Modular and hierarchical structure of social contact networks
NASA Astrophysics Data System (ADS)
Ge, Yuanzheng; Song, Zhichao; Qiu, Xiaogang; Song, Hongbin; Wang, Yong
2013-10-01
Social contact networks exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated nature. We propose a mixing pattern of modular and growing hierarchical structures to reconstruct social contact networks by using an individual’s geospatial distribution information in the real world. The hierarchical structure of social contact networks is defined based on the spatial distance between individuals, and edges among individuals are added in turn from the modular layer to the highest layer. It is a gradual process to construct the hierarchical structure: from the basic modular model up to the global network. The proposed model not only shows hierarchically increasing degree distribution and large clustering coefficients in communities, but also exhibits spatial clustering features of individual distributions. As an evaluation of the method, we reconstruct a hierarchical contact network based on the investigation data of a university. Transmission experiments of influenza H1N1 are carried out on the generated social contact networks, and results show that the constructed network is efficient to reproduce the dynamic process of an outbreak and evaluate interventions. The reproduced spread process exhibits that the spatial clustering of infection is accordant with the clustering of network topology. Moreover, the effect of individual topological character on the spread of influenza is analyzed, and the experiment results indicate that the spread is limited by individual daily contact patterns and local clustering topology rather than individual degree.
A spatial analysis of hierarchical waste transport structures under growing demand.
Tanguy, Audrey; Glaus, Mathias; Laforest, Valérie; Villot, Jonathan; Hausler, Robert
2016-10-01
The design of waste management systems rarely accounts for the spatio-temporal evolution of the demand. However, recent studies suggest that this evolution affects the planning of waste management activities like the choice and location of treatment facilities. As a result, the transport structure could also be affected by these changes. The objective of this paper is to study the influence of the spatio-temporal evolution of the demand on the strategic planning of a waste transport structure. More particularly this study aims at evaluating the effect of varying spatial parameters on the economic performance of hierarchical structures (with one transfer station). To this end, three consecutive generations of three different spatial distributions were tested for hierarchical and non-hierarchical transport structures based on costs minimization. Results showed that a hierarchical structure is economically viable for large and clustered spatial distributions. The distance parameter was decisive but the loading ratio of trucks and the formation of clusters of sources also impacted the attractiveness of the transfer station. Thus the territories' morphology should influence strategies as regards to the installation of transfer stations. The use of spatial-explicit tools such as the transport model presented in this work that take into account the territory's evolution are needed to help waste managers in the strategic planning of waste transport structures. © The Author(s) 2016.
Ray tracing a three-dimensional scene using a hierarchical data structure
Wald, Ingo; Boulos, Solomon; Shirley, Peter
2012-09-04
Ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. One example embodiment is a method for ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. In this example embodiment, the hierarchical data structure includes at least a parent node and a corresponding plurality of child nodes. The method includes a first act of determining that a first active ray in the packet hits the parent node and a second act of descending to each of the plurality of child nodes.
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring
Carlos Carroll; Devin S. Johnson; Jeffrey R. Dunk; William J. Zielinski
2010-01-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their dataâs spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and...
Rodhouse, T.J.; Irvine, K.M.; Vierling, K.T.; Vierling, L.A.
2011-01-01
Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed Bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones") with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity-a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.
Hierarchical drivers of reef-fish metacommunity structure.
MacNeil, M Aaron; Graham, Nicholas A J; Polunin, Nicholas V C; Kulbicki, Michel; Galzin, René; Harmelin-Vivien, Mireille; Rushton, Steven P
2009-01-01
Coral reefs are highly complex ecological systems, where multiple processes interact across scales in space and time to create assemblages of exceptionally high biodiversity. Despite the increasing frequency of hierarchically structured sampling programs used in coral-reef science, little progress has been made in quantifying the relative importance of processes operating across multiple scales. The vast majority of reef studies are conducted, or at least analyzed, at a single spatial scale, ignoring the implicitly hierarchical structure of the overall system in favor of small-scale experiments or large-scale observations. Here we demonstrate how alpha (mean local number of species), beta diversity (degree of species dissimilarity among local sites), and gamma diversity (overall species richness) vary with spatial scale, and using a hierarchical, information-theoretic approach, we evaluate the relative importance of site-, reef-, and atoll-level processes driving the fish metacommunity structure among 10 atolls in French Polynesia. Process-based models, representing well-established hypotheses about drivers of reef-fish community structure, were assembled into a candidate set of 12 hierarchical linear models. Variation in fish abundance, biomass, and species richness were unevenly distributed among transect, reef, and atoll levels, establishing the relative contribution of variation at these spatial scales to the structure of the metacommunity. Reef-fish biomass, species richness, and the abundance of most functional-groups corresponded primarily with transect-level habitat diversity and atoll-lagoon size, whereas detritivore and grazer abundances were largely correlated with potential covariates of larval dispersal. Our findings show that (1) within-transect and among-atoll factors primarily drive the relationship between alpha and gamma diversity in this reef-fish metacommunity; (2) habitat is the primary correlate with reef-fish metacommunity structure at multiple spatial scales; and (3) inter-atoll connectedness was poorly correlated with the nonrandom clustering of reef-fish species. These results demonstrate the importance of modeling hierarchical data and processes in understanding reef-fish metacommunity structure.
Organizational and Spatial Dynamics of Attentional Focusing in Hierarchically Structured Objects
ERIC Educational Resources Information Center
Yeari, Menahem; Goldsmith, Morris
2011-01-01
Is the focusing of visual attention object-based, space-based, both, or neither? Attentional focusing latencies in hierarchically structured compound-letter objects were examined, orthogonally manipulating global size (larger vs. smaller) and organizational complexity (two-level structure vs. three-level structure). In a dynamic focusing task,…
An improved spatial contour tree constructed method
NASA Astrophysics Data System (ADS)
Zheng, Yi; Zhang, Ling; Guilbert, Eric; Long, Yi
2018-05-01
Contours are important data to delineate the landform on a map. A contour tree provides an object-oriented description of landforms and can be used to enrich the topological information. The traditional contour tree is used to store topological relationships between contours in a hierarchical structure and allows for the identification of eminences and depressions as sets of nested contours. This research proposes an improved contour tree so-called spatial contour tree that contains not only the topological but also the geometric information. It can be regarded as a terrain skeleton in 3-dimention, and it is established based on the spatial nodes of contours which have the latitude, longitude and elevation information. The spatial contour tree is built by connecting spatial nodes from low to high elevation for a positive landform, and from high to low elevation for a negative landform to form a hierarchical structure. The connection between two spatial nodes can provide the real distance and direction as a Euclidean vector in 3-dimention. In this paper, the construction method is tested in the experiment, and the results are discussed. The proposed hierarchical structure is in 3-demintion and can show the skeleton inside a terrain. The structure, where all nodes have geo-information, can be used to distinguish different landforms and applied for contour generalization with consideration of geographic characteristics.
Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots.
Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro
2018-01-01
In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., "I am in my home" and "I am in front of the table," a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.
Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots
Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro
2018-01-01
In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., “I am in my home” and “I am in front of the table,” a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept. PMID:29593521
Conversion of methanol to propylene over hierarchical HZSM-5: the effect of Al spatial distribution.
Li, Jianwen; Ma, Hongfang; Chen, Yan; Xu, Zhiqiang; Li, Chunzhong; Ying, Weiyong
2018-06-08
Different silicon sources caused diverse Al spatial distribution in HZSM-5, and this affected the hierarchical structures and catalytic performance of desilicated zeolites. After being treated with 0.1 M NaOH, HZSM-5 zeolites synthesized with silica sol exhibited relatively widely distributed mesopores and channels, and possessed highly improved propylene selectivity and activity stability.
Lien, Mei-Ching; Ruthruff, Eric
2004-05-01
This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms. In Experiments 2-5, adjacent task elements were grouped temporally and/or spatially (forming an ensemble) to create a hierarchical task organization. Results indicate that the effect of switching at the ensemble level dominated the effect of switching at the element level. Experiments 6 and 7, using an ensemble of 3 task elements, revealed that the element-level switch cost was virtually absent between ensembles but was large within an ensemble. The authors conclude that the element-level task repetition benefit is fragile and can be eliminated in a hierarchical task organization.
NASA Technical Reports Server (NTRS)
Lien, Mei-Ching; Ruthruff, Eric
2004-01-01
This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms. In Experiments 2-5, adjacent task elements were grouped temporally and/or spatially (forming an ensemble) to create a hierarchical task organization. Results indicate that the effect of switching at the ensemble level dominated the effect of switching at the element level. Experiments 6 and 7, using an ensemble of 3 task elements, revealed that the element-level switch cost was virtually absent between ensembles but was large within an ensemble. The authors conclude that the element-level task repetition benefit is fragile and can be eliminated in a hierarchical task organization.
NASA Astrophysics Data System (ADS)
Song, Zhichao; Ge, Yuanzheng; Luo, Lei; Duan, Hong; Qiu, Xiaogang
2015-12-01
Social contact between individuals is the chief factor for airborne epidemic transmission among the crowd. Social contact networks, which describe the contact relationships among individuals, always exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated. We find that traditional global targeted immunization strategy would lose its superiority in controlling the epidemic propagation in the social contact networks with modular and hierarchical structure. Therefore, we propose a hierarchical targeted immunization strategy to settle this problem. In this novel strategy, importance of the hierarchical structure is considered. Transmission control experiments of influenza H1N1 are carried out based on a modular and hierarchical network model. Results obtained indicate that hierarchical structure of the network is more critical than the degrees of the immunized targets and the modular network layer is the most important for the epidemic propagation control. Finally, the efficacy and stability of this novel immunization strategy have been validated as well.
Principles of Temporal Processing Across the Cortical Hierarchy.
Himberger, Kevin D; Chien, Hsiang-Yun; Honey, Christopher J
2018-05-02
The world is richly structured on multiple spatiotemporal scales. In order to represent spatial structure, many machine-learning models repeat a set of basic operations at each layer of a hierarchical architecture. These iterated spatial operations - including pooling, normalization and pattern completion - enable these systems to recognize and predict spatial structure, while robust to changes in the spatial scale, contrast and noisiness of the input signal. Because our brains also process temporal information that is rich and occurs across multiple time scales, might the brain employ an analogous set of operations for temporal information processing? Here we define a candidate set of temporal operations, and we review evidence that they are implemented in the mammalian cerebral cortex in a hierarchical manner. We conclude that multiple consecutive stages of cortical processing can be understood to perform temporal pooling, temporal normalization and temporal pattern completion. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Lien, Mei-Ching; Ruthruff, Eric
2004-01-01
This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms.…
NASA Astrophysics Data System (ADS)
Wang, Shaojun; Jiang, Lan; Han, Weina; Hu, Jie; Li, Xiaowei; Wang, Qingsong; Lu, Yongfeng
2018-05-01
We realize hierarchical laser-induced periodic surface structures (LIPSSs) on the surface of a ZnO thin film in a single step by the irradiation of femtosecond laser pulses. The structures are characterized by the high-spatial-frequency LIPSSs (HSFLs) formed on the abnormal bumped low-spatial-frequency LIPSSs (LSFLs). Localized electric-field enhancement based on the initially formed LSFLs is proposed as a potential mechanism for the formation of HSFLs. The simulation results through the finite-difference time-domain method show good agreement with experiments. Furthermore, the crucial role of the LSFLs in the formation of HSFLs is validated by an elaborate experimental design with preprocessed HSFLs.
NASA Astrophysics Data System (ADS)
Marston, B. K.; Bishop, M. P.; Shroder, J. F.
2009-12-01
Digital terrain analysis of mountain topography is widely utilized for mapping landforms, assessing the role of surface processes in landscape evolution, and estimating the spatial variation of erosion. Numerous geomorphometry techniques exist to characterize terrain surface parameters, although their utility to characterize the spatial hierarchical structure of the topography and permit an assessment of the erosion/tectonic impact on the landscape is very limited due to scale and data integration issues. To address this problem, we apply scale-dependent geomorphometric and object-oriented analyses to characterize the hierarchical spatial structure of mountain topography. Specifically, we utilized a high resolution digital elevation model to characterize complex topography in the Shimshal Valley in the Western Himalaya of Pakistan. To accomplish this, we generate terrain objects (geomorphological features and landform) including valley floors and walls, drainage basins, drainage network, ridge network, slope facets, and elemental forms based upon curvature. Object-oriented analysis was used to characterize object properties accounting for object size, shape, and morphometry. The spatial overlay and integration of terrain objects at various scales defines the nature of the hierarchical organization. Our results indicate that variations in the spatial complexity of the terrain hierarchical organization is related to the spatio-temporal influence of surface processes and landscape evolution dynamics. Terrain segmentation and the integration of multi-scale terrain information permits further assessment of process domains and erosion, tectonic impact potential, and natural hazard potential. We demonstrate this with landform mapping and geomorphological assessment examples.
The Voronoi spatio-temporal data structure
NASA Astrophysics Data System (ADS)
Mioc, Darka
2002-04-01
Current GIS models cannot integrate the temporal dimension of spatial data easily. Indeed, current GISs do not support incremental (local) addition and deletion of spatial objects, and they can not support the temporal evolution of spatial data. Spatio-temporal facilities would be very useful in many GIS applications: harvesting and forest planning, cadastre, urban and regional planning, and emergency planning. The spatio-temporal model that can overcome these problems is based on a topological model---the Voronoi data structure. Voronoi diagrams are irregular tessellations of space, that adapt to spatial objects and therefore they are a synthesis of raster and vector spatial data models. The main advantage of the Voronoi data structure is its local and sequential map updates, which allows us to automatically record each event and performed map updates within the system. These map updates are executed through map construction commands that are composed of atomic actions (geometric algorithms for addition, deletion, and motion of spatial objects) on the dynamic Voronoi data structure. The formalization of map commands led to the development of a spatial language comprising a set of atomic operations or constructs on spatial primitives (points and lines), powerful enough to define the complex operations. This resulted in a new formal model for spatio-temporal change representation, where each update is uniquely characterized by the numbers of newly created and inactivated Voronoi regions. This is used for the extension of the model towards the hierarchical Voronoi data structure. In this model, spatio-temporal changes induced by map updates are preserved in a hierarchical data structure that combines events and corresponding changes in topology. This hierarchical Voronoi data structure has an implicit time ordering of events visible through changes in topology, and it is equivalent to an event structure that can support temporal data without precise temporal information. This formal model of spatio-temporal change representation is currently applied to retroactive map updates and visualization of map evolution. It offers new possibilities in the domains of temporal GIS, transaction processing, spatio-temporal queries, spatio-temporal analysis, map animation and map visualization.
Sato, Naoyuki; Yamaguchi, Yoko
2009-06-01
The human cognitive map is known to be hierarchically organized consisting of a set of perceptually clustered landmarks. Patient studies have demonstrated that these cognitive maps are maintained by the hippocampus, while the neural dynamics are still poorly understood. The authors have shown that the neural dynamic "theta phase precession" observed in the rodent hippocampus may be capable of forming hierarchical cognitive maps in humans. In the model, a visual input sequence consisting of object and scene features in the central and peripheral visual fields, respectively, results in the formation of a hierarchical cognitive map for object-place associations. Surprisingly, it is possible for such a complex memory structure to be formed in a few seconds. In this paper, we evaluate the memory retrieval of object-place associations in the hierarchical network formed by theta phase precession. The results show that multiple object-place associations can be retrieved with the initial cue of a scene input. Importantly, according to the wide-to-narrow unidirectional connections among scene units, the spatial area for object-place retrieval can be controlled by the spatial area of the initial cue input. These results indicate that the hierarchical cognitive maps have computational advantages on a spatial-area selective retrieval of multiple object-place associations. Theta phase precession dynamics is suggested as a fundamental neural mechanism of the human cognitive map.
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.
Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J
2010-12-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies conservation planning. Journal compilation © 2010 Society for Conservation Biology. No claim to original US government works.
Spatial scaling of non-native fish richness across the United States
Qinfeng Guo; Julian D. Olden
2014-01-01
A major goal and challenge of invasion ecology is to describe and interpret spatial and temporal patterns of species invasions. Here, we examined fish invasion patterns at four spatially structured and hierarchically nested scales across the contiguous United States (i.e., from large to small: region, basin, watershed, and sub-watershed). All spatial relationships in...
Fast Time-Varying Volume Rendering Using Time-Space Partition (TSP) Tree
NASA Technical Reports Server (NTRS)
Shen, Han-Wei; Chiang, Ling-Jen; Ma, Kwan-Liu
1999-01-01
We present a new, algorithm for rapid rendering of time-varying volumes. A new hierarchical data structure that is capable of capturing both the temporal and the spatial coherence is proposed. Conventional hierarchical data structures such as octrees are effective in characterizing the homogeneity of the field values existing in the spatial domain. However, when treating time merely as another dimension for a time-varying field, difficulties frequently arise due to the discrepancy between the field's spatial and temporal resolutions. In addition, treating spatial and temporal dimensions equally often prevents the possibility of detecting the coherence that is unique in the temporal domain. Using the proposed data structure, our algorithm can meet the following goals. First, both spatial and temporal coherence are identified and exploited for accelerating the rendering process. Second, our algorithm allows the user to supply the desired error tolerances at run time for the purpose of image-quality/rendering-speed trade-off. Third, the amount of data that are required to be loaded into main memory is reduced, and thus the I/O overhead is minimized. This low I/O overhead makes our algorithm suitable for out-of-core applications.
NASA Technical Reports Server (NTRS)
Houlahan, Padraig; Scalo, John
1992-01-01
A new method of image analysis is described, in which images partitioned into 'clouds' are represented by simplified skeleton images, called structure trees, that preserve the spatial relations of the component clouds while disregarding information concerning their sizes and shapes. The method can be used to discriminate between images of projected hierarchical (multiply nested) and random three-dimensional simulated collections of clouds constructed on the basis of observed interstellar properties, and even intermediate systems formed by combining random and hierarchical simulations. For a given structure type, the method can distinguish between different subclasses of models with different parameters and reliably estimate their hierarchical parameters: average number of children per parent, scale reduction factor per level of hierarchy, density contrast, and number of resolved levels. An application to a column density image of the Taurus complex constructed from IRAS data is given. Moderately strong evidence for a hierarchical structural component is found, and parameters of the hierarchy, as well as the average volume filling factor and mass efficiency of fragmentation per level of hierarchy, are estimated. The existence of nested structure contradicts models in which large molecular clouds are supposed to fragment, in a single stage, into roughly stellar-mass cores.
Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models
NASA Astrophysics Data System (ADS)
Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.
2017-12-01
Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream measurements.
HiPS - Hierarchical Progressive Survey Version 1.0
NASA Astrophysics Data System (ADS)
Fernique, Pierre; Allen, Mark; Boch, Thomas; Donaldson, Tom; Durand, Daniel; Ebisawa, Ken; Michel, Laurent; Salgado, Jesus; Stoehr, Felix; Fernique, Pierre
2017-05-01
This document presents HiPS, a hierarchical scheme for the description, storage and access of sky survey data. The system is based on hierarchical tiling of sky regions at finer and finer spatial resolution which facilitates a progressive view of a survey, and supports multi-resolution zooming and panning. HiPS uses the HEALPix tessellation of the sky as the basis for the scheme and is implemented as a simple file structure with a direct indexing scheme that leads to practical implementations.
Pita, Ricardo; Lambin, Xavier; Mira, António; Beja, Pedro
2016-09-01
According to ecological theory, the coexistence of competitors in patchy environments may be facilitated by hierarchical spatial segregation along axes of environmental variation, but empirical evidence is limited. Cabrera and water voles show a metapopulation-like structure in Mediterranean farmland, where they are known to segregate along space, habitat, and time axes within habitat patches. Here, we assess whether segregation also occurs among and within landscapes, and how this is influenced by patch-network and matrix composition. We surveyed 75 landscapes, each covering 78 ha, where we mapped all habitat patches potentially suitable for Cabrera and water voles, and the area effectively occupied by each species (extent of occupancy). The relatively large water vole tended to be the sole occupant of landscapes with high habitat amount but relatively low patch density (i.e., with a few large patches), and with a predominantly agricultural matrix, whereas landscapes with high patch density (i.e., many small patches) and low agricultural cover, tended to be occupied exclusively by the small Cabrera vole. The two species tended to co-occur in landscapes with intermediate patch-network and matrix characteristics, though their extents of occurrence were negatively correlated after controlling for environmental effects. In combination with our previous studies on the Cabrera-water vole system, these findings illustrated empirically the occurrence of hierarchical spatial segregation, ranging from within-patches to among-landscapes. Overall, our study suggests that recognizing the hierarchical nature of spatial segregation patterns and their major environmental drivers should enhance our understanding of species coexistence in patchy environments.
Some practicable applications of quadtree data structures/representation in astronomy
NASA Technical Reports Server (NTRS)
Pasztor, L.
1992-01-01
Development of quadtree as hierarchical data structuring technique for representing spatial data (like points, regions, surfaces, lines, curves, volumes, etc.) has been motivated to a large extent by storage requirements of images, maps, and other multidimensional (spatially structured) data. For many spatial algorithms, time-efficiency of quadtrees in terms of execution may be as important as their space-efficiency concerning storage conditions. Briefly, the quadtree is a class of hierarchical data structures which is based on the recursive partition of a square region into quadrants and sub-quadrants until a predefined limit. Beyond the wide applicability of quadtrees in image processing, spatial information analysis, and building digital databases (processes becoming ordinary for the astronomical community), there may be numerous further applications in astronomy. Some of these practicable applications based on quadtree representation of astronomical data are presented and suggested for further considerations. Examples are shown for use of point as well as region quadtrees. Statistics of different leaf and non-leaf nodes (homogeneous and heterogeneous sub-quadrants respectively) at different levels may provide useful information on spatial structure of astronomical data in question. By altering the principle guiding the decomposition process, different types of spatial data may be focused on. Finally, a sampling method based on quadtree representation of an image is proposed which may prove to be efficient in the elaboration of sampling strategy in a region where observations were carried out previously either with different resolution or/and in different bands.
Gray, B.R.; Haro, R.J.; Rogala, J.T.; Sauer, J.S.
2005-01-01
1. Macroinvertebrate count data often exhibit nested or hierarchical structure. Examples include multiple measurements along each of a set of streams, and multiple synoptic measurements from each of a set of ponds. With data exhibiting hierarchical structure, outcomes at both sampling (e.g. Within stream) and aggregated (e.g. Stream) scales are often of interest. Unfortunately, methods for modelling hierarchical count data have received little attention in the ecological literature. 2. We demonstrate the use of hierarchical count models using fingernail clam (Family: Sphaeriidae) count data and habitat predictors derived from sampling and aggregated spatial scales. The sampling scale corresponded to that of a standard Ponar grab (0.052 m(2)) and the aggregated scale to impounded and backwater regions within 38-197 km reaches of the Upper Mississippi River. Impounded and backwater regions were resampled annually for 10 years. Consequently, measurements on clams were nested within years. Counts were treated as negative binomial random variates, and means from each resampling event as random departures from the impounded and backwater region grand means. 3. Clam models were improved by the addition of covariates that varied at both the sampling and regional scales. Substrate composition varied at the sampling scale and was associated with model improvements, and reductions (for a given mean) in variance at the sampling scale. Inorganic suspended solids (ISS) levels, measured in the summer preceding sampling, also yielded model improvements and were associated with reductions in variances at the regional rather than sampling scales. ISS levels were negatively associated with mean clam counts. 4. Hierarchical models allow hierarchically structured data to be modelled without ignoring information specific to levels of the hierarchy. In addition, information at each hierarchical level may be modelled as functions of covariates that themselves vary by and within levels. As a result, hierarchical models provide researchers and resource managers with a method for modelling hierarchical data that explicitly recognises both the sampling design and the information contained in the corresponding data.
NASA Technical Reports Server (NTRS)
Bradshaw, G. A.
1995-01-01
There has been an increased interest in the quantification of pattern in ecological systems over the past years. This interest is motivated by the desire to construct valid models which extend across many scales. Spatial methods must quantify pattern, discriminate types of pattern, and relate hierarchical phenomena across scales. Wavelet analysis is introduced as a method to identify spatial structure in ecological transect data. The main advantage of the wavelet transform over other methods is its ability to preserve and display hierarchical information while allowing for pattern decomposition. Two applications of wavelet analysis are illustrated, as a means to: (1) quantify known spatial patterns in Douglas-fir forests at several scales, and (2) construct spatially-explicit hypotheses regarding pattern generating mechanisms. Application of the wavelet variance, derived from the wavelet transform, is developed for forest ecosystem analysis to obtain additional insight into spatially-explicit data. Specifically, the resolution capabilities of the wavelet variance are compared to the semi-variogram and Fourier power spectra for the description of spatial data using a set of one-dimensional stationary and non-stationary processes. The wavelet cross-covariance function is derived from the wavelet transform and introduced as a alternative method for the analysis of multivariate spatial data of understory vegetation and canopy in Douglas-fir forests of the western Cascades of Oregon.
Law, Jane
2016-01-01
Intrinsic conditional autoregressive modeling in a Bayeisan hierarchical framework has been increasingly applied in small-area ecological studies. This study explores the specifications of spatial structure in this Bayesian framework in two aspects: adjacency, i.e., the set of neighbor(s) for each area; and (spatial) weight for each pair of neighbors. Our analysis was based on a small-area study of falling injuries among people age 65 and older in Ontario, Canada, that was aimed to estimate risks and identify risk factors of such falls. In the case study, we observed incorrect adjacencies information caused by deficiencies in the digital map itself. Further, when equal weights was replaced by weights based on a variable of expected count, the range of estimated risks increased, the number of areas with probability of estimated risk greater than one at different probability thresholds increased, and model fit improved. More importantly, significance of a risk factor diminished. Further research to thoroughly investigate different methods of variable weights; quantify the influence of specifications of spatial weights; and develop strategies for better defining spatial structure of a map in small-area analysis in Bayesian hierarchical spatial modeling is recommended. PMID:29546147
De Lillo, Carlo; Kirby, Melissa; Poole, Daniel
2016-01-01
Immediate serial spatial recall measures the ability to retain sequences of locations in short-term memory and is considered the spatial equivalent of digit span. It is tested by requiring participants to reproduce sequences of movements performed by an experimenter or displayed on a monitor. Different organizational factors dramatically affect serial spatial recall but they are often confounded or underspecified. Untangling them is crucial for the characterization of working-memory models and for establishing the contribution of structure and memory capacity to spatial span. We report five experiments assessing the relative role and independence of factors that have been reported in the literature. Experiment 1 disentangled the effects of spatial clustering and path-length by manipulating the distance of items displayed on a touchscreen monitor. Long-path sequences segregated by spatial clusters were compared with short-path sequences not segregated by clusters. Recall was more accurate for sequences segregated by clusters independently from path-length. Experiment 2 featured conditions where temporal pauses were introduced between or within cluster boundaries during the presentation of sequences with the same paths. Thus, the temporal structure of the sequences was either consistent or inconsistent with a hierarchical representation based on segmentation by spatial clusters but the effect of structure could not be confounded with effects of path-characteristics. Pauses at cluster boundaries yielded more accurate recall, as predicted by a hierarchical model. In Experiment 3, the systematic manipulation of sequence structure, path-length, and presence of path-crossings of sequences showed that structure explained most of the variance, followed by the presence/absence of path-crossings, and path-length. Experiments 4 and 5 replicated the results of the previous experiments in immersive virtual reality navigation tasks where the viewpoint of the observer changed dynamically during encoding and recall. This suggested that the effects of structure in spatial span are not dependent on perceptual grouping processes induced by the aerial view of the stimulus array typically afforded by spatial recall tasks. These results demonstrate the independence of coding strategies based on structure from effects of path characteristics and perceptual grouping in immediate serial spatial recall. PMID:27891101
Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan; Su, Cheng-Yong
2017-11-13
Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Du, Shihong; Guo, Luo; Wang, Qiao; Qin, Qimin
The extended 9-intersection matrix is used to formalize topological relations between uncertain regions while it is designed to satisfy the requirements at a concept level, and to deal with the complex regions with broad boundaries (CBBRs) as a whole without considering their hierarchical structures. In contrast to simple regions with broad boundaries, CBBRs have complex hierarchical structures. Therefore, it is necessary to take into account the complex hierarchical structure and to represent the topological relations between all regions in CBBRs as a relation matrix, rather than using the extended 9-intersection matrix to determine topological relations. In this study, a tree model is first used to represent the intrinsic configuration of CBBRs hierarchically. Then, the reasoning tables are presented for deriving topological relations between child, parent and sibling regions from the relations between two given regions in CBBRs. Finally, based on the reasoning, efficient methods are proposed to compute and derive the topological relation matrix. The proposed methods can be incorporated into spatial databases to facilitate geometric-oriented applications.
A hierarchical structure for automatic meshing and adaptive FEM analysis
NASA Technical Reports Server (NTRS)
Kela, Ajay; Saxena, Mukul; Perucchio, Renato
1987-01-01
A new algorithm for generating automatically, from solid models of mechanical parts, finite element meshes that are organized as spatially addressable quaternary trees (for 2-D work) or octal trees (for 3-D work) is discussed. Because such meshes are inherently hierarchical as well as spatially addressable, they permit efficient substructuring techniques to be used for both global analysis and incremental remeshing and reanalysis. The global and incremental techniques are summarized and some results from an experimental closed loop 2-D system in which meshing, analysis, error evaluation, and remeshing and reanalysis are done automatically and adaptively are presented. The implementation of 3-D work is briefly discussed.
Drawing the Line between Constituent Structure and Coherence Relations in Visual Narratives
ERIC Educational Resources Information Center
Cohn, Neil; Bender, Patrick
2017-01-01
Theories of visual narrative understanding have often focused on the changes in meaning across a sequence, like shifts in characters, spatial location, and causation, as cues for breaks in the structure of a discourse. In contrast, the theory of visual narrative grammar posits that hierarchic "grammatical" structures operate at the…
Construction of Matryoshka-type structures from supercharged protein nanocages.
Beck, Tobias; Tetter, Stephan; Künzle, Matthias; Hilvert, Donald
2015-01-12
Designing nanoscaled hierarchical structures with increasing levels of complexity is challenging. Here we show that electrostatic interactions between two complementarily supercharged protein nanocages can be effectively utilized to create nested Matryoshka-type structures. Cage-within-cage complexes containing spatially ordered iron oxide nanoparticles spontaneously self-assemble upon mixing positively supercharged ferritin compartments with AaLS-13, a larger shell-forming protein with a negatively supercharged lumen. Exploiting engineered Coulombic interactions and protein dynamics in this way opens up new avenues for creating hierarchically organized supramolecular assemblies for application as delivery vehicles, reaction chambers, and artificial organelles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zeng, Yi; Shen, Zhong-Hui; Shen, Yang; Lin, Yuanhua; Nan, Ce-Wen
2018-03-01
Flexible dielectric polymer films with high energy storage density and high charge-discharge efficiency have been considered as promising materials for electrical power applications. Here, we design hierarchical structured nanocomposite films using nonlinear polymer poly(vinylidene fluoride-HFP) [P(VDF-HFP)] with inorganic h-boron nitride (h-BN) nanosheets by electrospinning and hot-pressing methods. Our results show that the addition of h-BN nanosheets and the design of the hierarchical multilayer structure in the nanocomposites can remarkably enhance the charge-discharge efficiency and energy density. A high charge-discharge efficiency of 78% and an energy density of 21 J/cm3 can be realized in the 12-layered PVDF/h-BN nanocomposite films. Phase-field simulation results reveal that the spatial distribution of the electric field in these hierarchical structured films affects the charge-discharge efficiency and energy density. This work provides a feasible route, i.e., structure modulation, to improve the energy storage performances for nanocomposite films.
Vangestel, C; Mergeay, J; Dawson, D A; Callens, T; Vandomme, V; Lens, L
2012-01-01
House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients. PMID:22588131
Vangestel, C; Mergeay, J; Dawson, D A; Callens, T; Vandomme, V; Lens, L
2012-09-01
House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients.
Royle, J. Andrew; Dorazio, Robert M.
2008-01-01
A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.
Travelling waves and spatial hierarchies in measles epidemics
NASA Astrophysics Data System (ADS)
Grenfell, B. T.; Bjørnstad, O. N.; Kappey, J.
2001-12-01
Spatio-temporal travelling waves are striking manifestations of predator-prey and host-parasite dynamics. However, few systems are well enough documented both to detect repeated waves and to explain their interaction with spatio-temporal variations in population structure and demography. Here, we demonstrate recurrent epidemic travelling waves in an exhaustive spatio-temporal data set for measles in England and Wales. We use wavelet phase analysis, which allows for dynamical non-stationarity-a complication in interpreting spatio-temporal patterns in these and many other ecological time series. In the pre-vaccination era, conspicuous hierarchical waves of infection moved regionally from large cities to small towns; the introduction of measles vaccination restricted but did not eliminate this hierarchical contagion. A mechanistic stochastic model suggests a dynamical explanation for the waves-spread via infective `sparks' from large `core' cities to smaller `satellite' towns. Thus, the spatial hierarchy of host population structure is a prerequisite for these infection waves.
Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
Lu, Xiaoqiang; Chen, Yaxiong; Li, Xuelong
Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.
Hierarchical clustering using correlation metric and spatial continuity constraint
Stork, Christopher L.; Brewer, Luke N.
2012-10-02
Large data sets are analyzed by hierarchical clustering using correlation as a similarity measure. This provides results that are superior to those obtained using a Euclidean distance similarity measure. A spatial continuity constraint may be applied in hierarchical clustering analysis of images.
Influence of Wiring Cost on the Large-Scale Architecture of Human Cortical Connectivity
Samu, David; Seth, Anil K.; Nowotny, Thomas
2014-01-01
In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained (‘random’), connection length preserving (‘spatial’), and connection length optimised (‘reduced’) surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain. PMID:24699277
Integrative Structure Determination of Protein Assemblies by Satisfaction of Spatial Restraints
NASA Astrophysics Data System (ADS)
Alber, Frank; Chait, Brian T.; Rout, Michael P.; Sali, Andrej
To understand the cell, we need to determine the structures of macromolecular assemblies, many of which consist of tens to hundreds of components. A great variety of experimental data can be used to characterize the assemblies at several levels of resolution, from atomic structures to component configurations. To maximize completeness, resolution, accuracy, precision and efficiency of the structure determination, a computational approach is needed that can use spatial information from a variety of experimental methods. We propose such an approach, defined by its three main components: a hierarchical representation of the assembly, a scoring function consisting of spatial restraints derived from experimental data, and an optimization method that generates structures consistent with the data. We illustrate the approach by determining the configuration of the 456 proteins in the nuclear pore complex from Baker's yeast.
Andrew Birt
2011-01-01
The population dynamics of the southern pine beetle (SPB) exhibit characteristic fluctuations between relatively long endemic and shorter outbreak periods. Populations exhibit complex and hierarchical spatial structure with beetles and larvae aggregating within individual trees, infestations with multiple infested trees, and regional outbreaks that comprise a large...
Araki, Kiwako S; Kubo, Takuya; Kudoh, Hiroshi
2017-01-01
In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for sessile clonal species.
Safavynia, Seyed A.
2012-01-01
Recent evidence suggests that complex spatiotemporal patterns of muscle activity can be explained with a low-dimensional set of muscle synergies or M-modes. While it is clear that both spatial and temporal aspects of muscle coordination may be low dimensional, constraints on spatial versus temporal features of muscle coordination likely involve different neural control mechanisms. We hypothesized that the low-dimensional spatial and temporal features of muscle coordination are independent of each other. We further hypothesized that in reactive feedback tasks, spatially fixed muscle coordination patterns—or muscle synergies—are hierarchically recruited via time-varying neural commands based on delayed task-level feedback. We explicitly compared the ability of spatially fixed (SF) versus temporally fixed (TF) muscle synergies to reconstruct the entire time course of muscle activity during postural responses to anterior-posterior support-surface translations. While both SF and TF muscle synergies could account for EMG variability in a postural task, SF muscle synergies produced more consistent and physiologically interpretable results than TF muscle synergies during postural responses to perturbations. Moreover, a majority of SF muscle synergies were consistent in structure when extracted from epochs throughout postural responses. Temporal patterns of SF muscle synergy recruitment were well-reconstructed by delayed feedback of center of mass (CoM) kinematics and reproduced EMG activity of multiple muscles. Consistent with the idea that independent and hierarchical low-dimensional neural control structures define spatial and temporal patterns of muscle activity, our results suggest that CoM kinematics are a task variable used to recruit SF muscle synergies for feedback control of balance. PMID:21957219
NASA Astrophysics Data System (ADS)
Alexander, R. B.; Boyer, E. W.; Schwarz, G. E.; Smith, R. A.
2013-12-01
Estimating water and material stores and fluxes in watershed studies is frequently complicated by uncertainties in quantifying hydrological and biogeochemical effects of factors such as land use, soils, and climate. Although these process-related effects are commonly measured and modeled in separate catchments, researchers are especially challenged by their complexity across catchments and diverse environmental settings, leading to a poor understanding of how model parameters and prediction uncertainties vary spatially. To address these concerns, we illustrate the use of Bayesian hierarchical modeling techniques with a dynamic version of the spatially referenced watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes). The dynamic SPARROW model is designed to predict streamflow and other water cycle components (e.g., evapotranspiration, soil and groundwater storage) for monthly varying hydrological regimes, using mechanistic functions, mass conservation constraints, and statistically estimated parameters. In this application, the model domain includes nearly 30,000 NHD (National Hydrologic Data) stream reaches and their associated catchments in the Susquehanna River Basin. We report the results of our comparisons of alternative models of varying complexity, including models with different explanatory variables as well as hierarchical models that account for spatial and temporal variability in model parameters and variance (error) components. The model errors are evaluated for changes with season and catchment size and correlations in time and space. The hierarchical models consist of a two-tiered structure in which climate forcing parameters are modeled as random variables, conditioned on watershed properties. Quantification of spatial and temporal variations in the hydrological parameters and model uncertainties in this approach leads to more efficient (lower variance) and less biased model predictions throughout the river network. Moreover, predictions of water-balance components are reported according to probabilistic metrics (e.g., percentiles, prediction intervals) that include both parameter and model uncertainties. These improvements in predictions of streamflow dynamics can inform the development of more accurate predictions of spatial and temporal variations in biogeochemical stores and fluxes (e.g., nutrients and carbon) in watersheds.
Hierarchical Spatio-temporal Visual Analysis of Cluster Evolution in Electrocorticography Data
Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward; ...
2016-10-02
Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from the high-resolution ECoG data. ECoG ClusterFlow provides a multi-scale visualization of the spatio-temporal patterns underlying the time-varying communities using two views: 1) an overview summarizing the evolution of clusters over time and 2) a hierarchical glyph-based technique that uses data aggregation and small multiples techniques to visualize the propagation of clusters in their spatial domain. ECoG ClusterFlow makes it possible 1) tomore » compare the spatio-temporal evolution patterns across various time intervals, 2) to compare the temporal information at varying levels of granularity, and 3) to investigate the evolution of spatial patterns without occluding the spatial context information. Lastly, we present case studies done in collaboration with neuroscientists on our team for both simulated and real epileptic seizure data aimed at evaluating the effectiveness of our approach.« less
3D hierarchical spatial representation and memory of multimodal sensory data
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Dow, Paul A.; Huber, David J.
2009-04-01
This paper describes an efficient method and system for representing, processing and understanding multi-modal sensory data. More specifically, it describes a computational method and system for how to process and remember multiple locations in multimodal sensory space (e.g., visual, auditory, somatosensory, etc.). The multimodal representation and memory is based on a biologically-inspired hierarchy of spatial representations implemented with novel analogues of real representations used in the human brain. The novelty of the work is in the computationally efficient and robust spatial representation of 3D locations in multimodal sensory space as well as an associated working memory for storage and recall of these representations at the desired level for goal-oriented action. We describe (1) A simple and efficient method for human-like hierarchical spatial representations of sensory data and how to associate, integrate and convert between these representations (head-centered coordinate system, body-centered coordinate, etc.); (2) a robust method for training and learning a mapping of points in multimodal sensory space (e.g., camera-visible object positions, location of auditory sources, etc.) to the above hierarchical spatial representations; and (3) a specification and implementation of a hierarchical spatial working memory based on the above for storage and recall at the desired level for goal-oriented action(s). This work is most useful for any machine or human-machine application that requires processing of multimodal sensory inputs, making sense of it from a spatial perspective (e.g., where is the sensory information coming from with respect to the machine and its parts) and then taking some goal-oriented action based on this spatial understanding. A multi-level spatial representation hierarchy means that heterogeneous sensory inputs (e.g., visual, auditory, somatosensory, etc.) can map onto the hierarchy at different levels. When controlling various machine/robot degrees of freedom, the desired movements and action can be computed from these different levels in the hierarchy. The most basic embodiment of this machine could be a pan-tilt camera system, an array of microphones, a machine with arm/hand like structure or/and a robot with some or all of the above capabilities. We describe the approach, system and present preliminary results on a real-robotic platform.
NASA Astrophysics Data System (ADS)
Lyakh, Dmitry I.
2018-03-01
A novel reduced-scaling, general-order coupled-cluster approach is formulated by exploiting hierarchical representations of many-body tensors, combined with the recently suggested formalism of scale-adaptive tensor algebra. Inspired by the hierarchical techniques from the renormalisation group approach, H/H2-matrix algebra and fast multipole method, the computational scaling reduction in our formalism is achieved via coarsening of quantum many-body interactions at larger interaction scales, thus imposing a hierarchical structure on many-body tensors of coupled-cluster theory. In our approach, the interaction scale can be defined on any appropriate Euclidean domain (spatial domain, momentum-space domain, energy domain, etc.). We show that the hierarchically resolved many-body tensors can reduce the storage requirements to O(N), where N is the number of simulated quantum particles. Subsequently, we prove that any connected many-body diagram consisting of a finite number of arbitrary-order tensors, e.g. an arbitrary coupled-cluster diagram, can be evaluated in O(NlogN) floating-point operations. On top of that, we suggest an additional approximation to further reduce the computational complexity of higher order coupled-cluster equations, i.e. equations involving higher than double excitations, which otherwise would introduce a large prefactor into formal O(NlogN) scaling.
Hierarchical spatial structure of stream fish colonization and extinction
Hitt, N.P.; Roberts, J.H.
2012-01-01
Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182-194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life-history traits such as spawning mound construction, associations with mound-building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound-building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound-building fishes serve as keystone species for colonization of headwater streams.
Large-scale model of flow in heterogeneous and hierarchical porous media
NASA Astrophysics Data System (ADS)
Chabanon, Morgan; Valdés-Parada, Francisco J.; Ochoa-Tapia, J. Alberto; Goyeau, Benoît
2017-11-01
Heterogeneous porous structures are very often encountered in natural environments, bioremediation processes among many others. Reliable models for momentum transport are crucial whenever mass transport or convective heat occurs in these systems. In this work, we derive a large-scale average model for incompressible single-phase flow in heterogeneous and hierarchical soil porous media composed of two distinct porous regions embedding a solid impermeable structure. The model, based on the local mechanical equilibrium assumption between the porous regions, results in a unique momentum transport equation where the global effective permeability naturally depends on the permeabilities at the intermediate mesoscopic scales and therefore includes the complex hierarchical structure of the soil. The associated closure problem is numerically solved for various configurations and properties of the heterogeneous medium. The results clearly show that the effective permeability increases with the volume fraction of the most permeable porous region. It is also shown that the effective permeability is sensitive to the dimensionality spatial arrangement of the porous regions and in particular depends on the contact between the impermeable solid and the two porous regions.
Network structure of subway passenger flows
NASA Astrophysics Data System (ADS)
Xu, Q.; Mao, B. H.; Bai, Y.
2016-03-01
The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.
A hierarchical approach to forest landscape pattern characterization.
Wang, Jialing; Yang, Xiaojun
2012-01-01
Landscape spatial patterns have increasingly been considered to be essential for environmental planning and resources management. In this study, we proposed a hierarchical approach for landscape classification and evaluation by characterizing landscape spatial patterns across different hierarchical levels. The case study site is the Red Hills region of northern Florida and southwestern Georgia, well known for its biodiversity, historic resources, and scenic beauty. We used one Landsat Enhanced Thematic Mapper image to extract land-use/-cover information. Then, we employed principal-component analysis to help identify key class-level landscape metrics for forests at different hierarchical levels, namely, open pine, upland pine, and forest as a whole. We found that the key class-level landscape metrics varied across different hierarchical levels. Compared with forest as a whole, open pine forest is much more fragmented. The landscape metric, such as CONTIG_MN, which measures whether pine patches are contiguous or not, is more important to characterize the spatial pattern of pine forest than to forest as a whole. This suggests that different metric sets should be used to characterize landscape patterns at different hierarchical levels. We further used these key metrics, along with the total class area, to classify and evaluate subwatersheds through cluster analysis. This study demonstrates a promising approach that can be used to integrate spatial patterns and processes for hierarchical forest landscape planning and management.
Bryce A. Richardson; Ned B. Klopfenstein; Steven J. Brunsfeld
2002-01-01
Maternally inherited mitochondrial DNA haplotypes in whitebark pine (Pinus albicaulis Engelm.) were used to examine the maternal genetic structure at three hierarchical spatial scales: fine scale, coarse scale, and interpopulation. These data were used to draw inferences into Clarkâs nutcracker (Nucifraga columbiana Wilson)...
Disturbance patterns in a socio-ecological system at multiple scales
G. Zurlini; Kurt H. Riitters; N. Zaccarelli; I. Petrosillo; K.B. Jones; L. Rossi
2006-01-01
Ecological systems with hierarchical organization and non-equilibrium dynamics require multiple-scale analyses to comprehend how a system is structured and to formulate hypotheses about regulatory mechanisms. Characteristic scales in real landscapes are determined by, or at least reflect, the spatial patterns and scales of constraining human interactions with the...
Intraoperative virtual brain counseling
NASA Astrophysics Data System (ADS)
Jiang, Zhaowei; Grosky, William I.; Zamorano, Lucia J.; Muzik, Otto; Diaz, Fernando
1997-06-01
Our objective is to offer online real-tim e intelligent guidance to the neurosurgeon. Different from traditional image-guidance technologies that offer intra-operative visualization of medical images or atlas images, virtual brain counseling goes one step further. It can distinguish related brain structures and provide information about them intra-operatively. Virtual brain counseling is the foundation for surgical planing optimization and on-line surgical reference. It can provide a warning system that alerts the neurosurgeon if the chosen trajectory will pass through eloquent brain areas. In order to fulfill this objective, tracking techniques are involved for intra- operativity. Most importantly, a 3D virtual brian environment, different from traditional 3D digitized atlases, is an object-oriented model of the brain that stores information about different brain structures together with their elated information. An object-oriented hierarchical hyper-voxel space (HHVS) is introduced to integrate anatomical and functional structures. Spatial queries based on position of interest, line segment of interest, and volume of interest are introduced in this paper. The virtual brain environment is integrated with existing surgical pre-planning and intra-operative tracking systems to provide information for planning optimization and on-line surgical guidance. The neurosurgeon is alerted automatically if the planned treatment affects any critical structures. Architectures such as HHVS and algorithms, such as spatial querying, normalizing, and warping are presented in the paper. A prototype has shown that the virtual brain is intuitive in its hierarchical 3D appearance. It also showed that HHVS, as the key structure for virtual brain counseling, efficiently integrates multi-scale brain structures based on their spatial relationships.This is a promising development for optimization of treatment plans and online surgical intelligent guidance.
Zhu, Zhihong; Tong, Hua; Ren, Yaoyao; Hu, Jiming
2006-01-01
The ultrastructure of clam (Meretrix lusoria) was investigated by means of scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction analyzer (XRD) combining with in situ texture decalcified technique and the micro-hardness of clam was determined, in order to understand the spatial relationship between the mineral phase and organic matrix and further explain the correlation between the property and structure. The results showed that hierarchical fabrication is the major structure character of this mollusc shell. There is specific braided structure forming from domains composed of needle-like structure made up of the single crystal of aragonite. High magnification TEM image of clam indicates the intracrystal region of the aragonite single crystal is made up of subgrain phase and some amorphous substance. There are various crystal grain growth preferential orientations in the different growth direction of the shell. An amount of organic microtubule distribute evenly in the base of calcium carbonate as reinforcement phase. The mechanical property of this natural biological composite is better than other aragonite layer of mollusc shells and pearls according to the data of micro-hardness testing. The braided structure and organic microtubule reinforcement phase are responsible for its high mechanical performance. The stereo hierarchical fabrication of clam was elucidated for the first time.
Relationship between gaseous N dynamics and the hydraulic state of hierarchically structured soils
NASA Astrophysics Data System (ADS)
Schlüter, Steffen; Dörsch, Peter; Vogel, Hans-Jörg
2017-04-01
The inherent spatial heterogeneity of soil generates spatially distributed micro-sites with different local N gas (NO, N2O, N2) production and release rates. Moreover, local micro-site conditions and the pathways between them depend on soil moisture which itself is highly dynamic close to the soil surface. These relationships need to be taken into account for a quantitative understanding of soil denitrification and associated N gas dynamics. Soil structure has been recognized as a key factor to understand the high spatial variability of N gas emissions. In particular gaseous N release from soils depends on: i) the total denitrification rate, which is related to the spatial extent and distribution of anaerobic sites and ii) the probability of N2O to escape from the soil without being further reduced to N2. This impact of soil structure is typically ignored in studies with soil slurries or repacked soil. In this project we run well-defined mesocosm experiments on N gas dynamics with hierarchically structured, artificial soils in which the spatial distribution of substrate and denitrifiers is known exactly. Sintered, porous glass pellets are inoculated with strains of Paracoccus denitrificans and/or Agrobacterium tumefaciens and amended with nutrient solution. These pellets are embedded in coarse-grained sand within gas-tight columns under O2/He atmosphere. The pellets are either places in layers or randomly to create different patterns of N gas production sites and diffusion pathways. Denitrification occurs in the anaerobic centers of the porous pellets, while the partially saturated sand matrix controls the diffusive transport of N gases towards the headspace, where all relevant gas concentrations are monitored with gas chromatography. Water saturations are adjusted such that the diffusive pathways are either fully continuous or partially discontinuous. Preliminary results indicate that the water content exert a major control on the magnitude of denitrification, whereas the onset and dynamics are mainly controlled by the position of the substrate and the denitrifiers.
Jung, Minju; Hwang, Jungsik; Tani, Jun
2015-01-01
It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887
Jung, Minju; Hwang, Jungsik; Tani, Jun
2015-01-01
It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.
Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J
2011-07-01
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.
Epidemic spreading in a hierarchical social network.
Grabowski, A; Kosiński, R A
2004-09-01
A model of epidemic spreading in a population with a hierarchical structure of interpersonal interactions is described and investigated numerically. The structure of interpersonal connections is based on a scale-free network. Spatial localization of individuals belonging to different social groups, and the mobility of a contemporary community, as well as the effectiveness of different interpersonal interactions, are taken into account. Typical relations characterizing the spreading process, like a range of epidemic and epidemic curves, are discussed. The influence of preventive vaccinations on the spreading process is investigated. The critical value of preventively vaccinated individuals that is sufficient for the suppression of an epidemic is calculated. Our results are compared with solutions of the master equation for the spreading process and good agreement of the character of this process is found.
Thogmartin, W.E.; Knutson, M.G.
2007-01-01
Much of what is known about avian species-habitat relations has been derived from studies of birds at local scales. It is entirely unclear whether the relations observed at these scales translate to the larger landscape in a predictable linear fashion. We derived habitat models and mapped predicted abundances for three forest bird species of eastern North America using bird counts, environmental variables, and hierarchical models applied at three spatial scales. Our purpose was to understand habitat associations at multiple spatial scales and create predictive abundance maps for purposes of conservation planning at a landscape scale given the constraint that the variables used in this exercise were derived from local-level studies. Our models indicated a substantial influence of landscape context for all species, many of which were counter to reported associations at finer spatial extents. We found land cover composition provided the greatest contribution to the relative explained variance in counts for all three species; spatial structure was second in importance. No single spatial scale dominated any model, indicating that these species are responding to factors at multiple spatial scales. For purposes of conservation planning, areas of predicted high abundance should be investigated to evaluate the conservation potential of the landscape in their general vicinity. In addition, the models and spatial patterns of abundance among species suggest locations where conservation actions may benefit more than one species. ?? 2006 Springer Science+Business Media B.V.
The organisation of spatial and temporal relations in memory.
Rondina, Renante; Curtiss, Kaitlin; Meltzer, Jed A; Barense, Morgan D; Ryan, Jennifer D
2017-04-01
Episodic memories are comprised of details of "where" and "when"; spatial and temporal relations, respectively. However, evidence from behavioural, neuropsychological, and neuroimaging studies has provided mixed interpretations about how memories for spatial and temporal relations are organised-they may be hierarchical, fully interactive, or independent. In the current study, we examined the interaction of memory for spatial and temporal relations. Using explicit reports and eye-tracking, we assessed younger and older adults' memory for spatial and temporal relations of objects that were presented singly across time in unique spatial locations. Explicit change detection of spatial relations was affected by a change in temporal relations, but explicit change detection of temporal relations was not affected by a change in spatial relations. Younger and older adults showed eye movement evidence of incidental memory for temporal relations, but only younger adults showed eye movement evidence of incidental memory for spatial relations. Together, these findings point towards a hierarchical organisation of relational memory. The implications of these findings are discussed in the context of the neural mechanisms that may support such a hierarchical organisation of memory.
Collective helicity switching of a DNA-coat assembly
NASA Astrophysics Data System (ADS)
Kim, Yongju; Li, Huichang; He, Ying; Chen, Xi; Ma, Xiaoteng; Lee, Myongsoo
2017-07-01
Hierarchical assemblies of biomolecular subunits can carry out versatile tasks at the cellular level with remarkable spatial and temporal precision. As an example, the collective motion and mutual cooperation between complex protein machines mediate essential functions for life, such as replication, synthesis, degradation, repair and transport. Nucleic acid molecules are far less dynamic than proteins and need to bind to specific proteins to form hierarchical structures. The simplest example of these nucleic acid-based structures is provided by a rod-shaped tobacco mosaic virus, which consists of genetic material surrounded by coat proteins. Inspired by the complexity and hierarchical assembly of viruses, a great deal of effort has been devoted to design similarly constructed artificial viruses. However, such a wrapping approach makes nucleic acid dynamics insensitive to environmental changes. This limitation generally restricts, for example, the amplification of the conformational dynamics between the right-handed B form to the left-handed Z form of double-stranded deoxyribonucleic acid (DNA). Here we report a virus-like hierarchical assembly in which the native DNA and a synthetic coat undergo repeated collective helicity switching triggered by pH change under physiological conditions. We also show that this collective helicity inversion occurs during translocation of the DNA-coat assembly into intracellular compartments. Translating DNA conformational dynamics into a higher level of hierarchical dynamics may provide an approach to create DNA-based nanomachines.
NASA Astrophysics Data System (ADS)
Silverberg, Jesse; Bonassar, Lawrence; Cohen, Itai
2013-03-01
Contemporary developments in therapeutic tissue engineering have been enabled by basic research efforts in the field of biomechanics. Further integration of technology in medicine requires a deeper understanding of the mechanical properties of soft biological materials and the structural origins of their response under extreme stresses and strains. Drawing on the science generated by the ``Extreme Mechanics'' community, we present experimental results on the mechanical properties of articular cartilage, a hierarchically structured soft biomaterial found in the joints of mammalian long bones. Measurements of the spatially localized structure and mechanical properties will be compared with theoretical descriptions based on networks of deformed rods, poro-visco-elasticity, and standard continuum models. Discrepancies between experiment and theory will be highlighted, and suggestions for how models can be improved will be given.
Sachan, Priyanka; Kulkarni, Manish; Sharma, Ashutosh
2015-11-17
Photoresists are the materials of choice for micro/nanopatterning and device fabrication but are rarely used as a self-assembly material. We report for the first time a novel interplay of self-assembly and photolithography for fabrication of hierarchical and ordered micro/nano structures. We create self-organized structures by the intensified dewetting of unstable thin (∼10 nm to 1 μm) photoresist films by annealing them in an optimal solvent and nonsolvent liquid mixture that allows spontaneous dewetting to form micro/nano smooth dome-like structures. The density, size (∼100 nm to millimeters), and curvature/contact angle of the dome/droplet structures are controlled by the film thickness, composition of the dewetting liquid, and time of annealing. Ordered dewetted structures are obtained simply by creating spatial variation of viscosity by ultraviolet exposure or by photopatterning before dewetting. Further, the structures thus fabricated are readily photopatterned again on the finer length scales after dewetting. We illustrate the approach by fabricating several three-dimensional structures of varying complexity with secondary and tertiary features.
We introduce a hierarchical optimization framework for spatially targeting green infrastructure (GI) incentive policies in order to meet objectives related to cost and environmental effectiveness. The framework explicitly simulates the interaction between multiple levels of polic...
