Sample records for hierarchical variable resolution

  1. Segmentation of knee cartilage by using a hierarchical active shape model based on multi-resolution transforms in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    León, Madeleine; Escalante-Ramirez, Boris

    2013-11-01

    Knee osteoarthritis (OA) is characterized by the morphological degeneration of cartilage. Efficient segmentation of cartilage is important for cartilage damage diagnosis and to support therapeutic responses. We present a method for knee cartilage segmentation in magnetic resonance images (MRI). Our method incorporates the Hermite Transform to obtain a hierarchical decomposition of contours which describe knee cartilage shapes. Then, we compute a statistical model of the contour of interest from a set of training images. Thereby, our Hierarchical Active Shape Model (HASM) captures a large range of shape variability even from a small group of training samples, improving segmentation accuracy. The method was trained with a training set of 16- MRI of knee and tested with leave-one-out method.

  2. Data graphing methods, articles of manufacture, and computing devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Pak Chung; Mackey, Patrick S.; Cook, Kristin A.

    Data graphing methods, articles of manufacture, and computing devices are described. In one aspect, a method includes accessing a data set, displaying a graphical representation including data of the data set which is arranged according to a first of different hierarchical levels, wherein the first hierarchical level represents the data at a first of a plurality of different resolutions which respectively correspond to respective ones of the hierarchical levels, selecting a portion of the graphical representation wherein the data of the portion is arranged according to the first hierarchical level at the first resolution, modifying the graphical representation by arrangingmore » the data of the portion according to a second of the hierarchal levels at a second of the resolutions, and after the modifying, displaying the graphical representation wherein the data of the portion is arranged according to the second hierarchal level at the second resolution.« less

  3. Fuzzy object modeling

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Odhner, Dewey; Falcao, Alexandre X.; Ciesielski, Krzysztof C.; Miranda, Paulo A. V.; Vaideeswaran, Pavithra; Mishra, Shipra; Grevera, George J.; Saboury, Babak; Torigian, Drew A.

    2011-03-01

    To make Quantitative Radiology (QR) a reality in routine clinical practice, computerized automatic anatomy recognition (AAR) becomes essential. As part of this larger goal, we present in this paper a novel fuzzy strategy for building bodywide group-wise anatomic models. They have the potential to handle uncertainties and variability in anatomy naturally and to be integrated with the fuzzy connectedness framework for image segmentation. Our approach is to build a family of models, called the Virtual Quantitative Human, representing normal adult subjects at a chosen resolution of the population variables (gender, age). Models are represented hierarchically, the descendents representing organs contained in parent organs. Based on an index of fuzziness of the models, 32 thorax data sets, and 10 organs defined in them, we found that the hierarchical approach to modeling can effectively handle the non-linear relationships in position, scale, and orientation that exist among organs in different patients.

  4. Comparative analysis of hierarchical triangulated irregular networks to represent 3D elevation in terrain databases

    NASA Astrophysics Data System (ADS)

    Abdelguerfi, Mahdi; Wynne, Chris; Cooper, Edgar; Ladner, Roy V.; Shaw, Kevin B.

    1997-08-01

    Three-dimensional terrain representation plays an important role in a number of terrain database applications. Hierarchical triangulated irregular networks (TINs) provide a variable-resolution terrain representation that is based on a nested triangulation of the terrain. This paper compares and analyzes existing hierarchical triangulation techniques. The comparative analysis takes into account how aesthetically appealing and accurate the resulting terrain representation is. Parameters, such as adjacency, slivers, and streaks, are used to provide a measure on how aesthetically appealing the terrain representation is. Slivers occur when the triangulation produces thin and slivery triangles. Streaks appear when there are too many triangulations done at a given vertex. Simple mathematical expressions are derived for these parameters, thereby providing a fairer and a more easily duplicated comparison. In addition to meeting the adjacency requirement, an aesthetically pleasant hierarchical TINs generation algorithm is expected to reduce both slivers and streaks while maintaining accuracy. A comparative analysis of a number of existing approaches shows that a variant of a method originally proposed by Scarlatos exhibits better overall performance.

  5. Proceedings of Conference on Variable-Resolution Modeling, Washington, DC, 5-6 May 1992

    DTIC Science & Technology

    1992-05-01

    of powerful new computer architectures for supporting object-oriented computing. Objects, as self -contained data-code packages with orderly...another entity structure. For example, (copy-entstr e:sys- tcm ’ new -system) creates an entity structure named c:new-system that has the same structure...324 Parry, S-H. (1984): A Self -contained Hierarchical Model Construct. In: Systems Analysis and Modeling in Defense (R.K. Huber, Ed.), New York

  6. HiPS - Hierarchical Progressive Survey Version 1.0

    NASA Astrophysics Data System (ADS)

    Fernique, Pierre; Allen, Mark; Boch, Thomas; Donaldson, Tom; Durand, Daniel; Ebisawa, Ken; Michel, Laurent; Salgado, Jesus; Stoehr, Felix; Fernique, Pierre

    2017-05-01

    This document presents HiPS, a hierarchical scheme for the description, storage and access of sky survey data. The system is based on hierarchical tiling of sky regions at finer and finer spatial resolution which facilitates a progressive view of a survey, and supports multi-resolution zooming and panning. HiPS uses the HEALPix tessellation of the sky as the basis for the scheme and is implemented as a simple file structure with a direct indexing scheme that leads to practical implementations.

  7. Hierarchical image coding with diamond-shaped sub-bands

    NASA Technical Reports Server (NTRS)

    Li, Xiaohui; Wang, Jie; Bauer, Peter; Sauer, Ken

    1992-01-01

    We present a sub-band image coding/decoding system using a diamond-shaped pyramid frequency decomposition to more closely match visual sensitivities than conventional rectangular bands. Filter banks are composed of simple, low order IIR components. The coder is especially designed to function in a multiple resolution reconstruction setting, in situations such as variable capacity channels or receivers, where images must be reconstructed without the entire pyramid of sub-bands. We use a nonlinear interpolation technique for lost subbands to compensate for loss of aliasing cancellation.

  8. Classification of high resolution remote sensing image based on geo-ontology and conditional random fields

    NASA Astrophysics Data System (ADS)

    Hong, Liang

    2013-10-01

    The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.

  9. A Stochastic Model for Detecting Overlapping and Hierarchical Community Structure

    PubMed Central

    Cao, Xiaochun; Wang, Xiao; Jin, Di; Guo, Xiaojie; Tang, Xianchao

    2015-01-01

    Community detection is a fundamental problem in the analysis of complex networks. Recently, many researchers have concentrated on the detection of overlapping communities, where a vertex may belong to more than one community. However, most current methods require the number (or the size) of the communities as a priori information, which is usually unavailable in real-world networks. Thus, a practical algorithm should not only find the overlapping community structure, but also automatically determine the number of communities. Furthermore, it is preferable if this method is able to reveal the hierarchical structure of networks as well. In this work, we firstly propose a generative model that employs a nonnegative matrix factorization (NMF) formulization with a l2,1 norm regularization term, balanced by a resolution parameter. The NMF has the nature that provides overlapping community structure by assigning soft membership variables to each vertex; the l2,1 regularization term is a technique of group sparsity which can automatically determine the number of communities by penalizing too many nonempty communities; and hence the resolution parameter enables us to explore the hierarchical structure of networks. Thereafter, we derive the multiplicative update rule to learn the model parameters, and offer the proof of its correctness. Finally, we test our approach on a variety of synthetic and real-world networks, and compare it with some state-of-the-art algorithms. The results validate the superior performance of our new method. PMID:25822148

  10. Opportunities and Constraints in Characterizing Landscape Distribution of an Invasive Grass from Very High Resolution Multi-Spectral Imagery

    PubMed Central

    Dronova, Iryna; Spotswood, Erica N.; Suding, Katharine N.

    2017-01-01

    Understanding spatial distributions of invasive plant species at early infestation stages is critical for assessing the dynamics and underlying factors of invasions. Recent progress in very high resolution remote sensing is facilitating this task by providing high spatial detail over whole-site extents that are prohibitive to comprehensive ground surveys. This study assessed the opportunities and constraints to characterize landscape distribution of the invasive grass medusahead (Elymus caput-medusae) in a ∼36.8 ha grassland in California, United States from 0.15m-resolution visible/near-infrared aerial imagery at the stage of late spring phenological contrast with dominant grasses. We compared several object-based unsupervised, single-run supervised and hierarchical approaches to classify medusahead using spectral, textural, and contextual variables. Fuzzy accuracy assessment indicated that 44–100% of test medusahead samples were matched by its classified extents from different methods, while 63–83% of test samples classified as medusahead had this class as an acceptable candidate. Main sources of error included spectral similarity between medusahead and other green species and mixing of medusahead with other vegetation at variable densities. Adding texture attributes to spectral variables increased the accuracy of most classification methods, corroborating the informative value of local patterns under limited spectral data. The highest accuracy across different metrics was shown by the supervised single-run support vector machine with seven vegetation classes and Bayesian algorithms with three vegetation classes; however, their medusahead allocations showed some “spillover” effects due to misclassifications with other green vegetation. This issue was addressed by more complex hierarchical approaches, though their final accuracy did not exceed the best single-run methods. However, the comparison of classified medusahead extents with field segments of its patches overlapping with survey transects indicated that most methods tended to miss and/or over-estimate the length of the smallest patches and under-estimate the largest ones due to classification errors. Overall, the study outcomes support the potential of cost-effective, very high-resolution sensing for the site-scale detection of infestation hotspots that can be customized to plant phenological schedules. However, more accurate medusahead patch delineation in mixed-cover grasslands would benefit from testing hyperspectral data and using our study’s framework to inform and constrain the candidate vegetation classes in heterogeneous locations. PMID:28611806

  11. Opportunities and Constraints in Characterizing Landscape Distribution of an Invasive Grass from Very High Resolution Multi-Spectral Imagery.

    PubMed

    Dronova, Iryna; Spotswood, Erica N; Suding, Katharine N

    2017-01-01

    Understanding spatial distributions of invasive plant species at early infestation stages is critical for assessing the dynamics and underlying factors of invasions. Recent progress in very high resolution remote sensing is facilitating this task by providing high spatial detail over whole-site extents that are prohibitive to comprehensive ground surveys. This study assessed the opportunities and constraints to characterize landscape distribution of the invasive grass medusahead ( Elymus caput-medusae ) in a ∼36.8 ha grassland in California, United States from 0.15m-resolution visible/near-infrared aerial imagery at the stage of late spring phenological contrast with dominant grasses. We compared several object-based unsupervised, single-run supervised and hierarchical approaches to classify medusahead using spectral, textural, and contextual variables. Fuzzy accuracy assessment indicated that 44-100% of test medusahead samples were matched by its classified extents from different methods, while 63-83% of test samples classified as medusahead had this class as an acceptable candidate. Main sources of error included spectral similarity between medusahead and other green species and mixing of medusahead with other vegetation at variable densities. Adding texture attributes to spectral variables increased the accuracy of most classification methods, corroborating the informative value of local patterns under limited spectral data. The highest accuracy across different metrics was shown by the supervised single-run support vector machine with seven vegetation classes and Bayesian algorithms with three vegetation classes; however, their medusahead allocations showed some "spillover" effects due to misclassifications with other green vegetation. This issue was addressed by more complex hierarchical approaches, though their final accuracy did not exceed the best single-run methods. However, the comparison of classified medusahead extents with field segments of its patches overlapping with survey transects indicated that most methods tended to miss and/or over-estimate the length of the smallest patches and under-estimate the largest ones due to classification errors. Overall, the study outcomes support the potential of cost-effective, very high-resolution sensing for the site-scale detection of infestation hotspots that can be customized to plant phenological schedules. However, more accurate medusahead patch delineation in mixed-cover grasslands would benefit from testing hyperspectral data and using our study's framework to inform and constrain the candidate vegetation classes in heterogeneous locations.

  12. Latent Variable Regression 4-Level Hierarchical Model Using Multisite Multiple-Cohorts Longitudinal Data. CRESST Report 801

    ERIC Educational Resources Information Center

    Choi, Kilchan

    2011-01-01

    This report explores a new latent variable regression 4-level hierarchical model for monitoring school performance over time using multisite multiple-cohorts longitudinal data. This kind of data set has a 4-level hierarchical structure: time-series observation nested within students who are nested within different cohorts of students. These…

  13. Hierarchical nucleus segmentation in digital pathology images

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Ratner, Vadim; Zhu, Liangjia; Diprima, Tammy; Kurc, Tahsin; Tannenbaum, Allen; Saltz, Joel

    2016-03-01

    Extracting nuclei is one of the most actively studied topic in the digital pathology researches. Most of the studies directly search the nuclei (or seeds for the nuclei) from the finest resolution available. While the richest information has been utilized by such approaches, it is sometimes difficult to address the heterogeneity of nuclei in different tissues. In this work, we propose a hierarchical approach which starts from the lower resolution level and adaptively adjusts the parameters while progressing into finer and finer resolution. The algorithm is tested on brain and lung cancers images from The Cancer Genome Atlas data set.

  14. Spatio-temporal modelling for assessing air pollution in Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Nicolis, Orietta; Camaño, Christian; Mařın, Julio C.; Sahu, Sujit K.

    2017-01-01

    In this work, we propose a space-time approach for studying the PM2.5 concentration in the city of Santiago de Chile. In particular, we apply the autoregressive hierarchical model proposed by [1] using the PM2.5 observations collected by a monitoring network as a response variable and numerical weather forecasts from the Weather Research and Forecasting (WRF) model as covariate together with spatial and temporal (periodic) components. The approach is able to provide short-term spatio-temporal predictions of PM2.5 concentrations on a fine spatial grid (at 1km × 1km horizontal resolution.)

  15. A Hierarchical Modulation Coherent Communication Scheme for Simultaneous Four-State Continuous-Variable Quantum Key Distribution and Classical Communication

    NASA Astrophysics Data System (ADS)

    Yang, Can; Ma, Cheng; Hu, Linxi; He, Guangqiang

    2018-06-01

    We present a hierarchical modulation coherent communication protocol, which simultaneously achieves classical optical communication and continuous-variable quantum key distribution. Our hierarchical modulation scheme consists of a quadrature phase-shifting keying modulation for classical communication and a four-state discrete modulation for continuous-variable quantum key distribution. The simulation results based on practical parameters show that it is feasible to transmit both quantum information and classical information on a single carrier. We obtained a secure key rate of 10^{-3} bits/pulse to 10^{-1} bits/pulse within 40 kilometers, and in the meantime the maximum bit error rate for classical information is about 10^{-7}. Because continuous-variable quantum key distribution protocol is compatible with standard telecommunication technology, we think our hierarchical modulation scheme can be used to upgrade the digital communication systems to extend system function in the future.

  16. Effects of climate change on phenology in two French LTER (Alps and Brittany) for the period 1998-2009

    NASA Astrophysics Data System (ADS)

    Perrimond, B.; Bigot, S.; Quénol, H.; Spielgelberger, T.; Baudry, J.

    2012-04-01

    Climate and vegetation are linked all over the world. In this study, we work on a seasonal weather classification based on air temperature and precipitation to deduce a link with different phenological stage (greening up, senescence, ...) over a 12 year period (1998-2009) for two different domains in France (Alps and Brittany). In temperate land, the main climatic variable with a potential effect on vegetation is the mean temperature followed by the rainfall deficit. A better understanding in season and their climatic characteristic is need to establish link between climate and phenology; so a weather classification is proposed based on empirical orthogonal functions and ascending hierarchical classification on atmospheric variables. This classification allows us to exhibit the inter-annual and intra-seasonal climatic spatiotemporal variability for both experimental site. Relationships between climate and phenology consist in a comparison between advance and delay in phenological stage and weather type issue from the classification. Experiment field are two french Long Term Ecological Research (LTER). The first one (LTER 'Alps' ) have mountain characteristics about 1000 to 4780 m ASL, ~65% of forest occupation ; the second one (LTER Armorique) is an Atlantic coastal landscape, 0-360 m ASL, ~70% of agricultural field. Climatic data are SAFRAN-France reanalysis which are developed to run SVAT model and come from the French meteorological service 'Météo-France'. All atmospheric variable needed to run a hydrological model are available (air temperature, rainfall/snowfall, wind speed, relative humidity, incoming/outcoming radiation) at a 8-8 km2 space resolution and with a daily time resolution. The phenological data are extracted from SPOT-VGT product 1-1 km2 space resolution and 10 days time resolution) by time series analysis process. Such of study is particularly important to understand relationships between environmental and ecological variables and it will allow to better predict ecological reaction under climate change constraint.

  17. Semantic Image Segmentation with Contextual Hierarchical Models.

    PubMed

    Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2016-05-01

    Semantic segmentation is the problem of assigning an object label to each pixel. It unifies the image segmentation and object recognition problems. The importance of using contextual information in semantic segmentation frameworks has been widely realized in the field. We propose a contextual framework, called contextual hierarchical model (CHM), which learns contextual information in a hierarchical framework for semantic segmentation. At each level of the hierarchy, a classifier is trained based on downsampled input images and outputs of previous levels. Our model then incorporates the resulting multi-resolution contextual information into a classifier to segment the input image at original resolution. This training strategy allows for optimization of a joint posterior probability at multiple resolutions through the hierarchy. Contextual hierarchical model is purely based on the input image patches and does not make use of any fragments or shape examples. Hence, it is applicable to a variety of problems such as object segmentation and edge detection. We demonstrate that CHM performs at par with state-of-the-art on Stanford background and Weizmann horse datasets. It also outperforms state-of-the-art edge detection methods on NYU depth dataset and achieves state-of-the-art on Berkeley segmentation dataset (BSDS 500).

  18. Hierarchical algorithms for modeling the ocean on hierarchical architectures

    NASA Astrophysics Data System (ADS)

    Hill, C. N.

    2012-12-01

    This presentation will describe an approach to using accelerator/co-processor technology that maps hierarchical, multi-scale modeling techniques to an underlying hierarchical hardware architecture. The focus of this work is on making effective use of both CPU and accelerator/co-processor parts of a system, for large scale ocean modeling. In the work, a lower resolution basin scale ocean model is locally coupled to multiple, "embedded", limited area higher resolution sub-models. The higher resolution models execute on co-processor/accelerator hardware and do not interact directly with other sub-models. The lower resolution basin scale model executes on the system CPU(s). The result is a multi-scale algorithm that aligns with hardware designs in the co-processor/accelerator space. We demonstrate this approach being used to substitute explicit process models for standard parameterizations. Code for our sub-models is implemented through a generic abstraction layer, so that we can target multiple accelerator architectures with different programming environments. We will present two application and implementation examples. One uses the CUDA programming environment and targets GPU hardware. This example employs a simple non-hydrostatic two dimensional sub-model to represent vertical motion more accurately. The second example uses a highly threaded three-dimensional model at high resolution. This targets a MIC/Xeon Phi like environment and uses sub-models as a way to explicitly compute sub-mesoscale terms. In both cases the accelerator/co-processor capability provides extra compute cycles that allow improved model fidelity for little or no extra wall-clock time cost.

  19. The Partition of Multi-Resolution LOD Based on Qtm

    NASA Astrophysics Data System (ADS)

    Hou, M.-L.; Xing, H.-Q.; Zhao, X.-S.; Chen, J.

    2011-08-01

    The partition hierarch of Quaternary Triangular Mesh (QTM) determine the accuracy of spatial analysis and application based on QTM. In order to resolve the problem that the partition hierarch of QTM is limited by the level of the computer hardware, the new method that Multi- Resolution LOD (Level of Details) based on QTM will be discussed in this paper. This method can make the resolution of the cells varying with the viewpoint position by partitioning the cells of QTM, selecting the particular area according to the viewpoint; dealing with the cracks caused by different subdivisions, it satisfies the request of unlimited partition in part.

  20. Multiscale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve

    USGS Publications Warehouse

    Beever, E.A.; Huso, M.; Pyke, D.A.

    2006-01-01

    Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations - metrics of longer-term and recent grazing intensity, respectively, - as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance-response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1-2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems. ?? 2006 Blackwell Publishing Ltd.

  1. Multi-scale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve

    USGS Publications Warehouse

    Beever, Erik A.; Huso, Manuela M. P.; Pyke, David A.

    2006-01-01

    Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations — metrics of longer-term and recent grazing intensity, respectively, — as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance–response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1–2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems.

  2. Reasons for Hierarchical Linear Modeling: A Reminder.

    ERIC Educational Resources Information Center

    Wang, Jianjun

    1999-01-01

    Uses examples of hierarchical linear modeling (HLM) at local and national levels to illustrate proper applications of HLM and dummy variable regression. Raises cautions about the circumstances under which hierarchical data do not need HLM. (SLD)

  3. MetMSLine: an automated and fully integrated pipeline for rapid processing of high-resolution LC-MS metabolomic datasets.

    PubMed

    Edmands, William M B; Barupal, Dinesh K; Scalbert, Augustin

    2015-03-01

    MetMSLine represents a complete collection of functions in the R programming language as an accessible GUI for biomarker discovery in large-scale liquid-chromatography high-resolution mass spectral datasets from acquisition through to final metabolite identification forming a backend to output from any peak-picking software such as XCMS. MetMSLine automatically creates subdirectories, data tables and relevant figures at the following steps: (i) signal smoothing, normalization, filtration and noise transformation (PreProc.QC.LSC.R); (ii) PCA and automatic outlier removal (Auto.PCA.R); (iii) automatic regression, biomarker selection, hierarchical clustering and cluster ion/artefact identification (Auto.MV.Regress.R); (iv) Biomarker-MS/MS fragmentation spectra matching and fragment/neutral loss annotation (Auto.MS.MS.match.R) and (v) semi-targeted metabolite identification based on a list of theoretical masses obtained from public databases (DBAnnotate.R). All source code and suggested parameters are available in an un-encapsulated layout on http://wmbedmands.github.io/MetMSLine/. Readme files and a synthetic dataset of both X-variables (simulated LC-MS data), Y-variables (simulated continuous variables) and metabolite theoretical masses are also available on our GitHub repository. © The Author 2014. Published by Oxford University Press.

  4. MetMSLine: an automated and fully integrated pipeline for rapid processing of high-resolution LC–MS metabolomic datasets

    PubMed Central

    Edmands, William M. B.; Barupal, Dinesh K.; Scalbert, Augustin

    2015-01-01

    Summary: MetMSLine represents a complete collection of functions in the R programming language as an accessible GUI for biomarker discovery in large-scale liquid-chromatography high-resolution mass spectral datasets from acquisition through to final metabolite identification forming a backend to output from any peak-picking software such as XCMS. MetMSLine automatically creates subdirectories, data tables and relevant figures at the following steps: (i) signal smoothing, normalization, filtration and noise transformation (PreProc.QC.LSC.R); (ii) PCA and automatic outlier removal (Auto.PCA.R); (iii) automatic regression, biomarker selection, hierarchical clustering and cluster ion/artefact identification (Auto.MV.Regress.R); (iv) Biomarker—MS/MS fragmentation spectra matching and fragment/neutral loss annotation (Auto.MS.MS.match.R) and (v) semi-targeted metabolite identification based on a list of theoretical masses obtained from public databases (DBAnnotate.R). Availability and implementation: All source code and suggested parameters are available in an un-encapsulated layout on http://wmbedmands.github.io/MetMSLine/. Readme files and a synthetic dataset of both X-variables (simulated LC–MS data), Y-variables (simulated continuous variables) and metabolite theoretical masses are also available on our GitHub repository. Contact: ScalbertA@iarc.fr PMID:25348215

  5. Hierarchical imaging: a new concept for targeted imaging of large volumes from cells to tissues.

    PubMed

    Wacker, Irene; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R

    2016-12-12

    Imaging large volumes such as entire cells or small model organisms at nanoscale resolution seemed an unrealistic, rather tedious task so far. Now, technical advances have lead to several electron microscopy (EM) large volume imaging techniques. One is array tomography, where ribbons of ultrathin serial sections are deposited on solid substrates like silicon wafers or glass coverslips. To ensure reliable retrieval of multiple ribbons from the boat of a diamond knife we introduce a substrate holder with 7 axes of translation or rotation specifically designed for that purpose. With this device we are able to deposit hundreds of sections in an ordered way in an area of 22 × 22 mm, the size of a coverslip. Imaging such arrays in a standard wide field fluorescence microscope produces reconstructions with 200 nm lateral resolution and 100 nm (the section thickness) resolution in z. By hierarchical imaging cascades in the scanning electron microscope (SEM), using a new software platform, we can address volumes from single cells to complete organs. In our first example, a cell population isolated from zebrafish spleen, we characterize different cell types according to their organelle inventory by segmenting 3D reconstructions of complete cells imaged with nanoscale resolution. In addition, by screening large numbers of cells at decreased resolution we can define the percentage at which different cell types are present in our preparation. With the second example, the root tip of cress, we illustrate how combining information from intermediate resolution data with high resolution data from selected regions of interest can drastically reduce the amount of data that has to be recorded. By imaging only the interesting parts of a sample considerably less data need to be stored, handled and eventually analysed. Our custom-designed substrate holder allows reproducible generation of section libraries, which can then be imaged in a hierarchical way. We demonstrate, that EM volume data at different levels of resolution can yield comprehensive information, including statistics, morphology and organization of cells and tissue. We predict, that hierarchical imaging will be a first step in tackling the big data issue inevitably connected with volume EM.

  6. Daily Stressors in School-Age Children: A Multilevel Approach

    ERIC Educational Resources Information Center

    Escobar, Milagros; Alarcón, Rafael; Blanca, María J.; Fernández-Baena, F. Javier; Rosel, Jesús F.; Trianes, María Victoria

    2013-01-01

    This study uses hierarchical or multilevel modeling to identify variables that contribute to daily stressors in a population of schoolchildren. Four hierarchical levels with several predictive variables were considered: student (age, sex, social adaptation of the student, number of life events and chronic stressors experienced, and educational…

  7. Evaluation of Validity and Reliability for Hierarchical Scales Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2012-01-01

    A latent variable modeling method is outlined, which accomplishes estimation of criterion validity and reliability for a multicomponent measuring instrument with hierarchical structure. The approach provides point and interval estimates for the scale criterion validity and reliability coefficients, and can also be used for testing composite or…

  8. Conflict Resolution in Parent-Adolescent Relationships and Adolescent Delinquency

    ERIC Educational Resources Information Center

    Van Doorn, Muriel D.; Branje, Susan J. T.; Meeus, Wim H. J.

    2008-01-01

    This study examines the relation between conflict resolution styles in parent-adolescent relationships and adolescent delinquency. Questionnaires about conflict resolution styles were completed by 284 early adolescents (mean age 13.3) and their parents. Adolescents also completed a questionnaire on delinquency. Hierarchical regression analyses…

  9. Adaptive variable structure hierarchical fuzzy control for a class of high-order nonlinear dynamic systems.

    PubMed

    Mansouri, Mohammad; Teshnehlab, Mohammad; Aliyari Shoorehdeli, Mahdi

    2015-05-01

    In this paper, a novel adaptive hierarchical fuzzy control system based on the variable structure control is developed for a class of SISO canonical nonlinear systems in the presence of bounded disturbances. It is assumed that nonlinear functions of the systems be completely unknown. Switching surfaces are incorporated into the hierarchical fuzzy control scheme to ensure the system stability. A fuzzy soft switching system decides the operation area of the hierarchical fuzzy control and variable structure control systems. All the nonlinearly appeared parameters of conclusion parts of fuzzy blocks located in different layers of the hierarchical fuzzy control system are adjusted through adaptation laws deduced from the defined Lyapunov function. The proposed hierarchical fuzzy control system reduces the number of rules and consequently the number of tunable parameters with respect to the ordinary fuzzy control system. Global boundedness of the overall adaptive system and the desired precision are achieved using the proposed adaptive control system. In this study, an adaptive hierarchical fuzzy system is used for two objectives; it can be as a function approximator or a control system based on an intelligent-classic approach. Three theorems are proven to investigate the stability of the nonlinear dynamic systems. The important point about the proposed theorems is that they can be applied not only to hierarchical fuzzy controllers with different structures of hierarchical fuzzy controller, but also to ordinary fuzzy controllers. Therefore, the proposed algorithm is more general. To show the effectiveness of the proposed method four systems (two mechanical, one mathematical and one chaotic) are considered in simulations. Simulation results demonstrate the validity, efficiency and feasibility of the proposed approach to control of nonlinear dynamic systems. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Leadership styles across hierarchical levels in nursing departments.

    PubMed

    Stordeur, S; Vandenberghe, C; D'hoore, W

    2000-01-01

    Some researchers have reported on the cascading effect of transformational leadership across hierarchical levels. One study examined this effect in nursing, but it was limited to a single hospital. To examine the cascading effect of leadership styles across hierarchical levels in a sample of nursing departments and to investigate the effect of hierarchical level on the relationships between leadership styles and various work outcomes. Based on a sample of eight hospitals, the cascading effect was tested using correlation analysis. The main sources of variation among leadership scores were determined with analyses of variance (ANOVA), and the interaction effect of hierarchical level and leadership styles on criterion variables was tested with moderated regression analysis. No support was found for a cascading effect of leadership across hierarchical levels. Rather, the variation of leadership scores was explained primarily by the organizational context. Transformational leadership had a stronger impact on criterion variables than transactional leadership. Interaction effects between leadership styles and hierarchical level were observed only for perceived unit effectiveness. The hospital's structure and culture are major determinants of leadership styles.

  11. Hierarchical Bayesian spatial models for predicting multiple forest variables using waveform LiDAR, hyperspectral imagery, and large inventory datasets

    USGS Publications Warehouse

    Finley, Andrew O.; Banerjee, Sudipto; Cook, Bruce D.; Bradford, John B.

    2013-01-01

    In this paper we detail a multivariate spatial regression model that couples LiDAR, hyperspectral and forest inventory data to predict forest outcome variables at a high spatial resolution. The proposed model is used to analyze forest inventory data collected on the US Forest Service Penobscot Experimental Forest (PEF), ME, USA. In addition to helping meet the regression model's assumptions, results from the PEF analysis suggest that the addition of multivariate spatial random effects improves model fit and predictive ability, compared with two commonly applied modeling approaches. This improvement results from explicitly modeling the covariation among forest outcome variables and spatial dependence among observations through the random effects. Direct application of such multivariate models to even moderately large datasets is often computationally infeasible because of cubic order matrix algorithms involved in estimation. We apply a spatial dimension reduction technique to help overcome this computational hurdle without sacrificing richness in modeling.

  12. Hierarchical classification of land use types using multiple vegetation indices to measure the effects of urbanization.

    PubMed

    Shishir, Sharmin; Tsuyuzaki, Shiro

    2018-05-11

    Detecting fine-scale spatiotemporal land use changes is a prerequisite for understanding and predicting the effects of urbanization and its related human impacts on the ecosystem. Land use changes are frequently examined using vegetation indices (VIs), although the validation of these indices has not been conducted at a high resolution. Therefore, a hierarchical classification was constructed to obtain accurate land use types at a fine scale. The characteristics of four popular VIs were investigated prior to examining the hierarchical classification by using Purbachal New Town, Bangladesh, which exhibits ongoing urbanization. These four VIs are the normalized difference VI (NDVI), green-red VI (GRVI), enhanced VI (EVI), and two-band EVI (EVI2). The reflectance data were obtained by the IKONOS (0.8-m resolution) and WorldView-2 sensor (0.5-m resolution) in 2001 and 2015, respectively. The hierarchical classification of land use types was constructed using a decision tree (DT) utilizing all four of the examined VIs. The accuracy of the classification was evaluated using ground truth data with multiple comparisons and kappa (κ) coefficients. The DT showed overall accuracies of 96.1 and 97.8% in 2001 and 2015, respectively, while the accuracies of the VIs were less than 91.2%. These results indicate that each VI exhibits unique advantages. In addition, the DT was the best classifier of land use types, particularly for native ecosystems represented by Shorea forests and homestead vegetation, at the fine scale. Since the conservation of these native ecosystems is of prime importance, DTs based on hierarchical classifications should be used more widely.

  13. Hierarchical Letters in ASD: High Stimulus Variability under Different Attentional Modes

    ERIC Educational Resources Information Center

    Van der Hallen, Ruth; Vanmarcke, Steven; Noens, Ilse; Wagemans, Johan

    2017-01-01

    Studies using hierarchical patterns to test global precedence and local-global interference in individuals with ASD have produced mixed results. The current study focused on stimulus variability and locational uncertainty, while using different attentional modes. Two groups of 44 children with and without ASD completed a divided attention task as…

  14. Intraclass Correlation Coefficients in Hierarchical Designs: Evaluation Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2011-01-01

    Interval estimation of intraclass correlation coefficients in hierarchical designs is discussed within a latent variable modeling framework. A method accomplishing this aim is outlined, which is applicable in two-level studies where participants (or generally lower-order units) are clustered within higher-order units. The procedure can also be…

  15. Hierarchical stochastic modeling of large river ecosystems and fish growth across spatio-temporal scales and climate models: the Missouri River endangered pallid sturgeon example

    USGS Publications Warehouse

    Wildhaber, Mark L.; Wikle, Christopher K.; Moran, Edward H.; Anderson, Christopher J.; Franz, Kristie J.; Dey, Rima

    2017-01-01

    We present a hierarchical series of spatially decreasing and temporally increasing models to evaluate the uncertainty in the atmosphere – ocean global climate model (AOGCM) and the regional climate model (RCM) relative to the uncertainty in the somatic growth of the endangered pallid sturgeon (Scaphirhynchus albus). For effects on fish populations of riverine ecosystems, cli- mate output simulated by coarse-resolution AOGCMs and RCMs must be downscaled to basins to river hydrology to population response. One needs to transfer the information from these climate simulations down to the individual scale in a way that minimizes extrapolation and can account for spatio-temporal variability in the intervening stages. The goal is a framework to determine whether, given uncertainties in the climate models and the biological response, meaningful inference can still be made. The non-linear downscaling of climate information to the river scale requires that one realistically account for spatial and temporal variability across scale. Our down- scaling procedure includes the use of fixed/calibrated hydrological flow and temperature models coupled with a stochastically parameterized sturgeon bioenergetics model. We show that, although there is a large amount of uncertainty associated with both the climate model output and the fish growth process, one can establish significant differences in fish growth distributions between models, and between future and current climates for a given model.

  16. Scale of association: hierarchical linear models and the measurement of ecological systems

    Treesearch

    Sean M. McMahon; Jeffrey M. Diez

    2007-01-01

    A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...

  17. A hierarchical framework of aquatic ecological units in North America (Nearctic Zone).

    Treesearch

    James R. Maxwell; Clayton J. Edwards; Mark E. Jensen; Steven J. Paustian; Harry Parrott; Donley M. Hill

    1995-01-01

    Proposes a framework for classifying and mapping aquatic systems at various scales using ecologically significant physical and biological criteria. Classification and mapping concepts follow tenets of hierarchical theory, pattern recognition, and driving variables. Criteria are provided for the hierarchical classification and mapping of aquatic ecological units of...

  18. Coordination of Distributed Fuzzy Behaviors in Mobile Robot Control

    NASA Technical Reports Server (NTRS)

    Tunstel, E.

    1995-01-01

    This presentation describes an approach to behavior coordination and conflict resolution within the context of a hierarchical architecture of fuzzy behaviors. Coordination is achieved using weighted decision-making based on behavioral degrees of applicability. This strategy is appropriate for fuzzy control of systems that can be represented by hierarchical or decentralized structures.

  19. Wavelet-based hierarchical surface approximation from height fields

    Treesearch

    Sang-Mook Lee; A. Lynn Abbott; Daniel L. Schmoldt

    2004-01-01

    This paper presents a novel hierarchical approach to triangular mesh generation from height fields. A wavelet-based multiresolution analysis technique is used to estimate local shape information at different levels of resolution. Using predefined templates at the coarsest level, the method constructs an initial triangulation in which underlying object shapes are well...

  20. Missing Data Treatments at the Second Level of Hierarchical Linear Models

    ERIC Educational Resources Information Center

    St. Clair, Suzanne W.

    2011-01-01

    The current study evaluated the performance of traditional versus modern MDTs in the estimation of fixed-effects and variance components for data missing at the second level of an hierarchical linear model (HLM) model across 24 different study conditions. Variables manipulated in the analysis included, (a) number of Level-2 variables with missing…

  1. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations.

    PubMed

    Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M

    2014-10-01

    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.

  2. Hierarchical Multinomial Processing Tree Models: A Latent-Trait Approach

    ERIC Educational Resources Information Center

    Klauer, Karl Christoph

    2010-01-01

    Multinomial processing tree models are widely used in many areas of psychology. A hierarchical extension of the model class is proposed, using a multivariate normal distribution of person-level parameters with the mean and covariance matrix to be estimated from the data. The hierarchical model allows one to take variability between persons into…

  3. Hierarchical Object-based Image Analysis approach for classification of sub-meter multispectral imagery in Tanzania

    NASA Astrophysics Data System (ADS)

    Chung, C.; Nagol, J. R.; Tao, X.; Anand, A.; Dempewolf, J.

