has an obvious hierarchical structure, like pupils nested within a classroom. We describe two areas beyond the basic applications of multilevel modelling that are important to psychology: modelling the covariance structure in longitudinal designs and using generalized linear multilevel modelling as an alternative to methods from signal detection theory (SDT). Detailed code for all analyses is described using packages for the freeware R.

  3. The RDoC initiative and the structure of psychopathology.

    PubMed

    Krueger, Robert F; DeYoung, Colin G

    2016-03-01

    The NIMH Research Domain Criteria (RDoC) project represents a welcome effort to circumvent the limitations of psychiatric categories as phenotypes for psychopathology research. Here, we describe the hierarchical and dimensional structure of phenotypic psychopathology and illustrate how this structure provides phenotypes suitable for RDoC research on neural correlates of psychopathology. A hierarchical and dimensional approach to psychopathology phenotypes holds great promise for delineating connections between neuroscience constructs and the patterns of affect, cognition, and behavior that constitute manifest psychopathology. © 2016 Society for Psychophysiological Research.

  4. Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor.

    PubMed

    Hilgetag, C C; O'Neill, M A; Young, M P

    2000-01-29

    Neuroanatomists have described a large number of connections between the various structures of monkey and cat cortical sensory systems. Because of the complexity of the connection data, analysis is required to unravel what principles of organization they imply. To date, analysis of laminar origin and termination connection data to reveal hierarchical relationships between the cortical areas has been the most widely acknowledged approach. We programmed a network processor that searches for optimal hierarchical orderings of cortical areas given known hierarchical constraints and rules for their interpretation. For all cortical systems and all cost functions, the processor found a multitude of equally low-cost hierarchies. Laminar hierarchical constraints that are presently available in the anatomical literature were therefore insufficient to constrain a unique ordering for any of the sensory systems we analysed. Hierarchical orderings of the monkey visual system that have been widely reported, but which were derived by hand, were not among the optimal orderings. All the cortical systems we studied displayed a significant degree of hierarchical organization, and the anatomical constraints from the monkey visual and somato-motor systems were satisfied with very few constraint violations in the optimal hierarchies. The visual and somato-motor systems in that animal were therefore surprisingly strictly hierarchical. Most inconsistencies between the constraints and the hierarchical relationships in the optimal structures for the visual system were related to connections of area FST (fundus of superior temporal sulcus). We found that the hierarchical solutions could be further improved by assuming that FST consists of two areas, which differ in the nature of their projections. Indeed, we found that perfect hierarchical arrangements of the primate visual system, without any violation of anatomical constraints, could be obtained under two reasonable conditions, namely the subdivision of FST into two distinct areas, whose connectivity we predict, and the abolition of at least one of the less reliable rule constraints. Our analyses showed that the future collection of the same type of laminar constraints, or the inclusion of new hierarchical constraints from thalamocortical connections, will not resolve the problem of multiple optimal hierarchical representations for the primate visual system. Further data, however, may help to specify the relative ordering of some more areas. This indeterminacy of the visual hierarchy is in part due to the reported absence of some connections between cortical areas. These absences are consistent with limited cross-talk between differentiated processing streams in the system. Hence, hierarchical representation of the visual system is affected by, and must take into account, other organizational features, such as processing streams.