Fleury, Guillaume; Steele, Julian A; Gerber, Iann C; Jolibois, F; Puech, P; Muraoka, Koki; Keoh, Sye Hoe; Chaikittisilp, Watcharop; Okubo, Tatsuya; Roeffaers, Maarten B J
2018-04-05
The direct synthesis of hierarchically intergrown silicalite-1 can be achieved using a specific diquaternary ammonium agent. However, the location of these molecules in the zeolite framework, which is critical to understand the formation of the material, remains unclear. Where traditional characterization tools have previously failed, herein we use polarized stimulated Raman scattering (SRS) microscopy to resolve molecular organization inside few-micron-sized crystals. Through a combination of experiment and first-principles calculations, our investigation reveals the preferential location of the templating agent inside the linear pores of the MFI framework. Besides illustrating the attractiveness of SRS microscopy in the field of material science to study and spatially resolve local molecular distribution as well as orientation, these results can be exploited in the design of new templating agents for the preparation of hierarchical zeolites.
NASA Astrophysics Data System (ADS)
Zhu, Zhiwei; To, Suet; Ehmann, Kornel F.; Xiao, Gaobo; Zhu, Wule
2016-03-01
A new mechanical micro-/nano-machining process that combines rotary spatial vibrations (RSV) of a diamond tool and the servo motions of the workpiece is proposed and applied for the generation of multi-tier hierarchical micro-/nano-structures. In the proposed micro-/nano-machining system, the servo motion, as the primary cutting motion generated by a slow-tool-servo, is adopted for the fine generation of the primary surfaces with complex shapes. The RSV, as the tertiary cutting operation, is superimposed on the secondary fundamental rotary cutting motion to construct secondary nano-structures on the primary surface. Since the RSV system generally works at much higher frequencies and motion resolution than the primary and secondary motions, it leads to an inherent hierarchical cutting architecture. To investigate the machining performance, complex micro-/nano-structures were generated and explored by both numerical simulations and actual cutting tests. Rotary vibrations of the diamond tool at a constant rotational distance offer an inherent constant cutting velocity, leading to the ability for the generation of homogeneous micro-/nano-structures with fixed amplitudes and frequencies of the vibrations, even over large-scale surfaces. Furthermore, by deliberately combining the non-resonant three-axial vibrations and the servo motion, the generation of a variety of micro-/nano-structures with complex shapes and with flexibly tunable feature sizes can be achieved.
NASA Astrophysics Data System (ADS)
Lo Celso, Fabrizio; Triolo, Alessandro; Gontrani, Lorenzo; Russina, Olga
2018-06-01
One of the outstanding features of ionic liquids is their inherently hierarchical structural organization at mesoscopic spatial scales. Recently experimental and computational studies showed the fading of this feature when pressurising. Here we use simulations to show that this effect is not general: appropriate anion choice leads to an obstinate resistance against pressurization.
Gidoin, Cynthia; Avelino, Jacques; Deheuvels, Olivier; Cilas, Christian; Bieng, Marie Ange Ngo
2014-03-01
Vegetation composition and plant spatial structure affect disease intensity through resource and microclimatic variation effects. The aim of this study was to evaluate the independent effect and relative importance of host composition and plant spatial structure variables in explaining disease intensity at the plot scale. For that purpose, frosty pod rot intensity, a disease caused by Moniliophthora roreri on cacao pods, was monitored in 36 cacao agroforests in Costa Rica in order to assess the vegetation composition and spatial structure variables conducive to the disease. Hierarchical partitioning was used to identify the most causal factors. Firstly, pod production, cacao tree density and shade tree spatial structure had significant independent effects on disease intensity. In our case study, the amount of susceptible tissue was the most relevant host composition variable for explaining disease intensity by resource dilution. Indeed, cacao tree density probably affected disease intensity more by the creation of self-shading rather than by host dilution. Lastly, only regularly distributed forest trees, and not aggregated or randomly distributed forest trees, reduced disease intensity in comparison to plots with a low forest tree density. A regular spatial structure is probably crucial to the creation of moderate and uniform shade as recommended for frosty pod rot management. As pod production is an important service expected from these agroforests, shade tree spatial structure may be a lever for integrated management of frosty pod rot in cacao agroforests.
Casas-Güell, Edgar; Cebrian, Emma; Garrabou, Joaquim; Ledoux, Jean-Baptiste; Linares, Cristina; Teixidó, Núria
2016-01-01
Data on species diversity and structure in coralligenous outcrops dominated by Corallium rubrum are lacking. A hierarchical sampling including 3 localities and 9 sites covering more than 400 km of rocky coasts in NW Mediterranean, was designed to characterize the spatial variability of structure, composition and diversity of perennial species inhabiting coralligenous outcrops. We estimated species/taxa composition and abundance. Eight morpho-functional groups were defined according to their life span and growth to characterize the structural complexity of the outcrops. The species composition and structural complexity differed consistently across all spatial scales considered. The lowest and the highest variability were found among localities (separated by >200 km) and within sites (separated by 1–5 km), respectively supporting differences in diversity indices. The morpho-functional groups displayed a consistent spatial arrangement in terms of the number, size and shape of patches across study sites. These results contribute to filling the gap on the understanding of assemblage composition and structure and to build baselines to assess the response of this of this highly threatened habitat to anthropogenic disturbances. PMID:27857209
Osborn, Sarah; Zulian, Patrick; Benson, Thomas; ...
2018-01-30
This work describes a domain embedding technique between two nonmatching meshes used for generating realizations of spatially correlated random fields with applications to large-scale sampling-based uncertainty quantification. The goal is to apply the multilevel Monte Carlo (MLMC) method for the quantification of output uncertainties of PDEs with random input coefficients on general and unstructured computational domains. We propose a highly scalable, hierarchical sampling method to generate realizations of a Gaussian random field on a given unstructured mesh by solving a reaction–diffusion PDE with a stochastic right-hand side. The stochastic PDE is discretized using the mixed finite element method on anmore » embedded domain with a structured mesh, and then, the solution is projected onto the unstructured mesh. This work describes implementation details on how to efficiently transfer data from the structured and unstructured meshes at coarse levels, assuming that this can be done efficiently on the finest level. We investigate the efficiency and parallel scalability of the technique for the scalable generation of Gaussian random fields in three dimensions. An application of the MLMC method is presented for quantifying uncertainties of subsurface flow problems. Here, we demonstrate the scalability of the sampling method with nonmatching mesh embedding, coupled with a parallel forward model problem solver, for large-scale 3D MLMC simulations with up to 1.9·109 unknowns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, Sarah; Zulian, Patrick; Benson, Thomas
This work describes a domain embedding technique between two nonmatching meshes used for generating realizations of spatially correlated random fields with applications to large-scale sampling-based uncertainty quantification. The goal is to apply the multilevel Monte Carlo (MLMC) method for the quantification of output uncertainties of PDEs with random input coefficients on general and unstructured computational domains. We propose a highly scalable, hierarchical sampling method to generate realizations of a Gaussian random field on a given unstructured mesh by solving a reaction–diffusion PDE with a stochastic right-hand side. The stochastic PDE is discretized using the mixed finite element method on anmore » embedded domain with a structured mesh, and then, the solution is projected onto the unstructured mesh. This work describes implementation details on how to efficiently transfer data from the structured and unstructured meshes at coarse levels, assuming that this can be done efficiently on the finest level. We investigate the efficiency and parallel scalability of the technique for the scalable generation of Gaussian random fields in three dimensions. An application of the MLMC method is presented for quantifying uncertainties of subsurface flow problems. Here, we demonstrate the scalability of the sampling method with nonmatching mesh embedding, coupled with a parallel forward model problem solver, for large-scale 3D MLMC simulations with up to 1.9·109 unknowns.« less
Zhou, Weiming; Li, Xiangyang; Lu, Jie; Huang, Ningdong; Chen, Liang; Qi, Zeming; Li, Liangbin; Liang, Haiyi
2014-01-01
As an indispensible material for modern society, natural rubber possesses peerless mechanical properties such as strength and toughness over its artificial analogues, which remains a mystery. Intensive experimental and theoretical investigations have revealed the self-enhancement of natural rubber due to strain-induced crystallization. However a rigorous model on the self-enhancement, elucidating natural rubber's extraordinary mechanical properties, is obscured by deficient understanding of the local hierarchical structure under strain. With spatially resolved synchrotron radiation micro-beam scanning X-ray diffraction we discover weak oscillation in distributions of strain-induced crystallinity around crack tip for stretched natural rubber film, demonstrating a soft-hard double network structure. The fracture energy enhancement factor obtained by utilizing the double network model indicates an enhancement of toughness by 3 orders. It's proposed that upon stretching spontaneously developed double network structures integrating hierarchy at multi length-scale in natural rubber play an essential role in its remarkable mechanical performance. PMID:25511479
NASA Astrophysics Data System (ADS)
Inoue, Y.; Tsuruoka, K.; Arikawa, M.
2014-04-01
In this paper, we proposed a user interface that displays visual animations on geographic maps and timelines for depicting historical stories by representing causal relationships among events for time series. We have been developing an experimental software system for the spatial-temporal visualization of historical stories for tablet computers. Our proposed system makes people effectively learn historical stories using visual animations based on hierarchical structures of different scale timelines and maps.
Balazs, Anna [University of Pittsburgh, Pittsburgh, Pennsylvania, United States
2017-12-09
Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.
Three-Dimensional Nanoprinting via Direct Delivery.
Ventrici de Souza, Joao; Liu, Yang; Wang, Shuo; Dörig, Pablo; Kuhl, Tonya L; Frommer, Jane; Liu, Gang-Yu
2018-01-18
Direct writing methods are a generic and simple means to produce designed structures in three dimensions (3D). The printing is achieved by extruding printing materials through a nozzle, which provides a platform to deliver a wide range of materials. Although this method has been routinely used for 3D printing at macroscopic scales, miniaturization to micrometer and nanometer scales and building hierarchical structures at multidimensional scales represent new challenges in research and development. The current work addresses these challenges by combining the spatial precision of atomic force microscopy (AFM) and local delivery capability of microfluidics. Specialized AFM probes serve dual roles of a microscopy tip and a delivery tool, enabling the miniaturization of 3D printing via direct material delivery. Stacking grids of 20 μm periodicity were printed layer-by-layer covering 1 mm × 1 mm regions. The spatial fidelity was measured to be several nanometers, which is among the highest in 3D printing. The results clearly demonstrate the feasibility of achieving high precision 3D nanoprinting with nanometer feature size and accuracy with practical throughput and overall size. This work paves the way for advanced applications of 3D hierarchical nanostructures.
Effects of Topography-based Subgrid Structures on Land Surface Modeling
NASA Astrophysics Data System (ADS)
Tesfa, T. K.; Ruby, L.; Brunke, M.; Thornton, P. E.; Zeng, X.; Ghan, S. J.
2017-12-01
Topography has major control on land surface processes through its influence on atmospheric forcing, soil and vegetation properties, network topology and drainage area. Consequently, accurate climate and land surface simulations in mountainous regions cannot be achieved without considering the effects of topographic spatial heterogeneity. To test a computationally less expensive hyper-resolution land surface modeling approach, we developed topography-based landunits within a hierarchical subgrid spatial structure to improve representation of land surface processes in the ACME Land Model (ALM) with minimal increase in computational demand, while improving the ability to capture the spatial heterogeneity of atmospheric forcing and land cover influenced by topography. This study focuses on evaluation of the impacts of the new spatial structures on modeling land surface processes. As a first step, we compare ALM simulations with and without subgrid topography and driven by grid cell mean atmospheric forcing to isolate the impacts of the subgrid topography on the simulated land surface states and fluxes. Recognizing that subgrid topography also has important effects on atmospheric processes that control temperature, radiation, and precipitation, methods are being developed to downscale atmospheric forcings. Hence in the second step, the impacts of the subgrid topographic structure on land surface modeling will be evaluated by including spatial downscaling of the atmospheric forcings. Preliminary results on the atmospheric downscaling and the effects of the new spatial structures on the ALM simulations will be presented.
NASA Astrophysics Data System (ADS)
Li, Bin
Spatial control behaviors account for a large proportion of human everyday activities from normal daily tasks, such as reaching for objects, to specialized tasks, such as driving, surgery, or operating equipment. These behaviors involve intensive interactions within internal processes (i.e. cognitive, perceptual, and motor control) and with the physical world. This dissertation builds on a concept of interaction pattern and a hierarchical functional model. Interaction pattern represents a type of behavior synergy that humans coordinates cognitive, perceptual, and motor control processes. It contributes to the construction of the hierarchical functional model that delineates humans spatial control behaviors as the coordination of three functional subsystems: planning, guidance, and tracking/pursuit. This dissertation formalizes and validates these two theories and extends them for the investigation of human spatial control skills encompassing development and assessment. Specifically, this dissertation first presents an overview of studies in human spatial control skills encompassing definition, characteristic, development, and assessment, to provide theoretical evidence for the concept of interaction pattern and the hierarchical functional model. The following, the human experiments for collecting motion and gaze data and techniques to register and classify gaze data, are described. This dissertation then elaborates and mathematically formalizes the hierarchical functional model and the concept of interaction pattern. These theories then enables the construction of a succinct simulation model that can reproduce a variety of human performance with a minimal set of hypotheses. This validates the hierarchical functional model as a normative framework for interpreting human spatial control behaviors. The dissertation then investigates human skill development and captures the emergence of interaction pattern. The final part of the dissertation applies the hierarchical functional model for skill assessment and introduces techniques to capture interaction patterns both from the top down using their geometric features and from the bottom up using their dynamical characteristics. The validity and generality of the skill assessment is illustrated using two the remote-control flight and laparoscopic surgical training experiments.
unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance
Fiske, Ian J.; Chandler, Richard B.
2011-01-01
Ecological research uses data collection techniques that are prone to substantial and unique types of measurement error to address scientific questions about species abundance and distribution. These data collection schemes include a number of survey methods in which unmarked individuals are counted, or determined to be present, at spatially- referenced sites. Examples include site occupancy sampling, repeated counts, distance sampling, removal sampling, and double observer sampling. To appropriately analyze these data, hierarchical models have been developed to separately model explanatory variables of both a latent abundance or occurrence process and a conditional detection process. Because these models have a straightforward interpretation paralleling mechanisms under which the data arose, they have recently gained immense popularity. The common hierarchical structure of these models is well-suited for a unified modeling interface. The R package unmarked provides such a unified modeling framework, including tools for data exploration, model fitting, model criticism, post-hoc analysis, and model comparison.
NASA Astrophysics Data System (ADS)
Hudson, Zachary M.; Boott, Charlotte E.; Robinson, Matthew E.; Rupar, Paul A.; Winnik, Mitchell A.; Manners, Ian
2014-10-01
Recent advances in the self-assembly of block copolymers have enabled the precise fabrication of hierarchical nanostructures using low-cost solution-phase protocols. However, the preparation of well-defined and complex planar nanostructures in which the size is controlled in two dimensions (2D) has remained a challenge. Using a series of platelet-forming block copolymers, we have demonstrated through quantitative experiments that the living crystallization-driven self-assembly (CDSA) approach can be extended to growth in 2D. We used 2D CDSA to prepare uniform lenticular platelet micelles of controlled size and to construct precisely concentric lenticular micelles composed of spatially distinct functional regions, as well as complex structures analogous to nanoscale single- and double-headed arrows and spears. These methods represent a route to hierarchical nanostructures that can be tailored in 2D, with potential applications as diverse as liquid crystals, diagnostic technology and composite reinforcement.
NASA Astrophysics Data System (ADS)
Ashe, E.; Kopp, R. E.; Khan, N.; Horton, B.; Engelhart, S. E.
2016-12-01
Sea level varies over of both space and time. Prior to the instrumental period, the sea-level record depends upon geological reconstructions that contain vertical and temporal uncertainty. Spatio-temporal statistical models enable the interpretation of RSL and rates of change as well as the reconstruction of the entire sea-level field from such noisy data. Hierarchical models explicitly distinguish between a process level, which characterizes the spatio-temporal field, and a data level, by which sparse proxy data and its noise is recorded. A hyperparameter level depicts prior expectations about the structure of variability in the spatio-temporal field. Spatio-temporal hierarchical models are amenable to several analysis approaches, with tradeoffs regarding computational efficiency and comprehensiveness of uncertainty characterization. A fully-Bayesian hierarchical model (BHM), which places prior probability distributions upon the hyperparameters, is more computationally intensive than an empirical hierarchical model (EHM), which uses point estimates of hyperparameters, derived from the data [1]. Here, we assess the sensitivity of posterior estimates of relative sea level (RSL) and rates to different statistical approaches by varying prior assumptions about the spatial and temporal structure of sea-level variability and applying multiple analytical approaches to Holocene sea-level proxies along the Atlantic coast of North American and the Caribbean [2]. References: 1. N Cressie, Wikle CK (2011) Statistics for spatio-temporal data (John Wiley & Sons). 2. Kahn N et al. (2016). Quaternary Science Reviews (in revision).
Spatial patterns of breeding success of grizzly bears derived from hierarchical multistate models.
Fisher, Jason T; Wheatley, Matthew; Mackenzie, Darryl
2014-10-01
Conservation programs often manage populations indirectly through the landscapes in which they live. Empirically, linking reproductive success with landscape structure and anthropogenic change is a first step in understanding and managing the spatial mechanisms that affect reproduction, but this link is not sufficiently informed by data. Hierarchical multistate occupancy models can forge these links by estimating spatial patterns of reproductive success across landscapes. To illustrate, we surveyed the occurrence of grizzly bears (Ursus arctos) in the Canadian Rocky Mountains Alberta, Canada. We deployed camera traps for 6 weeks at 54 surveys sites in different types of land cover. We used hierarchical multistate occupancy models to estimate probability of detection, grizzly bear occupancy, and probability of reproductive success at each site. Grizzly bear occupancy varied among cover types and was greater in herbaceous alpine ecotones than in low-elevation wetlands or mid-elevation conifer forests. The conditional probability of reproductive success given grizzly bear occupancy was 30% (SE = 0.14). Grizzly bears with cubs had a higher probability of detection than grizzly bears without cubs, but sites were correctly classified as being occupied by breeding females 49% of the time based on raw data and thus would have been underestimated by half. Repeated surveys and multistate modeling reduced the probability of misclassifying sites occupied by breeders as unoccupied to <2%. The probability of breeding grizzly bear occupancy varied across the landscape. Those patches with highest probabilities of breeding occupancy-herbaceous alpine ecotones-were small and highly dispersed and are projected to shrink as treelines advance due to climate warming. Understanding spatial correlates in breeding distribution is a key requirement for species conservation in the face of climate change and can help identify priorities for landscape management and protection. © 2014 Society for Conservation Biology.
The parietal cortex in sensemaking: the dissociation of multiple types of spatial information.
Sun, Yanlong; Wang, Hongbin
2013-01-01
According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction.
The Parietal Cortex in Sensemaking: The Dissociation of Multiple Types of Spatial Information
Sun, Yanlong; Wang, Hongbin
2013-01-01
According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction. PMID:23710165
Improvement in Recursive Hierarchical Segmentation of Data
NASA Technical Reports Server (NTRS)
Tilton, James C.
2006-01-01
A further modification has been made in the algorithm and implementing software reported in Modified Recursive Hierarchical Segmentation of Data (GSC- 14681-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 51. That software performs recursive hierarchical segmentation of data having spatial characteristics (e.g., spectral-image data). The output of a prior version of the software contained artifacts, including spurious segmentation-image regions bounded by processing-window edges. The modification for suppressing the artifacts, mentioned in the cited article, was addition of a subroutine that analyzes data in the vicinities of seams to find pairs of regions that tend to lie adjacent to each other on opposite sides of the seams. Within each such pair, pixels in one region that are more similar to pixels in the other region are reassigned to the other region. The present modification provides for a parameter ranging from 0 to 1 for controlling the relative priority of merges between spatially adjacent and spatially non-adjacent regions. At 1, spatially-adjacent-/spatially- non-adjacent-region merges have equal priority. At 0, only spatially-adjacent-region merges (no spectral clustering) are allowed. Between 0 and 1, spatially-adjacent- region merges have priority over spatially- non-adjacent ones.
A hierarchical spatial framework for forest landscape planning.
Pete Bettinger; Marie Lennette; K. Norman Johnson; Thomas A. Spies
2005-01-01
A hierarchical spatial framework for large-scale, long-term forest landscape planning is presented along with example policy analyses for a 560,000 ha area of the Oregon Coast Range. The modeling framework suggests utilizing the detail provided by satellite imagery to track forest vegetation condition and for representation of fine-scale features, such as riparian...
Local overfishing may be avoided by examining parameters of a spatio-temporal model
Shackell, Nancy; Mills Flemming, Joanna
2017-01-01
Spatial erosion of stock structure through local overfishing can lead to stock collapse because fish often prefer certain locations, and fisheries tend to focus on those locations. Fishery managers are challenged to maintain the integrity of the entire stock and require scientific approaches that provide them with sound advice. Here we propose a Bayesian hierarchical spatio-temporal modelling framework for fish abundance data to estimate key parameters that define spatial stock structure: persistence (similarity of spatial structure over time), connectivity (coherence of temporal pattern over space), and spatial variance (variation across the seascape). The consideration of these spatial parameters in the stock assessment process can help identify the erosion of structure and assist in preventing local overfishing. We use Atlantic cod (Gadus morhua) in eastern Canada as a case study an examine the behaviour of these parameters from the height of the fishery through its collapse. We identify clear signals in parameter behaviour under circumstances of destructive stock erosion as well as for recovery of spatial structure even when combined with a non-recovery in abundance. Further, our model reveals the spatial pattern of areas of high and low density persists over the 41 years of available data and identifies the remnant patches. Models of this sort are crucial to recovery plans if we are to identify and protect remaining sources of recolonization for Atlantic cod. Our method is immediately applicable to other exploited species. PMID:28886179
Local overfishing may be avoided by examining parameters of a spatio-temporal model.
Carson, Stuart; Shackell, Nancy; Mills Flemming, Joanna
2017-01-01
Spatial erosion of stock structure through local overfishing can lead to stock collapse because fish often prefer certain locations, and fisheries tend to focus on those locations. Fishery managers are challenged to maintain the integrity of the entire stock and require scientific approaches that provide them with sound advice. Here we propose a Bayesian hierarchical spatio-temporal modelling framework for fish abundance data to estimate key parameters that define spatial stock structure: persistence (similarity of spatial structure over time), connectivity (coherence of temporal pattern over space), and spatial variance (variation across the seascape). The consideration of these spatial parameters in the stock assessment process can help identify the erosion of structure and assist in preventing local overfishing. We use Atlantic cod (Gadus morhua) in eastern Canada as a case study an examine the behaviour of these parameters from the height of the fishery through its collapse. We identify clear signals in parameter behaviour under circumstances of destructive stock erosion as well as for recovery of spatial structure even when combined with a non-recovery in abundance. Further, our model reveals the spatial pattern of areas of high and low density persists over the 41 years of available data and identifies the remnant patches. Models of this sort are crucial to recovery plans if we are to identify and protect remaining sources of recolonization for Atlantic cod. Our method is immediately applicable to other exploited species.
NASA Astrophysics Data System (ADS)
Piazzi, L.; Bonaviri, C.; Castelli, A.; Ceccherelli, G.; Costa, G.; Curini-Galletti, M.; Langeneck, J.; Manconi, R.; Montefalcone, M.; Pipitone, C.; Rosso, A.; Pinna, S.
2018-07-01
In the Mediterranean Sea, Cystoseira species are the most important canopy-forming algae in shallow rocky bottoms, hosting high biodiverse sessile and mobile communities. A large-scale study has been carried out to investigate the structure of the Cystoseira-dominated assemblages at different spatial scales and to test the hypotheses that alpha and beta diversity of the assemblages, the abundance and the structure of epiphytic macroalgae, epilithic macroalgae, sessile macroinvertebrates and mobile macroinvertebrates associated to Cystoseira beds changed among scales. A hierarchical sampling design in a total of five sites across the Mediterranean Sea (Croatia, Montenegro, Sardinia, Tuscany and Balearic Islands) was used. A total of 597 taxa associated to Cystoseira beds were identified with a mean number per sample ranging between 141.1 ± 6.6 (Tuscany) and 173.9 ± 8.5(Sardinia). A high variability at small (among samples) and large (among sites) scale was generally highlighted, but the studied assemblages showed different patterns of spatial variability. The relative importance of the different scales of spatial variability should be considered to optimize sampling designs and propose monitoring plans of this habitat.
Hierarchical patch-based co-registration of differently stained histopathology slides
NASA Astrophysics Data System (ADS)
Yigitsoy, Mehmet; Schmidt, Günter
2017-03-01
Over the past decades, digital pathology has emerged as an alternative way of looking at the tissue at subcellular level. It enables multiplexed analysis of different cell types at micron level. Information about cell types can be extracted by staining sections of a tissue block using different markers. However, robust fusion of structural and functional information from different stains is necessary for reproducible multiplexed analysis. Such a fusion can be obtained via image co-registration by establishing spatial correspondences between tissue sections. Spatial correspondences can then be used to transfer various statistics about cell types between sections. However, the multi-modal nature of images and sparse distribution of interesting cell types pose several challenges for the registration of differently stained tissue sections. In this work, we propose a co-registration framework that efficiently addresses such challenges. We present a hierarchical patch-based registration of intensity normalized tissue sections. Preliminary experiments demonstrate the potential of the proposed technique for the fusion of multi-modal information from differently stained digital histopathology sections.
Tan, Wui Siew; Lewis, Christina L; Horelik, Nicholas E; Pregibon, Daniel C; Doyle, Patrick S; Yi, Hyunmin
2008-11-04
We demonstrate hierarchical assembly of tobacco mosaic virus (TMV)-based nanotemplates with hydrogel-based encoded microparticles via nucleic acid hybridization. TMV nanotemplates possess a highly defined structure and a genetically engineered high density thiol functionality. The encoded microparticles are produced in a high throughput microfluidic device via stop-flow lithography (SFL) and consist of spatially discrete regions containing encoded identity information, an internal control, and capture DNAs. For the hybridization-based assembly, partially disassembled TMVs were programmed with linker DNAs that contain sequences complementary to both the virus 5' end and a selected capture DNA. Fluorescence microscopy, atomic force microscopy (AFM), and confocal microscopy results clearly indicate facile assembly of TMV nanotemplates onto microparticles with high spatial and sequence selectivity. We anticipate that our hybridization-based assembly strategy could be employed to create multifunctional viral-synthetic hybrid materials in a rapid and high-throughput manner. Additionally, we believe that these viral-synthetic hybrid microparticles may find broad applications in high capacity, multiplexed target sensing.
Liu, Huanjun; Huffman, Ted; Liu, Jiangui; Li, Zhe; Daneshfar, Bahram; Zhang, Xinle
2015-01-01
Understanding agricultural ecosystems and their complex interactions with the environment is important for improving agricultural sustainability and environmental protection. Developing the necessary understanding requires approaches that integrate multi-source geospatial data and interdisciplinary relationships at different spatial scales. In order to identify and delineate landscape units representing relatively homogenous biophysical properties and eco-environmental functions at different spatial scales, a hierarchical system of uniform management zones (UMZ) is proposed. The UMZ hierarchy consists of seven levels of units at different spatial scales, namely site-specific, field, local, regional, country, continent, and globe. Relatively few studies have focused on the identification of the two middle levels of units in the hierarchy, namely the local UMZ (LUMZ) and the regional UMZ (RUMZ), which prevents true eco-environmental studies from being carried out across the full range of scales. This study presents a methodology to delineate LUMZ and RUMZ spatial units using land cover, soil, and remote sensing data. A set of objective criteria were defined and applied to evaluate the within-zone homogeneity and between-zone separation of the delineated zones. The approach was applied in a farming and forestry region in southeastern Ontario, Canada, and the methodology was shown to be objective, flexible, and applicable with commonly available spatial data. The hierarchical delineation of UMZs can be used as a tool to organize the spatial structure of agricultural landscapes, to understand spatial relationships between cropping practices and natural resources, and to target areas for application of specific environmental process models and place-based policy interventions.
A spatial model of bird abundance as adjusted for detection probability
Gorresen, P.M.; Mcmillan, G.P.; Camp, R.J.; Pratt, T.K.
2009-01-01
Modeling the spatial distribution of animals can be complicated by spatial and temporal effects (i.e. spatial autocorrelation and trends in abundance over time) and other factors such as imperfect detection probabilities and observation-related nuisance variables. Recent advances in modeling have demonstrated various approaches that handle most of these factors but which require a degree of sampling effort (e.g. replication) not available to many field studies. We present a two-step approach that addresses these challenges to spatially model species abundance. Habitat, spatial and temporal variables were handled with a Bayesian approach which facilitated modeling hierarchically structured data. Predicted abundance was subsequently adjusted to account for imperfect detection and the area effectively sampled for each species. We provide examples of our modeling approach for two endemic Hawaiian nectarivorous honeycreepers: 'i'iwi Vestiaria coccinea and 'apapane Himatione sanguinea. ?? 2009 Ecography.
Coates, Peter S.; Prochazka, Brian G.; Ricca, Mark A.; Wann, Gregory T.; Aldridge, Cameron L.; Hanser, Steven E.; Doherty, Kevin E.; O'Donnell, Michael S.; Edmunds, David R.; Espinosa, Shawn P.
2017-08-10
Population ecologists have long recognized the importance of ecological scale in understanding processes that guide observed demographic patterns for wildlife species. However, directly incorporating spatial and temporal scale into monitoring strategies that detect whether trajectories are driven by local or regional factors is challenging and rarely implemented. Identifying the appropriate scale is critical to the development of management actions that can attenuate or reverse population declines. We describe a novel example of a monitoring framework for estimating annual rates of population change for greater sage-grouse (Centrocercus urophasianus) within a hierarchical and spatially nested structure. Specifically, we conducted Bayesian analyses on a 17-year dataset (2000–2016) of lek counts in Nevada and northeastern California to estimate annual rates of population change, and compared trends across nested spatial scales. We identified leks and larger scale populations in immediate need of management, based on the occurrence of two criteria: (1) crossing of a destabilizing threshold designed to identify significant rates of population decline at a particular nested scale; and (2) crossing of decoupling thresholds designed to identify rates of population decline at smaller scales that decouple from rates of population change at a larger spatial scale. This approach establishes how declines affected by local disturbances can be separated from those operating at larger scales (for example, broad-scale wildfire and region-wide drought). Given the threshold output from our analysis, this adaptive management framework can be implemented readily and annually to facilitate responsive and effective actions for sage-grouse populations in the Great Basin. The rules of the framework can also be modified to identify populations responding positively to management action or demonstrating strong resilience to disturbance. Similar hierarchical approaches might be beneficial for other species occupying landscapes with heterogeneous disturbance and climatic regimes.
NASA Astrophysics Data System (ADS)
Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N.; Westhoff, Guido
2013-05-01
The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV - near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuperman, R.G.
1995-12-31
Despite the expansion of environmental toxicology studies over the past decade, soil ecosystems have largely been ignored in ecotoxicological studies in the United States. The objective of this project was to develop and test the efficacy of a comprehensive methodology for assessing ecological impacts of soil contamination. A hierarchical approach that integrates biotic parameters and ecosystem processes was used to give insight into the mechanisms that lead to alterations in the structure and function of soil ecosystems in contaminated areas. This approach involved (1) a thorough survey of the soil biota to determine community structure, (2) laboratory and field testsmore » on critical ecosystem processes, (3) toxicity trials, and (4) the use of spatial analyses to provide input to the decision-making, process. This methodology appears to, offer an efficient and potentially cost-saving tool for remedial investigations of contaminated sites.« less
Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N; Westhoff, Guido
2013-01-01
The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV-near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.
Allocation of spectral and spatial modes in multidimensional metro-access optical networks
NASA Astrophysics Data System (ADS)
Gao, Wenbo; Cvijetic, Milorad
2018-04-01
Introduction of spatial division multiplexing (SDM) has added a new dimension in an effort to increase optical fiber channel capacity. At the same time, it can also be explored as an advanced optical networking tool. In this paper, we have investigated the resource allocation to end-users in multidimensional networking structure with plurality of spectral and spatial modes actively deployed in different networking segments. This presents a more comprehensive method as compared to the common practice where the segments of optical network are analyzed independently since the interaction between network hierarchies is included into consideration. We explored the possible transparency from the metro/core network to the optical access network, analyzed the potential bottlenecks from the network architecture perspective, and identified an optimized network structure. In our considerations, the viability of optical grooming through the entire hierarchical all-optical network is investigated by evaluating the effective utilization and spectral efficiency of the network architecture.
Sharon E. Clarke; Sandra A. Bryce
1997-01-01
This document presents two spatial scales of a hierarchical, ecoregional framework and provides a connection to both larger and smaller scale ecological classifications. The two spatial scales are subregions (1:250,000) and landscape-level ecoregions (1:100,000), or Level IV and Level V ecoregions. Level IV ecoregions were developed by the Environmental Protection...
Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Qifeng, E-mail: liaoqf@shanghaitech.edu.cn; Lin, Guang, E-mail: guanglin@purdue.edu
2016-07-15
In this paper we present a reduced basis ANOVA approach for partial deferential equations (PDEs) with random inputs. The ANOVA method combined with stochastic collocation methods provides model reduction in high-dimensional parameter space through decomposing high-dimensional inputs into unions of low-dimensional inputs. In this work, to further reduce the computational cost, we investigate spatial low-rank structures in the ANOVA-collocation method, and develop efficient spatial model reduction techniques using hierarchically generated reduced bases. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.
NASA Technical Reports Server (NTRS)
Peuquet, Donna J.
1987-01-01
A new approach to building geographic data models that is based on the fundamental characteristics of the data is presented. An overall theoretical framework for representing geographic data is proposed. An example of utilizing this framework in a Geographic Information System (GIS) context by combining artificial intelligence techniques with recent developments in spatial data processing techniques is given. Elements of data representation discussed include hierarchical structure, separation of locational and conceptual views, and the ability to store knowledge at variable levels of completeness and precision.
Zheng, Xin; Han, Zhicheng; Yao, Shunyu; Xiao, Huanhao; Chai, Fang; Qu, Fengyu; Wu, Xiang
2016-04-28
Spinous α-Fe2O3 hierarchical structures grown on a Ni foam substrate have been successfully obtained by a facile one-step hydrothermal method. The prepared products are functionalized as supercapacitor electrodes without adding any ancillary materials such as carbon black or binders. Their electrochemical properties show a high discharge areal capacitance (681 mF cm(-2) at 1 mA cm(-2)), good rate performance (495 mF cm(-2) at 5 mA cm(-2)) and long-term cycling stability (23.9% loss after 6000 repetitive cycles at 1 mA cm(-2)). Such excellent supercapacitive characteristics could be mainly attributed to their unique spatial structures which provide many active sites and enhance the combination between the electrode and Ni foam to support fast ion and electron transfer. In addition, the prepared α-Fe2O3 product is also used as a photocatalyst for the photocatalytic degradation of several harmful organic dyes under visible light illumination. By comparing the photocatalytic performance towards Congo red dye with other photocatalysts, it was observed that the prepared spinous α-Fe2O3 hierarchical structure exhibited superior photocatalytic performance. Finally, photocatalytic recycle tests showed the superiority of the prepared α-Fe2O3 product. This demonstrates that spinous α-Fe2O3 structures could be promising candidate materials for high-capacity, low-cost supercapacitor electrodes and environmentally friendly photocatalysts.
A versatile strategy for grafting polymers to wood cell walls.
Keplinger, T; Cabane, E; Chanana, M; Hass, P; Merk, V; Gierlinger, N; Burgert, I
2015-01-01
The hierarchical structure of wood is composed of a cellulose skeleton of high structural order at various length scales. At the nanoscale and microscale the specific structural features of the cells and cell walls result in a lightweight structure with an anisotropic material profile of excellent mechanical performance. By being able to specifically functionalize wood at the level of cell and cell walls one can insert new properties and inevitably upscale them along the intrinsic hierarchical structure, to a level of large-scale engineering materials applications. For this purpose, however, precise control of the spatial distribution of the modifying substances in the complex wood structure is needed. Here we demonstrate a method to insert methacryl groups into wood cell walls using two different chemistry routes. By using these methacryl groups as the anchor points for grafting, various polymers can be inserted into the wood structure. Strikingly, depending on the methacryl precursor, the spatial distribution of the polymer differs strongly. As a proof of concept we grafted polystyrene as a model compound in the second modification step. In the case of methacryloyl chloride the polymer was located mainly at the interface between the cell lumina and the cell wall covering the inner surface of the cells and being traceable up to 2-3 μm in the cell wall, whereas in the case of methacrylic anhydride the polymer was located inside the whole cell wall. Scanning electron microscopy, Fourier transform infrared spectroscopy and especially Raman spectroscopy were used for an in-depth analysis of the modified wood at the cell wall level. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
One-Pot Solvothermal Synthesis of Bi4V2O11 as A New Solar Water Oxidation Photocatalyst
Jiang, Zaiyong; Liu, Yuanyuan; Li, Mengmeng; Jing, Tao; Huang, Baibiao; Zhang, Xiaoyang; Qin, Xiaoyan; Dai, Ying
2016-01-01
Bi4V2O11 was prepared via a one-pot solvothermal method and characterized via XRD, Raman, XPS, Electrochemical impedance spectroscopy. The as-prepared Bi4V2O11 sample displays excellent photocatalytic activity towards oxygen evolution under light irradiation. The hierarchical structure is in favour of the spatial separation of photogenerated electrons and holes. Furthermore, the internal polar field also plays a role in improving the charge separation. Both of the two results are responsible for excellent activity of O2 evolution. The resulting hierarchical Bi4V2O11 sample should be very promising photocatalyst for the application of photocatalytic O2 evolution in the future. PMID:26947126
A Subspace Pursuit–based Iterative Greedy Hierarchical Solution to the Neuromagnetic Inverse Problem
Babadi, Behtash; Obregon-Henao, Gabriel; Lamus, Camilo; Hämäläinen, Matti S.; Brown, Emery N.; Purdon, Patrick L.
2013-01-01
Magnetoencephalography (MEG) is an important non-invasive method for studying activity within the human brain. Source localization methods can be used to estimate spatiotemporal activity from MEG measurements with high temporal resolution, but the spatial resolution of these estimates is poor due to the ill-posed nature of the MEG inverse problem. Recent developments in source localization methodology have emphasized temporal as well as spatial constraints to improve source localization accuracy, but these methods can be computationally intense. Solutions emphasizing spatial sparsity hold tremendous promise, since the underlying neurophysiological processes generating MEG signals are often sparse in nature, whether in the form of focal sources, or distributed sources representing large-scale functional networks. Recent developments in the theory of compressed sensing (CS) provide a rigorous framework to estimate signals with sparse structure. In particular, a class of CS algorithms referred to as greedy pursuit algorithms can provide both high recovery accuracy and low computational complexity. Greedy pursuit algorithms are difficult to apply directly to the MEG inverse problem because of the high-dimensional structure of the MEG source space and the high spatial correlation in MEG measurements. In this paper, we develop a novel greedy pursuit algorithm for sparse MEG source localization that overcomes these fundamental problems. This algorithm, which we refer to as the Subspace Pursuit-based Iterative Greedy Hierarchical (SPIGH) inverse solution, exhibits very low computational complexity while achieving very high localization accuracy. We evaluate the performance of the proposed algorithm using comprehensive simulations, as well as the analysis of human MEG data during spontaneous brain activity and somatosensory stimuli. These studies reveal substantial performance gains provided by the SPIGH algorithm in terms of computational complexity, localization accuracy, and robustness. PMID:24055554
The Semantic Retrieval of Spatial Data Service Based on Ontology in SIG
NASA Astrophysics Data System (ADS)
Sun, S.; Liu, D.; Li, G.; Yu, W.
2011-08-01
The research of SIG (Spatial Information Grid) mainly solves the problem of how to connect different computing resources, so that users can use all the resources in the Grid transparently and seamlessly. In SIG, spatial data service is described in some kinds of specifications, which use different meta-information of each kind of services. This kind of standardization cannot resolve the problem of semantic heterogeneity, which may limit user to obtain the required resources. This paper tries to solve two kinds of semantic heterogeneities (name heterogeneity and structure heterogeneity) in spatial data service retrieval based on ontology, and also, based on the hierarchical subsumption relationship among concept in ontology, the query words can be extended and more resource can be matched and found for user. These applications of ontology in spatial data resource retrieval can help to improve the capability of keyword matching, and find more related resources.
An accessible method for implementing hierarchical models with spatio-temporal abundance data
Ross, Beth E.; Hooten, Melvin B.; Koons, David N.
2012-01-01
A common goal in ecology and wildlife management is to determine the causes of variation in population dynamics over long periods of time and across large spatial scales. Many assumptions must nevertheless be overcome to make appropriate inference about spatio-temporal variation in population dynamics, such as autocorrelation among data points, excess zeros, and observation error in count data. To address these issues, many scientists and statisticians have recommended the use of Bayesian hierarchical models. Unfortunately, hierarchical statistical models remain somewhat difficult to use because of the necessary quantitative background needed to implement them, or because of the computational demands of using Markov Chain Monte Carlo algorithms to estimate parameters. Fortunately, new tools have recently been developed that make it more feasible for wildlife biologists to fit sophisticated hierarchical Bayesian models (i.e., Integrated Nested Laplace Approximation, ‘INLA’). We present a case study using two important game species in North America, the lesser and greater scaup, to demonstrate how INLA can be used to estimate the parameters in a hierarchical model that decouples observation error from process variation, and accounts for unknown sources of excess zeros as well as spatial and temporal dependence in the data. Ultimately, our goal was to make unbiased inference about spatial variation in population trends over time.
Li, Xiaoyu; Gao, Yang; Boott, Charlotte E.; Winnik, Mitchell A.; Manners, Ian
2015-01-01
Nature uses orthogonal interactions over different length scales to construct structures with hierarchical levels of order and provides an important source of inspiration for the creation of synthetic functional materials. Here, we report the programmed assembly of monodisperse cylindrical block comicelle building blocks with crystalline cores to create supermicelles using spatially confined hydrogen-bonding interactions. We also demonstrate that it is possible to further program the self-assembly of these synthetic building blocks into structures of increased complexity by combining hydrogen-bonding interactions with segment solvophobicity. The overall approach offers an efficient, non-covalent synthesis method for the solution-phase fabrication of a range of complex and potentially functional supermicelle architectures in which the crystallization, hydrogen-bonding and solvophobic interactions are combined in an orthogonal manner. PMID:26337527
Riboswitches: emerging themes in RNA structure and function.
Montange, Rebecca K; Batey, Robert T
2008-01-01
Riboswitches are RNAs capable of binding cellular metabolites using a diverse array of secondary and tertiary structures to modulate gene expression. The recent determination of the three-dimensional structures of parts of six different riboswitches illuminates common features that allow riboswitches to be grouped into one of two types. Type I riboswitches, as exemplified by the purine riboswitch, are characterized by a single, localized binding pocket supported by a largely pre-established global fold. This arrangement limits ligand-induced conformational changes in the RNA to a small region. In contrast, Type II riboswitches, such as the thiamine pyrophosphate riboswitch, contain binding pockets split into at least two spatially distinct sites. As a result, binding induces both local changes to the binding pocket and global architecture. Similar organizational themes are found in other noncoding RNAs, making it possible to begin to build a hierarchical classification of RNA structure based on the spatial organization of their active sites and associated secondary structural elements.
Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance
Fiske, I.J.; Chandler, R.B.
2011-01-01
Ecological research uses data collection techniques that are prone to substantial and unique types of measurement error to address scientic questions about species abundance and distribution. These data collection schemes include a number of survey methods in which unmarked individuals are counted, or determined to be present, at spatially- referenced sites. Examples include site occupancy sampling, repeated counts, distance sampling, removal sampling, and double observer sampling. To appropriately analyze these data, hierarchical models have been developed to separately model explanatory variables of both a latent abundance or occurrence process and a conditional detection process. Because these models have a straightforward interpretation paralleling mecha- nisms under which the data arose, they have recently gained immense popularity. The common hierarchical structure of these models is well-suited for a unied modeling in- terface. The R package unmarked provides such a unied modeling framework, including tools for data exploration, model tting, model criticism, post-hoc analysis, and model comparison.
Marker-Based Hierarchical Segmentation and Classification Approach for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.; Benediktsson, Jon Atli; Chanussot, Jocelyn
2011-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which is a combination of hierarchical step-wise optimization and spectral clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. First, pixelwise classification is performed and the most reliably classified pixels are selected as markers, with the corresponding class labels. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. The experimental results show that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for hyperspectral image analysis.
Shi, Jidong; Wang, Liu; Dai, Zhaohe; Zhao, Lingyu; Du, Mingde; Li, Hongbian; Fang, Ying
2018-05-30
Flexible piezoresistive pressure sensors have been attracting wide attention for applications in health monitoring and human-machine interfaces because of their simple device structure and easy-readout signals. For practical applications, flexible pressure sensors with both high sensitivity and wide linearity range are highly desirable. Herein, a simple and low-cost method for the fabrication of a flexible piezoresistive pressure sensor with a hierarchical structure over large areas is presented. The piezoresistive pressure sensor consists of arrays of microscale papillae with nanoscale roughness produced by replicating the lotus leaf's surface and spray-coating of graphene ink. Finite element analysis (FEA) shows that the hierarchical structure governs the deformation behavior and pressure distribution at the contact interface, leading to a quick and steady increase in contact area with loads. As a result, the piezoresistive pressure sensor demonstrates a high sensitivity of 1.2 kPa -1 and a wide linearity range from 0 to 25 kPa. The flexible pressure sensor is applied for sensitive monitoring of small vibrations, including wrist pulse and acoustic waves. Moreover, a piezoresistive pressure sensor array is fabricated for mapping the spatial distribution of pressure. These results highlight the potential applications of the flexible piezoresistive pressure sensor for health monitoring and electronic skin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Perotti, Juan Ignacio; Tessone, Claudio Juan; Caldarelli, Guido
2015-12-01
The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust, and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the hierarchical mutual information, which is a generalization of the traditional mutual information and makes it possible to compare hierarchical partitions and hierarchical community structures. The normalized version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies and on the hierarchical community structure of artificial and empirical networks. Furthermore, the experiments illustrate some of the practical applications of the hierarchical mutual information, namely the comparison of different community detection methods and the study of the consistency, robustness, and temporal evolution of the hierarchical modular structure of networks.
Level III Ecoregions of the Mississippi Alluvial Plain
Ecoregions for the Mississippi Alluvial Plain were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the environment by its probable response to disturbance (Bryce and others, 1999). These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and non-government organizations that are responsible for different types of resources within the same geographical areas (Omernik and others, 2000). The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of the spatial patterns and the composition of biotic and abiotic phenomena that affect or reflect differences in ecosystem quality and integrity (Wiken, 1986; Omernik, 1987, 1995). These phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another regardless of the hierarchical level. A Roman numeral hierarchical scheme has been adopted for different levels for
Level IV Ecoregions of the Mississippi Alluvial Plain
Ecoregions for the Mississippi Alluvial Plain were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the environment by its probable response to disturbance (Bryce and others, 1999). These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and non-government organizations that are responsible for different types of resources within the same geographical areas (Omernik and others, 2000). The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of the spatial patterns and the composition of biotic and abiotic phenomena that affect or reflect differences in ecosystem quality and integrity (Wiken, 1986; Omernik, 1987, 1995). These phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another regardless of the hierarchical level. A Roman numeral hierarchical scheme has been adopted for different levels for
The VMC Survey. XXVII. Young Stellar Structures in the LMC’s Bar Star-forming Complex
NASA Astrophysics Data System (ADS)
Sun, Ning-Chen; de Grijs, Richard; Subramanian, Smitha; Bekki, Kenji; Bell, Cameron P. M.; Cioni, Maria-Rosa L.; Ivanov, Valentin D.; Marconi, Marcella; Oliveira, Joana M.; Piatti, Andrés E.; Ripepi, Vincenzo; Rubele, Stefano; Tatton, Ben L.; van Loon, Jacco Th.
2017-11-01
Star formation is a hierarchical process, forming young stellar structures of star clusters, associations, and complexes over a wide range of scales. The star-forming complex in the bar region of the Large Magellanic Cloud is investigated with upper main-sequence stars observed by the VISTA Survey of the Magellanic Clouds. The upper main-sequence stars exhibit highly nonuniform distributions. Young stellar structures inside the complex are identified from the stellar density map as density enhancements of different significance levels. We find that these structures are hierarchically organized such that larger, lower-density structures contain one or several smaller, higher-density ones. They follow power-law size and mass distributions, as well as a lognormal surface density distribution. All these results support a scenario of hierarchical star formation regulated by turbulence. The temporal evolution of young stellar structures is explored by using subsamples of upper main-sequence stars with different magnitude and age ranges. While the youngest subsample, with a median age of log(τ/yr) = 7.2, contains the most substructure, progressively older ones are less and less substructured. The oldest subsample, with a median age of log(τ/yr) = 8.0, is almost indistinguishable from a uniform distribution on spatial scales of 30-300 pc, suggesting that the young stellar structures are completely dispersed on a timescale of ˜100 Myr. These results are consistent with the characteristics of the 30 Doradus complex and the entire Large Magellanic Cloud, suggesting no significant environmental effects. We further point out that the fractal dimension may be method dependent for stellar samples with significant age spreads.
HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.
Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B
2017-07-01
This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.
Spagnol, Stephen T.; Dahl, Kris Noel
2016-01-01
The linear sequence of DNA encodes access to the complete set of proteins that carry out cellular functions. Yet, much of the functionality appropriate for each cell is nested within layers of dynamic regulation and organization, including a hierarchy of chromatin structural states and spatial arrangement within the nucleus. There remain limitations in our understanding of gene expression within the context of nuclear organization from an inability to characterize hierarchical chromatin organization in situ. Here we demonstrate the use of fluorescence lifetime imaging microscopy (FLIM) to quantify and spatially resolve chromatin condensation state using cell-permeable, DNA-binding dyes (Hoechst 33342 and PicoGreen). Through in vitro and in situ experiments we demonstrate the sensitivity of fluorescence lifetime to condensation state through the mechanical effects that accompany the structural changes and are reflected through altered viscosity. The establishment of FLIM for resolving and quantifying chromatin condensation state opens the door for single-measurement mechanical studies of the nucleus and for characterizing the role of genome structure and organization in nuclear processes that accompany physiological and pathological changes. PMID:26765322
Living in the branches: population dynamics and ecological processes in dendritic networks
Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.
2007-01-01
Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.
Modeling urban air pollution with optimized hierarchical fuzzy inference system.
Tashayo, Behnam; Alimohammadi, Abbas
2016-10-01
Environmental exposure assessments (EEA) and epidemiological studies require urban air pollution models with appropriate spatial and temporal resolutions. Uncertain available data and inflexible models can limit air pollution modeling techniques, particularly in under developing countries. This paper develops a hierarchical fuzzy inference system (HFIS) to model air pollution under different land use, transportation, and meteorological conditions. To improve performance, the system treats the issue as a large-scale and high-dimensional problem and develops the proposed model using a three-step approach. In the first step, a geospatial information system (GIS) and probabilistic methods are used to preprocess the data. In the second step, a hierarchical structure is generated based on the problem. In the third step, the accuracy and complexity of the model are simultaneously optimized with a multiple objective particle swarm optimization (MOPSO) algorithm. We examine the capabilities of the proposed model for predicting daily and annual mean PM2.5 and NO2 and compare the accuracy of the results with representative models from existing literature. The benefits provided by the model features, including probabilistic preprocessing, multi-objective optimization, and hierarchical structure, are precisely evaluated by comparing five different consecutive models in terms of accuracy and complexity criteria. Fivefold cross validation is used to assess the performance of the generated models. The respective average RMSEs and coefficients of determination (R (2)) for the test datasets using proposed model are as follows: daily PM2.5 = (8.13, 0.78), annual mean PM2.5 = (4.96, 0.80), daily NO2 = (5.63, 0.79), and annual mean NO2 = (2.89, 0.83). The obtained results demonstrate that the developed hierarchical fuzzy inference system can be utilized for modeling air pollution in EEA and epidemiological studies.
Man-made objects cuing in satellite imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skurikhin, Alexei N
2009-01-01
We present a multi-scale framework for man-made structures cuing in satellite image regions. The approach is based on a hierarchical image segmentation followed by structural analysis. A hierarchical segmentation produces an image pyramid that contains a stack of irregular image partitions, represented as polygonized pixel patches, of successively reduced levels of detail (LOOs). We are jumping off from the over-segmented image represented by polygons attributed with spectral and texture information. The image is represented as a proximity graph with vertices corresponding to the polygons and edges reflecting polygon relations. This is followed by the iterative graph contraction based on Boruvka'smore » Minimum Spanning Tree (MST) construction algorithm. The graph contractions merge the patches based on their pairwise spectral and texture differences. Concurrently with the construction of the irregular image pyramid, structural analysis is done on the agglomerated patches. Man-made object cuing is based on the analysis of shape properties of the constructed patches and their spatial relations. The presented framework can be used as pre-scanning tool for wide area monitoring to quickly guide the further analysis to regions of interest.« less
López-Carr, David; Davis, Jason; Jankowska, Marta; Grant, Laura; López-Carr, Anna Carla; Clark, Matthew
2013-01-01
The relative role of space and place has long been debated in geography. Yet modeling efforts applied to coupled human-natural systems seemingly favor models assuming continuous spatial relationships. We examine the relative importance of placebased hierarchical versus spatial clustering influences in tropical land use/cover change (LUCC). Guatemala was chosen as our study site given its high rural population growth and deforestation in recent decades. We test predictors of 2009 forest cover and forest cover change from 2001-2009 across Guatemala's 331 municipalities and 22 departments using spatial and multi-level statistical models. Our results indicate the emergence of several socio-economic predictors of LUCC regardless of model choice. Hierarchical model results suggest that significant differences exist at the municipal and departmental levels but largely maintain the magnitude and direction of single-level model coefficient estimates. They are also intervention-relevant since policies tend to be applicable to distinct political units rather than to continuous space. Spatial models complement hierarchical approaches by indicating where and to what magnitude significant negative and positive clustering associations emerge. Appreciating the comparative advantages and limitations of spatial and nested models enhances a holistic approach to geographical analysis of tropical LUCC and human-environment interactions. PMID:24013908
NASA Astrophysics Data System (ADS)
Astuti Thamrin, Sri; Taufik, Irfan
2018-03-01
Dengue haemorrhagic fever (DHF) is an infectious disease caused by dengue virus. The increasing number of people with DHF disease correlates with the neighbourhood, for example sub-districts, and the characteristics of the sub-districts are formed from individuals who are domiciled in the sub-districts. Data containing individuals and sub-districts is a hierarchical data structure, called multilevel analysis. Frequently encountered response variable of the data is the time until an event occurs. Multilevel and spatial models are being increasingly used to obtain substantive information on area-level inequalities in DHF survival. Using a case study approach, we report on the implications of using multilevel with spatial survival models to study geographical inequalities in all cause survival.
Deep Neural Network for Structural Prediction and Lane Detection in Traffic Scene.
Li, Jun; Mei, Xue; Prokhorov, Danil; Tao, Dacheng
2017-03-01
Hierarchical neural networks have been shown to be effective in learning representative image features and recognizing object classes. However, most existing networks combine the low/middle level cues for classification without accounting for any spatial structures. For applications such as understanding a scene, how the visual cues are spatially distributed in an image becomes essential for successful analysis. This paper extends the framework of deep neural networks by accounting for the structural cues in the visual signals. In particular, two kinds of neural networks have been proposed. First, we develop a multitask deep convolutional network, which simultaneously detects the presence of the target and the geometric attributes (location and orientation) of the target with respect to the region of interest. Second, a recurrent neuron layer is adopted for structured visual detection. The recurrent neurons can deal with the spatial distribution of visible cues belonging to an object whose shape or structure is difficult to explicitly define. Both the networks are demonstrated by the practical task of detecting lane boundaries in traffic scenes. The multitask convolutional neural network provides auxiliary geometric information to help the subsequent modeling of the given lane structures. The recurrent neural network automatically detects lane boundaries, including those areas containing no marks, without any explicit prior knowledge or secondary modeling.
Soil Moisture fusion across scales using a multiscale nonstationary Spatial Hierarchical Model
NASA Astrophysics Data System (ADS)
Kathuria, D.; Mohanty, B.; Katzfuss, M.
2017-12-01
Soil moisture (SM) datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors, on the other hand, provide observations on a finer spatial scale (meter scale or less) but are sparsely available. SM is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables and these interactions change dynamically with footprint scales. Past literature has largely focused on the scale specific effect of these covariates on soil moisture. The present study proposes a robust Multiscale-Nonstationary Spatial Hierarchical Model (MN-SHM) which can assimilate SM from point to RS footprints. The spatial structure of SM across footprints is modeled by a class of scalable covariance functions whose nonstationary depends on atmospheric forcings (such as precipitation) and surface physical controls (such as topography, soil-texture and vegetation). The proposed model is applied to fuse point and airborne ( 1.5 km) SM data obtained during the SMAPVEX12 campaign in the Red River watershed in Southern Manitoba, Canada with SMOS ( 30km) data. It is observed that precipitation, soil-texture and vegetation are the dominant factors which affect the SM distribution across various footprint scales (750 m, 1.5 km, 3 km, 9 km,15 km and 30 km). We conclude that MN-SHM handles the change of support problems easily while retaining reasonable predictive accuracy across multiple spatial resolutions in the presence of surface heterogeneity. The MN-SHM can be considered as a complex non-stationary extension of traditional geostatistical prediction methods (such as Kriging) for fusing multi-platform multi-scale datasets.