    2015-12-01

    Increasing agricultural production while at the same time preserving the environment has become a challenging task. There is a need for new approaches for use of multi-scale and multi-source remote sensing data as well as ground based measurements for mapping and monitoring crop and ecosystem state to support decision making by governmental and non-governmental organizations for sustainable agricultural development. High resolution sub-meter imagery plays an important role in such an integrative framework of landscape monitoring. It helps link the ground based data to more easily available coarser resolution data, facilitating calibration and validation of derived remote sensing products. Here we present a hierarchical Object Based Image Analysis (OBIA) approach to classify sub-meter imagery. The primary reason for choosing OBIA is to accommodate pixel sizes smaller than the object or class of interest. Especially in non-homogeneous savannah regions of Tanzania, this is an important concern and the traditional pixel based spectral signature approach often fails. Ortho-rectified, calibrated, pan sharpened 0.5 meter resolution data acquired from DigitalGlobe's WorldView-2 satellite sensor was used for this purpose. Multi-scale hierarchical segmentation was performed using multi-resolution segmentation approach to facilitate the use of texture, neighborhood context, and the relationship between super and sub objects for training and classification. eCognition, a commonly used OBIA software program, was used for this purpose. Both decision tree and random forest approaches for classification were tested. The Kappa index agreement for both algorithms surpassed the 85%. The results demonstrate that using hierarchical OBIA can effectively and accurately discriminate classes at even LCCS-3 legend.

  4. Quantifying inter- and intra-population niche variability using hierarchical bayesian stable isotope mixing models.

    PubMed

    Semmens, Brice X; Ward, Eric J; Moore, Jonathan W; Darimont, Chris T

    2009-07-09

    Variability in resource use defines the width of a trophic niche occupied by a population. Intra-population variability in resource use may occur across hierarchical levels of population structure from individuals to subpopulations. Understanding how levels of population organization contribute to population niche width is critical to ecology and evolution. Here we describe a hierarchical stable isotope mixing model that can simultaneously estimate both the prey composition of a consumer diet and the diet variability among individuals and across levels of population organization. By explicitly estimating variance components for multiple scales, the model can deconstruct the niche width of a consumer population into relevant levels of population structure. We apply this new approach to stable isotope data from a population of gray wolves from coastal British Columbia, and show support for extensive intra-population niche variability among individuals, social groups, and geographically isolated subpopulations. The analytic method we describe improves mixing models by accounting for diet variability, and improves isotope niche width analysis by quantitatively assessing the contribution of levels of organization to the niche width of a population.

  5. Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images

    NASA Astrophysics Data System (ADS)

    Alshehhi, Rasha; Marpu, Prashanth Reddy

    2017-04-01

    Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.

  6. A Comprehensive Meta-Analysis of Triple P-Positive Parenting Program Using Hierarchical Linear Modeling: Effectiveness and Moderating Variables

    ERIC Educational Resources Information Center

    Nowak, Christoph; Heinrichs, Nina

    2008-01-01

    A meta-analysis encompassing all studies evaluating the impact of the Triple P-Positive Parenting Program on parent and child outcome measures was conducted in an effort to identify variables that moderate the program's effectiveness. Hierarchical linear models (HLM) with three levels of data were employed to analyze effect sizes. The results (N =…

  7. Comparing hierarchical models via the marginalized deviance information criterion.

    PubMed

    Quintero, Adrian; Lesaffre, Emmanuel

    2018-07-20

    Hierarchical models are extensively used in pharmacokinetics and longitudinal studies. When the estimation is performed from a Bayesian approach, model comparison is often based on the deviance information criterion (DIC). In hierarchical models with latent variables, there are several versions of this statistic: the conditional DIC (cDIC) that incorporates the latent variables in the focus of the analysis and the marginalized DIC (mDIC) that integrates them out. Regardless of the asymptotic and coherency difficulties of cDIC, this alternative is usually used in Markov chain Monte Carlo (MCMC) methods for hierarchical models because of practical convenience. The mDIC criterion is more appropriate in most cases but requires integration of the likelihood, which is computationally demanding and not implemented in Bayesian software. Therefore, we consider a method to compute mDIC by generating replicate samples of the latent variables that need to be integrated out. This alternative can be easily conducted from the MCMC output of Bayesian packages and is widely applicable to hierarchical models in general. Additionally, we propose some approximations in order to reduce the computational complexity for large-sample situations. The method is illustrated with simulated data sets and 2 medical studies, evidencing that cDIC may be misleading whilst mDIC appears pertinent. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Hierarchical Bayesian Modeling of Fluid-Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.

    2017-11-01

    In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.

  9. Gender and Conflict Resolution Strategies in Spanish Teen Couples: Their Relationship With Jealousy and Emotional Dependency.

    PubMed

    Perles, Fabiola; San Martín, Jesús; Canto, Jesús M

    2016-06-08

    Previous research has pointed to the need to address the study of violence in teen couples. However, research has not delved into the study of the variables related to the different types of violence employed by boys and girls. The purpose of this study was to test whether gender, jealousy, and dependency predict specific strategies for conflict resolution (psychological aggression and mild physical aggression). Another objective of the study was to test gender differences in the conflict resolution strategies used by Spanish teen couples and to test the association between these variables and jealousy and emotional dependency. A sample of 296 adolescent high school students between 14 and 19 years of age of both genders from the south of Spain participated in this study. Hierarchical regression models were used to estimate the relationship between psychological aggression and mild physical aggression, and jealousy, and dependency. Results showed that jealousy correlated with psychological aggression and mild physical aggression in girls but not in boys. Psychological aggression and mild physical aggression were associated with dependency in boys. Girls scored higher in psychological aggression and jealousy than did boys. Finally, the interaction between jealousy and dependency predicted psychological aggression only in girls. These results highlight the need to address the role of the interaction between dependence and jealousy in the types of violence employed in teen dating. However, it is necessary to delve into the gender differences and similarities to develop appropriate prevention programs. © The Author(s) 2016.

  10. Spatial partitioning of environmental correlates of avian biodiversity in the conterminous United States

    USGS Publications Warehouse

    O'Connor, R.J.; Jones, M.T.; White, D.; Hunsaker, C.; Loveland, Tom; Jones, Bruce; Preston, E.

    1996-01-01

    Classification and regression tree (CART) analysis was used to create hierarchically organized models of the distribution of bird species richness across the conterminous United States. Species richness data were taken from the Breeding Bird Survey and were related to climatic and land use data. We used a systematic spatial grid of approximately 12,500 hexagons, each approximately 640 square kilometres in area. Within each hexagon land use was characterized by the Loveland et al. land cover classification based on Advanced Very High Resolution Radiometer (AVHRR) data from NOAA polar orbiting meteorological satellites. These data were aggregated to yield fourteen land classes equivalent to an Anderson level II coverage; urban areas were added from the Digital Chart of the World. Each hexagon was characterized by climate data and landscape pattern metrics calculated from the land cover. A CART model then related the variation in species richness across the 1162 hexagons for which bird species richness data were available to the independent variables, yielding an R2-type goodness of fit metric of 47.5% deviance explained. The resulting model recognized eleven groups of hexagons, with species richness within each group determined by unique sequences of hierarchically constrained independent variables. Within the hierarchy, climate data accounted for more variability in the bird data, followed by land cover proportion, and then pattern metrics. The model was then used to predict species richness in all 12,500 hexagons of the conterminous United States yielding a map of the distribution of these eleven classes of bird species richness as determined by the environmental correlates. The potential for using this technique to interface biogeographic theory with the hierarchy theory of ecology is discussed. ?? 1996 Blackwell Science Ltd.

  11. Use of NARCCAP data to characterize regional climate uncertainty in the impact of global climate change on large river fish population: Missouri River sturgeon example

    NASA Astrophysics Data System (ADS)

    Anderson, C. J.; Wildhaber, M. L.; Wikle, C. K.; Moran, E. H.; Franz, K. J.; Dey, R.

    2012-12-01

    Climate change operates over a broad range of spatial and temporal scales. Understanding the effects of change on ecosystems requires accounting for the propagation of information and uncertainty across these scales. For example, to understand potential climate change effects on fish populations in riverine ecosystems, climate conditions predicted by course-resolution atmosphere-ocean global climate models must first be translated to the regional climate scale. In turn, this regional information is used to force watershed models, which are used to force river condition models, which impact the population response. A critical challenge in such a multiscale modeling environment is to quantify sources of uncertainty given the highly nonlinear nature of interactions between climate variables and the individual organism. We use a hierarchical modeling approach for accommodating uncertainty in multiscale ecological impact studies. This framework allows for uncertainty due to system models, model parameter settings, and stochastic parameterizations. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. We use NARCCAP data to determine confidence the capability of climate models to simulate relevant processes and to quantify regional climate variability within the context of the hierarchical model of uncertainty quantification. By confidence, we mean the ability of the regional climate model to replicate observed mechanisms. We use the NCEP-driven simulations for this analysis. This provides a base from which regional change can be categorized as either a modification of previously observed mechanisms or emergence of new processes. The management implications for these categories of change are significantly different in that procedures to address impacts from existing processes may already be known and need adjustment; whereas, an emergent processes may require new management strategies. The results from hierarchical analysis of uncertainty are used to study the relative change in weights of the endangered Missouri River pallid sturgeon (Scaphirhynchus albus) under a 21st century climate scenario.

  12. Modeling responses of large-river fish populations to global climate change through downscaling and incorporation of predictive uncertainty

    USGS Publications Warehouse

    Wildhaber, Mark L.; Wikle, Christopher K.; Anderson, Christopher J.; Franz, Kristie J.; Moran, Edward H.; Dey, Rima; Mader, Helmut; Kraml, Julia

    2012-01-01

    Climate change operates over a broad range of spatial and temporal scales. Understanding its effects on ecosystems requires multi-scale models. For understanding effects on fish populations of riverine ecosystems, climate predicted by coarse-resolution Global Climate Models must be downscaled to Regional Climate Models to watersheds to river hydrology to population response. An additional challenge is quantifying sources of uncertainty given the highly nonlinear nature of interactions between climate variables and community level processes. We present a modeling approach for understanding and accomodating uncertainty by applying multi-scale climate models and a hierarchical Bayesian modeling framework to Midwest fish population dynamics and by linking models for system components together by formal rules of probability. The proposed hierarchical modeling approach will account for sources of uncertainty in forecasts of community or population response. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. This understanding will aid evaluation of management options for coping with global climate change. In our initial analyses, we found that predicted pallid sturgeon population responses were dependent on the climate scenario considered.

  13. Placing Local Aggregations in a Larger-Scale Context: Hierarchical Modeling of Black-Footed Albatross Dispersion.

    PubMed

    Michael, P E; Jahncke, J; Hyrenbach, K D

    2016-01-01

    At-sea surveys facilitate the study of the distribution and abundance of marine birds along standardized transects, in relation to changes in the local environmental conditions and large-scale oceanographic forcing. We analyzed the form and the intensity of black-footed albatross (Phoebastria nigripes: BFAL) spatial dispersion off central California, using five years (2004-2008) of vessel-based surveys of seven replicated survey lines. We related BFAL patchiness to local, regional and basin-wide oceanographic variability using two complementary approaches: a hypothesis-based model and an exploratory analysis. The former tested the strength and sign of hypothesized BFAL responses to environmental variability, within a hierarchical atmosphere-ocean context. The latter explored BFAL cross-correlations with atmospheric / oceanographic variables. While albatross dispersion was not significantly explained by the hierarchical model, the exploratory analysis revealed that aggregations were influenced by static (latitude, depth) and dynamic (wind speed, upwelling) environmental variables. Moreover, the largest BFAL patches occurred along the survey lines with the highest densities, and in association with shallow banks. In turn, the highest BFAL densities occurred during periods of negative Pacific Decadal Oscillation index values and low atmospheric pressure. The exploratory analyses suggest that BFAL dispersion is influenced by basin-wide, regional-scale and local environmental variability. Furthermore, the hypothesis-based model highlights that BFAL do not respond to oceanographic variability in a hierarchical fashion. Instead, their distributions shift more strongly in response to large-scale ocean-atmosphere forcing. Thus, interpreting local changes in BFAL abundance and dispersion requires considering diverse environmental forcing operating at multiple scales.

  14. Musculoskeletal motion flow fields using hierarchical variable-sized block matching in ultrasonographic video sequences.

    PubMed

    Revell, J D; Mirmehdi, M; McNally, D S

    2004-04-01

    We examine tissue deformations using non-invasive dynamic musculoskeletal ultrasonograhy, and quantify its performance on controlled in vitro gold standard (groundtruth) sequences followed by clinical in vivo data. The proposed approach employs a two-dimensional variable-sized block matching algorithm with a hierarchical full search. We extend this process by refining displacements to sub-pixel accuracy. We show by application that this technique yields quantitatively reliable results.

  15. A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Yu; Cao, Jianshu

    2018-01-01

    We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum environment. We exemplify the general framework by studying a two-level quantum system coupled bilinearly to the three fundamental classes of non-interacting particles: bosons, fermions, and spins. In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally captures the exact quantum dissipations when noise variables with appropriate statistics for different bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath multi-time correlation functions that noise variables have to satisfy. Starting from the SLE, we devise a family of generalized hierarchical equations by averaging out the noise variables and expand bath multi-time correlation functions in a complete basis of orthonormal functions. The general hierarchical equations constitute systems of linear equations that provide numerically exact simulations of quantum dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary spectral densities and temperature regimes. Similar efficiency and flexibility can be achieved for the fermionic bath models within our formalism. The spin bath models can be simulated with two complementary approaches in the present formalism. (I) They can be viewed as an example of non-Gaussian bath models and be directly handled with the general hierarchical equation approach given their multi-time correlation functions. (II) Alternatively, each bath spin can be first mapped onto a pair of fermions and be treated as fermionic environments within the present formalism.

  16. Hierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC) imagery for rangeland mapping and assessment

    USDA-ARS?s Scientific Manuscript database

    Ultra high resolution digital aerial photography has great potential to complement or replace ground measurements of vegetation cover for rangeland monitoring and assessment. We investigated object-based image analysis (OBIA) techniques for classifying vegetation in southwestern U.S. arid rangelands...

  17. A preliminary classification system for vegetation of Alaska.

    Treesearch

    Leslie A. Viereck; C.T. Dyrness

    1980-01-01

    A hierarchical system, with five levels of resolution, is proposed for classifying Alaska vegetation. The system, which is agglomerative, starts with 415 known Alaska plant communities which are listed and referenced. At the broadest level of resolution the system contains five formations - forest, tundra, shrubland, herbaceous vegetation, and aquatic vegetation.

  18. Multi-Objective and Multidisciplinary Design Optimisation (MDO) of UAV Systems using Hierarchical Asynchronous Parallel Evolutionary Algorithms

    DTIC Science & Technology

    2007-09-17

    been proposed; these include a combination of variable fidelity models, parallelisation strategies and hybridisation techniques (Coello, Veldhuizen et...Coello et al (Coello, Veldhuizen et al. 2002). 4.4.2 HIERARCHICAL POPULATION TOPOLOGY A hierarchical population topology, when integrated into...to hybrid parallel Multi-Objective Evolutionary Algorithms (pMOEA) (Cantu-Paz 2000; Veldhuizen , Zydallis et al. 2003); it uses a master slave

  19. The Asian clam Corbicula fluminea as a biomonitor of trace element contamination: Accounting for different sources of variation using an hierarchical linear model

    USGS Publications Warehouse

    Shoults-Wilson, W. A.; Peterson, J.T.; Unrine, J.M.; Rickard, J.; Black, M.C.

    2009-01-01

    In the present study, specimens of the invasive clam, Corbicula fluminea, were collected above and below possible sources of potentially toxic trace elements (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the Altamaha River system (Georgia, USA). Bioaccumulation of these elements was quantified, along with environmental (water and sediment) concentrations. Hierarchical linear models were used to account for variability in tissue concentrations related to environmental (site water chemistry and sediment characteristics) and individual (growth metrics) variables while identifying the strongest relations between these variables and trace element accumulation. The present study found significantly elevated concentrations of Cd, Cu, and Hg downstream of the outfall of kaolin-processing facilities, Zn downstream of a tire cording facility, and Cr downstream of both a nuclear power plant and a paper pulp mill. Models of the present study indicated that variation in trace element accumulation was linked to distance upstream from the estuary, dissolved oxygen, percentage of silt and clay in the sediment, elemental concentrations in sediment, shell length, and bivalve condition index. By explicitly modeling environmental variability, the Hierarchical linear modeling procedure allowed the identification of sites showing increased accumulation of trace elements that may have been caused by human activity. Hierarchical linear modeling is a useful tool for accounting for environmental and individual sources of variation in bioaccumulation studies. ?? 2009 SETAC.

  20. Hierarchical Synthesis of Coastal Ecosystem Health Indicators at Karimunjawa National Marine Park

    NASA Astrophysics Data System (ADS)

    Danu Prasetya, Johan; Ambariyanto; Supriharyono; Purwanti, Frida

    2018-02-01

    The coastal ecosystem of Karimunjawa National Marine Park (KNMP) is facing various pressures, including from human activity. Monitoring the health condition of coastal ecosystems periodically is needed as an evaluation of the ecosystem condition. Systematic and consistent indicators are needed in monitoring of coastal ecosystem health. This paper presents hierarchical synthesis of coastal ecosystem health indicators using Analytic Hierarchy Process (AHP) method. Hierarchical synthesis is obtained from process of weighting by paired comparison based on expert judgments. The variables of coastal ecosystem health indicators in this synthesis consist of 3 level of variable, i.e. main variable, sub-variable and operational variable. As a result of assessment, coastal ecosystem health indicators consist of 3 main variables, i.e. State of Ecosystem, Pressure and Management. Main variables State of Ecosystem and Management obtain the same value i.e. 0.400, while Pressure value was 0.200. Each main variable consist of several sub-variable, i.e. coral reef, reef fish, mangrove and seagrass for State of Ecosystem; fisheries and marine tourism activity for Pressure; planning and regulation, institutional and also infrastructure and financing for Management. The highest value of sub-variable of main variable State of Ecosystem, Pressure and Management were coral reef (0.186); marine tourism pressure (0.133) and institutional (0.171), respectively. The highest value of operational variable of main variable State of Ecosystem, Pressure and Management were percent of coral cover (0.058), marine tourism pressure (0.133) and presence of zonation plan, regulation also socialization of monitoring program (0.53), respectively. Potential pressure from marine tourism activity is the variable that most affect the health of the ecosystem. The results of this research suggest that there is a need to develop stronger conservation strategies to facing with pressures from marine tourism activities.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhe; Cao, Minhua, E-mail: caomh@bit.edu.cn; Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081

    Research highlights: {yields} Novel Bi{sub 2}S{sub 3} hierarchical nanostructures self-assembled by nanorods are successfully synthesized in mild benzyl alcohol system under hydrothermal conditions. {yields} The hierarchical nanostructures exhibit a flower-like shape. {yields} PVP plays an important role for the formation of the hierarchical nanostructures. {yields} Bi{sub 2}S{sub 3} film prepared from the flower-like hierarchical nanostructures exhibits good hydrophobic properties. -- Abstract: Novel Bi{sub 2}S{sub 3} hierarchical nanostructures self-assembled by nanorods are successfully synthesized in mild benzyl alcohol system under hydrothermal conditions. The hierarchical nanostructures exhibit a flower-like shape. X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), transmissionmore » electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) were used to characterize the as-synthesized samples. Meanwhile, the effect of various experimental parameters including the concentration of reagents and reaction time on final product has been investigated. In our experiment, PVP plays an important role for the formation of the hierarchical nanostructures and the possible mechanism was proposed. In addition, Bi{sub 2}S{sub 3} film prepared from the flower-like hierarchical nanostructures exhibits good hydrophobic properties, which may bring nontrivial functionalities and may have some promising applications in the future.« less

  2. Technique for fast and efficient hierarchical clustering

    DOEpatents

    Stork, Christopher

    2013-10-08

    A fast and efficient technique for hierarchical clustering of samples in a dataset includes compressing the dataset to reduce a number of variables within each of the samples of the dataset. A nearest neighbor matrix is generated to identify nearest neighbor pairs between the samples based on differences between the variables of the samples. The samples are arranged into a hierarchy that groups the samples based on the nearest neighbor matrix. The hierarchy is rendered to a display to graphically illustrate similarities or differences between the samples.

  3. Spatio-temporal hierarchical modeling of rates and variability of Holocene sea-level changes in the western North Atlantic and the Caribbean

    NASA Astrophysics Data System (ADS)

    Ashe, E.; Kopp, R. E.; Khan, N.; Horton, B.; Engelhart, S. E.

    2016-12-01

    Sea level varies over of both space and time. Prior to the instrumental period, the sea-level record depends upon geological reconstructions that contain vertical and temporal uncertainty. Spatio-temporal statistical models enable the interpretation of RSL and rates of change as well as the reconstruction of the entire sea-level field from such noisy data. Hierarchical models explicitly distinguish between a process level, which characterizes the spatio-temporal field, and a data level, by which sparse proxy data and its noise is recorded. A hyperparameter level depicts prior expectations about the structure of variability in the spatio-temporal field. Spatio-temporal hierarchical models are amenable to several analysis approaches, with tradeoffs regarding computational efficiency and comprehensiveness of uncertainty characterization. A fully-Bayesian hierarchical model (BHM), which places prior probability distributions upon the hyperparameters, is more computationally intensive than an empirical hierarchical model (EHM), which uses point estimates of hyperparameters, derived from the data [1]. Here, we assess the sensitivity of posterior estimates of relative sea level (RSL) and rates to different statistical approaches by varying prior assumptions about the spatial and temporal structure of sea-level variability and applying multiple analytical approaches to Holocene sea-level proxies along the Atlantic coast of North American and the Caribbean [2]. References: 1. N Cressie, Wikle CK (2011) Statistics for spatio-temporal data (John Wiley & Sons). 2. Kahn N et al. (2016). Quaternary Science Reviews (in revision).

  4. Hierarchical imaging of the human knee

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Götz, Christian; Deyhle, Hans; Müller-Gerbl, Magdalena; Zanette, Irene; Zdora, Marie-Christine; Khimchenko, Anna; Thalmann, Peter; Rack, Alexander; Müller, Bert

    2016-10-01

    Among the clinically relevant imaging techniques, computed tomography (CT) reaches the best spatial resolution. Sub-millimeter voxel sizes are regularly obtained. For investigations on true micrometer level lab-based μCT has become gold standard. The aim of the present study is the hierarchical investigation of a human knee post mortem using hard X-ray μCT. After the visualization of the entire knee using a clinical CT with a spatial resolution on the sub-millimeter range, a hierarchical imaging study was performed using a laboratory μCT system nanotom m. Due to the size of the whole knee the pixel length could not be reduced below 65 μm. These first two data sets were directly compared after a rigid registration using a cross-correlation algorithm. The μCT data set allowed an investigation of the trabecular structures of the bones. The further reduction of the pixel length down to 25 μm could be achieved by removing the skin and soft tissues and measuring the tibia and the femur separately. True micrometer resolution could be achieved after extracting cylinders of several millimeters diameters from the two bones. The high resolution scans revealed the mineralized cartilage zone including the tide mark line as well as individual calcified chondrocytes. The visualization of soft tissues including cartilage, was arranged by X-ray grating interferometry (XGI) at ESRF and Diamond Light Source. Whereas the high-energy measurements at ESRF allowed the simultaneous visualization of soft and hard tissues, the low-energy results from Diamond Light Source made individual chondrocytes within the cartilage visual.

  5. Hierarchical clusters of phytoplankton variables in dammed water bodies

    NASA Astrophysics Data System (ADS)

    Silva, Eliana Costa e.; Lopes, Isabel Cristina; Correia, Aldina; Gonçalves, A. Manuela

    2017-06-01

    In this paper a dataset containing biological variables of the water column of several Portuguese reservoirs is analyzed. Hierarchical cluster analysis is used to obtain clusters of phytoplankton variables of the phylum Cyanophyta, with the objective of validating the classification of Portuguese reservoirs previewly presented in [1] which were divided into three clusters: (1) Interior Tagus and Aguieira; (2) Douro; and (3) Other rivers. Now three new clusters of Cyanophyta variables were found. Kruskal-Wallis and Mann-Whitney tests are used to compare the now obtained Cyanophyta clusters and the previous Reservoirs clusters, in order to validate the classification of the water quality of reservoirs. The amount of Cyanophyta algae present in the reservoirs from the three clusters is significantly different, which validates the previous classification.

  6. Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT

    PubMed Central

    Wimmer, Klaus; Compte, Albert; Roxin, Alex; Peixoto, Diogo; Renart, Alfonso; de la Rocha, Jaime

    2015-01-01

    Neuronal variability in sensory cortex predicts perceptual decisions. This relationship, termed choice probability (CP), can arise from sensory variability biasing behaviour and from top-down signals reflecting behaviour. To investigate the interaction of these mechanisms during the decision-making process, we use a hierarchical network model composed of reciprocally connected sensory and integration circuits. Consistent with monkey behaviour in a fixed-duration motion discrimination task, the model integrates sensory evidence transiently, giving rise to a decaying bottom-up CP component. However, the dynamics of the hierarchical loop recruits a concurrently rising top-down component, resulting in sustained CP. We compute the CP time-course of neurons in the medial temporal area (MT) and find an early transient component and a separate late contribution reflecting decision build-up. The stability of individual CPs and the dynamics of noise correlations further support this decomposition. Our model provides a unified understanding of the circuit dynamics linking neural and behavioural variability. PMID:25649611

  7. Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties.

    PubMed

    Hwang, Yun Jeong; Wu, Cheng Hao; Hahn, Chris; Jeong, Hoon Eui; Yang, Peidong

    2012-03-14

    Three-dimensional hierarchical nanostructures were synthesized by the halide chemical vapor deposition of InGaN nanowires on Si wire arrays. Single phase InGaN nanowires grew vertically on the sidewalls of Si wires and acted as a high surface area photoanode for solar water splitting. Electrochemical measurements showed that the photocurrent density with hierarchical Si/InGaN nanowire arrays increased by 5 times compared to the photocurrent density with InGaN nanowire arrays grown on planar Si (1.23 V vs RHE). High-resolution transmission electron microscopy showed that InGaN nanowires are stable after 15 h of illumination. These measurements show that Si/InGaN hierarchical nanostructures are a viable high surface area electrode geometry for solar water splitting. © 2012 American Chemical Society

  8. Documentation of the Douglas-fir tussock moth outbreak-population model.

    Treesearch

    J.J. Colbert; W. Scott Overton; Curtis. White

    1979-01-01

    Documentation of three model versions: the Douglas-fir tussock moth population-branch model on (1) daily temporal resolution, (2) instart temporal resolution, and (3) the Douglas-fir tussock moth stand-outbreak model; the hierarchical framework and the conceptual paradigm used are described. The coupling of the model with a normal-stand model is discussed. The modeling...

  9. Strong influence of variable treatment on the performance of numerically defined ecological regions.

    PubMed

    Snelder, Ton; Lehmann, Anthony; Lamouroux, Nicolas; Leathwick, John; Allenbach, Karin

    2009-10-01

    Numerical clustering has frequently been used to define hierarchically organized ecological regionalizations, but there has been little robust evaluation of their performance (i.e., the degree to which regions discriminate areas with similar ecological character). In this study we investigated the effect of the weighting and treatment of input variables on the performance of regionalizations defined by agglomerative clustering across a range of hierarchical levels. For this purpose, we developed three ecological regionalizations of Switzerland of increasing complexity using agglomerative clustering. Environmental data for our analysis were drawn from a 400 m grid and consisted of estimates of 11 environmental variables for each grid cell describing climate, topography and lithology. Regionalization 1 was defined from the environmental variables which were given equal weights. We used the same variables in Regionalization 2 but weighted and transformed them on the basis of a dissimilarity model that was fitted to land cover composition data derived for a random sample of cells from interpretation of aerial photographs. Regionalization 3 was a further two-stage development of Regionalization 2 where specific classifications, also weighted and transformed using dissimilarity models, were applied to 25 small scale "sub-domains" defined by Regionalization 2. Performance was assessed in terms of the discrimination of land cover composition for an independent set of sites using classification strength (CS), which measured the similarity of land cover composition within classes and the dissimilarity between classes. Regionalization 2 performed significantly better than Regionalization 1, but the largest gains in performance, compared to Regionalization 1, occurred at coarse hierarchical levels (i.e., CS did not increase significantly beyond the 25-region level). Regionalization 3 performed better than Regionalization 2 beyond the 25-region level and CS values continued to increase to the 95-region level. The results show that the performance of regionalizations defined by agglomerative clustering are sensitive to variable weighting and transformation. We conclude that large gains in performance can be achieved by training classifications using dissimilarity models. However, these gains are restricted to a narrow range of hierarchical levels because agglomerative clustering is unable to represent the variation in importance of variables at different spatial scales. We suggest that further advances in the numerical definition of hierarchically organized ecological regionalizations will be possible with techniques developed in the field of statistical modeling of the distribution of community composition.

  10. Hierarchical graphical-based human pose estimation via local multi-resolution convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhu, Aichun; Wang, Tian; Snoussi, Hichem

    2018-03-01

    This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN). Firstly, a Relative Mixture Deformable Model (RMDM) is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN) is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.

  11. Wait, are you sad or angry? Large exposure time differences required for the categorization of facial expressions of emotion

    PubMed Central

    Du, Shichuan; Martinez, Aleix M.

    2013-01-01

    Abstract Facial expressions of emotion are essential components of human behavior, yet little is known about the hierarchical organization of their cognitive analysis. We study the minimum exposure time needed to successfully classify the six classical facial expressions of emotion (joy, surprise, sadness, anger, disgust, fear) plus neutral as seen at different image resolutions (240 × 160 to 15 × 10 pixels). Our results suggest a consistent hierarchical analysis of these facial expressions regardless of the resolution of the stimuli. Happiness and surprise can be recognized after very short exposure times (10–20 ms), even at low resolutions. Fear and anger are recognized the slowest (100–250 ms), even in high-resolution images, suggesting a later computation. Sadness and disgust are recognized in between (70–200 ms). The minimum exposure time required for successful classification of each facial expression correlates with the ability of a human subject to identify it correctly at low resolutions. These results suggest a fast, early computation of expressions represented mostly by low spatial frequencies or global configural cues and a later, slower process for those categories requiring a more fine-grained analysis of the image. We also demonstrate that those expressions that are mostly visible in higher-resolution images are not recognized as accurately. We summarize implications for current computational models. PMID:23509409

  12. Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.

    PubMed

    Nitta, Tohru

    2017-10-01

    We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).

  13. Mapping pre-European settlement vegetation at fine resolutions using a hierarchical Bayesian model and GIS

    Treesearch

    Hong S. He; Daniel C. Dey; Xiuli Fan; Mevin B. Hooten; John M. Kabrick; Christopher K. Wikle; Zhaofei. Fan

    2007-01-01

    In the Midwestern United States, the GeneralLandOffice (GLO) survey records provide the only reasonably accurate data source of forest composition and tree species distribution at the time of pre-European settlement (circa late 1800 to early 1850). However, GLO data have two fundamental limitations: coarse spatial resolutions (the square mile section and half mile...

  14. Hierarchical Naive Bayes for genetic association studies.

    PubMed

    Malovini, Alberto; Barbarini, Nicola; Bellazzi, Riccardo; de Michelis, Francesca

    2012-01-01

    Genome Wide Association Studies represent powerful approaches that aim at disentangling the genetic and molecular mechanisms underlying complex traits. The usual "one-SNP-at-the-time" testing strategy cannot capture the multi-factorial nature of this kind of disorders. We propose a Hierarchical Naïve Bayes classification model for taking into account associations in SNPs data characterized by Linkage Disequilibrium. Validation shows that our model reaches classification performances superior to those obtained by the standard Naïve Bayes classifier for simulated and real datasets. In the Hierarchical Naïve Bayes implemented, the SNPs mapping to the same region of Linkage Disequilibrium are considered as "details" or "replicates" of the locus, each contributing to the overall effect of the region on the phenotype. A latent variable for each block, which models the "population" of correlated SNPs, can be then used to summarize the available information. The classification is thus performed relying on the latent variables conditional probability distributions and on the SNPs data available. The developed methodology has been tested on simulated datasets, each composed by 300 cases, 300 controls and a variable number of SNPs. Our approach has been also applied to two real datasets on the genetic bases of Type 1 Diabetes and Type 2 Diabetes generated by the Wellcome Trust Case Control Consortium. The approach proposed in this paper, called Hierarchical Naïve Bayes, allows dealing with classification of examples for which genetic information of structurally correlated SNPs are available. It improves the Naïve Bayes performances by properly handling the within-loci variability.

  15. Methodology to develop crash modification functions for road safety treatments with fully specified and hierarchical models.

    PubMed

    Chen, Yongsheng; Persaud, Bhagwant

    2014-09-01

    Crash modification factors (CMFs) for road safety treatments are developed as multiplicative factors that are used to reflect the expected changes in safety performance associated with changes in highway design and/or the traffic control features. However, current CMFs have methodological drawbacks. For example, variability with application circumstance is not well understood, and, as important, correlation is not addressed when several CMFs are applied multiplicatively. These issues can be addressed by developing safety performance functions (SPFs) with components of crash modification functions (CM-Functions), an approach that includes all CMF related variables, along with others, while capturing quantitative and other effects of factors and accounting for cross-factor correlations. CM-Functions can capture the safety impact of factors through a continuous and quantitative approach, avoiding the problematic categorical analysis that is often used to capture CMF variability. There are two formulations to develop such SPFs with CM-Function components - fully specified models and hierarchical models. Based on sample datasets from two Canadian cities, both approaches are investigated in this paper. While both model formulations yielded promising results and reasonable CM-Functions, the hierarchical model was found to be more suitable in retaining homogeneity of first-level SPFs, while addressing CM-Functions in sub-level modeling. In addition, hierarchical models better capture the correlations between different impact factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langkilde, Annette E., E-mail: annette.langkilde@sund.ku.dk; Morris, Kyle L.; Serpell, Louise C.

    The aggregation process and the fibril state of an amyloidogenic peptide suggest monomer addition to be the prevailing mechanism of elongation and a model of the peptide packing in the fibrils has been obtained. Structural analysis of protein fibrillation is inherently challenging. Given the crucial role of fibrils in amyloid diseases, method advancement is urgently needed. A hybrid modelling approach is presented enabling detailed analysis of a highly ordered and hierarchically organized fibril of the GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-raymore » crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the peptide fragment. The elongation of these fibrils proceeds without the accumulation of any detectable amount of intermediate oligomeric species, as is otherwise reported for, for example, glucagon, insulin and α-synuclein. Ribbons constituted of linearly arranged protofilaments are formed. An additional hierarchical layer is generated via the pairing of ribbons during fibril maturation. Based on the complementary data, a quasi-atomic resolution model of the protofilament peptide arrangement is suggested. The peptide structure appears in a β-sheet arrangement reminiscent of the β-zipper structures evident from high-resolution crystal structures, with specific differences in the relative peptide orientation. The complexity of protein fibrillation and structure emphasizes the need to use multiple complementary methods.« less

  17. Delineating wetland catchments and modeling hydrologic ...

    EPA Pesticide Factsheets

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling–spilling–merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that

  18. Progressive Dictionary Learning with Hierarchical Predictive Structure for Scalable Video Coding.

    PubMed

    Dai, Wenrui; Shen, Yangmei; Xiong, Hongkai; Jiang, Xiaoqian; Zou, Junni; Taubman, David

    2017-04-12

    Dictionary learning has emerged as a promising alternative to the conventional hybrid coding framework. However, the rigid structure of sequential training and prediction degrades its performance in scalable video coding. This paper proposes a progressive dictionary learning framework with hierarchical predictive structure for scalable video coding, especially in low bitrate region. For pyramidal layers, sparse representation based on spatio-temporal dictionary is adopted to improve the coding efficiency of enhancement layers (ELs) with a guarantee of reconstruction performance. The overcomplete dictionary is trained to adaptively capture local structures along motion trajectories as well as exploit the correlations between neighboring layers of resolutions. Furthermore, progressive dictionary learning is developed to enable the scalability in temporal domain and restrict the error propagation in a close-loop predictor. Under the hierarchical predictive structure, online learning is leveraged to guarantee the training and prediction performance with an improved convergence rate. To accommodate with the stateof- the-art scalable extension of H.264/AVC and latest HEVC, standardized codec cores are utilized to encode the base and enhancement layers. Experimental results show that the proposed method outperforms the latest SHVC and HEVC simulcast over extensive test sequences with various resolutions.

  19. Fractal-like hierarchical organization of bone begins at the nanoscale

    NASA Astrophysics Data System (ADS)

    Reznikov, Natalie; Bilton, Matthew; Lari, Leonardo; Stevens, Molly M.; Kröger, Roland

    2018-05-01

    The components of bone assemble hierarchically to provide stiffness and toughness. However, the organization and relationship between bone’s principal components—mineral and collagen—has not been clearly elucidated. Using three-dimensional electron tomography imaging and high-resolution two-dimensional electron microscopy, we demonstrate that bone mineral is hierarchically assembled beginning at the nanoscale: Needle-shaped mineral units merge laterally to form platelets, and these are further organized into stacks of roughly parallel platelets. These stacks coalesce into aggregates that exceed the lateral dimensions of the collagen fibrils and span adjacent fibrils as continuous, cross-fibrillar mineralization. On the basis of these observations, we present a structural model of hierarchy and continuity for the mineral phase, which contributes to the structural integrity of bone.