  5. Managing clinical failure: a complex adaptive system perspective.

    PubMed

    Matthews, Jean I; Thomas, Paul T

    2007-01-01

    The purpose of this article is to explore the knowledge capture process at the clinical level. It aims to identify factors that enable or constrain learning. The study applies complex adaptive system thinking principles to reconcile learning within the NHS. The paper uses a qualitative exploratory study with an interpretative methodological stance set in a secondary care NHS Trust. Semi-structured interviews were conducted with healthcare practitioners and managers involved at both strategic and operational risk management processes. A network structure is revealed that exhibits the communication and interdependent working practices to support knowledge capture and adaptive learning. Collaborative multidisciplinary communities, whose values reflect local priorities and promote open dialogue and reflection, are featured. The main concern is that the characteristics of bureaucracy; rational-legal authority, a rule-based culture, hierarchical lines of communication and a centralised governance focus, are hindering clinical learning by generating barriers. Locally emergent collaborative processes are a key strategic resource to capture knowledge, potentially fostering an environment that could learn from failure and translate lessons between contexts. What must be addressed is that reporting mechanisms serve not only the governance objectives, but also supplement learning by highlighting the potential lessons in context. Managers must nurture a collaborative infrastructure using networks in a co-evolutionary manner. Their role is not to direct and design processes but to influence, support and create effective knowledge capture. Although the study only investigated one site the findings and conclusions may well translate to other trusts--such as the risk of not enabling a learning environment at clinical levels.

  6. A survey on routing protocols for large-scale wireless sensor networks.

    PubMed

    Li, Changle; Zhang, Hanxiao; Hao, Binbin; Li, Jiandong

    2011-01-01

    With the advances in micro-electronics, wireless sensor devices have been made much smaller and more integrated, and large-scale wireless sensor networks (WSNs) based the cooperation among the significant amount of nodes have become a hot topic. "Large-scale" means mainly large area or high density of a network. Accordingly the routing protocols must scale well to the network scope extension and node density increases. A sensor node is normally energy-limited and cannot be recharged, and thus its energy consumption has a quite significant effect on the scalability of the protocol. To the best of our knowledge, currently the mainstream methods to solve the energy problem in large-scale WSNs are the hierarchical routing protocols. In a hierarchical routing protocol, all the nodes are divided into several groups with different assignment levels. The nodes within the high level are responsible for data aggregation and management work, and the low level nodes for sensing their surroundings and collecting information. The hierarchical routing protocols are proved to be more energy-efficient than flat ones in which all the nodes play the same role, especially in terms of the data aggregation and the flooding of the control packets. With focus on the hierarchical structure, in this paper we provide an insight into routing protocols designed specifically for large-scale WSNs. According to the different objectives, the protocols are generally classified based on different criteria such as control overhead reduction, energy consumption mitigation and energy balance. In order to gain a comprehensive understanding of each protocol, we highlight their innovative ideas, describe the underlying principles in detail and analyze their advantages and disadvantages. Moreover a comparison of each routing protocol is conducted to demonstrate the differences between the protocols in terms of message complexity, memory requirements, localization, data aggregation, clustering manner and other metrics. Finally some open issues in routing protocol design in large-scale wireless sensor networks and conclusions are proposed.

  7. A Survey on Routing Protocols for Large-Scale Wireless Sensor Networks

    PubMed Central

    Li, Changle; Zhang, Hanxiao; Hao, Binbin; Li, Jiandong

    2011-01-01

    With the advances in micro-electronics, wireless sensor devices have been made much smaller and more integrated, and large-scale wireless sensor networks (WSNs) based the cooperation among the significant amount of nodes have become a hot topic. “Large-scale” means mainly large area or high density of a network. Accordingly the routing protocols must scale well to the network scope extension and node density increases. A sensor node is normally energy-limited and cannot be recharged, and thus its energy consumption has a quite significant effect on the scalability of the protocol. To the best of our knowledge, currently the mainstream methods to solve the energy problem in large-scale WSNs are the hierarchical routing protocols. In a hierarchical routing protocol, all the nodes are divided into several groups with different assignment levels. The nodes within the high level are responsible for data aggregation and management work, and the low level nodes for sensing their surroundings and collecting information. The hierarchical routing protocols are proved to be more energy-efficient than flat ones in which all the nodes play the same role, especially in terms of the data aggregation and the flooding of the control packets. With focus on the hierarchical structure, in this paper we provide an insight into routing protocols designed specifically for large-scale WSNs. According to the different objectives, the protocols are generally classified based on different criteria such as control overhead reduction, energy consumption mitigation and energy balance. In order to gain a comprehensive understanding of each protocol, we highlight their innovative ideas, describe the underlying principles in detail and analyze their advantages and disadvantages. Moreover a comparison of each routing protocol is conducted to demonstrate the differences between the protocols in terms of message complexity, memory requirements, localization, data aggregation, clustering manner and other metrics. Finally some open issues in routing protocol design in large-scale wireless sensor networks and conclusions are proposed. PMID:22163808