NASA Astrophysics Data System (ADS)
Western, A. W.; Lintern, A.; Liu, S.; Ryu, D.; Webb, J. A.; Leahy, P.; Wilson, P.; Waters, D.; Bende-Michl, U.; Watson, M.
2016-12-01
Many streams, lakes and estuaries are experiencing increasing concentrations and loads of nutrient and sediments. Models that can predict the spatial and temporal variability in water quality of aquatic systems are required to help guide the management and restoration of polluted aquatic systems. We propose that a Bayesian hierarchical modelling framework could be used to predict water quality responses over varying spatial and temporal scales. Stream water quality data and spatial data of catchment characteristics collected throughout Victoria and Queensland (in Australia) over two decades will be used to develop this Bayesian hierarchical model. In this paper, we present the preliminary exploratory data analysis required for the development of the Bayesian hierarchical model. Specifically, we present the results of exploratory data analysis of Total Nitrogen (TN) concentrations in rivers in Victoria (in South-East Australia) to illustrate the catchment characteristics that appear to be influencing spatial variability in (1) mean concentrations of TN; and (2) the relationship between discharge and TN throughout the state. These important catchment characteristics were identified using: (1) monthly TN concentrations measured at 28 water quality gauging stations and (2) climate, land use, topographic and geologic characteristics of the catchments of these 28 sites. Spatial variability in TN concentrations had a positive correlation to fertiliser use in the catchment and average temperature. There were negative correlations between TN concentrations and catchment forest cover, annual runoff, runoff perenniality, soil erosivity and catchment slope. The relationship between discharge and TN concentrations showed spatial variability, possibly resulting from climatic and topographic differences between the sites. The results of this study will feed into the hierarchical Bayesian model of river water quality.
Measuring the hierarchy of feedforward networks
NASA Astrophysics Data System (ADS)
Corominas-Murtra, Bernat; Rodríguez-Caso, Carlos; Goñi, Joaquín; Solé, Ricard
2011-03-01
In this paper we explore the concept of hierarchy as a quantifiable descriptor of ordered structures, departing from the definition of three conditions to be satisfied for a hierarchical structure: order, predictability, and pyramidal structure. According to these principles, we define a hierarchical index taking concepts from graph and information theory. This estimator allows to quantify the hierarchical character of any system susceptible to be abstracted in a feedforward causal graph, i.e., a directed acyclic graph defined in a single connected structure. Our hierarchical index is a balance between this predictability and pyramidal condition by the definition of two entropies: one attending the onward flow and the other for the backward reversion. We show how this index allows to identify hierarchical, antihierarchical, and nonhierarchical structures. Our formalism reveals that departing from the defined conditions for a hierarchical structure, feedforward trees and the inverted tree graphs emerge as the only causal structures of maximal hierarchical and antihierarchical systems respectively. Conversely, null values of the hierarchical index are attributed to a number of different configuration networks; from linear chains, due to their lack of pyramid structure, to full-connected feedforward graphs where the diversity of onward pathways is canceled by the uncertainty (lack of predictability) when going backward. Some illustrative examples are provided for the distinction among these three types of hierarchical causal graphs.
The Adult Mouse Anatomical Dictionary: a tool for annotating and integrating data
Hayamizu, Terry F; Mangan, Mary; Corradi, John P; Kadin, James A; Ringwald, Martin
2005-01-01
We have developed an ontology to provide standardized nomenclature for anatomical terms in the postnatal mouse. The Adult Mouse Anatomical Dictionary is structured as a directed acyclic graph, and is organized hierarchically both spatially and functionally. The ontology will be used to annotate and integrate different types of data pertinent to anatomy, such as gene expression patterns and phenotype information, which will contribute to an integrated description of biological phenomena in the mouse. PMID:15774030
Nonlinear model of epidemic spreading in a complex social network.
Kosiński, Robert A; Grabowski, A
2007-10-01
The epidemic spreading in a human society is a complex process, which can be described on the basis of a nonlinear mathematical model. In such an approach the complex and hierarchical structure of social network (which has implications for the spreading of pathogens and can be treated as a complex network), can be taken into account. In our model each individual has one of the four permitted states: susceptible, infected, infective, unsusceptible or dead. This refers to the SEIR model used in epidemiology. The state of an individual changes in time, depending on the previous state and the interactions with other individuals. The description of the interpersonal contacts is based on the experimental observations of the social relations in the community. It includes spatial localization of the individuals and hierarchical structure of interpersonal interactions. Numerical simulations were performed for different types of epidemics, giving the progress of a spreading process and typical relationships (e.g. range of epidemic in time, the epidemic curve). The spreading process has a complex and spatially chaotic character. The time dependence of the number of infective individuals shows the nonlinear character of the spreading process. We investigate the influence of the preventive vaccinations on the spreading process. In particular, for a critical value of preventively vaccinated individuals the percolation threshold is observed and the epidemic is suppressed.
Sun, Ming-Hui; Huang, Shao-Zhuan; Chen, Li-Hua; Li, Yu; Yang, Xiao-Yu; Yuan, Zhong-Yong; Su, Bao-Lian
2016-06-13
Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.
Processing of hierarchical syntactic structure in music.
Koelsch, Stefan; Rohrmeier, Martin; Torrecuso, Renzo; Jentschke, Sebastian
2013-09-17
Hierarchical structure with nested nonlocal dependencies is a key feature of human language and can be identified theoretically in most pieces of tonal music. However, previous studies have argued against the perception of such structures in music. Here, we show processing of nonlocal dependencies in music. We presented chorales by J. S. Bach and modified versions in which the hierarchical structure was rendered irregular whereas the local structure was kept intact. Brain electric responses differed between regular and irregular hierarchical structures, in both musicians and nonmusicians. This finding indicates that, when listening to music, humans apply cognitive processes that are capable of dealing with long-distance dependencies resulting from hierarchically organized syntactic structures. Our results reveal that a brain mechanism fundamental for syntactic processing is engaged during the perception of music, indicating that processing of hierarchical structure with nested nonlocal dependencies is not just a key component of human language, but a multidomain capacity of human cognition.
Fabrication of hierarchical hybrid structures using bio-enabled layer-by-layer self-assembly.
Hnilova, Marketa; Karaca, Banu Taktak; Park, James; Jia, Carol; Wilson, Brandon R; Sarikaya, Mehmet; Tamerler, Candan
2012-05-01
Development of versatile and flexible assembly systems for fabrication of functional hybrid nanomaterials with well-defined hierarchical and spatial organization is of a significant importance in practical nanobiotechnology applications. Here we demonstrate a bio-enabled self-assembly technique for fabrication of multi-layered protein and nanometallic assemblies utilizing a modular gold-binding (AuBP1) fusion tag. To accomplish the bottom-up assembly we first genetically fused the AuBP1 peptide sequence to the C'-terminus of maltose-binding protein (MBP) using two different linkers to produce MBP-AuBP1 hetero-functional constructs. Using various spectroscopic techniques, surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR), we verified the exceptional binding and self-assembly characteristics of AuBP1 peptide. The AuBP1 peptide tag can direct the organization of recombinant MBP protein on various gold surfaces through an efficient control of the organic-inorganic interface at the molecular level. Furthermore using a combination of soft-lithography, self-assembly techniques and advanced AuBP1 peptide tag technology, we produced spatially and hierarchically controlled protein multi-layered assemblies on gold nanoparticle arrays with high molecular packing density and pattering efficiency in simple, reproducible steps. This model system offers layer-by-layer assembly capability based on specific AuBP1 peptide tag and constitutes novel biological routes for biofabrication of various protein arrays, plasmon-active nanometallic assemblies and devices with controlled organization, packing density and architecture. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lin, Yu-Chiao; Chen, Chun-Yu; Chen, Hsin-Lung; Hashimoto, Takeji; Chen, Show-An; Li, Yen-Cheng
2015-06-01
Using small angle X-ray scattering (SAXS), we elucidated the spatial organization of palladium (Pd) nanoparticles (NPs) in the polymer matrix of poly(2-vinylpyridine) (P2VP) and the nature of inter-nanoparticle interactions, where the NPs were synthesized in the presence of P2VP by the reduction of palladium acetylacetonate (Pd(acac)2). The experimental SAXS profiles were analysed on the basis of a hierarchical structure model considering the following two types of interparticle potential: (i) hard-core repulsion only (i.e., the hard-sphere interaction) and (ii) hard-core repulsion together with an attractive potential well (i.e., the sticky hard-sphere interaction). The corresponding theoretical scattering functions, which were used for analysing the experimental SAXS profiles, were obtained within the context of the Percus-Yevick closure and the Ornstein-Zernike equation in the fundamental liquid theory. The analyses revealed that existence of the attractive potential well is indispensable to account for the experimental SAXS profiles. Moreover, the morphology of the hybrids was found to be characterized by a hierarchical structure with three levels, where about six primary NPs with the diameter of ca. 1.8 nm (level one) formed local clusters (level two), and these clusters aggregated to build up a large-scale mass-fractal structure (level three) with the fractal dimension of ca. 2.3. The scattering function developed here is of general use for quantitatively characterizing the morphological structures of polymer/NP hybrids and, in particular, for exploring the interaction potential of the NPs on the basis of the fundamental liquid theory.
Spatial variation of natural radiation and childhood leukaemia incidence in Great Britain.
Richardson, S; Monfort, C; Green, M; Draper, G; Muirhead, C
This paper describes an analysis of the geographical variation of childhood leukaemia incidence in Great Britain over a 15 year period in relation to natural radiation (gamma and radon). Data at the level of the 459 district level local authorities in England, Wales and regional districts in Scotland are analysed in two complementary ways: first, by Poisson regressions with the inclusion of environmental covariates and a smooth spatial structure; secondly, by a hierarchical Bayesian model in which extra-Poisson variability is modelled explicitly in terms of spatial and non-spatial components. From this analysis, we deduce a strong indication that a main part of the variability is accounted for by a local neighbourhood 'clustering' structure. This structure is furthermore relatively stable over the 15 year period for the lymphocytic leukaemias which make up the majority of observed cases. We found no evidence of a positive association of childhood leukaemia incidence with outdoor or indoor gamma radiation levels. There is no consistent evidence of any association with radon levels. Indeed, in the Poisson regressions, a significant positive association was only observed for one 5-year period, a result which is not compatible with a stable environmental effect. Moreover, this positive association became clearly non-significant when over-dispersion relative to the Poisson distribution was taken into account.
Nanoclusters first: a hierarchical phase transformation in a novel Mg alloy
NASA Astrophysics Data System (ADS)
Okuda, Hiroshi; Yamasaki, Michiaki; Kawamura, Yoshihito; Tabuchi, Masao; Kimizuka, Hajime
2015-09-01
The Mg-Y-Zn ternary alloy system contains a series of novel structures known as long-period stacking ordered (LPSO) structures. The formation process and its key concept from a viewpoint of phase transition are not yet clear. The current study reveals that the phase transformation process is not a traditional spinodal decomposition or structural transformation but, rather a novel hierarchical phase transformation. In this transformation, clustering occurs first, and the spatial rearrangement of the clusters induce a secondary phase transformation that eventually lead to two-dimensional ordering of the clusters. The formation process was examined using in situ synchrotron radiation small-angle X-ray scattering (SAXS). Rapid quenching from liquid alloy into thin ribbons yielded strongly supersaturated amorphous samples. The samples were heated at a constant rate of 10 K/min. and the scattering patterns were acquired. The SAXS analysis indicated that small clusters grew to sizes of 0.2 nm after they crystallized. The clusters distributed randomly in space grew and eventually transformed into a microstructure with two well-defined cluster-cluster distances, one for the segregation periodicity of LPSO and the other for the in-plane ordering in segregated layer. This transformation into the LPSO structure concomitantly introduces the periodical stacking fault required for the 18R structures.
NASA Astrophysics Data System (ADS)
Mairota, Paola; Cafarelli, Barbara; Labadessa, Rocco; Lovergine, Francesco P.; Tarantino, Cristina; Nagendra, Harini; Didham, Raphael K.
2015-02-01
Modelling the empirical relationships between habitat quality and species distribution patterns is the first step to understanding human impacts on biodiversity. It is important to build on this understanding to develop a broader conceptual appreciation of the influence of surrounding landscape structure on local habitat quality, across multiple spatial scales. Traditional models which report that 'habitat amount' in the landscape is sufficient to explain patterns of biodiversity, irrespective of habitat configuration or spatial variation in habitat quality at edges, implicitly treat each unit of habitat as interchangeable and ignore the high degree of interdependence between spatial components of land-use change. Here, we test the contrasting hypothesis, that local habitat units are not interchangeable in their habitat attributes, but are instead dependent on variation in surrounding habitat structure at both patch- and landscape levels. As the statistical approaches needed to implement such hierarchical causal models are observation-intensive, we utilise very high resolution (VHR) Earth Observation (EO) images to rapidly generate fine-grained measures of habitat patch internal heterogeneities over large spatial extents. We use linear mixed-effects models to test whether these remotely-sensed proxies for habitat quality were influenced by surrounding patch or landscape structure. The results demonstrate the significant influence of surrounding patch and landscape context on local habitat quality. They further indicate that such an influence can be direct, when a landscape variable alone influences the habitat structure variable, and/or indirect when the landscape and patch attributes have a conjoined effect on the response variable. We conclude that a substantial degree of interaction among spatial configuration effects is likely to be the norm in determining the ecological consequences of habitat fragmentation, thus corroborating the notion of the spatial context dependence of habitat quality.
Design of a structural and functional hierarchy for planning and control of telerobotic systems
NASA Technical Reports Server (NTRS)
Acar, Levent; Ozguner, Umit
1989-01-01
Hierarchical structures offer numerous advantages over conventional structures for the control of telerobotic systems. A hierarchically organized system can be controlled via undetailed task assignments and can easily adapt to changing circumstances. The distributed and modular structure of these systems also enables fast response needed in most telerobotic applications. On the other hand, most of the hierarchical structures proposed in the literature are based on functional properties of a system. These structures work best for a few given functions of a large class of systems. In telerobotic applications, all functions of a single system needed to be explored. This approach requires a hierarchical organization based on physical properties of a system and such a hierarchical organization is introduced. The decomposition, organization, and control of the hierarchical structure are considered, and a system with two robot arms and a camera is presented.
Saleh, Mohammad Sadeq; Hu, Chunshan; Panat, Rahul
2017-03-01
Three-dimensional (3D) hierarchical materials are important to a wide range of emerging technological applications. We report a method to synthesize complex 3D microengineered materials, such as microlattices, with nearly fully dense truss elements with a minimum diameter of approximately 20 μm and having high aspect ratios (up to 20:1) without using any templating or supporting materials. By varying the postprocessing conditions, we have also introduced an additional control over the internal porosity of the truss elements to demonstrate a hierarchical porous structure with an overall void size and feature size control of over five orders of magnitudes in length scale. The method uses direct printing of nanoparticle dispersions using the Aerosol Jet technology in 3D space without templating or supporting materials followed by binder removal and sintering. In addition to 3D microlattices, we have also demonstrated directly printed stretchable interconnects, spirals, and pillars. This assembly method could be implemented by a variety of microdroplet generation methods for fast and large-scale fabrication of the hierarchical materials for applications in tissue engineering, ultralight or multifunctional materials, microfluidics, and micro-optoelectronics.
Royle, J. Andrew; Converse, Sarah J.
2014-01-01
Capture–recapture studies are often conducted on populations that are stratified by space, time or other factors. In this paper, we develop a Bayesian spatial capture–recapture (SCR) modelling framework for stratified populations – when sampling occurs within multiple distinct spatial and temporal strata.We describe a hierarchical model that integrates distinct models for both the spatial encounter history data from capture–recapture sampling, and also for modelling variation in density among strata. We use an implementation of data augmentation to parameterize the model in terms of a latent categorical stratum or group membership variable, which provides a convenient implementation in popular BUGS software packages.We provide an example application to an experimental study involving small-mammal sampling on multiple trapping grids over multiple years, where the main interest is in modelling a treatment effect on population density among the trapping grids.Many capture–recapture studies involve some aspect of spatial or temporal replication that requires some attention to modelling variation among groups or strata. We propose a hierarchical model that allows explicit modelling of group or strata effects. Because the model is formulated for individual encounter histories and is easily implemented in the BUGS language and other free software, it also provides a general framework for modelling individual effects, such as are present in SCR models.
Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework
Omernik, James M.; Griffith, Glenn E.
2014-01-01
A map of ecological regions of the conterminous United States, first published in 1987, has been greatly refined and expanded into a hierarchical spatial framework in response to user needs, particularly by state resource management agencies. In collaboration with scientists and resource managers from numerous agencies and institutions in the United States, Mexico, and Canada, the framework has been expanded to cover North America, and the original ecoregions (now termed Level III) have been refined, subdivided, and aggregated to identify coarser as well as more detailed spatial units. The most generalized units (Level I) define 10 ecoregions in the conterminous U.S., while the finest-scale units (Level IV) identify 967 ecoregions. In this paper, we explain the logic underpinning the approach, discuss the evolution of the regional mapping process, and provide examples of how the ecoregions were distinguished at each hierarchical level. The variety of applications of the ecoregion framework illustrates its utility in resource assessment and management.
Ecoregions of the Conterminous United States: Evolution of a Hierarchical Spatial Framework
NASA Astrophysics Data System (ADS)
Omernik, James M.; Griffith, Glenn E.
2014-12-01
A map of ecological regions of the conterminous United States, first published in 1987, has been greatly refined and expanded into a hierarchical spatial framework in response to user needs, particularly by state resource management agencies. In collaboration with scientists and resource managers from numerous agencies and institutions in the United States, Mexico, and Canada, the framework has been expanded to cover North America, and the original ecoregions (now termed Level III) have been refined, subdivided, and aggregated to identify coarser as well as more detailed spatial units. The most generalized units (Level I) define 10 ecoregions in the conterminous U.S., while the finest-scale units (Level IV) identify 967 ecoregions. In this paper, we explain the logic underpinning the approach, discuss the evolution of the regional mapping process, and provide examples of how the ecoregions were distinguished at each hierarchical level. The variety of applications of the ecoregion framework illustrates its utility in resource assessment and management.
Evaluation of Deep Learning Representations of Spatial Storm Data
NASA Astrophysics Data System (ADS)
Gagne, D. J., II; Haupt, S. E.; Nychka, D. W.
2017-12-01
The spatial structure of a severe thunderstorm and its surrounding environment provide useful information about the potential for severe weather hazards, including tornadoes, hail, and high winds. Statistics computed over the area of a storm or from the pre-storm environment can provide descriptive information but fail to capture structural information. Because the storm environment is a complex, high-dimensional space, identifying methods to encode important spatial storm information in a low-dimensional form should aid analysis and prediction of storms by statistical and machine learning models. Principal component analysis (PCA), a more traditional approach, transforms high-dimensional data into a set of linearly uncorrelated, orthogonal components ordered by the amount of variance explained by each component. The burgeoning field of deep learning offers two potential approaches to this problem. Convolutional Neural Networks are a supervised learning method for transforming spatial data into a hierarchical set of feature maps that correspond with relevant combinations of spatial structures in the data. Generative Adversarial Networks (GANs) are an unsupervised deep learning model that uses two neural networks trained against each other to produce encoded representations of spatial data. These different spatial encoding methods were evaluated on the prediction of severe hail for a large set of storm patches extracted from the NCAR convection-allowing ensemble. Each storm patch contains information about storm structure and the near-storm environment. Logistic regression and random forest models were trained using the PCA and GAN encodings of the storm data and were compared against the predictions from a convolutional neural network. All methods showed skill over climatology at predicting the probability of severe hail. However, the verification scores among the methods were very similar and the predictions were highly correlated. Further evaluations are being performed to determine how the choice of input variables affects the results.
Hierarchical motion organization in random dot configurations
NASA Technical Reports Server (NTRS)
Bertamini, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)
2000-01-01
Motion organization has 2 aspects: the extraction of a (moving) frame of reference and the hierarchical organization of moving elements within the reference frame. Using a discrimination of relative motions task, the authors found large differences between different types of motion (translation, divergence, and rotation) in the degree to which each can serve as a moving frame of reference. Translation and divergence are superior to rotation. There are, however, situations in which rotation can serve as a reference frame. This is due to the presence of a second factor, structural invariants (SIs). SIs are spatial relationships persisting among the elements within a configuration such as a collinearity among points or one point coinciding with the center of rotation for another (invariant radius). The combined effect of these 2 factors--motion type and SIs-influences perceptual motion organization.
Coevolution of dynamical states and interactions in dynamic networks
NASA Astrophysics Data System (ADS)
Zimmermann, Martín G.; Eguíluz, Víctor M.; San Miguel, Maxi
2004-06-01
We explore the coupled dynamics of the internal states of a set of interacting elements and the network of interactions among them. Interactions are modeled by a spatial game and the network of interaction links evolves adapting to the outcome of the game. As an example, we consider a model of cooperation in which the adaptation is shown to facilitate the formation of a hierarchical interaction network that sustains a highly cooperative stationary state. The resulting network has the characteristics of a small world network when a mechanism of local neighbor selection is introduced in the adaptive network dynamics. The highly connected nodes in the hierarchical structure of the network play a leading role in the stability of the network. Perturbations acting on the state of these special nodes trigger global avalanches leading to complete network reorganization.
Fabrication of micro/nano hierarchical structures with analysis on the surface mechanics
NASA Astrophysics Data System (ADS)
Jheng, Yu-Sheng; Lee, Yeeu-Chang
2016-10-01
Biomimicry refers to the imitation of mechanisms and features found in living creatures using artificial methods. This study used optical lithography, colloidal lithography, and dry etching to mimic the micro/nano hierarchical structures covering the soles of gecko feet. We measured the static contact angle and contact angle hysteresis to reveal the behavior of liquid drops on the hierarchical structures. Pulling tests were also performed to measure the resistance of movement between the hierarchical structures and a testing plate. Our results reveal that hierarchical structures at the micro-/nano-scale are considerably hydrophobic, they provide good flow characteristics, and they generate more contact force than do surfaces with micro-scale cylindrical structures.
Hierarchical acquisition of visual specificity in spatial contextual cueing.
Lie, Kin-Pou
2015-01-01
Spatial contextual cueing refers to visual search performance's being improved when invariant associations between target locations and distractor spatial configurations are learned incidentally. Using the instance theory of automatization and the reverse hierarchy theory of visual perceptual learning, this study explores the acquisition of visual specificity in spatial contextual cueing. Two experiments in which detailed visual features were irrelevant for distinguishing between spatial contexts found that spatial contextual cueing was visually generic in difficult trials when the trials were not preceded by easy trials (Experiment 1) but that spatial contextual cueing progressed to visual specificity when difficult trials were preceded by easy trials (Experiment 2). These findings support reverse hierarchy theory, which predicts that even when detailed visual features are irrelevant for distinguishing between spatial contexts, spatial contextual cueing can progress to visual specificity if the stimuli remain constant, the task is difficult, and difficult trials are preceded by easy trials. However, these findings are inconsistent with instance theory, which predicts that when detailed visual features are irrelevant for distinguishing between spatial contexts, spatial contextual cueing will not progress to visual specificity. This study concludes that the acquisition of visual specificity in spatial contextual cueing is more plausibly hierarchical, rather than instance-based.
D Nearest Neighbour Search Using a Clustered Hierarchical Tree Structure
NASA Astrophysics Data System (ADS)
Suhaibah, A.; Uznir, U.; Anton, F.; Mioc, D.; Rahman, A. A.
2016-06-01
Locating and analysing the location of new stores or outlets is one of the common issues facing retailers and franchisers. This is due to assure that new opening stores are at their strategic location to attract the highest possible number of customers. Spatial information is used to manage, maintain and analyse these store locations. However, since the business of franchising and chain stores in urban areas runs within high rise multi-level buildings, a three-dimensional (3D) method is prominently required in order to locate and identify the surrounding information such as at which level of the franchise unit will be located or is the franchise unit located is at the best level for visibility purposes. One of the common used analyses used for retrieving the surrounding information is Nearest Neighbour (NN) analysis. It uses a point location and identifies the surrounding neighbours. However, with the immense number of urban datasets, the retrieval and analysis of nearest neighbour information and their efficiency will become more complex and crucial. In this paper, we present a technique to retrieve nearest neighbour information in 3D space using a clustered hierarchical tree structure. Based on our findings, the proposed approach substantially showed an improvement of response time analysis compared to existing approaches of spatial access methods in databases. The query performance was tested using a dataset consisting of 500,000 point locations building and franchising unit. The results are presented in this paper. Another advantage of this structure is that it also offers a minimal overlap and coverage among nodes which can reduce repetitive data entry.
Brauer, Chris J.; Unmack, Peter J.; Hammer, Michael P.; Adams, Mark; Beheregaray, Luciano B.
2013-01-01
Habitat fragmentation caused by human activities alters metapopulation dynamics and decreases biological connectivity through reduced migration and gene flow, leading to lowered levels of population genetic diversity and to local extinctions. The threatened Yarra pygmy perch, Nannoperca obscura, is a poor disperser found in small, isolated populations in wetlands and streams of southeastern Australia. Modifications to natural flow regimes in anthropogenically-impacted river systems have recently reduced the amount of habitat for this species and likely further limited its opportunity to disperse. We employed highly resolving microsatellite DNA markers to assess genetic variation, population structure and the spatial scale that dispersal takes place across the distribution of this freshwater fish and used this information to identify conservation units for management. The levels of genetic variation found for N. obscura are amongst the lowest reported for a fish species (mean heterozygosity of 0.318 and mean allelic richness of 1.92). We identified very strong population genetic structure, nil to little evidence of recent migration among demes and a minimum of 11 units for conservation management, hierarchically nested within four major genetic lineages. A combination of spatial analytical methods revealed hierarchical genetic structure corresponding with catchment boundaries and also demonstrated significant isolation by riverine distance. Our findings have implications for the national recovery plan of this species by demonstrating that N. obscura populations should be managed at a catchment level and highlighting the need to restore habitat and avoid further alteration of the natural hydrology. PMID:24349405
Silva, C R S; Albuquerque, P S B; Ervedosa, F R; Mota, J W S; Figueira, A; Sebbenn, A M
2011-06-01
Understanding the mating patterns of populations of tree species is a key component of ex situ genetic conservation. In this study, we analysed the genetic diversity, spatial genetic structure (SGS) and mating system at the hierarchical levels of fruits and individuals as well as pollen dispersal patterns in a continuous population of Theobroma cacao in Pará State, Brazil. A total of 156 individuals in a 0.56 ha plot were mapped and genotyped for nine microsatellite loci. For the mating system analyses, 50 seeds were collected from nine seed trees by sampling five fruits per tree (10 seeds per fruit). Among the 156 individuals, 127 had unique multilocus genotypes, and the remaining were clones. The population was spatially aggregated; it demonstrated a significant SGS up to 15 m that could be attributed primarily to the presence of clones. However, the short seed dispersal distance also contributed to this pattern. Population matings occurred mainly via outcrossing, but selfing was observed in some seed trees, which indicated the presence of individual variation for self-incompatibility. The matings were also correlated, especially within (Ρ(p(m))=0.607) rather than among the fruits (Ρ(p(m))=0.099), which suggested that a small number of pollen donors fertilised each fruit. The paternity analysis suggested a high proportion of pollen migration (61.3%), although within the plot, most of the pollen dispersal encompassed short distances (28 m). The determination of these novel parameters provides the fundamental information required to establish long-term ex situ conservation strategies for this important tropical species.
Silva, C R S; Albuquerque, P S B; Ervedosa, F R; Mota, J W S; Figueira, A; Sebbenn, A M
2011-01-01
Understanding the mating patterns of populations of tree species is a key component of ex situ genetic conservation. In this study, we analysed the genetic diversity, spatial genetic structure (SGS) and mating system at the hierarchical levels of fruits and individuals as well as pollen dispersal patterns in a continuous population of Theobroma cacao in Pará State, Brazil. A total of 156 individuals in a 0.56 ha plot were mapped and genotyped for nine microsatellite loci. For the mating system analyses, 50 seeds were collected from nine seed trees by sampling five fruits per tree (10 seeds per fruit). Among the 156 individuals, 127 had unique multilocus genotypes, and the remaining were clones. The population was spatially aggregated; it demonstrated a significant SGS up to 15 m that could be attributed primarily to the presence of clones. However, the short seed dispersal distance also contributed to this pattern. Population matings occurred mainly via outcrossing, but selfing was observed in some seed trees, which indicated the presence of individual variation for self-incompatibility. The matings were also correlated, especially within (r̂p(m)=0.607) rather than among the fruits (r̂p(m)=0.099), which suggested that a small number of pollen donors fertilised each fruit. The paternity analysis suggested a high proportion of pollen migration (61.3%), although within the plot, most of the pollen dispersal encompassed short distances (28 m). The determination of these novel parameters provides the fundamental information required to establish long-term ex situ conservation strategies for this important tropical species. PMID:21139632
A novel method for a multi-level hierarchical composite with brick-and-mortar structure
Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.
2013-01-01
The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships. PMID:23900554
A novel method for a multi-level hierarchical composite with brick-and-mortar structure.
Brandt, Kristina; Wolff, Michael F H; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A
2013-01-01
The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.
A novel method for a multi-level hierarchical composite with brick-and-mortar structure
NASA Astrophysics Data System (ADS)
Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.
2013-07-01
The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.
NASA Astrophysics Data System (ADS)
Parlett, Christopher M. A.; Isaacs, Mark A.; Beaumont, Simon K.; Bingham, Laura M.; Hondow, Nicole S.; Wilson, Karen; Lee, Adam F.
2016-02-01
The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol-gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous-mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.
Semantic-based surveillance video retrieval.
Hu, Weiming; Xie, Dan; Fu, Zhouyu; Zeng, Wenrong; Maybank, Steve
2007-04-01
Visual surveillance produces large amounts of video data. Effective indexing and retrieval from surveillance video databases are very important. Although there are many ways to represent the content of video clips in current video retrieval algorithms, there still exists a semantic gap between users and retrieval systems. Visual surveillance systems supply a platform for investigating semantic-based video retrieval. In this paper, a semantic-based video retrieval framework for visual surveillance is proposed. A cluster-based tracking algorithm is developed to acquire motion trajectories. The trajectories are then clustered hierarchically using the spatial and temporal information, to learn activity models. A hierarchical structure of semantic indexing and retrieval of object activities, where each individual activity automatically inherits all the semantic descriptions of the activity model to which it belongs, is proposed for accessing video clips and individual objects at the semantic level. The proposed retrieval framework supports various queries including queries by keywords, multiple object queries, and queries by sketch. For multiple object queries, succession and simultaneity restrictions, together with depth and breadth first orders, are considered. For sketch-based queries, a method for matching trajectories drawn by users to spatial trajectories is proposed. The effectiveness and efficiency of our framework are tested in a crowded traffic scene.
Wang, Jian-Tao; Wang, Hui; Ou, Xue-Mei; Lee, Chun-Sing; Zhang, Xiao-Hong
2011-07-05
Geometry-based adhesion arising from hierarchical surface structure enables microspheres to adhere to cells strongly, which is essential for inorganic microcapsules that function as drug delivery or diagnostic imaging agents. However, constructing a hierarchical structure on the outer shell of the products via the current microcapsule synthesis method is difficult. This work presents a novel approach to fabricating hollow microspheres with a hierarchical shell structure through the vapor-liquid-solid (VLS) process in which liquid indium droplets act as both templates for the formation of silica capsules and catalysts for the growth of hierarchical shell structure. This hierarchical shell structure offers the hollow microsphere an enhanced geometry-based adhesion. The results provide a facile method for fabricating hollow spheres and enriching their function through tailoring the geometry of their outer shells. © 2011 American Chemical Society
A hierarchical model for spatial capture-recapture data
Royle, J. Andrew; Young, K.V.
2008-01-01
Estimating density is a fundamental objective of many animal population studies. Application of methods for estimating population size from ostensibly closed populations is widespread, but ineffective for estimating absolute density because most populations are subject to short-term movements or so-called temporary emigration. This phenomenon invalidates the resulting estimates because the effective sample area is unknown. A number of methods involving the adjustment of estimates based on heuristic considerations are in widespread use. In this paper, a hierarchical model of spatially indexed capture recapture data is proposed for sampling based on area searches of spatial sample units subject to uniform sampling intensity. The hierarchical model contains explicit models for the distribution of individuals and their movements, in addition to an observation model that is conditional on the location of individuals during sampling. Bayesian analysis of the hierarchical model is achieved by the use of data augmentation, which allows for a straightforward implementation in the freely available software WinBUGS. We present results of a simulation study that was carried out to evaluate the operating characteristics of the Bayesian estimator under variable densities and movement patterns of individuals. An application of the model is presented for survey data on the flat-tailed horned lizard (Phrynosoma mcallii) in Arizona, USA.
Oaki, Yuya; Kijima, Misako; Imai, Hiroaki
2011-06-08
Synthesis and morphogenesis of polypyrrole (PPy) with hierarchical structures from nanoscopic to macroscopic scales have been achieved by using hierarchically organized architectures of biominerals. We adopted biominerals, such as a sea urchin spine and nacreous layer, having hierarchical architectures based on mesocrystals as model materials used for synthesis of an organic polymer. A sea urchin spine led to the formation of PPy macroscopic sponge structures consisting of nanosheets less than 100 nm in thickness with the mosaic interior of the nanoparticles. The morphologies of the resultant PPy hierarchical architectures can be tuned by the structural modification of the original biomineral with chemical and thermal treatments. In another case, a nacreous layer provided PPy porous nanosheets consisting of the nanoparticles. Conductive pathways were formed in these PPy hierarchical architectures. The nanoscale interspaces in the mesocrystal structures of biominerals are used for introduction and polymerization of the monomers, leading to the formation of hierarchically organized polymer architectures. These results show that functional organic materials with complex and nanoscale morphologies can be synthesized by using hierarchically organized architectures as observed in biominerals.
How hierarchical is language use?
Frank, Stefan L.; Bod, Rens; Christiansen, Morten H.
2012-01-01
It is generally assumed that hierarchical phrase structure plays a central role in human language. However, considerations of simplicity and evolutionary continuity suggest that hierarchical structure should not be invoked too hastily. Indeed, recent neurophysiological, behavioural and computational studies show that sequential sentence structure has considerable explanatory power and that hierarchical processing is often not involved. In this paper, we review evidence from the recent literature supporting the hypothesis that sequential structure may be fundamental to the comprehension, production and acquisition of human language. Moreover, we provide a preliminary sketch outlining a non-hierarchical model of language use and discuss its implications and testable predictions. If linguistic phenomena can be explained by sequential rather than hierarchical structure, this will have considerable impact in a wide range of fields, such as linguistics, ethology, cognitive neuroscience, psychology and computer science. PMID:22977157
Hierarchical, Three-Dimensional Measurement System for Crime Scene Scanning.
Marcin, Adamczyk; Maciej, Sieniło; Robert, Sitnik; Adam, Woźniak
2017-07-01
We present a new generation of three-dimensional (3D) measuring systems, developed for the process of crime scene documentation. This measuring system facilitates the preparation of more insightful, complete, and objective documentation for crime scenes. Our system reflects the actual requirements for hierarchical documentation, and it consists of three independent 3D scanners: a laser scanner for overall measurements, a situational structured light scanner for more minute measurements, and a detailed structured light scanner for the most detailed parts of tscene. Each scanner has its own spatial resolution, of 2.0, 0.3, and 0.05 mm, respectively. The results of interviews we have conducted with technicians indicate that our developed 3D measuring system has significant potential to become a useful tool for forensic technicians. To ensure the maximum compatibility of our measuring system with the standards that regulate the documentation process, we have also performed a metrological validation and designated the maximum permissible length measurement error E MPE for each structured light scanner. In this study, we present additional results regarding documentation processes conducted during crime scene inspections and a training session. © 2017 American Academy of Forensic Sciences.
Generalized estimators of avian abundance from count survey data
Royle, J. Andrew
2004-01-01
I consider modeling avian abundance from spatially referenced bird count data collected according to common protocols such as capture?recapture, multiple observer, removal sampling and simple point counts. Small sample sizes and large numbers of parameters have motivated many analyses that disregard the spatial indexing of the data, and thus do not provide an adequate treatment of spatial structure. I describe a general framework for modeling spatially replicated data that regards local abundance as a random process, motivated by the view that the set of spatially referenced local populations (at the sample locations) constitute a metapopulation. Under this view, attention can be focused on developing a model for the variation in local abundance independent of the sampling protocol being considered. The metapopulation model structure, when combined with the data generating model, define a simple hierarchical model that can be analyzed using conventional methods. The proposed modeling framework is completely general in the sense that broad classes of metapopulation models may be considered, site level covariates on detection and abundance may be considered, and estimates of abundance and related quantities may be obtained for sample locations, groups of locations, unsampled locations. Two brief examples are given, the first involving simple point counts, and the second based on temporary removal counts. Extension of these models to open systems is briefly discussed.
Background/Questions/Methods Threats to marine and estuarine species operate over many spatial scales, from nutrient enrichment at the watershed/estuary scale to climate change at a global scale. To address this range of environmental issues, we developed a hierarchical framewor...
Hierarchically nested river landform sequences
NASA Astrophysics Data System (ADS)
Pasternack, G. B.; Weber, M. D.; Brown, R. A.; Baig, D.
2017-12-01
River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In this study we developed, tested, and implemented a new way to create river classifications by mapping domains of fluvial processes with respect to the hierarchical organization of topographic complexity that drives fluvial dynamism. We tested this approach on flow convergence routing, a morphodynamic mechanism with different states depending on the structure of nondimensional topographic variability. Five nondimensional landform types with unique functionality (nozzle, wide bar, normal channel, constricted pool, and oversized) represent this process at any flow. When this typology is nested at base flow, bankfull, and floodprone scales it creates a system with up to 125 functional types. This shows how a single mechanism produces complex dynamism via nesting. Given the classification, we answered nine specific scientific questions to investigate the abundance, sequencing, and hierarchical nesting of these new landform types using a 35-km gravel/cobble river segment of the Yuba River in California. The nested structure of flow convergence routing landforms found in this study revealed that bankfull landforms are nested within specific floodprone valley landform types, and these types control bankfull morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in-channel, bankfull, and/or small flood flows. Such flows are too small to initiate widespread sediment transport in a gravel/cobble river with topographic complexity.
Structure-mechanical function relations at nano-scale in heat-affected human dental tissue.
Sui, Tan; Sandholzer, Michael A; Le Bourhis, Eric; Baimpas, Nikolaos; Landini, Gabriel; Korsunsky, Alexander M
2014-04-01
The knowledge of the mechanical properties of dental materials related to their hierarchical structure is essential for understanding and predicting the effect of microstructural alterations on the performance of dental tissues in the context of forensic and archaeological investigation as well as laser irradiation treatment of caries. So far, few studies have focused on the nano-scale structure-mechanical function relations of human teeth altered by chemical or thermal treatment. The response of dental tissues to thermal treatment is thought to be strongly affected by the mineral crystallite size, their spatial arrangement and preferred orientation. In this study, synchrotron-based small and wide angle X-ray scattering (SAXS/WAXS) techniques were used to investigate the micro-structural alterations (mean crystalline thickness, crystal perfection and degree of alignment) of heat-affected dentine and enamel in human dental teeth. Additionally, nanoindentation mapping was applied to detect the spatial and temperature-dependent nano-mechanical properties variation. The SAXS/WAXS results revealed that the mean crystalline thickness distribution in dentine was more uniform compared with that in enamel. Although in general the mean crystalline thickness increased both in dentine and enamel as the temperature increased, the local structural variations gradually reduced. Meanwhile, the hardness and reduced modulus in enamel decreased as the temperature increased, while for dentine, the tendency reversed at high temperature. The analysis of the correlation between the ultrastructure and mechanical properties coupled with the effect of temperature demonstrates the effect of mean thickness and orientation on the local variation of mechanical property. This structural-mechanical property alteration is likely to be due to changes of HAp crystallites, thus dentine and enamel exhibit different responses at different temperatures. Our results enable an improved understanding of the mechanical properties correlation in hierarchical biological materials, and human dental tissue in particular. Copyright © 2013 Elsevier Ltd. All rights reserved.
Enhanced protective role in materials with gradient structural orientations: Lessons from Nature.
Liu, Zengqian; Zhu, Yankun; Jiao, Da; Weng, Zhaoyong; Zhang, Zhefeng; Ritchie, Robert O
2016-10-15
Living organisms are adept at resisting contact deformation and damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the two prime characteristics of many biological materials to be translated into engineering design. Here, we examine one design motif from a variety of biological tissues and materials where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation over multiple length-scales, without manipulation of composition or microstructural dimension. Quantitative correlations are established between the structural orientations and local mechanical properties, such as stiffness, strength and fracture resistance; based on such gradients, the underlying mechanisms for the enhanced protective role of these materials are clarified. Theoretical analysis is presented and corroborated through numerical simulations of the indentation behavior of composites with distinct orientations. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally graded mechanical properties in synthetic materials for improved contact damage resistance. Living organisms are adept at resisting contact damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally-graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the prime characteristics of many biological materials. Here, we examine one design motif from a variety of biological tissues where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation at multiple length-scales, without changes in composition or microstructural dimension. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally-graded mechanical properties in synthetic materials for improved damage resistance. Published by Elsevier Ltd.
Hierarchically organized behavior and its neural foundations: A reinforcement-learning perspective
Botvinick, Matthew M.; Niv, Yael; Barto, Andrew C.
2009-01-01
Research on human and animal behavior has long emphasized its hierarchical structure — the divisibility of ongoing behavior into discrete tasks, which are comprised of subtask sequences, which in turn are built of simple actions. The hierarchical structure of behavior has also been of enduring interest within neuroscience, where it has been widely considered to reflect prefrontal cortical functions. In this paper, we reexamine behavioral hierarchy and its neural substrates from the point of view of recent developments in computational reinforcement learning. Specifically, we consider a set of approaches known collectively as hierarchical reinforcement learning, which extend the reinforcement learning paradigm by allowing the learning agent to aggregate actions into reusable subroutines or skills. A close look at the components of hierarchical reinforcement learning suggests how they might map onto neural structures, in particular regions within the dorsolateral and orbital prefrontal cortex. It also suggests specific ways in which hierarchical reinforcement learning might provide a complement to existing psychological models of hierarchically structured behavior. A particularly important question that hierarchical reinforcement learning brings to the fore is that of how learning identifies new action routines that are likely to provide useful building blocks in solving a wide range of future problems. Here and at many other points, hierarchical reinforcement learning offers an appealing framework for investigating the computational and neural underpinnings of hierarchically structured behavior. PMID:18926527
Hierarchical Bayesian Model (HBM)-Derived Estimates of Air Quality for 2004 - Annual Report
This report describes EPA's Hierarchical Bayesian model-generated (HBM) estimates of O3 and PM2.5 concentrations throughout the continental United States during the 2004 calendar year. HBM estimates provide the spatial and temporal variance of O3 ...
ERIC Educational Resources Information Center
de Vries, Meinou H.; Monaghan, Padraic; Knecht, Stefan; Zwitserlood, Pienie
2008-01-01
Embedded hierarchical structures, such as "the rat the cat ate was brown", constitute a core generative property of a natural language theory. Several recent studies have reported learning of hierarchical embeddings in artificial grammar learning (AGL) tasks, and described the functional specificity of Broca's area for processing such structures.…
Geocode of River Networks in Global Plateaus
NASA Astrophysics Data System (ADS)
Ni, J.; Wang, Y.; Wang, T.
2017-12-01
As typical hierarchical systems, river networks are of great significance to aquatic organisms and its diversity. Different aspects of river networks have been investigated in previous studies such as network structure, formation cause, material transport, nutrient cycle and habitat variation. Nevertheless, river networks function as biological habitat is far from satisfactory in plateau areas. This paper presents a hierarchical method for habitat characterization of plateau river networks with the geocode extracted from abiotic factors including historical geologic period, climate zone, water source and geomorphic process at different spatial scales. As results, characteristics of biological response with vertical differentiation within typical plateau river networks are elucidated. Altitude, climate and landform are of great influence to habitat and thereby structure of aquatic community, while diverse water source and exogenic action would influence biological abundance or spatiotemporal distribution. Case studies are made in the main stream of the Yellow River and the Yangtze River, respectively extended to the river source to Qinghai-Tibet Plateau, which demonstrate high potentials for decision making support to river protection, ecological rehabilitation and sustainable management of river ecosystems.
Neuroanatomical Markers of Social Hierarchy Recognition in Humans: A Combined ERP/MRI Study.
Santamaría-García, Hernando; Burgaleta, Miguel; Sebastián-Gallés, Nuria
2015-07-29
Social hierarchy is an ubiquitous principle of social organization across animal species. Although some progress has been made in our understanding of how humans infer hierarchical identity, the neuroanatomical basis for perceiving key social dimensions of others remains unexplored. Here, we combined event-related potentials and structural MRI to reveal the neuroanatomical substrates of early status recognition. We designed a covertly simulated hierarchical setting in which participants performed a task either with a superior or with an inferior player. Participants showed higher amplitude in the N170 component when presented with a picture of a superior player compared with an inferior player. Crucially, the magnitude of this effect correlated with brain morphology of the posterior cingulate cortex, superior temporal gyrus, insula, fusiform gyrus, and caudate nucleus. We conclude that early recognition of social hierarchies relies on the structural properties of a network involved in the automatic recognition of social identity. Humans can perceive social hierarchies very rapidly, an ability that is key for social interactions. However, some individuals are more sensitive to hierarchical information than others. Currently, it is unknown how brain structure supports such fast-paced processes of social hierarchy perception and their individual differences. Here, we addressed this issue for the first time by combining the high temporal resolution of event-related potentials (ERPs) and the high spatial resolution of structural MRI. This methodological approach allowed us to unveil a novel association between ERP neuromarkers of social hierarchy perception and the morphology of several cortical and subcortical brain regions typically assumed to play a role in automatic processes of social cognition. Our results are a step forward in our understanding of the human social brain. Copyright © 2015 the authors 0270-6474/15/3510843-08$15.00/0.
Hierarchical spatial models for predicting pygmy rabbit distribution and relative abundance
Wilson, T.L.; Odei, J.B.; Hooten, M.B.; Edwards, T.C.
2010-01-01
Conservationists routinely use species distribution models to plan conservation, restoration and development actions, while ecologists use them to infer process from pattern. These models tend to work well for common or easily observable species, but are of limited utility for rare and cryptic species. This may be because honest accounting of known observation bias and spatial autocorrelation are rarely included, thereby limiting statistical inference of resulting distribution maps. We specified and implemented a spatially explicit Bayesian hierarchical model for a cryptic mammal species (pygmy rabbit Brachylagus idahoensis). Our approach used two levels of indirect sign that are naturally hierarchical (burrows and faecal pellets) to build a model that allows for inference on regression coefficients as well as spatially explicit model parameters. We also produced maps of rabbit distribution (occupied burrows) and relative abundance (number of burrows expected to be occupied by pygmy rabbits). The model demonstrated statistically rigorous spatial prediction by including spatial autocorrelation and measurement uncertainty. We demonstrated flexibility of our modelling framework by depicting probabilistic distribution predictions using different assumptions of pygmy rabbit habitat requirements. Spatial representations of the variance of posterior predictive distributions were obtained to evaluate heterogeneity in model fit across the spatial domain. Leave-one-out cross-validation was conducted to evaluate the overall model fit. Synthesis and applications. Our method draws on the strengths of previous work, thereby bridging and extending two active areas of ecological research: species distribution models and multi-state occupancy modelling. Our framework can be extended to encompass both larger extents and other species for which direct estimation of abundance is difficult. ?? 2010 The Authors. Journal compilation ?? 2010 British Ecological Society.
Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model
NASA Astrophysics Data System (ADS)
Verburg, Peter H.; Soepboer, Welmoed; Veldkamp, A.; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S. A.
2002-09-01
Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.
Modeling the spatial dynamics of regional land use: the CLUE-S model.
Verburg, Peter H; Soepboer, Welmoed; Veldkamp, A; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S A
2002-09-01
Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.
Hierarchical imaging of the human knee
NASA Astrophysics Data System (ADS)
Schulz, Georg; Götz, Christian; Deyhle, Hans; Müller-Gerbl, Magdalena; Zanette, Irene; Zdora, Marie-Christine; Khimchenko, Anna; Thalmann, Peter; Rack, Alexander; Müller, Bert
2016-10-01
Among the clinically relevant imaging techniques, computed tomography (CT) reaches the best spatial resolution. Sub-millimeter voxel sizes are regularly obtained. For investigations on true micrometer level lab-based μCT has become gold standard. The aim of the present study is the hierarchical investigation of a human knee post mortem using hard X-ray μCT. After the visualization of the entire knee using a clinical CT with a spatial resolution on the sub-millimeter range, a hierarchical imaging study was performed using a laboratory μCT system nanotom m. Due to the size of the whole knee the pixel length could not be reduced below 65 μm. These first two data sets were directly compared after a rigid registration using a cross-correlation algorithm. The μCT data set allowed an investigation of the trabecular structures of the bones. The further reduction of the pixel length down to 25 μm could be achieved by removing the skin and soft tissues and measuring the tibia and the femur separately. True micrometer resolution could be achieved after extracting cylinders of several millimeters diameters from the two bones. The high resolution scans revealed the mineralized cartilage zone including the tide mark line as well as individual calcified chondrocytes. The visualization of soft tissues including cartilage, was arranged by X-ray grating interferometry (XGI) at ESRF and Diamond Light Source. Whereas the high-energy measurements at ESRF allowed the simultaneous visualization of soft and hard tissues, the low-energy results from Diamond Light Source made individual chondrocytes within the cartilage visual.
Attention to Hierarchical Level Influences Attentional Selection of Spatial Scale
ERIC Educational Resources Information Center
Flevaris, Anastasia V.; Bentin, Shlomo; Robertson, Lynn C.
2011-01-01
Ample evidence suggests that global perception may involve low spatial frequency (LSF) processing and that local perception may involve high spatial frequency (HSF) processing (Shulman, Sullivan, Gish, & Sakoda, 1986; Shulman & Wilson, 1987; Robertson, 1996). It is debated whether SF selection is a low-level mechanism associating global…
NASA Astrophysics Data System (ADS)
Brustolin, Marco C.; Thomas, Micheli C.; Mafra, Luiz L.; Lana, Paulo da Cunha
2014-08-01
Foraging macrofauna, such as the sand dollar Encope emarginata, can modify sediment properties and affect spatial distribution patterns of microphytobenthos and meiobenthos at different spatial scales. We adopted a spatial hierarchical approach composed of five spatial levels (km, 100 s m, 10 s m, 1 s m and cm) to describe variation patterns of microphytobenthos, meiobenthos and sediment variables in shallow subtidal regions in the subtropical Paranaguá Bay (Southern Brazil) with live E. emarginata (LE), dead E. emarginata (only skeletons - (DE), and no E. emarginata (WE). The overall structure of microphytobenthos and meiofauna was always less variable at WE and much of variation at the scale of 100 s m was related to variability within LE and DE, due to foraging activities or to the presence of shell hashes. Likewise, increased variability in chlorophyll-a and phaeopigment contents was observed among locations within LE, although textural parameters of sediment varied mainly at smaller scales. Variations within LE were related to changes on the amount and quality of food as a function of sediment heterogeneity induced by the foraging behavior of sand dollars. We provide strong evidence that top-down effects related to the occurrence of E. emarginata act in synergy with bottom-up structuring related to hydrodynamic processes in determining overall benthic spatial variability. Conversely, species richness is mainly influenced by environmental heterogeneity at small spatial scales (centimeters to meters), which creates a mosaic of microhabitats.
Network analysis reveals multiscale controls on streamwater chemistry
McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.
2014-01-01
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.
Network analysis reveals multiscale controls on streamwater chemistry
McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.
2014-01-01
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks. PMID:24753575
Network analysis reveals multiscale controls on streamwater chemistry.
McGuire, Kevin J; Torgersen, Christian E; Likens, Gene E; Buso, Donald C; Lowe, Winsor H; Bailey, Scott W
2014-05-13
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.
Modeling spatial variation in avian survival and residency probabilities
Saracco, James F.; Royle, J. Andrew; DeSante, David F.; Gardner, Beth
2010-01-01
The importance of understanding spatial variation in processes driving animal population dynamics is widely recognized. Yet little attention has been paid to spatial modeling of vital rates. Here we describe a hierarchical spatial autoregressive model to provide spatially explicit year-specific estimates of apparent survival (phi) and residency (pi) probabilities from capture-recapture data. We apply the model to data collected on a declining bird species, Wood Thrush (Hylocichla mustelina), as part of a broad-scale bird-banding network, the Monitoring Avian Productivity and Survivorship (MAPS) program. The Wood Thrush analysis showed variability in both phi and pi among years and across space. Spatial heterogeneity in residency probability was particularly striking, suggesting the importance of understanding the role of transients in local populations. We found broad-scale spatial patterning in Wood Thrush phi and pi that lend insight into population trends and can direct conservation and research. The spatial model developed here represents a significant advance over approaches to investigating spatial pattern in vital rates that aggregate data at coarse spatial scales and do not explicitly incorporate spatial information in the model. Further development and application of hierarchical capture-recapture models offers the opportunity to more fully investigate spatiotemporal variation in the processes that drive population changes.
NASA Astrophysics Data System (ADS)
Kuvychko, Igor
2001-10-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/networks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the cortical software. Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently unexplainable results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes in both what and where visual pathways. Such systems can open new horizons for robotic and computer vision industries.
Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue
Liu, Yanxin; Thomopoulos, Stavros; Chen, Changqing; Birman, Victor; Buehler, Markus J.; Genin, Guy M.
2014-01-01
Progressive stiffening of collagen tissue by bioapatite mineral is important physiologically, but the details of this stiffening are uncertain. Unresolved questions about the details of the accommodation of bioapatite within and upon collagen's hierarchical structure have posed a central hurdle, but recent microscopy data resolve several major questions. These data suggest how collagen accommodates bioapatite at the lowest relevant hierarchical level (collagen fibrils), and suggest several possibilities for the progressive accommodation of bioapatite at higher hierarchical length scales (fibres and tissue). We developed approximations for the stiffening of collagen across spatial hierarchies based upon these data, and connected models across hierarchies levels to estimate mineralization-dependent tissue-level mechanics. In the five possible sequences of mineralization studied, percolation of the bioapatite phase proved to be an important determinant of the degree of stiffening by bioapatite. The models were applied to study one important instance of partially mineralized tissue, which occurs at the attachment of tendon to bone. All sequences of mineralization considered reproduced experimental observations of a region of tissue between tendon and bone that is more compliant than either tendon or bone, but the size and nature of this region depended strongly upon the sequence of mineralization. These models and observations have implications for engineered tissue scaffolds at the attachment of tendon to bone, bone development and graded biomimetic attachment of dissimilar hierarchical materials in general. PMID:24352669
Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.
Nitta, Tohru
2017-10-01
We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).
High-Dimensional Bayesian Geostatistics
Banerjee, Sudipto
2017-01-01
With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as “priors” for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings. PMID:29391920
High-Dimensional Bayesian Geostatistics.
Banerjee, Sudipto
2017-06-01
With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as "priors" for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings.
Hierarchical spatial models of abundance and occurrence from imperfect survey data
Royle, J. Andrew; Kery, M.; Gautier, R.; Schmid, Hans
2007-01-01
Many estimation and inference problems arising from large-scale animal surveys are focused on developing an understanding of patterns in abundance or occurrence of a species based on spatially referenced count data. One fundamental challenge, then, is that it is generally not feasible to completely enumerate ('census') all individuals present in each sample unit. This observation bias may consist of several components, including spatial coverage bias (not all individuals in the Population are exposed to sampling) and detection bias (exposed individuals may go undetected). Thus, observations are biased for the state variable (abundance, occupancy) that is the object of inference. Moreover, data are often sparse for most observation locations, requiring consideration of methods for spatially aggregating or otherwise combining sparse data among sample units. The development of methods that unify spatial statistical models with models accommodating non-detection is necessary to resolve important spatial inference problems based on animal survey data. In this paper, we develop a novel hierarchical spatial model for estimation of abundance and occurrence from survey data wherein detection is imperfect. Our application is focused on spatial inference problems in the Swiss Survey of Common Breeding Birds. The observation model for the survey data is specified conditional on the unknown quadrat population size, N(s). We augment the observation model with a spatial process model for N(s), describing the spatial variation in abundance of the species. The model includes explicit sources of variation in habitat structure (forest, elevation) and latent variation in the form of a correlated spatial process. This provides a model-based framework for combining the spatially referenced samples while at the same time yielding a unified treatment of estimation problems involving both abundance and occurrence. We provide a Bayesian framework for analysis and prediction based on the integrated likelihood, and we use the model to obtain estimates of abundance and occurrence maps for the European Jay (Garrulus glandarius), a widespread, elusive, forest bird. The naive national abundance estimate ignoring imperfect detection and incomplete quadrat coverage was 77 766 territories. Accounting for imperfect detection added approximately 18 000 territories, and adjusting for coverage bias added another 131 000 territories to yield a fully corrected estimate of the national total of about 227 000 territories. This is approximately three times as high as previous estimates that assume every territory is detected in each quadrat.