  20. Growth of hierarchical GaN nanowires for optoelectronic device applications

    NASA Astrophysics Data System (ADS)

    Raj, Rishabh; Vignesh, Veeramuthu; Ra, Yong-Ho; Nirmala, Rajkumar; Lee, Cheul-Ro; Navamathavan, Rangaswamy

    2017-01-01

    Gallium nitride nanostructures have been receiving considerable attention as building blocks for nanophotonic technologies due to their unique high aspect ratios, promising the realization of photonic and biological nanodevices such as blue light emitting diodes (LEDs), short-wavelength ultraviolet nanolasers, and nanofluidic biochemical sensors. We report on the growth of hierarchical GaN nanowires (NWs) by dynamically adjusting the growth parameters using the pulsed flow metal-organic chemical vapor deposition technique. We carried out two step growth processes to grow hierarchical GaN NWs. In the first step, the GaN NWs were grown at 950°C, and in the second, we suitably decreased the growth temperature to 630°C and 710°C to grow the hierarchical structures. The surface morphology and optical characterization of the grown GaN NWs were studied by field-emission scanning electron microscopy, high-resolution transmission electron microscopy, photoluminescence, and cathodoluminescence measurements. These kinds of hierarchical GaN NWs are promising for allowing flat band quantum structures that are shown to improve the efficiency of LEDs.

  1. Soil Moisture fusion across scales using a multiscale nonstationary Spatial Hierarchical Model

    NASA Astrophysics Data System (ADS)

    Kathuria, D.; Mohanty, B.; Katzfuss, M.

    2017-12-01

    Soil moisture (SM) datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors, on the other hand, provide observations on a finer spatial scale (meter scale or less) but are sparsely available. SM is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables and these interactions change dynamically with footprint scales. Past literature has largely focused on the scale specific effect of these covariates on soil moisture. The present study proposes a robust Multiscale-Nonstationary Spatial Hierarchical Model (MN-SHM) which can assimilate SM from point to RS footprints. The spatial structure of SM across footprints is modeled by a class of scalable covariance functions whose nonstationary depends on atmospheric forcings (such as precipitation) and surface physical controls (such as topography, soil-texture and vegetation). The proposed model is applied to fuse point and airborne ( 1.5 km) SM data obtained during the SMAPVEX12 campaign in the Red River watershed in Southern Manitoba, Canada with SMOS ( 30km) data. It is observed that precipitation, soil-texture and vegetation are the dominant factors which affect the SM distribution across various footprint scales (750 m, 1.5 km, 3 km, 9 km,15 km and 30 km). We conclude that MN-SHM handles the change of support problems easily while retaining reasonable predictive accuracy across multiple spatial resolutions in the presence of surface heterogeneity. The MN-SHM can be considered as a complex non-stationary extension of traditional geostatistical prediction methods (such as Kriging) for fusing multi-platform multi-scale datasets.

  2. A Hierarchical Analysis of Tree Growth and Environmental Drivers Across Eastern US Temperate Forests

    NASA Astrophysics Data System (ADS)

    Mantooth, J.; Dietze, M.

    2014-12-01

    Improving predictions of how forests in the eastern United States will respond to future global change requires a better understanding of the drivers of variability in tree growth rates. Current inventory data lack the temporal resolution to characterize interannual variability, while existing growth records lack the extent required to assess spatial scales of variability. Therefore, we established a network of forest inventory plots across ten sites across the eastern US, and measured growth in adult trees using increment cores. Sites were chosen to maximize climate space explored, while within sites, plots were spread across primary environmental gradients to explore landscape-level variability in growth. Using the annual growth record available from tree cores, we explored the responses of trees to multiple environmental covariates over multiple spatial and temporal scales. We hypothesized that within and across sites growth rates vary among species, and that intraspecific growth rates increase with temperature along a species' range. We also hypothesized that trees show synchrony in growth responses to landscape-scale climatic changes. Initial analyses of growth increments indicate that across sites, trees with intermediate shade tolerance, e.g. Red Oak (Quercus rubra), tend to have the highest growth rates. At the site level, there is evidence for synchrony in response to large-scale climatic events (e.g. prolonged drought and above average temperatures). However, growth responses to climate at the landscape scale have yet to be detected. Our current analysis utilizes hierarchical Bayesian state-space modeling to focus on growth responses of adult trees to environmental covariates at multiple spatial and temporal scales. This predictive model of tree growth currently incorporates observed effects at the individual, plot, site, and landscape scale. Current analysis using this model shows a potential slowing of growth in the past decade for two sites in the northeastern US (Harvard Forest and Bartlett Experimental Forest), however more work is required to determine the robustness of this trend. Finally, these observations are being incorporated into ecosystem models using the Brown Dog informatics tools and the Predictive Ecosystem Analyzer (PEcAn) data assimilation workflow.

  3. Covariates of the Rating Process in Hierarchical Models for Multiple Ratings of Test Items

    ERIC Educational Resources Information Center

    Mariano, Louis T.; Junker, Brian W.

    2007-01-01

    When constructed response test items are scored by more than one rater, the repeated ratings allow for the consideration of individual rater bias and variability in estimating student proficiency. Several hierarchical models based on item response theory have been introduced to model such effects. In this article, the authors demonstrate how these…

  4. Very high resolution Earth Observation features for testing the direct and indirect effects of landscape structure on local habitat quality

    NASA Astrophysics Data System (ADS)

    Mairota, Paola; Cafarelli, Barbara; Labadessa, Rocco; Lovergine, Francesco P.; Tarantino, Cristina; Nagendra, Harini; Didham, Raphael K.

    2015-02-01

    Modelling the empirical relationships between habitat quality and species distribution patterns is the first step to understanding human impacts on biodiversity. It is important to build on this understanding to develop a broader conceptual appreciation of the influence of surrounding landscape structure on local habitat quality, across multiple spatial scales. Traditional models which report that 'habitat amount' in the landscape is sufficient to explain patterns of biodiversity, irrespective of habitat configuration or spatial variation in habitat quality at edges, implicitly treat each unit of habitat as interchangeable and ignore the high degree of interdependence between spatial components of land-use change. Here, we test the contrasting hypothesis, that local habitat units are not interchangeable in their habitat attributes, but are instead dependent on variation in surrounding habitat structure at both patch- and landscape levels. As the statistical approaches needed to implement such hierarchical causal models are observation-intensive, we utilise very high resolution (VHR) Earth Observation (EO) images to rapidly generate fine-grained measures of habitat patch internal heterogeneities over large spatial extents. We use linear mixed-effects models to test whether these remotely-sensed proxies for habitat quality were influenced by surrounding patch or landscape structure. The results demonstrate the significant influence of surrounding patch and landscape context on local habitat quality. They further indicate that such an influence can be direct, when a landscape variable alone influences the habitat structure variable, and/or indirect when the landscape and patch attributes have a conjoined effect on the response variable. We conclude that a substantial degree of interaction among spatial configuration effects is likely to be the norm in determining the ecological consequences of habitat fragmentation, thus corroborating the notion of the spatial context dependence of habitat quality.

  5. HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Shuhang; Wang, Jian; Wang, Tong

    2017-09-01

    Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.

  6. Nursing Homes Appeals of Deficiency Citations: The Informal Dispute Resolution Process

    PubMed Central

    Mukamel, Dana B.; Weimer, David L.; Li, Yue; Bailey, Lauren; Spector, William D.; Harrington, Charlene

    2012-01-01

    Objective Nursing homes found to be not meeting quality standards are cited for deficiencies. Before 1995, their only recourse was a formal appeal process, which is lengthy and costly. In 1995, the Centers for Medicare & Medicaid Services (CMS) instituted the Informal Dispute Resolution (IDR) process. This study presents for the first time national statistics about the IDR process and an analysis of the factors that influence nursing homes’ decisions to request an IDR. Design Retrospective study including descriptive statistics and multivariate logistic hierarchical models. Setting U.S. nursing homes in 2005 to 2008. Participant 15,916 Medicaid and Medicare certified nursing homes nationally, with 94,188 surveys and 9,388 IDRs. Measures The unit of observation was an annual survey or a complaint survey that generated at least one deficiency. The dependent variable was dichotomous and indicated whether the annual or a complaint survey triggered an IDR request. Independent variables included characteristics of the nursing home, the deficiency, the market, and the state regulatory environment. Results Ten percent of all annual surveys and complaint surveys resulted in IDRs. There was substantial variation across states, which persisted over time. Multivariate results suggest that nursing homes’ decisions to request an IDR depend on their assessment of the probability of success and assessment of the benefits of the submission. Conclusions Nursing homes avail themselves of the IDR process. Their propensity to do so depends on a number of factors, including the state regulatory system and the market environment in which they operate. PMID:22402171

  7. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya.

    PubMed

    Richard, Kyalo; Abdel-Rahman, Elfatih M; Subramanian, Sevgan; Nyasani, Johnson O; Thiel, Michael; Jozani, Hosein; Borgemeister, Christian; Landmann, Tobias

    2017-11-03

    Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF) classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC) and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step). An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer's accuracy and UA: user's accuracy) for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10-20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.

  8. Bayesian Variable Selection for Hierarchical Gene-Environment and Gene-Gene Interactions

    PubMed Central

    Liu, Changlu; Ma, Jianzhong; Amos, Christopher I.

    2014-01-01

    We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions and gene by environment interactions in the same model. Our approach incorporates the natural hierarchical structure between the main effects and interaction effects into a mixture model, such that our methods tend to remove the irrelevant interaction effects more effectively, resulting in more robust and parsimonious models. We consider both strong and weak hierarchical models. For a strong hierarchical model, both of the main effects between interacting factors must be present for the interactions to be considered in the model development, while for a weak hierarchical model, only one of the two main effects is required to be present for the interaction to be evaluated. Our simulation results show that the proposed strong and weak hierarchical mixture models work well in controlling false positive rates and provide a powerful approach for identifying the predisposing effects and interactions in gene-environment interaction studies, in comparison with the naive model that does not impose this hierarchical constraint in most of the scenarios simulated. We illustrated our approach using data for lung cancer and cutaneous melanoma. PMID:25154630

  9. CuO-Decorated ZnO Hierarchical Nanostructures as Efficient and Established Sensing Materials for H2S Gas Sensors

    PubMed Central

    Vuong, Nguyen Minh; Chinh, Nguyen Duc; Huy, Bui The; Lee, Yong-Ill

    2016-01-01

    Highly sensitive hydrogen sulfide (H2S) gas sensors were developed from CuO-decorated ZnO semiconducting hierarchical nanostructures. The ZnO hierarchical nanostructure was fabricated by an electrospinning method following hydrothermal and heat treatment. CuO decoration of ZnO hierarchical structures was carried out by a wet method. The H2S gas-sensing properties were examined at different working temperatures using various quantities of CuO as the variable. CuO decoration of the ZnO hierarchical structure was observed to promote sensitivity for H2S gas higher than 30 times at low working temperature (200 °C) compared with that in the nondecorated hierarchical structure. The sensing mechanism of the hybrid sensor structure is also discussed. The morphology and characteristics of the samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis absorption, photoluminescence (PL), and electrical measurements. PMID:27231026

  10. Neural correlates of gait variability in people with multiple sclerosis with fall history.

    PubMed

    Kalron, Alon; Allali, Gilles; Achiron, Anat

    2018-05-28

    Investigate the association between step time variability and related brain structures in accordance with fall status in people with multiple sclerosis (PwMS). The study included 225 PwMS. A whole-brain MRI was performed by a high-resolution 3.0-Telsa MR scanner in addition to volumetric analysis based on 3D T1-weighted images using the FreeSurfer image analysis suite. Step time variability was measured by an electronic walkway. Participants were defined as "fallers" (at least two falls during the previous year) and "non-fallers". One hundred and five PwMS were defined as fallers and had a greater step time variability compared to non-fallers (5.6% (S.D.=3.4) vs. 3.4% (S.D.=1.5); p=0.001). MS fallers exhibited a reduced volume in the left caudate and both cerebellum hemispheres compared to non-fallers. By using a linear regression analysis no association was found between gait variability and related brain structures in the total cohort and non-fallers group. However, the analysis found an association between the left hippocampus and left putamen volumes with step time variability in the faller group; p=0.031, 0.048, respectively, controlling for total cranial volume, walking speed, disability, age and gender. Nevertheless, according to the hierarchical regression model, the contribution of these brain measures to predict gait variability was relatively small compared to walking speed. An association between low left hippocampal, putamen volumes and step time variability was found in PwMS with a history of falls, suggesting brain structural characteristics may be related to falls and increased gait variability in PwMS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Hierarchically Structured Non-Intrusive Sign Language Recognition. Chapter 2

    NASA Technical Reports Server (NTRS)

    Zieren, Jorg; Zieren, Jorg; Kraiss, Karl-Friedrich

    2007-01-01

    This work presents a hierarchically structured approach at the nonintrusive recognition of sign language from a monocular frontal view. Robustness is achieved through sophisticated localization and tracking methods, including a combined EM/CAMSHIFT overlap resolution procedure and the parallel pursuit of multiple hypotheses about hands position and movement. This allows handling of ambiguities and automatically corrects tracking errors. A biomechanical skeleton model and dynamic motion prediction using Kalman filters represents high level knowledge. Classification is performed by Hidden Markov Models. 152 signs from German sign language were recognized with an accuracy of 97.6%.

  12. Using a Data-Driven Approach to Understand the Interaction between Catchment Characteristics and Water Quality Responses

    NASA Astrophysics Data System (ADS)

    Western, A. W.; Lintern, A.; Liu, S.; Ryu, D.; Webb, J. A.; Leahy, P.; Wilson, P.; Waters, D.; Bende-Michl, U.; Watson, M.

    2016-12-01

    Many streams, lakes and estuaries are experiencing increasing concentrations and loads of nutrient and sediments. Models that can predict the spatial and temporal variability in water quality of aquatic systems are required to help guide the management and restoration of polluted aquatic systems. We propose that a Bayesian hierarchical modelling framework could be used to predict water quality responses over varying spatial and temporal scales. Stream water quality data and spatial data of catchment characteristics collected throughout Victoria and Queensland (in Australia) over two decades will be used to develop this Bayesian hierarchical model. In this paper, we present the preliminary exploratory data analysis required for the development of the Bayesian hierarchical model. Specifically, we present the results of exploratory data analysis of Total Nitrogen (TN) concentrations in rivers in Victoria (in South-East Australia) to illustrate the catchment characteristics that appear to be influencing spatial variability in (1) mean concentrations of TN; and (2) the relationship between discharge and TN throughout the state. These important catchment characteristics were identified using: (1) monthly TN concentrations measured at 28 water quality gauging stations and (2) climate, land use, topographic and geologic characteristics of the catchments of these 28 sites. Spatial variability in TN concentrations had a positive correlation to fertiliser use in the catchment and average temperature. There were negative correlations between TN concentrations and catchment forest cover, annual runoff, runoff perenniality, soil erosivity and catchment slope. The relationship between discharge and TN concentrations showed spatial variability, possibly resulting from climatic and topographic differences between the sites. The results of this study will feed into the hierarchical Bayesian model of river water quality.

  13. Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung

    2010-08-01

    Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.

  14. Multiresolution modeling with a JMASS-JWARS HLA Federation

    NASA Astrophysics Data System (ADS)

    Prince, John D.; Painter, Ron D.; Pendell, Brian; Richert, Walt; Wolcott, Christopher

    2002-07-01

    CACI, Inc.-Federal has built, tested, and demonstrated the use of a JMASS-JWARS HLA Federation that supports multi- resolution modeling of a weapon system and its subsystems in a JMASS engineering and engagement model environment, while providing a realistic JWARS theater campaign-level synthetic battle space and operational context to assess the weapon system's value added and deployment/employment supportability in a multi-day, combined force-on-force scenario. Traditionally, acquisition analyses require a hierarchical suite of simulation models to address engineering, engagement, mission and theater/campaign measures of performance, measures of effectiveness and measures of merit. Configuring and running this suite of simulations and transferring the appropriate data between each model is both time consuming and error prone. The ideal solution would be a single simulation with the requisite resolution and fidelity to perform all four levels of acquisition analysis. However, current computer hardware technologies cannot deliver the runtime performance necessary to support the resulting extremely large simulation. One viable alternative is to integrate the current hierarchical suite of simulation models using the DoD's High Level Architecture in order to support multi- resolution modeling. An HLA integration eliminates the extremely large model problem, provides a well-defined and manageable mixed resolution simulation and minimizes VV&A issues.

  15. Evaluating the Impacts of ICT Use: A Multi-Level Analysis with Hierarchical Linear Modeling

    ERIC Educational Resources Information Center

    Song, Hae-Deok; Kang, Taehoon

    2012-01-01

    The purpose of this study is to evaluate the impacts of ICT use on achievements by considering not only ICT use, but also the process and background variables that influence ICT use at both the student- and school-level. This study was conducted using data from the 2010 Survey of Seoul Education Longitudinal Research. A Hierarchical Linear…

  16. Applying Hierarchical Linear Models (HLM) to Estimate the School and Children's Effects on Reading Achievement

    ERIC Educational Resources Information Center

    Liu, Xing

    2008-01-01

    The purpose of this study was to illustrate the use of Hierarchical Linear Models (HLM) to investigate the effects of school and children's attributes on children' reading achievement. In particular, this study was designed to: (1) develop the HLM models to determine the effects of school-level and child-level variables on children's reading…

  17. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    Treesearch

    Chad Babcock; Andrew O. Finley; John B. Bradford; Randy Kolka; Richard Birdsey; Michael G. Ryan

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both...

  18. An Algorithm for the Hierarchical Organization of Path Diagrams and Calculation of Components of Expected Covariance.

    ERIC Educational Resources Information Center

    Boker, Steven M.; McArdle, J. J.; Neale, Michael

    2002-01-01

    Presents an algorithm for the production of a graphical diagram from a matrix formula in such a way that its components are logically and hierarchically arranged. The algorithm, which relies on the matrix equations of J. McArdle and R. McDonald (1984), calculates the individual path components of expected covariance between variables and…

  19. Utilizing Hierarchical Segmentation to Generate Water and Snow Masks to Facilitate Monitoring Change with Remotely Sensed Image Data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Lawrence, William T.; Plaza, Antonio J.

    2006-01-01

    The hierarchical segmentation (HSEG) algorithm is a hybrid of hierarchical step-wise optimization and constrained spectral clustering that produces a hierarchical set of image segmentations. This segmentation hierarchy organizes image data in a manner that makes the image's information content more accessible for analysis by enabling region-based analysis. This paper discusses data analysis with HSEG and describes several measures of region characteristics that may be useful analyzing segmentation hierarchies for various applications. Segmentation hierarchy analysis for generating landwater and snow/ice masks from MODIS (Moderate Resolution Imaging Spectroradiometer) data was demonstrated and compared with the corresponding MODIS standard products. The masks based on HSEG segmentation hierarchies compare very favorably to the MODIS standard products. Further, the HSEG based landwater mask was specifically tailored to the MODIS data and the HSEG snow/ice mask did not require the setting of a critical threshold as required in the production of the corresponding MODIS standard product.

  20. The Analysis of Image Segmentation Hierarchies with a Graph-based Knowledge Discovery System

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Cooke, diane J.; Ketkar, Nikhil; Aksoy, Selim

    2008-01-01

    Currently available pixel-based analysis techniques do not effectively extract the information content from the increasingly available high spatial resolution remotely sensed imagery data. A general consensus is that object-based image analysis (OBIA) is required to effectively analyze this type of data. OBIA is usually a two-stage process; image segmentation followed by an analysis of the segmented objects. We are exploring an approach to OBIA in which hierarchical image segmentations provided by the Recursive Hierarchical Segmentation (RHSEG) software developed at NASA GSFC are analyzed by the Subdue graph-based knowledge discovery system developed by a team at Washington State University. In this paper we discuss out initial approach to representing the RHSEG-produced hierarchical image segmentations in a graphical form understandable by Subdue, and provide results on real and simulated data. We also discuss planned improvements designed to more effectively and completely convey the hierarchical segmentation information to Subdue and to improve processing efficiency.

  1. Single molecule characterization of DNA binding and strand displacement reactions on lithographic DNA origami microarrays.

    PubMed

    Scheible, Max B; Pardatscher, Günther; Kuzyk, Anton; Simmel, Friedrich C

    2014-03-12

    The combination of molecular self-assembly based on the DNA origami technique with lithographic patterning enables the creation of hierarchically ordered nanosystems, in which single molecules are positioned at precise locations on multiple length scales. Based on a hybrid assembly protocol utilizing DNA self-assembly and electron-beam lithography on transparent glass substrates, we here demonstrate a DNA origami microarray, which is compatible with the requirements of single molecule fluorescence and super-resolution microscopy. The spatial arrangement allows for a simple and reliable identification of single molecule events and facilitates automated read-out and data analysis. As a specific application, we utilize the microarray to characterize the performance of DNA strand displacement reactions localized on the DNA origami structures. We find considerable variability within the array, which results both from structural variations and stochastic reaction dynamics prevalent at the single molecule level.

  2. A review of surrogate models and their application to groundwater modeling

    NASA Astrophysics Data System (ADS)

    Asher, M. J.; Croke, B. F. W.; Jakeman, A. J.; Peeters, L. J. M.

    2015-08-01

    The spatially and temporally variable parameters and inputs to complex groundwater models typically result in long runtimes which hinder comprehensive calibration, sensitivity, and uncertainty analysis. Surrogate modeling aims to provide a simpler, and hence faster, model which emulates the specified output of a more complex model in function of its inputs and parameters. In this review paper, we summarize surrogate modeling techniques in three categories: data-driven, projection, and hierarchical-based approaches. Data-driven surrogates approximate a groundwater model through an empirical model that captures the input-output mapping of the original model. Projection-based models reduce the dimensionality of the parameter space by projecting the governing equations onto a basis of orthonormal vectors. In hierarchical or multifidelity methods the surrogate is created by simplifying the representation of the physical system, such as by ignoring certain processes, or reducing the numerical resolution. In discussing the application to groundwater modeling of these methods, we note several imbalances in the existing literature: a large body of work on data-driven approaches seemingly ignores major drawbacks to the methods; only a fraction of the literature focuses on creating surrogates to reproduce outputs of fully distributed groundwater models, despite these being ubiquitous in practice; and a number of the more advanced surrogate modeling methods are yet to be fully applied in a groundwater modeling context.

  3. Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery

    NASA Astrophysics Data System (ADS)

    Wu, Qiusheng; Lane, Charles R.

    2017-07-01

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling-spilling-merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow simulation and hydrologic connectivity analysis.

  4. Hierarchical Bayesian models to assess between- and within-batch variability of pathogen contamination in food.

    PubMed

    Commeau, Natalie; Cornu, Marie; Albert, Isabelle; Denis, Jean-Baptiste; Parent, Eric

    2012-03-01

    Assessing within-batch and between-batch variability is of major interest for risk assessors and risk managers in the context of microbiological contamination of food. For example, the ratio between the within-batch variability and the between-batch variability has a large impact on the results of a sampling plan. Here, we designed hierarchical Bayesian models to represent such variability. Compatible priors were built mathematically to obtain sound model comparisons. A numeric criterion is proposed to assess the contamination structure comparing the ability of the models to replicate grouped data at the batch level using a posterior predictive loss approach. Models were applied to two case studies: contamination by Listeria monocytogenes of pork breast used to produce diced bacon and contamination by the same microorganism on cold smoked salmon at the end of the process. In the first case study, a contamination structure clearly exists and is located at the batch level, that is, between batches variability is relatively strong, whereas in the second a structure also exists but is less marked. © 2012 Society for Risk Analysis.

  5. Assimilating multi-source uncertainties of a parsimonious conceptual hydrological model using hierarchical Bayesian modeling

    Treesearch

    Wei Wu; James Clark; James Vose

    2010-01-01

    Hierarchical Bayesian (HB) modeling allows for multiple sources of uncertainty by factoring complex relationships into conditional distributions that can be used to draw inference and make predictions. We applied an HB model to estimate the parameters and state variables of a parsimonious hydrological model – GR4J – by coherently assimilating the uncertainties from the...

  6. Longitudinal Analyses of a Hierarchical Model of Peer Social Competence for Preschool Children: Structural Fidelity and External Correlates

    ERIC Educational Resources Information Center

    Shin, Nana; Vaughn, Brian E.; Kim, Mina; Krzysik, Lisa; Bost, Kelly K.; McBride, Brent; Santos, Antonio J.; Peceguina, Ines; Coppola, Gabrielle

    2011-01-01

    Achieving consensus on the definition and measurement of social competence (SC) for preschool children has proven difficult in the developmental sciences. We tested a hierarchical model in which SC is assumed to be a second-order latent variable by using longitudinal data (N = 345). We also tested the degree to which peer SC at Time 1 predicted…

  7. A hierarchical pyramid method for managing large-scale high-resolution drainage networks extracted from DEM

    NASA Astrophysics Data System (ADS)

    Bai, Rui; Tiejian, Li; Huang, Yuefei; Jiaye, Li; Wang, Guangqian; Yin, Dongqin

    2015-12-01

    The increasing resolution of Digital Elevation Models (DEMs) and the development of drainage network extraction algorithms make it possible to develop high-resolution drainage networks for large river basins. These vector networks contain massive numbers of river reaches with associated geographical features, including topological connections and topographical parameters. These features create challenges for efficient map display and data management. Of particular interest are the requirements of data management for multi-scale hydrological simulations using multi-resolution river networks. In this paper, a hierarchical pyramid method is proposed, which generates coarsened vector drainage networks from the originals iteratively. The method is based on the Horton-Strahler's (H-S) order schema. At each coarsening step, the river reaches with the lowest H-S order are pruned, and their related sub-basins are merged. At the same time, the topological connections and topographical parameters of each coarsened drainage network are inherited from the former level using formulas that are presented in this study. The method was applied to the original drainage networks of a watershed in the Huangfuchuan River basin extracted from a 1-m-resolution airborne LiDAR DEM and applied to the full Yangtze River basin in China, which was extracted from a 30-m-resolution ASTER GDEM. In addition, a map-display and parameter-query web service was published for the Mississippi River basin, and its data were extracted from the 30-m-resolution ASTER GDEM. The results presented in this study indicate that the developed method can effectively manage and display massive amounts of drainage network data and can facilitate multi-scale hydrological simulations.

  8. Improving Water Quality Assessments through a HierarchicalBayesian Analysis of Variability

    EPA Science Inventory

    Water quality measurement error and variability, while well-documented in laboratory-scale studies, is rarely acknowledged or explicitly resolved in most water body assessments, including those conducted in compliance with the United States Environmental Protection Agency (USEPA)...

  9. Multilevel Model Prediction

    ERIC Educational Resources Information Center

    Frees, Edward W.; Kim, Jee-Seon

    2006-01-01

    Multilevel models are proven tools in social research for modeling complex, hierarchical systems. In multilevel modeling, statistical inference is based largely on quantification of random variables. This paper distinguishes among three types of random variables in multilevel modeling--model disturbances, random coefficients, and future response…

  10. Intelligent Hierarchical Modal Control of a Novel Manipulator with Slewing and Deployable Links

    NASA Astrophysics Data System (ADS)

    Modi, V. J.; Zhang, J.; de Silva, C. W.

    1. Introduction The Space Shuttle based Canada arm has vividly demonstrated its application in launching of satellites as well as retrieval of disabled spacecraft for repair. There have been proposals for free flying robotic systems with appropriate instrumentation to monitor health of spacecraft, identify problems and even perform corrective measures. Most of these applications involve multilink manipulators with revolute joints for which there is a vast body of literature [1]. On the other hand, manipulators with revolute as well as prismatic joints, permitting slewing as well as deployment/retrieval of links, have received relatively little attention [2]. Such variable geometry, snake-like manipulators have distinct advantages of reduced coupling effects leading to simpler equations of motion and inverse kinematics, less number of singularity conditions, and ease of obstacle avoidance [3]. 2. Hierarchical Structure The control system developed for the deployable manipulator has a three-level structure. This hierarchical structure takes the advantages of a crisp controller; specially, a modal controller, with those of a soft, knowledge-based, supervisory control . The overall structure can be separated and developed as three main layers. The first layer is the lowest layer of the control system. It deals with information coming from sensors attached to the plant ( manipulator). This type of information is characterized by a large amount of individual data points of high resolution, produced and collected at high frequency. The crisp controller that is used is a state feedback regulator with its feedback gain matrix determined using the eigenstructure assignment approach. The data processing for monitoring and evaluation of the system performance occurs in this intermediate or second layer. Here high-resolution, crisp data from sensors are filtered to afford representation of the current state of the manipulator. This servo-expert layer acts as an interface between the crisp controller, which regulates the servomotors at the bottom layer, and the knowledge-based controller at the top layer. The third uppermost layer of the control system has the knowledge-base and inference engine to make decisions, which achieve the overall control objective, particularly by improving the performance of low-level direct control. This layer can serve such functions as monitoring the performance of the overall system, assessment of the quality of operation, tuning of the low-level direct controller, and general supervisory control. In this layer, there is a high degree of information fuzziness and a relatively low control bandwidth. 3. Typical Simulation Results This hierarchical control system is used to suppress vibrations of the manipulator with flexible joint and links as well as supported by a flexible orbiting platform. The effectiveness of the control system is assessed through simulation studies by investigating how the vibrations caused by different initial disturbances are suppressed. The resutls showed that when regulated by the hieraicyical controller, the joint vibrations were eliminated much faster than that by the LQR. The hierauchical control system was found to reduce the amplitude of the vibraiton significantly in comparison with those by the LQR. [1]Nagata, T., Modi, V. J., and Matsuo, H., " An Approach to Dynamics and Control of Flexible Systems", Collection [2]Caron, M., " Planar Dynamics and Control of Space-Based Flexible Manipulators with Slewing and Deployable [3]Chu, M. S. T., " Design, Construction and Operation of a Variable Geometry Manipulator", M. A. Sc. Thesis, The

  11. Multilevel Hierarchical Modeling of Benthic Macroinvertebrate Responses to Urbanization in Nine Metropolitan Regions across the Conterminous United States

    USGS Publications Warehouse

    Kashuba, Roxolana; Cha, YoonKyung; Alameddine, Ibrahim; Lee, Boknam; Cuffney, Thomas F.

    2010-01-01

    Multilevel hierarchical modeling methodology has been developed for use in ecological data analysis. The effect of urbanization on stream macroinvertebrate communities was measured across a gradient of basins in each of nine metropolitan regions across the conterminous United States. The hierarchical nature of this dataset was harnessed in a multi-tiered model structure, predicting both invertebrate response at the basin scale and differences in invertebrate response at the region scale. Ordination site scores, total taxa richness, Ephemeroptera, Plecoptera, Trichoptera (EPT) taxa richness, and richness-weighted mean tolerance of organisms at a site were used to describe invertebrate responses. Percentage of urban land cover was used as a basin-level predictor variable. Regional mean precipitation, air temperature, and antecedent agriculture were used as region-level predictor variables. Multilevel hierarchical models were fit to both levels of data simultaneously, borrowing statistical strength from the complete dataset to reduce uncertainty in regional coefficient estimates. Additionally, whereas non-hierarchical regressions were only able to show differing relations between invertebrate responses and urban intensity separately for each region, the multilevel hierarchical regressions were able to explain and quantify those differences within a single model. In this way, this modeling approach directly establishes the importance of antecedent agricultural conditions in masking the response of invertebrates to urbanization in metropolitan regions such as Milwaukee-Green Bay, Wisconsin; Denver, Colorado; and Dallas-Fort Worth, Texas. Also, these models show that regions with high precipitation, such as Atlanta, Georgia; Birmingham, Alabama; and Portland, Oregon, start out with better regional background conditions of invertebrates prior to urbanization but experience faster negative rates of change with urbanization. Ultimately, this urbanization-invertebrate response example is used to detail the multilevel hierarchical construction methodology, showing how the result is a set of models that are both statistically more rigorous and ecologically more interpretable than simple linear regression models.

  12. A hierarchical Bayesian method for vibration-based time domain force reconstruction problems

    NASA Astrophysics Data System (ADS)

    Li, Qiaofeng; Lu, Qiuhai

    2018-05-01

    Traditional force reconstruction techniques require prior knowledge on the force nature to determine the regularization term. When such information is unavailable, the inappropriate term is easily chosen and the reconstruction result becomes unsatisfactory. In this paper, we propose a novel method to automatically determine the appropriate q as in ℓq regularization and reconstruct the force history. The method incorporates all to-be-determined variables such as the force history, precision parameters and q into a hierarchical Bayesian formulation. The posterior distributions of variables are evaluated by a Metropolis-within-Gibbs sampler. The point estimates of variables and their uncertainties are given. Simulations of a cantilever beam and a space truss under various loading conditions validate the proposed method in providing adaptive determination of q and better reconstruction performance than existing Bayesian methods.

  13. Modeling Heterogeneity in Relationships between Initial Status and Rates of Change: Latent Variable Regression in a Three-Level Hierarchical Model. CSE Report 647

    ERIC Educational Resources Information Center

    Choi, Kilchan; Seltzer, Michael

    2005-01-01

    In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a time period of substantive interest relate to differences in subsequent change. This report presents a fully Bayesian approach to estimating three-level hierarchical models in which latent variable…

  14. Bayesian Hierarchical Random Intercept Model Based on Three Parameter Gamma Distribution

    NASA Astrophysics Data System (ADS)

    Wirawati, Ika; Iriawan, Nur; Irhamah

    2017-06-01

    Hierarchical data structures are common throughout many areas of research. Beforehand, the existence of this type of data was less noticed in the analysis. The appropriate statistical analysis to handle this type of data is the hierarchical linear model (HLM). This article will focus only on random intercept model (RIM), as a subclass of HLM. This model assumes that the intercept of models in the lowest level are varied among those models, and their slopes are fixed. The differences of intercepts were suspected affected by some variables in the upper level. These intercepts, therefore, are regressed against those upper level variables as predictors. The purpose of this paper would demonstrate a proven work of the proposed two level RIM of the modeling on per capita household expenditure in Maluku Utara, which has five characteristics in the first level and three characteristics of districts/cities in the second level. The per capita household expenditure data in the first level were captured by the three parameters Gamma distribution. The model, therefore, would be more complex due to interaction of many parameters for representing the hierarchical structure and distribution pattern of the data. To simplify the estimation processes of parameters, the computational Bayesian method couple with Markov Chain Monte Carlo (MCMC) algorithm and its Gibbs Sampling are employed.

  15. INTEGRATING MESO-AND MICRO-SIMULATION MODELS TO EVALUATE TRAFFIC MANAGEMENT STRATEGIES, YEAR 2

    DOT National Transportation Integrated Search

    2017-07-04

    In the Year 1 Report, the Arizona State University (ASU) Project Team described the development of a hierarchical multi-resolution simulation platform to test proactive traffic management strategies. The scope was to integrate an easily available mic...

  16. Integrating meso- and micro-simulation models to evaluate traffic management strategies - year 1 : final report.

    DOT National Transportation Integrated Search

    2016-06-01

    In this project the researchers developed a hierarchical multi-resolution traffic simulation system for metropolitan areas, referred to as MetroSim. Categorically, the focus is on integrating two types of simulation: microscopic simulation in which i...

  17. Hierarchical Hopping through Localized States in a Random Potential

    NASA Astrophysics Data System (ADS)

    Rajan, Harihar; Srivastava, Vipin

    2003-03-01

    Generalisation of Mott's idea on (low - temperature, large-time), Variable-range-hopping is considered to include hopping at some what higher temperature(that do not kill localization). These transitions complement the variable- range-hopping in that they do not conserve energy and occur at relatively lower time scales. The hopper picks the next state in a hierarchical fashion in accordance with certain conditions. The results are found to tie up nicely with an interesting property pertaining to the energy dependence of localized states. Acknowlwdgements: One of us(VS) would like to thank Association of Commonwealth Universities and Leverhulme Trust for financial help and to Sir Sam Edwards for hospitality at Cavendish Laboratory,Cambridge CB3 0HE.

  18. Optimisation by hierarchical search

    NASA Astrophysics Data System (ADS)

    Zintchenko, Ilia; Hastings, Matthew; Troyer, Matthias

    2015-03-01

    Finding optimal values for a set of variables relative to a cost function gives rise to some of the hardest problems in physics, computer science and applied mathematics. Although often very simple in their formulation, these problems have a complex cost function landscape which prevents currently known algorithms from efficiently finding the global optimum. Countless techniques have been proposed to partially circumvent this problem, but an efficient method is yet to be found. We present a heuristic, general purpose approach to potentially improve the performance of conventional algorithms or special purpose hardware devices by optimising groups of variables in a hierarchical way. We apply this approach to problems in combinatorial optimisation, machine learning and other fields.

  19. Hierarchical analysis of cardiovascular risk factors in relation to the development of acute coronary syndromes, in different parts of Greece: the CARDIO2000 study.