  8. Automated compound classification using a chemical ontology.

    PubMed

    Bobach, Claudia; Böhme, Timo; Laube, Ulf; Püschel, Anett; Weber, Lutz

    2012-12-29

    Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate chemistry expert knowledge into a computer interpretable form, preventing erroneous compound assignments and allowing automatic compound classification. The automated assignment of compounds in databases, compound structure files or text documents to their related ontology classes is possible through the integration with a chemical structure search engine. As an application example, the annotation of chemical structure files with a prototypic ontology is demonstrated.

  9. Automated compound classification using a chemical ontology

    PubMed Central

    2012-01-01

    Background Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. Results In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. Conclusions A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate chemistry expert knowledge into a computer interpretable form, preventing erroneous compound assignments and allowing automatic compound classification. The automated assignment of compounds in databases, compound structure files or text documents to their related ontology classes is possible through the integration with a chemical structure search engine. As an application example, the annotation of chemical structure files with a prototypic ontology is demonstrated. PMID:23273256

  10. Decentralized hierarchical partitioning of centralized integrated controllers. [for flight propulsion in STOVLs

    NASA Technical Reports Server (NTRS)

    Schmidt, Phillip; Garg, Sanjay

    1991-01-01

    A framework for a decentralized hierarchical controller partitioning structure is developed. This structure allows for the design of separate airframe and propulsion controllers which, when assembled, will meet the overall design criterion for the integrated airframe/propulsion system. An algorithm based on parameter optimization of the state-space representation for the subsystem controllers is described. The algorithm is currently being applied to an integrated flight propulsion control design example.

  11. Controlled Synthesis and Magnetic Properties of Uniform Hierarchical Polyhedral α-Fe2O3 Particles

    NASA Astrophysics Data System (ADS)

    Long, Nguyen Viet; Yang, Yong; Thi, Cao Minh; Phuc, Le Hong; Nogami, Masayuki

    2017-06-01

    The controlled synthesis of uniform hierarchical polyhedral iron (Fe) micro-/nanoscale oxide particles with the α-Fe2O3 structure is presented. The hierarchical polyhedral iron oxide particles were synthesized by modified polyol methods with sodium borohydride as a powerful and efficient reducing agent. A critical heat treatment process used during the synthesis allowed for the interesting formation of α-Fe2O3 hematite with a micro-/nanoscale structure. The structure and weak ferromagnetism of the α-Fe2O3 particles were investigated by x-ray diffraction with whole pattern fitting and Rietveld refinement, scanning electron microscopy, and by vibrating sample magnetometry. The as-prepared α-Fe2O3 particles and the three dimensional models presented have promising practical applications for energy storage and conversion in batteries, capacitors, and fuel cells, and related spintronic devices and technologies.

  12. Bioinspired Au/TiO2 photocatalyst derived from butterfly wing (Papilio Paris).

    PubMed

    Chen, Jianjun; Su, Huilan; Song, Fang; Moon, Won-Jin; Kim, Yang-Soo; Zhang, Di

    2012-03-15

    The reticular hierarchical structure of butterfly wings (Papilio Paris) is introduced as template for Au/TiO(2) photocatalyst by depositing the Au nanoparticles on TiO(2) matrix, which is carried out by a water-ethanol sol-gel procedure combined with subsequent calcination. The obtained Au/TiO(2) nanocomposites present the reticular hierarchical structure of butterfly wings, and Au nanoparticles with an average size of 7 nm are homogeneously dispersed in TiO(2) substrate. Benefiting from such unique reticular hierarchical structure and composition, the biomorphic Au/TiO(2) exhibits high-harvesting capability and presents superior photocatalytic activity. Especially, the biomorphic Au/TiO(2) at the nominal content of gold to titanium of 8 wt% shows the highest photocatalytic activity and can completely decompose methyl orange within 80 min, which is obviously higher than that of commercial Degussa P25 powders. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Hierarchically structured activated carbon for ultracapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Mok-Hwa; Kim, Kwang-Bum; Park, Sun-Min; Roh, Kwang Chul