Generic patterns in the evolution of urban water networks: Evidence from a large Asian city
NASA Astrophysics Data System (ADS)
Krueger, Elisabeth; Klinkhamer, Christopher; Urich, Christian; Zhan, Xianyuan; Rao, P. Suresh C.
2017-03-01
We examine high-resolution urban infrastructure data using every pipe for the water distribution network (WDN) and sanitary sewer network (SSN) in a large Asian city (≈4 million residents) to explore the structure as well as the spatial and temporal evolution of these infrastructure networks. Network data were spatially disaggregated into multiple subnets to examine intracity topological differences for functional zones of the WDN and SSN, and time-stamped SSN data were examined to understand network evolution over several decades as the city expanded. Graphs were generated using a dual-mapping technique (Hierarchical Intersection Continuity Negotiation), which emphasizes the functional attributes of these networks. Network graphs for WDNs and SSNs are characterized by several network topological metrics, and a double Pareto (power-law) model approximates the node-degree distributions of both water infrastructure networks (WDN and SSN), across spatial and hierarchical scales relevant to urban settings, and throughout their temporal evolution over several decades. These results indicate that generic mechanisms govern the networks' evolution, similar to those of scale-free networks found in nature. Deviations from the general topological patterns are indicative of (1) incomplete establishment of network hierarchies and functional network evolution, (2) capacity for growth (expansion) or densification (e.g., in-fill), and (3) likely network vulnerabilities. We discuss the implications of our findings for the (re-)design of urban infrastructure networks to enhance their resilience to external and internal threats.
Advanced hierarchical distance sampling
Royle, Andy
2016-01-01
In this chapter, we cover a number of important extensions of the basic hierarchical distance-sampling (HDS) framework from Chapter 8. First, we discuss the inclusion of “individual covariates,” such as group size, in the HDS model. This is important in many surveys where animals form natural groups that are the primary observation unit, with the size of the group expected to have some influence on detectability. We also discuss HDS integrated with time-removal and double-observer or capture-recapture sampling. These “combined protocols” can be formulated as HDS models with individual covariates, and thus they have a commonality with HDS models involving group structure (group size being just another individual covariate). We cover several varieties of open-population HDS models that accommodate population dynamics. On one end of the spectrum, we cover models that allow replicate distance sampling surveys within a year, which estimate abundance relative to availability and temporary emigration through time. We consider a robust design version of that model. We then consider models with explicit dynamics based on the Dail and Madsen (2011) model and the work of Sollmann et al. (2015). The final major theme of this chapter is relatively newly developed spatial distance sampling models that accommodate explicit models describing the spatial distribution of individuals known as Point Process models. We provide novel formulations of spatial DS and HDS models in this chapter, including implementations of those models in the unmarked package using a hack of the pcount function for N-mixture models.
Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.
Li, Yasong; Gates, Byron D; Menon, Carlo
2015-08-05
The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.
Evaluating Hierarchical Structure in Music Annotations
McFee, Brian; Nieto, Oriol; Farbood, Morwaread M.; Bello, Juan Pablo
2017-01-01
Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement. PMID:28824514
Understanding movement data and movement processes: current and emerging directions.
Schick, Robert S; Loarie, Scott R; Colchero, Fernando; Best, Benjamin D; Boustany, Andre; Conde, Dalia A; Halpin, Patrick N; Joppa, Lucas N; McClellan, Catherine M; Clark, James S
2008-12-01
Animal movement has been the focus on much theoretical and empirical work in ecology over the last 25 years. By studying the causes and consequences of individual movement, ecologists have gained greater insight into the behavior of individuals and the spatial dynamics of populations at increasingly higher levels of organization. In particular, ecologists have focused on the interaction between individuals and their environment in an effort to understand future impacts from habitat loss and climate change. Tools to examine this interaction have included: fractal analysis, first passage time, Lévy flights, multi-behavioral analysis, hidden markov models, and state-space models. Concurrent with the development of movement models has been an increase in the sophistication and availability of hierarchical bayesian models. In this review we bring these two threads together by using hierarchical structures as a framework for reviewing individual models. We synthesize emerging themes in movement ecology, and propose a new hierarchical model for animal movement that builds on these emerging themes. This model moves away from traditional random walks, and instead focuses inference on how moving animals with complex behavior interact with their landscape and make choices about its suitability.
Delineating wetland catchments and modeling hydrologic ...
In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling–spilling–merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that
Architecture of the parallel hierarchical network for fast image recognition
NASA Astrophysics Data System (ADS)
Timchenko, Leonid; Wójcik, Waldemar; Kokriatskaia, Natalia; Kutaev, Yuriy; Ivasyuk, Igor; Kotyra, Andrzej; Smailova, Saule
2016-09-01
Multistage integration of visual information in the brain allows humans to respond quickly to most significant stimuli while maintaining their ability to recognize small details in the image. Implementation of this principle in technical systems can lead to more efficient processing procedures. The multistage approach to image processing includes main types of cortical multistage convergence. The input images are mapped into a flexible hierarchy that reflects complexity of image data. Procedures of the temporal image decomposition and hierarchy formation are described in mathematical expressions. The multistage system highlights spatial regularities, which are passed through a number of transformational levels to generate a coded representation of the image that encapsulates a structure on different hierarchical levels in the image. At each processing stage a single output result is computed to allow a quick response of the system. The result is presented as an activity pattern, which can be compared with previously computed patterns on the basis of the closest match. With regard to the forecasting method, its idea lies in the following. In the results synchronization block, network-processed data arrive to the database where a sample of most correlated data is drawn using service parameters of the parallel-hierarchical network.
Hierarchical LiFePO4 with a controllable growth of the (010) facet for lithium-ion batteries.
Guo, Binbin; Ruan, Hongcheng; Zheng, Cheng; Fei, Hailong; Wei, Mingdeng
2013-09-27
Hierarchically structured LiFePO4 was successfully synthesized by ionic liquid solvothermal method. These hierarchically structured LiFePO4 samples were constructed from nanostructured platelets with their (010) facets mainly exposed. To the best of our knowledge, facet control of a hierarchical LiFePO4 crystal has not been reported yet. Based on a series of experimental results, a tentative mechanism for the formation of these hierarchical structures was proposed. After these hierarchically structured LiFePO4 samples were coated with a thin carbon layer and used as cathode materials for lithium-ion batteries, they exhibited excellent high-rate discharge capability and cycling stability. For instance, a capacity of 95% can be maintained for the LiFePO4 sample at a rate as high as 20 C, even after 1000 cycles.
Graves, T.A.; Kendall, Katherine C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.
2011-01-01
Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system.
NASA Astrophysics Data System (ADS)
Yuan, Peng; Zhang, Ning; Zhang, Dan; Liu, Tao; Chen, Limiao; Ma, Renzhi; Qiu, Guanzhou; Liu, Xiaohe
2016-01-01
A facile solvothermal method is developed for synthesizing layered Co-Ni hydroxide hierarchical structures by using hexamethylenetetramine (HMT) as alkaline reagent. The electrochemical measurements reveal that the specific capacitances of layered bimetallic (Co-Ni) hydroxides are generally superior to those of layered monometallic (Co, Ni) hydroxides. The as-prepared Co0.5Ni0.5 hydroxide hierarchical structures possesses the highest specific capacitance of 1767 F g-1 at a galvanic current density of 1 A g-1 and an outstanding specific capacitance retention of 87% after 1000 cycles. In comparison with the dispersed nanosheets of Co-Ni hydroxide, layered hydroxide hierarchical structures show much superior electrochemical performance. This study provides a promising method to construct hierarchical structures with controllable transition-metal compositions for enhancing the electrochemical performance in hybrid supercapacitors.
On Hierarchical Threshold Access Structures
2010-11-01
One of the recent generalizations of (t, n) secret sharing for hierarchical threshold access structures is given by Tassa, where he answers the...of theoretical background. We give a conceptually simpler alternative for the understanding of the realization of hierarchical threshold access
3D Printing of Hierarchical Silk Fibroin Structures.
Sommer, Marianne R; Schaffner, Manuel; Carnelli, Davide; Studart, André R
2016-12-21
Like many other natural materials, silk is hierarchically structured from the amino acid level up to the cocoon or spider web macroscopic structures. Despite being used industrially in a number of applications, hierarchically structured silk fibroin objects with a similar degree of architectural control as in natural structures have not been produced yet due to limitations in fabrication processes. In a combined top-down and bottom-up approach, we exploit the freedom in macroscopic design offered by 3D printing and the template-guided assembly of ink building blocks at the meso- and nanolevel to fabricate hierarchical silk porous materials with unprecedented structural control. Pores with tunable sizes in the range 40-350 μm are generated by adding sacrificial organic microparticles as templates to a silk fibroin-based ink. Commercially available wax particles or monodisperse polycaprolactone made by microfluidics can be used as microparticle templates. Since closed pores are generated after template removal, an ultrasonication treatment can optionally be used to achieve open porosity. Such pore templating particles can be further modified with nanoparticles to create a hierarchical template that results in porous structures with a defined nanotopography on the pore walls. The hierarchically porous silk structures obtained with this processing technique can potentially be utilized in various application fields from structural materials to thermal insulation to tissue engineering scaffolds.
Application of a hierarchical structure stochastic learning automation
NASA Technical Reports Server (NTRS)
Neville, R. G.; Chrystall, M. S.; Mars, P.
1979-01-01
A hierarchical structure automaton was developed using a two state stochastic learning automato (SLA) in a time shared model. Application of the hierarchical SLA to systems with multidimensional, multimodal performance criteria is described. Results of experiments performed with the hierarchical SLA using a performance index with a superimposed noise component of ? or - delta distributed uniformly over the surface are discussed.
Wu, Huaping; Yang, Zhe; Cao, Binbin; Zhang, Zheng; Zhu, Kai; Wu, Bingbing; Jiang, Shaofei; Chai, Guozhong
2017-01-10
The wetting transition on submersed superhydrophobic surfaces with hierarchical structures and the influence of trapped air on superhydrophobic stability are predicted based on the thermodynamics and mechanical analyses. The dewetting transition on the hierarchically structured surfaces is investigated, and two necessary thermodynamic conditions and a mechanical balance condition for dewetting transition are proposed. The corresponding thermodynamic phase diagram of reversible transition and the critical reversed pressure well explain the experimental results reported previously. Our theory provides a useful guideline for precise controlling of breaking down and recovering of superhydrophobicity by designing superhydrophobic surfaces with hierarchical structures under water.
A planktonic diatom displays genetic structure over small spatial scales.
Sefbom, Josefin; Kremp, Anke; Rengefors, Karin; Jonsson, Per R; Sjöqvist, Conny; Godhe, Anna
2018-04-03
Marine planktonic microalgae have potentially global dispersal, yet reduced gene flow has been confirmed repeatedly for several species. Over larger distances (>200 km) geographic isolation and restricted oceanographic connectivity have been recognized as instrumental in driving population divergence. Here we investigated whether similar patterns, that is, structured populations governed by geographic isolation and/or oceanographic connectivity, can be observed at smaller (6-152 km) geographic scales. To test this we established 425 clonal cultures of the planktonic diatom Skeletonema marinoi collected from 11 locations in the Archipelago Sea (northern Baltic Sea). The region is characterized by a complex topography, entailing several mixing regions of which four were included in the sampling area. Using eight microsatellite markers and conventional F-statistics, significant genetic differentiation was observed between several sites. Moreover, Bayesian cluster analysis revealed the co-occurrence of two genetic groups spread throughout the area. However, geographic isolation and oceanographic connectivity could not explain the genetic patterns observed. Our data reveal hierarchical genetic structuring whereby despite high dispersal potential, significantly diverged populations have developed over small spatial scales. Our results suggest that biological characteristics and historical events may be more important in generating barriers to gene flow than physical barriers at small spatial scales. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Urban Spatial Ecological Performance Based on the Data of Remote Sensing of Guyuan
NASA Astrophysics Data System (ADS)
Ren, X.-J.; Chen, X.-J.; Ma, Q.
2018-04-01
The evolution analysis of urban landuse and spatial ecological performance are necessary and useful to recognizing the stage of urban development and revealing the regularity and connotation of urban spatial expansion. Moreover, it lies in the core that should be exmined in the urban sustainable development. In this paper, detailed information has been acquired from the high-resolution satellite imageries of Guyuan, China case study. With the support of GIS, the land-use mapping information and the land cover changes are analyzed, and the process of urban spatial ecological performance evolution by the hierarchical methodology is explored. Results demonstrate that in the past 11 years, the urban spatial ecological performance show an improved process with the dramatic landcover change in Guyuan. Firstly, the landuse structure of Guyuan changes significantly and shows an obvious stage characteristic. Secondly, the urban ecological performance of Guyuan continues to be optimized over the 11 years. Thirdly, the findings suggest that a dynamic monitoring mechanism of urban land use based on high-resolution remote sensing data should be established in urban development, and the rational development of urban land use should be guided by the spatial ecological performance as the basic value orientation.
Spatial distribution of enzyme driven reactions at micro-scales
NASA Astrophysics Data System (ADS)
Kandeler, Ellen; Boeddinghaus, Runa; Nassal, Dinah; Preusser, Sebastian; Marhan, Sven; Poll, Christian
2017-04-01
Studies of microbial biogeography can often provide key insights into the physiologies, environmental tolerances, and ecological strategies of soil microorganisms that dominate in natural environments. In comparison with aquatic systems, soils are particularly heterogeneous. Soil heterogeneity results from the interaction of a hierarchical series of interrelated variables that fluctuate at many different spatial and temporal scales. Whereas spatial dependence of chemical and physical soil properties is well known at scales ranging from decimetres to several hundred metres, the spatial structure of soil enzymes is less clear. Previous work has primarily focused on spatial heterogeneity at a single analytical scale using the distribution of individual cells, specific types of organisms or collective parameters such as bacterial abundance or total microbial biomass. There are fewer studies that have considered variations in community function and soil enzyme activities. This presentation will give an overview about recent studies focusing on spatial pattern of different soil enzymes in the terrestrial environment. Whereas zymography allows the visualization of enzyme pattern in the close vicinity of roots, micro-sampling strategies followed by MUF analyses clarify micro-scale pattern of enzymes associated to specific microhabitats (micro-aggregates, organo-mineral complexes, subsoil compartments).
NASA Astrophysics Data System (ADS)
Ono, Junichi; Takada, Shoji; Saito, Shinji
2015-06-01
An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.
Materials with structural hierarchy
NASA Technical Reports Server (NTRS)
Lakes, Roderic
1993-01-01
The role of structural hierarchy in determining bulk material properties is examined. Dense hierarchical materials are discussed, including composites and polycrystals, polymers, and biological materials. Hierarchical cellular materials are considered, including cellular solids and the prediction of strength and stiffness in hierarchical cellular materials.
An Active Learning Framework for Hyperspectral Image Classification Using Hierarchical Segmentation
NASA Technical Reports Server (NTRS)
Zhang, Zhou; Pasolli, Edoardo; Crawford, Melba M.; Tilton, James C.
2015-01-01
Augmenting spectral data with spatial information for image classification has recently gained significant attention, as classification accuracy can often be improved by extracting spatial information from neighboring pixels. In this paper, we propose a new framework in which active learning (AL) and hierarchical segmentation (HSeg) are combined for spectral-spatial classification of hyperspectral images. The spatial information is extracted from a best segmentation obtained by pruning the HSeg tree using a new supervised strategy. The best segmentation is updated at each iteration of the AL process, thus taking advantage of informative labeled samples provided by the user. The proposed strategy incorporates spatial information in two ways: 1) concatenating the extracted spatial features and the original spectral features into a stacked vector and 2) extending the training set using a self-learning-based semi-supervised learning (SSL) approach. Finally, the two strategies are combined within an AL framework. The proposed framework is validated with two benchmark hyperspectral datasets. Higher classification accuracies are obtained by the proposed framework with respect to five other state-of-the-art spectral-spatial classification approaches. Moreover, the effectiveness of the proposed pruning strategy is also demonstrated relative to the approaches based on a fixed segmentation.
Design Rules for Tailoring Antireflection Properties of Hierarchical Optical Structures
Leon, Juan J. Diaz; Hiszpanski, Anna M.; Bond, Tiziana C.; ...
2017-05-18
Hierarchical structures consisting of small sub-wavelength features stacked atop larger structures have been demonstrated as an effective means of reducing the reflectance of surfaces. However, optical devices require different antireflective properties depending on the application, and general unifying guidelines on hierarchical structures' design to attain a desired antireflection spectral response are still lacking. The type of reflectivity (diffuse, specular, or total/hemispherical) and its angular- and spectral-dependence are all dictated by the structural parameters. Through computational and experimental studies, guidelines have been devised to modify these various aspects of reflectivity across the solar spectrum by proper selection of the features ofmore » hierarchical structures. In this wavelength regime, micrometer-scale substructures dictate the long-wavelength spectral response and effectively reduce specular reflectance, whereas nanometer-scale substructures dictate primarily the visible wavelength spectral response and reduce diffuse reflectance. Coupling structures having these two length scales into hierarchical arrays impressively reduces surfaces' hemispherical reflectance across a broad spectrum of wavelengths and angles. Furthermore, such hierarchical structures in silicon are demonstrated having an average total reflectance across the solar spectrum of 1.1% (average weighted reflectance of 1% in the 280–2500 nm range of the AM 1.5 G spectrum) and specular reflectance <1% even at angles of incidence as high as 67°.« less
D Partition-Based Clustering for Supply Chain Data Management
NASA Astrophysics Data System (ADS)
Suhaibah, A.; Uznir, U.; Anton, F.; Mioc, D.; Rahman, A. A.
2015-10-01
Supply Chain Management (SCM) is the management of the products and goods flow from its origin point to point of consumption. During the process of SCM, information and dataset gathered for this application is massive and complex. This is due to its several processes such as procurement, product development and commercialization, physical distribution, outsourcing and partnerships. For a practical application, SCM datasets need to be managed and maintained to serve a better service to its three main categories; distributor, customer and supplier. To manage these datasets, a structure of data constellation is used to accommodate the data into the spatial database. However, the situation in geospatial database creates few problems, for example the performance of the database deteriorate especially during the query operation. We strongly believe that a more practical hierarchical tree structure is required for efficient process of SCM. Besides that, three-dimensional approach is required for the management of SCM datasets since it involve with the multi-level location such as shop lots and residential apartments. 3D R-Tree has been increasingly used for 3D geospatial database management due to its simplicity and extendibility. However, it suffers from serious overlaps between nodes. In this paper, we proposed a partition-based clustering for the construction of a hierarchical tree structure. Several datasets are tested using the proposed method and the percentage of the overlapping nodes and volume coverage are computed and compared with the original 3D R-Tree and other practical approaches. The experiments demonstrated in this paper substantiated that the hierarchical structure of the proposed partitionbased clustering is capable of preserving minimal overlap and coverage. The query performance was tested using 300,000 points of a SCM dataset and the results are presented in this paper. This paper also discusses the outlook of the structure for future reference.
(Semi-)Automated landform mapping of the alpine valley Gradental (Austria) based on LiDAR data
NASA Astrophysics Data System (ADS)
Strasser, T.; Eisank, C.
2012-04-01
Alpine valleys are typically characterised as complex, hierarchical structured systems with rapid landform changes. Detection of landform changes can be supported by automated geomorphological mapping. Especially, the analysis over short time scales require a method for standardised, unbiased geomorphological map reproduction, which is delivered by automated mapping techniques. In general, digital geomorphological mapping is a challenging task, since knowledge about landforms with respect to their natural boundaries as well as their hierarchical and scaling relationships, has to be integrated in an objective way. A combination of very-high spatial resolution data (VHSR) such as LiDAR and new methods like object based image analysis (OBIA) allow for a more standardised production of geomorphological maps. In OBIA the processing units are spatially configured objects that are created by multi-scale segmentation. Therefore, not only spectral information can be used for assigning the objects to geomorphological classes, but also spatial and topological properties can be exploited. In this study we focus on the detection of landforms, especially bedrock sediment deposits (alluvion, debris cone, talus, moraine, rockglacier), as well as glaciers. The study site Gradental [N 46°58'29.1"/ E 12°48'53.8"] is located in the Schobergruppe (Austria, Carinthia) and is characterised by heterogenic geology conditions and high process activity. The area is difficult to access and dominated by steep slopes, thus hindering a fast and detailed geomorphological field mapping. Landforms are identified using aerial and terrestrial LiDAR data (1 m spatial resolution). These DEMs are analysed by an object based hierarchical approach, which is structured in three main steps. The first step is to define occurring landforms by basic land surface parameters (LSPs), topology and hierarchy relations. Based on those definitions a semantic model is created. Secondly, a multi-scale segmentation is performed on a three-band LSP that integrates slope, aspect and plan curvature, which expresses the driving forces of geomorphological processes. In the third step, the generated multi-level object structures are classified in order to produce the geomorphological map. The classification rules are derived from the semantic model. Due to landform type-specific scale dependencies of LSPs, the values of LSPs used in the classification are calculated in a multi-scale manner by constantly enlarging the size of the moving window. In addition, object form properties (density, compactness, rectangular fit) are utilised as additional information for landform characterisation. Validation of classification is performed by intersecting a visually interpreted reference map with the classification output map and calculating accuracy matrices. Validation shows an overall accuracy of 78.25 % and a Kappa of 0.65. The natural borders of landforms can be easily detected by the use of slope, aspect and plan curvature. This study illustrates the potential of OBIA for a more standardised and automated mapping of surface units (landforms, landcover). Therefore, the presented methodology features a prospective automated geomorphological mapping approach for alpine regions.
Ranging through Gabor logons-a consistent, hierarchical approach.
Chang, C; Chatterjee, S
1993-01-01
In this work, the correspondence problem in stereo vision is handled by matching two sets of dense feature vectors. Inspired by biological evidence, these feature vectors are generated by a correlation between a bank of Gabor sensors and the intensity image. The sensors consist of two-dimensional Gabor filters at various scales (spatial frequencies) and orientations, which bear close resemblance to the receptive field profiles of simple V1 cells in visual cortex. A hierarchical, stochastic relaxation method is then used to obtain the dense stereo disparities. Unlike traditional hierarchical methods for stereo, feature based hierarchical processing yields consistent disparities. To avoid false matchings due to static occlusion, a dual matching, based on the imaging geometry, is used.
Akrami, Haleh; Moghimi, Sahar
2017-01-01
We investigated the role of culture in processing hierarchical syntactic structures in music. We examined whether violation of non-local dependencies manifest in event related potentials (ERP) for Western and Iranian excerpts by recording EEG while participants passively listened to sequences of modified/original excerpts. We also investigated oscillatory and synchronization properties of brain responses during processing of hierarchical structures. For the Western excerpt, subjective ratings of conclusiveness were marginally significant and the difference in the ERP components fell short of significance. However, ERP and behavioral results showed that while listening to culturally familiar music, subjects comprehended whether or not the hierarchical syntactic structure was fulfilled. Irregularities in the hierarchical structures of the Iranian excerpt elicited an early negativity in the central regions bilaterally, followed by two later negativities from 450-700 to 750-950 ms. The latter manifested throughout the scalp. Moreover, violations of hierarchical structure in the Iranian excerpt were associated with (i) an early decrease in the long range alpha phase synchronization, (ii) an early increase in the oscillatory activity in the beta band over the central areas, and (iii) a late decrease in the theta band phase synchrony between left anterior and right posterior regions. Results suggest that rhythmic structures and melodic fragments, representative of Iranian music, created a familiar context in which recognition of complex non-local syntactic structures was feasible for Iranian listeners. Processing of neural responses to the Iranian excerpt indicated neural mechanisms for processing of hierarchical syntactic structures in music at different levels of cortical integration.
Masking effects of speech and music: does the masker's hierarchical structure matter?
Shi, Lu-Feng; Law, Yvonne
2010-04-01
Speech and music are time-varying signals organized by parallel hierarchical rules. Through a series of four experiments, this study compared the masking effects of single-talker speech and instrumental music on speech perception while manipulating the complexity of hierarchical and temporal structures of the maskers. Listeners' word recognition was found to be similar between hierarchically intact and disrupted speech or classical music maskers (Experiment 1). When sentences served as the signal, significantly greater masking effects were observed with disrupted than intact speech or classical music maskers (Experiment 2), although not with jazz or serial music maskers, which differed from the classical music masker in their hierarchical structures (Experiment 3). Removing the classical music masker's temporal dynamics or partially restoring it affected listeners' sentence recognition; yet, differences in performance between intact and disrupted maskers remained robust (Experiment 4). Hence, the effect of structural expectancy was largely present across maskers when comparing them before and after their hierarchical structure was purposefully disrupted. This effect seemed to lend support to the auditory stream segregation theory.
Temporal and spatial correlation patterns of air pollutants in Chinese cities
Dai, Yue-Hua
2017-01-01
As a huge threat to the public health, China’s air pollution has attracted extensive attention and continues to grow in tandem with the economy. Although the real-time air quality report can be utilized to update our knowledge on air quality, questions about how pollutants evolve across time and how pollutants are spatially correlated still remain a puzzle. In view of this point, we adopt the PMFG network method to analyze the six pollutants’ hourly data in 350 Chinese cities in an attempt to find out how these pollutants are correlated temporally and spatially. In terms of time dimension, the results indicate that, except for O3, the pollutants have a common feature of the strong intraday patterns of which the daily variations are composed of two contraction periods and two expansion periods. Besides, all the time series of the six pollutants possess strong long-term correlations, and this temporal memory effect helps to explain why smoggy days are always followed by one after another. In terms of space dimension, the correlation structure shows that O3 is characterized by the highest spatial connections. The PMFGs reveal the relationship between this spatial correlation and provincial administrative divisions by filtering the hierarchical structure in the correlation matrix and refining the cliques as the tinny spatial clusters. Finally, we check the stability of the correlation structure and conclude that, except for PM10 and O3, the other pollutants have an overall stable correlation, and all pollutants have a slight trend to become more divergent in space. These results not only enhance our understanding of the air pollutants’ evolutionary process, but also shed lights on the application of complex network methods into geographic issues. PMID:28832599
ERIC Educational Resources Information Center
Matthews, Allison Jane; Martin, Frances Heritage
2009-01-01
Previous research suggests a relationship between spatial attention and phonological decoding in developmental dyslexia. The aim of this study was to examine differences between good and poor phonological decoders in the allocation of spatial attention to global and local levels of hierarchical stimuli. A further aim was to investigate the…
Crucial nesting habitat for gunnison sage-grouse: A spatially explicit hierarchical approach
Aldridge, Cameron L.; Saher, D.J.; Childers, T.M.; Stahlnecker, K.E.; Bowen, Z.H.
2012-01-01
Gunnison sage-grouse (Centrocercus minimus) is a species of special concern and is currently considered a candidate species under Endangered Species Act. Careful management is therefore required to ensure that suitable habitat is maintained, particularly because much of the species' current distribution is faced with exurban development pressures. We assessed hierarchical nest site selection patterns of Gunnison sage-grouse inhabiting the western portion of the Gunnison Basin, Colorado, USA, at multiple spatial scales, using logistic regression-based resource selection functions. Models were selected using Akaike Information Criterion corrected for small sample sizes (AIC c) and predictive surfaces were generated using model averaged relative probabilities. Landscape-scale factors that had the most influence on nest site selection included the proportion of sagebrush cover >5%, mean productivity, and density of 2 wheel-drive roads. The landscape-scale predictive surface captured 97% of known Gunnison sage-grouse nests within the top 5 of 10 prediction bins, implicating 57% of the basin as crucial nesting habitat. Crucial habitat identified by the landscape model was used to define the extent for patch-scale modeling efforts. Patch-scale variables that had the greatest influence on nest site selection were the proportion of big sagebrush cover >10%, distance to residential development, distance to high volume paved roads, and mean productivity. This model accurately predicted independent nest locations. The unique hierarchical structure of our models more accurately captures the nested nature of habitat selection, and allowed for increased discrimination within larger landscapes of suitable habitat. We extrapolated the landscape-scale model to the entire Gunnison Basin because of conservation concerns for this species. We believe this predictive surface is a valuable tool which can be incorporated into land use and conservation planning as well the assessment of future land-use scenarios. ?? 2011 The Wildlife Society.
A two-way street: regulatory interplay between RNA polymerase and nascent RNA structure
Zhang, Jinwei; Landick, Robert
2016-01-01
The vectorial (5′-to-3′ at varying velocity) synthesis of RNA by cellular RNA polymerases creates a rugged kinetic landscape, demarcated by frequent, sometimes long-lived pauses. In addition to myriad gene-regulatory roles, these pauses temporally and spatially program the co-transcriptional, hierarchical folding of biologically active RNAs. Conversely, these RNA structures, which form inside or near the RNA exit channel, interact with the polymerase and adjacent protein factors to influence RNA synthesis by modulating pausing, termination, antitermination, and slippage. Here we review the evolutionary origin, mechanistic underpinnings, and regulatory consequences of this interplay between RNA polymerase and nascent RNA structure. We categorize and attempt to rationalize the extensive linkage between the transcriptional machinery and its product, and provide a framework for future studies. PMID:26822487
An Analysis of Turkey's PISA 2015 Results Using Two-Level Hierarchical Linear Modelling
ERIC Educational Resources Information Center
Atas, Dogu; Karadag, Özge
2017-01-01
In the field of education, most of the data collected are multi-level structured. Cities, city based schools, school based classes and finally students in the classrooms constitute a hierarchical structure. Hierarchical linear models give more accurate results compared to standard models when the data set has a structure going far as individuals,…
Isolating causal pathways between flow and fish in the regulated river hierarchy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.
Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less
Isolating causal pathways between flow and fish in the regulated river hierarchy
McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.; ...
2015-07-07
Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less
Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales
Chon, Michael J.; Daly, Matthew; Wang, Bin; ...
2017-06-10
Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this paper, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration,more » reaching up to ~ 25 kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. Finally, the results of this study are expected to be useful as design principles for high performance biomimetic applications.« less
Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales.
Chon, Michael J; Daly, Matthew; Wang, Bin; Xiao, Xianghui; Zaheri, Alireza; Meyers, Marc A; Espinosa, Horacio D
2017-12-01
Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this study, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration, reaching up to ~ 25kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. The results of this study are expected to be useful as design principles for high performance biomimetic applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chon, Michael J.; Daly, Matthew; Wang, Bin
Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this paper, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration,more » reaching up to ~ 25 kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. Finally, the results of this study are expected to be useful as design principles for high performance biomimetic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo, E-mail: jghuang@zju.edu.cn
Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template andmore » cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.« less
Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard
2015-10-23
Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3-4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.
Effects of hierarchical structures and insulating liquid media on adhesion
NASA Astrophysics Data System (ADS)
Yang, Weixu; Wang, Xiaoli; Li, Hanqing; Song, Xintao
2017-11-01
Effects of hierarchical structures and insulating liquid media on adhesion are investigated through a numerical adhesive contact model established in this paper, in which hierarchical structures are considered by introducing the height distribution into the surface gap equation, and media are taken into account through the Hamaker constant in Lifshitz-Hamaker approach. Computational methods such as inexact Newton method, bi-conjugate stabilized (Bi-CGSTAB) method and fast Fourier transform (FFT) technique are employed to obtain the adhesive force. It is shown that hierarchical structured surface exhibits excellent anti-adhesive properties compared with flat, micro or nano structured surfaces. Adhesion force is more dependent on the sizes of nanostructures than those of microstructures, and the optimal ranges of nanostructure pitch and maximum height for small adhesion force are presented. Insulating liquid media effectively decrease the adhesive interaction and 1-bromonaphthalene exhibits the smallest adhesion force among the five selected media. In addition, effects of hierarchical structures with optimal sizes on reducing adhesion are more obvious than those of the selected insulating liquid media.
Ng, Wei Long; Goh, Min Hao; Yeong, Wai Yee; Naing, May Win
2018-02-27
Native tissues and/or organs possess complex hierarchical porous structures that confer highly-specific cellular functions. Despite advances in fabrication processes, it is still very challenging to emulate the hierarchical porous collagen architecture found in most native tissues. Hence, the ability to recreate such hierarchical porous structures would result in biomimetic tissue-engineered constructs. Here, a single-step drop-on-demand (DOD) bioprinting strategy is proposed to fabricate hierarchical porous collagen-based hydrogels. Printable macromolecule-based bio-inks (polyvinylpyrrolidone, PVP) have been developed and printed in a DOD manner to manipulate the porosity within the multi-layered collagen-based hydrogels by altering the collagen fibrillogenesis process. The experimental results have indicated that hierarchical porous collagen structures could be achieved by controlling the number of macromolecule-based bio-ink droplets printed on each printed collagen layer. This facile single-step bioprinting process could be useful for the structural design of collagen-based hydrogels for various tissue engineering applications.
Vuong, Nguyen Minh; Chinh, Nguyen Duc; Huy, Bui The; Lee, Yong-Ill
2016-01-01
Highly sensitive hydrogen sulfide (H2S) gas sensors were developed from CuO-decorated ZnO semiconducting hierarchical nanostructures. The ZnO hierarchical nanostructure was fabricated by an electrospinning method following hydrothermal and heat treatment. CuO decoration of ZnO hierarchical structures was carried out by a wet method. The H2S gas-sensing properties were examined at different working temperatures using various quantities of CuO as the variable. CuO decoration of the ZnO hierarchical structure was observed to promote sensitivity for H2S gas higher than 30 times at low working temperature (200 °C) compared with that in the nondecorated hierarchical structure. The sensing mechanism of the hybrid sensor structure is also discussed. The morphology and characteristics of the samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis absorption, photoluminescence (PL), and electrical measurements. PMID:27231026
Gidoin, Cynthia; Babin, Régis; Bagny Beilhe, Leïla; Cilas, Christian; ten Hoopen, Gerben Martijn; Bieng, Marie Ange Ngo
2014-01-01
Combining crop plants with other plant species in agro-ecosystems is one way to enhance ecological pest and disease regulation mechanisms. Resource availability and microclimatic variation mechanisms affect processes related to pest and pathogen life cycles. These mechanisms are supported both by empirical research and by epidemiological models, yet their relative importance in a real complex agro-ecosystem is still not known. Our aim was thus to assess the independent effects and the relative importance of different variables related to resource availability and microclimatic variation that explain pest and disease occurrence at the plot scale in real complex agro-ecosystems. The study was conducted in cacao (Theobroma cacao) agroforests in Cameroon, where cocoa production is mainly impacted by the mirid bug, Sahlbergella singularis, and black pod disease, caused by Phytophthora megakarya. Vegetation composition and spatial structure, resource availability and pest and disease occurrence were characterized in 20 real agroforest plots. Hierarchical partitioning was used to identify the causal variables that explain mirid density and black pod prevalence. The results of this study show that cacao agroforests can be differentiated on the basis of vegetation composition and spatial structure. This original approach revealed that mirid density decreased when a minimum number of randomly distributed forest trees were present compared with the aggregated distribution of forest trees, or when forest tree density was low. Moreover, a decrease in mirid density was also related to decreased availability of sensitive tissue, independently of the effect of forest tree structure. Contrary to expectations, black pod prevalence decreased with increasing cacao tree abundance. By revealing the effects of vegetation composition and spatial structure on mirids and black pod, this study opens new perspectives for the joint agro-ecological management of cacao pests and diseases at the plot scale, through the optimization of the spatial structure and composition of the vegetation.
Gidoin, Cynthia; Babin, Régis; Bagny Beilhe, Leïla; Cilas, Christian; ten Hoopen, Gerben Martijn; Bieng, Marie Ange Ngo
2014-01-01
Combining crop plants with other plant species in agro-ecosystems is one way to enhance ecological pest and disease regulation mechanisms. Resource availability and microclimatic variation mechanisms affect processes related to pest and pathogen life cycles. These mechanisms are supported both by empirical research and by epidemiological models, yet their relative importance in a real complex agro-ecosystem is still not known. Our aim was thus to assess the independent effects and the relative importance of different variables related to resource availability and microclimatic variation that explain pest and disease occurrence at the plot scale in real complex agro-ecosystems. The study was conducted in cacao (Theobroma cacao) agroforests in Cameroon, where cocoa production is mainly impacted by the mirid bug, Sahlbergella singularis, and black pod disease, caused by Phytophthora megakarya. Vegetation composition and spatial structure, resource availability and pest and disease occurrence were characterized in 20 real agroforest plots. Hierarchical partitioning was used to identify the causal variables that explain mirid density and black pod prevalence. The results of this study show that cacao agroforests can be differentiated on the basis of vegetation composition and spatial structure. This original approach revealed that mirid density decreased when a minimum number of randomly distributed forest trees were present compared with the aggregated distribution of forest trees, or when forest tree density was low. Moreover, a decrease in mirid density was also related to decreased availability of sensitive tissue, independently of the effect of forest tree structure. Contrary to expectations, black pod prevalence decreased with increasing cacao tree abundance. By revealing the effects of vegetation composition and spatial structure on mirids and black pod, this study opens new perspectives for the joint agro-ecological management of cacao pests and diseases at the plot scale, through the optimization of the spatial structure and composition of the vegetation. PMID:25313514
Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun
2017-08-01
Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2 = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.
Use of space-time models to investigate the stability of patterns of disease.
Abellan, Juan Jose; Richardson, Sylvia; Best, Nicky
2008-08-01
The use of Bayesian hierarchical spatial models has become widespread in disease mapping and ecologic studies of health-environment associations. In this type of study, the data are typically aggregated over an extensive time period, thus neglecting the time dimension. The output of purely spatial disease mapping studies is therefore the average spatial pattern of risk over the period analyzed, but the results do not inform about, for example, whether a high average risk was sustained over time or changed over time. We investigated how including the time dimension in disease-mapping models strengthens the epidemiologic interpretation of the overall pattern of risk. We discuss a class of Bayesian hierarchical models that simultaneously characterize and estimate the stable spatial and temporal patterns as well as departures from these stable components. We show how useful rules for classifying areas as stable can be constructed based on the posterior distribution of the space-time interactions. We carry out a simulation study to investigate the sensitivity and specificity of the decision rules we propose, and we illustrate our approach in a case study of congenital anomalies in England. Our results confirm that extending hierarchical disease-mapping models to models that simultaneously consider space and time leads to a number of benefits in terms of interpretation and potential for detection of localized excesses.
An exactly solvable model of hierarchical self-assembly
NASA Astrophysics Data System (ADS)
Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.
2009-06-01
Many living and nonliving structures in the natural world form by hierarchical organization, but physical theories that describe this type of organization are scarce. To address this problem, a model of equilibrium self-assembly is formulated in which dynamically associating species organize into hierarchical structures that preserve their shape at each stage of assembly. In particular, we consider symmetric m-gons that associate at their vertices into Sierpinski gasket structures involving the hierarchical association of triangles, squares, hexagons, etc., at their corner vertices, thereby leading to fractal structures after many generations of assembly. This rather idealized model of hierarchical assembly yields an infinite sequence of self-assembly transitions as the morphology progressively organizes to higher levels of the hierarchy, and these structures coexists at dynamic equilibrium, as found in real hierarchically self-assembling systems such as amyloid fiber forming proteins. Moreover, the transition sharpness progressively grows with increasing m, corresponding to larger and larger loops in the assembled structures. Calculations are provided for several basic thermodynamic properties (including the order parameters for assembly for each stage of the hierarchy, average mass of clusters, specific heat, transition sharpness, etc.) that are required for characterizing the interaction parameters governing this type of self-assembly and for elucidating other basic qualitative aspects of these systems. Our idealized model of hierarchical assembly gives many insights into this ubiquitous type of self-organization process.
GARN: Sampling RNA 3D Structure Space with Game Theory and Knowledge-Based Scoring Strategies.
Boudard, Mélanie; Bernauer, Julie; Barth, Dominique; Cohen, Johanne; Denise, Alain
2015-01-01
Cellular processes involve large numbers of RNA molecules. The functions of these RNA molecules and their binding to molecular machines are highly dependent on their 3D structures. One of the key challenges in RNA structure prediction and modeling is predicting the spatial arrangement of the various structural elements of RNA. As RNA folding is generally hierarchical, methods involving coarse-grained models hold great promise for this purpose. We present here a novel coarse-grained method for sampling, based on game theory and knowledge-based potentials. This strategy, GARN (Game Algorithm for RNa sampling), is often much faster than previously described techniques and generates large sets of solutions closely resembling the native structure. GARN is thus a suitable starting point for the molecular modeling of large RNAs, particularly those with experimental constraints. GARN is available from: http://garn.lri.fr/.
Background:Bilevel optimization has been recognized as a 2-player Stackelberg game where players are represented as leaders and followers and each pursue their own set of objectives. Hierarchical optimization problems, which are a generalization of bilevel, are especially difficu...
Chad Babcock; Andrew O. Finley; John B. Bradford; Randy Kolka; Richard Birdsey; Michael G. Ryan
2015-01-01
Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both...
Dalley, Andrew J; AbdulMajeed, Ahmad A; Upton, Zee; Farah, Camile S
2013-01-01
Oral squamous cell carcinomas (OSCC) often arise from dysplastic lesions. The role of cancer stem cells in tumour initiation is widely accepted, yet the potential existence of pre-cancerous stem cells in dysplastic tissue has received little attention. Cell lines from oral diseases ranging in severity from dysplasia to malignancy provide opportunity to investigate the involvement of stem cells in malignant progression from dysplasia. Stem cells are functionally defined by their ability to generate hierarchical tissue structures in consortium with spatial regulation. Organotypic cultures readily display tissue hierarchy in vitro; hence, in this study, we compared hierarchical expression of stem cell-associated markers in dermis-based organotypic cultures of oral epithelial cells from normal tissue (OKF6-TERT2), mild dysplasia (DOK), severe dysplasia (POE-9n) and OSCC (PE/CA P J15). Expression of CD44, p75(NTR), CD24 and ALDH was studied in monolayers by flow cytometry and in organotypic cultures by immunohistochemistry. Spatial regulation of CD44 and p75(NTR) was evident for organotypic cultures of normal (OKF6-TERT2) and dysplasia (DOK and POE-9n) but was lacking for OSCC (PE/CA PJ15)-derived cells. Spatial regulation of CD24 was not evident. All monolayer cultures exhibited CD44, p75(NTR), CD24 antigens and ALDH activity (ALDEFLUOR(®) assay), with a trend towards loss of population heterogeneity that mirrored disease severity. In monolayer, increased FOXA1 and decreased FOXA2 expression correlated with disease severity, but OCT3/4, Sox2 and NANOG did not. We conclude that dermis-based organotypic cultures give opportunity to investigate the mechanisms that underlie loss of spatial regulation of stem cell markers seen with OSCC-derived cells. © 2012 John Wiley & Sons A/S.
Dorazio, R.M.; Jelks, H.L.; Jordan, F.
2005-01-01
A statistical modeling framework is described for estimating the abundances of spatially distinct subpopulations of animals surveyed using removal sampling. To illustrate this framework, hierarchical models are developed using the Poisson and negative-binomial distributions to model variation in abundance among subpopulations and using the beta distribution to model variation in capture probabilities. These models are fitted to the removal counts observed in a survey of a federally endangered fish species. The resulting estimates of abundance have similar or better precision than those computed using the conventional approach of analyzing the removal counts of each subpopulation separately. Extension of the hierarchical models to include spatial covariates of abundance is straightforward and may be used to identify important features of an animal's habitat or to predict the abundance of animals at unsampled locations.
Basin Assessment Spatial Planning Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
The tool is intended to facilitate hydropower development and water resource planning by improving synthesis and interpretation of disparate spatial datasets that are considered in development actions (e.g., hydrological characteristics, environmentally and culturally sensitive areas, existing or proposed water power resources, climate-informed forecasts). The tool enables this capability by providing a unique framework for assimilating, relating, summarizing, and visualizing disparate spatial data through the use of spatial aggregation techniques, relational geodatabase platforms, and an interactive web-based Geographic Information Systems (GIS). Data are aggregated and related based on shared intersections with a common spatial unit; in this case, industry-standard hydrologic drainagemore » areas for the U.S. (National Hydrography Dataset) are used as the spatial unit to associate planning data. This process is performed using all available scalar delineations of drainage areas (i.e., region, sub-region, basin, sub-basin, watershed, sub-watershed, catchment) to create spatially hierarchical relationships among planning data and drainages. These entity-relationships are stored in a relational geodatabase that provides back-end structure to the web GIS and its widgets. The full technology stack was built using all open-source software in modern programming languages. Interactive widgets that function within the viewport are also compatible with all modern browsers.« less
NASA Astrophysics Data System (ADS)
Hong, Liang
2013-10-01
The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.
Ecological systems are generally considered among the most complex because they are characterized by a large number of diverse components, nonlinear interactions, scale multiplicity, and spatial heterogeneity. Hierarchy theory, as well as empirical evidence, suggests that comp...
In situ analysis of the organic framework in the prismatic layer of mollusc shell.
Tong, Hua; Hu, Jiming; Ma, Wentao; Zhong, Guirong; Yao, Songnian; Cao, Nianxing
2002-06-01
A novel in situ analytic approach was constructed by means of ion sputtering, decalcification and deprotein techniques combining with scanning electron microscopy (SEM) and transmission electron microscope (TEM) ultrastructural analysis. The method was employed to determine the spatial distribution of the organic framework outside and the inner crystal and organic/inorganic interface spatial geometrical relationship in the prismatic layer of cristaris plicate (leach). The results show that there is a substructure of organic matrix in the intracrystalline region. The prismatic layer forms according to strict hierarchical configuration of regular pattern. Each unit of organic template of prismatic layer can uniquely determine the column crystal growth direction, spatial orientation and size. Cavity templates are responsible for supporting. limiting size and shape and determining the crystal growth spatial orientation, while the intracrystal organic matrix is responsible for providing nucleation point and inducing the nucleation process of calcite. The stereo hierarchical fabrication of prismatic layer was elucidated for the first time.
Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets.
Datta, Abhirup; Banerjee, Sudipto; Finley, Andrew O; Gelfand, Alan E
2016-01-01
Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online.
Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets
Datta, Abhirup; Banerjee, Sudipto; Finley, Andrew O.; Gelfand, Alan E.
2018-01-01
Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online. PMID:29720777
Hierarchical image feature extraction by an irregular pyramid of polygonal partitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skurikhin, Alexei N
2008-01-01
We present an algorithmic framework for hierarchical image segmentation and feature extraction. We build a successive fine-to-coarse hierarchy of irregular polygonal partitions of the original image. This multiscale hierarchy forms the basis for object-oriented image analysis. The framework incorporates the Gestalt principles of visual perception, such as proximity and closure, and exploits spectral and textural similarities of polygonal partitions, while iteratively grouping them until dissimilarity criteria are exceeded. Seed polygons are built upon a triangular mesh composed of irregular sized triangles, whose spatial arrangement is adapted to the image content. This is achieved by building the triangular mesh on themore » top of detected spectral discontinuities (such as edges), which form a network of constraints for the Delaunay triangulation. The image is then represented as a spatial network in the form of a graph with vertices corresponding to the polygonal partitions and edges reflecting their relations. The iterative agglomeration of partitions into object-oriented segments is formulated as Minimum Spanning Tree (MST) construction. An important characteristic of the approach is that the agglomeration of polygonal partitions is constrained by the detected edges; thus the shapes of agglomerated partitions are more likely to correspond to the outlines of real-world objects. The constructed partitions and their spatial relations are characterized using spectral, textural and structural features based on proximity graphs. The framework allows searching for object-oriented features of interest across multiple levels of details of the built hierarchy and can be generalized to the multi-criteria MST to account for multiple criteria important for an application.« less
Selecting habitat to survive: the impact of road density on survival in a large carnivore.
Basille, Mathieu; Van Moorter, Bram; Herfindal, Ivar; Martin, Jodie; Linnell, John D C; Odden, John; Andersen, Reidar; Gaillard, Jean-Michel
2013-01-01
Habitat selection studies generally assume that animals select habitat and food resources at multiple scales to maximise their fitness. However, animals sometimes prefer habitats of apparently low quality, especially when considering the costs associated with spatially heterogeneous human disturbance. We used spatial variation in human disturbance, and its consequences on lynx survival, a direct fitness component, to test the Hierarchical Habitat Selection hypothesis from a population of Eurasian lynx Lynx lynx in southern Norway. Data from 46 lynx monitored with telemetry indicated that a high proportion of forest strongly reduced the risk of mortality from legal hunting at the home range scale, while increasing road density strongly increased such risk at the finer scale within the home range. We found hierarchical effects of the impact of human disturbance, with a higher road density at a large scale reinforcing its negative impact at a fine scale. Conversely, we demonstrated that lynx shifted their habitat selection to avoid areas with the highest road densities within their home ranges, thus supporting a compensatory mechanism at fine scale enabling lynx to mitigate the impact of large-scale disturbance. Human impact, positively associated with high road accessibility, was thus a stronger driver of lynx space use at a finer scale, with home range characteristics nevertheless constraining habitat selection. Our study demonstrates the truly hierarchical nature of habitat selection, which aims at maximising fitness by selecting against limiting factors at multiple spatial scales, and indicates that scale-specific heterogeneity of the environment is driving individual spatial behaviour, by means of trade-offs across spatial scales.
Hierarchical classification with a competitive evolutionary neural tree.
Adams, R G.; Butchart, K; Davey, N
1999-04-01
A new, dynamic, tree structured network, the Competitive Evolutionary Neural Tree (CENT) is introduced. The network is able to provide a hierarchical classification of unlabelled data sets. The main advantage that the CENT offers over other hierarchical competitive networks is its ability to self determine the number, and structure, of the competitive nodes in the network, without the need for externally set parameters. The network produces stable classificatory structures by halting its growth using locally calculated heuristics. The results of network simulations are presented over a range of data sets, including Anderson's IRIS data set. The CENT network demonstrates its ability to produce a representative hierarchical structure to classify a broad range of data sets.
Method and system for rendering and interacting with an adaptable computing environment
Osbourn, Gordon Cecil [Albuquerque, NM; Bouchard, Ann Marie [Albuquerque, NM
2012-06-12
An adaptable computing environment is implemented with software entities termed "s-machines", which self-assemble into hierarchical data structures capable of rendering and interacting with the computing environment. A hierarchical data structure includes a first hierarchical s-machine bound to a second hierarchical s-machine. The first hierarchical s-machine is associated with a first layer of a rendering region on a display screen and the second hierarchical s-machine is associated with a second layer of the rendering region overlaying at least a portion of the first layer. A screen element s-machine is linked to the first hierarchical s-machine. The screen element s-machine manages data associated with a screen element rendered to the display screen within the rendering region at the first layer.
The Advantages of Hierarchical Linear Modeling. ERIC/AE Digest.
ERIC Educational Resources Information Center
Osborne, Jason W.
This digest introduces hierarchical data structure, describes how hierarchical models work, and presents three approaches to analyzing hierarchical data. Hierarchical, or nested data, present several problems for analysis. People or creatures that exist within hierarchies tend to be more similar to each other than people randomly sampled from the…
Multi-Material Tissue Engineering Scaffold with Hierarchical Pore Architecture.
Morgan, Kathy Ye; Sklaviadis, Demetra; Tochka, Zachary L; Fischer, Kristin M; Hearon, Keith; Morgan, Thomas D; Langer, Robert; Freed, Lisa E
2016-08-23
Multi-material polymer scaffolds with multiscale pore architectures were characterized and tested with vascular and heart cells as part of a platform for replacing damaged heart muscle. Vascular and muscle scaffolds were constructed from a new material, poly(limonene thioether) (PLT32i), which met the design criteria of slow biodegradability, elastomeric mechanical properties, and facile processing. The vascular-parenchymal interface was a poly(glycerol sebacate) (PGS) porous membrane that met different criteria of rapid biodegradability, high oxygen permeance, and high porosity. A hierarchical architecture of primary (macroscale) and secondary (microscale) pores was created by casting the PLT32i prepolymer onto sintered spheres of poly(methyl methacrylate) (PMMA) within precisely patterned molds followed by photocuring, de-molding, and leaching out the PMMA. Pre-fabricated polymer templates were cellularized, assembled, and perfused in order to engineer spatially organized, contractile heart tissue. Structural and functional analyses showed that the primary pores guided heart cell alignment and enabled robust perfusion while the secondary pores increased heart cell retention and reduced polymer volume fraction.
Multi-scale chromatin state annotation using a hierarchical hidden Markov model
NASA Astrophysics Data System (ADS)
Marco, Eugenio; Meuleman, Wouter; Huang, Jialiang; Glass, Kimberly; Pinello, Luca; Wang, Jianrong; Kellis, Manolis; Yuan, Guo-Cheng
2017-04-01
Chromatin-state analysis is widely applied in the studies of development and diseases. However, existing methods operate at a single length scale, and therefore cannot distinguish large domains from isolated elements of the same type. To overcome this limitation, we present a hierarchical hidden Markov model, diHMM, to systematically annotate chromatin states at multiple length scales. We apply diHMM to analyse a public ChIP-seq data set. diHMM not only accurately captures nucleosome-level information, but identifies domain-level states that vary in nucleosome-level state composition, spatial distribution and functionality. The domain-level states recapitulate known patterns such as super-enhancers, bivalent promoters and Polycomb repressed regions, and identify additional patterns whose biological functions are not yet characterized. By integrating chromatin-state information with gene expression and Hi-C data, we identify context-dependent functions of nucleosome-level states. Thus, diHMM provides a powerful tool for investigating the role of higher-order chromatin structure in gene regulation.
Building a Lego wall: Sequential action selection.
Arnold, Amy; Wing, Alan M; Rotshtein, Pia
2017-05-01
The present study draws together two distinct lines of enquiry into the selection and control of sequential action: motor sequence production and action selection in everyday tasks. Participants were asked to build 2 different Lego walls. The walls were designed to have hierarchical structures with shared and dissociated colors and spatial components. Participants built 1 wall at a time, under low and high load cognitive states. Selection times for correctly completed trials were measured using 3-dimensional motion tracking. The paradigm enabled precise measurement of the timing of actions, while using real objects to create an end product. The experiment demonstrated that action selection was slowed at decision boundary points, relative to boundaries where no between-wall decision was required. Decision points also affected selection time prior to the actual selection window. Dual-task conditions increased selection errors. Errors mostly occurred at boundaries between chunks and especially when these required decisions. The data support hierarchical control of sequenced behavior. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Correlation between the hierarchical structures and nanomechanical properties of amyloid fibrils
NASA Astrophysics Data System (ADS)
Lee, Gyudo; Lee, Wonseok; Baik, Seunghyun; Kim, Yong Ho; Eom, Kilho; Kwon, Taeyun
2018-07-01
Amyloid fibrils have recently been highlighted due to their excellent mechanical properties, which not only play a role in their biological functions but also imply their applications in biomimetic material design. Despite recent efforts to unveil how the excellent mechanical properties of amyloid fibrils originate, it has remained elusive how the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils are determined. Here, we characterize the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils using atomic force microscopy experiments and atomistic simulations. It is shown that the hierarchical structure of amyloid fibrils plays a crucial role in determining their radial elastic property but does not make any effect on their bending elastic property. This is attributed to the role of intermolecular force acting between the filaments (constituting the fibril) on the radial elastic modulus of amyloid fibrils. Our finding illustrates how the hierarchical structure of amyloid fibrils encodes their anisotropic nanomechanical properties. Our study provides key design principles of amyloid fibrils, which endow valuable insight into the underlying mechanisms of amyloid mechanics.
Spatial Learning and Action Planning in a Prefrontal Cortical Network Model
Martinet, Louis-Emmanuel; Sheynikhovich, Denis; Benchenane, Karim; Arleo, Angelo
2011-01-01
The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive “insight” capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates. PMID:21625569
An approach to separating the levels of hierarchical structure building in language and mathematics.
Makuuchi, Michiru; Bahlmann, Jörg; Friederici, Angela D
2012-07-19
We aimed to dissociate two levels of hierarchical structure building in language and mathematics, namely 'first-level' (the build-up of hierarchical structure with externally given elements) and 'second-level' (the build-up of hierarchical structure with internally represented elements produced by first-level processes). Using functional magnetic resonance imaging, we investigated these processes in three domains: sentence comprehension, arithmetic calculation (using Reverse Polish notation, which gives two operands followed by an operator) and a working memory control task. All tasks required the build-up of hierarchical structures at the first- and second-level, resulting in a similar computational hierarchy across language and mathematics, as well as in a working memory control task. Using a novel method that estimates the difference in the integration cost for conditions of different trial durations, we found an anterior-to-posterior functional organization in the prefrontal cortex, according to the level of hierarchy. Common to all domains, the ventral premotor cortex (PMv) supports first-level hierarchy building, while the dorsal pars opercularis (POd) subserves second-level hierarchy building, with lower activation for language compared with the other two tasks. These results suggest that the POd and the PMv support domain-general mechanisms for hierarchical structure building, with the POd being uniquely efficient for language.
TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating
NASA Astrophysics Data System (ADS)
Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi
2017-12-01
Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.
TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating
Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan
2017-01-01
Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials. PMID:29308265
CROSS-SCALE CORRELATIONS AND THE DESIGN AND ANALYSIS OF AVIAN HABITAT SELECTION STUDIES
It has long been suggested that birds select habitat hierarchically, progressing from coarser to finer spatial scales. This hypothesis, in conjunction with the realization that many organisms likely respond to environmental patterns at multiple spatial scales, has led to a large ...
NASA Technical Reports Server (NTRS)
Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.
2012-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.
NASA Astrophysics Data System (ADS)
Wu, Qiusheng; Lane, Charles R.
2017-07-01
In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling-spilling-merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow simulation and hydrologic connectivity analysis.
Hierarchically Organized Behavior and Its Neural Foundations: A Reinforcement Learning Perspective
ERIC Educational Resources Information Center
Botvinick, Matthew M.; Niv, Yael; Barto, Andrew C.
2009-01-01
Research on human and animal behavior has long emphasized its hierarchical structure--the divisibility of ongoing behavior into discrete tasks, which are comprised of subtask sequences, which in turn are built of simple actions. The hierarchical structure of behavior has also been of enduring interest within neuroscience, where it has been widely…
NASA Astrophysics Data System (ADS)
Chu, Fuqiang; Wu, Xiaomin
2016-05-01
Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.
Janssen, Terry
2000-01-01
A system and method for facilitating decision-making comprising a computer program causing linkage of data representing a plurality of argument structure units into a hierarchical argument structure. Each argument structure unit comprises data corresponding to a hypothesis and its corresponding counter-hypothesis, data corresponding to grounds that provide a basis for inference of the hypothesis or its corresponding counter-hypothesis, data corresponding to a warrant linking the grounds to the hypothesis or its corresponding counter-hypothesis, and data corresponding to backing that certifies the warrant. The hierarchical argument structure comprises a top level argument structure unit and a plurality of subordinate level argument structure units. Each of the plurality of subordinate argument structure units comprises at least a portion of the grounds of the argument structure unit to which it is subordinate. Program code located on each of a plurality of remote computers accepts input from one of a plurality of contributors. Each input comprises data corresponding to an argument structure unit in the hierarchical argument structure and supports the hypothesis or its corresponding counter-hypothesis. A second programming code is adapted to combine the inputs into a single hierarchical argument structure. A third computer program code is responsive to the second computer program code and is adapted to represent a degree of support for the hypothesis and its corresponding counter-hypothesis in the single hierarchical argument structure.
Gothe, Emma; Sandin, Leonard; Allen, Craig R.; Angeler, David G.
2014-01-01
The distribution of functional traits within and across spatiotemporal scales has been used to quantify and infer the relative resilience across ecosystems. We use explicit spatial modeling to evaluate within- and cross-scale redundancy in headwater streams, an ecosystem type with a hierarchical and dendritic network structure. We assessed the cross-scale distribution of functional feeding groups of benthic invertebrates in Swedish headwater streams during two seasons. We evaluated functional metrics, i.e., Shannon diversity, richness, and evenness, and the degree of redundancy within and across modeled spatial scales for individual feeding groups. We also estimated the correlates of environmental versus spatial factors of both functional composition and the taxonomic composition of functional groups for each spatial scale identified. Measures of functional diversity and within-scale redundancy of functions were similar during both seasons, but both within- and cross-scale redundancy were low. This apparent low redundancy was partly attributable to a few dominant taxa explaining the spatial models. However, rare taxa with stochastic spatial distributions might provide additional information and should therefore be considered explicitly for complementing future resilience assessments. Otherwise, resilience may be underestimated. Finally, both environmental and spatial factors correlated with the scale-specific functional and taxonomic composition. This finding suggests that resilience in stream networks emerges as a function of not only local conditions but also regional factors such as habitat connectivity and invertebrate dispersal.
Determinants of genetic structure in a nonequilibrium metapopulation of the plant Silene latifolia.
Fields, Peter D; Taylor, Douglas R
2014-01-01
Population genetic differentiation will be influenced by the demographic history of populations, opportunities for migration among neighboring demes and founder effects associated with repeated extinction and recolonization. In natural populations, these factors are expected to interact with each other and their magnitudes will vary depending on the spatial distribution and age structure of local demes. Although each of these effects has been individually identified as important in structuring genetic variance, their relative magnitude is seldom estimated in nature. We conducted a population genetic analysis in a metapopulation of the angiosperm, Silene latifolia, from which we had more than 20 years of data on the spatial distribution, demographic history, and extinction and colonization of demes. We used hierarchical Bayesian methods to disentangle which features of the populations contributed to among population variation in allele frequencies, including the magnitude and direction of their effects. We show that population age, long-term size and degree of connectivity all combine to affect the distribution of genetic variance; small, recently-founded, isolated populations contributed most to increase FST in the metapopulation. However, the effects of population size and population age are best understood as being modulated through the effects of connectivity to other extant populations, i.e. FST diminishes as populations age, but at a rate that depends how isolated the population is. These spatial and temporal correlates of population structure give insight into how migration, founder effect and within-deme genetic drift have combined to enhance and restrict genetic divergence in a natural metapopulation.
A Two-Way Street: Regulatory Interplay between RNA Polymerase and Nascent RNA Structure.
Zhang, Jinwei; Landick, Robert
2016-04-01
The vectorial (5'-to-3' at varying velocity) synthesis of RNA by cellular RNA polymerases (RNAPs) creates a rugged kinetic landscape, demarcated by frequent, sometimes long-lived, pauses. In addition to myriad gene-regulatory roles, these pauses temporally and spatially program the co-transcriptional, hierarchical folding of biologically active RNAs. Conversely, these RNA structures, which form inside or near the RNA exit channel, interact with the polymerase and adjacent protein factors to influence RNA synthesis by modulating pausing, termination, antitermination, and slippage. Here, we review the evolutionary origin, mechanistic underpinnings, and regulatory consequences of this interplay between RNAP and nascent RNA structure. We categorize and rationalize the extensive linkage between the transcriptional machinery and its product, and provide a framework for future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Jingru; Fan, Cuncai; Ma, Hansong; Wei, Yueguang
2015-06-01
In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated biomaterial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar" structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variation-section pillars sized on the order of several tens of microns. The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.
Charles H. (Hobie) Perry; Kevin J. Horn; R. Quinn Thomas; Linda H. Pardo; Erica A.H. Smithwick; Doug Baldwin; Gregory B. Lawrence; Scott W. Bailey; Sabine Braun; Christopher M. Clark; Mark Fenn; Annika Nordin; Jennifer N. Phelan; Paul G. Schaberg; Sam St. Clair; Richard Warby; Shaun Watmough; Steven S. Perakis
2015-01-01
The abundance of temporally and spatially consistent Forest Inventory and Analysis data facilitates hierarchical/multilevel analysis to investigate factors affecting tree growth, scaling from plot-level to continental scales. Herein we use FIA tree and soil inventories in conjunction with various spatial climate and soils data to estimate species-specific responses of...
Spatial modelling and mapping of female genital mutilation in Kenya.
Achia, Thomas N O
2014-03-25
Female genital mutilation/cutting (FGM/C) is still prevalent in several communities in Kenya and other areas in Africa, as well as being practiced by some migrants from African countries living in other parts of the world. This study aimed at detecting clustering of FGM/C in Kenya, and identifying those areas within the country where women still intend to continue the practice. A broader goal of the study was to identify geographical areas where the practice continues unabated and where broad intervention strategies need to be introduced. The prevalence of FGM/C was investigated using the 2008 Kenya Demographic and Health Survey (KDHS) data. The 2008 KDHS used a multistage stratified random sampling plan to select women of reproductive age (15-49 years) and asked questions concerning their FGM/C status and their support for the continuation of FGM/C. A spatial scan statistical analysis was carried out using SaTScan™ to test for statistically significant clustering of the practice of FGM/C in the country. The risk of FGM/C was also modelled and mapped using a hierarchical spatial model under the Integrated Nested Laplace approximation approach using the INLA library in R. The prevalence of FGM/C stood at 28.2% and an estimated 10.3% of the women interviewed indicated that they supported the continuation of FGM. On the basis of the Deviance Information Criterion (DIC), hierarchical spatial models with spatially structured random effects were found to best fit the data for both response variables considered. Age, region, rural-urban classification, education, marital status, religion, socioeconomic status and media exposure were found to be significantly associated with FGM/C. The current FGM/C status of a woman was also a significant predictor of support for the continuation of FGM/C. Spatial scan statistics confirm FGM clusters in the North-Eastern and South-Western regions of Kenya (p<0.001). This suggests that the fight against FGM/C in Kenya is not yet over. There are still deep cultural and religious beliefs to be addressed in a bid to eradicate the practice. Interventions by government and other stakeholders must address these challenges and target the identified clusters.
A Village Study with Middle School Spatial Organisation.
ERIC Educational Resources Information Center
Mitchell, El
1985-01-01
Demonstrates how elements of a built environment can be introduced to middle school students. Describes activities that address the concept of spatial organziation in a small scale urban environment, suggesting that hierarchical arrangements of settlements, the central place theory, and land use zoning can be taught at the elementary level. (ML)
Managing the world’s largest and complex freshwater ecosystem, the Laurentian Great Lakes, requires a spatially hierarchical basin-wide database of ecological and socioeconomic information that are comparable across the region. To meet such a need, we developed a hierarchi...
Population substructure and space use of Foxe Basin polar bears.
Sahanatien, Vicki; Peacock, Elizabeth; Derocher, Andrew E
2015-07-01
Climate change has been identified as a major driver of habitat change, particularly for sea ice-dependent species such as the polar bear (Ursus maritimus). Population structure and space use of polar bears have been challenging to quantify because of their circumpolar distribution and tendency to range over large areas. Knowledge of movement patterns, home range, and habitat is needed for conservation and management. This is the first study to examine the spatial ecology of polar bears in the Foxe Basin management unit of Nunavut, Canada. Foxe Basin is in the mid-Arctic, part of the seasonal sea ice ecoregion and it is being negatively affected by climate change. Our objectives were to examine intrapopulation spatial structure, to determine movement patterns, and to consider how polar bear movements may respond to changing sea ice habitat conditions. Hierarchical and fuzzy cluster analyses were used to assess intrapopulation spatial structure of geographic position system satellite-collared female polar bears. Seasonal and annual movement metrics (home range, movement rates, time on ice) and home-range fidelity (static and dynamic overlap) were compared to examine the influence of regional sea ice on movements. The polar bears were distributed in three spatial clusters, and there were differences in the movement metrics between clusters that may reflect sea ice habitat conditions. Within the clusters, bears moved independently of each other. Annual and seasonal home-range fidelity was observed, and the bears used two movement patterns: on-ice range residency and annual migration. We predict that home-range fidelity may decline as the spatial and temporal predictability of sea ice changes. These new findings also provide baseline information for managing and monitoring this polar bear population.
Shao, Quan; Jia, Meng
2015-03-18
Since the outbreak of pandemics, influenza has caused extensive attention in the field of public health. It is actually hard to distinguish what is the most effective method to control the influenza transmission within airport terminal. The purpose of this study was to quantitatively evaluate the influences of passenger source, immunity difference and social relation structure on the influenza transmission in terminal. A method combining hierarchical structure of personal contact network with agent-based SEIR model was proposed to analyze the characteristics of influenza diffusion within terminal. Based on the spatial distance between individuals, the hierarchical structure of personal contact network was defined to construct a complex relationship of passengers in the real world. Moreover, the agent-based SEIR model was improved by considering the individual level of influenza spread characteristics. To evaluate the method, this process was fused in simulation based on the constructed personal contact network. In the terminal we investigated, personal contact network was defined by following four layers: social relation structure, procedure partition, procedure area, and the whole terminal. With the growing of layer, the degree distribution curves move right. The value of degree distribution p(k) reached a peak at a specific value, and then back down. Besides, with the increase of layer α, the clustering coefficients presented a tendency to exponential decay. Based on the influenza transmission experiments, the main infected areas were concluded when considering different factors. Moreover, partition of passenger sources was found to impact a lot in departure, while social relation structure imposed a great influence in arrival. Besides, immunity difference exerted no obvious effect on the spread of influenza in the transmission process both in departure and arrival. The proposed method is efficient to reproduce the evolution process of influenza transmission, and exhibits various roles of each factor in different processes, also better reflects the effect of passenger topological character on influenza spread. It contributes to proposing effective influenza measures by airport relevant department and improving the efficiency and ability of epidemic prevention on the public health.
Action detection by double hierarchical multi-structure space-time statistical matching model
NASA Astrophysics Data System (ADS)
Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang
2018-03-01
Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.
Action detection by double hierarchical multi-structure space–time statistical matching model
NASA Astrophysics Data System (ADS)
Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang
2018-06-01
Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.
On the importance of avoiding shortcuts in applying cognitive models to hierarchical data.
Boehm, Udo; Marsman, Maarten; Matzke, Dora; Wagenmakers, Eric-Jan
2018-06-12
Psychological experiments often yield data that are hierarchically structured. A number of popular shortcut strategies in cognitive modeling do not properly accommodate this structure and can result in biased conclusions. To gauge the severity of these biases, we conducted a simulation study for a two-group experiment. We first considered a modeling strategy that ignores the hierarchical data structure. In line with theoretical results, our simulations showed that Bayesian and frequentist methods that rely on this strategy are biased towards the null hypothesis. Secondly, we considered a modeling strategy that takes a two-step approach by first obtaining participant-level estimates from a hierarchical cognitive model and subsequently using these estimates in a follow-up statistical test. Methods that rely on this strategy are biased towards the alternative hypothesis. Only hierarchical models of the multilevel data lead to correct conclusions. Our results are particularly relevant for the use of hierarchical Bayesian parameter estimates in cognitive modeling.
Zhou, Weizheng; Tong, Gangsheng; Wang, Dali; Zhu, Bangshang; Ren, Yu; Butler, Michael; Pelan, Eddie; Yan, Deyue; Zhu, Xinyuan; Stoyanov, Simeon D
2016-04-06
Hierarchical porous structures are ubiquitous in biological organisms and inorganic systems. Although such structures have been replicated, designed, and fabricated, they are often inferior to naturally occurring analogues. Apart from the complexity and multiple functionalities developed by the biological systems, the controllable and scalable production of hierarchically porous structures and building blocks remains a technological challenge. Herein, a facile and scalable approach is developed to fabricate hierarchical hollow spheres with integrated micro-, meso-, and macropores ranging from 1 nm to 100 μm (spanning five orders of magnitude). (Macro)molecules, micro-rods (which play a key role for the creation of robust capsules), and emulsion droplets have been successfully employed as multiple length scale templates, allowing the creation of hierarchical porous macrospheres. Thanks to their specific mechanical strength, these hierarchical porous spheres could be incorporated and assembled as higher level building blocks in various novel materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hierarchical virtual screening approaches in small molecule drug discovery.
Kumar, Ashutosh; Zhang, Kam Y J
2015-01-01
Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.
On the use of a PM2.5 exposure simulator to explain birthweight
Berrocal, Veronica J.; Gelfand, Alan E.; Holland, David M.; Burke, Janet; Miranda, Marie Lynn
2010-01-01
In relating pollution to birth outcomes, maternal exposure has usually been described using monitoring data. Such characterization provides a misrepresentation of exposure as it (i) does not take into account the spatial misalignment between an individual’s residence and monitoring sites, and (ii) it ignores the fact that individuals spend most of their time indoors and typically in more than one location. In this paper, we break with previous studies by using a stochastic simulator to describe personal exposure (to particulate matter) and then relate simulated exposures at the individual level to the health outcome (birthweight) rather than aggregating to a selected spatial unit. We propose a hierarchical model that, at the first stage, specifies a linear relationship between birthweight and personal exposure, adjusting for individual risk factors and introduces random spatial effects for the census tract of maternal residence. At the second stage, our hierarchical model specifies the distribution of each individual’s personal exposure using the empirical distribution yielded by the stochastic simulator as well as a model for the spatial random effects. We have applied our framework to analyze birthweight data from 14 counties in North Carolina in years 2001 and 2002. We investigate whether there are certain aspects and time windows of exposure that are more detrimental to birthweight by building different exposure metrics which we incorporate, one by one, in our hierarchical model. To assess the difference in relating ambient exposure to birthweight versus personal exposure to birthweight, we compare estimates of the effect of air pollution obtained from hierarchical models that linearly relate ambient exposure and birthweight versus those obtained from our modeling framework. Our analysis does not show a significant effect of PM2.5 on birthweight for reasons which we discuss. However, our modeling framework serves as a template for analyzing the relationship between personal exposure and longer term health endpoints. PMID:21691413
Community turnover of wood-inhabiting fungi across hierarchical spatial scales.
Abrego, Nerea; García-Baquero, Gonzalo; Halme, Panu; Ovaskainen, Otso; Salcedo, Isabel
2014-01-01
For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence.
Community Turnover of Wood-Inhabiting Fungi across Hierarchical Spatial Scales
Abrego, Nerea; García-Baquero, Gonzalo; Halme, Panu; Ovaskainen, Otso; Salcedo, Isabel
2014-01-01
For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence. PMID:25058128
NASA Astrophysics Data System (ADS)
Korobova, Elena; Romanov, Sergey
2013-04-01
Efficiency of landscape-geochemical approach was proved to be helpful in spatial and temporal evaluation of the Chernobyl radionuclide distribution in the environment. The peculiarity of such approach is in hierarchical consideration of factors responsible for radionuclide redistribution and behavior in a system of inter-incorporated landscape-geochemical structures of the local and regional scales with due regard to the density of the initial fallout and patterns of radionuclide migration in soil-water-plant systems. The approach has been applied in the studies of distribution of Cs-137, Sr-90 and some other radionuclides in soils and vegetation cover and in evaluation of contribution of the stable iodine supply in soils to spatial variation of risk of thyroid cancer in areas subjected to radioiodine contamination after the Chernobyl accident. The main feature of the proposed approach is simultaneous consideration of two types of spatial heterogeneities: firstly, the inhomogeneity of external radiation exposure due to a complex structure of the contamination field, and, secondly, the landscape geochemical heterogeneity of the affected area, so that the resultant effect of radionuclide impact could significantly vary in space. The main idea of risk assessment in this respect was to reproduce as accurately as possible the result of interference of two surfaces in the form of risk map. The approach, although it demands to overcome a number of methodological difficulties, allows to solve the problems associated with spatially adequate protection of the affected population and optimization of the use of contaminated areas. In general it can serve the basis for development of the idea of the two-level structure of modern radiobiogeochemical provinces formed by superposition of the natural geochemical structures and the fields of technogenic contamination accompanied by the corresponding peculiar and integral biological reactions.
Forbes, Miriam K; Kotov, Roman; Ruggero, Camilo J; Watson, David; Zimmerman, Mark; Krueger, Robert F
2017-11-01
A large body of research has focused on identifying the optimal number of dimensions - or spectra - to model individual differences in psychopathology. Recently, it has become increasingly clear that ostensibly competing models with varying numbers of spectra can be synthesized in empirically derived hierarchical structures. We examined the convergence between top-down (bass-ackwards or sequential principal components analysis) and bottom-up (hierarchical agglomerative cluster analysis) statistical methods for elucidating hierarchies to explicate the joint hierarchical structure of clinical and personality disorders. Analyses examined 24 clinical and personality disorders based on semi-structured clinical interviews in an outpatient psychiatric sample (n=2900). The two methods of hierarchical analysis converged on a three-tier joint hierarchy of psychopathology. At the lowest tier, there were seven spectra - disinhibition, antagonism, core thought disorder, detachment, core internalizing, somatoform, and compulsivity - that emerged in both methods. These spectra were nested under the same three higher-order superspectra in both methods: externalizing, broad thought dysfunction, and broad internalizing. In turn, these three superspectra were nested under a single general psychopathology spectrum, which represented the top tier of the hierarchical structure. The hierarchical structure mirrors and extends upon past research, with the inclusion of a novel compulsivity spectrum, and the finding that psychopathology is organized in three superordinate domains. This hierarchy can thus be used as a flexible and integrative framework to facilitate psychopathology research with varying levels of specificity (i.e., focusing on the optimal level of detailed information, rather than the optimal number of factors). Copyright © 2017 Elsevier Inc. All rights reserved.
A Hierarchical Clustering Methodology for the Estimation of Toxicity
A Quantitative Structure Activity Relationship (QSAR) methodology based on hierarchical clustering was developed to predict toxicological endpoints. This methodology utilizes Ward's method to divide a training set into a series of structurally similar clusters. The structural sim...
Exploring the significance of structural hierarchy in material systems-A review
NASA Astrophysics Data System (ADS)
Pan, Ning
2014-06-01
Structural hierarchy and heterogeneity are inherent features in biological materials, but their significance in affecting the system behaviors is yet to be fully understood. In Sec. I, this article first identifies the major characteristics that manifest, or are resulted from, such hierarchy and heterogeneity in materials. Then in Sec. II, it presents several typical natural material systems including wood, bone, and others from animals to illustrate the proposed views. The paper also discusses a man-made smart material, textiles, to demonstrate that textiles are hierarchal, multifunctional, highly complex, and arguably the engineered material closest on a par with biological materials in complexity, and, more importantly, we can still learn quite a few new things from them in development of novel materials. In Sec. III, the paper summarizes several general approaches in developing a hierarchal material system at various scales, including structure thinning and splitting, laminating and layering, spatial and angular orientation, heterogenization and hybridization, and analyzes the advantages associated with them. It also stresses the adverse consequences once the existing structural hierarchy breaks down due to various mutations in biological systems. It discusses, in particular, the influences of moisture and air on material properties, given the near ubiquitousness of both air and water in materials. It next deals with in Sec. IV, some theoretical issues in material research including packing and ordering, the bi-modular mechanics, the behavior non-affinities due to disparity in hierarchal levels, the importance of system dimensionality in a hierarchal material system, and more philosophically, the issues of Nature's wisdom versus Intelligent Design. Section V then offers some concluding remarks, including a recap of the major issues covered in this article, and some general conclusions derived from the analyses and discussions. The main purpose of this paper is to make an effort to explore, identify, derive, or theorize some generic principles based on the existing results, not to offer another comprehensive review of current research activities in the fields for that there already exist some excellent ones. This paper examines the related topics with several approaches to not only reveal the underlying geometrical and physical mechanisms but also to emphasize the ways in which such mechanisms may be applied to developing engineered material systems with novel properties.
Wu, Dehua
2016-01-01
The spatial position and distribution of human body meridian are expressed limitedly in the decision support system (DSS) of acupuncture and moxibustion at present, which leads to the failure to give the effective quantitative analysis on the spatial range and the difficulty for the decision-maker to provide a realistic spatial decision environment. Focusing on the limit spatial expression in DSS of acupuncture and moxibustion, it was proposed that on the basis of the geographic information system, in association of DSS technology, the design idea was developed on the human body meridian spatial DSS. With the 4-layer service-oriented architecture adopted, the data center integrated development platform was taken as the system development environment. The hierarchical organization was done for the spatial data of human body meridian via the directory tree. The structured query language (SQL) server was used to achieve the unified management of spatial data and attribute data. The technologies of architecture, configuration and plug-in development model were integrated to achieve the data inquiry, buffer analysis and program evaluation of the human body meridian spatial DSS. The research results show that the human body meridian spatial DSS could reflect realistically the spatial characteristics of the spatial position and distribution of human body meridian and met the constantly changeable demand of users. It has the powerful spatial analysis function and assists with the scientific decision in clinical treatment and teaching of acupuncture and moxibustion. It is the new attempt to the informatization research of human body meridian.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu,P.; Block, H.; Niu, Z.
2007-01-01
Wheat differs from corn in biodegradation kinetics and fermentation characteristics. Wheat exhibits a relatively high rate (23% h{sup 01}) and extent (78% DM) of biodegradation, which can lead to metabolic problems such as acidosis and bloat in ruminants. The objective of this study was to rapidly characterize the molecular chemistry of the internal structure of wheat (cv. AC Barrie) and reveal both its structural chemical make-up and nutrient component matrix by analyzing the intensity and spatial distribution of molecular functional groups within the intact seed using advanced synchrotron-powered Fourier transform infrared (FTIR) microspectroscopy. The experiment was performed at the U2Bmore » station of the National Synchrotron Light Source at Brookhaven National Laboratory, New York, USA. The wheat tissue was imaged systematically from the pericarp, seed coat, aleurone layer and endosperm under the peaks at {approx}1732 (carbonyl C{double_bond}O ester), 1515 (aromatic compound of lignin), 1650 (amide I), 1025 (non-structural CHO), 1550 (amide II), 1246 (cellulosic material), 1160, 1150, 1080, 930, 860 (all CHO), 3350 (OH and NH stretching), 2928 (CH{sub 2} stretching band) and 2885 cm{sup -1} (CH{sub 3} stretching band). Hierarchical cluster analysis and principal component analysis were applied to analyze the molecular FTIR spectra obtained from the different inherent structures within the intact wheat tissues. The results showed that, with synchrotron-powered FTIR microspectroscopy, images of the molecular chemistry of wheat could be generated at an ultra-spatial resolution. The features of aromatic lignin, structural and non-structural carbohydrates, as well as nutrient make-up and interactions in the seeds, could be revealed. Both principal component analysis and hierarchical cluster analysis methods are conclusive in showing that they can discriminate and classify the different inherent structures within the seed tissue. The wheat exhibited distinguishable differences in the structural and nutrient make-up among the pericarp, seed coat, aleurone layer and endosperm. Such information on the molecular chemistry can be used for grain-breeding programs for selecting a superior variety of wheat targeted for food and feed purposes and for predicting wheat quality and nutritive value in humans and animals. Thus advanced synchrotron-powered FTIR technology can provide a greater understanding of the plant-animal interface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Qingyun, E-mail: hizhengqingyun@126.com; Zhang, Xiangyang; Shen, Youming
Graphical abstract: Hydrothermal-synthesized NiCo{sub 2}O{sub 4} mesowall films exhibit porous structure and high capacity as well as good cycling life for supercapacitor application. - Highlights: • Hierarchical porous NiCo{sub 2}O{sub 4} nanowall films are prepared by a hydrothermal method. • NiCo{sub 2}O{sub 4} nanowall films show excellent electrochemical performance. • Hierarchical porous film structure is favorable for fast ion/electron transfer. - Abstract: Hierarchical porous NiCo{sub 2}O{sub 4} films composed of nanowalls on nickel foam are synthesized via a facile hydrothermal method. Besides the mesoporous walls, the NiCo{sub 2}O{sub 4} nanowalls are interconnected with each other to form hierarchical porous structure.more » These unique porous structured films possess a high specific surface area. The supercapacitor performance of the hierarchical porous NiCo{sub 2}O{sub 4} film is fully characterized. A high capacity of 130 mA h g{sup −1} is achieved at 2 A g{sup −1} with 97% capacity maintained after 2,000 cycles. Importantly, 75.6% of capacity is retained when the current density changes from 3 A g{sup −1} to 36 A g{sup −1}. The superior electrochemical performance is mainly due to the unique hierarchical porous structure with large surface area as well as shorter diffusion length for ion and charge transport.« less
NASA Astrophysics Data System (ADS)
Cai, Junyan; Wang, Shuhui; Zhang, Junhong; Liu, Yang; Hang, Tao; Ling, Huiqin; Li, Ming
2018-04-01
In this paper, a superhydrophobic surface with hierarchical structure was fabricated by chemical deposition of Cu micro-cones array, followed by chemical grafting of poly(methyl methacrylate) (PMMA). Water contact measurements give contact angle of 131.0° on these surfaces after PMMA grafting of 2 min and 165.2° after 6 min. The superhydrophobicity results from two factors: (1) the hierarchical structure due to Cu micro-cones array and the second level structure caused by intergranular corrosion during grafting of PMMA (confirmed by the scanning electron microscopy) and (2) the chemical modification of a low surface energy PMMA layer (confirmed by Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy). In the chemical grafting process, the spontaneous reduction of nitrobenzene diazonium (NBD) tetrafluoroborate not only causes the corrosion of the Cu surface that leads to a hierarchical structure, but also initiates the polymerization of methyl methacrylate (MMA) monomers and thus the low free energy surface. Such a robust approach to fabricate the hierarchical structured surface with superhydrophobicity is expected to have practical application in anti-corrosion industry.
The study of dynamic force acted on water strider leg departing from water surface
NASA Astrophysics Data System (ADS)
Sun, Peiyuan; Zhao, Meirong; Jiang, Jile; Zheng, Yelong
2018-01-01
Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.
Correlation between the hierarchical structures and nanomechanical properties of amyloid fibrils.
Lee, Gyudo; Lee, Wonseok; Baik, Seunghyun; Kim, Yong Ho; Eom, Kilho; Kwon, Taeyun
2018-04-12
Amyloid fibrils have recently been highlighted due to their excellent mechanical properties, which not only play a role in their biological functions but also imply their applications in biomimetic material design. Despite recent efforts to unveil how the excellent mechanical properties of amyloid fibrils originate, it has remained elusive how the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils are determined. Here, we characterize the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils using atomic force microscopy (AFM) experiments and atomistic simulations. It is shown that the hierarchical structure of amyloid fibrils plays a crucial role in determining their radial elastic property but does not make any effect on their radial bending elastic property. This is attributed to the role of intermolecular force acting between the filaments (constituting the fibril) on the radial elastic modulus of amyloid fibrils. Our finding illustrates how the hierarchical structure of amyloid fibrils encodes their anisotropic nanomechanical properties. Our study provides key design principles of amyloid fibrils, which endow valuable insight into the underlying mechanisms of amyloid mechanics. © 2018 IOP Publishing Ltd.
3D printed hierarchical honeycombs with shape integrity under large compressive deformations
Chen, Yanyu; Li, Tiantian; Jia, Zian; ...
2017-10-12
Here, we describe the in-plane compressive performance of a new type of hierarchical cellular structure created by replacing cell walls in regular honeycombs with triangular lattice configurations. The fabrication of this relatively complex material architecture with size features spanning from micrometer to centimeter is facilitated by the availability of commercial 3D printers. We apply to these hierarchical honeycombs a thermal treatment that facilitates the shape preservation and structural integrity of the structures under large compressive loading. The proposed hierarchical honeycombs exhibit a progressive failure mode, along with improved stiffness and energy absorption under uniaxial compression. High energy dissipation and shapemore » integrity at large imposed strains (up to 60%) have also been observed in these hierarchical honeycombs under cyclic loading. Experimental and numerical studies suggest that these anomalous mechanical behaviors are attributed to the introduction of a structural hierarchy, intrinsically controlled by the cell wall slenderness of the triangular lattice and by the shape memory effect induced by the thermal and mechanical compressive treatment.« less
NASA Astrophysics Data System (ADS)
Wu, Zhijing; Li, Fengming; Zhang, Chuanzeng
2018-05-01
Inspired by the hierarchical structures of butterfly wing surfaces, a new kind of lattice structures with a two-order hierarchical periodicity is proposed and designed, and the band-gap properties are investigated by the spectral element method (SEM). The equations of motion of the whole structure are established considering the macro and micro periodicities of the system. The efficiency of the SEM is exploited in the modeling process and validated by comparing the results with that of the finite element method (FEM). Based on the highly accurate results in the frequency domain, the dynamic behaviors of the proposed two-order hierarchical structures are analyzed. An original and interesting finding is the existence of the distinct macro and micro stop-bands in the given frequency domain. The mechanisms for these two types of band-gaps are also explored. Finally, the relations between the hierarchical periodicities and the different types of the stop-bands are investigated by analyzing the parametrical influences.
3D printed hierarchical honeycombs with shape integrity under large compressive deformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yanyu; Li, Tiantian; Jia, Zian
Here, we describe the in-plane compressive performance of a new type of hierarchical cellular structure created by replacing cell walls in regular honeycombs with triangular lattice configurations. The fabrication of this relatively complex material architecture with size features spanning from micrometer to centimeter is facilitated by the availability of commercial 3D printers. We apply to these hierarchical honeycombs a thermal treatment that facilitates the shape preservation and structural integrity of the structures under large compressive loading. The proposed hierarchical honeycombs exhibit a progressive failure mode, along with improved stiffness and energy absorption under uniaxial compression. High energy dissipation and shapemore » integrity at large imposed strains (up to 60%) have also been observed in these hierarchical honeycombs under cyclic loading. Experimental and numerical studies suggest that these anomalous mechanical behaviors are attributed to the introduction of a structural hierarchy, intrinsically controlled by the cell wall slenderness of the triangular lattice and by the shape memory effect induced by the thermal and mechanical compressive treatment.« less
Self Assembled Structures by Directional Solidification of Eutectics
NASA Technical Reports Server (NTRS)
Dynys, Frederick W.; Sayir, Ali
2004-01-01
Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.
Brand, John; Johnson, Aaron P
2014-01-01
In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks.
Brand, John; Johnson, Aaron P.
2014-01-01
In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks. PMID:25520675
NASA Astrophysics Data System (ADS)
Malek, Anna J.; Collie, Jeremy S.; Gartland, James
2014-06-01
The abundance, biomass, diversity, and species composition of the demersal fish and invertebrate community in Rhode Island Sound and Block Island Sound, an area identified for offshore renewable energy development, were evaluated for spatial and seasonal structure. We conducted 58 otter trawls and 51 beam trawls in the spring, summer and fall of 2009-2012, and incorporated additional data from 88 otter trawls conducted by the Northeast Area Monitoring and Assessment Program. We used regionally-grouped abundance, biomass, diversity, and size spectra to assess spatial patterns in the aggregate fish community, and hierarchical cluster analysis to evaluate trends in species assemblages. Our analyses revealed coherent gradients in fish community biomass, diversity and species composition extending from inshore to offshore waters, as well as patterns related to the differing bathymetry of Rhode Island and Block Island Sounds. The fish communities around Block Island and Cox's Ledge are particularly diverse, suggesting that the proximity of hard bottom habitat may be important in structuring fish communities in this area. Species assemblages in Rhode Island and Block Island Sounds are characterized by a combination of piscivores (silver hake, summer flounder, spiny dogfish), benthivores (American lobster, black sea bass, Leucoraja spp. skates, scup) and planktivores (sea scallop), and exhibit geographic patterns that are persistent from year to year, yet variable by season. Such distributions reflect the cross-shelf migration of fish and invertebrate species in the spring and fall, highlighting the importance of considering seasonal fish behavior when planning construction schedules for offshore development projects. The fine spatial scale (10 s of kms) of this research makes it especially valuable for local marine spatial planning efforts by identifying local-scale patterns in fish community structure that will enable future assessment of the ecological impacts of offshore development. As such, this knowledge of the spatial and temporal structure of the demersal fish community in Rhode Island and Block Island Sounds will help to guide the placement of offshore structures so as to preserve the ecological and economic value of the area.
Construction of anatase/rutile TiO2 hollow boxes for highly efficient photocatalytic performance
NASA Astrophysics Data System (ADS)
Jia, Changchao; Zhang, Xiao; Yang, Ping
2018-02-01
Hollow TiO2 hierarchical boxes with suitable anatase and rutile ratios were designed for photocatalysis. The unique hierarchical structure was fabricated via a Topotactic synthetic method. CaTiO3 cubes were acted as the sacrificial templates to create TiO2 hollow hierarchical boxes with well-defined phase distribution. The phase composition of the hollow TiO2 hierarchical boxes is similar to that of TiO2 P25 nanoparticles (∼80% anatase, and 20% rutile). Compared with nanaoparticles, TiO2 hollow boxes with hierarchical structures exhibited an excellent performance in the photocatalytic degradation of methylene blue organic pollutant. Quantificationally, the degradation rate of the hollow boxes is higher than that of TiO2 P25 nanoparticles by a factor of 2.7. This is ascribed that hollow structure provide an opportunity for using incident light more efficiently. The surface hierarchical and well-organized porous structures are beneficial to supply more active sites and enough transport channels for reactant molecules. The boxes consist of single crystal anatase and rutile combined well with each other, which gives photon-generated carriers transfer efficiently.
Hierarchical star formation across the grand-design spiral NGC 1566
NASA Astrophysics Data System (ADS)
Gouliermis, Dimitrios A.; Elmegreen, Bruce G.; Elmegreen, Debra M.; Calzetti, Daniela; Cignoni, Michele; Gallagher, John S., III; Kennicutt, Robert C.; Klessen, Ralf S.; Sabbi, Elena; Thilker, David; Ubeda, Leonardo; Aloisi, Alessandra; Adamo, Angela; Cook, David O.; Dale, Daniel; Grasha, Kathryn; Grebel, Eva K.; Johnson, Kelsey E.; Sacchi, Elena; Shabani, Fayezeh; Smith, Linda J.; Wofford, Aida
2017-06-01
We investigate how star formation is spatially organized in the grand-design spiral NGC 1566 from deep Hubble Space Telescope photometry with the Legacy ExtraGalactic UV Survey. Our contour-based clustering analysis reveals 890 distinct stellar conglomerations at various levels of significance. These star-forming complexes are organized in a hierarchical fashion with the larger congregations consisting of smaller structures, which themselves fragment into even smaller and more compact stellar groupings. Their size distribution, covering a wide range in length-scales, shows a power law as expected from scale-free processes. We explain this shape with a simple 'fragmentation and enrichment' model. The hierarchical morphology of the complexes is confirmed by their mass-size relation that can be represented by a power law with a fractional exponent, analogous to that determined for fractal molecular clouds. The surface stellar density distribution of the complexes shows a lognormal shape similar to that for supersonic non-gravitating turbulent gas. Between 50 and 65 per cent of the recently formed stars, as well as about 90 per cent of the young star clusters, are found inside the stellar complexes, located along the spiral arms. We find an age difference between young stars inside the complexes and those in their direct vicinity in the arms of at least 10 Myr. This time-scale may relate to the minimum time for stellar evaporation, although we cannot exclude the in situ formation of stars. As expected, star formation preferentially occurs in spiral arms. Our findings reveal turbulent-driven hierarchical star formation along the arms of a grand-design galaxy.
A novel snowflake-like SnO2 hierarchical architecture with superior gas sensing properties
NASA Astrophysics Data System (ADS)
Li, Yanqiong
2018-02-01
Snowflake-like SnO2 hierarchical architecture has been synthesized via a facile hydrothermal method and followed by calcination. The SnO2 hierarchical structures are assembled with thin nanoflakes blocks, which look like snowflake shape. A possible mechanism for the formation of the SnO2 hierarchical structures is speculated. Moreover, gas sensing tests show that the sensor based on snowflake-like SnO2 architectures exhibited excellent gas sensing properties. The enhancement may be attributed to its unique structures, in which the porous feature on the snowflake surface could further increase the active surface area of the materials and provide facile pathways for the target gas.
Planning paths through a spatial hierarchy - Eliminating stair-stepping effects
NASA Technical Reports Server (NTRS)
Slack, Marc G.
1989-01-01
Stair-stepping effects are a result of the loss of spatial continuity resulting from the decomposition of space into a grid. This paper presents a path planning algorithm which eliminates stair-stepping effects induced by the grid-based spatial representation. The algorithm exploits a hierarchical spatial model to efficiently plan paths for a mobile robot operating in dynamic domains. The spatial model and path planning algorithm map to a parallel machine, allowing the system to operate incrementally, thereby accounting for unexpected events in the operating space.
Are watershed and lacustrine controls on planktonic N2 fixation hierarchically structured?
Scott, J Thad; Doyle, Robert D; Prochnow, Shane J; White, Joseph D
2008-04-01
N2 fixation can be an important source of N to limnetic ecosystems and can influence the structure of phytoplankton communities. However, watershed-scale conditions that favor N2 fixation in lakes and reservoirs have not been well studied. We measured N2 fixation and lacustrine variables monthly over a 19-month period in Waco Reservoir, Texas, USA, and linked these data with nutrient-loading estimates from a physically based watershed model. Readily available topographic, soil, land cover, effluent discharge, and climate data were used in the Soil and Water Assessment Tool (SWAT) to derive watershed nutrient-loading estimates. Categorical and regression tree (CART) analysis revealed that lacustrine and watershed correlates of N2 fixation were hierarchically structured. Lacustrine conditions showed greater predictive capability temporally. For instance, low NO3(-) concentration (<25 microg N/L) and high water temperatures (>27 degrees C) in the reservoir were correlated with the initiation of N2 fixation seasonally. When lacustrine conditions were favorable for N2 fixation, watershed conditions appeared to influence spatial patterns of N2 fixation within the reservoir. For example, spatially explicit patterns of N2 fixation were correlated with the ratio of N:P in nutrient loadings and the N loading rate, which were driven by anthropogenic activity in the watershed and periods of low stream flow, respectively. Although N2 fixation contributed <5% of the annual N load to the reservoir, 37% of the N load was derived from atmospheric N2 fixation during summertime when stream flow in the watershed was low. This study provides evidence that watershed anthropogenic activity can exert control on planktonic N2 fixation, but that temporality is controlled by lacustrine conditions. Furthermore, this study also supports suggestions that reduced inflows may increase the propensity of N2-fixing cyanobacterial blooms in receiving waters of anthropogenically modified landscapes.
Wang, L.; Infante, D.; Esselman, P.; Cooper, A.; Wu, D.; Taylor, W.; Beard, D.; Whelan, G.; Ostroff, A.
2011-01-01
Fisheries management programs, such as the National Fish Habitat Action Plan (NFHAP), urgently need a nationwide spatial framework and database for health assessment and policy development to protect and improve riverine systems. To meet this need, we developed a spatial framework and database using National Hydrography Dataset Plus (I-.100,000-scale); http://www.horizon-systems.com/nhdplus). This framework uses interconfluence river reaches and their local and network catchments as fundamental spatial river units and a series of ecological and political spatial descriptors as hierarchy structures to allow users to extract or analyze information at spatial scales that they define. This database consists of variables describing channel characteristics, network position/connectivity, climate, elevation, gradient, and size. It contains a series of catchment-natural and human-induced factors that are known to influence river characteristics. Our framework and database assembles all river reaches and their descriptors in one place for the first time for the conterminous United States. This framework and database provides users with the capability of adding data, conducting analyses, developing management scenarios and regulation, and tracking management progresses at a variety of spatial scales. This database provides the essential data needs for achieving the objectives of NFHAP and other management programs. The downloadable beta version database is available at http://ec2-184-73-40-15.compute-1.amazonaws.com/nfhap/main/.
MacNab, Ying C
2016-08-01
This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.
NASA thesaurus. Volume 1: Hierarchical listing
NASA Technical Reports Server (NTRS)
1985-01-01
There are 16,835 postable terms and 3,765 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary.
NASA Thesaurus. Volume 1: Hierarchical listing
NASA Technical Reports Server (NTRS)
1982-01-01
There are 16,713 postable terms and 3,716 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary.
Spectral-Spatial Classification of Hyperspectral Images Using Hierarchical Optimization
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2011-01-01
A new spectral-spatial method for hyperspectral data classification is proposed. For a given hyperspectral image, probabilistic pixelwise classification is first applied. Then, hierarchical step-wise optimization algorithm is performed, by iteratively merging neighboring regions with the smallest Dissimilarity Criterion (DC) and recomputing class labels for new regions. The DC is computed by comparing region mean vectors, class labels and a number of pixels in the two regions under consideration. The algorithm is converged when all the pixels get involved in the region merging procedure. Experimental results are presented on two remote sensing hyperspectral images acquired by the AVIRIS and ROSIS sensors. The proposed approach improves classification accuracies and provides maps with more homogeneous regions, when compared to previously proposed classification techniques.
A spectral-spatial-dynamic hierarchical Bayesian (SSD-HB) model for estimating soybean yield
NASA Astrophysics Data System (ADS)
Kazama, Yoriko; Kujirai, Toshihiro
2014-10-01
A method called a "spectral-spatial-dynamic hierarchical-Bayesian (SSD-HB) model," which can deal with many parameters (such as spectral and weather information all together) by reducing the occurrence of multicollinearity, is proposed. Experiments conducted on soybean yields in Brazil fields with a RapidEye satellite image indicate that the proposed SSD-HB model can predict soybean yield with a higher degree of accuracy than other estimation methods commonly used in remote-sensing applications. In the case of the SSD-HB model, the mean absolute error between estimated yield of the target area and actual yield is 0.28 t/ha, compared to 0.34 t/ha when conventional PLS regression was applied, showing the potential effectiveness of the proposed model.
Mansouri, Mohammad; Teshnehlab, Mohammad; Aliyari Shoorehdeli, Mahdi
2015-05-01
In this paper, a novel adaptive hierarchical fuzzy control system based on the variable structure control is developed for a class of SISO canonical nonlinear systems in the presence of bounded disturbances. It is assumed that nonlinear functions of the systems be completely unknown. Switching surfaces are incorporated into the hierarchical fuzzy control scheme to ensure the system stability. A fuzzy soft switching system decides the operation area of the hierarchical fuzzy control and variable structure control systems. All the nonlinearly appeared parameters of conclusion parts of fuzzy blocks located in different layers of the hierarchical fuzzy control system are adjusted through adaptation laws deduced from the defined Lyapunov function. The proposed hierarchical fuzzy control system reduces the number of rules and consequently the number of tunable parameters with respect to the ordinary fuzzy control system. Global boundedness of the overall adaptive system and the desired precision are achieved using the proposed adaptive control system. In this study, an adaptive hierarchical fuzzy system is used for two objectives; it can be as a function approximator or a control system based on an intelligent-classic approach. Three theorems are proven to investigate the stability of the nonlinear dynamic systems. The important point about the proposed theorems is that they can be applied not only to hierarchical fuzzy controllers with different structures of hierarchical fuzzy controller, but also to ordinary fuzzy controllers. Therefore, the proposed algorithm is more general. To show the effectiveness of the proposed method four systems (two mechanical, one mathematical and one chaotic) are considered in simulations. Simulation results demonstrate the validity, efficiency and feasibility of the proposed approach to control of nonlinear dynamic systems. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Ways of looking ahead: hierarchical planning in language production.
Lee, Eun-Kyung; Brown-Schmidt, Sarah; Watson, Duane G
2013-12-01
It is generally assumed that language production proceeds incrementally, with chunks of linguistic structure planned ahead of speech. Extensive research has examined the scope of language production and suggests that the size of planned chunks varies across contexts (Ferreira & Swets, 2002; Wagner & Jescheniak, 2010). By contrast, relatively little is known about the structure of advance planning, specifically whether planning proceeds incrementally according to the surface structure of the utterance, or whether speakers plan according to the hierarchical relationships between utterance elements. In two experiments, we examine the structure and scope of lexical planning in language production using a picture description task. Analyses of speech onset times and word durations show that speakers engage in hierarchical planning such that structurally dependent lexical items are planned together and that hierarchical planning occurs for both direct and indirect dependencies. Copyright © 2013 Elsevier B.V. All rights reserved.
Nonequilibrium dynamics of probe filaments in actin-myosin networks
NASA Astrophysics Data System (ADS)
Gladrow, J.; Broedersz, C. P.; Schmidt, C. F.
2017-08-01
Active dynamic processes of cells are largely driven by the cytoskeleton, a complex and adaptable semiflexible polymer network, motorized by mechanoenzymes. Small dimensions, confined geometries, and hierarchical structures make it challenging to probe dynamics and mechanical response of such networks. Embedded semiflexible probe polymers can serve as nonperturbing multiscale probes to detect force distributions in active polymer networks. We show here that motor-induced forces transmitted to the probe polymers are reflected in nonequilibrium bending dynamics, which we analyze in terms of spatial eigenmodes of an elastic beam under steady-state conditions. We demonstrate how these active forces induce correlations among the mode amplitudes, which furthermore break time-reversal symmetry. This leads to a breaking of detailed balance in this mode space. We derive analytical predictions for the magnitude of resulting probability currents in mode space in the white-noise limit of motor activity. We relate the structure of these currents to the spatial profile of motor-induced forces along the probe polymers and provide a general relation for observable currents on two-dimensional hyperplanes.
Mass distribution and spatial organization of the linear bacterial motor of Spiroplasma citri R8A2.
Trachtenberg, Shlomo; Andrews, S Brian; Leapman, Richard D
2003-03-01
In the simple, helical, wall-less bacterial genus Spiroplasma, chemotaxis and motility are effected by a linear, contractile motor arranged as a flat cytoskeletal ribbon attached to the inner side of the membrane along the shortest helical line. With scanning transmission electron microscopy and diffraction analysis, we determined the hierarchical and spatial organization of the cytoskeleton of Spiroplasma citri R8A2. The structural unit appears to be a fibril, approximately 5 nm wide, composed of dimers of a 59-kDa protein; each ribbon is assembled from seven fibril pairs. The functional unit of the intact ribbon is a pair of aligned fibrils, along which pairs of dimers form tetrameric ring-like repeats. On average, isolated and purified ribbons contain 14 fibrils or seven well-aligned fibril pairs, which are the same structures observed in the intact cell. Scanning transmission electron microscopy mass analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified cytoskeletons indicate that the 59-kDa protein is the only constituent of the ribbons.
Validating spatial structure in canopy water content using geostatistics
NASA Technical Reports Server (NTRS)
Sanderson, E. W.; Zhang, M. H.; Ustin, S. L.; Rejmankova, E.; Haxo, R. S.
1995-01-01
Heterogeneity in ecological phenomena are scale dependent and affect the hierarchical structure of image data. AVIRIS pixels average reflectance produced by complex absorption and scattering interactions between biogeochemical composition, canopy architecture, view and illumination angles, species distributions, and plant cover as well as other factors. These scales affect validation of pixel reflectance, typically performed by relating pixel spectra to ground measurements acquired at scales of 1m(exp 2) or less (e.g., field spectra, foilage and soil samples, etc.). As image analysis becomes more sophisticated, such as those for detection of canopy chemistry, better validation becomes a critical problem. This paper presents a methodology for bridging between point measurements and pixels using geostatistics. Geostatistics have been extensively used in geological or hydrogeolocial studies but have received little application in ecological studies. The key criteria for kriging estimation is that the phenomena varies in space and that an underlying controlling process produces spatial correlation between the measured data points. Ecological variation meets this requirement because communities vary along environmental gradients like soil moisture, nutrient availability, or topography.
NASA Astrophysics Data System (ADS)
Yuan, Yanbin; Zhou, You; Zhu, Yaqiong; Yuan, Xiaohui; Sælthun, N. R.
2007-11-01
Based on digital technology, flood routing simulation system development is an important component of "digital catchment". Taking QingJiang catchment as a pilot case, in-depth analysis on informatization of Qingjiang catchment management being the basis, aiming at catchment data's multi-source, - dimension, -element, -subject, -layer and -class feature, the study brings the design thought and method of "subject-point-source database" (SPSD) to design system structure in order to realize the unified management of catchments data in great quantity. Using the thought of integrated spatial information technology for reference, integrating hierarchical structure development model of digital catchment is established. The model is general framework of the flood routing simulation system analysis, design and realization. In order to satisfy the demands of flood routing three-dimensional simulation system, the object-oriented spatial data model are designed. We can analyze space-time self-adapting relation between flood routing and catchments topography, express grid data of terrain by using non-directed graph, apply breadth first search arithmetic, set up search method for the purpose of dynamically searching stream channel on the basis of simulated three-dimensional terrain. The system prototype is therefore realized. Simulation results have demonstrated that the proposed approach is feasible and effective in the application.
Hierarchical spatial models for predicting tree species assemblages across large domains
Andrew O. Finley; Sudipto Banerjee; Ronald E. McRoberts
2009-01-01
Spatially explicit data layers of tree species assemblages, referred to as forest types or forest type groups, are a key component in large-scale assessments of forest sustainability, biodiversity, timber biomass, carbon sinks and forest health monitoring. This paper explores the utility of coupling georeferenced national forest inventory (NFI) data with readily...
Modeling stream network-scale variation in Coho salmon overwinter survival and smolt size
Joseph L. Ebersole; Mike E. Colvin; Parker J. Wigington; Scott G. Leibowitz; Joan P. Baker; Jana E. Compton; Bruce A. Miller; Michael A. Carins; Bruce P. Hansen; Henry R. La Vigne
2009-01-01
We used multiple regression and hierarchical mixed-effects models to examine spatial patterns of overwinter survival and size at smolting in juvenile coho salmon Oncorhynchus kisutch in relation to habitat attributes across an extensive stream network in southwestern Oregon over 3 years. Contributing basin area explained the majority of spatial...
Systems view on spatial planning and perception based on invariants in agent-environment dynamics
Mettler, Bérénice; Kong, Zhaodan; Li, Bin; Andersh, Jonathan
2015-01-01
Modeling agile and versatile spatial behavior remains a challenging task, due to the intricate coupling of planning, control, and perceptual processes. Previous results have shown that humans plan and organize their guidance behavior by exploiting patterns in the interactions between agent or organism and the environment. These patterns, described under the concept of Interaction Patterns (IPs), capture invariants arising from equivalences and symmetries in the interaction with the environment, as well as effects arising from intrinsic properties of human control and guidance processes, such as perceptual guidance mechanisms. The paper takes a systems' perspective, considering the IP as a unit of organization, and builds on its properties to present a hierarchical model that delineates the planning, control, and perceptual processes and their integration. The model's planning process is further elaborated by showing that the IP can be abstracted, using spatial time-to-go functions. The perceptual processes are elaborated from the hierarchical model. The paper provides experimental support for the model's ability to predict the spatial organization of behavior and the perceptual processes. PMID:25628524
Huang, Lei; Goldsmith, Jeff; Reiss, Philip T.; Reich, Daniel S.; Crainiceanu, Ciprian M.
2013-01-01
Diffusion tensor imaging (DTI) measures water diffusion within white matter, allowing for in vivo quantification of brain pathways. These pathways often subserve specific functions, and impairment of those functions is often associated with imaging abnormalities. As a method for predicting clinical disability from DTI images, we propose a hierarchical Bayesian “scalar-on-image” regression procedure. Our procedure introduces a latent binary map that estimates the locations of predictive voxels and penalizes the magnitude of effect sizes in these voxels, thereby resolving the ill-posed nature of the problem. By inducing a spatial prior structure, the procedure yields a sparse association map that also maintains spatial continuity of predictive regions. The method is demonstrated on a simulation study and on a study of association between fractional anisotropy and cognitive disability in a cross-sectional sample of 135 multiple sclerosis patients. PMID:23792220
Xu, Zhanwen; Lin, Jiaping; Zhang, Liangshun; Wang, Liquan; Wang, Gengchao; Tian, Xiaohui; Jiang, Tao
2018-06-14
We applied a multi-scale approach coupling dissipative particle dynamics method with a drift-diffusion model to elucidate the photovoltaic properties of multiblock copolymers consisting of alternating electron donor and acceptor blocks. A series of hierarchical lamellae-in-lamellar structures were obtained from the self-assembly of the multiblock copolymers. A distinct improvement in photovoltaic performance upon the morphology transformation from lamella to lamellae-in-lamella was observed. The hierarchical lamellae-in-lamellar structures significantly enhanced exciton dissociation and charge carrier transport, which consequently contributed to the improved photovoltaic performance. Based on our theoretical calculations, the hierarchical nanostructures can achieve a much enhanced energy conversion efficiency, improved by around 25% compared with that of general ones, through structure modulation on number and size of the small-length-scale domains. Our findings are supported by recent experimental evidence and yield guidelines for designing hierarchical materials with improved photovoltaic properties.
Brely, Lucas; Bosia, Federico; Pugno, Nicola M
2018-06-20
Contact unit size reduction is a widely studied mechanism as a means to improve adhesion in natural fibrillar systems, such as those observed in beetles or geckos. However, these animals also display complex structural features in the way the contact is subdivided in a hierarchical manner. Here, we study the influence of hierarchical fibrillar architectures on the load distribution over the contact elements of the adhesive system, and the corresponding delamination behaviour. We present an analytical model to derive the load distribution in a fibrillar system loaded in shear, including hierarchical splitting of contacts, i.e. a "hierarchical shear-lag" model that generalizes the well-known shear-lag model used in mechanics. The influence on the detachment process is investigated introducing a numerical procedure that allows the derivation of the maximum delamination force as a function of the considered geometry, including statistical variability of local adhesive energy. Our study suggests that contact splitting generates improved adhesion only in the ideal case of extremely compliant contacts. In real cases, to produce efficient adhesive performance, contact splitting needs to be coupled with hierarchical architectures to counterbalance high load concentrations resulting from contact unit size reduction, generating multiple delamination fronts and helping to avoid detrimental non-uniform load distributions. We show that these results can be summarized in a generalized adhesion scaling scheme for hierarchical structures, proving the beneficial effect of multiple hierarchical levels. The model can thus be used to predict the adhesive performance of hierarchical adhesive structures, as well as the mechanical behaviour of composite materials with hierarchical reinforcements.
Segregating the core computational faculty of human language from working memory.