    PubMed

    Panagiotakos, Demosthenes B; Pitsavos, Christos; Chrysohoou, Christine; Stefanadis, Christodoulos

    2008-01-01

    During 2000 to 2002, 700 men (59 +/- 10 years) and 148 women (65 +/- 9 years) patients with first event of an ACS were randomly selected from cardiology clinics of Greek regions. Afterwards, 1078 population-based, age-matched and sex-matched controls were randomly selected from the same hospitals. The frequency ratio between men and women in the case series of patients was about 4:1, in both south and north Greek areas. Hierarchical classification analysis showed that for north Greek areas family history of coronary heart disease, hypercholesterolemia, hypertension, diabetes (explained variability 35%), and less significantly, dietary habits, smoking, body mass index, and physical activity status (explained variability 4%) were associated with the development of ACS, whereas for south Greek areas hypercholesterolemia, family history of coronary heart disease, diabetes, smoking, hypertension, dietary habits, physical activity (explained variability 34%), and less significantly body mass index (explained variability <1%), were associated with the development of the disease.

  20. Emergence of the interplay between hierarchy and contact splitting in biological adhesion highlighted through a hierarchical shear lag model.

    PubMed

    Brely, Lucas; Bosia, Federico; Pugno, Nicola M

    2018-06-20

    Contact unit size reduction is a widely studied mechanism as a means to improve adhesion in natural fibrillar systems, such as those observed in beetles or geckos. However, these animals also display complex structural features in the way the contact is subdivided in a hierarchical manner. Here, we study the influence of hierarchical fibrillar architectures on the load distribution over the contact elements of the adhesive system, and the corresponding delamination behaviour. We present an analytical model to derive the load distribution in a fibrillar system loaded in shear, including hierarchical splitting of contacts, i.e. a "hierarchical shear-lag" model that generalizes the well-known shear-lag model used in mechanics. The influence on the detachment process is investigated introducing a numerical procedure that allows the derivation of the maximum delamination force as a function of the considered geometry, including statistical variability of local adhesive energy. Our study suggests that contact splitting generates improved adhesion only in the ideal case of extremely compliant contacts. In real cases, to produce efficient adhesive performance, contact splitting needs to be coupled with hierarchical architectures to counterbalance high load concentrations resulting from contact unit size reduction, generating multiple delamination fronts and helping to avoid detrimental non-uniform load distributions. We show that these results can be summarized in a generalized adhesion scaling scheme for hierarchical structures, proving the beneficial effect of multiple hierarchical levels. The model can thus be used to predict the adhesive performance of hierarchical adhesive structures, as well as the mechanical behaviour of composite materials with hierarchical reinforcements.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, J.; Derrida, B.

    The problem of directed polymers on disordered hierarchical and hypercubic lattices is considered. For the hierarchical lattices the problem can be reduced to the study of the stable laws for combining random variables in a nonlinear way. The authors present the results of numerical simulations of two hierarchical lattices, finding evidence of a phase transition in one case. For a limiting case they extend the perturbation theory developed by Derrida and Griffiths to nonzero temperature and to higher order and use this approach to calculate thermal and geometrical properties (overlaps) of the model. In this limit they obtain an interpolationmore » formula, allowing one to obtain the noninteger moments of the partition function from the integer moments. They obtain bounds for the transition temperature for hierarchical and hypercubic lattices, and some similarities between the problem on the two different types of lattice are discussed.« less

  2. Comparing the performance of flat and hierarchical Habitat/Land-Cover classification models in a NATURA 2000 site

    NASA Astrophysics Data System (ADS)

    Gavish, Yoni; O'Connell, Jerome; Marsh, Charles J.; Tarantino, Cristina; Blonda, Palma; Tomaselli, Valeria; Kunin, William E.

    2018-02-01

    The increasing need for high quality Habitat/Land-Cover (H/LC) maps has triggered considerable research into novel machine-learning based classification models. In many cases, H/LC classes follow pre-defined hierarchical classification schemes (e.g., CORINE), in which fine H/LC categories are thematically nested within more general categories. However, none of the existing machine-learning algorithms account for this pre-defined hierarchical structure. Here we introduce a novel Random Forest (RF) based application of hierarchical classification, which fits a separate local classification model in every branching point of the thematic tree, and then integrates all the different local models to a single global prediction. We applied the hierarchal RF approach in a NATURA 2000 site in Italy, using two land-cover (CORINE, FAO-LCCS) and one habitat classification scheme (EUNIS) that differ from one another in the shape of the class hierarchy. For all 3 classification schemes, both the hierarchical model and a flat model alternative provided accurate predictions, with kappa values mostly above 0.9 (despite using only 2.2-3.2% of the study area as training cells). The flat approach slightly outperformed the hierarchical models when the hierarchy was relatively simple, while the hierarchical model worked better under more complex thematic hierarchies. Most misclassifications came from habitat pairs that are thematically distant yet spectrally similar. In 2 out of 3 classification schemes, the additional constraints of the hierarchical model resulted with fewer such serious misclassifications relative to the flat model. The hierarchical model also provided valuable information on variable importance which can shed light into "black-box" based machine learning algorithms like RF. We suggest various ways by which hierarchical classification models can increase the accuracy and interpretability of H/LC classification maps.

  3. A comparative study of job satisfaction among nurses, psychologists/psychotherapists and social workers working in Quebec mental health teams.

    PubMed

    Fleury, Marie-Josée; Grenier, Guy; Bamvita, Jean-Marie

    2017-01-01

    This study identified multiple socio-professional and team effectiveness variables, based on the Input-Mediator-Output-Input (IMOI) model, and tested their associations with job satisfaction for three categories of mental health professionals (nurses, psychologists/psychotherapists, and social workers). Job satisfaction was assessed with the Job Satisfaction Survey. Independent variables were classified into four categories: 1) Socio-professional Characteristics; 2) Team Attributes; 3) Team Processes; and 4) Team Emergent States. Variables were entered successively, by category, into a hierarchical regression model. Team Processes contributed the greatest number of variables to job satisfaction among all professional groups, including team support which was the only significant variable common to all three types of professionals. Greater involvement in the decision-making process, and lower levels of team conflict (Team Processes) were associated with job satisfaction among nurses and social workers. Lower seniority on team (Socio-professional Characteristics), and team collaboration (Team Processes) were associated with job satisfaction among nurses, as was belief in the advantages of interdisciplinary collaboration (Team Emergent States) among psychologists. Knowledge sharing (Team Processes) and affective commitment to the team (Team Emergent States) were associated with job satisfaction among social workers. Results suggest the need for mental health decision-makers and team managers to offer adequate support to mental health professionals, to involve nurses and social workers in the decision-making process, and implement procedures and mechanisms favourable to the prevention or resolution of team conflict with a view toward increasing job satisfaction among mental health professionals.

  4. Vessel Classification in Cosmo-Skymed SAR Data Using Hierarchical Feature Selection

    NASA Astrophysics Data System (ADS)

    Makedonas, A.; Theoharatos, C.; Tsagaris, V.; Anastasopoulos, V.; Costicoglou, S.

    2015-04-01

    SAR based ship detection and classification are important elements of maritime monitoring applications. Recently, high-resolution SAR data have opened new possibilities to researchers for achieving improved classification results. In this work, a hierarchical vessel classification procedure is presented based on a robust feature extraction and selection scheme that utilizes scale, shape and texture features in a hierarchical way. Initially, different types of feature extraction algorithms are implemented in order to form the utilized feature pool, able to represent the structure, material, orientation and other vessel type characteristics. A two-stage hierarchical feature selection algorithm is utilized next in order to be able to discriminate effectively civilian vessels into three distinct types, in COSMO-SkyMed SAR images: cargos, small ships and tankers. In our analysis, scale and shape features are utilized in order to discriminate smaller types of vessels present in the available SAR data, or shape specific vessels. Then, the most informative texture and intensity features are incorporated in order to be able to better distinguish the civilian types with high accuracy. A feature selection procedure that utilizes heuristic measures based on features' statistical characteristics, followed by an exhaustive research with feature sets formed by the most qualified features is carried out, in order to discriminate the most appropriate combination of features for the final classification. In our analysis, five COSMO-SkyMed SAR data with 2.2m x 2.2m resolution were used to analyse the detailed characteristics of these types of ships. A total of 111 ships with available AIS data were used in the classification process. The experimental results show that this method has good performance in ship classification, with an overall accuracy reaching 83%. Further investigation of additional features and proper feature selection is currently in progress.

  5. Multiscale solute transport upscaling for a three-dimensional hierarchical porous medium

    NASA Astrophysics Data System (ADS)

    Zhang, Mingkan; Zhang, Ye

    2015-03-01

    A laboratory-generated hierarchical, fully heterogeneous aquifer model (FHM) provides a reference for developing and testing an upscaling approach that integrates large-scale connectivity mapping with flow and transport modeling. Based on the FHM, three hydrostratigraphic models (HSMs) that capture lithological (static) connectivity at different resolutions are created, each corresponding to a sedimentary hierarchy. Under increasing system lnK variances (0.1, 1.0, 4.5), flow upscaling is first conducted to calculate equivalent hydraulic conductivity for individual connectivity (or unit) of the HSMs. Given the computed flow fields, an instantaneous, conservative tracer test is simulated by all models. For the HSMs, two upscaling formulations are tested based on the advection-dispersion equation (ADE), implementing space versus time-dependent macrodispersivity. Comparing flow and transport predictions of the HSMs against those of the reference model, HSMs capturing connectivity at increasing resolutions are more accurate, although upscaling errors increase with system variance. Results suggest: (1) by explicitly modeling connectivity, an enhanced degree of freedom in representing dispersion can improve the ADE-based upscaled models by capturing non-Fickian transport of the FHM; (2) when connectivity is sufficiently resolved, the type of data conditioning used to model transport becomes less critical. Data conditioning, however, is influenced by the prediction goal; (3) when aquifer is weakly-to-moderately heterogeneous, the upscaled models adequately capture the transport simulation of the FHM, despite the existence of hierarchical heterogeneity at smaller scales. When aquifer is strongly heterogeneous, the upscaled models become less accurate because lithological connectivity cannot adequately capture preferential flows; (4) three-dimensional transport connectivities of the hierarchical aquifer differ quantitatively from those analyzed for two-dimensional systems. This article was corrected on 7 MAY 2015. See the end of the full text for details.

  6. Localization of skeletal and aortic landmarks in trauma CT data based on the discriminative generalized Hough transform

    NASA Astrophysics Data System (ADS)

    Lorenz, Cristian; Hansis, Eberhard; Weese, Jürgen; Carolus, Heike

    2016-03-01

    Computed tomography is the modality of choice for poly-trauma patients to assess rapidly skeletal and vascular integrity of the whole body. Often several scans with and without contrast medium or with different spatial resolution are acquired. Efficient reading of the resulting extensive set of image data is vital, since it is often time critical to initiate the necessary therapeutic actions. A set of automatically found landmarks can facilitate navigation in the data and enables anatomy oriented viewing. Following this intention, we selected a comprehensive set of 17 skeletal and 5 aortic landmarks. Landmark localization models for the Discriminative Generalized Hough Transform (DGHT) were automatically created based on a set of about 20 training images with ground truth landmark positions. A hierarchical setup with 4 resolution levels was used. Localization results were evaluated on a separate test set, consisting of 50 to 128 images (depending on the landmark) with available ground truth landmark locations. The image data covers a large amount of variability caused by differences of field-of-view, resolution, contrast agent, patient gender and pathologies. The median localization error for the set of aortic landmarks was 14.4 mm and for the set of skeleton landmarks 5.5 mm. Median localization errors for individual landmarks ranged from 3.0 mm to 31.0 mm. The runtime performance for the whole landmark set is about 5s on a typical PC.

  7. Proposed Standard For Variable Format Picture Processing And A Codec Approach To Match Diverse Imaging Devices

    NASA Astrophysics Data System (ADS)

    Wendler, Th.; Meyer-Ebrecht, D.

    1982-01-01

    Picture archiving and communication systems, especially those for medical applications, will offer the potential to integrate the various image sources of different nature. A major problem, however, is the incompatibility of the different matrix sizes and data formats. This may be overcome by a novel hierarchical coding process, which could lead to a unified picture format standard. A picture coding scheme is described, which decomposites a given (2n)2 picture matrix into a basic (2m)2 coarse information matrix (representing lower spatial frequencies) and a set of n-m detail matrices, containing information of increasing spatial resolution. Thus, the picture is described by an ordered set of data blocks rather than by a full resolution matrix of pixels. The blocks of data are transferred and stored using data formats, which have to be standardized throughout the system. Picture sources, which produce pictures of different resolution, will provide the coarse-matrix datablock and additionally only those detail matrices that correspond to their required resolution. Correspondingly, only those detail-matrix blocks need to be retrieved from the picture base, that are actually required for softcopy or hardcopy output. Thus, picture sources and retrieval terminals of diverse nature and retrieval processes for diverse purposes are easily made compatible. Furthermore this approach will yield an economic use of storage space and transmission capacity: In contrast to fixed formats, redundand data blocks are always skipped. The user will get a coarse representation even of a high-resolution picture almost instantaneously with gradually added details, and may abort transmission at any desired detail level. The coding scheme applies the S-transform, which is a simple add/substract algorithm basically derived from the Hadamard Transform. Thus, an additional data compression can easily be achieved especially for high-resolution pictures by applying appropriate non-linear and/or adaptive quantizing.

  8. Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types.

    PubMed

    van Unen, Vincent; Höllt, Thomas; Pezzotti, Nicola; Li, Na; Reinders, Marcel J T; Eisemann, Elmar; Koning, Frits; Vilanova, Anna; Lelieveldt, Boudewijn P F

    2017-11-23

    Mass cytometry allows high-resolution dissection of the cellular composition of the immune system. However, the high-dimensionality, large size, and non-linear structure of the data poses considerable challenges for the data analysis. In particular, dimensionality reduction-based techniques like t-SNE offer single-cell resolution but are limited in the number of cells that can be analyzed. Here we introduce Hierarchical Stochastic Neighbor Embedding (HSNE) for the analysis of mass cytometry data sets. HSNE constructs a hierarchy of non-linear similarities that can be interactively explored with a stepwise increase in detail up to the single-cell level. We apply HSNE to a study on gastrointestinal disorders and three other available mass cytometry data sets. We find that HSNE efficiently replicates previous observations and identifies rare cell populations that were previously missed due to downsampling. Thus, HSNE removes the scalability limit of conventional t-SNE analysis, a feature that makes it highly suitable for the analysis of massive high-dimensional data sets.

  9. Hierarchical Context Modeling for Video Event Recognition.

    PubMed

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  10. Prediction of biological integrity based on environmental similarity--revealing the scale-dependent link between study area and top environmental predictors.

    PubMed

    Bedoya, David; Manolakos, Elias S; Novotny, Vladimir

    2011-03-01

    Indices of Biological integrity (IBI) are considered valid indicators of the overall health of a water body because the biological community is an endpoint within natural systems. However, prediction of biological integrity using information from multi-parameter environmental observations is a challenging problem due to the hierarchical organization of the natural environment, the existence of nonlinear inter-dependencies among variables as well as natural stochasticity and measurement noise. We present a method for predicting the Fish Index of Biological Integrity (IBI) using multiple environmental observations at the state-scale in Ohio. Instream (chemical and physical quality) and offstream parameters (regional and local upstream land uses, stream fragmentation, and point source density and intensity) are used for this purpose. The IBI predictions are obtained using the environmental site-similarity concept and following a simple to implement leave-one-out cross validation approach. An IBI prediction for a sampling site is calculated by averaging the observed IBI scores of observations clustered in the most similar branch of a dendrogram--a hierarchical clustering tree of environmental observations--built using the rest of the observations. The standardized Euclidean distance is used to assess dissimilarity between observations. The constructed predictive model was able to explain 61% of the IBI variability statewide. Stream fragmentation and regional land use explained 60% of the variability; the remaining 1% was explained by instream habitat quality. Metrics related to local land use, water quality, and point source density and intensity did not improve the predictive model at the state-scale. The impact of local environmental conditions was evaluated by comparing local characteristics between well- and mispredicted sites. Significant differences in local land use patterns and upstream fragmentation density explained some of the model's over-predictions. Local land use conditions explained some of the model's IBI under-predictions at the state-scale since none of the variables within this group were included in the best final predictive model. Under-predicted sites also had higher levels of downstream fragmentation. The proposed variables ranking and predictive modeling methodology is very well suited for the analysis of hierarchical environments, such as natural fresh water systems, with many cross-correlated environmental variables. It is computationally efficient, can be fully automated, does not make any pre-conceived assumptions on the variables interdependency structure (such as linearity), and it is able to rank variables in a database and generate IBI predictions using only non-parametric easy to implement hierarchical clustering. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Modeling Heterogeneity in Relationships between Initial Status and Rates of Change: Treating Latent Variable Regression Coefficients as Random Coefficients in a Three-Level Hierarchical Model

    ERIC Educational Resources Information Center

    Choi, Kilchan; Seltzer, Michael

    2010-01-01

    In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a period of substantive interest relate to differences in subsequent change. In this article, the authors present a fully Bayesian approach to estimating three-level Hierarchical Models in which latent…

  12. Variability of lotic macroinvertebrate assemblages and stream habitat characteristics across hierarchical landscape classifications.

    PubMed

    Mykrä, Heikki; Heino, Jani; Muotka, Timo

    2004-09-01

    Streams are naturally hierarchical systems, and their biota are affected by factors effective at regional to local scales. However, there have been only a few attempts to quantify variation in ecological attributes across multiple spatial scales. We examined the variation in several macroinvertebrate metrics and environmental variables at three hierarchical scales (ecoregions, drainage systems, streams) in boreal headwater streams. In nested analyses of variance, significant spatial variability was observed for most of the macroinvertebrate metrics and environmental variables examined. For most metrics, ecoregions explained more variation than did drainage systems. There was, however, much variation attributable to residuals, suggesting high among-stream variation in macroinvertebrate assemblage characteristics. Nonmetric multidimensional scaling (NMDS) and multiresponse permutation procedure (MRPP) showed that assemblage composition differed significantly among both drainage systems and ecoregions. The associated R-statistics were, however, very low, indicating wide variation among sites within the defined landscape classifications. Regional delineations explained most of the variation in stream water chemistry, ecoregions being clearly more influential than drainage systems. For physical habitat characteristics, by contrast, the among-stream component was the major source of variation. Distinct differences attributable to stream size were observed for several metrics, especially total number of taxa and abundance of algae-scraping invertebrates. Although ecoregions clearly account for a considerable amount of variation in macroinvertebrate assemblage characteristics, we suggest that a three-tiered classification system (stratification through ecoregion and habitat type, followed by assemblage prediction within these ecologically meaningful units) will be needed for effective bioassessment of boreal running waters.

  13. Hierarchically Ordered Nanopatterns for Spatial Control of Biomolecules

    PubMed Central

    2015-01-01

    The development and study of a benchtop, high-throughput, and inexpensive fabrication strategy to obtain hierarchical patterns of biomolecules with sub-50 nm resolution is presented. A diblock copolymer of polystyrene-b-poly(ethylene oxide), PS-b-PEO, is synthesized with biotin capping the PEO block and 4-bromostyrene copolymerized within the polystyrene block at 5 wt %. These two handles allow thin films of the block copolymer to be postfunctionalized with biotinylated biomolecules of interest and to obtain micropatterns of nanoscale-ordered films via photolithography. The design of this single polymer further allows access to two distinct superficial nanopatterns (lines and dots), where the PEO cylinders are oriented parallel or perpendicular to the substrate. Moreover, we present a strategy to obtain hierarchical mixed morphologies: a thin-film coating of cylinders both parallel and perpendicular to the substrate can be obtained by tuning the solvent annealing and irradiation conditions. PMID:25363506

  14. The Antibacterial Polyamide 6-ZnO Hierarchical Nanofibers Fabricated by Atomic Layer Deposition and Hydrothermal Growth

    NASA Astrophysics Data System (ADS)

    Wang, Zhengduo; Zhang, Li; Liu, Zhongwei; Sang, Lijun; Yang, Lizhen; Chen, Qiang

    2017-06-01

    In this paper, we report the combination of atomic layer deposition (ALD) with hydrothermal techniques to deposit ZnO on electrospun polyamide 6 (PA 6) nanofiber (NF) surface in the purpose of antibacterial application. The micro- and nanostructures of the hierarchical fibers are characterized by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and scanning transmission electron microscopy (STEM). We find that NFs can grow into "water lily"- and "caterpillar"-like shapes, which depend on the number of ALD cycles and the hydrothermal reaction period. It is believed that the thickness of ZnO seed layer by ALD process and the period in hydrothermal reaction have the same importance in crystalline growth and hierarchical fiber formation. The tests of antibacterial activity demonstrate that the ZnO/PA 6 core-shell composite fabricated by the combination of ALD with hydrothermal are markedly efficient in suppressing bacteria survivorship.

  15. Hierarchically Ordered Nanopatterns for Spatial Control of Biomolecules

    DOE PAGES

    Tran, Helen; Ronaldson, Kacey; Bailey, Nevette A.; ...

    2014-11-04

    We present the development and study of a benchtop, high-throughput, and inexpensive fabrication strategy to obtain hierarchical patterns of biomolecules with sub-50 nm resolution. A diblock copolymer of polystyrene-b-poly(ethylene oxide), PS-b-PEO, is synthesized with biotin capping the PEO block and 4-bromostyrene copolymerized within the polystyrene block at 5 wt %. These two handles allow thin films of the block copolymer to be postfunctionalized with biotinylated biomolecules of interest and to obtain micropatterns of nanoscale-ordered films via photolithography. The design of this single polymer further allows access to two distinct superficial nanopatterns (lines and dots), where the PEO cylinders are orientedmore » parallel or perpendicular to the substrate. Moreover, we present a strategy to obtain hierarchical mixed morphologies: a thin-film coating of cylinders both parallel and perpendicular to the substrate can be obtained by tuning the solvent annealing and irradiation conditions.« less

  16. The Influence of Cognitive Reasoning Level, Cognitive Restructuring Ability, Disembedding Ability, Working Memory Capacity, and Prior Knowledge On Students' Performance On Balancing Equations by Inspection.

    ERIC Educational Resources Information Center

    Staver, John R.; Jacks, Tom

    1988-01-01

    Investigates the influence of five cognitive variables on high school students' performance on balancing chemical equations by inspection. Reports that reasoning, restructuring, and disembedding variables could be a single variable, and that working memory capacity does not influence overall performance. Results of hierarchical regression analysis…

  17. Intraclass Correlation Coefficients in Hierarchical Design Studies with Discrete Response Variables: A Note on a Direct Interval Estimation Procedure

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2015-01-01

    A latent variable modeling procedure that can be used to evaluate intraclass correlation coefficients in two-level settings with discrete response variables is discussed. The approach is readily applied when the purpose is to furnish confidence intervals at prespecified confidence levels for these coefficients in setups with binary or ordinal…

  18. Emergence of psychotic content in psychotherapy: An exploratory qualitative analysis of content, process, and therapist variables in a single case study.

    PubMed

    Leonhardt, Bethany L; Kukla, Marina; Belanger, Elizabeth; Chaudoin-Patzoldt, Kelly A; Buck, Kelly D; Minor, Kyle S; Vohs, Jenifer L; Hamm, Jay A; Lysaker, Paul H

    2018-03-01

    Emerging integrative metacognitive therapies for schizophrenia seek to promote subjective aspects of recovery. Beyond symptom remission, they are concerned with shared meaning-making and intersubjective processes. It is unclear, however, how such therapies should understand and respond to psychotic content that threatens meaning-making in therapeutic contexts. Accordingly, we sought to understand what factors precede and potentially trigger psychotic content within psychotherapy and what aids in resolution and return to meaning-making. Forty-eight transcripts from a single psychotherapy case were analyzed with thematic analysis. Passages of delusional or disorganized content were identified and themes present prior to the emergence and resolution of such material were identified and coded. Themes that preceded the emergence of psychotic content varied across early, middle, and late phases of therapy. Material related to the patient's experience of inadequacy and potential vulnerability, therapist setting boundaries within the therapeutic relationship and making challenges appeared to trigger psychotic content, especially early in treatment. Psychotic content may emerge in session following identifiable antecedents which change over phases of therapy. Attending to psychotic content by assuming a non-hierarchical stance and not dismissing psychotic content may aid in maintaining intersubjectivity and support patient's movements toward recovery in integrative metacognitive therapies.

  19. Automated, per pixel Cloud Detection from High-Resolution VNIR Data

    NASA Technical Reports Server (NTRS)

    Varlyguin, Dmitry L.

    2007-01-01

    CASA is a fully automated software program for the per-pixel detection of clouds and cloud shadows from medium- (e.g., Landsat, SPOT, AWiFS) and high- (e.g., IKONOS, QuickBird, OrbView) resolution imagery without the use of thermal data. CASA is an object-based feature extraction program which utilizes a complex combination of spectral, spatial, and contextual information available in the imagery and the hierarchical self-learning logic for accurate detection of clouds and their shadows.

  20. Global Land Survey Impervious Mapping Project Web Site

    NASA Technical Reports Server (NTRS)

    DeColstoun, Eric Brown; Phillips, Jacqueline

    2014-01-01

    The Global Land Survey Impervious Mapping Project (GLS-IMP) aims to produce the first global maps of impervious cover at the 30m spatial resolution of Landsat. The project uses Global Land Survey (GLS) Landsat data as its base but incorporates training data generated from very high resolution commercial satellite data and using a Hierarchical segmentation program called Hseg. The web site contains general project information, a high level description of the science, examples of input and output data, as well as links to other relevant projects.

  1. Developmental Screening Referrals: Child and Family Factors that Predict Referral Completion

    ERIC Educational Resources Information Center

    Jennings, Danielle J.; Hanline, Mary Frances

    2013-01-01

    This study researched the predictive impact of developmental screening results and the effects of child and family characteristics on completion of referrals given for evaluation. Logistical and hierarchical logistic regression analyses were used to determine the significance of 10 independent variables on the predictor variable. The number of…

  2. Centering Effects in HLM Level-1 Predictor Variables.

    ERIC Educational Resources Information Center

    Schumacker, Randall E.; Bembry, Karen

    Research has suggested that important research questions can be addressed with meaningful interpretations using hierarchical linear modeling (HLM). The proper interpretation of results, however, is invariably linked to the choice of centering for the Level-1 predictor variables that produce the outcome measure for the Level-2 regression analysis.…

  3. Hierarchical multiple regression modelling on predictors of behavior and sexual practices at Takoradi Polytechnic, Ghana.

    PubMed

    Turkson, Anthony Joe; Otchey, James Eric

    2015-01-14

    Various psychosocial studies on health related lifestyles lay emphasis on the fact that the perception one has of himself as being at risk of HIV/AIDS infection was a necessary condition for preventive behaviors to be adopted. Hierarchical Multiple Regression models was used to examine the relationship between eight independent variables and one dependent variable to isolate predictors which have significant influence on behavior and sexual practices. A Cross-sectional design was used for the study. Structured close-ended interviewer-administered questionnaire was used to collect primary data. Multistage stratified technique was used to sample views from 380 students from Takoradi Polytechnic, Ghana. A Hierarchical multiple regression model was used to ascertain the significance of certain predictors of sexual behavior and practices. The variables that were extracted from the multiple regression were; for the constant; Beta=14.202, t=2.279, p=0.023, variable is significant; for the marital status; Beta=0.092, t=1.996, p<0.05, variable is significant; for the knowledge on AIDs; Beta=0.090, t=1.996, p<0.05, variable is significant; for the attitude towards HIV/AIDs; =0.486, t=10.575, p<0.001, variable is highly significant. Thus, the best fitting model for predicting behavior and sexual practices was a linear combination of the constant, one's marital status, knowledge on HIV/AIDs and Attitude towards HIV/AIDs., Y(Behavior and sexual practies)= Beta0+Beta1(Marital status)+Beta2(Knowledge on HIV/AIDs issues)+Beta3(Attitude towards HIV/AIDs issues) Beta0, Beta1, Beta2 and Beta3 are respectively 14.201, 2.038, 0.148 and 0.486; the higher the better. Attitude and behavior change education on HIV/AIDs should be intensified in the institution so that students could adopt better lifestyles.

  4. Shared neural coding for social hierarchy and reward value in primate amygdala.

    PubMed

    Munuera, Jérôme; Rigotti, Mattia; Salzman, C Daniel

    2018-03-01

    The social brain hypothesis posits that dedicated neural systems process social information. In support of this, neurophysiological data have shown that some brain regions are specialized for representing faces. It remains unknown, however, whether distinct anatomical substrates also represent more complex social variables, such as the hierarchical rank of individuals within a social group. Here we show that the primate amygdala encodes the hierarchical rank of individuals in the same neuronal ensembles that encode the rewards associated with nonsocial stimuli. By contrast, orbitofrontal and anterior cingulate cortices lack strong representations of hierarchical rank while still representing reward values. These results challenge the conventional view that dedicated neural systems process social information. Instead, information about hierarchical rank-which contributes to the assessment of the social value of individuals within a group-is linked in the amygdala to representations of rewards associated with nonsocial stimuli.

  5. GEOS Atmospheric Model: Challenges at Exascale

    NASA Technical Reports Server (NTRS)

    Putman, William M.; Suarez, Max J.

    2017-01-01

    The Goddard Earth Observing System (GEOS) model at NASA's Global Modeling and Assimilation Office (GMAO) is used to simulate the multi-scale variability of the Earth's weather and climate, and is used primarily to assimilate conventional and satellite-based observations for weather forecasting and reanalysis. In addition, assimilations coupled to an ocean model are used for longer-term forecasting (e.g., El Nino) on seasonal to interannual times-scales. The GMAO's research activities, including system development, focus on numerous time and space scales, as detailed on the GMAO website, where they are tabbed under five major themes: Weather Analysis and Prediction; Seasonal-Decadal Analysis and Prediction; Reanalysis; Global Mesoscale Modeling, and Observing System Science. A brief description of the GEOS systems can also be found at the GMAO website. GEOS executes as a collection of earth system components connected through the Earth System Modeling Framework (ESMF). The ESMF layer is supplemented with the MAPL (Modeling, Analysis, and Prediction Layer) software toolkit developed at the GMAO, which facilitates the organization of the computational components into a hierarchical architecture. GEOS systems run in parallel using a horizontal decomposition of the Earth's sphere into processing elements (PEs). Communication between PEs is primarily through a message passing framework, using the message passing interface (MPI), and through explicit use of node-level shared memory access via the SHMEM (Symmetric Hierarchical Memory access) protocol. Production GEOS weather prediction systems currently run at 12.5-kilometer horizontal resolution with 72 vertical levels decomposed into PEs associated with 5,400 MPI processes. Research GEOS systems run at resolutions as fine as 1.5 kilometers globally using as many as 30,000 MPI processes. Looking forward, these systems can be expected to see a 2 times increase in horizontal resolution every two to three years, as well as less frequent increases in vertical resolution. Coupling these resolution changes with increases in complexity, the computational demands on the GEOS production and research systems should easily increase 100-fold over the next five years. Currently, our 12.5 kilometer weather prediction system narrowly meets the time-to-solution demands of a near-real-time production system. Work is now in progress to take advantage of a hybrid MPI-OpenMP parallelism strategy, in an attempt to achieve a modest two-fold speed-up to accommodate an immediate demand due to increased scientific complexity and an increase in vertical resolution. Pursuing demands that require a 10- to 100-fold increases or more, however, would require a detailed exploration of the computational profile of GEOS, as well as targeted solutions using more advanced high-performance computing technologies. Increased computing demands of 100-fold will be required within five years based on anticipated changes in the GEOS production systems, increases of 1000-fold can be anticipated over the next ten years.

  6. Getting even or moving on? Power, procedural justice, and types of offense as predictors of revenge, forgiveness, reconciliation, and avoidance in organizations.

    PubMed

    Aquino, Karl; Tripp, Thomas M; Bies, Robert J

    2006-05-01

    A field study and an experimental study examined relationships among organizational variables and various responses of victims to perceived wrongdoing. Both studies showed that procedural justice climate moderates the effect of organizational variables on the victim's revenge, forgiveness, reconciliation, or avoidance behaviors. In Study 1, a field study, absolute hierarchical status enhanced forgiveness and reconciliation, but only when perceptions of procedural justice climate were high; relative hierarchical status increased revenge, but only when perceptions of procedural justice climate were low. In Study 2, a laboratory experiment, victims were less likely to endorse vengeance or avoidance depending on the type of wrongdoing, but only when perceptions of procedural justice climate were high.

  7. LIMO EEG: a toolbox for hierarchical LInear MOdeling of ElectroEncephaloGraphic data.

    PubMed

    Pernet, Cyril R; Chauveau, Nicolas; Gaspar, Carl; Rousselet, Guillaume A

    2011-01-01

    Magnetic- and electric-evoked brain responses have traditionally been analyzed by comparing the peaks or mean amplitudes of signals from selected channels and averaged across trials. More recently, tools have been developed to investigate single trial response variability (e.g., EEGLAB) and to test differences between averaged evoked responses over the entire scalp and time dimensions (e.g., SPM, Fieldtrip). LIMO EEG is a Matlab toolbox (EEGLAB compatible) to analyse evoked responses over all space and time dimensions, while accounting for single trial variability using a simple hierarchical linear modelling of the data. In addition, LIMO EEG provides robust parametric tests, therefore providing a new and complementary tool in the analysis of neural evoked responses.

  8. LIMO EEG: A Toolbox for Hierarchical LInear MOdeling of ElectroEncephaloGraphic Data

    PubMed Central

    Pernet, Cyril R.; Chauveau, Nicolas; Gaspar, Carl; Rousselet, Guillaume A.

    2011-01-01

    Magnetic- and electric-evoked brain responses have traditionally been analyzed by comparing the peaks or mean amplitudes of signals from selected channels and averaged across trials. More recently, tools have been developed to investigate single trial response variability (e.g., EEGLAB) and to test differences between averaged evoked responses over the entire scalp and time dimensions (e.g., SPM, Fieldtrip). LIMO EEG is a Matlab toolbox (EEGLAB compatible) to analyse evoked responses over all space and time dimensions, while accounting for single trial variability using a simple hierarchical linear modelling of the data. In addition, LIMO EEG provides robust parametric tests, therefore providing a new and complementary tool in the analysis of neural evoked responses. PMID:21403915

  9. Hierarchical coarse-graining model for photosystem II including electron and excitation-energy transfer processes.

    PubMed

    Matsuoka, Takeshi; Tanaka, Shigenori; Ebina, Kuniyoshi

    2014-03-01

    We propose a hierarchical reduction scheme to cope with coupled rate equations that describe the dynamics of multi-time-scale photosynthetic reactions. To numerically solve nonlinear dynamical equations containing a wide temporal range of rate constants, we first study a prototypical three-variable model. Using a separation of the time scale of rate constants combined with identified slow variables as (quasi-)conserved quantities in the fast process, we achieve a coarse-graining of the dynamical equations reduced to those at a slower time scale. By iteratively employing this reduction method, the coarse-graining of broadly multi-scale dynamical equations can be performed in a hierarchical manner. We then apply this scheme to the reaction dynamics analysis of a simplified model for an illuminated photosystem II, which involves many processes of electron and excitation-energy transfers with a wide range of rate constants. We thus confirm a good agreement between the coarse-grained and fully (finely) integrated results for the population dynamics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Improved Model Fitting for the Empirical Green's Function Approach Using Hierarchical Models

    NASA Astrophysics Data System (ADS)

    Van Houtte, Chris; Denolle, Marine

    2018-04-01

    Stress drops calculated from source spectral studies currently show larger variability than what is implied by empirical ground motion models. One of the potential origins of the inflated variability is the simplified model-fitting techniques used in most source spectral studies. This study examines a variety of model-fitting methods and shows that the choice of method can explain some of the discrepancy. The preferred method is Bayesian hierarchical modeling, which can reduce bias, better quantify uncertainties, and allow additional effects to be resolved. Two case study earthquakes are examined, the 2016 MW7.1 Kumamoto, Japan earthquake and a MW5.3 aftershock of the 2016 MW7.8 Kaikōura earthquake. By using hierarchical models, the variation of the corner frequency, fc, and the falloff rate, n, across the focal sphere can be retrieved without overfitting the data. Other methods commonly used to calculate corner frequencies may give substantial biases. In particular, if fc was calculated for the Kumamoto earthquake using an ω-square model, the obtained fc could be twice as large as a realistic value.