    2016-02-01

    To resolve the pore-associated bottleneck problem observed in the electrode materials used for ultracapacitors, which inhibits the transport of the electrolyte ions, we designed hierarchically structured activated carbon (HAC) by synthesizing a mesoporous silica template/carbon composite and chemically activating it to simultaneously remove the silica template and increase the pore volume. The resulting HAC had a well-designed, unique porous structure, which allowed for large interfaces for efficient electric double-layer formation. Given the unique characteristics of the HAC, we believe that the developed synthesis strategy provides important insights into the design and fabrication of hierarchical carbon nanostructures. The HAC, which had a specific surface area of 1,957 m2 g-1, exhibited an extremely high specific capacitance of 157 F g-1 (95 F cc-1), as well as a high rate capability. This indicated that it had superior energy storage capability and was thus suitable for use in advanced ultracapacitors.

  14. Rapid fabrication of hierarchically structured supramolecular nanocomposite thin films in one minute

    DOEpatents

    Xu, Ting; Kao, Joseph

    2016-11-08

    Functional nanocomposites containing nanoparticles of different chemical compositions may exhibit new properties to meet demands for advanced technology. It is imperative to simultaneously achieve hierarchical structural control and to develop rapid, scalable fabrication to minimize degradation of nanoparticle properties and for compatibility with nanomanufacturing. The assembly kinetics of supramolecular nanocomposite in thin films is governed by the energetic cost arising from defects, the chain mobility, and the activation energy for inter-domain diffusion. By optimizing only one parameter, the solvent fraction in the film, the assembly kinetics can be precisely tailored to produce hierarchically structured thin films of supramolecular nanocomposites in approximately one minute. Moreover, the strong wavelength dependent optical anisotropy in the nanocomposite highlights their potential applications for light manipulation and information transmission. The present invention opens a new avenue in designing manufacture-friendly continuous processing for the fabrication of functional nanocomposite thin films.

  15. Effects of inherent/enhanced solid acidity and morphology of diatomite templates on the synthesis and porosity of hierarchically porous carbon.

    PubMed

    Liu, Dong; Yuan, Peng; Tan, Daoyong; Liu, Hongmei; Fan, Mingde; Yuan, Aihua; Zhu, Jianxi; He, Hongping

    2010-12-21

    The inherent or enhanced solid acidity of raw or activated diatomite is found to have significant effects on the synthesis of hierarchically porous diatomite-templated carbon with high surface area and special porous structure. The solid acidity makes raw/activated diatomite a catalyst for the generation of porous carbon, and the porous parameters of the carbon products are strongly dependent on the solid acidity of diatomite templates. The morphology of diatomite also dramatically affects the textural structure of porous carbon. Two types of macroporous structures in the carbon product, the partially solid pillars and the ordered hollow tubes, derive from the replication of the central and the edge pores of diatom shell, respectively. The hierarchically porous carbon shows good capability for the adsorption of solvent naphtha and H(2), enabling potential applications in adsorption and gas storage.