Makuuchi, Michiru; Bahlmann, Jörg; Anwander, Alfred; Friederici, Angela D
2009-05-19
In contrast to simple structures in animal vocal behavior, hierarchical structures such as center-embedded sentences manifest the core computational faculty of human language. Previous artificial grammar learning studies found that the left pars opercularis (LPO) subserves the processing of hierarchical structures. However, it is not clear whether this area is activated by the structural complexity per se or by the increased memory load entailed in processing hierarchical structures. To dissociate the effect of structural complexity from the effect of memory cost, we conducted a functional magnetic resonance imaging study of German sentence processing with a 2-way factorial design tapping structural complexity (with/without hierarchical structure, i.e., center-embedding of clauses) and working memory load (long/short distance between syntactically dependent elements; i.e., subject nouns and their respective verbs). Functional imaging data revealed that the processes for structure and memory operate separately but co-operatively in the left inferior frontal gyrus; activities in the LPO increased as a function of structural complexity, whereas activities in the left inferior frontal sulcus (LIFS) were modulated by the distance over which the syntactic information had to be transferred. Diffusion tensor imaging showed that these 2 regions were interconnected through white matter fibers. Moreover, functional coupling between the 2 regions was found to increase during the processing of complex, hierarchically structured sentences. These results suggest a neuroanatomical segregation of syntax-related aspects represented in the LPO from memory-related aspects reflected in the LIFS, which are, however, highly interconnected functionally and anatomically.
Graph configuration model based evaluation of the education-occupation match
2018-01-01
To study education—occupation matchings we developed a bipartite network model of education to work transition and a graph configuration model based metric. We studied the career paths of 15 thousand Hungarian students based on the integrated database of the National Tax Administration, the National Health Insurance Fund, and the higher education information system of the Hungarian Government. A brief analysis of gender pay gap and the spatial distribution of over-education is presented to demonstrate the background of the research and the resulted open dataset. We highlighted the hierarchical and clustered structure of the career paths based on the multi-resolution analysis of the graph modularity. The results of the cluster analysis can support policymakers to fine-tune the fragmented program structure of higher education. PMID:29509783
Graph configuration model based evaluation of the education-occupation match.
Gadar, Laszlo; Abonyi, Janos
2018-01-01
To study education-occupation matchings we developed a bipartite network model of education to work transition and a graph configuration model based metric. We studied the career paths of 15 thousand Hungarian students based on the integrated database of the National Tax Administration, the National Health Insurance Fund, and the higher education information system of the Hungarian Government. A brief analysis of gender pay gap and the spatial distribution of over-education is presented to demonstrate the background of the research and the resulted open dataset. We highlighted the hierarchical and clustered structure of the career paths based on the multi-resolution analysis of the graph modularity. The results of the cluster analysis can support policymakers to fine-tune the fragmented program structure of higher education.
Voids and the Cosmic Web: cosmic depression & spatial complexity
NASA Astrophysics Data System (ADS)
van de Weygaert, Rien
2016-10-01
Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe nature of dark energy, while their substructure and galaxy population provides a direct key to thenature of dark matter. Also, the pristine environment of void interiors is an important testing groundfor our understanding of environmental influences on galaxy formation and evolution. In this paper, we reviewthe key aspects of the structure and dynamics ofvoids, with a particular focus on the hierarchical evolution of the void population. We demonstratehow the rich structural pattern of the Cosmic Web is related to the complex evolution and buildupof voids.
Departure Mechanisms for Host Search on High-Density Patches by the Meteorus pulchricornis
Sheng, Sheng; Feng, Sufang; Meng, Ling; Li, Baoping
2014-01-01
Abstract Less attention has been paid to the parasitoid–host system in which the host occurs in considerably high density with a hierarchical patch structure in studies on time allocation strategies of parasitoids. This study used the parasitoid Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae) and the Oriental leafworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) as the parasitoids–host model system to investigate patch-leaving mechanisms as affected by the high-host density, hierarchical patch structure, and foraging behaviors on both former and current patches. The results showed that three out of eight covariates tested had significant effects on the patch-leaving tendency, including the host density, ovipositor insertion, and host rejection on the current patch. The parasitoid paid more visits to the patch with high-density hosts. While the patch with higher host densities decreased the leaving tendency, the spatial distribution of hosts examined had no effect on the leaving tendency. Both oviposition and host rejection decreased the patch-leaving tendency. The variables associated with the former patch, such as the host density and number of ovipositor insertions, however, did not have an effect on the leaving tendency. Our study suggested that M. pulchricornis females may use an incremental mechanism to exploit high-density patches to the fullest. PMID:25502040
Social contagions on time-varying community networks
NASA Astrophysics Data System (ADS)
Liu, Mian-Xin; Wang, Wei; Liu, Ying; Tang, Ming; Cai, Shi-Min; Zhang, Hai-Feng
2017-05-01
Time-varying community structures exist widely in real-world networks. However, previous studies on the dynamics of spreading seldom took this characteristic into account, especially those on social contagions. To study the effects of time-varying community structures on social contagions, we propose a non-Markovian social contagion model on time-varying community networks based on the activity-driven network model. A mean-field theory is developed to analyze the proposed model. Through theoretical analyses and numerical simulations, two hierarchical features of the behavior adoption processes are found. That is, when community strength is relatively large, the behavior can easily spread in one of the communities, while in the other community the spreading only occurs at higher behavioral information transmission rates. Meanwhile, in spatial-temporal evolution processes, hierarchical orders are observed for the behavior adoption. Moreover, under different information transmission rates, three distinctive patterns are demonstrated in the change of the whole network's final adoption proportion along with the growing community strength. Within a suitable range of transmission rate, an optimal community strength can be found that can maximize the final adoption proportion. Finally, compared with the average activity potential, the promoting or inhibiting of social contagions is much more influenced by the number of edges generated by active nodes.
Ho, Cheng-Han; Lien, Der-Hsien; Chang, Hung-Chih; Lin, Chin-An; Kang, Chen-Fang; Hsing, Meng-Kai; Lai, Kun-Yu; He, Jr-Hau
2012-12-07
We experimentally and theoretically demonstrated the hierarchical structure of SiO(2) nanorod arrays/p-GaN microdomes as a light harvesting scheme for InGaN-based multiple quantum well solar cells. The combination of nano- and micro-structures leads to increased internal multiple reflection and provides an intermediate refractive index between air and GaN. Cells with the hierarchical structure exhibit improved short-circuit current densities and fill factors, rendering a 1.47 fold efficiency enhancement as compared to planar cells.
The Hierarchical Structure of Formal Operational Tasks.
ERIC Educational Resources Information Center
Bart, William M.; Mertens, Donna M.
1979-01-01
The hierarchical structure of the formal operational period of Piaget's theory of cognitive development was explored through the application of ordering theoretical methods to a set of data that systematically utilized the various formal operational schemes. Results suggested a common structure underlying task performance. (Author/BH)
Peng, Shan; Bhushan, Bharat
2016-01-01
Superoleophobic aluminum surfaces are of interest for self-cleaning, anti-smudge (fingerprint resistance), anti-fouling, and corrosion resistance applications. In the published literature on superoleophobic aluminum surfaces, mechanical durability, self-cleaning, and anti-smudge properties data are lacking. Microstep structure has often been used to prepare superhydrophobic aluminum surfaces which produce the microstructure. The nanoreticula structure has also been used, and is reported to be able to trap air-pockets, which are desirable for a high contact angle. In this work, the microstep and nanoreticula structures were produced on aluminum surfaces to form a hierarchical micro/nanostructure by a simple two-step chemical etching process. The hierarchical structure, when modified with fluorosilane, made the surface superoleophobic. The effect of nanostructure, microstructure, and hierarchical structure on wettability and durability were studied and compared. The superoleophobic aluminum surfaces were found to be wear resistant, self-cleaning, and have anti-smudge and corrosion resistance properties. Copyright © 2015 Elsevier Inc. All rights reserved.
New insight in magnetic saturation behavior of nickel hierarchical structures
NASA Astrophysics Data System (ADS)
Ma, Ji; Zhang, Jianxing; Liu, Chunting; Chen, Kezheng
2017-09-01
It is unanimously accepted that non-ferromagnetic inclusions in a ferromagnetic system will lower down total saturation magnetization in unit of emu/g. In this study, ;lattice strain; was found to be another key factor to have critical impact on magnetic saturation behavior of the system. The lattice strain determined assembling patterns of primary nanoparticles in hierarchical structures and was intimately related with the formation process of these architectures. Therefore, flower-necklace-like and cauliflower-like nickel hierarchical structures were used as prototype systems to evidence the relationship between assembling patterns of primary nanoparticles and magnetic saturation behaviors of these architectures. It was found that the influence of lattice strain on saturation magnetization outperformed that of non-ferromagnetic inclusions in these hierarchical structures. This will enable new insights into fundamental understanding of related magnetic effects.
Hierarchical structure graphitic-like/MoS2 film as superlubricity material
NASA Astrophysics Data System (ADS)
Gong, Zhenbin; Jia, Xiaolong; Ma, Wei; Zhang, Bin; Zhang, Junyan
2017-08-01
Friction and wear result in a great amount of energy loss and the invalidation of mechanical parts, thus it is necessary to minimize friction in practical application. In this study, the graphitic-like/MoS2 films with hierarchical structure were synthesized by the combination of pulse current plasma chemical-vapor deposition and medium frequency unbalanced magnetron sputtering in preheated environment. This hierarchical structure composite with multilayer nano sheets endows the films excellent tribological performance, which easily achieves macro superlubricity (friction coefficient ∼0.004) under humid air. Furthermore, it is expected that hierarchical structure of graphitic-like/MoS2 films could match the requirements of large scale, high bear-capacity and wear-resistance of actual working conditions, which could be widely used in the industrial production as a promising superlubricity material.
NASA Astrophysics Data System (ADS)
Sang, Lixia; Zhao, Yangbo; Niu, Youchen; Bai, Guangmei
2018-02-01
TiO2 with Nanoring/Nanotube (R/T) hierarchical structure can be prepared by tuning the oxidation time and oxidation voltage in the second step anodization. The resulting multiabsorption oscillating peaks in the visible light region present a strong dependence on the tube length which are derived from the interference of light reflected from the top nanorings and the bottom Ti substrate, and the optical path length in TiO2 R/T hierarchical structure can be estimated as about 2 μm. The tube length of the as-prepared TiO2 photoelectrode affects greatly its saturation photocurrent density, and the different tube-wall thickness can change the photocurrent-saturation potential. Under simulated AM 1.5 irradiation (100 mW/cm2), TiO2 R/T hierarchical structure with tube diameters of 20-40 nm and tube length of about 1.5 μm shows higher photocurrent density and hydrogen production rate at the bias of 0 V (vs. Ag/AgCl). The results from the IPCE plots and I-t curves verify that TiO2 R/T hierarchical structure can exhibit the visible light activity, which is more related to the absorption induced by the defects rather than oscillating peaks. Based on the unique multiple light reflection in TiO2 R/T hierarchical structure, surface treatment will pave a way for the better utilization of oscillating peaks in the visible light region.
Bio-inspired Fabrication of Complex Hierarchical Structure in Silicon.
Gao, Yang; Peng, Zhengchun; Shi, Tielin; Tan, Xianhua; Zhang, Deqin; Huang, Qiang; Zou, Chuanping; Liao, Guanglan
2015-08-01
In this paper, we developed a top-down method to fabricate complex three dimensional silicon structure, which was inspired by the hierarchical micro/nanostructure of the Morpho butterfly scales. The fabrication procedure includes photolithography, metal masking, and both dry and wet etching techniques. First, microscale photoresist grating pattern was formed on the silicon (111) wafer. Trenches with controllable rippled structures on the sidewalls were etched by inductively coupled plasma reactive ion etching Bosch process. Then, Cr film was angled deposited on the bottom of the ripples by electron beam evaporation, followed by anisotropic wet etching of the silicon. The simple fabrication method results in large scale hierarchical structure on a silicon wafer. The fabricated Si structure has multiple layers with uniform thickness of hundreds nanometers. We conducted both light reflection and heat transfer experiments on this structure. They exhibited excellent antireflection performance for polarized ultraviolet, visible and near infrared wavelengths. And the heat flux of the structure was significantly enhanced. As such, we believe that these bio-inspired hierarchical silicon structure will have promising applications in photovoltaics, sensor technology and photonic crystal devices.
Lew, Timothy F; Vul, Edward
2015-01-01
People seem to compute the ensemble statistics of objects and use this information to support the recall of individual objects in visual working memory. However, there are many different ways that hierarchical structure might be encoded. We examined the format of structured memories by asking subjects to recall the locations of objects arranged in different spatial clustering structures. Consistent with previous investigations of structured visual memory, subjects recalled objects biased toward the center of their clusters. Subjects also recalled locations more accurately when they were arranged in fewer clusters containing more objects, suggesting that subjects used the clustering structure of objects to aid recall. Furthermore, subjects had more difficulty recalling larger relative distances, consistent with subjects encoding the positions of objects relative to clusters and recalling them with magnitude-proportional (Weber) noise. Our results suggest that clustering improved the fidelity of recall by biasing the recall of locations toward cluster centers to compensate for uncertainty and by reducing the magnitude of encoded relative distances.
Topology, structures, and energy landscapes of human chromosomes
Zhang, Bin; Wolynes, Peter G.
2015-01-01
Chromosome conformation capture experiments provide a rich set of data concerning the spatial organization of the genome. We use these data along with a maximum entropy approach to derive a least-biased effective energy landscape for the chromosome. Simulations of the ensemble of chromosome conformations based on the resulting information theoretic landscape not only accurately reproduce experimental contact probabilities, but also provide a picture of chromosome dynamics and topology. The topology of the simulated chromosomes is probed by computing the distribution of their knot invariants. The simulated chromosome structures are largely free of knots. Topologically associating domains are shown to be crucial for establishing these knotless structures. The simulated chromosome conformations exhibit a tendency to form fibril-like structures like those observed via light microscopy. The topologically associating domains of the interphase chromosome exhibit multistability with varying liquid crystalline ordering that may allow discrete unfolding events and the landscape is locally funneled toward “ideal” chromosome structures that represent hierarchical fibrils of fibrils. PMID:25918364
Variability aware compact model characterization for statistical circuit design optimization
NASA Astrophysics Data System (ADS)
Qiao, Ying; Qian, Kun; Spanos, Costas J.
2012-03-01
Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose an efficient variabilityaware compact model characterization methodology based on the linear propagation of variance. Hierarchical spatial variability patterns of selected compact model parameters are directly calculated from transistor array test structures. This methodology has been implemented and tested using transistor I-V measurements and the EKV-EPFL compact model. Calculation results compare well to full-wafer direct model parameter extractions. Further studies are done on the proper selection of both compact model parameters and electrical measurement metrics used in the method.
Spatial occupancy models for large data sets
Johnson, Devin S.; Conn, Paul B.; Hooten, Mevin B.; Ray, Justina C.; Pond, Bruce A.
2013-01-01
Since its development, occupancy modeling has become a popular and useful tool for ecologists wishing to learn about the dynamics of species occurrence over time and space. Such models require presence–absence data to be collected at spatially indexed survey units. However, only recently have researchers recognized the need to correct for spatially induced overdisperison by explicitly accounting for spatial autocorrelation in occupancy probability. Previous efforts to incorporate such autocorrelation have largely focused on logit-normal formulations for occupancy, with spatial autocorrelation induced by a random effect within a hierarchical modeling framework. Although useful, computational time generally limits such an approach to relatively small data sets, and there are often problems with algorithm instability, yielding unsatisfactory results. Further, recent research has revealed a hidden form of multicollinearity in such applications, which may lead to parameter bias if not explicitly addressed. Combining several techniques, we present a unifying hierarchical spatial occupancy model specification that is particularly effective over large spatial extents. This approach employs a probit mixture framework for occupancy and can easily accommodate a reduced-dimensional spatial process to resolve issues with multicollinearity and spatial confounding while improving algorithm convergence. Using open-source software, we demonstrate this new model specification using a case study involving occupancy of caribou (Rangifer tarandus) over a set of 1080 survey units spanning a large contiguous region (108 000 km2) in northern Ontario, Canada. Overall, the combination of a more efficient specification and open-source software allows for a facile and stable implementation of spatial occupancy models for large data sets.
Yu, Qingzhao; Li, Bin; Scribner, Richard Allen
2009-06-30
Previous studies have suggested a link between alcohol outlets and assaults. In this paper, we explore the effects of alcohol availability on assaults at the census tract level over time. In addition, we use a natural experiment to check whether a sudden loss of alcohol outlets is associated with deeper decreasing in assault violence. Several features of the data raise statistical challenges: (1) the association between covariates (for example, the alcohol outlet density of each census tract) and the assault rates may be complex and therefore cannot be described using a linear model without covariates transformation, (2) the covariates may be highly correlated with each other, (3) there are a number of observations that have missing inputs, and (4) there is spatial association in assault rates at the census tract level. We propose a hierarchical additive model, where the nonlinear correlations and the complex interaction effects are modeled using the multiple additive regression trees and the residual spatial association in the assault rates that cannot be explained in the model are smoothed using a conditional autoregressive (CAR) method. We develop a two-stage algorithm that connects the nonparametric trees with CAR to look for important covariates associated with the assault rates, while taking into account the spatial association of assault rates in adjacent census tracts. The proposed method is applied to the Los Angeles assault data (1990-1999). To assess the efficiency of the method, the results are compared with those obtained from a hierarchical linear model. Copyright (c) 2009 John Wiley & Sons, Ltd.
Masciullo, Cecilia; Dell'Anna, Rossana; Tonazzini, Ilaria; Böettger, Roman; Pepponi, Giancarlo; Cecchini, Marco
2017-10-12
Periodic ripples are a variety of anisotropic nanostructures that can be realized by ion beam irradiation on a wide range of solid surfaces. Only a few authors have investigated these surfaces for tuning the response of biological systems, probably because it is challenging to directly produce them in materials that well sustain long-term cellular cultures. Here, hierarchical rippled nanotopographies with a lateral periodicity of ∼300 nm are produced from a gold-irradiated germanium mold in polyethylene terephthalate (PET), a biocompatible polymer approved by the US Food and Drug Administration for clinical applications, by a novel three-step embossing process. The effects of nano-ripples on Schwann Cells (SCs) are studied in view of their possible use for nerve-repair applications. The data demonstrate that nano-ripples can enhance short-term SC adhesion and proliferation (3-24 h after seeding), drive their actin cytoskeleton spatial organization and sustain long-term cell growth. Notably, SCs are oriented perpendicularly with respect to the nanopattern lines. These results provide information about the possible use of hierarchical nano-rippled elements for nerve-regeneration protocols.
Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics
Grindy, Scott C.; Learsch, Robert; Mozhdehi, Davoud; Cheng, Jing; Barrett, Devin G.; Guan, Zhibin; Messersmith, Phillip B.; Holten-Andersen, Niels
2015-01-01
In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or copolymer-block design1. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material’s mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure may inform the design of soft materials for use in complex mechanical environments. PMID:26322715
Breaking the icosahedra in boron carbide
Xie, Kelvin Y.; An, Qi; Sato, Takanori; Breen, Andrew J.; Ringer, Simon P.; Goddard, William A.; Cairney, Julie M.; Hemker, Kevin J.
2016-01-01
Findings of laser-assisted atom probe tomography experiments on boron carbide elucidate an approach for characterizing the atomic structure and interatomic bonding of molecules associated with extraordinary structural stability. The discovery of crystallographic planes in these boron carbide datasets substantiates that crystallinity is maintained to the point of field evaporation, and characterization of individual ionization events gives unexpected evidence of the destruction of individual icosahedra. Statistical analyses of the ions created during the field evaporation process have been used to deduce relative atomic bond strengths and show that the icosahedra in boron carbide are not as stable as anticipated. Combined with quantum mechanics simulations, this result provides insight into the structural instability and amorphization of boron carbide. The temporal, spatial, and compositional information provided by atom probe tomography makes it a unique platform for elucidating the relative stability and interactions of primary building blocks in hierarchically crystalline materials. PMID:27790982
Flexibility and rigidity of cross-linked Straight Fibrils under axial motion constraints.
Nagy Kem, Gyula
2016-09-01
The Straight Fibrils are stiff rod-like filaments and play a significant role in cellular processes as structural stability and intracellular transport. Introducing a 3D mechanical model for the motion of braced cylindrical fibrils under axial motion constraint; we provide some mechanism and a graph theoretical model for fibril structures and give the characterization of the flexibility and the rigidity of this bar-and-joint spatial framework. The connectedness and the circuit of the bracing graph characterize the flexibility of these structures. In this paper, we focus on the kinematical properties of hierarchical levels of fibrils and evaluate the number of the bracing elements for the rigidity and its computational complexity. The presented model is a good characterization of the frameworks of bio-fibrils such as microtubules, cellulose, which inspired this work. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of interstellar fragmentation structure based on IRAS images
NASA Technical Reports Server (NTRS)
Scalo, John M.
1989-01-01
The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct a densely sampled column density map of a cloud complex which is both self-gravitating and not (yet?) stirred up much by star formation, a column density image of the Taurus region has been constructed from IRAS data. The primary drawback to using the IRAS data for this purpose is that it contains no velocity information, and the possible importance of projection effects must be kept in mind.
Au functionalized ZnO rose-like hierarchical structures and their enhanced NO2 sensing performance
NASA Astrophysics Data System (ADS)
Shingange, K.; Swart, H. C.; Mhlongo, G. H.
2018-04-01
Herein, we present ZnO rose-like hierarchical nanostructures employed as support to Au nanoparticles to produce Au functionalized three dimensional (3D) ZnO hierarchical nanostructures (Au/ZnO) for NO2 detection using a microwave-assisted method. Comparative analysis of NO2 sensing performance between the pristine ZnO and Au/ZnO rose-like structures at 300 °C revealed improved NO2 response and rapid response-recovery times with Au incorporation owing to a combination of high surface accessibility induced by hierarchical nanostructure design and catalytic activity of the small Au nanoparticles. Structural and optical analyses acquired from X-ray diffraction, scanning electron microscopy, transmission electron microscope and photoluminescence spectroscopy were also performed.
Sun, Mengshu; Xue, Yuankun; Bogdan, Paul; Tang, Jian; Wang, Yanzhi; Lin, Xue
2018-01-01
Recently, a new approach has been introduced that leverages and over-provisions energy storage devices (ESDs) in data centers for performing power capping and facilitating capex/opex reductions, without performance overhead. To fully realize the potential benefits of the hierarchical ESD structure, we propose a comprehensive design, control, and provisioning framework including (i) designing power delivery architecture supporting hierarchical ESD structure and hybrid ESDs for some levels, as well as (ii) control and provisioning of the hierarchical ESD structure including run-time ESD charging/discharging control and design-time determination of ESD types, homogeneous/hybrid options, ESD provisioning at each level. Experiments have been conducted using real Google data center workloads based on realistic data center specifications.
Xue, Yuankun; Bogdan, Paul; Tang, Jian; Wang, Yanzhi; Lin, Xue
2018-01-01
Recently, a new approach has been introduced that leverages and over-provisions energy storage devices (ESDs) in data centers for performing power capping and facilitating capex/opex reductions, without performance overhead. To fully realize the potential benefits of the hierarchical ESD structure, we propose a comprehensive design, control, and provisioning framework including (i) designing power delivery architecture supporting hierarchical ESD structure and hybrid ESDs for some levels, as well as (ii) control and provisioning of the hierarchical ESD structure including run-time ESD charging/discharging control and design-time determination of ESD types, homogeneous/hybrid options, ESD provisioning at each level. Experiments have been conducted using real Google data center workloads based on realistic data center specifications. PMID:29351553
A Spatial Poisson Hurdle Model for Exploring Geographic Variation in Emergency Department Visits
Neelon, Brian; Ghosh, Pulak; Loebs, Patrick F.
2012-01-01
Summary We develop a spatial Poisson hurdle model to explore geographic variation in emergency department (ED) visits while accounting for zero inflation. The model consists of two components: a Bernoulli component that models the probability of any ED use (i.e., at least one ED visit per year), and a truncated Poisson component that models the number of ED visits given use. Together, these components address both the abundance of zeros and the right-skewed nature of the nonzero counts. The model has a hierarchical structure that incorporates patient- and area-level covariates, as well as spatially correlated random effects for each areal unit. Because regions with high rates of ED use are likely to have high expected counts among users, we model the spatial random effects via a bivariate conditionally autoregressive (CAR) prior, which introduces dependence between the components and provides spatial smoothing and sharing of information across neighboring regions. Using a simulation study, we show that modeling the between-component correlation reduces bias in parameter estimates. We adopt a Bayesian estimation approach, and the model can be fit using standard Bayesian software. We apply the model to a study of patient and neighborhood factors influencing emergency department use in Durham County, North Carolina. PMID:23543242
Neelon, Brian; Gelfand, Alan E.; Miranda, Marie Lynn
2013-01-01
Summary Researchers in the health and social sciences often wish to examine joint spatial patterns for two or more related outcomes. Examples include infant birth weight and gestational length, psychosocial and behavioral indices, and educational test scores from different cognitive domains. We propose a multivariate spatial mixture model for the joint analysis of continuous individual-level outcomes that are referenced to areal units. The responses are modeled as a finite mixture of multivariate normals, which accommodates a wide range of marginal response distributions and allows investigators to examine covariate effects within subpopulations of interest. The model has a hierarchical structure built at the individual level (i.e., individuals are nested within areal units), and thus incorporates both individual- and areal-level predictors as well as spatial random effects for each mixture component. Conditional autoregressive (CAR) priors on the random effects provide spatial smoothing and allow the shape of the multivariate distribution to vary flexibly across geographic regions. We adopt a Bayesian modeling approach and develop an efficient Markov chain Monte Carlo model fitting algorithm that relies primarily on closed-form full conditionals. We use the model to explore geographic patterns in end-of-grade math and reading test scores among school-age children in North Carolina. PMID:26401059
Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.
2015-01-01
Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.
Emerging Hierarchical Aerogels: Self-Assembly of Metal and Semiconductor Nanocrystals.
Cai, Bin; Sayevich, Vladimir; Gaponik, Nikolai; Eychmüller, Alexander
2018-06-19
Aerogels assembled from colloidal metal or semiconductor nanocrystals (NCs) feature large surface area, ultralow density, and high porosity, thus rendering them attractive in various applications, such as catalysis, sensors, energy storage, and electronic devices. Morphological and structural modification of the aerogel backbones while maintaining the aerogel properties enables a second stage of the aerogel research, which is defined as hierarchical aerogels. Different from the conventional aerogels with nanowire-like backbones, those hierarchical aerogels are generally comprised of at least two levels of architectures, i.e., an interconnected porous structure on the macroscale and a specially designed configuration at local backbones at the nanoscale. This combination "locks in" the inherent properties of the NCs, so that the beneficial genes obtained by nanoengineering are retained in the resulting monolithic hierarchical aerogels. Herein, groundbreaking advances in the design, synthesis, and physicochemical properties of the hierarchical aerogels are reviewed and organized in three sections: i) pure metallic hierarchical aerogels, ii) semiconductor hierarchical aerogels, and iii) metal/semiconductor hybrid hierarchical aerogels. This report aims to define and demonstrate the concept, potential, and challenges of the hierarchical aerogels, thereby providing a perspective on the further development of these materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hou, Sucheng; Zhang, Guanhua; Zeng, Wei; Zhu, Jian; Gong, Feilong; Li, Feng; Duan, Huigao
2014-08-27
A hierarchical core-shell structure of ZnO nanorod@NiO/MoO2 composite nanosheet arrays on nickel foam substrate for high-performance supercapacitors was constructed by a two-step solution-based method involving two hydrothermal processes followed by a calcination treatment. Compared to one composed of pure NiO/MoO2 composite nanosheets, the hierarchical core-shell structure electrode displays better pseudocapacitive behaviors in 2 M KOH, including high areal specific capacitance values of 1.18 F cm(-2) at 5 mA cm(-2) and 0.6 F cm(-2) at 30 mA cm(-2) as well as relatively good rate capability at high current densities. Furthermore, it also shows remarkable cycle stability, remaining at 91.7% of the initial value even after 4000 cycles at a current density of 10 mA cm(-2). The enhanced pseudocapacitive behaviors are mainly due to the unique hierarchical core-shell structure and the synergistic effect of combining ZnO nanorod arrays and NiO/MoO2 composite nanosheets. This novel hierarchical core-shell structure shows promise for use in next-generation supercapacitors.
Chen, Li; Zhang, Ruiyuan; Min, Ting; ...
2018-05-19
For applications of reactive transport in porous media, optimal porous structures should possess both high surface area for reactive sites loading and low mass transport resistance. Hierarchical porous media with a combination of pores at different scales are designed for this purpose. In this paper, using the lattice Boltzmann method, pore-scale numerical studies are conducted to investigate diffusion-reaction processes in 2D hierarchical porous media generated by self-developed reconstruction scheme. Complex interactions between porous structures and reactive transport are revealed under different conditions. Simulation results show that adding macropores can greatly enhance the mass transport, but at the same time reducemore » the reactive surface, leading to complex change trend of the total reaction rate. Effects of gradient distribution of macropores within the porous medium are also investigated. It is found that a front-loose, back-tight (FLBT) hierarchical structure is desirable for enhancing mass transport, increasing total reaction rate, and improving catalyst utilization. Finally, on the whole, from the viewpoint of reducing cost and improving material performance, hierarchical porous structures, especially gradient structures with the size of macropores gradually decreasing along the transport direction, are desirable for catalyst application.« less
NASA Astrophysics Data System (ADS)
Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo
2009-03-01
This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li; Zhang, Ruiyuan; Min, Ting
For applications of reactive transport in porous media, optimal porous structures should possess both high surface area for reactive sites loading and low mass transport resistance. Hierarchical porous media with a combination of pores at different scales are designed for this purpose. In this paper, using the lattice Boltzmann method, pore-scale numerical studies are conducted to investigate diffusion-reaction processes in 2D hierarchical porous media generated by self-developed reconstruction scheme. Complex interactions between porous structures and reactive transport are revealed under different conditions. Simulation results show that adding macropores can greatly enhance the mass transport, but at the same time reducemore » the reactive surface, leading to complex change trend of the total reaction rate. Effects of gradient distribution of macropores within the porous medium are also investigated. It is found that a front-loose, back-tight (FLBT) hierarchical structure is desirable for enhancing mass transport, increasing total reaction rate, and improving catalyst utilization. Finally, on the whole, from the viewpoint of reducing cost and improving material performance, hierarchical porous structures, especially gradient structures with the size of macropores gradually decreasing along the transport direction, are desirable for catalyst application.« less
Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data
NASA Astrophysics Data System (ADS)
Zhang, Xiuyuan; Du, Shihong; Wang, Qiao
2017-10-01
As the basic units of urban areas, functional zones are essential for city planning and management, but functional-zone maps are hardly available in most cities, as traditional urban investigations focus mainly on land-cover objects instead of functional zones. As a result, an automatic/semi-automatic method for mapping urban functional zones is highly required. Hierarchical semantic cognition (HSC) is presented in this study, and serves as a general cognition structure for recognizing urban functional zones. Unlike traditional classification methods, the HSC relies on geographic cognition and considers four semantic layers, i.e., visual features, object categories, spatial object patterns, and zone functions, as well as their hierarchical relations. Here, we used HSC to classify functional zones in Beijing with a very-high-resolution (VHR) satellite image and point-of-interest (POI) data. Experimental results indicate that this method can produce more accurate results than Support Vector Machine (SVM) and Latent Dirichlet Allocation (LDA) with a larger overall accuracy of 90.8%. Additionally, the contributions of diverse semantic layers are quantified: the object-category layer is the most important and makes 54% contribution to functional-zone classification; while, other semantic layers are less important but their contributions cannot be ignored. Consequently, the presented HSC is effective in classifying urban functional zones, and can further support urban planning and management.
NASA thesaurus. Volume 1: Hierarchical Listing
NASA Technical Reports Server (NTRS)
1988-01-01
There are over 17,000 postable terms and nearly 4,000 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary and Volume 3 - Definitions.
Hierarchical structure in sharply divided phase space for the piecewise linear map
NASA Astrophysics Data System (ADS)
Akaishi, Akira; Aoki, Kazuki; Shudo, Akira
2017-05-01
We have studied a two-dimensional piecewise linear map to examine how the hierarchical structure of stable regions affects the slow dynamics in Hamiltonian systems. In the phase space there are infinitely many stable regions, each of which is polygonal-shaped, and the rest is occupied by chaotic orbits. By using symbolic representation of stable regions, a procedure to compute the edges of the polygons is presented. The stable regions are hierarchically distributed in phase space and the edges of the stable regions show the marginal instability. The cumulative distribution of the recurrence time obeys a power law as ˜t-2 , the same as the one for the system with phase space, which is composed of a single stable region and chaotic components. By studying the symbol sequence of recurrence trajectories, we show that the hierarchical structure of stable regions has no significant effect on the power-law exponent and that only the marginal instability on the boundary of stable regions is responsible for determining the exponent. We also discuss the relevance of the hierarchical structure to those in more generic chaotic systems.
Moritsugu, Kei; Koike, Ryotaro; Yamada, Kouki; Kato, Hiroaki; Kidera, Akinori
2015-01-01
Molecular dynamics (MD) simulations of proteins provide important information to understand their functional mechanisms, which are, however, likely to be hidden behind their complicated motions with a wide range of spatial and temporal scales. A straightforward and intuitive analysis of protein dynamics observed in MD simulation trajectories is therefore of growing significance with the large increase in both the simulation time and system size. In this study, we propose a novel description of protein motions based on the hierarchical clustering of fluctuations in the inter-atomic distances calculated from an MD trajectory, which constructs a single tree diagram, named a “Motion Tree”, to determine a set of rigid-domain pairs hierarchically along with associated inter-domain fluctuations. The method was first applied to the MD trajectory of substrate-free adenylate kinase to clarify the usefulness of the Motion Tree, which illustrated a clear-cut dynamics picture of the inter-domain motions involving the ATP/AMP lid and the core domain together with the associated amplitudes and correlations. The comparison of two Motion Trees calculated from MD simulations of ligand-free and -bound glutamine binding proteins clarified changes in inherent dynamics upon ligand binding appeared in both large domains and a small loop that stabilized ligand molecule. Another application to a huge protein, a multidrug ATP binding cassette (ABC) transporter, captured significant increases of fluctuations upon binding a drug molecule observed in both large scale inter-subunit motions and a motion localized at a transmembrane helix, which may be a trigger to the subsequent structural change from inward-open to outward-open states to transport the drug molecule. These applications demonstrated the capabilities of Motion Trees to provide an at-a-glance view of various sizes of functional motions inherent in the complicated MD trajectory. PMID:26148295
Xia, Yongqiu; Weller, Donald E; Williams, Meghan N; Jordan, Thomas E; Yan, Xiaoyuan
2016-11-15
Export coefficient models (ECMs) are often used to predict nutrient sources and sinks in watersheds because ECMs can flexibly incorporate processes and have minimal data requirements. However, ECMs do not quantify uncertainties in model structure, parameters, or predictions; nor do they account for spatial and temporal variability in land characteristics, weather, and management practices. We applied Bayesian hierarchical methods to address these problems in ECMs used to predict nitrate concentration in streams. We compared four model formulations, a basic ECM and three models with additional terms to represent competing hypotheses about the sources of error in ECMs and about spatial and temporal variability of coefficients: an ADditive Error Model (ADEM), a SpatioTemporal Parameter Model (STPM), and a Dynamic Parameter Model (DPM). The DPM incorporates a first-order random walk to represent spatial correlation among parameters and a dynamic linear model to accommodate temporal correlation. We tested the modeling approach in a proof of concept using watershed characteristics and nitrate export measurements from watersheds in the Coastal Plain physiographic province of the Chesapeake Bay drainage. Among the four models, the DPM was the best--it had the lowest mean error, explained the most variability (R 2 = 0.99), had the narrowest prediction intervals, and provided the most effective tradeoff between fit complexity (its deviance information criterion, DIC, was 45.6 units lower than any other model, indicating overwhelming support for the DPM). The superiority of the DPM supports its underlying hypothesis that the main source of error in ECMs is their failure to account for parameter variability rather than structural error. Analysis of the fitted DPM coefficients for cropland export and instream retention revealed some of the factors controlling nitrate concentration: cropland nitrate exports were positively related to stream flow and watershed average slope, while instream nitrate retention was positively correlated with nitrate concentration. By quantifying spatial and temporal variability in sources and sinks, the DPM provides new information to better target management actions to the most effective times and places. Given the wide use of ECMs as research and management tools, our approach can be broadly applied in other watersheds and to other materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fabrication of Advanced Thermoelectric Materials by Hierarchical Nanovoid Generation
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Elliott, James R. (Inventor); Stoakley, Diane M. (Inventor); Chu, Sang-Hyon (Inventor); King, Glen C. (Inventor); Kim, Jae-Woo (Inventor); Choi, Sang Hyouk (Inventor); Lillehei, Peter T. (Inventor)
2011-01-01
A novel method to prepare an advanced thermoelectric material has hierarchical structures embedded with nanometer-sized voids which are key to enhancement of the thermoelectric performance. Solution-based thin film deposition technique enables preparation of stable film of thermoelectric material and void generator (voigen). A subsequent thermal process creates hierarchical nanovoid structure inside the thermoelectric material. Potential application areas of this advanced thermoelectric material with nanovoid structure are commercial applications (electronics cooling), medical and scientific applications (biological analysis device, medical imaging systems), telecommunications, and defense and military applications (night vision equipments).
Incidental Learning of Links during Navigation: The Role of Visuo-Spatial Capacity
ERIC Educational Resources Information Center
Rouet, Jean-Francois; Voros, Zsofia; Pleh, Csaba
2012-01-01
We investigated the impact of readers' visuo-spatial (VS) capacity on their incidental learning of page links during the exploration of simple hierarchical hypertextual documents. Forty-three university students were asked to explore a series of hypertexts for a limited period of time. Then the participants were asked to recall the layout and the…
Susan E. Gresens; Kenneth T. Belt; Jamie A. Tang; Daniel C. Gwinn; Patricia A. Banks
2007-01-01
In a longitudinal study of two streams whose lower reaches received unattenuated urban stormwater runoff, physical disturbance by stormflow was less important than the persistant unidentified chemical impacts of urban stormwater in limiting the distribution of Chironomidae, and Ephemeroptera, Trichoptera and Plecoptera (EPT). A hierarchical spatial analysis showed that...
NASA Astrophysics Data System (ADS)
Jung, Tobias
In 1922, Franz Selety, university-bred philosopher and self-educated physicist and cosmologist, developed a molecular hierarchical, spatially infinite, Newtonian cosmological model. His considerations were based on his earlier philosophical work published in 1914 as well as on the early correspondence with Einstein in 1917. Historically, the roots of hierarchical models can be seen in 18th century investigations by Thomas Wright of Durham, Immanuel Kant and Johann Heinrich Lambert. Those investigations were taken up by Edmund Fournier d'Albe and Carl Charlier at the beginning of the 20th century. Selety's cosmological model was criticized by Einstein mainly due to its spatial infiniteness which in Einstein's opinion seemed to contradict Mach's principle. This criticism sheds light on Einstein's conviction that with his first cosmological model, namely the static, spatially infinite, though unbounded Einstein Universe of 1917, the appropriate cosmological theory already had been established.
The folding landscape of the epigenome
NASA Astrophysics Data System (ADS)
Olarte-Plata, Juan D.; Haddad, Noelle; Vaillant, Cédric; Jost, Daniel
2016-04-01
The role of the spatial organization of chromatin in gene regulation is a long-standing but still open question. Experimentally it has been shown that the genome is segmented into epigenomic chromatin domains that are organized into hierarchical sub-nuclear spatial compartments. However, whether this non-random spatial organization only reflects or indeed contributes—and how—to the regulation of genome function remains to be elucidated. To address this question, we recently proposed a quantitative description of the folding properties of the fly genome as a function of its epigenomic landscape using a polymer model with epigenomic-driven attractions. We propose in this article, to characterize more deeply the physical properties of the 3D epigenome folding. Using an efficient lattice version of the original block copolymer model, we study the structural and dynamical properties of chromatin and show that the size of epigenomic domains and asymmetries in sizes and in interaction strengths play a critical role in the chromatin organization. Finally, we discuss the biological implications of our findings. In particular, our predictions are quantitatively compatible with experimental data and suggest a different mean of self-interaction in euchromatin versus heterochromatin domains.
Bayesian Hierarchical Model Characterization of Model Error in Ocean Data Assimilation and Forecasts
2013-09-30
proof-of-concept results comparing a BHM surface wind ensemble with the increments in the surface momentum flux control vector in a four-dimensional...Surface Momentum Flux Ensembles from Summaries of BHM Winds (Mediterranean) include ocean current effect Td...Bayesian Hierarchical Model to provide surface momentum flux ensembles. 3 Figure 2: Domain of interest : squares indicate spatial locations where
Delineating the Structure of Normal and Abnormal Personality: An Integrative Hierarchical Approach
Markon, Kristian E.; Krueger, Robert F.; Watson, David
2008-01-01
Increasing evidence indicates that normal and abnormal personality can be treated within a single structural framework. However, identification of a single integrated structure of normal and abnormal personality has remained elusive. Here, a constructive replication approach was used to delineate an integrative hierarchical account of the structure of normal and abnormal personality. This hierarchical structure, which integrates many Big Trait models proposed in the literature, replicated across a meta-analysis as well as an empirical study, and across samples of participants as well as measures. The proposed structure resembles previously suggested accounts of personality hierarchy and provides insight into the nature of personality hierarchy more generally. Potential directions for future research on personality and psychopathology are discussed. PMID:15631580
Delineating the structure of normal and abnormal personality: an integrative hierarchical approach.
Markon, Kristian E; Krueger, Robert F; Watson, David
2005-01-01
Increasing evidence indicates that normal and abnormal personality can be treated within a single structural framework. However, identification of a single integrated structure of normal and abnormal personality has remained elusive. Here, a constructive replication approach was used to delineate an integrative hierarchical account of the structure of normal and abnormal personality. This hierarchical structure, which integrates many Big Trait models proposed in the literature, replicated across a meta-analysis as well as an empirical study, and across samples of participants as well as measures. The proposed structure resembles previously suggested accounts of personality hierarchy and provides insight into the nature of personality hierarchy more generally. Potential directions for future research on personality and psychopathology are discussed.
Hagerty, Christina H; Anderson, Nicole P; Mundt, Christopher C
2017-03-01
Fungicide resistance can cause disease control failure in agricultural systems, and is particularly concerning with Zymoseptoria tritici, the causal agent of Septoria tritici blotch of wheat. In North America, the first quinone outside inhibitor resistance in Z. tritici was discovered in the Willamette Valley of Oregon in 2012, which prompted this hierarchical survey of commercial winter wheat fields to monitor azoxystrobin- and propiconazole-resistant Z. tritici. Surveys were conducted in June 2014, January 2015, May 2015, and January 2016. The survey was organized in a hierarchical scheme: regions within the Willamette Valley, fields within the region, transects within the field, and samples within the transect. Overall, frequency of azoxystrobin-resistant isolates increased from 63 to 93% from June 2014 to January 2016. Resistance to azoxystrobin increased over time even within fields receiving no strobilurin applications. Propiconazole sensitivity varied over the course of the study but, overall, did not significantly change. Sensitivity to both fungicides showed no regional aggregation within the Willamette Valley. Greater than 80% of spatial variation in fungicide sensitivity was at the smallest hierarchical scale (within the transect) of the survey for both fungicides, and the resistance phenotypes were randomly distributed within sampled fields. Results suggest a need for a better understanding of the dynamics of fungicide resistance at the landscape level.
Coastal Upwelling Drives Intertidal Assemblage Structure and Trophic Ecology.
Reddin, Carl J; Docmac, Felipe; O'Connor, Nessa E; Bothwell, John H; Harrod, Chris
2015-01-01
Similar environmental driving forces can produce similarity among geographically distant ecosystems. Coastal oceanic upwelling, for example, has been associated with elevated biomass and abundance patterns of certain functional groups, e.g., corticated macroalgae. In the upwelling system of Northern Chile, we examined measures of intertidal macrobenthic composition, structure and trophic ecology across eighteen shores varying in their proximity to two coastal upwelling centres, in a hierarchical sampling design (spatial scales of >1 and >10 km). The influence of coastal upwelling on intertidal communities was confirmed by the stable isotope values (δ13C and δ15N) of consumers, including a dominant suspension feeder, grazers, and their putative resources of POM, epilithic biofilm, and macroalgae. We highlight the utility of muscle δ15N from the suspension feeding mussel, Perumytilus purpuratus, as a proxy for upwelling, supported by satellite data and previous studies. Where possible, we used corrections for broader-scale trends, spatial autocorrelation, ontogenetic dietary shifts and spatial baseline isotopic variation prior to analysis. Our results showed macroalgal assemblage composition, and benthic consumer assemblage structure, varied significantly with the intertidal influence of coastal upwelling, especially contrasting bays and coastal headlands. Coastal topography also separated differences in consumer resource use. This suggested that coastal upwelling, itself driven by coastline topography, influences intertidal communities by advecting nearshore phytoplankton populations offshore and cooling coastal water temperatures. We recommend the isotopic values of benthic organisms, specifically long-lived suspension feeders, as in situ alternatives to offshore measurements of upwelling influence.
Coastal Upwelling Drives Intertidal Assemblage Structure and Trophic Ecology
Reddin, Carl J.; Docmac, Felipe; O’Connor, Nessa E.; Bothwell, John H.; Harrod, Chris
2015-01-01
Similar environmental driving forces can produce similarity among geographically distant ecosystems. Coastal oceanic upwelling, for example, has been associated with elevated biomass and abundance patterns of certain functional groups, e.g., corticated macroalgae. In the upwelling system of Northern Chile, we examined measures of intertidal macrobenthic composition, structure and trophic ecology across eighteen shores varying in their proximity to two coastal upwelling centres, in a hierarchical sampling design (spatial scales of >1 and >10 km). The influence of coastal upwelling on intertidal communities was confirmed by the stable isotope values (δ13C and δ15N) of consumers, including a dominant suspension feeder, grazers, and their putative resources of POM, epilithic biofilm, and macroalgae. We highlight the utility of muscle δ15N from the suspension feeding mussel, Perumytilus purpuratus, as a proxy for upwelling, supported by satellite data and previous studies. Where possible, we used corrections for broader-scale trends, spatial autocorrelation, ontogenetic dietary shifts and spatial baseline isotopic variation prior to analysis. Our results showed macroalgal assemblage composition, and benthic consumer assemblage structure, varied significantly with the intertidal influence of coastal upwelling, especially contrasting bays and coastal headlands. Coastal topography also separated differences in consumer resource use. This suggested that coastal upwelling, itself driven by coastline topography, influences intertidal communities by advecting nearshore phytoplankton populations offshore and cooling coastal water temperatures. We recommend the isotopic values of benthic organisms, specifically long-lived suspension feeders, as in situ alternatives to offshore measurements of upwelling influence. PMID:26214806
Bayesian hierarchical models for regional climate reconstructions of the last glacial maximum
NASA Astrophysics Data System (ADS)
Weitzel, Nils; Hense, Andreas; Ohlwein, Christian
2017-04-01
Spatio-temporal reconstructions of past climate are important for the understanding of the long term behavior of the climate system and the sensitivity to forcing changes. Unfortunately, they are subject to large uncertainties, have to deal with a complex proxy-climate structure, and a physically reasonable interpolation between the sparse proxy observations is difficult. Bayesian Hierarchical Models (BHMs) are a class of statistical models that is well suited for spatio-temporal reconstructions of past climate because they permit the inclusion of multiple sources of information (e.g. records from different proxy types, uncertain age information, output from climate simulations) and quantify uncertainties in a statistically rigorous way. BHMs in paleoclimatology typically consist of three stages which are modeled individually and are combined using Bayesian inference techniques. The data stage models the proxy-climate relation (often named transfer function), the process stage models the spatio-temporal distribution of the climate variables of interest, and the prior stage consists of prior distributions of the model parameters. For our BHMs, we translate well-known proxy-climate transfer functions for pollen to a Bayesian framework. In addition, we can include Gaussian distributed local climate information from preprocessed proxy records. The process stage combines physically reasonable spatial structures from prior distributions with proxy records which leads to a multivariate posterior probability distribution for the reconstructed climate variables. The prior distributions that constrain the possible spatial structure of the climate variables are calculated from climate simulation output. We present results from pseudoproxy tests as well as new regional reconstructions of temperatures for the last glacial maximum (LGM, ˜ 21,000 years BP). These reconstructions combine proxy data syntheses with information from climate simulations for the LGM that were performed in the PMIP3 project. The proxy data syntheses consist either of raw pollen data or of normally distributed climate data from preprocessed proxy records. Future extensions of our method contain the inclusion of other proxy types (transfer functions), the implementation of other spatial interpolation techniques, the use of age uncertainties, and the extension to spatio-temporal reconstructions of the last deglaciation. Our work is part of the PalMod project funded by the German Federal Ministry of Education and Science (BMBF).
Segregating the core computational faculty of human language from working memory
Makuuchi, Michiru; Bahlmann, Jörg; Anwander, Alfred; Friederici, Angela D.
2009-01-01
In contrast to simple structures in animal vocal behavior, hierarchical structures such as center-embedded sentences manifest the core computational faculty of human language. Previous artificial grammar learning studies found that the left pars opercularis (LPO) subserves the processing of hierarchical structures. However, it is not clear whether this area is activated by the structural complexity per se or by the increased memory load entailed in processing hierarchical structures. To dissociate the effect of structural complexity from the effect of memory cost, we conducted a functional magnetic resonance imaging study of German sentence processing with a 2-way factorial design tapping structural complexity (with/without hierarchical structure, i.e., center-embedding of clauses) and working memory load (long/short distance between syntactically dependent elements; i.e., subject nouns and their respective verbs). Functional imaging data revealed that the processes for structure and memory operate separately but co-operatively in the left inferior frontal gyrus; activities in the LPO increased as a function of structural complexity, whereas activities in the left inferior frontal sulcus (LIFS) were modulated by the distance over which the syntactic information had to be transferred. Diffusion tensor imaging showed that these 2 regions were interconnected through white matter fibers. Moreover, functional coupling between the 2 regions was found to increase during the processing of complex, hierarchically structured sentences. These results suggest a neuroanatomical segregation of syntax-related aspects represented in the LPO from memory-related aspects reflected in the LIFS, which are, however, highly interconnected functionally and anatomically. PMID:19416819
Hierarchical structure of stock price fluctuations in financial markets
NASA Astrophysics Data System (ADS)
Gao, Ya-Chun; Cai, Shi-Min; Wang, Bing-Hong
2012-12-01
The financial market and turbulence have been broadly compared on account of the same quantitative methods and several common stylized facts they share. In this paper, the She-Leveque (SL) hierarchy, proposed to explain the anomalous scaling exponents deviating from Kolmogorov monofractal scaling of the velocity fluctuation in fluid turbulence, is applied to study and quantify the hierarchical structure of stock price fluctuations in financial markets. We therefore observed certain interesting results: (i) the hierarchical structure related to multifractal scaling generally presents in all the stock price fluctuations we investigated. (ii) The quantitatively statistical parameters that describe SL hierarchy are different between developed financial markets and emerging ones, distinctively. (iii) For the high-frequency stock price fluctuation, the hierarchical structure varies with different time periods. All these results provide a novel analogy in turbulence and financial market dynamics and an insight to deeply understand multifractality in financial markets.
Hierarchical structure for audio-video based semantic classification of sports video sequences
NASA Astrophysics Data System (ADS)
Kolekar, M. H.; Sengupta, S.
2005-07-01
A hierarchical structure for sports event classification based on audio and video content analysis is proposed in this paper. Compared to the event classifications in other games, those of cricket are very challenging and yet unexplored. We have successfully solved cricket video classification problem using a six level hierarchical structure. The first level performs event detection based on audio energy and Zero Crossing Rate (ZCR) of short-time audio signal. In the subsequent levels, we classify the events based on video features using a Hidden Markov Model implemented through Dynamic Programming (HMM-DP) using color or motion as a likelihood function. For some of the game-specific decisions, a rule-based classification is also performed. Our proposed hierarchical structure can easily be applied to any other sports. Our results are very promising and we have moved a step forward towards addressing semantic classification problems in general.
Leading virtual teams: hierarchical leadership, structural supports, and shared team leadership.
Hoch, Julia E; Kozlowski, Steve W J
2014-05-01
Using a field sample of 101 virtual teams, this research empirically evaluates the impact of traditional hierarchical leadership, structural supports, and shared team leadership on team performance. Building on Bell and Kozlowski's (2002) work, we expected structural supports and shared team leadership to be more, and hierarchical leadership to be less, strongly related to team performance when teams were more virtual in nature. As predicted, results from moderation analyses indicated that the extent to which teams were more virtual attenuated relations between hierarchical leadership and team performance but strengthened relations for structural supports and team performance. However, shared team leadership was significantly related to team performance regardless of the degree of virtuality. Results are discussed in terms of needed research extensions for understanding leadership processes in virtual teams and practical implications for leading virtual teams. (c) 2014 APA, all rights reserved.
Highly Transparent Water-Repelling Surfaces based on Biomimetic Hierarchical Structure
NASA Astrophysics Data System (ADS)
Wooh, Sanghyuk; Koh, Jai; Yoon, Hyunsik; Char, Kookheon
2013-03-01
Nature is a great source of inspiration for creating unique structures with special functions. The representative examples of water-repelling surfaces in nature, such as lotus leaves, rose petals, and insect wings, consist of an array of bumps (or long hairs) and nanoscale surface features with different dimension scales. Herein, we introduced a method of realizing multi-dimensional hierarchical structures and water-repellancy of the surfaces with different drop impact scenarios. The multi-dimensional hierarchical structures were fabricated by soft imprinting method with TiO2 nanoparticle pastes. In order to achieve the enhanced hydrophobicity, fluorinated moieties were attached to the etched surfaces to lower the surface energy. As a result, super-hydrophobic surfaces with high transparency were realized (over 176° water contact angle), and for further investigation, these hierarchical surfaces with different drop impact scenarios were characterized by varying the impact speed, drop size, and the geometry of the surfaces.
Metal hierarchical patterning by direct nanoimprint lithography
Radha, Boya; Lim, Su Hui; Saifullah, Mohammad S. M.; Kulkarni, Giridhar U.
2013-01-01
Three-dimensional hierarchical patterning of metals is of paramount importance in diverse fields involving photonics, controlling surface wettability and wearable electronics. Conventionally, this type of structuring is tedious and usually involves layer-by-layer lithographic patterning. Here, we describe a simple process of direct nanoimprint lithography using palladium benzylthiolate, a versatile metal-organic ink, which not only leads to the formation of hierarchical patterns but also is amenable to layer-by-layer stacking of the metal over large areas. The key to achieving such multi-faceted patterning is hysteretic melting of ink, enabling its shaping. It undergoes transformation to metallic palladium under gentle thermal conditions without affecting the integrity of the hierarchical patterns on micro- as well as nanoscale. A metallic rice leaf structure showing anisotropic wetting behavior and woodpile-like structures were thus fabricated. Furthermore, this method is extendable for transferring imprinted structures to a flexible substrate to make them robust enough to sustain numerous bending cycles. PMID:23446801
Lee, Eun Je; Kim, Jae Joon; Cho, Sung Oh
2010-03-02
Polymer/ceramic composite films with micro- and nanocombined hierarchical structures are fabricated by electron irradiation of poly(methyl methacrylate) (PMMA) microspheres/silicone grease. Electron irradiation induces volume contraction of PMMA microspheres and simultaneously transforms silicone grease into a ceramic material of silicon oxycarbide with many nanobumps. As a result, highly porous structures that consist of micrometer-sized pores and microparticles decorated with nanobumps are created. The fabricated films with the porous hierarchical structure exhibit good superhydrophobicity with excellent self-cleaning and antiadhesion properties after surface treatment with fluorosilane. In addition, the porous hierarchical structures are covered with silicon oxycarbide, and thus the superhydrophobic coatings have high hardness and strong adhesion to the substrate. The presented technique provides a straightforward route to producing large-area, mechanically robust superhydrophobic films on various substrate materials.
Best Merge Region Growing with Integrated Probabilistic Classification for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2011-01-01
A new method for spectral-spatial classification of hyperspectral images is proposed. The method is based on the integration of probabilistic classification within the hierarchical best merge region growing algorithm. For this purpose, preliminary probabilistic support vector machines classification is performed. Then, hierarchical step-wise optimization algorithm is applied, by iteratively merging regions with the smallest Dissimilarity Criterion (DC). The main novelty of this method consists in defining a DC between regions as a function of region statistical and geometrical features along with classification probabilities. Experimental results are presented on a 200-band AVIRIS image of the Northwestern Indiana s vegetation area and compared with those obtained by recently proposed spectral-spatial classification techniques. The proposed method improves classification accuracies when compared to other classification approaches.