  11. Hierarchical organization in the temporal structure of infant-direct speech and song.

    PubMed

    Falk, Simone; Kello, Christopher T

    2017-06-01

    Caregivers alter the temporal structure of their utterances when talking and singing to infants compared with adult communication. The present study tested whether temporal variability in infant-directed registers serves to emphasize the hierarchical temporal structure of speech. Fifteen German-speaking mothers sang a play song and told a story to their 6-months-old infants, or to an adult. Recordings were analyzed using a recently developed method that determines the degree of nested clustering of temporal events in speech. Events were defined as peaks in the amplitude envelope, and clusters of various sizes related to periods of acoustic speech energy at varying timescales. Infant-directed speech and song clearly showed greater event clustering compared with adult-directed registers, at multiple timescales of hundreds of milliseconds to tens of seconds. We discuss the relation of this newly discovered acoustic property to temporal variability in linguistic units and its potential implications for parent-infant communication and infants learning the hierarchical structures of speech and language. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A community detection algorithm using network topologies and rule-based hierarchical arc-merging strategies

    PubMed Central

    2017-01-01

    The authors use four criteria to examine a novel community detection algorithm: (a) effectiveness in terms of producing high values of normalized mutual information (NMI) and modularity, using well-known social networks for testing; (b) examination, meaning the ability to examine mitigating resolution limit problems using NMI values and synthetic networks; (c) correctness, meaning the ability to identify useful community structure results in terms of NMI values and Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks; and (d) scalability, or the ability to produce comparable modularity values with fast execution times when working with large-scale real-world networks. In addition to describing a simple hierarchical arc-merging (HAM) algorithm that uses network topology information, we introduce rule-based arc-merging strategies for identifying community structures. Five well-studied social network datasets and eight sets of LFR benchmark networks were employed to validate the correctness of a ground-truth community, eight large-scale real-world complex networks were used to measure its efficiency, and two synthetic networks were used to determine its susceptibility to two resolution limit problems. Our experimental results indicate that the proposed HAM algorithm exhibited satisfactory performance efficiency, and that HAM-identified and ground-truth communities were comparable in terms of social and LFR benchmark networks, while mitigating resolution limit problems. PMID:29121100

  13. The Alaska vegetation classification.

    Treesearch

    L.A. Viereck; C.T. Dyrness; A.R. Batten; K.J. Wenzlick

    1992-01-01

    The Alaska vegetation classification presented here is a comprehensive, statewide system that has been under development since 1976. The classification is based, as much as possible, on the characteristics of the vegetation itself and is designed to categorize existing vegetation, not potential vegetation. A hierarchical system with five levels of resolution is used...

  14. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model

    NASA Astrophysics Data System (ADS)

    Verburg, Peter H.; Soepboer, Welmoed; Veldkamp, A.; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S. A.

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  15. Modeling the spatial dynamics of regional land use: the CLUE-S model.

    PubMed

    Verburg, Peter H; Soepboer, Welmoed; Veldkamp, A; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S A

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  16. Synthesizing trait correlations and functional relationships across multiple scales: A Hierarchical Bayes approach

    NASA Astrophysics Data System (ADS)

    Shiklomanov, A. N.; Cowdery, E.; Dietze, M.

    2016-12-01

    Recent syntheses of global trait databases have revealed that although the functional diversity among plant species is immense, this diversity is constrained by trade-offs between plant strategies. However, the use of among-trait and trait-environment correlations at the global scale for both qualitative ecological inference and land surface modeling has several important caveats. An alternative approach is to preserve the existing PFT-based model structure while using statistical analyses to account for uncertainty and variability in model parameters. In this study, we used a hierarchical Bayesian model of foliar traits in the TRY database to test the following hypotheses: (1) Leveraging the covariance between foliar traits will significantly constrain our uncertainty in their distributions; and (2) Among-trait covariance patterns are significantly different among and within PFTs, reflecting differences in trade-offs associated with biome-level evolution, site-level community assembly, and individual-level ecophysiological acclimation. We found that among-trait covariance significantly constrained estimates of trait means, and the additional information provided by across-PFT covariance led to more constraint still, especially for traits and PFTs with low sample sizes. We also found that among-trait correlations were highly variable among PFTs, and were generally inconsistent with correlations within PFTs. The hierarchical multivariate framework developed in our study can readily be enhanced with additional levels of hierarchy to account for geographic, species, and individual-level variability.

  17. Modeling Associations among Multivariate Longitudinal Categorical Variables in Survey Data: A Semiparametric Bayesian Approach

    ERIC Educational Resources Information Center

    Tchumtchoua, Sylvie; Dey, Dipak K.

    2012-01-01

    This paper proposes a semiparametric Bayesian framework for the analysis of associations among multivariate longitudinal categorical variables in high-dimensional data settings. This type of data is frequent, especially in the social and behavioral sciences. A semiparametric hierarchical factor analysis model is developed in which the…

  18. The Role of Schools, Families, and Psychological Variables on Math Achievement of Black High School Students

    ERIC Educational Resources Information Center

    Strayhorn, Terrell L.

    2010-01-01

    Using data from the National Education Longitudinal Study (NELS;1988/2000), the author conducted hierarchical linear regression analyses, with a nested design, to estimate the influence of affective variables--parent involvement, teacher perceptions, and school environments--on Black students' math achievement in grade 10. Drawing on…

  19. Students' Self-Regulation for Interaction with Others in Online Learning Environments

    ERIC Educational Resources Information Center

    Cho, Moon-Heum; Kim, B. Joon

    2013-01-01

    The purpose of this study was to explore variables explaining students' self-regulation (SR) for interaction with others, specifically peers and instructors, in online learning environments. A total of 407 students participated in the study. With hierarchical regression model (HRM), several variables were regressed on students' SR for interaction…

  20. Association between prolonged breast-feeding and early childhood caries: a hierarchical approach.

    PubMed

    Nunes, Ana Margarida Melo; Alves, Claudia Maria Coelho; Borba de Araújo, Fernando; Ortiz, Tânia Mara Lopes; Ribeiro, Marizélia Rodrigues Costa; Silva, Antônio Augusto Moura da; Ribeiro, Cecília Claudia Costa

    2012-12-01

    This study was conducted to investigate the association between prolonged breastfeeding and early childhood caries(ECC) with adjustment for important confounders, using hieraschical approach. This retrospective cohort study involved 260 low-income children (18-42 months). The number of decayed teeth was used as a measure of caries. Following a theoretical framework, the hierarchical model was built in a forward fashion, by adding the following levels in succession: level 1: age; level 2: social variables; level 3: health variables; level 4: behavioral variables; level 5: oral hygiene-related variables; level 6: oral hygiene quality measured by visible plaque; and level 7: contamination by mutans streptococci. Sequential forward multiple Poisson regression analysis was employed. Breast-feeding was not a risk factor for ECC after adjustment for some confounders (incidence density ratio, 1.15; 95% confidence interval, 0.84-1.59, P = 0.363). Prolonged breast-feeding was not a risk factor for ECC while age, high sucrose comption between main meals and the quality of oral higiene were associated with disease in children. © 2012 John Wiley & Sons A/S.

  1. One-pot pseudomorphic crystallization of mesoporous porous silica to hierarchical porous zeolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Jun-Ling; Jiang, Shu-Hua; Pang, Jun-Ling

    2015-09-15

    Hierarchically porous silica with mesopore and zeolitic micropore was synthesized via pseudomorphic crystallization under high-temperature hydrothermal treatment in the presence of cetyltrimethylammonium tosylate and tetrapropylammonium ions. A combined characterization using small-angle X-ray diffraction (XRD), nitrogen adsorption, high-resolution transmission electron microscopy (TEM), thermogravimetric analysis (TG), and elemental analysis showed that dual templates, CTA{sup +} and TPA{sup +} molecules, can work in a cooperative manner to synthesize mesoporous zeolite in a one-pot system by precisely tuning the reaction conditions, such as reaction time and temperature, and type and amount of heterometal atoms. It is found that the presence of Ti precursor ismore » critical to the successful synthesis of such nanostructure. It not only retards the nucleation and growth of crystalline MFI domains, but also acts as nano-binder or nano-glue to favor the assembly of zeolite nanoblocks. - Graphical abstract: Display Omitted - Highlights: • A facile method to synthesize mesoporous zeolites with hierarchical porosity was presented. • It gives a new insight into keeping the balance between mesoscopic and molecular ordering in hierarchical porous materials. • A new understanding on the solid–solid transformation mechanism for the synthesis of titanosilicate zeolites was proposed.« less

  2. Hierarchical organization of brain functional networks during visual tasks.

    PubMed

    Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie

    2011-09-01

    The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.

  3. Statistics of Weighted Brain Networks Reveal Hierarchical Organization and Gaussian Degree Distribution

    PubMed Central

    Ivković, Miloš; Kuceyeski, Amy; Raj, Ashish

    2012-01-01

    Whole brain weighted connectivity networks were extracted from high resolution diffusion MRI data of 14 healthy volunteers. A statistically robust technique was proposed for the removal of questionable connections. Unlike most previous studies our methods are completely adapted for networks with arbitrary weights. Conventional statistics of these weighted networks were computed and found to be comparable to existing reports. After a robust fitting procedure using multiple parametric distributions it was found that the weighted node degree of our networks is best described by the normal distribution, in contrast to previous reports which have proposed heavy tailed distributions. We show that post-processing of the connectivity weights, such as thresholding, can influence the weighted degree asymptotics. The clustering coefficients were found to be distributed either as gamma or power-law distribution, depending on the formula used. We proposed a new hierarchical graph clustering approach, which revealed that the brain network is divided into a regular base-2 hierarchical tree. Connections within and across this hierarchy were found to be uncommonly ordered. The combined weight of our results supports a hierarchically ordered view of the brain, whose connections have heavy tails, but whose weighted node degrees are comparable. PMID:22761649

  4. Statistics of weighted brain networks reveal hierarchical organization and Gaussian degree distribution.

    PubMed

    Ivković, Miloš; Kuceyeski, Amy; Raj, Ashish

    2012-01-01

    Whole brain weighted connectivity networks were extracted from high resolution diffusion MRI data of 14 healthy volunteers. A statistically robust technique was proposed for the removal of questionable connections. Unlike most previous studies our methods are completely adapted for networks with arbitrary weights. Conventional statistics of these weighted networks were computed and found to be comparable to existing reports. After a robust fitting procedure using multiple parametric distributions it was found that the weighted node degree of our networks is best described by the normal distribution, in contrast to previous reports which have proposed heavy tailed distributions. We show that post-processing of the connectivity weights, such as thresholding, can influence the weighted degree asymptotics. The clustering coefficients were found to be distributed either as gamma or power-law distribution, depending on the formula used. We proposed a new hierarchical graph clustering approach, which revealed that the brain network is divided into a regular base-2 hierarchical tree. Connections within and across this hierarchy were found to be uncommonly ordered. The combined weight of our results supports a hierarchically ordered view of the brain, whose connections have heavy tails, but whose weighted node degrees are comparable.

  5. On the application of multilevel modeling in environmental and ecological studies

    USGS Publications Warehouse

    Qian, Song S.; Cuffney, Thomas F.; Alameddine, Ibrahim; McMahon, Gerard; Reckhow, Kenneth H.

    2010-01-01

    This paper illustrates the advantages of a multilevel/hierarchical approach for predictive modeling, including flexibility of model formulation, explicitly accounting for hierarchical structure in the data, and the ability to predict the outcome of new cases. As a generalization of the classical approach, the multilevel modeling approach explicitly models the hierarchical structure in the data by considering both the within- and between-group variances leading to a partial pooling of data across all levels in the hierarchy. The modeling framework provides means for incorporating variables at different spatiotemporal scales. The examples used in this paper illustrate the iterative process of model fitting and evaluation, a process that can lead to improved understanding of the system being studied.

  6. Analysis of Student and School Level Variables Related to Mathematics Self-Efficacy Level Based on PISA 2012 Results for China-Shanghai, Turkey, and Greece

    ERIC Educational Resources Information Center

    Usta, H. Gonca

    2016-01-01

    This study aims to analyze the student and school level variables that affect students' self-efficacy levels in mathematics in China-Shanghai, Turkey, and Greece based on PISA 2012 results. In line with this purpose, the hierarchical linear regression model (HLM) was employed. The interschool variability is estimated at approximately 17% in…

  7. Drivers of Variability in Public-Supply Water Use Across the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Worland, Scott C.; Steinschneider, Scott; Hornberger, George M.

    2018-03-01

    This study explores the relationship between municipal water use and an array of climate, economic, behavioral, and policy variables across the contiguous U.S. The relationship is explored using Bayesian-hierarchical regression models for over 2,500 counties, 18 covariates, and three higher-level grouping variables. Additionally, a second analysis is included for 83 cities where water price and water conservation policy information is available. A hierarchical model using the nine climate regions (product of National Oceanic and Atmospheric Administration) as the higher-level groups results in the best out-of-sample performance, as estimated by the Widely Available Information Criterion, compared to counties grouped by urban continuum classification or primary economic activity. The regression coefficients indicate that the controls on water use are not uniform across the nation: e.g., counties in the Northeast and Northwest climate regions are more sensitive to social variables, whereas counties in the Southwest and East North Central climate regions are more sensitive to environmental variables. For the national city-level model, it appears that arid cities with a high cost of living and relatively low water bills sell more water per customer, but as with the county-level model, the effect of each variable depends heavily on where a city is located.

  8. Evaluation of Stochastic Rainfall Models in Capturing Climate Variability for Future Drought and Flood Risk Assessment

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. F. M. K.; Lockart, N.; Willgoose, G. R.; Kuczera, G. A.; Kiem, A.; Nadeeka, P. M.

    2016-12-01

    One of the key objectives of stochastic rainfall modelling is to capture the full variability of climate system for future drought and flood risk assessment. However, it is not clear how well these models can capture the future climate variability when they are calibrated to Global/Regional Climate Model data (GCM/RCM) as these datasets are usually available for very short future period/s (e.g. 20 years). This study has assessed the ability of two stochastic daily rainfall models to capture climate variability by calibrating them to a dynamically downscaled RCM dataset in an east Australian catchment for 1990-2010, 2020-2040, and 2060-2080 epochs. The two stochastic models are: (1) a hierarchical Markov Chain (MC) model, which we developed in a previous study and (2) a semi-parametric MC model developed by Mehrotra and Sharma (2007). Our hierarchical model uses stochastic parameters of MC and Gamma distribution, while the semi-parametric model uses a modified MC process with memory of past periods and kernel density estimation. This study has generated multiple realizations of rainfall series by using parameters of each model calibrated to the RCM dataset for each epoch. The generated rainfall series are used to generate synthetic streamflow by using a SimHyd hydrology model. Assessing the synthetic rainfall and streamflow series, this study has found that both stochastic models can incorporate a range of variability in rainfall as well as streamflow generation for both current and future periods. However, the hierarchical model tends to overestimate the multiyear variability of wet spell lengths (therefore, is less likely to simulate long periods of drought and flood), while the semi-parametric model tends to overestimate the mean annual rainfall depths and streamflow volumes (hence, simulated droughts are likely to be less severe). Sensitivity of these limitations of both stochastic models in terms of future drought and flood risk assessment will be discussed.

  9. Hierarchical Modeling and Robust Synthesis for the Preliminary Design of Large Scale Complex Systems

    NASA Technical Reports Server (NTRS)

    Koch, Patrick N.

    1997-01-01

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis; Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration; and Noise modeling techniques for implementing robust preliminary design when approximate models are employed. Hierarchical partitioning and modeling techniques including intermediate responses, linking variables, and compatibility constraints are incorporated within a hierarchical compromise decision support problem formulation for synthesizing subproblem solutions for a partitioned system. Experimentation and approximation techniques are employed for concurrent investigations and modeling of partitioned subproblems. A modified composite experiment is introduced for fitting better predictive models across the ranges of the factors, and an approach for constructing partitioned response surfaces is developed to reduce the computational expense of experimentation for fitting models in a large number of factors. Noise modeling techniques are compared and recommendations are offered for the implementation of robust design when approximate models are sought. These techniques, approaches, and recommendations are incorporated within the method developed for hierarchical robust preliminary design exploration. This method as well as the associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system. The case study is developed in collaboration with Allison Engine Company, Rolls Royce Aerospace, and is based on the Allison AE3007 existing engine designed for midsize commercial, regional business jets. For this case study, the turbofan system-level problem is partitioned into engine cycle design and configuration design and a compressor modules integrated for more detailed subsystem-level design exploration, improving system evaluation. The fan and low pressure turbine subsystems are also modeled, but in less detail. Given the defined partitioning, these subproblems are investigated independently and concurrently, and response surface models are constructed to approximate the responses of each. These response models are then incorporated within a commercial turbofan hierarchical compromise decision support problem formulation. Five design scenarios are investigated, and robust solutions are identified. The method and solutions identified are verified by comparison with the AE3007 engine. The solutions obtained are similar to the AE3007 cycle and configuration, but are better with respect to many of the requirements.

  10. Correcting pervasive errors in RNA crystallography through enumerative structure prediction.

    PubMed

    Chou, Fang-Chieh; Sripakdeevong, Parin; Dibrov, Sergey M; Hermann, Thomas; Das, Rhiju

    2013-01-01

    Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron density under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated 'xtallography' (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average R(free) factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models.

  11. Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models

    NASA Astrophysics Data System (ADS)

    Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.

    2017-12-01

    Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream measurements.

  12. Transformational leadership in the consumer service workgroup: competing models of job satisfaction, change commitment, and cooperative conflict resolution.

    PubMed

    Yang, Yi-Feng

    2014-02-01

    This paper discusses the effects of transformational leadership on cooperative conflict resolution (management) by evaluating several alternative models related to the mediating role of job satisfaction and change commitment. Samples of data from customer service personnel in Taiwan were analyzed. Based on the bootstrap sample technique, an empirical study was carried out to yield the best fitting model. The procedure of hierarchical nested model analysis was used, incorporating the methods of bootstrapping mediation, PRODCLIN2, and structural equation modeling (SEM) comparison. The analysis suggests that leadership that promotes integration (change commitment) and provides inspiration and motivation (job satisfaction), in the proper order, creates the means for cooperative conflict resolution.

  13. Detecting and interpreting distortions in hierarchical organization of complex time series

    NASA Astrophysics Data System (ADS)

    DroŻdŻ, Stanisław; OświÈ©cimka, Paweł

    2015-03-01

    Hierarchical organization is a cornerstone of complexity and multifractality constitutes its central quantifying concept. For model uniform cascades the corresponding singularity spectra are symmetric while those extracted from empirical data are often asymmetric. Using selected time series representing such diverse phenomena as price changes and intertransaction times in financial markets, sentence length variability in narrative texts, Missouri River discharge, and sunspot number variability as examples, we show that the resulting singularity spectra appear strongly asymmetric, more often left sided but in some cases also right sided. We present a unified view on the origin of such effects and indicate that they may be crucially informative for identifying the composition of the time series. One particularly intriguing case of this latter kind of asymmetry is detected in the daily reported sunspot number variability. This signals that either the commonly used famous Wolf formula distorts the real dynamics in expressing the largest sunspot numbers or, if not, that their dynamics is governed by a somewhat different mechanism.

  14. Trans-Dimensional Bayesian Imaging of 3-D Crustal and Upper Mantle Structure in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.

    2016-12-01

    Imaging 3-D structures using stepwise inversions of ambient noise and receiver function data is now a routine work. Here, we carry out the inversion in the trans-dimensional and hierarchical extension of the Bayesian framework to obtain rigorous estimates of uncertainty and high-resolution images of crustal and upper mantle structures beneath Northeast (NE) Asia. The methods inherently account for data sensitivities by means of using adaptive parameterizations and treating data noise as free parameters. Therefore, parsimonious results from the methods are balanced out between model complexity and data fitting. This allows fully exploiting data information, preventing from over- or under-estimation of the data fit, and increases model resolution. In addition, the reliability of results is more rigorously checked through the use of Bayesian uncertainties. It is shown by various synthetic recovery tests that complex and spatially variable features are well resolved in our resulting images of NE Asia. Rayleigh wave phase and group velocity tomograms (8-70 s), a 3-D shear-wave velocity model from depth inversions of the estimated dispersion maps, and regional 3-D models (NE China, the Korean Peninsula, and the Japanese islands) from joint inversions with receiver function data of dense networks are presented. High-resolution models are characterized by a number of tectonically meaningful features. We focus our interpretation on complex patterns of sub-lithospheric low velocity structures that extend from back-arc regions to continental margins. We interpret the anomalies in conjunction with distal and distributed intraplate volcanoes in NE Asia. Further discussion on other imaged features will be presented.

  15. Advance development of a technique for characterizing the thermomechanical properties of thermally stable polymers

    NASA Technical Reports Server (NTRS)

    Gillham, J. K.; Stadnicki, S. J.; Hazony, Y.

    1974-01-01

    The torsional braid experiment has been interfaced with a centralized hierarchical computing system for data acquisition and data processing. Such a system, when matched by the appropriate upgrading of the monitoring techniques, provides high resolution thermomechanical spectra of rigidity and damping, and their derivatives with respect to temperature.

  16. Hierarchical Spatio-temporal Visual Analysis of Cluster Evolution in Electrocorticography Data

    DOE PAGES

    Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward; ...

    2016-10-02

    Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from the high-resolution ECoG data. ECoG ClusterFlow provides a multi-scale visualization of the spatio-temporal patterns underlying the time-varying communities using two views: 1) an overview summarizing the evolution of clusters over time and 2) a hierarchical glyph-based technique that uses data aggregation and small multiples techniques to visualize the propagation of clusters in their spatial domain. ECoG ClusterFlow makes it possible 1) tomore » compare the spatio-temporal evolution patterns across various time intervals, 2) to compare the temporal information at varying levels of granularity, and 3) to investigate the evolution of spatial patterns without occluding the spatial context information. Lastly, we present case studies done in collaboration with neuroscientists on our team for both simulated and real epileptic seizure data aimed at evaluating the effectiveness of our approach.« less

  17. Distribution of cavity trees in midwestern old-growth and second-growth forests

    Treesearch

    Zhaofei Fan; Stephen R. Shifley; Martin A. Spetich; Frank R. Thompson; David R. Larsen

    2003-01-01

    We used classification and regression tree analysis to determine the primary variables associated with the occurrence of cavity trees and the hierarchical structure among those variables. We applied that information to develop logistic models predicting cavity tree probability as a function of diameter, species group, and decay class. Inventories of cavity abundance in...

  18. Distribution of cavity trees in midwesternold-growth and second-growth forests

    Treesearch

    Zhaofei Fan; Stephen R. Shifley; Martin A. Spetich; Frank R., III Thompson; David R. Larsen

    2003-01-01

    We used classification and regression tree analysis to determine the primary variables associated with the occurrence of cavity trees and the hierarchical structure among those variables. We applied that information to develop logistic models predicting cavity tree probability as a function of diameter, species group, and decay class. Inventories of cavity abundance in...

  19. Perceived Learning and Timely Graduation for Business Undergraduates Taking an Online or Hybrid Course

    ERIC Educational Resources Information Center

    Blau, Gary; Drennan, Rob B.; Hochner, Arthur; Kapanjie, Darin

    2016-01-01

    An online survey tested the impact of background, technological, and course-related variables on perceived learning and timely graduation for a complete data sample of 263 business undergraduates taking at least one online or hybrid course in the fall of 2015. Hierarchical regression results showed that course-related variables (instructor…

  20. Modeling Signal-Noise Processes Supports Student Construction of a Hierarchical Image of Sample

    ERIC Educational Resources Information Center

    Lehrer, Richard

    2017-01-01

    Grade 6 (modal age 11) students invented and revised models of the variability generated as each measured the perimeter of a table in their classroom. To construct models, students represented variability as a linear composite of true measure (signal) and multiple sources of random error. Students revised models by developing sampling…

  1. Hierarchical Organization of Auditory and Motor Representations in Speech Perception: Evidence from Searchlight Similarity Analysis

    PubMed Central

    Evans, Samuel; Davis, Matthew H.

    2015-01-01

    How humans extract the identity of speech sounds from highly variable acoustic signals remains unclear. Here, we use searchlight representational similarity analysis (RSA) to localize and characterize neural representations of syllables at different levels of the hierarchically organized temporo-frontal pathways for speech perception. We asked participants to listen to spoken syllables that differed considerably in their surface acoustic form by changing speaker and degrading surface acoustics using noise-vocoding and sine wave synthesis while we recorded neural responses with functional magnetic resonance imaging. We found evidence for a graded hierarchy of abstraction across the brain. At the peak of the hierarchy, neural representations in somatomotor cortex encoded syllable identity but not surface acoustic form, at the base of the hierarchy, primary auditory cortex showed the reverse. In contrast, bilateral temporal cortex exhibited an intermediate response, encoding both syllable identity and the surface acoustic form of speech. Regions of somatomotor cortex associated with encoding syllable identity in perception were also engaged when producing the same syllables in a separate session. These findings are consistent with a hierarchical account of how variable acoustic signals are transformed into abstract representations of the identity of speech sounds. PMID:26157026

  2. Contributions of sociodemographic factors to criminal behavior

    PubMed Central

    Mundia, Lawrence; Matzin, Rohani; Mahalle, Salwa; Hamid, Malai Hayati; Osman, Ratna Suriani

    2016-01-01

    We explored the extent to which prisoner sociodemographic variables (age, education, marital status, employment, and whether their parents were married or not) influenced offending in 64 randomly selected Brunei inmates, comprising both sexes. A quantitative field survey design ideal for the type of participants used in a prison context was employed to investigate the problem. Hierarchical multiple regression analysis with backward elimination identified prisoner marital status and age groups as significantly related to offending. Furthermore, hierarchical multinomial logistic regression analysis with backward elimination indicated that prisoners’ age, primary level education, marital status, employment status, and parental marital status as significantly related to stealing offenses with high odds ratios. All 29 nonrecidivists were false negatives and predicted to reoffend upon release. Similarly, all 33 recidivists were projected to reoffend after release. Hierarchical binary logistic regression analysis revealed age groups (24–29 years and 30–35 years), employed prisoner, and primary level education as variables with high likelihood trends for reoffending. The results suggested that prisoner interventions (educational, counseling, and psychotherapy) in Brunei should treat not only antisocial personality, psychopathy, and mental health problems but also sociodemographic factors. The study generated offending patterns, trends, and norms that may inform subsequent investigations on Brunei prisoners. PMID:27382342

  3. An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical kriging

    NASA Astrophysics Data System (ADS)

    Hu, Jiexiang; Zhou, Qi; Jiang, Ping; Shao, Xinyu; Xie, Tingli

    2018-01-01

    Variable-fidelity (VF) modelling methods have been widely used in complex engineering system design to mitigate the computational burden. Building a VF model generally includes two parts: design of experiments and metamodel construction. In this article, an adaptive sampling method based on improved hierarchical kriging (ASM-IHK) is proposed to refine the improved VF model. First, an improved hierarchical kriging model is developed as the metamodel, in which the low-fidelity model is varied through a polynomial response surface function to capture the characteristics of a high-fidelity model. Secondly, to reduce local approximation errors, an active learning strategy based on a sequential sampling method is introduced to make full use of the already required information on the current sampling points and to guide the sampling process of the high-fidelity model. Finally, two numerical examples and the modelling of the aerodynamic coefficient for an aircraft are provided to demonstrate the approximation capability of the proposed approach, as well as three other metamodelling methods and two sequential sampling methods. The results show that ASM-IHK provides a more accurate metamodel at the same simulation cost, which is very important in metamodel-based engineering design problems.

  4. Relating mesocarnivore relative abundance to anthropogenic land-use with a hierarchical spatial count model

    USGS Publications Warehouse

    Crimmins, Shawn M.; Walleser, Liza R.; Hertel, Dan R.; McKann, Patrick C.; Rohweder, Jason J.; Thogmartin, Wayne E.

    2016-01-01

    There is growing need to develop models of spatial patterns in animal abundance, yet comparatively few examples of such models exist. This is especially true in situations where the abundance of one species may inhibit that of another, such as the intensively-farmed landscape of the Prairie Pothole Region (PPR) of the central United States, where waterfowl production is largely constrained by mesocarnivore nest predation. We used a hierarchical Bayesian approach to relate the distribution of various land-cover types to the relative abundances of four mesocarnivores in the PPR: coyote Canis latrans, raccoon Procyon lotor, red fox Vulpes vulpes, and striped skunk Mephitis mephitis. We developed models for each species at multiple spatial resolutions (41.4 km2, 10.4 km2, and 2.6 km2) to address different ecological and management-related questions. Model results for each species were similar irrespective of resolution. We found that the amount of row-crop agriculture was nearly ubiquitous in our best models, exhibiting a positive relationship with relative abundance for each species. The amount of native grassland land-cover was positively associated with coyote and raccoon relative abundance, but generally absent from models for red fox and skunk. Red fox and skunk were positively associated with each other, suggesting potential niche overlap. We found no evidence that coyote abundance limited that of other mesocarnivore species, as might be expected under a hypothesis of mesopredator release. The relationships between relative abundance and land-cover types were similar across spatial resolutions. Our results indicated that mesocarnivores in the PPR are most likely to occur in portions of the landscape with large amounts of agricultural land-cover. Further, our results indicated that track-survey data can be used in a hierarchical framework to gain inferences regarding spatial patterns in animal relative abundance.

  5. Control, responses and modularity of cellular regulatory networks: a control analysis perspective.

    PubMed

    Bruggeman, F J; Snoep, J L; Westerhoff, H V

    2008-11-01

    Cells adapt to changes in environmental conditions through the concerted action of signalling, gene expression and metabolic subsystems. The authors will discuss a theoretical framework addressing such integrated systems. This 'hierarchical analysis' was first developed as an extension to a metabolic control analysis. It builds on the phenomenon that often the communication between signalling, gene expression and metabolic subsystems is almost exclusively via regulatory interactions and not via mass flow interactions. This allows for the treatment of the said subsystems as 'levels' in a hierarchical view of the organisation of the molecular reaction network of cells. Such a hierarchical approach has as a major advantage that levels can be analysed conceptually in isolation of each other (from a local intra-level perspective) and at a later stage integrated via their interactions (from a global inter-level perspective). Hereby, it allows for a modular approach with variable scope. A number of different approaches have been developed for the analysis of hierarchical systems, for example hierarchical control analysis and modular response analysis. The authors, here, review these methods and illustrate the strength of these types of analyses using a core model of a system with gene expression, metabolic and signal transduction levels.

  6. A resolution adaptive deep hierarchical (RADHicaL) learning scheme applied to nuclear segmentation of digital pathology images.

    PubMed

    Janowczyk, Andrew; Doyle, Scott; Gilmore, Hannah; Madabhushi, Anant

    2018-01-01

    Deep learning (DL) has recently been successfully applied to a number of image analysis problems. However, DL approaches tend to be inefficient for segmentation on large image data, such as high-resolution digital pathology slide images. For example, typical breast biopsy images scanned at 40× magnification contain billions of pixels, of which usually only a small percentage belong to the class of interest. For a typical naïve deep learning scheme, parsing through and interrogating all the image pixels would represent hundreds if not thousands of hours of compute time using high performance computing environments. In this paper, we present a resolution adaptive deep hierarchical (RADHicaL) learning scheme wherein DL networks at lower resolutions are leveraged to determine if higher levels of magnification, and thus computation, are necessary to provide precise results. We evaluate our approach on a nuclear segmentation task with a cohort of 141 ER+ breast cancer images and show we can reduce computation time on average by about 85%. Expert annotations of 12,000 nuclei across these 141 images were employed for quantitative evaluation of RADHicaL. A head-to-head comparison with a naïve DL approach, operating solely at the highest magnification, yielded the following performance metrics: .9407 vs .9854 Detection Rate, .8218 vs .8489 F -score, .8061 vs .8364 true positive rate and .8822 vs 0.8932 positive predictive value. Our performance indices compare favourably with state of the art nuclear segmentation approaches for digital pathology images.

  7. A statistical assessment of seismic models of the U.S. continental crust using Bayesian inversion of ambient noise surface wave dispersion data

    NASA Astrophysics Data System (ADS)

    Olugboji, T. M.; Lekic, V.; McDonough, W.

    2017-07-01

    We present a new approach for evaluating existing crustal models using ambient noise data sets and its associated uncertainties. We use a transdimensional hierarchical Bayesian inversion approach to invert ambient noise surface wave phase dispersion maps for Love and Rayleigh waves using measurements obtained from Ekström (2014). Spatiospectral analysis shows that our results are comparable to a linear least squares inverse approach (except at higher harmonic degrees), but the procedure has additional advantages: (1) it yields an autoadaptive parameterization that follows Earth structure without making restricting assumptions on model resolution (regularization or damping) and data errors; (2) it can recover non-Gaussian phase velocity probability distributions while quantifying the sources of uncertainties in the data measurements and modeling procedure; and (3) it enables statistical assessments of different crustal models (e.g., CRUST1.0, LITHO1.0, and NACr14) using variable resolution residual and standard deviation maps estimated from the ensemble. These assessments show that in the stable old crust of the Archean, the misfits are statistically negligible, requiring no significant update to crustal models from the ambient noise data set. In other regions of the U.S., significant updates to regionalization and crustal structure are expected especially in the shallow sedimentary basins and the tectonically active regions, where the differences between model predictions and data are statistically significant.

  8. Hierarchical Fuzzy Control Applied to Parallel Connected UPS Inverters Using Average Current Sharing Scheme

    NASA Astrophysics Data System (ADS)

    Singh, Santosh Kumar; Ghatak Choudhuri, Sumit

    2018-05-01

    Parallel connection of UPS inverters to enhance power rating is a widely accepted practice. Inter-modular circulating currents appear when multiple inverter modules are connected in parallel to supply variable critical load. Interfacing of modules henceforth requires an intensive design, using proper control strategy. The potentiality of human intuitive Fuzzy Logic (FL) control with imprecise system model is well known and thus can be utilised in parallel-connected UPS systems. Conventional FL controller is computational intensive, especially with higher number of input variables. This paper proposes application of Hierarchical-Fuzzy Logic control for parallel connected Multi-modular inverters system for reduced computational burden on the processor for a given switching frequency. Simulated results in MATLAB environment and experimental verification using Texas TMS320F2812 DSP are included to demonstrate feasibility of the proposed control scheme.

  9. Testing relationships from the hierarchical model of intrinsic and extrinsic motivation using flow as a motivational consequence.

    PubMed

    Kowal, J; Fortier, M S

    2000-06-01

    The purpose of this study was to test a motivational model based on Vallerand's (1997) Hierarchical Model of Intrinsic and Extrinsic Motivation. This model incorporates situational and contextual motivational variables, and was tested using a time-lagged design. Master's level swimmers (N = 104) completed a questionnaire on two separate occasions. At Time 1, situational social factors (perceptions of success and perceptions of the motivational climate), situational motivational mediators (perceptions of autonomy, competence, and relatedness), situational motivation, and flow were assessed immediately following a swim practice. Contextual measures of these same variables were assessed at Time 2, 1 week later, with the exception of flow. Results of a path analysis supported numerous links in the hypothesized model. Findings are discussed in light of research and theory on motivation and flow.

  10. Nanowebs and nanocables of silicon carbide

    NASA Astrophysics Data System (ADS)

    Shim, Hyun Woo; Huang, Hanchen

    2007-08-01

    This paper presents two novel hierarchical structures of SiC-SiO2 core-shell nanowires: (a) nanocables in the form of multi-core and single shell and (b) nanowebs in the form of intersecting nanowires and nanocables, augmented by variable amounts of SiO2 membranes. The two structures are controllable through variations of substrate temperature and source chemistry. The hierarchical nanostructures, together with the controllability, may offer superb mechanical properties in composite applications. Finally, the authors propose a model of nanowebs and nanocables formation, as a result of nanowires intersection and alignment.

  11. Hierarchical clustering in chameleon f(R) gravity

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Li, Baojiu; Frenk, Carlos S.; Cole, Shaun

    2013-11-01

    We use a suite of high-resolution state-of-the-art N-body dark matter simulations of chameleon f(R) gravity to study the higher order volume-averaged correlation functions overline{ξ _n} together with the hierarchical nth-order correlation amplitudes S_n=overline{ξ }_n/overline{ξ }_2^{n-1} and density distribution functions (PDF). We show that under the non-linear modifications of gravity the hierarchical scaling of the reduced cumulants is preserved. This is however characterized by significant changes in the values of both overline{ξ _n} and Sn and their scale dependence with respect to General Relativity gravity (GR). In addition, we measure a significant increase of the non-linear σ8 parameter reaching 14, 5 and 0.5 per cent in excess of the GR value for the three flavours of our f(R) models. We further note that the values of the reduced cumulants up to order n = 9 are significantly increased in f(R) gravity for all our models at small scales R ≲ 30 h-1 Mpc. In contrast, the values of the hierarchical amplitudes, Sn, are smaller in f(R) indicating that the modified gravity density distribution functions are deviating from the GR case. Furthermore, we find that the redshift evolution of relative deviations of the f(R) hierarchical correlation amplitudes is fastest at high and moderate redshifts 1 ≤ z ≤ 4. The growth of these deviations significantly slows down in the low-redshift universe. We also compute the PDFs and show that for scales below ˜20 h-1 Mpc, they are significantly shifted in f(R) gravity towards the low densities. Finally, we discuss the implications of our theoretical predictions for measurements of the hierarchical clustering in galaxy redshift surveys, including the important problems of the galaxy biasing and redshift space distortions.

  12. A Hierarchical Linear Modeling Analysis of Working Memory and Implicit Prosody in the Resolution of Adjunct Attachment Ambiguity

    ERIC Educational Resources Information Center

    Traxler, Matthew J.