  16. Hierarchical Structure of the Eysenck Personality Inventory in a Large Population Sample: Goldberg's Trait-Tier Mapping Procedure

    PubMed Central

    Chapman, Benjamin P.; Weiss, Alexander; Barrett, Paul; Duberstein, Paul

    2014-01-01

    The structure of the Eysenck Personality Inventory (EPI) is poorly understood, and applications have mostly been confined to the broad Neuroticism, Extraversion, and Lie scales. Using a hierarchical factoring procedure, we mapped the sequential differentiation of EPI scales from broad, molar factors to more specific, molecular factors, in a UK population sample of over 6500 persons. Replicable facets at the lowest tier of Neuroticism included emotional fragility, mood lability, nervous tension, and rumination. The lowest order set of replicable Extraversion facets consisted of social dynamism, sociotropy, decisiveness, jocularity, social information seeking, and impulsivity. The Lie scale consisted of an interpersonal virtue and a behavioral diligence facet. Users of the EPI may be well served in some circumstances by considering its broad Neuroticism, Extraversion, and Lie scales as multifactorial, a feature that was explicitly incorporated into subsequent Eysenck inventories and is consistent with other hierarchical trait structures. PMID:25983361

  17. Bioinspired Thermoresponsive Photonic Polymers with Hierarchical Structures and Their Unique Properties.

    PubMed

    Lu, Tao; Zhu, Shenmin; Ma, Jun; Lin, Jinyou; Wang, Wanlin; Pan, Hui; Tian, Feng; Zhang, Wang; Zhang, Di

    2015-10-01

    Thermoresponsive photonic materials having hierarchical structures are created by combining a template of Morpho butterfly wings with poly(N-isopropylacrylamide) (PNIPAM) through a chemical bonding and polymerization route. These materials show temperature-induced color tunability. Through reacting with both NIPAM monomers and the amino groups of chitosan in wing scales, glutaraldehyde workes as a bridge by creating chemical bonding between the biotemplate and the PNIPAM. The corresponding reflection peaks red-shift with increase in temperature-an opposite phenomenon to previous studies, demonstrating a thermoresponsive photonic property. This unique phenomenon is caused by the refractive index change due to the volume change of PNIPAM during the temperature rising. This work sets up an efficient strategy for the fabrication of stimuli-responsive photonic materials with hierarchical structures toward extensive applications in science and technology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hierarchically structured photonic crystals for integrated chemical separation and colorimetric detection.

    PubMed

    Fu, Qianqian; Zhu, Biting; Ge, Jianping

    2017-02-16

    A SiO 2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO 2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.

  19. A novel representation for planning 3-D collision-free paths

    NASA Technical Reports Server (NTRS)

    Bonner, Susan; Kelley, Robert B.

    1990-01-01

    A new scheme for the representation of objects, the successive spherical approximation (SSA), facilitates the rapid planning of collision-free paths in a dynamic three-dimensional environment. The hierarchical nature of the SSA allows collisions to be determined efficiently while still providing an exact representation of objects. The rapidity with which collisions can be detected, less than 1 sec per environment object per path, makes it possible to use a generate-and-test path-planning strategy driven by human conceptual knowledge to determine collision-free paths in a matter of seconds on a Sun 3/180 computer. A hierarchy of rules, based on the concept of a free space cell, is used to find heuristically satisfying collision-free paths in a structured environment.

  20. Molecular structure of bottlebrush polymers in melts

    PubMed Central

    Paturej, Jarosław; Sheiko, Sergei S.; Panyukov, Sergey; Rubinstein, Michael

    2016-01-01

    Bottlebrushes are fascinating macromolecules that display an intriguing combination of molecular and particulate features having vital implications in both living and synthetic systems, such as cartilage and ultrasoft elastomers. However, the progress in practical applications is impeded by the lack of knowledge about the hierarchic organization of both individual bottlebrushes and their assemblies. We delineate fundamental correlations between molecular architecture, mesoscopic conformation, and macroscopic properties of polymer melts. Numerical simulations corroborate theoretical predictions for the effect of grafting density and side-chain length on the dimensions and rigidity of bottlebrushes, which effectively behave as a melt of flexible filaments. These findings provide quantitative guidelines for the design of novel materials that allow architectural tuning of their properties in a broad range without changing chemical composition. PMID:28861466

Top