Unifying models of dialect spread and extinction using surface tension dynamics
2018-01-01
We provide a unified mathematical explanation of two classical forms of spatial linguistic spread. The wave model describes the radiation of linguistic change outwards from a central focus. Changes can also jump between population centres in a process known as hierarchical diffusion. It has recently been proposed that the spatial evolution of dialects can be understood using surface tension at linguistic boundaries. Here we show that the inclusion of long-range interactions in the surface tension model generates both wave-like spread, and hierarchical diffusion, and that it is surface tension that is the dominant effect in deciding the stable distribution of dialect patterns. We generalize the model to allow population mixing which can induce shrinkage of linguistic domains, or destroy dialect regions from within. PMID:29410847
Modeling trends from North American Breeding Bird Survey data: a spatially explicit approach
Bled, Florent; Sauer, John R.; Pardieck, Keith L.; Doherty, Paul; Royle, J. Andy
2013-01-01
Population trends, defined as interval-specific proportional changes in population size, are often used to help identify species of conservation interest. Efficient modeling of such trends depends on the consideration of the correlation of population changes with key spatial and environmental covariates. This can provide insights into causal mechanisms and allow spatially explicit summaries at scales that are of interest to management agencies. We expand the hierarchical modeling framework used in the North American Breeding Bird Survey (BBS) by developing a spatially explicit model of temporal trend using a conditional autoregressive (CAR) model. By adopting a formal spatial model for abundance, we produce spatially explicit abundance and trend estimates. Analyses based on large-scale geographic strata such as Bird Conservation Regions (BCR) can suffer from basic imbalances in spatial sampling. Our approach addresses this issue by providing an explicit weighting based on the fundamental sample allocation unit of the BBS. We applied the spatial model to three species from the BBS. Species have been chosen based upon their well-known population change patterns, which allows us to evaluate the quality of our model and the biological meaning of our estimates. We also compare our results with the ones obtained for BCRs using a nonspatial hierarchical model (Sauer and Link 2011). Globally, estimates for mean trends are consistent between the two approaches but spatial estimates provide much more precise trend estimates in regions on the edges of species ranges that were poorly estimated in non-spatial analyses. Incorporating a spatial component in the analysis not only allows us to obtain relevant and biologically meaningful estimates for population trends, but also enables us to provide a flexible framework in order to obtain trend estimates for any area.
Hygroscopic Metamorphic 4D Pleats
NASA Astrophysics Data System (ADS)
Yang, Shu
There have been significant interests in morphing 2D sheets into 3D structures via programmed out-of-plane distortion, including bending, tilting, rotating, and folding as seen in recent origami and kirigami strategies. Hydrogel is one of the unique soft materials that can swell and shrink, thereby enabling real-time 4D motions in response to external stimuli, such as pH, temperature, and moisture. To achieve reliable folding behaviors, it often requires a large amount of water molecules or ions diffusing in and out of the hydrogel sheet, thus the entire sheet is immersed in an aqueous solution. Here, we demonstrate the design and folding of hierarchical pleats patterned from a combination of hydrophobic and hygroscopic materials, allowing us to spatially and locally control the water condensation induced by environmental humidity. In turn, we show out-of-plane deformation of the 2D sheets only in the patterned hygroscopic regions, much like the folding behaviors of many plants. By designing the dimension, geometry, and density of hygroscopic microstructures (as pixels) in the hydrophobic materials, we can display the enhanced water condensation together with the spatial guidance of obtained droplets as unified water-harvesting systems. When the water droplets become large enough, they roll off from the hierarchical sheet along the inclined plane that is programmed by the hygroscopic motion of hydrogel, and eventually wrapped by the folded sheet to keep them from evaporation. We acknowledge support from NSF/EFRI-ODISSEI, EFRI 13-31583.
Frequency-specific electrophysiologic correlates of resting state fMRI networks.
Hacker, Carl D; Snyder, Abraham Z; Pahwa, Mrinal; Corbetta, Maurizio; Leuthardt, Eric C
2017-04-01
Resting state functional MRI (R-fMRI) studies have shown that slow (<0.1Hz), intrinsic fluctuations of the blood oxygen level dependent (BOLD) signal are temporally correlated within hierarchically organized functional systems known as resting state networks (RSNs) (Doucet et al., 2011). Most broadly, this hierarchy exhibits a dichotomy between two opposed systems (Fox et al., 2005). One system engages with the environment and includes the visual, auditory, and sensorimotor (SMN) networks as well as the dorsal attention network (DAN), which controls spatial attention. The other system includes the default mode network (DMN) and the fronto-parietal control system (FPC), RSNs that instantiate episodic memory and executive control, respectively. Here, we test the hypothesis, based on the spectral specificity of electrophysiologic responses to perceptual vs. memory tasks (Klimesch, 1999; Pfurtscheller and Lopes da Silva, 1999), that these two large-scale neural systems also manifest frequency specificity in the resting state. We measured the spatial correspondence between electrocorticographic (ECoG) band-limited power (BLP) and R-fMRI correlation patterns in awake, resting, human subjects. Our results show that, while gamma BLP correspondence was common throughout the brain, theta (4-8Hz) BLP correspondence was stronger in the DMN and FPC, whereas alpha (8-12Hz) correspondence was stronger in the SMN and DAN. Thus, the human brain, at rest, exhibits frequency specific electrophysiology, respecting both the spectral structure of task responses and the hierarchical organization of RSNs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Frequency-specific electrophysiologic correlates of resting state fMRI networks
Hacker, Carl D.; Snyder, Abraham Z.; Pahwa, Mrinal; Corbetta, Maurizio; Leuthardt, Eric C.
2017-01-01
Resting state functional MRI (R-fMRI) studies have shown that slow (< 0.1 Hz), intrinsic fluctuations of the blood oxygen level dependent (BOLD) signal are temporally correlated within hierarchically organized functional systems known as resting state networks (RSNs) (Doucet et al., 2011). Most broadly, this hierarchy exhibits a dichotomy between two opposed systems (Fox et al., 2005). One system engages with the environment and includes the visual, auditory, and sensorimotor (SMN) networks as well as the dorsal attention network (DAN), which controls spatial attention. The other system includes the default mode network (DMN) and the fronto-parietal control system (FPC), RSNs that instantiate episodic memory and executive control, respectively. Here, we test the hypothesis, based on the spectral specificity of electrophysiologic responses to perceptual vs. memory tasks (Klimesch, 1999; Pfurtscheller and Lopes da Silva, 1999), that these two large-scale neural systems also manifest frequency specificity in the resting state. We measured the spatial correspondence between electrocorticographic (ECoG) band-limited power (BLP) and R-fMRI correlation patterns in awake, resting, human subjects. Our results show that, while gamma BLP correspondence was common throughout the brain, theta (4–8 Hz) BLP correspondence was stronger in the DMN and FPC, whereas alpha (8–12 Hz) correspondence was stronger in the SMN and DAN. Thus, the human brain, at rest, exhibits frequency specific electrophysiology, respecting both the spectral structure of task responses and the hierarchical organization of RSNs. PMID:28159686
Moving to stay in place: behavioral mechanisms for coexistence of African large carnivores.
Vanak, Abi Tamim; Fortin, Daniel; Thaker, Maria; Ogden, Monika; Owen, Cailey; Greatwood, Sophie; Slotow, Rob
2013-11-01
Most ecosystems have multiple predator species that not only compete for shared prey, but also pose direct threats to each other. These intraguild interactions are key drivers of carnivore community structure, with ecosystem-wide cascading effects. Yet, behavioral mechanisms for coexistence of multiple carnivore species remain poorly understood. The challenges of studying large, free-ranging carnivores have resulted in mainly coarse-scale examination of behavioral strategies without information about all interacting competitors. We overcame some of these challenges by examining the concurrent fine-scale movement decisions of almost all individuals of four large mammalian carnivore species in a closed terrestrial system. We found that the intensity ofintraguild interactions did not follow a simple hierarchical allometric pattern, because spatial and behavioral tactics of subordinate species changed with threat and resource levels across seasons. Lions (Panthera leo) were generally unrestricted and anchored themselves in areas rich in not only their principal prey, but also, during periods of resource limitation (dry season), rich in the main prey for other carnivores. Because of this, the greatest cost (potential intraguild predation) for subordinate carnivores was spatially coupled with the highest potential benefit of resource acquisition (prey-rich areas), especially in the dry season. Leopard (P. pardus) and cheetah (Acinonyx jubatus) overlapped with the home range of lions but minimized their risk using fine-scaled avoidance behaviors and restricted resource acquisition tactics. The cost of intraguild competition was most apparent for cheetahs, especially during the wet season, as areas with energetically rewarding large prey (wildebeest) were avoided when they overlapped highly with the activity areas of lions. Contrary to expectation, the smallest species (African wild dog, Lycaon pictus) did not avoid only lions, but also used multiple tactics to minimize encountering all other competitors. Intraguild competition thus forced wild dogs into areas with the lowest resource availability year round. Coexistence of multiple carnivore species has typically been explained by dietary niche separation, but our multi-scaled movement results suggest that differences in resource acquisition may instead be a consequence of avoiding intraguild competition. We generate a more realistic representation of hierarchical behavioral interactions that may ultimately drive spatially explicit trophic structures of multi-predator communities.
NASA Astrophysics Data System (ADS)
Petkov, C. I.
2014-09-01
Fitch proposes an appealing hypothesis that humans are dendrophiles, who constantly build mental trees supported by analogous hierarchical brain processes [1]. Moreover, it is argued that, by comparison, nonhuman animals build flat or more compact behaviorally-relevant structures. Should we thus expect less impressive hierarchical brain processes in other animals? Not necessarily.
The hierarchical structure of self-reported impulsivity
Kirby, Kris N.; Finch, Julia C.
2010-01-01
The hierarchical structure of 95 self-reported impulsivity items, along with delay-discount rates for money, was examined. A large sample of college students participated in the study (N = 407). Items represented every previously proposed dimension of self-reported impulsivity. Exploratory PCA yielded at least 7 interpretable components: Prepared/Careful, Impetuous, Divertible, Thrill and Risk Seeking, Happy-Go-Lucky, Impatiently Pleasure Seeking, and Reserved. Discount rates loaded on Impatiently Pleasure Seeking, and correlated with the impulsiveness and venturesomeness scales from the I7 (Eysenck, Pearson, Easting, & Allsopp, 1985). The hierarchical emergence of the components was explored, and we show how this hierarchical structure may help organize conflicting dimensions found in previous analyses. Finally, we argue that the discounting model (Ainslie, 1975) provides a qualitative framework for understanding the dimensions of impulsivity. PMID:20224803
Musmeci, Nicoló; Aste, Tomaso; Di Matteo, T
2015-01-01
We quantify the amount of information filtered by different hierarchical clustering methods on correlations between stock returns comparing the clustering structure with the underlying industrial activity classification. We apply, for the first time to financial data, a novel hierarchical clustering approach, the Directed Bubble Hierarchical Tree and we compare it with other methods including the Linkage and k-medoids. By taking the industrial sector classification of stocks as a benchmark partition, we evaluate how the different methods retrieve this classification. The results show that the Directed Bubble Hierarchical Tree can outperform other methods, being able to retrieve more information with fewer clusters. Moreover,we show that the economic information is hidden at different levels of the hierarchical structures depending on the clustering method. The dynamical analysis on a rolling window also reveals that the different methods show different degrees of sensitivity to events affecting financial markets, like crises. These results can be of interest for all the applications of clustering methods to portfolio optimization and risk hedging [corrected].
Latzman, Robert D.; Hopkins, William D.; Keebaugh, Alaine C.; Young, Larry J.
2014-01-01
One of the major contributions of recent personality psychology is the finding that traits are related to each other in an organized hierarchy. To date, however, researchers have yet to investigate this hierarchy in nonhuman primates. Such investigations are critical in confirming the cross-species nature of trait personality helping to illuminate personality as neurobiologically-based and evolutionarily-derived dimensions of primate disposition. Investigations of potential genetic polymorphisms associated with hierarchical models of personality among nonhuman primates represent a critical first step. The current study examined the hierarchical structure of chimpanzee personality as well as sex-specific associations with a polymorphism in the promoter region of the vasopressin V1a receptor gene (AVPR1A), a gene associated with dispositional traits, among 174 chimpanzees. Results confirmed a hierarchical structure of personality across species and, despite differences in early rearing experiences, suggest a sexually dimorphic role of AVPR1A polymorphisms on hierarchical personality profiles at a higher-order level. PMID:24752497
Hierarchical flexural strength of enamel: transition from brittle to damage-tolerant behaviour
Bechtle, Sabine; Özcoban, Hüseyin; Lilleodden, Erica T.; Huber, Norbert; Schreyer, Andreas; Swain, Michael V.; Schneider, Gerold A.
2012-01-01
Hard, biological materials are generally hierarchically structured from the nano- to the macro-scale in a somewhat self-similar manner consisting of mineral units surrounded by a soft protein shell. Considerable efforts are underway to mimic such materials because of their structurally optimized mechanical functionality of being hard and stiff as well as damage-tolerant. However, it is unclear how different hierarchical levels interact to achieve this performance. In this study, we consider dental enamel as a representative, biological hierarchical structure and determine its flexural strength and elastic modulus at three levels of hierarchy using focused ion beam (FIB) prepared cantilevers of micrometre size. The results are compared and analysed using a theoretical model proposed by Jäger and Fratzl and developed by Gao and co-workers. Both properties decrease with increasing hierarchical dimension along with a switch in mechanical behaviour from linear-elastic to elastic-inelastic. We found Gao's model matched the results very well. PMID:22031729
Musmeci, Nicoló; Aste, Tomaso; Di Matteo, T.
2015-01-01
We quantify the amount of information filtered by different hierarchical clustering methods on correlations between stock returns comparing the clustering structure with the underlying industrial activity classification. We apply, for the first time to financial data, a novel hierarchical clustering approach, the Directed Bubble Hierarchical Tree and we compare it with other methods including the Linkage and k-medoids. By taking the industrial sector classification of stocks as a benchmark partition, we evaluate how the different methods retrieve this classification. The results show that the Directed Bubble Hierarchical Tree can outperform other methods, being able to retrieve more information with fewer clusters. Moreover, we show that the economic information is hidden at different levels of the hierarchical structures depending on the clustering method. The dynamical analysis on a rolling window also reveals that the different methods show different degrees of sensitivity to events affecting financial markets, like crises. These results can be of interest for all the applications of clustering methods to portfolio optimization and risk hedging. PMID:25786703
A hierarchical clustering methodology for the estimation of toxicity.
Martin, Todd M; Harten, Paul; Venkatapathy, Raghuraman; Das, Shashikala; Young, Douglas M
2008-01-01
ABSTRACT A quantitative structure-activity relationship (QSAR) methodology based on hierarchical clustering was developed to predict toxicological endpoints. This methodology utilizes Ward's method to divide a training set into a series of structurally similar clusters. The structural similarity is defined in terms of 2-D physicochemical descriptors (such as connectivity and E-state indices). A genetic algorithm-based technique is used to generate statistically valid QSAR models for each cluster (using the pool of descriptors described above). The toxicity for a given query compound is estimated using the weighted average of the predictions from the closest cluster from each step in the hierarchical clustering assuming that the compound is within the domain of applicability of the cluster. The hierarchical clustering methodology was tested using a Tetrahymena pyriformis acute toxicity data set containing 644 chemicals in the training set and with two prediction sets containing 339 and 110 chemicals. The results from the hierarchical clustering methodology were compared to the results from several different QSAR methodologies.
A Multi-modal, Discriminative and Spatially Invariant CNN for RGB-D Object Labeling.
Asif, Umar; Bennamoun, Mohammed; Sohel, Ferdous
2017-08-30
While deep convolutional neural networks have shown a remarkable success in image classification, the problems of inter-class similarities, intra-class variances, the effective combination of multimodal data, and the spatial variability in images of objects remain to be major challenges. To address these problems, this paper proposes a novel framework to learn a discriminative and spatially invariant classification model for object and indoor scene recognition using multimodal RGB-D imagery. This is achieved through three postulates: 1) spatial invariance - this is achieved by combining a spatial transformer network with a deep convolutional neural network to learn features which are invariant to spatial translations, rotations, and scale changes, 2) high discriminative capability - this is achieved by introducing Fisher encoding within the CNN architecture to learn features which have small inter-class similarities and large intra-class compactness, and 3) multimodal hierarchical fusion - this is achieved through the regularization of semantic segmentation to a multi-modal CNN architecture, where class probabilities are estimated at different hierarchical levels (i.e., imageand pixel-levels), and fused into a Conditional Random Field (CRF)- based inference hypothesis, the optimization of which produces consistent class labels in RGB-D images. Extensive experimental evaluations on RGB-D object and scene datasets, and live video streams (acquired from Kinect) show that our framework produces superior object and scene classification results compared to the state-of-the-art methods.
A convergent functional architecture of the insula emerges across imaging modalities.
Kelly, Clare; Toro, Roberto; Di Martino, Adriana; Cox, Christine L; Bellec, Pierre; Castellanos, F Xavier; Milham, Michael P
2012-07-16
Empirical evidence increasingly supports the hypothesis that patterns of intrinsic functional connectivity (iFC) are sculpted by a history of evoked coactivation within distinct neuronal networks. This, together with evidence of strong correspondence among the networks defined by iFC and those delineated using a variety of other neuroimaging techniques, suggests a fundamental brain architecture detectable across multiple functional and structural imaging modalities. Here, we leverage this insight to examine the functional organization of the human insula. We parcellated the insula on the basis of three distinct neuroimaging modalities - task-evoked coactivation, intrinsic (i.e., task-independent) functional connectivity, and gray matter structural covariance. Clustering of these three different covariance-based measures revealed a convergent elemental organization of the insula that likely reflects a fundamental brain architecture governing both brain structure and function at multiple spatial scales. While not constrained to be hierarchical, our parcellation revealed a pseudo-hierarchical, multiscale organization that was consistent with previous clustering and meta-analytic studies of the insula. Finally, meta-analytic examination of the cognitive and behavioral domains associated with each of the insular clusters obtained elucidated the broad functional dissociations likely underlying the topography observed. To facilitate future investigations of insula function across healthy and pathological states, the insular parcels have been made freely available for download via http://fcon_1000.projects.nitrc.org, along with the analytic scripts used to perform the parcellations. Copyright © 2012 Elsevier Inc. All rights reserved.
Yang, M. H.; Li, J. H.; Liu, B. X.
2016-01-01
Based on the newly constructed n-body potential of Ni-Ti-Mo system, Molecular Dynamics and Monte Carlo simulations predict an energetically favored glass formation region and an optimal composition sub-region with the highest glass-forming ability. In order to compare the producing techniques between liquid melt quenching (LMQ) and solid-state amorphization (SSA), inherent hierarchical structure and its effect on mechanical property were clarified via atomistic simulations. It is revealed that both producing techniques exhibit no pronounced differences in the local atomic structure and mechanical behavior, while the LMQ method makes a relatively more ordered structure and a higher intrinsic strength. Meanwhile, it is found that the dominant short-order clusters of Ni-Ti-Mo metallic glasses obtained by LMQ and SSA are similar. By analyzing the structural evolution upon uniaxial tensile deformation, it is concluded that the gradual collapse of the spatial structure network is intimately correlated to the mechanical response of metallic glasses and acts as a structural signature of the initiation and propagation of shear bands. PMID:27418115
When mechanism matters: Bayesian forecasting using models of ecological diffusion
Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.
2017-01-01
Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.
ERIC Educational Resources Information Center
Vancleef, Linda M. G.; Vlaeyen, Johan W. S.; Peters, Madelon L.
2009-01-01
Research has identified several anxiety and fear constructs that contribute directly or indirectly to the chronic course of pain. One way to gain insight into the frequently observed interrelations between these constructs may be by conceptualizing them within a hierarchical structure. In this structure, general and specific constructs are…
Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG
Krishnaswamy, Pavitra; Obregon-Henao, Gabriel; Ahveninen, Jyrki; Khan, Sheraz; Iglesias, Juan Eugenio; Hämäläinen, Matti S.; Purdon, Patrick L.
2017-01-01
Subcortical structures play a critical role in brain function. However, options for assessing electrophysiological activity in these structures are limited. Electromagnetic fields generated by neuronal activity in subcortical structures can be recorded noninvasively, using magnetoencephalography (MEG) and electroencephalography (EEG). However, these subcortical signals are much weaker than those generated by cortical activity. In addition, we show here that it is difficult to resolve subcortical sources because distributed cortical activity can explain the MEG and EEG patterns generated by deep sources. We then demonstrate that if the cortical activity is spatially sparse, both cortical and subcortical sources can be resolved with M/EEG. Building on this insight, we develop a hierarchical sparse inverse solution for M/EEG. We assess the performance of this algorithm on realistic simulations and auditory evoked response data, and show that thalamic and brainstem sources can be correctly estimated in the presence of cortical activity. Our work provides alternative perspectives and tools for characterizing electrophysiological activity in subcortical structures in the human brain. PMID:29138310
NASA Astrophysics Data System (ADS)
Kim, Taekyung; Shin, Ryung; Jung, Myungki; Lee, Jinhyung; Park, Changsu; Kang, Shinill
2016-03-01
Durable drag-reduction surfaces have recently received much attention, due to energy-saving and power-consumption issues associated with harsh environment applications, such as those experienced by piping infrastructure, ships, aviation, underwater vehicles, and high-speed ground vehicles. In this study, a durable, metallic surface with highly ordered hierarchical structures was used to enhance drag-reduction properties, by combining two passive drag-reduction strategies: an air-layer effect induced by nanostructures and secondary vortex generation by micro-riblet structures. The nanostructures and micro-riblet structures were designed to increase slip length. The top-down fabrication method used to form the metallic hierarchical structures combined laser interference lithography, photolithography, thermal reflow, nanoimprinting, and pulse-reverse-current electrochemical deposition. The surfaces were formed from nickel, which has high hardness and corrosion resistance, making it suitable for use in harsh environments. The drag-reduction properties of various metal surfaces were investigated based on the surface structure: a bare surface, a nanostructured surface, a micro-riblet surface, and a hierarchically structured surface of nanostructures on micro-riblets.
NASA Thesaurus. Volume 1: Hierarchical listing. Volume 2: Access vocabulary. Volume 3: Definitions
NASA Technical Reports Server (NTRS)
1994-01-01
There are over 17,500 postable terms and some 4,000 nonpostable terms approved for use in the NASA Scientific and Technical Information Database in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary and Volume 3 - Definitions.
Hierarchical Bi2Te3 Nanostrings: Green Synthesis and Their Thermoelectric Properties.
Song, Shuyan; Liu, Yu; Wang, Qishun; Pan, Jing; Sun, Yabin; Zhang, Lingling
2018-05-20
Bi2Te3 hierarchical nanostrings have been synthesized through a solvothermal approach with the assistance of sucrose. The hierarchical Bi2Te3 was supposed to be fabricated through a self-assembly process. Te nanorods first emerge with the reduction of TeO32- followed by heterogeneous nucleation of Bi2Te3 nanoplates on the surface and tips of Te nanorods. Te nanorods further transform into Bi2Te3 nanorods simultaneously with the nanoplates' growth leading to a hierarchical structure. Through controlling the reaction kinetics by adding different amount of ethylene glycol, the length of nanorods and the number of nanoplates could be tailored. The use of sucrose is vital to the formation of hierarchical structure because it not only serves as a template for the well-defined growth of Te nanorods but also promotes the heterogeneous nucleation of Bi2Te3 in the self-assembly process. The Bi2Te3 nanomaterial shows a moderate thermoelectric performance because of its hierarchical structure. This study shows a promising way to synthesize Bi2Te3-based nanostructures through environmental friendly approach. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lu, Tao; Zhu, Shenmin; Chen, Zhixin; Wang, Wanlin; Zhang, Wang; Zhang, Di
2016-05-01
Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures.Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01875k
The inner formal structure of the H-T-P drawings: an exploratory study.
Vass, Z
1998-08-01
The study describes some interrelated patterns of traits of the House-Tree-Person (H-T-P) drawings with the instruments of hierarchical cluster analysis. First, according to the literature 1 7 formal or structural aspects of the projective drawings were collected, after which a detailed manual for coding was compiled. Second, the interrater reliability and the consistency of this manual was tested. Third, the hierarchical cluster structure of the reliable and consistent formal aspects was analysed. Results are: (a) a psychometrically tested coding manual of the investigated formal-structural aspects, each of them illustrated with drawings that showed the highest interrater agreement; and (b) the hierarchic cluster structure of the formal aspects of the H-T-P drawings of "normal" adults.
NASA Astrophysics Data System (ADS)
Kasatkin, D. V.; Yanchuk, S.; Schöll, E.; Nekorkin, V. I.
2017-12-01
We report the phenomenon of self-organized emergence of hierarchical multilayered structures and chimera states in dynamical networks with adaptive couplings. This process is characterized by a sequential formation of subnetworks (layers) of densely coupled elements, the size of which is ordered in a hierarchical way, and which are weakly coupled between each other. We show that the hierarchical structure causes the decoupling of the subnetworks. Each layer can exhibit either a two-cluster state, a periodic traveling wave, or an incoherent state, and these states can coexist on different scales of subnetwork sizes.
Unsupervised data mining in nanoscale x-ray spectro-microscopic study of NdFeB magnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Xiaoyue; Yang, Feifei; Antono, Erin
Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanentmore » magnet material, Nd 2Fe 14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For instance, it shows that the surface of common Nd 2Fe 14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.« less
Unsupervised data mining in nanoscale x-ray spectro-microscopic study of NdFeB magnet
Duan, Xiaoyue; Yang, Feifei; Antono, Erin; ...
2016-09-29
Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanentmore » magnet material, Nd 2Fe 14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For instance, it shows that the surface of common Nd 2Fe 14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.« less
Choi, Bong Gill; Huh, Yun Suk; Hong, Won Hi; Erickson, David; Park, Ho Seok
2013-05-07
Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR microspheres consisting of the aggregates of CMG/Nafion (CMGN) nanosheets and RuO2 NPs provided large surface area and facile ion accessibility to storage sites, while the interconnected nanosheets offered continuous electron pathways and mechanical integrity. The synergistic effect of CMGNR hybrids on the supercapacitor (SC) performance was derived from the hybrid composition of pseudocapacitive RuO2 NPs with the conductive CMGNs as well as from structural features. Consequently, the CMGNR-SCs showed a specific capacitance as high as 160 F g(-1), three-fold higher than that of conventional graphene SCs, and a capacitance retention of >95% of the maximum value even after severe bending and 1000 charge-discharge tests due to the structural and compositional features.
Genetic population structure of Shoal Bass within their native range
Taylor, Andrew T.; Tringali, Michael D.; Sammons, Steven M.; Ingram, Travis R.; O'Rouke, Patrick M.; Peterson, Douglas L.; Long, James M.
2018-01-01
Endemic to the Apalachicola River basin of the southeastern USA, the Shoal Bass Micropterus cataractae is a fluvial‐specialist sport fish that is imperiled because of anthropogenic habitat alteration. To counter population declines, restorative stocking efforts are becoming an increasingly relevant management strategy. However, population genetic structure within the species is currently unknown, but it could influence management decisions, such as brood source location. Leveraging a collaborative effort to collect and genotype specimens with 16 microsatellite loci, our objective was to characterize hierarchical population structure and genetic differentiation of the Shoal Bass across its native range, including an examination of structuring mechanisms, such as relatedness and inbreeding levels. Specimens identified as Shoal Bass were collected from 13 distinct sites (N ranged from 17 to 209 per location) and were then taxonomically screened to remove nonnative congeners and hybrids (pure Shoal Bass N ranged from 13 to 183 per location). Our results revealed appreciable population structure, with five distinct Shoal Bass populations identifiable at the uppermost hierarchical level that generally corresponded with natural geographic features and anthropogenic barriers. Substructure was recovered within several of these populations, wherein differences appeared related to spatial isolation and local population dynamics. An analysis of molecular variance revealed that 3.6% of the variation in our data set was accounted for among three larger river drainages, but substructure within each river drainage also explained an additional 8.9% of genetic variation, demonstrating that management at a scale lower than the river drainage level would likely best conserve genetic diversity. Results provide a population genetic framework that can inform future management decisions, such as brood source location, so that genetic diversity within and among populations is conserved and overall adaptability of the species is maintained.
NASA Astrophysics Data System (ADS)
Choi, Bong Gill; Huh, Yun Suk; Hong, Won Hi; Erickson, David; Park, Ho Seok
2013-04-01
Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR microspheres consisting of the aggregates of CMG/Nafion (CMGN) nanosheets and RuO2 NPs provided large surface area and facile ion accessibility to storage sites, while the interconnected nanosheets offered continuous electron pathways and mechanical integrity. The synergistic effect of CMGNR hybrids on the supercapacitor (SC) performance was derived from the hybrid composition of pseudocapacitive RuO2 NPs with the conductive CMGNs as well as from structural features. Consequently, the CMGNR-SCs showed a specific capacitance as high as 160 F g-1, three-fold higher than that of conventional graphene SCs, and a capacitance retention of >95% of the maximum value even after severe bending and 1000 charge-discharge tests due to the structural and compositional features.Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR microspheres consisting of the aggregates of CMG/Nafion (CMGN) nanosheets and RuO2 NPs provided large surface area and facile ion accessibility to storage sites, while the interconnected nanosheets offered continuous electron pathways and mechanical integrity. The synergistic effect of CMGNR hybrids on the supercapacitor (SC) performance was derived from the hybrid composition of pseudocapacitive RuO2 NPs with the conductive CMGNs as well as from structural features. Consequently, the CMGNR-SCs showed a specific capacitance as high as 160 F g-1, three-fold higher than that of conventional graphene SCs, and a capacitance retention of >95% of the maximum value even after severe bending and 1000 charge-discharge tests due to the structural and compositional features. Electronic supplementary information (ESI) available: Electrodeposition procedure, TEM, SEM, and AFM images, XPS, FT-IR, and XRD spectra, mechanical strain-stress curve, textural and conductive properties, and impedance spectroscopy. See DOI: 10.1039/c3nr33674c
Quantifying the Hierarchical Order in Self-Aligned Carbon Nanotubes from Atomic to Micrometer Scale.
Meshot, Eric R; Zwissler, Darwin W; Bui, Ngoc; Kuykendall, Tevye R; Wang, Cheng; Hexemer, Alexander; Wu, Kuang Jen J; Fornasiero, Francesco
2017-06-27
Fundamental understanding of structure-property relationships in hierarchically organized nanostructures is crucial for the development of new functionality, yet quantifying structure across multiple length scales is challenging. In this work, we used nondestructive X-ray scattering to quantitatively map the multiscale structure of hierarchically self-organized carbon nanotube (CNT) "forests" across 4 orders of magnitude in length scale, from 2.0 Å to 1.5 μm. Fully resolved structural features include the graphitic honeycomb lattice and interlayer walls (atomic), CNT diameter (nano), as well as the greater CNT ensemble (meso) and large corrugations (micro). Correlating orientational order across hierarchical levels revealed a cascading decrease as we probed finer structural feature sizes with enhanced sensitivity to small-scale disorder. Furthermore, we established qualitative relationships for single-, few-, and multiwall CNT forest characteristics, showing that multiscale orientational order is directly correlated with number density spanning 10 9 -10 12 cm -2 , yet order is inversely proportional to CNT diameter, number of walls, and atomic defects. Lastly, we captured and quantified ultralow-q meridional scattering features and built a phenomenological model of the large-scale CNT forest morphology, which predicted and confirmed that these features arise due to microscale corrugations along the vertical forest direction. Providing detailed structural information at multiple length scales is important for design and synthesis of CNT materials as well as other hierarchically organized nanostructures.
Socio-Ecological Risk Factors for Prime-Age Adult Death in Two Coastal Areas of Vietnam
Kim, Deok Ryun; Ali, Mohammad; Thiem, Vu Dinh; Wierzba, Thomas F.
2014-01-01
Background Hierarchical spatial models enable the geographic and ecological analysis of health data thereby providing useful information for designing effective health interventions. In this study, we used a Bayesian hierarchical spatial model to evaluate mortality data in Vietnam. The model enabled identification of socio-ecological risk factors and generation of risk maps to better understand the causes and geographic implications of prime-age (15 to less than 45 years) adult death. Methods and Findings The study was conducted in two sites: Nha Trang and Hue in Vietnam. The study areas were split into 500×500 meter cells to define neighborhoods. We first extracted socio-demographic data from population databases of the two sites, and then aggregated the data by neighborhood. We used spatial hierarchical model that borrows strength from neighbors for evaluating risk factors and for creating spatially smoothed risk map after adjusting for neighborhood level covariates. The Markov chain Monte Carlo procedure was used to estimate the parameters. Male mortality was more than twice the female mortality. The rates also varied by age and sex. The most frequent cause of mortality was traffic accidents and drowning for men and traffic accidents and suicide for women. Lower education of household heads in the neighborhood was an important risk factor for increased mortality. The mortality was highly variable in space and the socio-ecological risk factors are sensitive to study site and sex. Conclusion Our study suggests that lower education of the household head is an important predictor for prime age adult mortality. Variability in socio-ecological risk factors and in risk areas by sex make it challenging to design appropriate intervention strategies aimed at decreasing prime-age adult deaths in Vietnam. PMID:24587031
Socio-ecological risk factors for prime-age adult death in two coastal areas of Vietnam.
Kim, Deok Ryun; Ali, Mohammad; Thiem, Vu Dinh; Wierzba, Thomas F
2014-01-01
Hierarchical spatial models enable the geographic and ecological analysis of health data thereby providing useful information for designing effective health interventions. In this study, we used a Bayesian hierarchical spatial model to evaluate mortality data in Vietnam. The model enabled identification of socio-ecological risk factors and generation of risk maps to better understand the causes and geographic implications of prime-age (15 to less than 45 years) adult death. The study was conducted in two sites: Nha Trang and Hue in Vietnam. The study areas were split into 500×500 meter cells to define neighborhoods. We first extracted socio-demographic data from population databases of the two sites, and then aggregated the data by neighborhood. We used spatial hierarchical model that borrows strength from neighbors for evaluating risk factors and for creating spatially smoothed risk map after adjusting for neighborhood level covariates. The Markov chain Monte Carlo procedure was used to estimate the parameters. Male mortality was more than twice the female mortality. The rates also varied by age and sex. The most frequent cause of mortality was traffic accidents and drowning for men and traffic accidents and suicide for women. Lower education of household heads in the neighborhood was an important risk factor for increased mortality. The mortality was highly variable in space and the socio-ecological risk factors are sensitive to study site and sex. Our study suggests that lower education of the household head is an important predictor for prime age adult mortality. Variability in socio-ecological risk factors and in risk areas by sex make it challenging to design appropriate intervention strategies aimed at decreasing prime-age adult deaths in Vietnam.
Hierarchical Bayesian spatial models for alcohol availability, drug "hot spots" and violent crime.
Zhu, Li; Gorman, Dennis M; Horel, Scott
2006-12-07
Ecologic studies have shown a relationship between alcohol outlet densities, illicit drug use and violence. The present study examined this relationship in the City of Houston, Texas, using a sample of 439 census tracts. Neighborhood sociostructural covariates, alcohol outlet density, drug crime density and violent crime data were collected for the year 2000, and analyzed using hierarchical Bayesian models. Model selection was accomplished by applying the Deviance Information Criterion. The counts of violent crime in each census tract were modelled as having a conditional Poisson distribution. Four neighbourhood explanatory variables were identified using principal component analysis. The best fitted model was selected as the one considering both unstructured and spatial dependence random effects. The results showed that drug-law violation explained a greater amount of variance in violent crime rates than alcohol outlet densities. The relative risk for drug-law violation was 2.49 and that for alcohol outlet density was 1.16. Of the neighbourhood sociostructural covariates, males of age 15 to 24 showed an effect on violence, with a 16% decrease in relative risk for each increase the size of its standard deviation. Both unstructured heterogeneity random effect and spatial dependence need to be included in the model. The analysis presented suggests that activity around illicit drug markets is more strongly associated with violent crime than is alcohol outlet density. Unique among the ecological studies in this field, the present study not only shows the direction and magnitude of impact of neighbourhood sociostructural covariates as well as alcohol and illicit drug activities in a neighbourhood, it also reveals the importance of applying hierarchical Bayesian models in this research field as both spatial dependence and heterogeneity random effects need to be considered simultaneously.
Impact of Uncertainty on the Porous Media Description in the Subsurface Transport Analysis
NASA Astrophysics Data System (ADS)
Darvini, G.; Salandin, P.
2008-12-01
In the modelling of flow and transport phenomena in naturally heterogeneous media, the spatial variability of hydraulic properties, typically the hydraulic conductivity, is generally described by use of a variogram of constant sill and spatial correlation. While some analyses reported in the literature discuss of spatial inhomogeneity related to a trend in the mean hydraulic conductivity, the effect in the flow and transport due to an inexact definition of spatial statistical properties of media as far as we know had never taken into account. The relevance of this topic is manifest, and it is related to the uncertainty in the definition of spatial moments of hydraulic log-conductivity from an (usually) little number of data, as well as to the modelling of flow and transport processes by the Monte Carlo technique, whose numerical fields have poor ergodic properties and are not strictly statistically homogeneous. In this work we investigate the effects related to mean log-conductivity (logK) field behaviours different from the constant one due to different sources of inhomogeneity as: i) a deterministic trend; ii) a deterministic sinusoidal pattern and iii) a random behaviour deriving from the hierarchical sedimentary architecture of porous formations and iv) conditioning procedure on available measurements of the hydraulic conductivity. These mean log-conductivity behaviours are superimposed to a correlated weakly fluctuating logK field. The time evolution of the spatial moments of the plume driven by a statistically inhomogeneous steady state random velocity field is analyzed in a 2-D finite domain by taking into account different sizes of injection area. The problem is approached by both a classical Monte Carlo procedure and SFEM (stochastic finite element method). By the latter the moments are achieved by space-time integration of the velocity field covariance structure derived according to the first- order Taylor series expansion. Two different goals are foreseen: 1) from the results it will be possible to distinguish the contribute in the plume dispersion of the uncertainty in the statistics of the medium hydraulic properties in all the cases considered, and 2) we will try to highlight the loss of performances that seems to affect the first-order approaches in the transport phenomena that take place in hierarchical architecture of porous formations.
Spatial modelling and mapping of female genital mutilation in Kenya
2014-01-01
Background Female genital mutilation/cutting (FGM/C) is still prevalent in several communities in Kenya and other areas in Africa, as well as being practiced by some migrants from African countries living in other parts of the world. This study aimed at detecting clustering of FGM/C in Kenya, and identifying those areas within the country where women still intend to continue the practice. A broader goal of the study was to identify geographical areas where the practice continues unabated and where broad intervention strategies need to be introduced. Methods The prevalence of FGM/C was investigated using the 2008 Kenya Demographic and Health Survey (KDHS) data. The 2008 KDHS used a multistage stratified random sampling plan to select women of reproductive age (15–49 years) and asked questions concerning their FGM/C status and their support for the continuation of FGM/C. A spatial scan statistical analysis was carried out using SaTScan™ to test for statistically significant clustering of the practice of FGM/C in the country. The risk of FGM/C was also modelled and mapped using a hierarchical spatial model under the Integrated Nested Laplace approximation approach using the INLA library in R. Results The prevalence of FGM/C stood at 28.2% and an estimated 10.3% of the women interviewed indicated that they supported the continuation of FGM. On the basis of the Deviance Information Criterion (DIC), hierarchical spatial models with spatially structured random effects were found to best fit the data for both response variables considered. Age, region, rural–urban classification, education, marital status, religion, socioeconomic status and media exposure were found to be significantly associated with FGM/C. The current FGM/C status of a woman was also a significant predictor of support for the continuation of FGM/C. Spatial scan statistics confirm FGM clusters in the North-Eastern and South-Western regions of Kenya (p < 0.001). Conclusion This suggests that the fight against FGM/C in Kenya is not yet over. There are still deep cultural and religious beliefs to be addressed in a bid to eradicate the practice. Interventions by government and other stakeholders must address these challenges and target the identified clusters. PMID:24661558
Long, Hu; Harley-Trochimczyk, Anna; Cheng, Siyi; Hu, Hao; Chi, Won Seok; Rao, Ameya; Carraro, Carlo; Shi, Tielin; Tang, Zirong; Maboudian, Roya
2016-11-23
Nanowire-assembled 3D hierarchical ZnCo 2 O 4 microstructure is synthesized by a facile hydrothermal route and a subsequent annealing process. In comparison to simple nanowires, the resulting dandelion-like structure yields more open spaces between nanowires, which allow for better gas diffusion and provide more active sites for gas adsorption while maintaining good electrical conductivity. The hierarchical ZnCo 2 O 4 microstructure is integrated on a low-power microheater platform without using binders or conductive additives. The hierarchical structure of the ZnCo 2 O 4 sensing material provides reliable electrical connection across the sensing electrodes. The resulting sensor exhibits an ultralow detection limit of 3 ppb toward formaldehyde with fast response and recovery as well as good selectivity to CO, H 2 , and hydrocarbons such as n-pentane, propane, and CH 4 . The sensor only consumes ∼5.7 mW for continuous operation at 300 °C with good long-term stability. The excellent sensing performance of this hierarchical structure based sensor suggests the advantages of combining such structures with microfabricated heaters for practical low-power sensing applications.
Shipham, Ashlee; Schmidt, Daniel J; Hughes, Jane M
2013-01-01
Recent work has highlighted the need to account for hierarchical patterns of genetic structure when estimating evolutionary and ecological parameters of interest. This caution is particularly relevant to studies of riverine organisms, where hierarchical structure appears to be commonplace. Here, we indirectly estimate dispersal distance in a hierarchically structured freshwater fish, Mogurnda adspersa. Microsatellite and mitochondrial DNA (mtDNA) data were obtained for 443 individuals across 27 sites separated by an average of 1.3 km within creeks of southeastern Queensland, Australia. Significant genetic structure was found among sites (mtDNA Φ(ST) = 0.508; microsatellite F(ST) = 0.225, F'(ST) = 0.340). Various clustering methods produced congruent patterns of hierarchical structure reflecting stream architecture. Partial mantel tests identified contiguous sets of sample sites where isolation by distance (IBD) explained F(ST) variation without significant contribution of hierarchical structure. Analysis of mean natal dispersal distance (σ) within sets of IBD-linked sample sites suggested most dispersal occurs over less than 1 km, and the average effective density (D(e)) was estimated at 11.5 individuals km(-1); indicating sedentary behavior and small effective population size are responsible for the remarkable patterns of genetic structure observed. Our results demonstrate that Rousset's regression-based method is applicable to estimating the scale of dispersal in riverine organisms and that identifying contiguous populations that satisfy the assumptions of this model is achievable with genetic clustering methods and partial correlations.
NASA Astrophysics Data System (ADS)
Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming
2015-08-01
Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm-2 or 1734 F g-1 at 5 mA cm-2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application.
Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming
2015-01-01
Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm−2 or 1734 F g−1 at 5 mA cm−2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application. PMID:26278334
Crimmins, Shawn M.; Walleser, Liza R.; Hertel, Dan R.; McKann, Patrick C.; Rohweder, Jason J.; Thogmartin, Wayne E.
2016-01-01
There is growing need to develop models of spatial patterns in animal abundance, yet comparatively few examples of such models exist. This is especially true in situations where the abundance of one species may inhibit that of another, such as the intensively-farmed landscape of the Prairie Pothole Region (PPR) of the central United States, where waterfowl production is largely constrained by mesocarnivore nest predation. We used a hierarchical Bayesian approach to relate the distribution of various land-cover types to the relative abundances of four mesocarnivores in the PPR: coyote Canis latrans, raccoon Procyon lotor, red fox Vulpes vulpes, and striped skunk Mephitis mephitis. We developed models for each species at multiple spatial resolutions (41.4 km2, 10.4 km2, and 2.6 km2) to address different ecological and management-related questions. Model results for each species were similar irrespective of resolution. We found that the amount of row-crop agriculture was nearly ubiquitous in our best models, exhibiting a positive relationship with relative abundance for each species. The amount of native grassland land-cover was positively associated with coyote and raccoon relative abundance, but generally absent from models for red fox and skunk. Red fox and skunk were positively associated with each other, suggesting potential niche overlap. We found no evidence that coyote abundance limited that of other mesocarnivore species, as might be expected under a hypothesis of mesopredator release. The relationships between relative abundance and land-cover types were similar across spatial resolutions. Our results indicated that mesocarnivores in the PPR are most likely to occur in portions of the landscape with large amounts of agricultural land-cover. Further, our results indicated that track-survey data can be used in a hierarchical framework to gain inferences regarding spatial patterns in animal relative abundance.
A unique patterned diamond stamp for a periodically hierarchical nanoarray structure.
Wang, Yi; Shen, Yanting; Xu, Weiqing; Xu, Shuping; Li, Hongdong
2016-09-23
A diamond stamp with a hierarchical pattern was designed for the direct preparation of a periodic nanoarray structure, which was prepared by the reactive ion etching technique with a hierarchical ultrathin alumina membrane (HUTAM) as a mask. The optimal etching conditions for fabricating the diamond stamp were discussed in order to realize a vertical nanopore structure, avoiding structural damage from lateral etching. By using this diamond stamp, a polymer film with the desired hierarchical nanorod array structure can be obtained easily via the simple stamping process, which greatly simplifies the processing procedure. More importantly, the stamp is reusable because of its super-hardness, which ensures the reproducibility of the nanorod array pattern. Another merit is that the smooth surface of the etched diamond can avoid the use of a release agent. Our results prove that this hard stamp can be used for quick preparation of an elaborate periodic nanoarray structure. This study is significant in that it solves the problems of high cost and easy damage of stamps in nanoimprint lithography, and it might inspire more sophisticated applications of such an ordered structure in nanoplasmonics, biochemical sensing and nanophotonic devices.
Classifying and mapping wetlands and peat resources using digital cartography
Cameron, Cornelia C.; Emery, David A.
1992-01-01
Digital cartography allows the portrayal of spatial associations among diverse data types and is ideally suited for land use and resource analysis. We have developed methodology that uses digital cartography for the classification of wetlands and their associated peat resources and applied it to a 1:24 000 scale map area in New Hampshire. Classifying and mapping wetlands involves integrating the spatial distribution of wetlands types with depth variations in associated peat quality and character. A hierarchically structured classification that integrates the spatial distribution of variations in (1) vegetation, (2) soil type, (3) hydrology, (4) geologic aspects, and (5) peat characteristics has been developed and can be used to build digital cartographic files for resource and land use analysis. The first three parameters are the bases used by the National Wetlands Inventory to classify wetlands and deepwater habitats of the United States. The fourth parameter, geological aspects, includes slope, relief, depth of wetland (from surface to underlying rock or substrate), wetland stratigraphy, and the type and structure of solid and unconsolidated rock surrounding and underlying the wetland. The fifth parameter, peat characteristics, includes the subsurface variation in ash, acidity, moisture, heating value (Btu), sulfur content, and other chemical properties as shown in specimens obtained from core holes. These parameters can be shown as a series of map data overlays with tables that can be integrated for resource or land use analysis.
Yu, H; Qiu, X; Behzad, A R; Musteata, V; Smilgies, D-M; Nunes, S P; Peinemann, K-V
2016-10-04
Membranes with a hierarchical porous structure could be manufactured from a block copolymer blend by pure solvent evaporation. Uniform pores in a 30 nm thin skin layer supported by a macroporous structure were formed. This new process is attractive for membrane production because of its simplicity and the lack of liquid waste.
Hierarchical Dirichlet process model for gene expression clustering
2013-01-01
Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this article, we propose a clustering algorithm based on the hierarchical Dirichlet processes (HDP). The HDP clustering introduces a hierarchical structure in the statistical model which captures the hierarchical features prevalent in biological data such as the gene express data. We develop a Gibbs sampling algorithm based on the Chinese restaurant metaphor for the HDP clustering. We apply the proposed HDP algorithm to both regulatory network segmentation and gene expression clustering. The HDP algorithm is shown to outperform several popular clustering algorithms by revealing the underlying hierarchical structure of the data. For the yeast cell cycle data, we compare the HDP result to the standard result and show that the HDP algorithm provides more information and reduces the unnecessary clustering fragments. PMID:23587447
Ma, Ming-Guo
2012-01-01
Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of hierarchically nanosized HA with flower-like structure assembled from nanosheets consisting of nanorod building blocks. The HA with the hierarchical nanostructure was formed via a soft-template assisted self-assembly mechanism. The hierarchically nanostructured HA has a good biocompatibility and essentially no in-vitro cytotoxicity. PMID:22619527
Hu, Lin; Zhong, Hao; Zheng, Xinrui; Huang, Yimin; Zhang, Ping; Chen, Qianwang
2012-01-01
Herein, we report the feasibility to enhance the capacity and stability of CoMn2O4 anode materials by fabricating hierarchical mesoporous structure. The open space between neighboring nanosheets allows for easy diffusion of the electrolyte. The hierarchical microspheres assembled with nanosheets can ensure that every nanosheet participates in the electrochemical reaction, because every nanosheet is contacted with the electrolyte solution. The hierarchical structure and well interconnected pores on the surface of nanosheets will enhance the CoMn2O4/electrolyte contact area, shorten the Li+ ion diffusion length in the nanosheets, and accommodate the strain induced by the volume change during the electrochemical reaction. The last, hierarchical architecture with spherical morphology possesses relatively low surface energy, which results in less extent of self-aggregation during charge/discharge process. As a result, CoMn2O4 hierarchical microspheres can achieve a good cycle ability and high rate capability. PMID:23248749
Spatio-temporal Eigenvector Filtering: Application on Bioenergy Crop Impacts
NASA Astrophysics Data System (ADS)
Wang, M.; Kamarianakis, Y.; Georgescu, M.
2017-12-01
A suite of 10-year ensemble-based simulations was conducted to investigate the hydroclimatic impacts due to large-scale deployment of perennial bioenergy crops across the continental United States. Given the large size of the simulated dataset (about 60Tb), traditional hierarchical spatio-temporal statistical modelling cannot be implemented for the evaluation of physics parameterizations and biofuel impacts. In this work, we propose a filtering algorithm that takes into account the spatio-temporal autocorrelation structure of the data while avoiding spatial confounding. This method is used to quantify the robustness of simulated hydroclimatic impacts associated with bioenergy crops to alternative physics parameterizations and observational datasets. Results are evaluated against those obtained from three alternative Bayesian spatio-temporal specifications.
Liu, Chang
2017-01-01
The spatial organization of the genome in the nucleus is critical for many cellular processes. It has been broadly accepted that the packing of chromatin inside the nucleus is not random, but structured at several hierarchical levels. The Hi-C method combines Chromatin Conformation Capture and high-throughput sequencing, which allows interrogating genome-wide chromatin interactions. Depending on the sequencing depth, chromatin packing patterns derived from Hi-C experiments can be viewed on a chromosomal scale or at a local genic level. Here, I describe a protocol of plant in situ Hi-C library preparation, which covers procedures starting from tissue fixation to library amplification.
Distinctive signatures of recursion.
Martins, Maurício Dias
2012-07-19
Although recursion has been hypothesized to be a necessary capacity for the evolution of language, the multiplicity of definitions being used has undermined the broader interpretation of empirical results. I propose that only a definition focused on representational abilities allows the prediction of specific behavioural traits that enable us to distinguish recursion from non-recursive iteration and from hierarchical embedding: only subjects able to represent recursion, i.e. to represent different hierarchical dependencies (related by parenthood) with the same set of rules, are able to generalize and produce new levels of embedding beyond those specified a priori (in the algorithm or in the input). The ability to use such representations may be advantageous in several domains: action sequencing, problem-solving, spatial navigation, social navigation and for the emergence of conventionalized communication systems. The ability to represent contiguous hierarchical levels with the same rules may lead subjects to expect unknown levels and constituents to behave similarly, and this prior knowledge may bias learning positively. Finally, a new paradigm to test for recursion is presented. Preliminary results suggest that the ability to represent recursion in the spatial domain recruits both visual and verbal resources. Implications regarding language evolution are discussed.
Bittig, Arne T; Uhrmacher, Adelinde M
2017-01-01
Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.
Cognitive Diagnostic Analysis Using Hierarchically Structured Skills
ERIC Educational Resources Information Center
Su, Yu-Lan
2013-01-01
This dissertation proposes two modified cognitive diagnostic models (CDMs), the deterministic, inputs, noisy, "and" gate with hierarchy (DINA-H) model and the deterministic, inputs, noisy, "or" gate with hierarchy (DINO-H) model. Both models incorporate the hierarchical structures of the cognitive skills in the model estimation…
Du, Pengcheng; Dong, Yuman; Liu, Chang; Wei, Wenli; Liu, Dong; Liu, Peng
2018-05-15
Hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets is fabricated by a facile hydrothermal process with the existence of trimesic acid and nickel ions. Various structures of Ni-MOFs can be obtained through adjusting the molar ratio of trimesic acid and nickel ion, the obtained hierarchical porous Ni-MOF exhibits optimal porous structure, which also possesses largest specific surface area. The hierarchical porous structure constructed with nanosheets can supply more active sites for electrochemical reactions to realize the excellent electrochemical properties, thus the hierarchical porous Ni-MOF reveals an outstanding specific capacitance of 1057 F/g at current density of 1 A/g, and delivers high specific capacitance of 649 F/g at current density of 30 A/g, indicating that it exhibits good rate capability of 63.4% even up to 30 A/g. The hierarchical porous Ni-MOF keeps 70% of its original value up to 2 500 charge-discharge cycles at the current density of 10 A/g. Furthermore, asymmetric supercapacitors (ASCs) were assembled based on hierarchical porous Ni-MOF and activated carbon (AC), the ASCs reveal specific capacitance of 87 F/g at current density of 0.5 A/g, and exhibit high energy density of 21.05 Wh/kg and power density of 6.03 kW/kg. Additionally, the tandem ASCs can light up a red LED. The hierarchical porous Ni-MOF exhibits promising applications in high performance supercapacitors. Copyright © 2018 Elsevier Inc. All rights reserved.
Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures
NASA Astrophysics Data System (ADS)
Tseng, Peter; Napier, Bradley; Zhao, Siwei; Mitropoulos, Alexander N.; Applegate, Matthew B.; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.
2017-05-01
In natural systems, directed self-assembly of structural proteins produces complex, hierarchical materials that exhibit a unique combination of mechanical, chemical and transport properties. This controlled process covers dimensions ranging from the nano- to the macroscale. Such materials are desirable to synthesize integrated and adaptive materials and systems. We describe a bio-inspired process to generate hierarchically defined structures with multiscale morphology by using regenerated silk fibroin. The combination of protein self-assembly and microscale mechanical constraints is used to form oriented, porous nanofibrillar networks within predesigned macroscopic structures. This approach allows us to predefine the mechanical and physical properties of these materials, achieved by the definition of gradients in nano- to macroscale order. We fabricate centimetre-scale material geometries including anchors, cables, lattices and webs, as well as functional materials with structure-dependent strength and anisotropic thermal transport. Finally, multiple three-dimensional geometries and doped nanofibrillar constructs are presented to illustrate the facile integration of synthetic and natural additives to form functional, interactive, hierarchical networks.
Multi-scale, Hierarchically Nested Young Stellar Structures in LEGUS Galaxies
NASA Astrophysics Data System (ADS)
Thilker, David A.; LEGUS Team
2017-01-01
The study of star formation in galaxies has predominantly been limited to either young stellar clusters and HII regions, or much larger kpc-scale morphological features such as spiral arms. The HST Legacy ExtraGalactic UV Survey (LEGUS) provides a rare opportunity to link these scales in a diverse sample of nearby galaxies and obtain a more comprehensive understanding of their co-evolution for comparison against model predictions. We have utilized LEGUS stellar photometry to identify young, resolved stellar populations belonging to several age bins and then defined nested hierarchical structures as traced by these subsamples of stars. Analagous hierarchical structures were also defined using LEGUS catalogs of unresolved young stellar clusters. We will present our emerging results concerning the physical properties (e.g. area, star counts, stellar mass, star formation rate, ISM characteristics), occupancy statistics (e.g. clusters per substructure versus age and scale, parent/child demographics) and relation to overall galaxy morphology/mass for these building blocks of hierarchical star-forming structure.
NASA Technical Reports Server (NTRS)
Padovan, J.; Lackney, J.
1986-01-01
The current paper develops a constrained hierarchical least square nonlinear equation solver. The procedure can handle the response behavior of systems which possess indefinite tangent stiffness characteristics. Due to the generality of the scheme, this can be achieved at various hierarchical application levels. For instance, in the case of finite element simulations, various combinations of either degree of freedom, nodal, elemental, substructural, and global level iterations are possible. Overall, this enables a solution methodology which is highly stable and storage efficient. To demonstrate the capability of the constrained hierarchical least square methodology, benchmarking examples are presented which treat structure exhibiting highly nonlinear pre- and postbuckling behavior wherein several indefinite stiffness transitions occur.
NASA Astrophysics Data System (ADS)
Yan, Youguo; Zhou, Lixia; Yu, Lianqing; Zhang, Ye
2008-07-01
Three kinds of ZnO hierarchical structures, nanocombs with tube- and needle-shaped teeth and hierarchical nanorod arrays, were successfully synthesized through the chemical vapor deposition method. Combining the experimental parameters, the microcosmic growing conditions (growth temperature and supersaturation) along the flux was discussed at length, and, based on the conclusions, three reasonable growth processes were proposed. The results and discussions were beneficial to further realize the relation between the growing behavior of the nanomaterial and microcosmic conditions, and the hierarchical nanostructures obtained were also expected to have potential applications as functional blocks in future nanodevices. Furthermore, the study of photoluminescence further indicated that the physical properties were strongly dependent on the crystal structure.