    2009-01-01

    An eye-movement monitoring experiment investigated readers' response to temporarily ambiguous sentences. The sentences were ambiguous because a relative clause could attach to one of two preceding nouns. Semantic information disambiguated the sentences. Working memory considerations predict an overall preference for the second of the two nouns, as…

  13. Using CloudSat and the A-Train to Estimate Tropical Cyclone Intensity in the Western North Pacific

    DTIC Science & Technology

    2014-09-01

    CloudSat System Data Flow (from Cooperative Institute for Research in the Atmosphere 2008...radar Department of Defense Data Processing Center European Centre for Medium-Range Weather Forecasts Earth observing system Earth observing... system data and information system Earth sciences systems pathfinder hierarchical data format moderate resolution imaging spectroradiometer moist

  14. A regional classification of unregulated stream flows: spatial resolution and hierarchical frameworks.

    Treesearch

    Ryan A. McManamay; Donald J. Orth; Charles A. Dolloff; Emmaneul A. Firmpong

    2012-01-01

    River regulation has resulted in substantial losses in habitat connectivity, biodiversity and ecosystem services. River managers are faced with a growing need to protect the key aspects of the natural flow regime. A practical approach to providing environmental flow standards is to create a regional framework by classifying unregulated streams into groups of similar...

  15. Understanding Disproportionate Representation in Special Education by Examining Group Differences in Behavior Ratings

    ERIC Educational Resources Information Center

    Peters, Christina D.; Kranzler, John H.; Algina, James; Smith, Stephen W.; Daunic, Ann P.

    2014-01-01

    The aim of the current study was to examine mean-group differences on behavior rating scales and variables that may predict such differences. Sixty-five teachers completed the Clinical Assessment of Behavior-Teacher Form (CAB-T) for a sample of 982 students. Four outcome variables from the CAB-T were assessed. Hierarchical linear modeling was used…

  16. Motor-sensory confluence in tactile perception.

    PubMed

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  17. Social determinants of childhood asthma symptoms: an ecological study in urban Latin America.

    PubMed

    Fattore, Gisel L; Santos, Carlos A T; Barreto, Mauricio L

    2014-04-01

    Asthma is an important public health problem in urban Latin America. This study aimed to analyze the role of socioeconomic and environmental factors as potential determinants of asthma symptoms prevalence in children from Latin American (LA) urban centers. We selected 31 LA urban centers with complete data, and an ecological analysis was performed. According to our theoretical framework, the explanatory variables were classified in three levels: distal, intermediate, and proximate. The association between variables in the three levels and prevalence of asthma symptoms was examined by bivariate and multivariate linear regression analysis weighed by sample size. In a second stage, we fitted several linear regression models introducing sequentially the variables according to the predefined hierarchy. In the final hierarchical model Gini Index, crowding, sanitation, variation in infant mortality rates and homicide rates, explained great part of the variance in asthma prevalence between centers (R(2) = 75.0 %). We found a strong association between socioeconomic and environmental variables and prevalence of asthma symptoms in LA urban children, and according to our hierarchical framework and the results found we suggest that social inequalities (measured by the Gini Index) is a central determinant to explain high prevalence of asthma in LA.

  18. Global terrain classification using Multiple-Error-Removed Improved-Terrain (MERIT) to address susceptibility of landslides and other geohazards

    NASA Astrophysics Data System (ADS)

    Iwahashi, J.; Yamazaki, D.; Matsuoka, M.; Thamarux, P.; Herrick, J.; Yong, A.; Mital, U.

    2017-12-01

    A seamless model of landform classifications with regional accuracy will be a powerful platform for geophysical studies that forecast geologic hazards. Spatial variability as a function of landform on a global scale was captured in the automated classifications of Iwahashi and Pike (2007) and additional developments are presented here that incorporate more accurate depictions using higher-resolution elevation data than the original 1-km scale Shuttle Radar Topography Mission digital elevation model (DEM). We create polygon-based terrain classifications globally by using the 280-m DEM interpolated from the Multi-Error-Removed Improved-Terrain DEM (MERIT; Yamazaki et al., 2017). The multi-scale pixel-image analysis method, known as Multi-resolution Segmentation (Baatz and Schäpe, 2000), is first used to classify the terrains based on geometric signatures (slope and local convexity) calculated from the 280-m DEM. Next, we apply the machine learning method of "k-means clustering" to prepare the polygon-based classification at the globe-scale using slope, local convexity and surface texture. We then group the divisions with similar properties by hierarchical clustering and other statistical analyses using geological and geomorphological data of the area where landslides and earthquakes are frequent (e.g. Japan and California). We find the 280-m DEM resolution is only partially sufficient for classifying plains. We nevertheless observe that the categories correspond to reported landslide and liquefaction features at the global scale, suggesting that our model is an appropriate platform to forecast ground failure. To predict seismic amplification, we estimate site conditions using the time-averaged shear-wave velocity in the upper 30-m (VS30) measurements compiled by Yong et al. (2016) and the terrain model developed by Yong (2016; Y16). We plan to test our method on finer resolution DEMs and report our findings to obtain a more globally consistent terrain model as there are known errors in DEM derivatives at higher-resolutions. We expect the improvement in DEM resolution (4 times greater detail) and the combination of regional and global coverage will yield a consistent dataset of polygons that have the potential to improve relations to the Y16 estimates significantly.

  19. Comparison of Two Grid Refinement Approaches for High Resolution Regional Climate Modeling: MPAS vs WRF

    NASA Astrophysics Data System (ADS)

    Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.

    2012-12-01

    This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.

  20. Porous titania surfaces on titanium with hierarchical macro- and mesoporosities for enhancing cell adhesion, proliferation and mineralization.

    PubMed

    Han, Guang; Müller, Werner E G; Wang, Xiaohong; Lilja, Louise; Shen, Zhijian

    2015-02-01

    Titanium received a macroporous titania surface layer by anodization, which contains open pores with average pore diameter around 5 μm. An additional mesoporous titania top layer following the contour of the macropores, of 100-200 nm thickness and with a pore diameter of 10nm, was formed by using the evaporation-induced self-assembly (EISA) method with titanium (IV) tetraethoxide as the precursor. A coherent laminar titania surface layer was thus obtained, creating a hierarchical macro- and mesoporous surface that was characterized by high-resolution electron microscopy. The interfacial bonding between the surface layers and the titanium matrix was characterized by the scratch test that confirmed a stable and strong bonding of titania surface layers on titanium. The wettability to water and the effects on the osteosarcoma cell line (SaOS-2) proliferation and mineralization of the formed titania surface layers were studied systematically by cell culture and scanning electron microscopy. The results proved that the porous titania surface with hierarchical macro- and mesoporosities was hydrophilic that significantly promoted cell attachment and spreading. A synergistic role of the hierarchical macro- and mesoporosities was revealed in terms of enhancing cell adhesion, proliferation and mineralization, compared with the titania surface with solo scale topography. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Multinomial N-mixture models improve the applicability of electrofishing for developing population estimates of stream-dwelling Smallmouth Bass

    USGS Publications Warehouse

    Mollenhauer, Robert; Brewer, Shannon K.

    2017-01-01

    Failure to account for variable detection across survey conditions constrains progressive stream ecology and can lead to erroneous stream fish management and conservation decisions. In addition to variable detection’s confounding long-term stream fish population trends, reliable abundance estimates across a wide range of survey conditions are fundamental to establishing species–environment relationships. Despite major advancements in accounting for variable detection when surveying animal populations, these approaches remain largely ignored by stream fish scientists, and CPUE remains the most common metric used by researchers and managers. One notable advancement for addressing the challenges of variable detection is the multinomial N-mixture model. Multinomial N-mixture models use a flexible hierarchical framework to model the detection process across sites as a function of covariates; they also accommodate common fisheries survey methods, such as removal and capture–recapture. Effective monitoring of stream-dwelling Smallmouth Bass Micropterus dolomieu populations has long been challenging; therefore, our objective was to examine the use of multinomial N-mixture models to improve the applicability of electrofishing for estimating absolute abundance. We sampled Smallmouth Bass populations by using tow-barge electrofishing across a range of environmental conditions in streams of the Ozark Highlands ecoregion. Using an information-theoretic approach, we identified effort, water clarity, wetted channel width, and water depth as covariates that were related to variable Smallmouth Bass electrofishing detection. Smallmouth Bass abundance estimates derived from our top model consistently agreed with baseline estimates obtained via snorkel surveys. Additionally, confidence intervals from the multinomial N-mixture models were consistently more precise than those of unbiased Petersen capture–recapture estimates due to the dependency among data sets in the hierarchical framework. We demonstrate the application of this contemporary population estimation method to address a longstanding stream fish management issue. We also detail the advantages and trade-offs of hierarchical population estimation methods relative to CPUE and estimation methods that model each site separately.

  2. Techniques and potential capabilities of multi-resolutional information (knowledge) processing

    NASA Technical Reports Server (NTRS)

    Meystel, A.

    1989-01-01

    A concept of nested hierarchical (multi-resolutional, pyramidal) information (knowledge) processing is introduced for a variety of systems including data and/or knowledge bases, vision, control, and manufacturing systems, industrial automated robots, and (self-programmed) autonomous intelligent machines. A set of practical recommendations is presented using a case study of a multiresolutional object representation. It is demonstrated here that any intelligent module transforms (sometimes, irreversibly) the knowledge it deals with, and this tranformation affects the subsequent computation processes, e.g., those of decision and control. Several types of knowledge transformation are reviewed. Definite conditions are analyzed, satisfaction of which is required for organization and processing of redundant information (knowledge) in the multi-resolutional systems. Providing a definite degree of redundancy is one of these conditions.

  3. Actors and networks in resource conflict resolution under climate change in rural Kenya

    NASA Astrophysics Data System (ADS)

    Ngaruiya, Grace W.; Scheffran, Jürgen

    2016-05-01

    The change from consensual decision-making arrangements into centralized hierarchical chieftaincy schemes through colonization disrupted many rural conflict resolution mechanisms in Africa. In addition, climate change impacts on land use have introduced additional socio-ecological factors that complicate rural conflict dynamics. Despite the current urgent need for conflict-sensitive adaptation, resolution efficiency of these fused rural institutions has hardly been documented. In this context, we analyse the Loitoktok network for implemented resource conflict resolution structures and identify potential actors to guide conflict-sensitive adaptation. This is based on social network data and processes that are collected using the saturation sampling technique to analyse mechanisms of brokerage. We find that there are three different forms of fused conflict resolution arrangements that integrate traditional institutions and private investors in the community. To effectively implement conflict-sensitive adaptation, we recommend the extension officers, the council of elders, local chiefs and private investors as potential conduits of knowledge in rural areas. In conclusion, efficiency of these fused conflict resolution institutions is aided by the presence of holistic resource management policies and diversification in conflict resolution actors and networks.

  4. Mechanism by which BMI influences leisure-time physical activity behavior.

    PubMed

    Godin, Gaston; Bélanger-Gravel, Ariane; Nolin, Bertrand

    2008-06-01

    The objective of this prospective study was to clarify the mechanism by which BMI influences leisure-time physical activity. This was achieved in accordance with the assumptions underlying the Theory of Planned Behavior (TPB), considered as one of the most useful theories to predict behavior adoption. At baseline, a sample of 1,530 respondents completed a short questionnaire to measure intention and perceived behavioral control (PBC), the two proximal determinants of behavior of TPB. Past behavior, sociodemographic variables, and weight and height were also assessed. The dependent variable, leisure-time physical activity was assessed 3 months later. Hierarchical multiple regression analyses revealed that BMI is a direct predictor of future leisure-time physical activity, not mediated by the variables of TPB. Additional hierarchical analyses indicated that BMI was not a moderator of the intention-behavior and PBC-behavior relationships. The results of this study suggest that high BMI is a significant negative determinant of leisure-time physical activity. This observation reinforces the importance of preventing weight gain as a health promotion strategy for avoiding a sedentary lifestyle.

  5. Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.

    PubMed

    Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si

    2017-07-01

    Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.

  6. Modeling Menstrual Cycle Length and Variability at the Approach of Menopause Using Hierarchical Change Point Models

    PubMed Central

    Huang, Xiaobi; Elliott, Michael R.; Harlow, Siobán D.

    2013-01-01

    SUMMARY As women approach menopause, the patterns of their menstrual cycle lengths change. To study these changes, we need to jointly model both the mean and variability of cycle length. Our proposed model incorporates separate mean and variance change points for each woman and a hierarchical model to link them together, along with regression components to include predictors of menopausal onset such as age at menarche and parity. Additional complexity arises from the fact that the calendar data have substantial missingness due to hormone use, surgery, and failure to report. We integrate multiple imputation and time-to event modeling in a Bayesian estimation framework to deal with different forms of the missingness. Posterior predictive model checks are applied to evaluate the model fit. Our method successfully models patterns of women’s menstrual cycle trajectories throughout their late reproductive life and identifies change points for mean and variability of segment length, providing insight into the menopausal process. More generally, our model points the way toward increasing use of joint mean-variance models to predict health outcomes and better understand disease processes. PMID:24729638

  7. Soft Mixer Assignment in a Hierarchical Generative Model of Natural Scene Statistics

    PubMed Central

    Schwartz, Odelia; Sejnowski, Terrence J.; Dayan, Peter

    2010-01-01

    Gaussian scale mixture models offer a top-down description of signal generation that captures key bottom-up statistical characteristics of filter responses to images. However, the pattern of dependence among the filters for this class of models is prespecified. We propose a novel extension to the gaussian scale mixture model that learns the pattern of dependence from observed inputs and thereby induces a hierarchical representation of these inputs. Specifically, we propose that inputs are generated by gaussian variables (modeling local filter structure), multiplied by a mixer variable that is assigned probabilistically to each input from a set of possible mixers. We demonstrate inference of both components of the generative model, for synthesized data and for different classes of natural images, such as a generic ensemble and faces. For natural images, the mixer variable assignments show invariances resembling those of complex cells in visual cortex; the statistics of the gaussian components of the model are in accord with the outputs of divisive normalization models. We also show how our model helps interrelate a wide range of models of image statistics and cortical processing. PMID:16999575

  8. A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems

    USGS Publications Warehouse

    Collins, Scott L.; Belnap, Jayne; Grimm, N. B.; Rudgers, J. A.; Dahm, Clifford N.; D'Odorico, P.; Litvak, M.; Natvig, D. O.; Peters, Douglas C.; Pockman, W. T.; Sinsabaugh, R. L.; Wolf, B. O.

    2014-01-01

    Ecological processes in arid lands are often described by the pulse-reserve paradigm, in which rain events drive biological activity until moisture is depleted, leaving a reserve. This paradigm is frequently applied to processes stimulated by one or a few precipitation events within a growing season. Here we expand the original framework in time and space and include other pulses that interact with rainfall. This new hierarchical pulse-dynamics framework integrates space and time through pulse-driven exchanges, interactions, transitions, and transfers that occur across individual to multiple pulses extending from micro to watershed scales. Climate change will likely alter the size, frequency, and intensity of precipitation pulses in the future, and arid-land ecosystems are known to be highly sensitive to climate variability. Thus, a more comprehensive understanding of arid-land pulse dynamics is needed to determine how these ecosystems will respond to, and be shaped by, increased climate variability.

  9. A Bayesian hierarchical model with spatial variable selection: the effect of weather on insurance claims

    PubMed Central

    Scheel, Ida; Ferkingstad, Egil; Frigessi, Arnoldo; Haug, Ola; Hinnerichsen, Mikkel; Meze-Hausken, Elisabeth

    2013-01-01

    Climate change will affect the insurance industry. We develop a Bayesian hierarchical statistical approach to explain and predict insurance losses due to weather events at a local geographic scale. The number of weather-related insurance claims is modelled by combining generalized linear models with spatially smoothed variable selection. Using Gibbs sampling and reversible jump Markov chain Monte Carlo methods, this model is fitted on daily weather and insurance data from each of the 319 municipalities which constitute southern and central Norway for the period 1997–2006. Precise out-of-sample predictions validate the model. Our results show interesting regional patterns in the effect of different weather covariates. In addition to being useful for insurance pricing, our model can be used for short-term predictions based on weather forecasts and for long-term predictions based on downscaled climate models. PMID:23396890

  10. The Influence of the Student Mobility Rate on the Graduation Rate in the State of New Jersey

    ERIC Educational Resources Information Center

    Ross, Lavetta S.

    2016-01-01

    This study examined the influence of the student mobility rate on the high school graduation rate of schools in the state of New Jersey. Variables found to have an influence on the graduation rate in the extant literature were evaluated and reported. The analysis included multiple and hierarchical regression models for school variables (i.e.,…

  11. A novel super-resolution camera model

    NASA Astrophysics Data System (ADS)

    Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli

    2015-05-01

    Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.

  12. Hierarchical models and the analysis of bird survey information

    USGS Publications Warehouse

    Sauer, J.R.; Link, W.A.

    2003-01-01

    Management of birds often requires analysis of collections of estimates. We describe a hierarchical modeling approach to the analysis of these data, in which parameters associated with the individual species estimates are treated as random variables, and probability statements are made about the species parameters conditioned on the data. A Markov-Chain Monte Carlo (MCMC) procedure is used to fit the hierarchical model. This approach is computer intensive, and is based upon simulation. MCMC allows for estimation both of parameters and of derived statistics. To illustrate the application of this method, we use the case in which we are interested in attributes of a collection of estimates of population change. Using data for 28 species of grassland-breeding birds from the North American Breeding Bird Survey, we estimate the number of species with increasing populations, provide precision-adjusted rankings of species trends, and describe a measure of population stability as the probability that the trend for a species is within a certain interval. Hierarchical models can be applied to a variety of bird survey applications, and we are investigating their use in estimation of population change from survey data.

  13. A Bayesian hierarchical approach to comparative audit for carotid surgery.

    PubMed

    Kuhan, G; Marshall, E C; Abidia, A F; Chetter, I C; McCollum, P T

    2002-12-01

    the aim of this study was to illustrate how a Bayesian hierarchical modelling approach can aid the reliable comparison of outcome rates between surgeons. retrospective analysis of prospective and retrospective data. binary outcome data (death/stroke within 30 days), together with information on 15 possible risk factors specific for CEA were available on 836 CEAs performed by four vascular surgeons from 1992-99. The median patient age was 68 (range 38-86) years and 60% were men. the model was developed using the WinBUGS software. After adjusting for patient-level risk factors, a cross-validatory approach was adopted to identify "divergent" performance. A ranking exercise was also carried out. the overall observed 30-day stroke/death rate was 3.9% (33/836). The model found diabetes, stroke and heart disease to be significant risk factors. There was no significant difference between the predicted and observed outcome rates for any surgeon (Bayesian p -value>0.05). Each surgeon had a median rank of 3 with associated 95% CI 1.0-5.0, despite the variability of observed stroke/death rate from 2.9-4.4%. After risk adjustment, there was very little residual between-surgeon variability in outcome rate. Bayesian hierarchical models can help to accurately quantify the uncertainty associated with surgeons' performance and rank.

  14. Hierarchical Organization of Auditory and Motor Representations in Speech Perception: Evidence from Searchlight Similarity Analysis.

    PubMed

    Evans, Samuel; Davis, Matthew H

    2015-12-01

    How humans extract the identity of speech sounds from highly variable acoustic signals remains unclear. Here, we use searchlight representational similarity analysis (RSA) to localize and characterize neural representations of syllables at different levels of the hierarchically organized temporo-frontal pathways for speech perception. We asked participants to listen to spoken syllables that differed considerably in their surface acoustic form by changing speaker and degrading surface acoustics using noise-vocoding and sine wave synthesis while we recorded neural responses with functional magnetic resonance imaging. We found evidence for a graded hierarchy of abstraction across the brain. At the peak of the hierarchy, neural representations in somatomotor cortex encoded syllable identity but not surface acoustic form, at the base of the hierarchy, primary auditory cortex showed the reverse. In contrast, bilateral temporal cortex exhibited an intermediate response, encoding both syllable identity and the surface acoustic form of speech. Regions of somatomotor cortex associated with encoding syllable identity in perception were also engaged when producing the same syllables in a separate session. These findings are consistent with a hierarchical account of how variable acoustic signals are transformed into abstract representations of the identity of speech sounds. © The Author 2015. Published by Oxford University Press.

  15. [Mother-child relationship and associated factors: Hierarchical analysis of the population base in a Brazilian state capital - BRISA Study].

    PubMed

    Cavalcante, Milady Cutrim Vieira; Lamy, Fernando; França, Ana Karina Teixeira da Cunha; Lamy, Zeni Carvalho

    2017-05-01

    Several factors can interfere in the mother-child relationship. Studies about different maternal characteristics and this relationship are scarce; they mainly evaluate women with psychopathology and use simultaneous regression models with adjustment for multiple confounders. This study aimed to assess factors associated with losses in the mother-child relationship through a cohort of 3,215 mothers of children between 15 and 36 months of age. Losses in the mother-child relationship, assessed by the Postpartum Bonding Questionnaire, was the outcome variable and the explanatory variables were demographic, socioeconomic, reproductive health and mental health of mothers as well as the conditions of the birth of children. It used multivariate regression analysis with a hierarchical approach in which the hierarchical blocks were structured according to the influence on the mother-child relationship. The prevalence of losses in the mother-child relationship was high (12.6%) and associated risk factors to lower maternal education (RR = 1.64), having unplanned pregnancy (RR = 1.42), consumption of alcoholic beverages during pregnancy (RR = 1.42) and maternal stress symptoms (RR = 1.88) and depression (RR = 2.00). Education and elements related to mental health were risks for damage in the mother-child relationship.

  16. Not Waving but Drowning: A Review of Tufte's "The Cognitive Style of PowerPoint"

    ERIC Educational Resources Information Center

    Kangas, Brian D.

    2012-01-01

    "The Cognitive Style of PowerPoint: Pitching Out Corrupts Within" by Edward Tufte (2006) condemns the software for failing to help users achieve many of the goals of an effective presentation and instead offers a low resolution platform with a deeply hierarchical single-path structure capable of convening a trivial amount of information even over…

  17. Arctic storms simulated in atmospheric general circulation models under uniform high, uniform low, and variable resolutions

    NASA Astrophysics Data System (ADS)

    Roesler, E. L.; Bosler, P. A.; Taylor, M.

    2016-12-01

    The impact of strong extratropical storms on coastal communities is large, and the extent to which storms will change with a warming Arctic is unknown. Understanding storms in reanalysis and in climate models is important for future predictions. We know that the number of detected Arctic storms in reanalysis is sensitive to grid resolution. To understand Arctic storm sensitivity to resolution in climate models, we describe simulations designed to identify and compare Arctic storms at uniform low resolution (1 degree), at uniform high resolution (1/8 degree), and at variable resolution (1 degree to 1/8 degree). High-resolution simulations resolve more fine-scale structure and extremes, such as storms, in the atmosphere than a uniform low-resolution simulation. However, the computational cost of running a globally uniform high-resolution simulation is often prohibitive. The variable resolution tool in atmospheric general circulation models permits regional high-resolution solutions at a fraction of the computational cost. The storms are identified using the open-source search algorithm, Stride Search. The uniform high-resolution simulation has over 50% more storms than the uniform low-resolution and over 25% more storms than the variable resolution simulations. Storm statistics from each of the simulations is presented and compared with reanalysis. We propose variable resolution as a cost-effective means of investigating physics/dynamics coupling in the Arctic environment. Future work will include comparisons with observed storms to investigate tuning parameters for high resolution models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7402 A

  18. Multimodal imaging of the human knee down to the cellular level

    NASA Astrophysics Data System (ADS)

    Schulz, G.; Götz, C.; Müller-Gerbl, M.; Zanette, I.; Zdora, M.-C.; Khimchenko, A.; Deyhle, H.; Thalmann, P.; Müller, B.

    2017-06-01

    Computed tomography reaches the best spatial resolution for the three-dimensional visualization of human tissues among the available nondestructive clinical imaging techniques. Nowadays, sub-millimeter voxel sizes are regularly obtained. Regarding investigations on true micrometer level, lab-based micro-CT (μCT) has become gold standard. The aim of the present study is firstly the hierarchical investigation of a human knee post mortem using hard X-ray μCT and secondly a multimodal imaging using absorption and phase contrast modes in order to investigate hard (bone) and soft (cartilage) tissues on the cellular level. After the visualization of the entire knee using a clinical CT, a hierarchical imaging study was performed using the lab-system nanotom® m. First, the entire knee was measured with a pixel length of 65 μm. The highest resolution with a pixel length of 3 μm could be achieved after extracting cylindrically shaped plugs from the femoral bones. For the visualization of the cartilage, grating-based phase contrast μCT (I13-2, Diamond Light Source) was performed. With an effective voxel size of 2.3 μm it was possible to visualize individual chondrocytes within the cartilage.

  19. Hierarchical regulation of the genome: global changes in nucleosome organization potentiate genome response

    PubMed Central

    Sexton, Brittany S.; Druliner, Brooke R.; Vera, Daniel L.; Avey, Denis; Zhu, Fanxiu; Dennis, Jonathan H.

    2016-01-01

    Nucleosome occupancy is critically important in regulating access to the eukaryotic genome. Few studies in human cells have measured genome-wide nucleosome distributions at high temporal resolution during a response to a common stimulus. We measured nucleosome distributions at high temporal resolution following Kaposi's-sarcoma-associated herpesvirus (KSHV) reactivation using our newly developed mTSS-seq technology, which maps nucleosome distribution at the transcription start sites (TSS) of all human genes. Nucleosomes underwent widespread changes in organization 24 hours after KSHV reactivation and returned to their basal nucleosomal architecture 48 hours after KSHV reactivation. The widespread changes consisted of an indiscriminate remodeling event resulting in the loss of nucleosome rotational phasing signals. Additionally, one in six TSSs in the human genome possessed nucleosomes that are translationally remodeled. 72% of the loci with translationally remodeled nucleosomes have nucleosomes that moved to positions encoded by the underlying DNA sequence. Finally we demonstrated that these widespread alterations in nucleosomal architecture potentiated regulatory factor binding. These descriptions of nucleosomal architecture changes provide a new framework for understanding the role of chromatin in the genomic response, and have allowed us to propose a hierarchical model for chromatin-based regulation of genome response. PMID:26771136

  20. 3D Structural Model of High-Performance Non-Fullerene Polymer Solar Cells as Revealed by High-Resolution AFM.

    PubMed

    Shi, Shaowei; Chen, Xiaofeng; Liu, Xubo; Wu, Xuefei; Liu, Feng; Zhang, Zhi-Guo; Li, Yongfang; Russell, Thomas P; Wang, Dong

    2017-07-26

    Rapid improvements in nonfullerene polymer solar cells (PSCs) have brought power conversion efficiencies to greater than 12%. To further improve device performance, a fundamental understanding of the correlations between structure and performance is essential. In this paper, based on a typical high-performance system consisting of J61(one donor-acceptor (D-A) copolymer of benzodithiophene and fluorine substituted benzotriazole) and ITIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene), a 3D structural model is directly imaged by employing high-resolution atomic force microscopy (AFM). Hierarchical morphologies ranging from fiberlike crystallites, several nanometers in size, to a bicontinuous morphology, having domains tens of nanometers in size, are observed. A fibrillar interpenetrating networks of J61-rich domains embedded in a matrix comprised of a J61/ITIC is seen, reflecting the partial miscibility of J61 with ITIC. These hierarchical nanostructural characteristics are coupled to significantly enhanced exciton dissociation, and further contribute to photocurrent and final device performance.

  1. Waveform inversion for orthorhombic anisotropy with P waves: feasibility and resolution

    NASA Astrophysics Data System (ADS)

    Kazei, Vladimir; Alkhalifah, Tariq

    2018-05-01

    Various parametrizations have been suggested to simplify inversions of first arrivals, or P waves, in orthorhombic anisotropic media, but the number and type of retrievable parameters have not been decisively determined. We show that only six parameters can be retrieved from the dynamic linearized inversion of P waves. These parameters are different from the six parameters needed to describe the kinematics of P waves. Reflection-based radiation patterns from the P-P scattered waves are remapped into the spectral domain to allow for our resolution analysis based on the effective angle of illumination concept. Singular value decomposition of the spectral sensitivities from various azimuths, offset coverage scenarios and data bandwidths allows us to quantify the resolution of different parametrizations, taking into account the signal-to-noise ratio in a given experiment. According to our singular value analysis, when the primary goal of inversion is determining the velocity of the P waves, gradually adding anisotropy of lower orders (isotropic, vertically transversally isotropic and orthorhombic) in hierarchical parametrization is the best choice. Hierarchical parametrization reduces the trade-off between the parameters and makes gradual introduction of lower anisotropy orders straightforward. When all the anisotropic parameters affecting P-wave propagation need to be retrieved simultaneously, the classic parametrization of orthorhombic medium with elastic stiffness matrix coefficients and density is a better choice for inversion. We provide estimates of the number and set of parameters that can be retrieved from surface seismic data in different acquisition scenarios. To set up an inversion process, the singular values determine the number of parameters that can be inverted and the resolution matrices from the parametrizations can be used to ascertain the set of parameters that can be resolved.

  2. Collective influence in evolutionary social dilemmas

    NASA Astrophysics Data System (ADS)

    Szolnoki, Attila; Perc, Matjaž

    2016-03-01

    When evolutionary games are contested in structured populations, the degree of each player in the network plays an important role. If they exist, hubs often determine the fate of the population in remarkable ways. Recent research based on optimal percolation in random networks has shown, however, that the degree is neither the sole nor the best predictor of influence in complex networks. Low-degree nodes may also be optimal influencers if they are hierarchically linked to hubs. Taking this into account leads to the formalism of collective influence in complex networks, which as we show here, has far-reaching implications for the favorable resolution of social dilemmas. In particular, there exists an optimal hierarchical depth for the determination of collective influence that we use to describe the potency of players for passing their strategies, which depends on the strength of the social dilemma. Interestingly, the degree, which corresponds to the baseline depth zero, is optimal only when the temptation to defect is small. Our research reveals that evolutionary success stories are related to spreading processes which are rooted in favorable hierarchical structures that extend beyond local neighborhoods.

  3. Approximating gecko setae via direct laser lithography

    NASA Astrophysics Data System (ADS)

    Tricinci, Omar; Eason, Eric V.; Filippeschi, Carlo; Mondini, Alessio; Mazzolai, Barbara; Pugno, Nicola M.; Cutkosky, Mark R.; Greco, Francesco; Mattoli, Virgilio

    2018-07-01

    The biomimetic replication of dry adhesion present in the gecko’s foot has attracted great interest in recent years. All the microfabrication techniques used so far were not able to faithfully reproduce the hierarchical and complex three-dimensional geometry of the gecko’s setae, with features at the micro- and nano-scale, thus reducing the effectiveness that such conformal morphology could provide. By means of direct laser lithography we fabricated artificial hairs that faithfully reproduce the natural model. This technique allows the fabrication of three-dimensional microstructures with outstanding results in terms of reproducibility and resolution at the micro- and nano-scale. It was possible to get very close to the morphology of the natural gecko setae, especially concerning the hierarchical shape. We designed several morphologies for the setae and studied the effects in terms of adhesion and friction performances compared to the natural counterpart, showing the interplay between morphology, dimensional scaling and materials. Direct laser lithography promises great applications in the biomimetics field, paving the way to the implementation of the concept of hierarchical bioinspired dry adhesives.

  4. Highly conductive ribbons prepared by stick-slip assembly of organosoluble gold nanoparticles.

    PubMed

    Lawrence, Jimmy; Pham, Jonathan T; Lee, Dong Yun; Liu, Yujie; Crosby, Alfred J; Emrick, Todd

    2014-02-25

    Precisely positioning and assembling nanoparticles (NPs) into hierarchical nanostructures is opening opportunities in a wide variety of applications. Many techniques employed to produce hierarchical micrometer and nanoscale structures are limited by complex fabrication of templates and difficulties with scalability. Here we describe the fabrication and characterization of conductive nanoparticle ribbons prepared from surfactant-free organosoluble gold nanoparticles (Au NPs). We used a flow-coating technique in a controlled, stick-slip assembly to regulate the deposition of Au NPs into densely packed, multilayered structures. This affords centimeter-scale long, high-resolution Au NP ribbons with precise periodic spacing in a rapid manner, up to 2 orders-of-magnitude finer and faster than previously reported methods. These Au NP ribbons exhibit linear ohmic response, with conductivity that varies by changing the binding headgroup of the ligands. Controlling NP percolation during sintering (e.g., by adding polymer to retard rapid NP coalescence) enables the formation of highly conductive ribbons, similar to thermally sintered conductive adhesives. Hierarchical, conductive Au NP ribbons represent a promising platform to enable opportunities in sensing, optoelectronics, and electromechanical devices.

  5. Mapping dominant annual land cover from 2009 to 2013 across Victoria, Australia using satellite imagery

    PubMed Central

    Sheffield, Kathryn; Morse-McNabb, Elizabeth; Clark, Rob; Robson, Susan; Lewis, Hayden

    2015-01-01

    There is a demand for regularly updated, broad-scale, accurate land cover information in Victoria from multiple stakeholders. This paper documents the methods used to generate an annual dominant land cover (DLC) map for Victoria, Australia from 2009 to 2013. Vegetation phenology parameters derived from an annual time series of the Moderate Resolution Imaging Spectroradiometer Vegetation Indices 16-day 250 m (MOD13Q1) product were used to generate annual DLC maps, using a three-tiered hierarchical classification scheme. Classification accuracy at the broadest (primary) class level was over 91% for all years, while it ranged from 72 to 81% at the secondary class level. The most detailed class level (tertiary) had accuracy levels ranging from 61 to 68%. The approach used was able to accommodate variable climatic conditions, which had substantial impacts on vegetation growth patterns and agricultural production across the state between both regions and years. The production of an annual dataset with complete spatial coverage for Victoria provides a reliable base data set with an accuracy that is fit-for-purpose for many applications. PMID:26602009

  6. Linking landscape characteristics to local grizzly bear abundance using multiple detection methods in a hierarchical model

    USGS Publications Warehouse

    Graves, T.A.; Kendall, Katherine C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.

    2011-01-01

    Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system.

  7. HIERARCHICAL STRUCTURE OF MAGNETOHYDRODYNAMIC TURBULENCE IN POSITION-POSITION-VELOCITY SPACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhart, Blakesley; Lazarian, A.; Goodman, Alyssa

    2013-06-20

    Magnetohydrodynamic turbulence is able to create hierarchical structures in the interstellar medium (ISM) that are correlated on a wide range of scales via the energy cascade. We use hierarchical tree diagrams known as dendrograms to characterize structures in synthetic position-position-velocity (PPV) emission cubes of isothermal magnetohydrodynamic turbulence. We show that the structures and degree of hierarchy observed in PPV space are related to the presence of self-gravity and the global sonic and Alfvenic Mach numbers. Simulations with higher Alfvenic Mach number, self-gravity and supersonic flows display enhanced hierarchical structure. We observe a strong dependency on the sonic and Alfvenic Machmore » numbers and self-gravity when we apply the statistical moments (i.e., mean, variance, skewness, kurtosis) to the leaf and node distribution of the dendrogram. Simulations with self-gravity, larger magnetic field and higher sonic Mach number have dendrogram distributions with higher statistical moments. Application of the dendrogram to three-dimensional density cubes, also known as position-position-position (PPP) cubes, reveals that the dominant emission contours in PPP and PPV are related for supersonic gas but not for subsonic. We also explore the effects of smoothing, thermal broadening, and velocity resolution on the dendrograms in order to make our study more applicable to observational data. These results all point to hierarchical tree diagrams as being a promising additional tool for studying ISM turbulence and star forming regions for obtaining information on the degree of self-gravity, the Mach numbers and the complicated relationship between PPV and PPP data.« less

  8. Multimodal Hierarchical Imaging of Serial Sections for Finding Specific Cellular Targets within Large Volumes

    PubMed Central

    Wacker, Irene U.; Veith, Lisa; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R.

    2018-01-01

    Targeting specific cells at ultrastructural resolution within a mixed cell population or a tissue can be achieved by hierarchical imaging using a combination of light and electron microscopy. Samples embedded in resin are sectioned into arrays consisting of ribbons of hundreds of ultrathin sections and deposited on pieces of silicon wafer or conductively coated coverslips. Arrays are imaged at low resolution using a digital consumer like smartphone camera or light microscope (LM) for a rapid large area overview, or a wide field fluorescence microscope (fluorescence light microscopy (FLM)) after labeling with fluorophores. After post-staining with heavy metals, arrays are imaged in a scanning electron microscope (SEM). Selection of targets is possible from 3D reconstructions generated by FLM or from 3D reconstructions made from the SEM image stacks at intermediate resolution if no fluorescent markers are available. For ultrastructural analysis, selected targets are finally recorded in the SEM at high-resolution (a few nanometer image pixels). A ribbon-handling tool that can be retrofitted to any ultramicrotome is demonstrated. It helps with array production and substrate removal from the sectioning knife boat. A software platform that allows automated imaging of arrays in the SEM is discussed. Compared to other methods generating large volume EM data, such as serial block-face SEM (SBF-SEM) or focused ion beam SEM (FIB-SEM), this approach has two major advantages: (1) The resin-embedded sample is conserved, albeit in a sliced-up version. It can be stained in different ways and imaged with different resolutions. (2) As the sections can be post-stained, it is not necessary to use samples strongly block-stained with heavy metals to introduce contrast for SEM imaging or render the tissue blocks conductive. This makes the method applicable to a wide variety of materials and biological questions. Particularly prefixed materials e.g., from biopsy banks and pathology labs, can directly be embedded and reconstructed in 3D. PMID:29630046

  9. Mapping Regional Impervious Surface Distribution from Night Time Light: The Variability across Global Cities

    NASA Astrophysics Data System (ADS)

    Lin, M.; Yang, Z.; Park, H.; Qian, S.; Chen, J.; Fan, P.

    2017-12-01

    Impervious surface area (ISA) has become an important indicator for studying urban environments, but mapping ISA at the regional or global scale is still challenging due to the complexity of impervious surface features. The Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) nighttime light data is (NTL) and Resolution Imaging Spectroradiometer (MODIS) are the major remote sensing data source for regional ISA mapping. A single regression relationship between fractional ISA and NTL or various index derived based on NTL and MODIS vegetation index (NDVI) data was established in many previous studies for regional ISA mapping. However, due to the varying geographical, climatic, and socio-economic characteristics of different cities, the same regression relationship may vary significantly across different cities in the same region in terms of both fitting performance (i.e. R2) and the rate of change (Slope). In this study, we examined the regression relationship between fractional ISA and Vegetation Adjusted Nighttime light Urban Index (VANUI) for 120 randomly selected cities around the world with a multilevel regression model. We found that indeed there is substantial variability of both the R2 (0.68±0.29) and slopes (0.64±0.40) among individual regressions, which suggests that multilevel/hierarchical models are needed for accuracy improvement of future regional ISA mapping .Further analysis also let us find the this substantial variability are affected by climate conditions, socio-economic status, and urban spatial structures. However, all these effects are nonlinear rather than linear, thus could not modeled explicitly in multilevel linear regression models.

  10. DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability

    PubMed Central

    Little, Damon P.

    2011-01-01

    For DNA barcoding to succeed as a scientific endeavor an accurate and expeditious query sequence identification method is needed. Although a global multiple–sequence alignment can be generated for some barcoding markers (e.g. COI, rbcL), not all barcoding markers are as structurally conserved (e.g. matK). Thus, algorithms that depend on global multiple–sequence alignments are not universally applicable. Some sequence identification methods that use local pairwise alignments (e.g. BLAST) are unable to accurately differentiate between highly similar sequences and are not designed to cope with hierarchic phylogenetic relationships or within taxon variability. Here, I present a novel alignment–free sequence identification algorithm–BRONX–that accounts for observed within taxon variability and hierarchic relationships among taxa. BRONX identifies short variable segments and corresponding invariant flanking regions in reference sequences. These flanking regions are used to score variable regions in the query sequence without the production of a global multiple–sequence alignment. By incorporating observed within taxon variability into the scoring procedure, misidentifications arising from shared alleles/haplotypes are minimized. An explicit treatment of more inclusive terminals allows for separate identifications to be made for each taxonomic level and/or for user–defined terminals. BRONX performs better than all other methods when there is imperfect overlap between query and reference sequences (e.g. mini–barcode queries against a full–length barcode database). BRONX consistently produced better identifications at the genus–level for all query types. PMID:21857897

  11. Estimating the resolution limit of the map equation in community detection

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuro; Rosvall, Martin

    2015-01-01

    A community detection algorithm is considered to have a resolution limit if the scale of the smallest modules that can be resolved depends on the size of the analyzed subnetwork. The resolution limit is known to prevent some community detection algorithms from accurately identifying the modular structure of a network. In fact, any global objective function for measuring the quality of a two-level assignment of nodes into modules must have some sort of resolution limit or an external resolution parameter. However, it is yet unknown how the resolution limit affects the so-called map equation, which is known to be an efficient objective function for community detection. We derive an analytical estimate and conclude that the resolution limit of the map equation is set by the total number of links between modules instead of the total number of links in the full network as for modularity. This mechanism makes the resolution limit much less restrictive for the map equation than for modularity; in practice, it is orders of magnitudes smaller. Furthermore, we argue that the effect of the resolution limit often results from shoehorning multilevel modular structures into two-level descriptions. As we show, the hierarchical map equation effectively eliminates the resolution limit for networks with nested multilevel modular structures.

  12. unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance

    USGS Publications Warehouse

    Fiske, Ian J.; Chandler, Richard B.

    2011-01-01

    Ecological research uses data collection techniques that are prone to substantial and unique types of measurement error to address scientific questions about species abundance and distribution. These data collection schemes include a number of survey methods in which unmarked individuals are counted, or determined to be present, at spatially- referenced sites. Examples include site occupancy sampling, repeated counts, distance sampling, removal sampling, and double observer sampling. To appropriately analyze these data, hierarchical models have been developed to separately model explanatory variables of both a latent abundance or occurrence process and a conditional detection process. Because these models have a straightforward interpretation paralleling mechanisms under which the data arose, they have recently gained immense popularity. The common hierarchical structure of these models is well-suited for a unified modeling interface. The R package unmarked provides such a unified modeling framework, including tools for data exploration, model fitting, model criticism, post-hoc analysis, and model comparison.

  13. Ethnic Variables and Negative Life Events as Predictors of Depressive Symptoms and Suicidal Behaviors in Latino College Students: On the Centrality of "Receptivo a los Demás"

    ERIC Educational Resources Information Center

    Chang, Edward C.; Yu, Elizabeth A.; Yu, Tina; Kahle, Emma R.; Hernandez, Viviana; Kim, Jean M.; Jeglic, Elizabeth L.; Hirsch, Jameson K.

    2016-01-01

    In the present study, we examined ethnic variables (viz., multigroup ethnic identity and other group orientation) along with negative life events as predictors of depressive symptoms and suicidal behaviors in a sample of 156 (38 male and 118 female) Latino college students. Results of conducting hierarchical regression analyses indicated that the…

  14. A new classification scheme of European cold-water coral habitats: Implications for ecosystem-based management of the deep sea

    NASA Astrophysics Data System (ADS)

    Davies, J. S.; Guillaumont, B.; Tempera, F.; Vertino, A.; Beuck, L.; Ólafsdóttir, S. H.; Smith, C. J.; Fosså, J. H.; van den Beld, I. M. J.; Savini, A.; Rengstorf, A.; Bayle, C.; Bourillet, J.-F.; Arnaud-Haond, S.; Grehan, A.

    2017-11-01

    Cold-water corals (CWC) can form complex structures which provide refuge, nursery grounds and physical support for a diversity of other living organisms. However, irrespectively from such ecological significance, CWCs are still vulnerable to human pressures such as fishing, pollution, ocean acidification and global warming Providing coherent and representative conservation of vulnerable marine ecosystems including CWCs is one of the aims of the Marine Protected Areas networks being implemented across European seas and oceans under the EC Habitats Directive, the Marine Strategy Framework Directive and the OSPAR Convention. In order to adequately represent ecosystem diversity, these initiatives require a standardised habitat classification that organises the variety of biological assemblages and provides consistent and functional criteria to map them across European Seas. One such classification system, EUNIS, enables a broad level classification of the deep sea based on abiotic and geomorphological features. More detailed lower biotope-related levels are currently under-developed, particularly with regards to deep-water habitats (>200 m depth). This paper proposes a hierarchical CWC biotope classification scheme that could be incorporated by existing classification schemes such as EUNIS. The scheme was developed within the EU FP7 project CoralFISH to capture the variability of CWC habitats identified using a wealth of seafloor imagery datasets from across the Northeast Atlantic and Mediterranean. Depending on the resolution of the imagery being interpreted, this hierarchical scheme allows data to be recorded from broad CWC biotope categories down to detailed taxonomy-based levels, thereby providing a flexible yet valuable information level for management. The CWC biotope classification scheme identifies 81 biotopes and highlights the limitations of the classification framework and guidance provided by EUNIS, the EC Habitats Directive, OSPAR and FAO; which largely underrepresent CWC habitats.

  15. Mind the Gap! A Multilevel Analysis of Factors Related to Variation in Published Cost-Effectiveness Estimates within and between Countries.

    PubMed

    Boehler, Christian E H; Lord, Joanne

    2016-01-01

    Published cost-effectiveness estimates can vary considerably, both within and between countries. Despite extensive discussion, little is known empirically about factors relating to these variations. To use multilevel statistical modeling to integrate cost-effectiveness estimates from published economic evaluations to investigate potential causes of variation. Cost-effectiveness studies of statins for cardiovascular disease prevention were identified by systematic review. Estimates of incremental costs and effects were extracted from reported base case, sensitivity, and subgroup analyses, with estimates grouped in studies and in countries. Three bivariate models were developed: a cross-classified model to accommodate data from multinational studies, a hierarchical model with multinational data allocated to a single category at country level, and a hierarchical model excluding multinational data. Covariates at different levels were drawn from a long list of factors suggested in the literature. We found 67 studies reporting 2094 cost-effectiveness estimates relating to 23 countries (6 studies reporting for more than 1 country). Data and study-level covariates included patient characteristics, intervention and comparator cost, and some study methods (e.g., discount rates and time horizon). After adjusting for these factors, the proportion of variation attributable to countries was negligible in the cross-classified model but moderate in the hierarchical models (14%-19% of total variance). Country-level variables that improved the fit of the hierarchical models included measures of income and health care finance, health care resources, and population risks. Our analysis suggested that variability in published cost-effectiveness estimates is related more to differences in study methods than to differences in national context. Multinational studies were associated with much lower country-level variation than single-country studies. These findings are for a single clinical question and may be atypical. © The Author(s) 2015.

  16. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    PubMed

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  17. Neuroanatomical Markers of Social Hierarchy Recognition in Humans: A Combined ERP/MRI Study.

    PubMed

    Santamaría-García, Hernando; Burgaleta, Miguel; Sebastián-Gallés, Nuria

    2015-07-29

    Social hierarchy is an ubiquitous principle of social organization across animal species. Although some progress has been made in our understanding of how humans infer hierarchical identity, the neuroanatomical basis for perceiving key social dimensions of others remains unexplored. Here, we combined event-related potentials and structural MRI to reveal the neuroanatomical substrates of early status recognition. We designed a covertly simulated hierarchical setting in which participants performed a task either with a superior or with an inferior player. Participants showed higher amplitude in the N170 component when presented with a picture of a superior player compared with an inferior player. Crucially, the magnitude of this effect correlated with brain morphology of the posterior cingulate cortex, superior temporal gyrus, insula, fusiform gyrus, and caudate nucleus. We conclude that early recognition of social hierarchies relies on the structural properties of a network involved in the automatic recognition of social identity. Humans can perceive social hierarchies very rapidly, an ability that is key for social interactions. However, some individuals are more sensitive to hierarchical information than others. Currently, it is unknown how brain structure supports such fast-paced processes of social hierarchy perception and their individual differences. Here, we addressed this issue for the first time by combining the high temporal resolution of event-related potentials (ERPs) and the high spatial resolution of structural MRI. This methodological approach allowed us to unveil a novel association between ERP neuromarkers of social hierarchy perception and the morphology of several cortical and subcortical brain regions typically assumed to play a role in automatic processes of social cognition. Our results are a step forward in our understanding of the human social brain. Copyright © 2015 the authors 0270-6474/15/3510843-08$15.00/0.

  18. A new multi-scale method to reveal hierarchical modular structures in biological networks.

    PubMed

    Jiao, Qing-Ju; Huang, Yan; Shen, Hong-Bin

    2016-11-15

    Biological networks are effective tools for studying molecular interactions. Modular structure, in which genes or proteins may tend to be associated with functional modules or protein complexes, is a remarkable feature of biological networks. Mining modular structure from biological networks enables us to focus on a set of potentially important nodes, which provides a reliable guide to future biological experiments. The first fundamental challenge in mining modular structure from biological networks is that the quality of the observed network data is usually low owing to noise and incompleteness in the obtained networks. The second problem that poses a challenge to existing approaches to the mining of modular structure is that the organization of both functional modules and protein complexes in networks is far more complicated than was ever thought. For instance, the sizes of different modules vary considerably from each other and they often form multi-scale hierarchical structures. To solve these problems, we propose a new multi-scale protocol for mining modular structure (named ISIMB) driven by a node similarity metric, which works in an iteratively converged space to reduce the effects of the low data quality of the observed network data. The multi-scale node similarity metric couples both the local and the global topology of the network with a resolution regulator. By varying this resolution regulator to give different weightings to the local and global terms in the metric, the ISIMB method is able to fit the shape of modules and to detect them on different scales. Experiments on protein-protein interaction and genetic interaction networks show that our method can not only mine functional modules and protein complexes successfully, but can also predict functional modules from specific to general and reveal the hierarchical organization of protein complexes.

  19. Compression of the Global Land 1-km AVHRR dataset

    USGS Publications Warehouse

    Kess, B. L.; Steinwand, D.R.; Reichenbach, S.E.

    1996-01-01

    Large datasets, such as the Global Land 1-km Advanced Very High Resolution Radiometer (AVHRR) Data Set (Eidenshink and Faundeen 1994), require compression methods that provide efficient storage and quick access to portions of the data. A method of lossless compression is described that provides multiresolution decompression within geographic subwindows of multi-spectral, global, 1-km, AVHRR images. The compression algorithm segments each image into blocks and compresses each block in a hierarchical format. Users can access the data by specifying either a geographic subwindow or the whole image and a resolution (1,2,4, 8, or 16 km). The Global Land 1-km AVHRR data are presented in the Interrupted Goode's Homolosine map projection. These images contain masked regions for non-land areas which comprise 80 per cent of the image. A quadtree algorithm is used to compress the masked regions. The compressed region data are stored separately from the compressed land data. Results show that the masked regions compress to 0·143 per cent of the bytes they occupy in the test image and the land areas are compressed to 33·2 per cent of their original size. The entire image is compressed hierarchically to 6·72 per cent of the original image size, reducing the data from 9·05 gigabytes to 623 megabytes. These results are compared to the first order entropy of the residual image produced with lossless Joint Photographic Experts Group predictors. Compression results are also given for Lempel-Ziv-Welch (LZW) and LZ77, the algorithms used by UNIX compress and GZIP respectively. In addition to providing multiresolution decompression of geographic subwindows of the data, the hierarchical approach and the use of quadtrees for storing the masked regions gives a marked improvement over these popular methods.

  20. SACRIFICING THE ECOLOGICAL RESOLUTION OF VEGETATION MAPS AT THE ALTAR OF THEMATIC ACCURACY: ASSESSED MAP ACCURACIES FOR HIERARCHICAL VEGETATION CLASSIFICATIONS IN THE EASTERN GREAT BASIN OF THE SOUTHWEST REGIONAL GAP ANALYSIS PROJECT (SW REGAP)

    EPA Science Inventory

    The Southwest Regional Gap Analysis Project (SW ReGAP) improves upon previous GAP projects conducted in Arizona, Colorado, Nevada, New Mexico, and Utah to provide a
    consistent, seamless vegetation map for this large and ecologically diverse geographic region. Nevada's compone...

  1. New Directions in the Digital Signal Processing of Image Data.

    DTIC Science & Technology

    1987-05-01

    and identify by block number) FIELD GROUP SUB-GROUP Object detection and idLntification 12 01 restoration of photon noise limited imagery 15 04 image...from incomplete information, restoration of blurred images in additive and multiplicative noise , motion analysis with fast hierarchical algorithms...different resolutions. As is well known, the solution to the matched filter problem under additive white noise conditions is the correlation receiver

  2. Modeling and Observations of Massive Binaries with the B[e] Phenomenon

    NASA Astrophysics Data System (ADS)

    Lobel, A.; Martayan, C.; Mehner, A.; Groh, J. H.

    2017-02-01

    We report a long-term high-resolution spectroscopic monitoring program of LBVs and candidate LBVs with Mercator-HERMES. Based on 7 years of data, we recently showed that supergiant MWC 314 is a (Galactic) semi-detached eccentric binary with stationary permitted and forbidden emission lines in the optical and near-IR region. MWC 314 is a luminous and massive probable LBV star showing a strongly orbitally-modulated wind variability. We observe discrete absorption components in P Cyg He I lines signaling large-scale wind structures. In 2014 XMM observed X-rays indicating strong wind-wind collision in the close binary system (a ≃1 AU). A VLT-NACO imaging survey recently revealed that MWC 314 is a triple hierarchical system. We present a 3-D non-LTE radiative transfer model of the extended asymmetric wind structure around the primary B0 supergiant for modeling the orbital variability of P Cyg absorption (v∞˜1200 km s-1) in He I lines. An analysis of the HERMES monitoring spectra of the Galactic LBV star MWC 930 however does not show clear indications of a spectroscopic binary. The detailed long-term spectroscopic variability of this massive B[e] star is very similar to the spectroscopic variability of the prototypical blue hypergiant S Dor in the LMC. We observe prominent P Cyg line shapes in MWC 930 that temporarily transform into split absorption line cores during variability phases of its S Dor cycle over the past decade with a brightening in V of ˜ 1.2 mag. The line splitting phenomenon is very similar to the split metal line cores observed in pulsating Yellow Hypergiants ρ Cas (F-K Ia+) and HR 8752 (A-K Ia+) with [Ca II] and [N II] emission lines. We propose the line core splitting in MWC 930 is due to optically thick central line emission produced in the inner ionized wind region becoming mechanically shock-excited with the increase of R* and decrease of Teff of the LBV.

  3. Advances in Parameter and Uncertainty Quantification Using Bayesian Hierarchical Techniques with a Spatially Referenced Watershed Model (Invited)

    NASA Astrophysics Data System (ADS)

    Alexander, R. B.; Boyer, E. W.; Schwarz, G. E.; Smith, R. A.

    2013-12-01

    Estimating water and material stores and fluxes in watershed studies is frequently complicated by uncertainties in quantifying hydrological and biogeochemical effects of factors such as land use, soils, and climate. Although these process-related effects are commonly measured and modeled in separate catchments, researchers are especially challenged by their complexity across catchments and diverse environmental settings, leading to a poor understanding of how model parameters and prediction uncertainties vary spatially. To address these concerns, we illustrate the use of Bayesian hierarchical modeling techniques with a dynamic version of the spatially referenced watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes). The dynamic SPARROW model is designed to predict streamflow and other water cycle components (e.g., evapotranspiration, soil and groundwater storage) for monthly varying hydrological regimes, using mechanistic functions, mass conservation constraints, and statistically estimated parameters. In this application, the model domain includes nearly 30,000 NHD (National Hydrologic Data) stream reaches and their associated catchments in the Susquehanna River Basin. We report the results of our comparisons of alternative models of varying complexity, including models with different explanatory variables as well as hierarchical models that account for spatial and temporal variability in model parameters and variance (error) components. The model errors are evaluated for changes with season and catchment size and correlations in time and space. The hierarchical models consist of a two-tiered structure in which climate forcing parameters are modeled as random variables, conditioned on watershed properties. Quantification of spatial and temporal variations in the hydrological parameters and model uncertainties in this approach leads to more efficient (lower variance) and less biased model predictions throughout the river network. Moreover, predictions of water-balance components are reported according to probabilistic metrics (e.g., percentiles, prediction intervals) that include both parameter and model uncertainties. These improvements in predictions of streamflow dynamics can inform the development of more accurate predictions of spatial and temporal variations in biogeochemical stores and fluxes (e.g., nutrients and carbon) in watersheds.

  4. A variable resolution nonhydrostatic global atmospheric semi-implicit semi-Lagrangian model

    NASA Astrophysics Data System (ADS)

    Pouliot, George Antoine

    2000-10-01

    The objective of this project is to develop a variable-resolution finite difference adiabatic global nonhydrostatic semi-implicit semi-Lagrangian (SISL) model based on the fully compressible nonhydrostatic atmospheric equations. To achieve this goal, a three-dimensional variable resolution dynamical core was developed and tested. The main characteristics of the dynamical core can be summarized as follows: Spherical coordinates were used in a global domain. A hydrostatic/nonhydrostatic switch was incorporated into the dynamical equations to use the fully compressible atmospheric equations. A generalized horizontal variable resolution grid was developed and incorporated into the model. For a variable resolution grid, in contrast to a uniform resolution grid, the order of accuracy of finite difference approximations is formally lost but remains close to the order of accuracy associated with the uniform resolution grid provided the grid stretching is not too significant. The SISL numerical scheme was implemented for the fully compressible set of equations. In addition, the generalized minimum residual (GMRES) method with restart and preconditioner was used to solve the three-dimensional elliptic equation derived from the discretized system of equations. The three-dimensional momentum equation was integrated in vector-form to incorporate the metric terms in the calculations of the trajectories. Using global re-analysis data for a specific test case, the model was compared to similar SISL models previously developed. Reasonable agreement between the model and the other independently developed models was obtained. The Held-Suarez test for dynamical cores was used for a long integration and the model was successfully integrated for up to 1200 days. Idealized topography was used to test the variable resolution component of the model. Nonhydrostatic effects were simulated at grid spacings of 400 meters with idealized topography and uniform flow. Using a high-resolution topographic data set and the variable resolution grid, sets of experiments with increasing resolution were performed over specific regions of interest. Using realistic initial conditions derived from re-analysis fields, nonhydrostatic effects were significant for grid spacings on the order of 0.1 degrees with orographic forcing. If the model code was adapted for use in a message passing interface (MPI) on a parallel supercomputer today, it was estimated that a global grid spacing of 0.1 degrees would be achievable for a global model. In this case, nonhydrostatic effects would be significant for most areas. A variable resolution grid in a global model provides a unified and flexible approach to many climate and numerical weather prediction problems. The ability to configure the model from very fine to very coarse resolutions allows for the simulation of atmospheric phenomena at different scales using the same code. We have developed a dynamical core illustrating the feasibility of using a variable resolution in a global model.

  5. A Multi-sensor Approach to Identify Crop Sensitivity Related to Climate Variability in Central India

    NASA Astrophysics Data System (ADS)

    Mondal, P.; DeFries, R. S.; Jain, M.; Robertson, A. W.; Galford, G. L.; Small, C.

    2012-12-01

    Agriculture is a primary source of livelihood for over 70% of India's population, with staple crops (e.g. winter wheat) playing a pivotal role in satisfying an ever-increasing food-demand of a growing population. Agricultural yield in India has been reported to be highly correlated with the timing and total amount of monsoon rainfall and/or temperature depending on crop type. With expected change in future climate (temperature and precipitation), significant fluctuations in crop yields are projected for near future. To date, little work has identified the sensitivity of cropping intensity, or the number of crops planted in a given year, to climate variability. The objective of this study is to shed light on relative importance of different climate parameters through a statistical analysis of inter-annual variations in cropping intensity at a regional scale, which may help identify adaptive strategies in response to future climate anomalies. Our study focuses on a highly human-modified landscape in central India, and uses a multi-sensor approach to determine the sensitivity of agriculture to climate variability. First, we assembled the 16-day time-series of 250m Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), and applied a spline function-based smoothing algorithm to develop maps of monsoon and winter crops in Central India for a decadal time-span. A hierarchical model involving moderate resolution Landsat (30m) data was used to estimate the heterogeneity of the spectral signature within the MODIS dataset (250m). We then compared the season-specific cropping patterns with spatio-temporal variability in climate parameters derived from the Tropical Rainfall Measuring Mission (TRMM) data. Initial data indicates that the existence of a monsoon crop has moderate to strong correlation with wet season end date (ρ = .522), wet season length (ρ = .522), and the number of rainy days during wet season (ρ = .829). Existence of a winter crop, however, has a moderately strong correlation with wet season start date (ρ = .577). In addition, winter crop yield (ton/ha) has a moderate correlation with wet season end date (ρ = .624), number of rainy days during the wet season (ρ = .492), and during the dry season (ρ = .410). Future work will assess which other factors influence cropping intensity (e.g. access to irrigation among many other), since a complex interplay of bio-physical and socio-economic factors governs the decision-making at the farm-level, ultimately leading to inter-annual variability in cropping intensity and/or yield.

  6. A hierarchical cluster analysis of normal-tension glaucoma using spectral-domain optical coherence tomography parameters.

    PubMed

    Bae, Hyoung Won; Ji, Yongwoo; Lee, Hye Sun; Lee, Naeun; Hong, Samin; Seong, Gong Je; Sung, Kyung Rim; Kim, Chan Yun

    2015-01-01

    Normal-tension glaucoma (NTG) is a heterogenous disease, and there is still controversy about subclassifications of this disorder. On the basis of spectral-domain optical coherence tomography (SD-OCT), we subdivided NTG with hierarchical cluster analysis using optic nerve head (ONH) parameters and retinal nerve fiber layer (RNFL) thicknesses. A total of 200 eyes of 200 NTG patients between March 2011 and June 2012 underwent SD-OCT scans to measure ONH parameters and RNFL thicknesses. We classified NTG into homogenous subgroups based on these variables using a hierarchical cluster analysis, and compared clusters to evaluate diverse NTG characteristics. Three clusters were found after hierarchical cluster analysis. Cluster 1 (62 eyes) had the thickest RNFL and widest rim area, and showed early glaucoma features. Cluster 2 (60 eyes) was characterized by the largest cup/disc ratio and cup volume, and showed advanced glaucomatous damage. Cluster 3 (78 eyes) had small disc areas in SD-OCT and were comprised of patients with significantly younger age, longer axial length, and greater myopia than the other 2 groups. A hierarchical cluster analysis of SD-OCT scans divided NTG patients into 3 groups based upon ONH parameters and RNFL thicknesses. It is anticipated that the small disc area group comprised of younger and more myopic patients may show unique features unlike the other 2 groups.

  7. Clustering of Variables for Mixed Data

    NASA Astrophysics Data System (ADS)

    Saracco, J.; Chavent, M.

    2016-05-01

    This chapter presents clustering of variables which aim is to lump together strongly related variables. The proposed approach works on a mixed data set, i.e. on a data set which contains numerical variables and categorical variables. Two algorithms of clustering of variables are described: a hierarchical clustering and a k-means type clustering. A brief description of PCAmix method (that is a principal component analysis for mixed data) is provided, since the calculus of the synthetic variables summarizing the obtained clusters of variables is based on this multivariate method. Finally, the R packages ClustOfVar and PCAmixdata are illustrated on real mixed data. The PCAmix and ClustOfVar approaches are first used for dimension reduction (step 1) before applying in step 2 a standard clustering method to obtain groups of individuals.

  8. Bayesian Hierarchical Modeling of Cardiac Response to Particulate Matter Exposure

    EPA Science Inventory

    Studies have linked increased levels of particulate air pollution to decreased autonomic control, as measured by heart rate variability (HRV), particularly in populations such as the elderly. In this study, we use data obtained from the 1998 USEPA epidemiology-exposure longitudin...

  9. Atmospheric river influence on the intensification of extreme hydrologic events over the Western United States under climate change scenarios

    NASA Astrophysics Data System (ADS)

    Pagán, Brianna; Ashfaq, Moetasim; Nayak, Munir; Rastogi, Deeksha; Margulis, Steven; Pal, Jeremy

    2017-04-01

    The Western United States shares limited snowmelt driven water supplies amongst millions of people, a multi-billion dollar agriculture industry and fragile ecosystems. The climatology of the region is highly variable, characterized by the frequent occurrences of both flood and drought conditions that cause increasingly challenging water management issues. Although variable year to year, up to half of California's total precipitation can be linked to atmospheric rivers (ARs). Most notably, ARs have been connected to nearly every major historic flood in the region, establishing its critical role to water supply. Numerous prior studies have considered potential climate change impacts over the Western United States and have generally concluded that warmer temperatures will reduce snowpack and shift runoff timing, causing reductions to water supply. Here we examine the role of ARs as one mechanism for explaining projected increases in flood and drought frequency and intensity under climate change scenarios, vital information for water resource managers. A hierarchical modeling framework to downscale 11 coupled global climate models from CMIP5 is used to form an ensemble of high-resolution dynamically downscaled regional climate model (via RegCM4) simulations at 18-km and hydrological (via VIC) simulations at a 4-km resolution for baseline (1965-2005) and future (2010-2050) periods under RCP 8.5. Each ensemble member's ability to capture observational AR climatology over the baseline period is evaluated. Baseline to future period changes to AR size, duration, seasonal timing, trajectory, magnitude and frequency are presented. These changes to the characterizations of ARs in the region are used to determine if any links exist to changes in snowpack volume, runoff timing, and the occurrence of daily and annual cumulative extreme precipitation and runoff events. Shifts in extreme AR frequency and magnitude are expected to increase flood risks, which without adequate multi-year reservoir storage solutions could further strain water supply resources.

  10. Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.

    PubMed

    Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J

    2010-12-01

    Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies conservation planning. Journal compilation © 2010 Society for Conservation Biology. No claim to original US government works.

  11. Driver injury severity outcome analysis in rural interstate highway crashes: a two-level Bayesian logistic regression interpretation.

    PubMed

    Chen, Cong; Zhang, Guohui; Liu, Xiaoyue Cathy; Ci, Yusheng; Huang, Helai; Ma, Jianming; Chen, Yanyan; Guan, Hongzhi

    2016-12-01

    There is a high potential of severe injury outcomes in traffic crashes on rural interstate highways due to the significant amount of high speed traffic on these corridors. Hierarchical Bayesian models are capable of incorporating between-crash variance and within-crash correlations into traffic crash data analysis and are increasingly utilized in traffic crash severity analysis. This paper applies a hierarchical Bayesian logistic model to examine the significant factors at crash and vehicle/driver levels and their heterogeneous impacts on driver injury severity in rural interstate highway crashes. Analysis results indicate that the majority of the total variance is induced by the between-crash variance, showing the appropriateness of the utilized hierarchical modeling approach. Three crash-level variables and six vehicle/driver-level variables are found significant in predicting driver injury severities: road curve, maximum vehicle damage in a crash, number of vehicles in a crash, wet road surface, vehicle type, driver age, driver gender, driver seatbelt use and driver alcohol or drug involvement. Among these variables, road curve, functional and disabled vehicle damage in crash, single-vehicle crashes, female drivers, senior drivers, motorcycles and driver alcohol or drug involvement tend to increase the odds of drivers being incapably injured or killed in rural interstate crashes, while wet road surface, male drivers and driver seatbelt use are more likely to decrease the probability of severe driver injuries. The developed methodology and estimation results provide insightful understanding of the internal mechanism of rural interstate crashes and beneficial references for developing effective countermeasures for rural interstate crash prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. DM-BLD: differential methylation detection using a hierarchical Bayesian model exploiting local dependency.

    PubMed

    Wang, Xiao; Gu, Jinghua; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua

    2017-01-15

    The advent of high-throughput DNA methylation profiling techniques has enabled the possibility of accurate identification of differentially methylated genes for cancer research. The large number of measured loci facilitates whole genome methylation study, yet posing great challenges for differential methylation detection due to the high variability in tumor samples. We have developed a novel probabilistic approach, D: ifferential M: ethylation detection using a hierarchical B: ayesian model exploiting L: ocal D: ependency (DM-BLD), to detect differentially methylated genes based on a Bayesian framework. The DM-BLD approach features a joint model to capture both the local dependency of measured loci and the dependency of methylation change in samples. Specifically, the local dependency is modeled by Leroux conditional autoregressive structure; the dependency of methylation changes is modeled by a discrete Markov random field. A hierarchical Bayesian model is developed to fully take into account the local dependency for differential analysis, in which differential states are embedded as hidden variables. Simulation studies demonstrate that DM-BLD outperforms existing methods for differential methylation detection, particularly when the methylation change is moderate and the variability of methylation in samples is high. DM-BLD has been applied to breast cancer data to identify important methylated genes (such as polycomb target genes and genes involved in transcription factor activity) associated with breast cancer recurrence. A Matlab package of DM-BLD is available at http://www.cbil.ece.vt.edu/software.htm CONTACT: Xuan@vt.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Multiple drivers, scales, and interactions influence southern Appalachian stream salamander occupancy

    USGS Publications Warehouse

    Cecala, Kristen K.; Maerz, John C.; Halstead, Brian J.; Frisch, John R.; Gragson, Ted L.; Hepinstall-Cymerman, Jeffrey; Leigh, David S.; Jackson, C. Rhett; Peterson, James T.; Pringle, Catherine M.

    2018-01-01

    Understanding how factors that vary in spatial scale relate to population abundance is vital to forecasting species responses to environmental change. Stream and river ecosystems are inherently hierarchical, potentially resulting in organismal responses to fine‐scale changes in patch characteristics that are conditional on the watershed context. Here, we address how populations of two salamander species are affected by interactions among hierarchical processes operating at different scales within a rapidly changing landscape of the southern Appalachian Mountains. We modeled reach‐level occupancy of larval and adult black‐bellied salamanders (Desmognathus quadramaculatus) and larval Blue Ridge two‐lined salamanders (Eurycea wilderae) as a function of 17 different terrestrial and aquatic predictor variables that varied in spatial extent. We found that salamander occurrence varied widely among streams within fully forested catchments, but also exhibited species‐specific responses to changes in local conditions. While D. quadramaculatus declined predictably in relation to losses in forest cover, larval occupancy exhibited the strongest negative response to forest loss as well as decreases in elevation. Conversely, occupancy of E. wilderae was unassociated with watershed conditions, only responding negatively to higher proportions of fast‐flowing stream habitat types. Evaluation of hierarchical relationships demonstrated that most fine‐scale variables were closely correlated with broad watershed‐scale variables, suggesting that local reach‐scale factors have relatively smaller effects within the context of the larger landscape. Our results imply that effective management of southern Appalachian stream salamanders must first focus on the larger scale condition of watersheds before management of local‐scale conditions should proceed. Our findings confirm the results of some studies while refuting the results of others, which may indicate that prescriptive recommendations for range‐wide management of species or the application of a single management focus across large geographic areas is inappropriate.

  14. Clinical, laboratory, and demographic determinants of hospitalization due to dengue in 7613 patients: A retrospective study based on hierarchical models.

    PubMed

    da Silva, Natal Santos; Undurraga, Eduardo A; da Silva Ferreira, Elis Regina; Estofolete, Cássia Fernanda; Nogueira, Maurício Lacerda

    2018-01-01

    In Brazil, the incidence of hospitalization due to dengue, as an indicator of severity, has drastically increased since 1998. The objective of our study was to identify risk factors associated with subsequent hospitalization related to dengue. We analyzed 7613 dengue confirmed via serology (ELISA), non-structural protein 1, or polymerase chain reaction amplification. We used a hierarchical framework to generate a multivariate logistic regression based on a variety of risk variables. This was followed by multiple statistical analyses to assess hierarchical model accuracy, variance, goodness of fit, and whether or not this model reliably represented the population. The final model, which included age, sex, ethnicity, previous dengue infection, hemorrhagic manifestations, plasma leakage, and organ failure, showed that all measured parameters, with the exception of previous dengue, were statistically significant. The presence of organ failure was associated with the highest risk of subsequent dengue hospitalization (OR=5·75; CI=3·53-9·37). Therefore, plasma leakage and organ failure were the main indicators of hospitalization due to dengue, although other variables of minor importance should also be considered to refer dengue patients to hospital treatment, which may lead to a reduction in avoidable deaths as well as costs related to dengue. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Hierarchical time series bottom-up approach for forecast the export value in Central Java

    NASA Astrophysics Data System (ADS)

    Mahkya, D. A.; Ulama, B. S.; Suhartono

    2017-10-01

    The purpose of this study is Getting the best modeling and predicting the export value of Central Java using a Hierarchical Time Series. The export value is one variable injection in the economy of a country, meaning that if the export value of the country increases, the country’s economy will increase even more. Therefore, it is necessary appropriate modeling to predict the export value especially in Central Java. Export Value in Central Java are grouped into 21 commodities with each commodity has a different pattern. One approach that can be used time series is a hierarchical approach. Hierarchical Time Series is used Buttom-up. To Forecast the individual series at all levels using Autoregressive Integrated Moving Average (ARIMA), Radial Basis Function Neural Network (RBFNN), and Hybrid ARIMA-RBFNN. For the selection of the best models used Symmetric Mean Absolute Percentage Error (sMAPE). Results of the analysis showed that for the Export Value of Central Java, Bottom-up approach with Hybrid ARIMA-RBFNN modeling can be used for long-term predictions. As for the short and medium-term predictions, it can be used a bottom-up approach RBFNN modeling. Overall bottom-up approach with RBFNN modeling give the best result.

  16. Using GOMS models and hypertext to create representations of medical procedures for online display

    NASA Technical Reports Server (NTRS)

    Gugerty, Leo; Halgren, Shannon; Gosbee, John; Rudisill, Marianne

    1991-01-01

    This study investigated two methods to improve organization and presentation of computer-based medical procedures. A literature review suggested that the GOMS (goals, operators, methods, and selecton rules) model can assist in rigorous task analysis, which can then help generate initial design ideas for the human-computer interface. GOMS model are hierarchical in nature, so this study also investigated the effect of hierarchical, hypertext interfaces. We used a 2 x 2 between subjects design, including the following independent variables: procedure organization - GOMS model based vs. medical-textbook based; navigation type - hierarchical vs. linear (booklike). After naive subjects studies the online procedures, measures were taken of their memory for the content and the organization of the procedures. This design was repeated for two medical procedures. For one procedure, subjects who studied GOMS-based and hierarchical procedures remembered more about the procedures than other subjects. The results for the other procedure were less clear. However, data for both procedures showed a 'GOMSification effect'. That is, when asked to do a free recall of a procedure, subjects who had studies a textbook procedure often recalled key information in a location inconsistent with the procedure they actually studied, but consistent with the GOMS-based procedure.

  17. Predicting U.S. food demand in the 20th century: a new look at system dynamics

    NASA Astrophysics Data System (ADS)

    Moorthy, Mukund; Cellier, Francois E.; LaFrance, Jeffrey T.