Departure mechanisms for host search on high-density patches by the Meteorus pulchricornis.
Sheng, Sheng; Feng, Sufang; Meng, Ling; Li, Baoping
2014-01-01
Less attention has been paid to the parasitoid-host system in which the host occurs in considerably high density with a hierarchical patch structure in studies on time allocation strategies of parasitoids. This study used the parasitoid Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae) and the Oriental leafworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) as the parasitoids-host model system to investigate patch-leaving mechanisms as affected by the high-host density, hierarchical patch structure, and foraging behaviors on both former and current patches. The results showed that three out of eight covariates tested had significant effects on the patch-leaving tendency, including the host density, ovipositor insertion, and host rejection on the current patch. The parasitoid paid more visits to the patch with high-density hosts. While the patch with higher host densities decreased the leaving tendency, the spatial distribution of hosts examined had no effect on the leaving tendency. Both oviposition and host rejection decreased the patch-leaving tendency. The variables associated with the former patch, such as the host density and number of ovipositor insertions, however, did not have an effect on the leaving tendency. Our study suggested that M. pulchricornis females may use an incremental mechanism to exploit high-density patches to the fullest. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Messa, M.; Pellerin, A.; Ryon, J. E.; Smith, L. J.; Shabani, F.; Thilker, D.; Ubeda, L.
2017-05-01
We present a study of the hierarchical clustering of the young stellar clusters in six local (3-15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ˜40-60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.
The Green Bank Ammonia Survey: Observations of Hierarchical Dense Gas Structures in Cepheus-L1251
NASA Astrophysics Data System (ADS)
Keown, Jared; Di Francesco, James; Kirk, Helen; Friesen, Rachel K.; Pineda, Jaime E.; Rosolowsky, Erik; Ginsburg, Adam; Offner, Stella S. R.; Caselli, Paola; Alves, Felipe; Chacón-Tanarro, Ana; Punanova, Anna; Redaelli, Elena; Seo, Young Min; Matzner, Christopher D.; Chun-Yuan Chen, Michael; Goodman, Alyssa A.; Chen, How-Huan; Shirley, Yancy; Singh, Ayushi; Arce, Hector G.; Martin, Peter; Myers, Philip C.
2017-11-01
We use Green Bank Ammonia Survey observations of NH3 (1, 1) and (2, 2) emission with 32″ FWHM resolution from a ˜10 pc2 portion of the Cepheus-L1251 molecular cloud to identify hierarchical dense gas structures. Our dendrogram analysis of the NH3 data results in 22 top-level structures, which reside within 13 lower-level parent structures. The structures are compact (0.01 {pc}≲ {R}{eff}≲ 0.1 {pc}) and are spatially correlated with the highest H2 column density portions of the cloud. We also compare the ammonia data to a catalog of dense cores identified by higher-resolution (18.″2 FWHM) Herschel Space Observatory observations of dust continuum emission from Cepheus-L1251. Maps of kinetic gas temperature, velocity dispersion, and NH3 column density, derived from detailed modeling of the NH3 data, are used to investigate the stability and chemistry of the ammonia-identified and Herschel-identified structures. We show that the dust and dense gas in the structures have similar temperatures, with median T dust and T K measurements of 11.7 ± 1.1 K and 10.3 ± 2.0 K, respectively. Based on a virial analysis, we find that the ammonia-identified structures are gravitationally dominated, yet may be in or near a state of virial equilibrium. Meanwhile, the majority of the Herschel-identified dense cores appear to be not bound by their own gravity and instead confined by external pressure. CCS (20 - 10) and HC5N (9-8) emission from the region reveal broader line widths and centroid velocity offsets when compared to the NH3 (1, 1) emission in some cases, likely due to these carbon-based molecules tracing the turbulent outer layers of the dense cores.
Paul F. Hessburg; Bradley G. Smith; R. Brion Salter
1999-01-01
Using hierarchical clustering techniques, we grouped subwatersheds on the eastern slope of the Cascade Range in Washington State into ecological subregions by similarity of area in potential vegetation and climate attributes. We then built spatially continuous historical and current vegetation maps for 48 randomly selected subwatersheds from interpretations of 1938-49...
The hierarchical nature of the spin alignment of dark matter haloes in filaments
NASA Astrophysics Data System (ADS)
Aragon-Calvo, M. A.; Yang, Lin Forrest
2014-05-01
Dark matter haloes in cosmological filaments and walls have (in average) their spin vector aligned with their host structure. While haloes in walls are aligned with the plane of the wall independently of their mass, haloes in filaments present a mass-dependent two-regime orientation. Here, we show that the transition mass determining the change in the alignment regime (from parallel to perpendicular) depends on the hierarchical level in which the halo is located, reflecting the hierarchical nature of the Cosmic Web. By explicitly exposing the hierarchical structure of the Cosmic Web, we are able to identify the contributions of different components of the filament network to the alignment signal. We propose a unifying picture of angular momentum acquisition that is based on the results presented here and previous results found by other authors. In order to do a hierarchical characterization of the Cosmic Web, we introduce a new implementation of the multiscale morphology filter, the MMF-2, that significantly improves the identification of structures and explicitly describes their hierarchy. L36
Control Centrality and Hierarchical Structure in Complex Networks
Liu, Yang-Yu; Slotine, Jean-Jacques; Barabási, Albert-László
2012-01-01
We introduce the concept of control centrality to quantify the ability of a single node to control a directed weighted network. We calculate the distribution of control centrality for several real networks and find that it is mainly determined by the network’s degree distribution. We show that in a directed network without loops the control centrality of a node is uniquely determined by its layer index or topological position in the underlying hierarchical structure of the network. Inspired by the deep relation between control centrality and hierarchical structure in a general directed network, we design an efficient attack strategy against the controllability of malicious networks. PMID:23028542
Carnelli, Davide; Vena, Pasquale; Dao, Ming; Ortiz, Christine; Contro, Roberto
2013-01-01
Anisotropy is one of the most peculiar aspects of cortical bone mechanics; however, its anisotropic mechanical behaviour should be treated only with strict relationship to the length scale of investigation. In this study, we focus on quantifying the orientation and size dependence of the spatial mechanical modulation in individual secondary osteons of bovine cortical bone using nanoindentation. Tests were performed on the same osteonal structure in the axial (along the long bone axis) and transverse (normal to the long bone axis) directions along arrays going radially out from the Haversian canal at four different maximum depths on three secondary osteons. Results clearly show a periodic pattern of stiffness with spatial distance across the osteon. The effect of length scale on lamellar bone anisotropy and the critical length at which homogenization of the mechanical properties occurs were determined. Further, a laminate-composite-based analytical model was applied to the stiffness trends obtained at the highest spatial resolution to evaluate the elastic constants for a sub-layer of mineralized collagen fibrils within an osteonal lamella on the basis of the spatial arrangement of the fibrils. The hierarchical arrangement of lamellar bone is found to be a major determinant for modulation of mechanical properties and anisotropic mechanical behaviour of the tissue. PMID:23389895
Moving across scales: Challenges and opportunities in upscaling carbon fluxes
NASA Astrophysics Data System (ADS)
Naithani, K. J.
2016-12-01
Light use efficiency (LUE) type models are commonly used to upscale terrestrial C fluxes and estimate regional and global C budgets. Model parameters are often estimated for each land cover type (LCT) using flux observations from one or more eddy covariance towers, and then spatially extrapolated by integrating land cover, meteorological, and remotely sensed data. Decisions regarding the type of input data (spatial resolution of land cover data, spatial and temporal length of flux data), representation of landscape structure (land use vs. disturbance regime), and the type of modeling framework (common risk vs. hierarchical) all influence the estimates CO2 fluxes and the associated uncertainties, but are rarely considered together. This work presents a synthesis of past and present efforts for upscaling CO2 fluxes and associated uncertainties in the ChEAS (Chequamegon Ecosystem Atmosphere Study) region in northern Wisconsin and the Upper Peninsula of Michigan. This work highlights two key future research needs. First, the characterization of uncertainties due to all of the abovementioned factors reflects only a (hopefully relevant) subset the overall uncertainties. Second, interactions among these factors are likely critical, but are poorly represented by the tower network at landscape scales. Yet, results indicate significant spatial and temporal heterogeneity of uncertainty in CO2 fluxes which can inform carbon management efforts and prioritize data needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuang, Wenhui; Liu, Yue; Dou, Yinyin
Understanding how landscape components affect the urban heat islands is crucial for urban ecological planning and sustainable development. The purpose of this research was to quantify the spatial pattern of land surface temperatures (LSTs) and associated heat fluxes in relation to land-cover types in Beijing, China, using portable infrared thermometers, thermal infrared imagers, and the moderate resolution imaging spectroradiometer. The spatial differences and the relationships between LSTs and the hierarchical landscape structure were analyzed with in situ observations of surface radiation and heat fluxes. Large LST differences were found among various land-use/land-cover types, urban structures, and building materials. Within themore » urban area, the mean LST of urban impervious surfaces was about 6–12°C higher than that of the urban green space. LSTs of built-up areas were on average 3–6°C higher than LSTs of rural areas. The observations for surface radiation and heat fluxes indicated that the differences were caused by different fractions of sensible heat or latent heat flux in net radiation. LSTs decreased with increasing elevation and normalized difference vegetation index. Variations in building materials and urban structure significantly influenced the spatial pattern of LSTs in urban areas. By contrast, elevation and vegetation cover are the major determinants of the LST pattern in rural areas. In summary, to alleviate urban heat island intensity, urban planners and policy makers should pay special attention to the selection of appropriate building materials, the reasonable arrangement of urban structures, and the rational design of landscape components.« less
Kuang, Wenhui; Liu, Yue; Dou, Yinyin; ...
2014-12-06
Understanding how landscape components affect the urban heat islands is crucial for urban ecological planning and sustainable development. The purpose of this research was to quantify the spatial pattern of land surface temperatures (LSTs) and associated heat fluxes in relation to land-cover types in Beijing, China, using portable infrared thermometers, thermal infrared imagers, and the moderate resolution imaging spectroradiometer. The spatial differences and the relationships between LSTs and the hierarchical landscape structure were analyzed with in situ observations of surface radiation and heat fluxes. Large LST differences were found among various land-use/land-cover types, urban structures, and building materials. Within themore » urban area, the mean LST of urban impervious surfaces was about 6–12°C higher than that of the urban green space. LSTs of built-up areas were on average 3–6°C higher than LSTs of rural areas. The observations for surface radiation and heat fluxes indicated that the differences were caused by different fractions of sensible heat or latent heat flux in net radiation. LSTs decreased with increasing elevation and normalized difference vegetation index. Variations in building materials and urban structure significantly influenced the spatial pattern of LSTs in urban areas. By contrast, elevation and vegetation cover are the major determinants of the LST pattern in rural areas. In summary, to alleviate urban heat island intensity, urban planners and policy makers should pay special attention to the selection of appropriate building materials, the reasonable arrangement of urban structures, and the rational design of landscape components.« less
Image/video understanding systems based on network-symbolic models
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2004-03-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.
Hierarchical and Well-Ordered Porous Copper for Liquid Transport Properties Control.
Pham, Quang N; Shao, Bowen; Kim, Yongsung; Won, Yoonjin
2018-05-09
Liquid delivery through interconnected pore network is essential for various interfacial transport applications ranging from energy storage to evaporative cooling. The liquid transport performance in porous media can be significantly improved through the use of hierarchical morphology that leverages transport phenomena at different length scales. Traditional surface engineering techniques using chemical or thermal reactions often show nonuniform surface nanostructuring within three-dimensional pore network due to uncontrollable diffusion and reactivity in geometrically complex porous structures. Here, we demonstrate hierarchical architectures on the basis of crystalline copper inverse opals using an electrochemistry approach, which offers volumetric controllability of structural and surface properties within the complex porous metal. The electrochemical process sequentially combines subtractive and additive steps-electrochemical polishing and electrochemical oxidation-to improve surface wetting properties without sacrificing structural permeability. We report the transport performance of the hierarchical inverse opals by measuring the capillary-driven liquid rise. The capillary performance parameter of hierarchically engineered inverse opal ( K/ R eff = ∼5 × 10 -3 μm) is shown to be higher than that of a typical crystalline inverse opal ( K/ R eff = ∼1 × 10 -3 μm) owing to the enhancement in fluid permeable and hydrophilic pathways. The new surface engineering method presented in this work provides a rational approach in designing hierarchical porous copper for transport performance enhancements.
Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr).
Demessence, Aude; Horcajada, Patricia; Serre, Christian; Boissière, Cédric; Grosso, David; Sanchez, Clément; Férey, Gérard
2009-12-14
Stable nanoparticles dispersions of the porous hybrid MIL-101(Cr) allow dip-coating of high quality optical thin films with dual hierarchical porous structure. Moreover, for the first time, mechanical and sorption properties of mesoporous MOFs based thin films are evaluated.
Zinc oxide hierarchical nanostructures for photocatalysis
NASA Astrophysics Data System (ADS)
Yukhnovets, O.; Semenova, A. A.; Levkevich, E. A.; Maximov, A. I.; Moshnikov, V. A.
2018-03-01
In this work, we perform the study of zinc oxide hierarchical structures synthesized by the low-temperature hydrothermal method. The paper considers morphological properties of obtained structures. Photocatalytic activity of samples was analysed by methyl orange degradation under UV irradiation. The sufficient decrease in methyl orange has been demonstrated.
Hierarchical structure and dynamics of oligocarbonate-functionalized PEG block copolymer gels
NASA Astrophysics Data System (ADS)
Prabhu, Vivek; Wei, Guangmin; Ali, Samim; Venkataraman, Shrinivas; Yang, Yi Yan; Hedrick, James
Hierarchical, self-assembled block copolymers in aqueous solutions provide advanced materials for biomaterial applications. Recent advancements in the synthesis of aliphatic polycarbonates have shown nontraditional micellar and hierarchical structures driven by the supramolecular assembly of the carbonate block functionality that includes cholesterol, vitamin D, and fluorene. This presentation shall describe the supramolecular assembly structure and dynamics observed by static and dynamic light scattering, small-angle neutron scattering and transmission electron microscopy in a model pi-pi stacking driven fluorene system. The combination of real-space and reciprocal space methods to develop appropriate models that quantify the structure from the micelle to transient gel network will be discussed. 1) Biomedical Research Council, Agency for Science, Technology and Research, Singapore, 2) NIST Materials Genome Initiative.
NASA Astrophysics Data System (ADS)
Cao, Fengmei; Gao, Yanfeng; Chen, Hongfei; Liu, Xinling; Tang, Xiaoping; Luo, Hongjie
2013-06-01
Multi-hierarchical structured yttria-stabilized zirconia (YSZ) powders were successfully synthesized by a hydrothermal-calcination process. The morphology, crystallinity, and microstructure of the products were characterized by SEM, XRD, TEM, and BET. A possible formation mechanism of the unique structure formed during hydrothermal processing was also investigated. The measured thermophysical results indicated that the prepared YSZ powders had a low thermal conductivity (0.63-1.27 W m-1 K-1), good short-term high-temperature stability up to 1300 °C. The influence of the morphology and microstructure on their thermophysical properties was briefly discussed. The unique multi-hierarchical structure makes the prepared YSZ powders candidates for use in enhanced applications involving thermal barrier coatings.
Spine-like Nanostructured Carbon Interconnected by Graphene for High-performance Supercapacitors
NASA Astrophysics Data System (ADS)
Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum
2014-08-01
Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp2 carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp2 carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance.
Spine-like nanostructured carbon interconnected by graphene for high-performance supercapacitors.
Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum
2014-08-19
Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp(2) carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp(2) carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance.
Spine-like Nanostructured Carbon Interconnected by Graphene for High-performance Supercapacitors
Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum
2014-01-01
Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp2 carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp2 carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance. PMID:25134517
Montijn, Jorrit Steven; Klink, P Christaan; van Wezel, Richard J A
2012-01-01
Divisive normalization models of covert attention commonly use spike rate modulations as indicators of the effect of top-down attention. In addition, an increasing number of studies have shown that top-down attention increases the synchronization of neuronal oscillations as well, particularly in gamma-band frequencies (25-100 Hz). Although modulations of spike rate and synchronous oscillations are not mutually exclusive as mechanisms of attention, there has thus far been little effort to integrate these concepts into a single framework of attention. Here, we aim to provide such a unified framework by expanding the normalization model of attention with a multi-level hierarchical structure and a time dimension; allowing the simulation of a recently reported backward progression of attentional effects along the visual cortical hierarchy. A simple cascade of normalization models simulating different cortical areas is shown to cause signal degradation and a loss of stimulus discriminability over time. To negate this degradation and ensure stable neuronal stimulus representations, we incorporate a kind of oscillatory phase entrainment into our model that has previously been proposed as the "communication-through-coherence" (CTC) hypothesis. Our analysis shows that divisive normalization and oscillation models can complement each other in a unified account of the neural mechanisms of selective visual attention. The resulting hierarchical normalization and oscillation (HNO) model reproduces several additional spatial and temporal aspects of attentional modulation and predicts a latency effect on neuronal responses as a result of cued attention.
Montijn, Jorrit Steven; Klink, P. Christaan; van Wezel, Richard J. A.
2012-01-01
Divisive normalization models of covert attention commonly use spike rate modulations as indicators of the effect of top-down attention. In addition, an increasing number of studies have shown that top-down attention increases the synchronization of neuronal oscillations as well, particularly in gamma-band frequencies (25–100 Hz). Although modulations of spike rate and synchronous oscillations are not mutually exclusive as mechanisms of attention, there has thus far been little effort to integrate these concepts into a single framework of attention. Here, we aim to provide such a unified framework by expanding the normalization model of attention with a multi-level hierarchical structure and a time dimension; allowing the simulation of a recently reported backward progression of attentional effects along the visual cortical hierarchy. A simple cascade of normalization models simulating different cortical areas is shown to cause signal degradation and a loss of stimulus discriminability over time. To negate this degradation and ensure stable neuronal stimulus representations, we incorporate a kind of oscillatory phase entrainment into our model that has previously been proposed as the “communication-through-coherence” (CTC) hypothesis. Our analysis shows that divisive normalization and oscillation models can complement each other in a unified account of the neural mechanisms of selective visual attention. The resulting hierarchical normalization and oscillation (HNO) model reproduces several additional spatial and temporal aspects of attentional modulation and predicts a latency effect on neuronal responses as a result of cued attention. PMID:22586372
Examining the Factor Structure and Hierarchical Nature of the Quality of Life Construct
ERIC Educational Resources Information Center
Wang, Mian; Schalock, Robert L.; Verdugo, Miguel A.; Jenaro, Christina
2010-01-01
There is considerable debate in the area of individual quality of life research regarding the factor structure and hierarchical nature of the quality of life construct. Our purpose in this study was to test via structural equation modeling an a priori quality of life model consisting of eight first-order factors and one second-order factor. Data…
Hierarchical structure and mechanical properties of remineralized dentin.
Chen, Yi; Wang, Jianming; Sun, Jian; Mao, Caiyun; Wang, Wei; Pan, Haihua; Tang, Ruikang; Gu, Xinhua
2014-12-01
It is widely accepted that the mechanical properties of dentin are significantly determined by its hierarchical structure. The current correlation between the mechanical properties and the hierarchical structure was mainly established by studying altered forms of dentin, which limits the potential outcome of the research. In this study, dentins with three different hierarchical structures were obtained via two different remineralization procedures and at different remineralization stages: (1) a dentin structure with amorphous minerals incorporated into the collagen fibrils, (2) a dentin with crystallized nanominerals incorporated into the collagen fibrils, and (3) a dentin with an out-of-order mineral layer filling the collagen fibrils matrix. Nanoindentation tests were performed to investigate the mechanical behavior of the remineralized dentin slides. The results showed that the incorporation of the crystallized nanominerals into the acid-etched demineralized organic fibrils resulted in a remarkable improvement of the mechanical properties of the dentin. In contrast, for the other two structures, i.e. the amorphous minerals inside the collagen fibrils and the out-of-order mineral layer within the collagen fibrils matrix, the excellent mechanical properties of dentin could not be restored. Copyright © 2014 Elsevier Ltd. All rights reserved.
Controlled evaporative self-assembly of confined microfluids: A route to complex ordered structures
NASA Astrophysics Data System (ADS)
Byun, Myunghwan
The evaporative self-assembly of nonvolatile solutes such as polymers, nanocrystals, and carbon nanotubes has been widely recognized as a non-lithographic means of producing a diverse range of intriguing complex structures. Due to the spatial variation of evaporative flux and possible convection, however, these non-equilibrium dissipative structures (e.g., fingering patterns and polygonal network structures) are often irregularly and stochastically organized. Yet for many applications in microelectronics, data storage devices, and biotechnology, it is highly desirable to achieve surface patterns having a well-controlled spatial arrangement. To date, only a few elegant studies have centered on precise control over the evaporation process to produce ordered structures. In a remarked comparison with conventional lithography techniques, surface patterning by controlled solvent evaporation is simple and cost-effective, offering a lithography- and external field-free means to organize nonvolatile materials into ordered microscopic structures over large surface areas. The ability to engineer an evaporative self-assembly process that yields a wide range of complex, self-organizing structures over large areas offers tremendous potential for applications in electronics, optoelectronics, and bio- or chemical sensors. We developed a facile, robust tool for evaporating polymer, nanoparticle, or DNA solutions in curve-on-flat geometries to create versatile, highly regular microstructures, including hierarchically structured polymer blend rings, conjugated polymer "snake-skins", block copolymer stripes, and punch-hole-like meshes, biomolecular microring arrays, etc. The mechanism of structure formation was elucidated both experimentally and theoretically. Our method further enhances current fabrication approaches to creating highly ordered structures in a simple and cost-effective manner, envisioning the potential to be tailored for use in photonics, optoelectronics, microfluidic devices, nanotechnology and biotechnology, etc.
Multilevel Higher-Order Item Response Theory Models
ERIC Educational Resources Information Center
Huang, Hung-Yu; Wang, Wen-Chung
2014-01-01
In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…
Scale of association: hierarchical linear models and the measurement of ecological systems
Sean M. McMahon; Jeffrey M. Diez
2007-01-01
A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...
Mattsson, Brady J.; Zipkin, Elise F.; Gardner, Beth; Blank, Peter J.; Sauer, John R.; Royle, J. Andrew
2013-01-01
Understanding interactions between mobile species distributions and landcover characteristics remains an outstanding challenge in ecology. Multiple factors could explain species distributions including endogenous evolutionary traits leading to conspecific clustering and endogenous habitat features that support life history requirements. Birds are a useful taxon for examining hypotheses about the relative importance of these factors among species in a community. We developed a hierarchical Bayes approach to model the relationships between bird species occupancy and local landcover variables accounting for spatial autocorrelation, species similarities, and partial observability. We fit alternative occupancy models to detections of 90 bird species observed during repeat visits to 316 point-counts forming a 400-m grid throughout the Patuxent Wildlife Research Refuge in Maryland, USA. Models with landcover variables performed significantly better than our autologistic and null models, supporting the hypothesis that local landcover heterogeneity is important as an exogenous driver for species distributions. Conspecific clustering alone was a comparatively poor descriptor of local community composition, but there was evidence for spatial autocorrelation in all species. Considerable uncertainty remains whether landcover combined with spatial autocorrelation is most parsimonious for describing bird species distributions at a local scale. Spatial structuring may be weaker at intermediate scales within which dispersal is less frequent, information flows are localized, and landcover types become spatially diversified and therefore exhibit little aggregation. Examining such hypotheses across species assemblages contributes to our understanding of community-level associations with conspecifics and landscape composition.
Mattsson, Brady J; Zipkin, Elise F; Gardner, Beth; Blank, Peter J; Sauer, John R; Royle, J Andrew
2013-01-01
Understanding interactions between mobile species distributions and landcover characteristics remains an outstanding challenge in ecology. Multiple factors could explain species distributions including endogenous evolutionary traits leading to conspecific clustering and endogenous habitat features that support life history requirements. Birds are a useful taxon for examining hypotheses about the relative importance of these factors among species in a community. We developed a hierarchical Bayes approach to model the relationships between bird species occupancy and local landcover variables accounting for spatial autocorrelation, species similarities, and partial observability. We fit alternative occupancy models to detections of 90 bird species observed during repeat visits to 316 point-counts forming a 400-m grid throughout the Patuxent Wildlife Research Refuge in Maryland, USA. Models with landcover variables performed significantly better than our autologistic and null models, supporting the hypothesis that local landcover heterogeneity is important as an exogenous driver for species distributions. Conspecific clustering alone was a comparatively poor descriptor of local community composition, but there was evidence for spatial autocorrelation in all species. Considerable uncertainty remains whether landcover combined with spatial autocorrelation is most parsimonious for describing bird species distributions at a local scale. Spatial structuring may be weaker at intermediate scales within which dispersal is less frequent, information flows are localized, and landcover types become spatially diversified and therefore exhibit little aggregation. Examining such hypotheses across species assemblages contributes to our understanding of community-level associations with conspecifics and landscape composition.
Mattsson, Brady J.; Zipkin, Elise F.; Gardner, Beth; Blank, Peter J.; Sauer, John R.; Royle, J. Andrew
2013-01-01
Understanding interactions between mobile species distributions and landcover characteristics remains an outstanding challenge in ecology. Multiple factors could explain species distributions including endogenous evolutionary traits leading to conspecific clustering and endogenous habitat features that support life history requirements. Birds are a useful taxon for examining hypotheses about the relative importance of these factors among species in a community. We developed a hierarchical Bayes approach to model the relationships between bird species occupancy and local landcover variables accounting for spatial autocorrelation, species similarities, and partial observability. We fit alternative occupancy models to detections of 90 bird species observed during repeat visits to 316 point-counts forming a 400-m grid throughout the Patuxent Wildlife Research Refuge in Maryland, USA. Models with landcover variables performed significantly better than our autologistic and null models, supporting the hypothesis that local landcover heterogeneity is important as an exogenous driver for species distributions. Conspecific clustering alone was a comparatively poor descriptor of local community composition, but there was evidence for spatial autocorrelation in all species. Considerable uncertainty remains whether landcover combined with spatial autocorrelation is most parsimonious for describing bird species distributions at a local scale. Spatial structuring may be weaker at intermediate scales within which dispersal is less frequent, information flows are localized, and landcover types become spatially diversified and therefore exhibit little aggregation. Examining such hypotheses across species assemblages contributes to our understanding of community-level associations with conspecifics and landscape composition. PMID:23393564
Attention-spreading based on hierarchical spatial representations for connected objects.
Kasai, Tetsuko
2010-01-01
Attention selects objects or groups as the most fundamental unit, and this may be achieved through a process in which attention automatically spreads throughout their entire region. Previously, we found that a lateralized potential relative to an attended hemifield at occipito-temporal electrode sites reflects attention-spreading in response to connected bilateral stimuli [Kasai, T., & Kondo, M. Electrophysiological correlates of attention-spreading in visual grouping. NeuroReport, 18, 93-98, 2007]. The present study examined the nature of object representations by manipulating the extent of grouping through connectedness, while controlling the symmetrical structure of bilateral stimuli. The electrophysiological results of two experiments consistently indicated that attention was guided twice in association with perceptual grouping in the early phase (N1, 150-200 msec poststimulus) and with the unity of an object in the later phase (N2pc, 310/330-390 msec). This suggests that there are two processes in object-based spatial selection, and these are discussed with regard to their cognitive mechanisms and object representations.
Geometrical and topological issues in octree based automatic meshing
NASA Technical Reports Server (NTRS)
Saxena, Mukul; Perucchio, Renato
1987-01-01
Finite element meshes derived automatically from solid models through recursive spatial subdivision schemes (octrees) can be made to inherit the hierarchical structure and the spatial addressability intrinsic to the underlying grid. These two properties, together with the geometric regularity that can also be built into the mesh, make octree based meshes ideally suited for efficient analysis and self-adaptive remeshing and reanalysis. The element decomposition of the octal cells that intersect the boundary of the domain is discussed. The problem, central to octree based meshing, is solved by combining template mapping and element extraction into a procedure that utilizes both constructive solid geometry and boundary representation techniques. Boundary cells that are not intersected by the edge of the domain boundary are easily mapped to predefined element topology. Cells containing edges (and vertices) are first transformed into a planar polyhedron and then triangulated via element extractor. The modeling environments required for the derivation of planar polyhedra and for element extraction are analyzed.
Octree based automatic meshing from CSG models
NASA Technical Reports Server (NTRS)
Perucchio, Renato
1987-01-01
Finite element meshes derived automatically from solid models through recursive spatial subdivision schemes (octrees) can be made to inherit the hierarchical structure and the spatial addressability intrinsic to the underlying grid. These two properties, together with the geometric regularity that can also be built into the mesh, make octree based meshes ideally suited for efficient analysis and self-adaptive remeshing and reanalysis. The element decomposition of the octal cells that intersect the boundary of the domain is emphasized. The problem, central to octree based meshing, is solved by combining template mapping and element extraction into a procedure that utilizes both constructive solid geometry and boundary respresentation techniques. Boundary cells that are not intersected by the edge of the domain boundary are easily mapped to predefined element topology. Cells containing edges (and vertices) are first transformed into a planar polyhedron and then triangulated via element extractors. The modeling environments required for the derivation of planar polyhedra and for element extraction are analyzed.
Local variations in spatial synchrony of influenza epidemics.
Stark, James H; Cummings, Derek A T; Ermentrout, Bard; Ostroff, Stephen; Sharma, Ravi; Stebbins, Samuel; Burke, Donald S; Wisniewski, Stephen R
2012-01-01
Understanding the mechanism of influenza spread across multiple geographic scales is not complete. While the mechanism of dissemination across regions and states of the United States has been described, understanding the determinants of dissemination between counties has not been elucidated. The paucity of high resolution spatial-temporal influenza incidence data to evaluate disease structure is often not available. We report on the underlying relationship between the spread of influenza and human movement between counties of one state. Significant synchrony in the timing of epidemics exists across the entire state and decay with distance (regional correlation=62%). Synchrony as a function of population size display evidence of hierarchical spread with more synchronized epidemics occurring among the most populated counties. A gravity model describing movement between two populations is a stronger predictor of influenza spread than adult movement to and from workplaces suggesting that non-routine and leisure travel drive local epidemics. These findings highlight the complex nature of influenza spread across multiple geographic scales.
Local Variations in Spatial Synchrony of Influenza Epidemics
Stark, James H.; Cummings, Derek A. T.; Ermentrout, Bard; Ostroff, Stephen; Sharma, Ravi; Stebbins, Samuel; Burke, Donald S.; Wisniewski, Stephen R.
2012-01-01
Background Understanding the mechanism of influenza spread across multiple geographic scales is not complete. While the mechanism of dissemination across regions and states of the United States has been described, understanding the determinants of dissemination between counties has not been elucidated. The paucity of high resolution spatial-temporal influenza incidence data to evaluate disease structure is often not available. Methodology and Findings We report on the underlying relationship between the spread of influenza and human movement between counties of one state. Significant synchrony in the timing of epidemics exists across the entire state and decay with distance (regional correlation = 62%). Synchrony as a function of population size display evidence of hierarchical spread with more synchronized epidemics occurring among the most populated counties. A gravity model describing movement between two populations is a stronger predictor of influenza spread than adult movement to and from workplaces suggesting that non-routine and leisure travel drive local epidemics. Conclusions These findings highlight the complex nature of influenza spread across multiple geographic scales. PMID:22916274
NASA Technical Reports Server (NTRS)
Hoebel, Louis J.
1993-01-01
The problem of plan generation (PG) and the problem of plan execution monitoring (PEM), including updating, queries, and resource-bounded replanning, have different reasoning and representation requirements. PEM requires the integration of qualitative and quantitative information. PEM is the receiving of data about the world in which a plan or agent is executing. The problem is to quickly determine the relevance of the data, the consistency of the data with respect to the expected effects, and if execution should continue. Only spatial and temporal aspects of the plan are addressed for relevance in this work. Current temporal reasoning systems are deficient in computational aspects or expressiveness. This work presents a hybrid qualitative and quantitative system that is fully expressive in its assertion language while offering certain computational efficiencies. In order to proceed, methods incorporating approximate reasoning using hierarchies, notions of locality, constraint expansion, and absolute parameters need be used and are shown to be useful for the anytime nature of PEM.
NASA Astrophysics Data System (ADS)
Zhao, Shaojun; Wang, Li; Wang, Ying; Li, Xing
2018-05-01
In this paper, pomelo peel was used as biological template to obtain hierarchically porous LaFeO3 perovskite for the catalytic oxidation of NO to NO2. In addition, X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption-desorption analyses, X-ray photoelectron spectra (XPS), NO temperature-programmed desorption (NO-TPD), oxygen temperature-programmed desorption (O2-TPD) and hydrogen temperature-programmed reduction (H2-TPR) were used to investigate the micro-structure and the redox properties of the hierarchically porous LaFeO3 perovskite prepared from pomelo peel biological template and the LaFeO3 perovskite without the biological template. The results indicated that the hierarchically porous LaFeO3 perovskite successfully replicated the porous structure of pomelo peel with high specific surface area. Compared to the LaFeO3 perovskite prepared without the pomelo peel template, the hierarchically porous LaFeO3 perovskite showed better catalytic oxidization of NO to NO2 under the same conditions. The maximum NO conversions for LaFeO3 prepared with and without template were 90% at 305 °C and 76% at 313 °C, respectively. This is mainly attributed to the higher ratio of Fe4+/Fe3+, the hierarchically porous structure with more adsorbed oxygen species and higher surface area for the hierarchically porous LaFeO3 perovskite compared with the sample prepared without the pomelo peel template.
Drawing the line between constituent structure and coherence relations in visual narratives
Cohn, Neil; Bender, Patrick
2016-01-01
Theories of visual narrative understanding have often focused on the changes in meaning across a sequence, like shifts in characters, spatial location, and causation, as cues for breaks in the structure of a discourse. In contrast, the theory of Visual Narrative Grammar posits that hierarchic “grammatical” structures operate at the discourse level using categorical roles for images, which may or may not co-occur with shifts in coherence. We therefore examined the relationship between narrative structure and coherence shifts in the segmentation of visual narrative sequences using a “segmentation task” where participants drew lines between images in order to divide them into sub-episodes. We used regressions to analyze the influence of the expected constituent structure boundary, narrative categories, and semantic coherence relationships on the segmentation of visual narrative sequences. Narrative categories were a stronger predictor of segmentation than linear coherence relationships between panels, though both influenced participants’ divisions. Altogether, these results support the theory that meaningful sequential images use a narrative grammar that extends above and beyond linear semantic shifts between discourse units. PMID:27709982
Drawing the line between constituent structure and coherence relations in visual narratives.
Cohn, Neil; Bender, Patrick
2017-02-01
Theories of visual narrative understanding have often focused on the changes in meaning across a sequence, like shifts in characters, spatial location, and causation, as cues for breaks in the structure of a discourse. In contrast, the theory of visual narrative grammar posits that hierarchic "grammatical" structures operate at the discourse level using categorical roles for images, which may or may not co-occur with shifts in coherence. We therefore examined the relationship between narrative structure and coherence shifts in the segmentation of visual narrative sequences using a "segmentation task" where participants drew lines between images in order to divide them into subepisodes. We used regressions to analyze the influence of the expected constituent structure boundary, narrative categories, and semantic coherence relationships on the segmentation of visual narrative sequences. Narrative categories were a stronger predictor of segmentation than linear coherence relationships between panels, though both influenced participants' divisions. Altogether, these results support the theory that meaningful sequential images use a narrative grammar that extends above and beyond linear semantic shifts between discourse units. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Wang, Meng; Li, Guangda; Xu, Huayun; Qian, Yitai; Yang, Jian
2013-02-01
MoS(2), because of its layered structure and high theoretical capacity, has been regarded as a potential candidate for electrode materials in lithium secondary batteries. But it suffers from the poor cycling stability and low rate capability. Here, hierarchical hollow nanoparticles of MoS(2) nanosheets with an increased interlayer distance are synthesized by a simple solvothermal reaction at a low temperature. The formation of hierarchical hollow nanoparticles is based on the intermediate, K(2)NaMoO(3)F(3), as a self-sacrificed template. These hollow nanoparticles exhibit a reversible capacity of 902 mA h g(-1) at 100 mA g(-1) after 80 cycles, much higher than the solid counterpart. At a current density of 1000 mA g(-1), the reversible capacity of the hierarchical hollow nanoparticles could be still maintained at 780 mAh g(-1). The enhanced lithium storage performances of the hierarchical hollow nanoparticles in reversible capacities, cycling stability and rate performances can be attributed to their hierarchical surface, hollow structure feature and increased layer distance of S-Mo-S. Hierarchical hollow nanoparticles as an ensemble of these features, could be applied to other electrode materials for the superior electrochemical performance.
Perception of hierarchical boundaries in music and its modulation by expertise.
Zhang, Jingjing; Jiang, Cunmei; Zhou, Linshu; Yang, Yufang
2016-10-01
Hierarchical structure with units of different timescales is a key feature of music. For the perception of such structures, the detection of each boundary is crucial. Here, using electroencephalography (EEG), we explore the perception of hierarchical boundaries in music, and test whether musical expertise modifies such processing. Musicians and non-musicians were presented with musical excerpts containing boundaries at three hierarchical levels, including section, phrase and period boundaries. Non-boundary was chosen as a baseline condition. Recordings from musicians showed CPS (closure positive shift) was evoked at all the three boundaries, and their amplitude increased as the hierarchical level became higher, which suggest that musicians could represent music events at different timescales in a hierarchical way. For non-musicians, the CPS was only elicited at the period boundary and undistinguishable negativities were induced at all the three boundaries. The results indicate that a different and less clear way was used by non-musicians in boundary perception. Our findings reveal, for the first time, an ERP correlate of perceiving hierarchical boundaries in music, and show that the phrasing ability could be enhanced by musical expertise. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Xiaolang; Zhang, Huiqiang; Zhang, Dieqing; Miao, Yingchun; Li, Guisheng
2018-03-01
The successful application of hierarchically porous structure in environmental treatment has provided new insights for solving environmental problems. Hierarchically structured semiconductor materials were considered as promising photocatalysts for NO oxidation in gas phase. Multi-shelled ZnO microspheres (MMSZ) were controllably shaped with hierarchically porous structures via a facile hydrothermal route using amino acid (N-Acetyl-D-Proline) as template and post-calcination treatment. Symmetric Ostwald ripening was used to explain the morphological evolution of hierarchical nanostructure. MMSZ was proved highly efficient for oxidizing NO (400 ppb) in gas phase under UV light irradiation with a much higher photocatalytic removal rate (77.3%) than that of the as-obtained ZnO crystals with other hierachically porous structures, owing to its higher photocurrent intensity. Such greatly enhanced photocatalytic activity can be assigned to the enhanced crystallinity of ZnO, mesopores and unique multi-shelled structure. Enhanced crystallinity promotes photogenerated charges under light irradiation. Mesoporous porosity can ensure enough light scattering between the shells. Multi-shelled structure endows ZnO with higher specific surface area and high frequency of multiple light reflection, resulting in more exposed active sites, higher light utilization efficiency, and fast separation efficiency of photogenerated charge carriers. The experimental results demonstrated that the photogenerated holes (h+) are the main active species. Hierarchically structured ZnO is not only contributed to directly use solar energy to solving various problems caused by atmospheric pollution, but also has potential applications in energy converse and storage including solar cells, lithium batteries, water-splitting, etc.
The Hierarchical Personality Structure of Aspiring Creative Writers
ERIC Educational Resources Information Center
Maslej, Marta M.; Rain, Marina; Fong, Katrina; Oatley, Keith; Mar, Raymond A.
2014-01-01
Empirical studies of personality traits in creative writers have demonstrated mixed findings, perhaps due to issues of sampling, measurement, and the reporting of statistical information. The goal of this study is to quantify the personality structure of aspiring creative writers according to a modern hierarchal model of trait personality. A…
Multilevel Analysis of Structural Equation Models via the EM Algorithm.
ERIC Educational Resources Information Center
Jo, See-Heyon
The question of how to analyze unbalanced hierarchical data generated from structural equation models has been a common problem for researchers and analysts. Among difficulties plaguing statistical modeling are estimation bias due to measurement error and the estimation of the effects of the individual's hierarchical social milieu. This paper…
Inheritance rules for Hierarchical Metadata Based on ISO 19115
NASA Astrophysics Data System (ADS)
Zabala, A.; Masó, J.; Pons, X.
2012-04-01
Mainly, ISO19115 has been used to describe metadata for datasets and services. Furthermore, ISO19115 standard (as well as the new draft ISO19115-1) includes a conceptual model that allows to describe metadata at different levels of granularity structured in hierarchical levels, both in aggregated resources such as particularly series, datasets, and also in more disaggregated resources such as types of entities (feature type), types of attributes (attribute type), entities (feature instances) and attributes (attribute instances). In theory, to apply a complete metadata structure to all hierarchical levels of metadata, from the whole series to an individual feature attributes, is possible, but to store all metadata at all levels is completely impractical. An inheritance mechanism is needed to store each metadata and quality information at the optimum hierarchical level and to allow an ease and efficient documentation of metadata in both an Earth observation scenario such as a multi-satellite mission multiband imagery, as well as in a complex vector topographical map that includes several feature types separated in layers (e.g. administrative limits, contour lines, edification polygons, road lines, etc). Moreover, and due to the traditional split of maps in tiles due to map handling at detailed scales or due to the satellite characteristics, each of the previous thematic layers (e.g. 1:5000 roads for a country) or band (Landsat-5 TM cover of the Earth) are tiled on several parts (sheets or scenes respectively). According to hierarchy in ISO 19115, the definition of general metadata can be supplemented by spatially specific metadata that, when required, either inherits or overrides the general case (G.1.3). Annex H of this standard states that only metadata exceptions are defined at lower levels, so it is not necessary to generate the full registry of metadata for each level but to link particular values to the general value that they inherit. Conceptually the metadata registry is complete for each metadata hierarchical level, but at the implementation level most of the metadata elements are not stored at both levels but only at more generic one. This communication defines a metadata system that covers 4 levels, describes which metadata has to support series-layer inheritance and in which way, and how hierarchical levels are defined and stored. Metadata elements are classified according to the type of inheritance between products, series, tiles and the datasets. It explains the metadata elements classification and exemplifies it using core metadata elements. The communication also presents a metadata viewer and edition tool that uses the described model to propagate metadata elements and to show to the user a complete set of metadata for each level in a transparent way. This tool is integrated in the MiraMon GIS software.
NASA Astrophysics Data System (ADS)
Bian, Weiguo; Qin, Lian; Li, Dichen; Wang, Jin; Jin, Zhongmin
2010-09-01
The artificial biodegradable osteochondral construct is one of mostly promising lifetime substitute in the joint replacement. And the complex hierarchical structure of natural joint is important in developing the osteochondral construct. However, the architecture features of the interface between cartilage and bone, in particular those at the micro-and nano-structural level, remain poorly understood. This paper investigates these structural data of the cartilage-bone interface by micro computerized tomography (μCT) and Scanning Electron Microscope (SEM). The result of μCT shows that important bone parameters and the density of articular cartilage are all related to the position in the hierarchical structure. The conjunctions of bone and cartilage were defined by SEM. All of the study results would be useful for the design of osteochondral construct further manufactured by nano-tech. A three-dimensional model with gradient porous structure is constructed in the environment of Pro/ENGINEERING software.
Supramolecular structure of polymer binders and composites: targeted control based on the hierarchy
NASA Astrophysics Data System (ADS)
Matveeva, Larisa; Belentsov, Yuri
2017-10-01
The article discusses the problem of targeted control over properties by modifying the supramolecular structure of polymer binders and composites based on their hierarchy. Control over the structure formation of polymers and introduction of modifying additives should be tailored to the specific hierarchical structural levels. Characteristics of polymer materials are associated with structural defects, which also display a hierarchical pattern. Classification of structural defects in polymers is presented. The primary structural level (nano level) of supramolecular formations is of great importance to the reinforcement and regulation of strength characteristics.
Rodger, Yael S; Greenbaum, Gili; Silver, Micha; Bar-David, Shirli; Winters, Gidon
2018-01-01
Genetic diversity and structure of populations at the edge of the species' spatial distribution are important for potential adaptation to environmental changes and consequently, for the long-term survival of the species. Here, we combined classical population genetic methods with newly developed network analyses to gain complementary insights into the genetic structure and diversity of Acacia tortilis, a keystone desert tree, at the northern edge of its global distribution, where the population is under threat from climatic, ecological, and anthropogenic changes. We sampled A. tortilis from 14 sites along the Dead Sea region and the Arava Valley in Israel and in Jordan. In addition, we obtained samples from Egypt and Sudan, the hypothesized origin of the species. Samples from all sites were genotyped using six polymorphic microsatellite loci.Our results indicate a significant genetic structure in A. tortilis along the Arava Valley. This was detected at different hierarchical levels-from the basic unit of the subpopulation, corresponding to groups of trees within ephemeral rivers (wadis), to groups of subpopulations (communities) that are genetically more connected relative to others. The latter structure mostly corresponds to the partition of the major drainage basins in the area. Network analyses, combined with classical methods, allowed for the identification of key A. tortilis subpopulations in this region, characterized by their relatively high level of genetic diversity and centrality in maintaining gene flow in the population. Characterizing such key subpopulations may enable conservation managers to focus their efforts on certain subpopulations that might be particularly important for the population's long-term persistence, thus contributing to species conservation within its peripheral range.
CryoTEM as an Advanced Analytical Tool for Materials Chemists.
Patterson, Joseph P; Xu, Yifei; Moradi, Mohammad-Amin; Sommerdijk, Nico A J M; Friedrich, Heiner
2017-07-18
Morphology plays an essential role in chemistry through the segregation of atoms and/or molecules into different phases, delineated by interfaces. This is a general process in materials synthesis and exploited in many fields including colloid chemistry, heterogeneous catalysis, and functional molecular systems. To rationally design complex materials, we must understand and control morphology evolution. Toward this goal, we utilize cryogenic transmission electron microscopy (cryoTEM), which can track the structural evolution of materials in solution with nanometer spatial resolution and a temporal resolution of <1 s. In this Account, we review examples of our own research where direct observations by cryoTEM have been essential to understanding morphology evolution in macromolecular self-assembly, inorganic nucleation and growth, and the cooperative evolution of hybrid materials. These three different research areas are at the heart of our approach to materials chemistry where we take inspiration from the myriad examples of complex materials in Nature. Biological materials are formed using a limited number of chemical components and under ambient conditions, and their formation pathways were refined during biological evolution by enormous trial and error approaches to self-organization and biomineralization. By combining the information on what is possible in nature and by focusing on a limited number of chemical components, we aim to provide an essential insight into the role of structure evolution in materials synthesis. Bone, for example, is a hierarchical and hybrid material which is lightweight, yet strong and hard. It is formed by the hierarchical self-assembly of collagen into a macromolecular template with nano- and microscale structure. This template then directs the nucleation and growth of oriented, nanoscale calcium phosphate crystals to form the composite material. Fundamental insight into controlling these structuring processes will eventually allow us to design such complex materials with predetermined and potentially unique properties.
NASA Astrophysics Data System (ADS)
Miao, Liming; Cheng, Xiaoliang; Chen, Haotian; Song, Yu; Guo, Hang; Zhang, Jinxin; Chen, Xuexian; Zhang, Haixia
2018-01-01
We report a simple method for fabricating two-dimensional and nested hierarchical wrinkle structures on polydimethylsiloxane surfaces via one-step C4F8 plasma treatment that innovatively combines two approaches to monolayer wrinkle structure fabrication. The wavelengths of the two dimensions of the wrinkle structures can be controlled by plasma treatment (radio frequency (RF) power and plasma treatment time) and stretching (stretching strain and axial stretching), respectively. We also analyze the different interactions between the two dimensions of wrinkle structures with different wavelengths and explain the phenomenon using Fourier waveform superposition. The character of the two dimensions and hierarchy is obvious when the wavelengths of the two wrinkles are different. In surface wetting tests, the hierarchical wrinkle shows great hydrophobicity and keeps the stretching property under 25%.
Khana, Diba; Rossen, Lauren M; Hedegaard, Holly; Warner, Margaret
2018-01-01
Hierarchical Bayes models have been used in disease mapping to examine small scale geographic variation. State level geographic variation for less common causes of mortality outcomes have been reported however county level variation is rarely examined. Due to concerns about statistical reliability and confidentiality, county-level mortality rates based on fewer than 20 deaths are suppressed based on Division of Vital Statistics, National Center for Health Statistics (NCHS) statistical reliability criteria, precluding an examination of spatio-temporal variation in less common causes of mortality outcomes such as suicide rates (SRs) at the county level using direct estimates. Existing Bayesian spatio-temporal modeling strategies can be applied via Integrated Nested Laplace Approximation (INLA) in R to a large number of rare causes of mortality outcomes to enable examination of spatio-temporal variations on smaller geographic scales such as counties. This method allows examination of spatiotemporal variation across the entire U.S., even where the data are sparse. We used mortality data from 2005-2015 to explore spatiotemporal variation in SRs, as one particular application of the Bayesian spatio-temporal modeling strategy in R-INLA to predict year and county-specific SRs. Specifically, hierarchical Bayesian spatio-temporal models were implemented with spatially structured and unstructured random effects, correlated time effects, time varying confounders and space-time interaction terms in the software R-INLA, borrowing strength across both counties and years to produce smoothed county level SRs. Model-based estimates of SRs were mapped to explore geographic variation.
MYStIX: Dynamical evolution of young clusters
NASA Astrophysics Data System (ADS)
Kuhn, Michael A.
2014-08-01
The spatial structure of young stellar clusters in Galactic star-forming regions provides insight into these clusters’ dynamical evolution---a topic with implications for open questions in star-formation and cluster survival. The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) provides a sample of >30,000 young stars in star-forming regions (d<3.6 kpc) that contain at least one O-type star. We use the finite mixture model analysis to identify subclusters of stars and determine their properties: including subcluster radii, intrinsic numbers of stars, central density, ellipticity, obscuration, and age. In 17 MYStIX regions we find 142 subclusters, with a diverse radii and densities and age spreads of up to ~1 Myr in a region. There is a strong negative correlation between subcluster radius and density, which indicates that embedded subclusters expand but also gain stars as they age. Subcluster expansion is also shown by a positive radius--age correlation, which indicates that subclusters are expanding at <1 km/s. The subcluster ellipticity distribution and number--density relation show signs of a hierarchical merger scenario, whereby young stellar clusters are built up through mergers of smaller clumps, causing evolution from a clumpy spatial distribution of stars (seen in some regions) to a simpler distribution of stars (seen in other regions). Many of the simple young stellar clusters show signs of dynamically relaxation, even though they are not old enough for this to have occurred through two-body interactions. However, this apparent contradiction might be explained if small subcluster, which have shorter dynamical relaxation times, can produce dynamically relaxed clusters through hierarchical mergers.
Hierarchical filters determine community assembly of urban species pools.
Aronson, Myla F J; Nilon, Charles H; Lepczyk, Christopher A; Parker, Tommy S; Warren, Paige S; Cilliers, Sarel S; Goddard, Mark A; Hahs, Amy K; Herzog, Cecilia; Katti, Madhusudan; La Sorte, Frank A; Williams, Nicholas S G; Zipperer, Wayne
2016-11-01
The majority of humanity now lives in cities or towns, with this proportion expected to continue increasing for the foreseeable future. As novel ecosystems, urban areas offer an ideal opportunity to examine multi-scalar processes involved in community assembly as well as the role of human activities in modulating environmental drivers of biodiversity. Although ecologists have made great strides in recent decades at documenting ecological relationships in urban areas, much remains unknown, and we still need to identify the major ecological factors, aside from habitat loss, behind the persistence or extinction of species and guilds of species in cities. Given this paucity of knowledge, there is an immediate need to facilitate collaborative, interdisciplinary research on the patterns and drivers of biodiversity in cities at multiple spatial scales. In this review, we introduce a new conceptual framework for understanding the filtering processes that mold diversity of urban floras and faunas. We hypothesize that the following hierarchical series of filters influence species distributions in cities: (1) regional climatic and biogeographical factors; (2) human facilitation; (3) urban form and development history; (4) socioeconomic and cultural factors; and (5) species interactions. In addition to these filters, life history and functional traits of species are important in determining community assembly and act at multiple spatial scales. Using these filters as a conceptual framework can help frame future research needed to elucidate processes of community assembly in urban areas. Understanding how humans influence community structure and processes will aid in the management, design, and planning of our cities to best support biodiversity. © 2016 by the Ecological Society of America.
Meng, Yuena; Wang, Kai; Zhang, Yajie; Wei, Zhixiang
2013-12-23
A highly flexible graphene free-standing film with hierarchical structure is prepared by a facile template method. With a porous structure, the film can be easily bent and cut, and forms a composite with another material as a scaffold. The 3D graphene film exhibits excellent rate capability and its capacitance is further improved by forming a composite with polyaniline nanowire arrays. The flexible hierarchical composite proves to be an excellent electrode material for flexible supercapacitors. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tracking of Short Distance Transport Pathways in Biological Tissues by Ultra-Small Nanoparticles
NASA Astrophysics Data System (ADS)
Segmehl, Jana S.; Lauria, Alessandro; Keplinger, Tobias; Berg, John K.; Burgert, Ingo
2018-03-01
In this work, ultra-small europium-doped HfO2 nanoparticles were infiltrated into native wood and used as trackers for studying penetrability and diffusion pathways in the hierarchical wood structure. The high electron density, laser induced luminescence, and crystallinity of these particles allowed for a complementary detection of the particles in the cellular tissue. Confocal Raman microscopy and high-resolution synchrotron scanning wide-angle X-ray scattering (WAXS) measurements were used to detect the infiltrated particles in the native wood cell walls. This approach allows for simultaneously obtaining chemical information of the probed biological tissue and the spatial distribution of the integrated particles. The in-depth information about particle distribution in the complex wood structure can be used for revealing transport pathways in plant tissues, but also for gaining better understanding of modification treatments of plant scaffolds aiming at novel functionalized materials.
Generic functional requirements for a NASA general-purpose data base management system
NASA Technical Reports Server (NTRS)
Lohman, G. M.
1981-01-01
Generic functional requirements for a general-purpose, multi-mission data base management system (DBMS) for application to remotely sensed scientific data bases are detailed. The motivation for utilizing DBMS technology in this environment is explained. The major requirements include: (1) a DBMS for scientific observational data; (2) a multi-mission capability; (3) user-friendly; (4) extensive and integrated information about data; (5) robust languages for defining data structures and formats; (6) scientific data types and structures; (7) flexible physical access mechanisms; (8) ways of representing spatial relationships; (9) a high level nonprocedural interactive query and data manipulation language; (10) data base maintenance utilities; (11) high rate input/output and large data volume storage; and adaptability to a distributed data base and/or data base machine configuration. Detailed functions are specified in a top-down hierarchic fashion. Implementation, performance, and support requirements are also given.
Scheible, Max B; Pardatscher, Günther; Kuzyk, Anton; Simmel, Friedrich C
2014-03-12
The combination of molecular self-assembly based on the DNA origami technique with lithographic patterning enables the creation of hierarchically ordered nanosystems, in which single molecules are positioned at precise locations on multiple length scales. Based on a hybrid assembly protocol utilizing DNA self-assembly and electron-beam lithography on transparent glass substrates, we here demonstrate a DNA origami microarray, which is compatible with the requirements of single molecule fluorescence and super-resolution microscopy. The spatial arrangement allows for a simple and reliable identification of single molecule events and facilitates automated read-out and data analysis. As a specific application, we utilize the microarray to characterize the performance of DNA strand displacement reactions localized on the DNA origami structures. We find considerable variability within the array, which results both from structural variations and stochastic reaction dynamics prevalent at the single molecule level.
Interplay between geo-population factors and hierarchy of cities in multilayer urban networks.
Makarov, Vladimir V; Hramov, Alexander E; Kirsanov, Daniil V; Maksimenko, Vladimir A; Goremyko, Mikhail V; Ivanov, Alexey V; Yashkov, Ivan A; Boccaletti, Stefano
2017-12-08
Only taking into consideration the interplay between processes occurring at different levels of a country can provide the complete social and geopolitical plot of its urban system. We study the interaction of the administrative structure and the geographical connectivity between cities with the help of a multiplex network approach. We found that a spatially-distributed geo-network imposes its own ranking to the hierarchical administrative network, while the latter redistributes the shortest paths between nodes in the geographical layer. Using both real demographic data of population censuses of the Republic of Kazakhstan and theoretical models, we show that in a country-scale urban network and for each specific city, the geographical neighbouring with highly populated areas is more important than its political setting. Furthermore, the structure of political subordination is instead crucial for the wealth of transportation network and communication between populated regions of the country.