    1998-08-01

    The paper describes a new methodology for predicting the behavior of macroeconomic variables. The approach is based on System Dynamics and Fuzzy Inductive Reasoning. A four- layer pseudo-hierarchical model is proposed. The bottom layer makes predications about population dynamics, age distributions among the populace, as well as demographics. The second layer makes predications about the general state of the economy, including such variables as inflation and unemployment. The third layer makes predictions about the demand for certain goods or services, such as milk products, used cars, mobile telephones, or internet services. The fourth and top layer makes predictions about the supply of such goods and services, both in terms of their prices. Each layer can be influenced by control variables the values of which are only determined at higher levels. In this sense, the model is not strictly hierarchical. For example, the demand for goods at level three depends on the prices of these goods, which are only determined at level four. Yet, the prices are themselves influenced by the expected demand. The methodology is exemplified by means of a macroeconomic model that makes predictions about US food demand during the 20th century.

  18. Hierarchical layered and semantic-based image segmentation using ergodicity map

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing

    2010-04-01

    Image segmentation plays a foundational role in image understanding and computer vision. Although great strides have been made and progress achieved on automatic/semi-automatic image segmentation algorithms, designing a generic, robust, and efficient image segmentation algorithm is still challenging. Human vision is still far superior compared to computer vision, especially in interpreting semantic meanings/objects in images. We present a hierarchical/layered semantic image segmentation algorithm that can automatically and efficiently segment images into hierarchical layered/multi-scaled semantic regions/objects with contextual topological relationships. The proposed algorithm bridges the gap between high-level semantics and low-level visual features/cues (such as color, intensity, edge, etc.) through utilizing a layered/hierarchical ergodicity map, where ergodicity is computed based on a space filling fractal concept and used as a region dissimilarity measurement. The algorithm applies a highly scalable, efficient, and adaptive Peano- Cesaro triangulation/tiling technique to decompose the given image into a set of similar/homogenous regions based on low-level visual cues in a top-down manner. The layered/hierarchical ergodicity map is built through a bottom-up region dissimilarity analysis. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level of detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanisms for contextual topological object/region relationship generation. Experiments have been conducted within the maritime image environment where the segmented layered semantic objects include the basic level objects (i.e. sky/land/water) and deeper level objects in the sky/land/water surfaces. Experimental results demonstrate the proposed algorithm has the capability to robustly and efficiently segment images into layered semantic objects/regions with contextual topological relationships.

  19. Hierarchically clustered adaptive quantization CMAC and its learning convergence.

    PubMed

    Teddy, S D; Lai, E M K; Quek, C

    2007-11-01

    The cerebellar model articulation controller (CMAC) neural network (NN) is a well-established computational model of the human cerebellum. Nevertheless, there are two major drawbacks associated with the uniform quantization scheme of the CMAC network. They are the following: (1) a constant output resolution associated with the entire input space and (2) the generalization-accuracy dilemma. Moreover, the size of the CMAC network is an exponential function of the number of inputs. Depending on the characteristics of the training data, only a small percentage of the entire set of CMAC memory cells is utilized. Therefore, the efficient utilization of the CMAC memory is a crucial issue. One approach is to quantize the input space nonuniformly. For existing nonuniformly quantized CMAC systems, there is a tradeoff between memory efficiency and computational complexity. Inspired by the underlying organizational mechanism of the human brain, this paper presents a novel CMAC architecture named hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC). HCAQ-CMAC employs hierarchical clustering for the nonuniform quantization of the input space to identify significant input segments and subsequently allocating more memory cells to these regions. The stability of the HCAQ-CMAC network is theoretically guaranteed by the proof of its learning convergence. The performance of the proposed network is subsequently benchmarked against the original CMAC network, as well as two other existing CMAC variants on two real-life applications, namely, automated control of car maneuver and modeling of the human blood glucose dynamics. The experimental results have demonstrated that the HCAQ-CMAC network offers an efficient memory allocation scheme and improves the generalization and accuracy of the network output to achieve better or comparable performances with smaller memory usages. Index Terms-Cerebellar model articulation controller (CMAC), hierarchical clustering, hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC), learning convergence, nonuniform quantization.

  20. Modeling urban air pollution with optimized hierarchical fuzzy inference system.

    PubMed

    Tashayo, Behnam; Alimohammadi, Abbas

    2016-10-01

    Environmental exposure assessments (EEA) and epidemiological studies require urban air pollution models with appropriate spatial and temporal resolutions. Uncertain available data and inflexible models can limit air pollution modeling techniques, particularly in under developing countries. This paper develops a hierarchical fuzzy inference system (HFIS) to model air pollution under different land use, transportation, and meteorological conditions. To improve performance, the system treats the issue as a large-scale and high-dimensional problem and develops the proposed model using a three-step approach. In the first step, a geospatial information system (GIS) and probabilistic methods are used to preprocess the data. In the second step, a hierarchical structure is generated based on the problem. In the third step, the accuracy and complexity of the model are simultaneously optimized with a multiple objective particle swarm optimization (MOPSO) algorithm. We examine the capabilities of the proposed model for predicting daily and annual mean PM2.5 and NO2 and compare the accuracy of the results with representative models from existing literature. The benefits provided by the model features, including probabilistic preprocessing, multi-objective optimization, and hierarchical structure, are precisely evaluated by comparing five different consecutive models in terms of accuracy and complexity criteria. Fivefold cross validation is used to assess the performance of the generated models. The respective average RMSEs and coefficients of determination (R (2)) for the test datasets using proposed model are as follows: daily PM2.5 = (8.13, 0.78), annual mean PM2.5 = (4.96, 0.80), daily NO2 = (5.63, 0.79), and annual mean NO2 = (2.89, 0.83). The obtained results demonstrate that the developed hierarchical fuzzy inference system can be utilized for modeling air pollution in EEA and epidemiological studies.

  1. Estimating and Modelling Bias of the Hierarchical Partitioning Public-Domain Software: Implications in Environmental Management and Conservation

    PubMed Central

    Olea, Pedro P.; Mateo-Tomás, Patricia; de Frutos, Ángel

    2010-01-01

    Background Hierarchical partitioning (HP) is an analytical method of multiple regression that identifies the most likely causal factors while alleviating multicollinearity problems. Its use is increasing in ecology and conservation by its usefulness for complementing multiple regression analysis. A public-domain software “hier.part package” has been developed for running HP in R software. Its authors highlight a “minor rounding error” for hierarchies constructed from >9 variables, however potential bias by using this module has not yet been examined. Knowing this bias is pivotal because, for example, the ranking obtained in HP is being used as a criterion for establishing priorities of conservation. Methodology/Principal Findings Using numerical simulations and two real examples, we assessed the robustness of this HP module in relation to the order the variables have in the analysis. Results indicated a considerable effect of the variable order on the amount of independent variance explained by predictors for models with >9 explanatory variables. For these models the nominal ranking of importance of the predictors changed with variable order, i.e. predictors declared important by its contribution in explaining the response variable frequently changed to be either most or less important with other variable orders. The probability of changing position of a variable was best explained by the difference in independent explanatory power between that variable and the previous one in the nominal ranking of importance. The lesser is this difference, the more likely is the change of position. Conclusions/Significance HP should be applied with caution when more than 9 explanatory variables are used to know ranking of covariate importance. The explained variance is not a useful parameter to use in models with more than 9 independent variables. The inconsistency in the results obtained by HP should be considered in future studies as well as in those already published. Some recommendations to improve the analysis with this HP module are given. PMID:20657734

  2. Modeling Hierarchical Non-Precious Metal Catalyst Cathodes for PEFCs Using Multi-Scale X-ray CT Imaging

    DOE PAGES

    Komini Babu, S.; Chung, H. T.; Wu, G.; ...

    2014-08-18

    This paper reports the development of a model for simulating polymer electrolyte fuel cells (PEFCs) with non-precious metal catalyst (NPMC) cathodes. NPMCs present an opportunity to dramatically reduce the cost of PEFC electrodes by removing the costly Pt catalyst. To address the significant transport losses in thick NPMC cathodes (ca. >60 µm), we developed a hierarchical electrode model that resolves the unique structure of the NPMCs we studied. A unique feature of the approach is the integration of the model with morphology data extracted from nano-scale resolution X-ray computed tomography (nano-CT) imaging of the electrodes. A notable finding is themore » impact of the liquid water accumulation in the electrode and the significant performance improvement possible if electrode flooding is mitigated.« less

  3. The potential of near-surface geophysical methods in a hierarchical monitoring approach for the detection of shallow CO2 seeps at geological storage sites

    NASA Astrophysics Data System (ADS)

    Sauer, U.; Schuetze, C.; Dietrich, P.

    2013-12-01

    The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The application of FTIR spectroscopy in combination with soil gas surveys and geophysical investigations results in a comprehensive site characterization, including atmospheric and near-surface CO2 distribution, as well as subsurface structural features. We observed a correlation of higher CO2 concentration and flux rates at the meso-scale that coincides with distinct geophysical anomalies. Here, we found prominent SP anomalies and zones of lower resistivity in the geoelectrical images compared to undisturbed regions nearby. This presentation will discuss the results we obtained and illustrate the influence of CO2 on electrical parameters measured under field conditions in relation to environmental parameters.

  4. Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability

    NASA Astrophysics Data System (ADS)

    Rackow, T.; Goessling, H. F.; Jung, T.; Sidorenko, D.; Semmler, T.; Barbi, D.; Handorf, D.

    2018-04-01

    This study forms part II of two papers describing ECHAM6-FESOM, a newly established global climate model with a unique multi-resolution sea ice-ocean component. While part I deals with the model description and the mean climate state, here we examine the internal climate variability of the model under constant present-day (1990) conditions. We (1) assess the internal variations in the model in terms of objective variability performance indices, (2) analyze variations in global mean surface temperature and put them in context to variations in the observed record, with particular emphasis on the recent warming slowdown, (3) analyze and validate the most common atmospheric and oceanic variability patterns, (4) diagnose the potential predictability of various climate indices, and (5) put the multi-resolution approach to the test by comparing two setups that differ only in oceanic resolution in the equatorial belt, where one ocean mesh keeps the coarse 1° resolution applied in the adjacent open-ocean regions and the other mesh is gradually refined to 0.25°. Objective variability performance indices show that, in the considered setups, ECHAM6-FESOM performs overall favourably compared to five well-established climate models. Internal variations of the global mean surface temperature in the model are consistent with observed fluctuations and suggest that the recent warming slowdown can be explained as a once-in-one-hundred-years event caused by internal climate variability; periods of strong cooling in the model (`hiatus' analogs) are mainly associated with ENSO-related variability and to a lesser degree also to PDO shifts, with the AMO playing a minor role. Common atmospheric and oceanic variability patterns are simulated largely consistent with their real counterparts. Typical deficits also found in other models at similar resolutions remain, in particular too weak non-seasonal variability of SSTs over large parts of the ocean and episodic periods of almost absent deep-water formation in the Labrador Sea, resulting in overestimated North Atlantic SST variability. Concerning the influence of locally (isotropically) increased resolution, the ENSO pattern and index statistics improve significantly with higher resolution around the equator, illustrating the potential of the novel unstructured-mesh method for global climate modeling.

  5. High-resolution regional climate model evaluation using variable-resolution CESM over California

    NASA Astrophysics Data System (ADS)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine-scale processes. This assessment is also relevant for addressing the scale limitation of current RCMs or VRGCMs when next-generation model resolution increases to ~10km and beyond.

  6. A hierarchical perspective on the diversity of butterfly species' responses to weather in the Sierra Nevada Mountains.

    PubMed

    Nice, Chris C; Forister, Matthew L; Gompert, Zachariah; Fordyce, James A; Shapiro, Arthur M

    2014-08-01

    An important and largely unaddressed issue in studies of biotic-abiotic relationships is the extent to which closely related species, or species living in similar habitats, have similar responses to weather. We addressed this by applying a hierarchical, Bayesian analytical framework to a long-term data set for butterflies which allowed us to simultaneously investigate responses of the entire fauna and individual species. A small number of variables had community-level effects. In particular, higher total annual snow depth had a positive effect on butterfly occurrences, while spring minimum temperature and El Niño-Southern Oscillation (ENSO) sea-surface variables for April-May had negative standardized coefficients. Our most important finding was that variables with large impacts at the community-level did not necessarily have a consistent response across all species. Species-level responses were much more similar to each other for snow depth compared to the other variables with strong community effects. This variation in species-level responses to weather variables raises important complications for the prediction of biotic responses to shifting climatic conditions. In addition, we found that clear associations with weather can be detected when considering ecologically delimited subsets of the community. For example, resident species and non-ruderal species had a much more unified response to weather variables compared to non-resident species and ruderal species, which suggests local adaptation to climate. These results highlight the complexity of biotic-abiotic interactions and confront that complexity with methodological advances that allow ecologists to understand communities and shifting climates while simultaneously revealing species-specific variation in response to climate.

  7. Patterns of Hierarchy in Formal and Principled Moral Reasoning.

    ERIC Educational Resources Information Center

    Zeidler, Dana Lewis

    Measurements of formal reasoning and principled moral reasoning ability were obtained from a sample of 99 tenth grade students. Specific modes of formal reasoning (proportional reasoning, controlling variables, probabilistic, correlational and combinatorial reasoning) were first examined. Findings support the notion of hierarchical relationships…

  8. A Cognitive Complexity Metric Applied to Cognitive Development

    ERIC Educational Resources Information Center

    Andrews, Glenda; Halford, Graeme S.

    2002-01-01

    Two experiments tested predictions from a theory in which processing load depends on relational complexity (RC), the number of variables related in a single decision. Tasks from six domains (transitivity, hierarchical classification, class inclusion, cardinality, relative-clause sentence comprehension, and hypothesis testing) were administered to…

  9. Modelling the regional variability of the probability of high trihalomethane occurrence in municipal drinking water.

    PubMed

    Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J

    2015-12-01

    The regional variability of the probability of occurrence of high total trihalomethane (TTHM) levels was assessed using multilevel logistic regression models that incorporate environmental and infrastructure characteristics. The models were structured in a three-level hierarchical configuration: samples (first level), drinking water utilities (DWUs, second level) and natural regions, an ecological hierarchical division from the Quebec ecological framework of reference (third level). They considered six independent variables: precipitation, temperature, source type, seasons, treatment type and pH. The average probability of TTHM concentrations exceeding the targeted threshold was 18.1%. The probability was influenced by seasons, treatment type, precipitations and temperature. The variance at all levels was significant, showing that the probability of TTHM concentrations exceeding the threshold is most likely to be similar if located within the same DWU and within the same natural region. However, most of the variance initially attributed to natural regions was explained by treatment types and clarified by spatial aggregation on treatment types. Nevertheless, even after controlling for treatment type, there was still significant regional variability of the probability of TTHM concentrations exceeding the threshold. Regional variability was particularly important for DWUs using chlorination alone since they lack the appropriate treatment required to reduce the amount of natural organic matter (NOM) in source water prior to disinfection. Results presented herein could be of interest to authorities in identifying regions with specific needs regarding drinking water quality and for epidemiological studies identifying geographical variations in population exposure to disinfection by-products (DBPs).

  10. Time-Hierarchical Clustering and Visualization of Weather Forecast Ensembles.

    PubMed

    Ferstl, Florian; Kanzler, Mathias; Rautenhaus, Marc; Westermann, Rudiger

    2017-01-01

    We propose a new approach for analyzing the temporal growth of the uncertainty in ensembles of weather forecasts which are started from perturbed but similar initial conditions. As an alternative to traditional approaches in meteorology, which use juxtaposition and animation of spaghetti plots of iso-contours, we make use of contour clustering and provide means to encode forecast dynamics and spread in one single visualization. Based on a given ensemble clustering in a specified time window, we merge clusters in time-reversed order to indicate when and where forecast trajectories start to diverge. We present and compare different visualizations of the resulting time-hierarchical grouping, including space-time surfaces built by connecting cluster representatives over time, and stacked contour variability plots. We demonstrate the effectiveness of our visual encodings with forecast examples of the European Centre for Medium-Range Weather Forecasts, which convey the evolution of specific features in the data as well as the temporally increasing spatial variability.

  11. Low-Resolution Screening of Early Stage Acquisition Simulation Scenario Development Decisions

    DTIC Science & Technology

    2012-12-01

    6 seconds) incorporating reload times and assumptions. Phit for min range is assumed to be 100% (excepting FGM- 148, which was estimated for a...User Interface HTN Hierarchical Task Network MCCDC Marine Corps Combat Development Command Phit Probability to hit the intended target Pkill...well beyond the scope of this study. 5. Weapon Capabilities Translation COMBATXXI develops situation probabilities to hit ( Phit ) and probabilities to

  12. Systematic, spatial imaging of large multimolecular assemblies and the emerging principles of supramolecular order in biological systems

    PubMed Central

    Schubert, Walter

    2013-01-01

    Understanding biological systems at the level of their relational (emergent) molecular properties in functional protein networks relies on imaging methods, able to spatially resolve a tissue or a cell as a giant, non-random, topologically defined collection of interacting supermolecules executing myriads of subcellular mechanisms. Here, the development and findings of parameter-unlimited functional super-resolution microscopy are described—a technology based on the fluorescence imaging cycler (IC) principle capable of co-mapping thousands of distinct biomolecular assemblies at high spatial resolution and differentiation (<40 nm distances). It is shown that the subcellular and transcellular features of such supermolecules can be described at the compositional and constitutional levels; that the spatial connection, relational stoichiometry, and topology of supermolecules generate hitherto unrecognized functional self-segmentation of biological tissues; that hierarchical features, common to thousands of simultaneously imaged supermolecules, can be identified; and how the resulting supramolecular order relates to spatial coding of cellular functionalities in biological systems. A large body of observations with IC molecular systems microscopy collected over 20 years have disclosed principles governed by a law of supramolecular segregation of cellular functionalities. This pervades phenomena, such as exceptional orderliness, functional selectivity, combinatorial and spatial periodicity, and hierarchical organization of large molecular systems, across all species investigated so far. This insight is based on the high degree of specificity, selectivity, and sensitivity of molecular recognition processes for fluorescence imaging beyond the spectral resolution limit, using probe libraries controlled by ICs. © 2013 The Authors. Journal of Molecular Recognition published by John Wiley & Sons, Ltd. PMID:24375580

  13. A Scalable Cyberinfrastructure for Interactive Visualization of Terascale Microscopy Data

    PubMed Central

    Venkat, A.; Christensen, C.; Gyulassy, A.; Summa, B.; Federer, F.; Angelucci, A.; Pascucci, V.

    2017-01-01

    The goal of the recently emerged field of connectomics is to generate a wiring diagram of the brain at different scales. To identify brain circuitry, neuroscientists use specialized microscopes to perform multichannel imaging of labeled neurons at a very high resolution. CLARITY tissue clearing allows imaging labeled circuits through entire tissue blocks, without the need for tissue sectioning and section-to-section alignment. Imaging the large and complex non-human primate brain with sufficient resolution to identify and disambiguate between axons, in particular, produces massive data, creating great computational challenges to the study of neural circuits. Researchers require novel software capabilities for compiling, stitching, and visualizing large imagery. In this work, we detail the image acquisition process and a hierarchical streaming platform, ViSUS, that enables interactive visualization of these massive multi-volume datasets using a standard desktop computer. The ViSUS visualization framework has previously been shown to be suitable for 3D combustion simulation, climate simulation and visualization of large scale panoramic images. The platform is organized around a hierarchical cache oblivious data layout, called the IDX file format, which enables interactive visualization and exploration in ViSUS, scaling to the largest 3D images. In this paper we showcase the VISUS framework used in an interactive setting with the microscopy data. PMID:28638896

  14. A Scalable Cyberinfrastructure for Interactive Visualization of Terascale Microscopy Data.

    PubMed

    Venkat, A; Christensen, C; Gyulassy, A; Summa, B; Federer, F; Angelucci, A; Pascucci, V

    2016-08-01

    The goal of the recently emerged field of connectomics is to generate a wiring diagram of the brain at different scales. To identify brain circuitry, neuroscientists use specialized microscopes to perform multichannel imaging of labeled neurons at a very high resolution. CLARITY tissue clearing allows imaging labeled circuits through entire tissue blocks, without the need for tissue sectioning and section-to-section alignment. Imaging the large and complex non-human primate brain with sufficient resolution to identify and disambiguate between axons, in particular, produces massive data, creating great computational challenges to the study of neural circuits. Researchers require novel software capabilities for compiling, stitching, and visualizing large imagery. In this work, we detail the image acquisition process and a hierarchical streaming platform, ViSUS, that enables interactive visualization of these massive multi-volume datasets using a standard desktop computer. The ViSUS visualization framework has previously been shown to be suitable for 3D combustion simulation, climate simulation and visualization of large scale panoramic images. The platform is organized around a hierarchical cache oblivious data layout, called the IDX file format, which enables interactive visualization and exploration in ViSUS, scaling to the largest 3D images. In this paper we showcase the VISUS framework used in an interactive setting with the microscopy data.

  15. Predicted seafloor facies of Central Santa Monica Bay, California

    USGS Publications Warehouse

    Dartnell, Peter; Gardner, James V.

    2004-01-01

    Summary -- Mapping surficial seafloor facies (sand, silt, muddy sand, rock, etc.) should be the first step in marine geological studies and is crucial when modeling sediment processes, pollution transport, deciphering tectonics, and defining benthic habitats. This report outlines an empirical technique that predicts the distribution of seafloor facies for a large area offshore Los Angeles, CA using high-resolution bathymetry and co-registered, calibrated backscatter from multibeam echosounders (MBES) correlated to ground-truth sediment samples. The technique uses a series of procedures that involve supervised classification and a hierarchical decision tree classification that are now available in advanced image-analysis software packages. Derivative variance images of both bathymetry and acoustic backscatter are calculated from the MBES data and then used in a hierarchical decision-tree framework to classify the MBES data into areas of rock, gravelly muddy sand, muddy sand, and mud. A quantitative accuracy assessment on the classification results is performed using ground-truth sediment samples. The predicted facies map is also ground-truthed using seafloor photographs and high-resolution sub-bottom seismic-reflection profiles. This Open-File Report contains the predicted seafloor facies map as a georeferenced TIFF image along with the multibeam bathymetry and acoustic backscatter data used in the study as well as an explanation of the empirical classification process.

  16. Predicting Tropical Cyclogenesis with a Global Mesoscale Model: Hierarchical Multiscale Interactions During the Formation of Tropical Cyclone Nargis(2008)

    NASA Technical Reports Server (NTRS)

    Shen, B.-W.; Tao, W.-K.; Lau, W. K.; Atlas, R.

    2010-01-01

    Very severe cyclonic storm Nargis devastated Burma (Myanmar) in May 2008, caused tremendous damage and numerous fatalities, and became one of the 10 deadliest tropical cyclones (TCs) of all time. To increase the warning time in order to save lives and reduce economic damage, it is important to extend the lead time in the prediction of TCs like Nargis. As recent advances in high-resolution global models and supercomputing technology have shown the potential for improving TC track and intensity forecasts, the ability of a global mesoscale model to predict TC genesis in the Indian Ocean is examined in this study with the aim of improving simulations of TC climate. High-resolution global simulations with real data show that the initial formation and intensity variations of TC Nargis can be realistically predicted up to 5 days in advance. Preliminary analysis suggests that improved representations of the following environmental conditions and their hierarchical multiscale interactions were the key to achieving this lead time: (1) a westerly wind burst and equatorial trough, (2) an enhanced monsoon circulation with a zero wind shear line, (3) good upper-level outflow with anti-cyclonic wind shear between 200 and 850 hPa, and (4) low-level moisture convergence.

  17. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data

    PubMed Central

    Feng, Hao; Conneely, Karen N.; Wu, Hao

    2014-01-01

    DNA methylation is an important epigenetic modification that has essential roles in cellular processes including gene regulation, development and disease and is widely dysregulated in most types of cancer. Recent advances in sequencing technology have enabled the measurement of DNA methylation at single nucleotide resolution through methods such as whole-genome bisulfite sequencing and reduced representation bisulfite sequencing. In DNA methylation studies, a key task is to identify differences under distinct biological contexts, for example, between tumor and normal tissue. A challenge in sequencing studies is that the number of biological replicates is often limited by the costs of sequencing. The small number of replicates leads to unstable variance estimation, which can reduce accuracy to detect differentially methylated loci (DML). Here we propose a novel statistical method to detect DML when comparing two treatment groups. The sequencing counts are described by a lognormal-beta-binomial hierarchical model, which provides a basis for information sharing across different CpG sites. A Wald test is developed for hypothesis testing at each CpG site. Simulation results show that the proposed method yields improved DML detection compared to existing methods, particularly when the number of replicates is low. The proposed method is implemented in the Bioconductor package DSS. PMID:24561809

  18. A novel algorithm for delineating wetland depressions and ...

    EPA Pesticide Factsheets

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features that are seldom fully filled with water. For instance, wetland depressions in the Prairie Pothole Region (PPR) are seasonally to permanently flooded wetlands characterized by nested hierarchical structures with dynamic filling- spilling-merging surface-water hydrological processes. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution LiDAR data and aerial imagery. We proposed a novel algorithm delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost path algorithm. The resulting flow network delineated putative temporary or seasonal flow paths connecting wetland depressions to each other or to the river network at scales finer than available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow modeling and hydrologic connectivity analysis. Presentation at AWRA Spring Specialty Conference in Sn

  19. High-resolution digital brain atlases: a Hubble telescope for the brain.

    PubMed

    Jones, Edward G; Stone, James M; Karten, Harvey J

    2011-05-01

    We describe implementation of a method for digitizing at microscopic resolution brain tissue sections containing normal and experimental data and for making the content readily accessible online. Web-accessible brain atlases and virtual microscopes for online examination can be developed using existing computer and internet technologies. Resulting databases, made up of hierarchically organized, multiresolution images, enable rapid, seamless navigation through the vast image datasets generated by high-resolution scanning. Tools for visualization and annotation of virtual microscope slides enable remote and universal data sharing. Interactive visualization of a complete series of brain sections digitized at subneuronal levels of resolution offers fine grain and large-scale localization and quantification of many aspects of neural organization and structure. The method is straightforward and replicable; it can increase accessibility and facilitate sharing of neuroanatomical data. It provides an opportunity for capturing and preserving irreplaceable, archival neurohistological collections and making them available to all scientists in perpetuity, if resources could be obtained from hitherto uninterested agencies of scientific support. © 2011 New York Academy of Sciences.

  20. Identity styles and conflict resolution styles: associations in mother-adolescent dyads.

    PubMed

    Missotten, Lies Christine; Luyckx, Koen; Branje, Susan; Vanhalst, Janne; Goossens, Luc

    2011-08-01

    Adolescent identity and parent-adolescent conflict have each attracted considerable research interest. However, few studies have examined the important link between the two constructs. The present study examined the associations between adolescent identity processing styles and adolescent conflict resolution styles in the mother-adolescent dyad. Questionnaires about conflict frequency and resolution were completed by 796 adolescents (66% female, mostly Caucasian) and their mothers. Adolescents also completed a measure on identity styles. Each identity style was hypothesized to relate to a specific conflict resolution behavior. Hierarchical regression analyses showed that the information-oriented identity style was positively associated with positive problem solving and negatively with conflict engagement and withdrawal, the normative style was positively associated with compliance, and, finally, the diffuse-avoidant style was positively associated with withdrawal and conflict engagement and negatively with positive problem solving. Our results demonstrated that the way in which adolescents tackle identity-relevant issues is related to the way in which they deal with conflicts with their mothers. Implications and suggestions for future research are discussed.

  1. Multi-Scale and Object-Oriented Analysis for Mountain Terrain Segmentation and Geomorphological Assessment

    NASA Astrophysics Data System (ADS)

    Marston, B. K.; Bishop, M. P.; Shroder, J. F.

    2009-12-01

    Digital terrain analysis of mountain topography is widely utilized for mapping landforms, assessing the role of surface processes in landscape evolution, and estimating the spatial variation of erosion. Numerous geomorphometry techniques exist to characterize terrain surface parameters, although their utility to characterize the spatial hierarchical structure of the topography and permit an assessment of the erosion/tectonic impact on the landscape is very limited due to scale and data integration issues. To address this problem, we apply scale-dependent geomorphometric and object-oriented analyses to characterize the hierarchical spatial structure of mountain topography. Specifically, we utilized a high resolution digital elevation model to characterize complex topography in the Shimshal Valley in the Western Himalaya of Pakistan. To accomplish this, we generate terrain objects (geomorphological features and landform) including valley floors and walls, drainage basins, drainage network, ridge network, slope facets, and elemental forms based upon curvature. Object-oriented analysis was used to characterize object properties accounting for object size, shape, and morphometry. The spatial overlay and integration of terrain objects at various scales defines the nature of the hierarchical organization. Our results indicate that variations in the spatial complexity of the terrain hierarchical organization is related to the spatio-temporal influence of surface processes and landscape evolution dynamics. Terrain segmentation and the integration of multi-scale terrain information permits further assessment of process domains and erosion, tectonic impact potential, and natural hazard potential. We demonstrate this with landform mapping and geomorphological assessment examples.

  2. Construction of pixel-level resolution DEMs from monocular images by shape and albedo from shading constrained with low-resolution DEM

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Liu, Wai Chung; Grumpe, Arne; Wöhler, Christian

    2018-06-01

    Lunar Digital Elevation Model (DEM) is important for lunar successful landing and exploration missions. Lunar DEMs are typically generated by photogrammetry or laser altimetry approaches. Photogrammetric methods require multiple stereo images of the region of interest and it may not be applicable in cases where stereo coverage is not available. In contrast, reflectance based shape reconstruction techniques, such as shape from shading (SfS) and shape and albedo from shading (SAfS), apply monocular images to generate DEMs with pixel-level resolution. We present a novel hierarchical SAfS method that refines a lower-resolution DEM to pixel-level resolution given a monocular image with known light source. We also estimate the corresponding pixel-wise albedo map in the process and based on that to regularize the shape reconstruction with pixel-level resolution based on the low-resolution DEM. In this study, a Lunar-Lambertian reflectance model is applied to estimate the albedo map. Experiments were carried out using monocular images from the Lunar Reconnaissance Orbiter Narrow Angle Camera (LRO NAC), with spatial resolution of 0.5-1.5 m per pixel, constrained by the Selenological and Engineering Explorer and LRO Elevation Model (SLDEM), with spatial resolution of 60 m. The results indicate that local details are well recovered by the proposed algorithm with plausible albedo estimation. The low-frequency topographic consistency depends on the quality of low-resolution DEM and the resolution difference between the image and the low-resolution DEM.

  3. Megavoltage computed tomography image guidance with helical tomotherapy in patients with vertebral tumors: analysis of factors influencing interobserver variability.

    PubMed

    Levegrün, Sabine; Pöttgen, Christoph; Jawad, Jehad Abu; Berkovic, Katharina; Hepp, Rodrigo; Stuschke, Martin

    2013-02-01

    To evaluate megavoltage computed tomography (MVCT)-based image guidance with helical tomotherapy in patients with vertebral tumors by analyzing factors influencing interobserver variability, considered as quality criterion of image guidance. Five radiation oncologists retrospectively registered 103 MVCTs in 10 patients to planning kilovoltage CTs by rigid transformations in 4 df. Interobserver variabilities were quantified using the standard deviations (SDs) of the distributions of the correction vector components about the observers' fraction mean. To assess intraobserver variabilities, registrations were repeated after ≥4 weeks. Residual deviations after setup correction due to uncorrectable rotational errors and elastic deformations were determined at 3 craniocaudal target positions. To differentiate observer-related variations in minimizing these residual deviations across the 3-dimensional MVCT from image resolution effects, 2-dimensional registrations were performed in 30 single transverse and sagittal MVCT slices. Axial and longitudinal MVCT image resolutions were quantified. For comparison, image resolution of kilovoltage cone-beam CTs (CBCTs) and interobserver variability in registrations of 43 CBCTs were determined. Axial MVCT image resolution is 3.9 lp/cm. Longitudinal MVCT resolution amounts to 6.3 mm, assessed as full-width at half-maximum of thin objects in MVCTs with finest pitch. Longitudinal CBCT resolution is better (full-width at half-maximum, 2.5 mm for CBCTs with 1-mm slices). In MVCT registrations, interobserver variability in the craniocaudal direction (SD 1.23 mm) is significantly larger than in the lateral and ventrodorsal directions (SD 0.84 and 0.91 mm, respectively) and significantly larger compared with CBCT alignments (SD 1.04 mm). Intraobserver variabilities are significantly smaller than corresponding interobserver variabilities (variance ratio [VR] 1.8-3.1). Compared with 3-dimensional registrations, 2-dimensional registrations have significantly smaller interobserver variability in the lateral and ventrodorsal directions (VR 3.8 and 2.8, respectively) but not in the craniocaudal direction (VR 0.75). Tomotherapy image guidance precision is affected by image resolution and residual deviations after setup correction. Eliminating the effect of residual deviations yields small interobserver variabilities with submillimeter precision in the axial plane. In contrast, interobserver variability in the craniocaudal direction is dominated by the poorer longitudinal MVCT image resolution. Residual deviations after image guidance exist and need to be considered when dose gradients ultimately achievable with image guided radiation therapy techniques are analyzed. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. College Tuition and Perceptions of Private University Quality

    ERIC Educational Resources Information Center

    Tang, Thomas Li-Ping; Tang, David Shin-Hsiung; Tang, Cindy Shin-Yi

    2004-01-01

    This research employs institutional characteristics and market-related factors to predict undergraduate students' tuition at 190 private colleges and universities in the USA. Results showed that the strongest correlations among variables for college tuition were reputation ranking and SAT scores. Results of a hierarchical multiple regression…

  5. Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance

    USGS Publications Warehouse

    Fiske, I.J.; Chandler, R.B.

    2011-01-01

    Ecological research uses data collection techniques that are prone to substantial and unique types of measurement error to address scientic questions about species abundance and distribution. These data collection schemes include a number of survey methods in which unmarked individuals are counted, or determined to be present, at spatially- referenced sites. Examples include site occupancy sampling, repeated counts, distance sampling, removal sampling, and double observer sampling. To appropriately analyze these data, hierarchical models have been developed to separately model explanatory variables of both a latent abundance or occurrence process and a conditional detection process. Because these models have a straightforward interpretation paralleling mecha- nisms under which the data arose, they have recently gained immense popularity. The common hierarchical structure of these models is well-suited for a unied modeling in- terface. The R package unmarked provides such a unied modeling framework, including tools for data exploration, model tting, model criticism, post-hoc analysis, and model comparison.

  6. School system evaluation by value added analysis under endogeneity.

    PubMed

    Manzi, Jorge; San Martín, Ernesto; Van Bellegem, Sébastien

    2014-01-01

    Value added is a common tool in educational research on effectiveness. It is often modeled as a (prediction of a) random effect in a specific hierarchical linear model. This paper shows that this modeling strategy is not valid when endogeneity is present. Endogeneity stems, for instance, from a correlation between the random effect in the hierarchical model and some of its covariates. This paper shows that this phenomenon is far from exceptional and can even be a generic problem when the covariates contain the prior score attainments, a typical situation in value added modeling. Starting from a general, model-free definition of value added, the paper derives an explicit expression of the value added in an endogeneous hierarchical linear Gaussian model. Inference on value added is proposed using an instrumental variable approach. The impact of endogeneity on the value added and the estimated value added is calculated accurately. This is also illustrated on a large data set of individual scores of about 200,000 students in Chile.

  7. Long-range correlations and patterns of recurrence in children and adults' attention to hierarchical displays

    PubMed Central

    Castillo, Ramon D.; Kloos, Heidi; Holden, John G.; Richardson, Michael J.

    2015-01-01

    In order to make sense of a scene, a person must pay attention to several levels of nested order, ranging from the most differentiated details of the display to the integrated whole. In adults, research shows that the processes of integration and differentiation have the signature of self-organization. Does the same hold for children? The current study addresses this question with children between 6 and 9 years of age, using two tasks that require attention to hierarchical displays. A group of adults were tested as well, for control purposes. To get at the question of self-organization, reaction times were submitted to a detrended fluctuation analysis and a recurrence quantification analysis. H exponents show a long-range correlations (1/f noise), and recurrence measures (percent determinism, maximum line, entropy, and trend), show a deterministic structure of variability being characteristic of self-organizing systems. Findings are discussed in terms of organism-environment coupling that gives rise to fluid attention to hierarchical displays. PMID:25999862

  8. Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management

    NASA Astrophysics Data System (ADS)

    Beck, Scott M.; McHale, Melissa R.; Hess, George R.

    2016-07-01

    Impervious surfaces degrade urban water quality, but their over-coverage has not explained the persistent water quality variation observed among catchments with similar rates of imperviousness. Land-cover patterns likely explain much of this variation, although little is known about how they vary among watersheds. Our goal was to analyze a series of urban catchments within a range of impervious cover to evaluate how land-cover varies among them. We then highlight examples from the literature to explore the potential effects of land-cover pattern variability for urban watershed management. High-resolution (1 m2) land-cover data were used to quantify 23 land-cover pattern and stormwater infrastructure metrics within 32 catchments across the Triangle Region of North Carolina. These metrics were used to analyze variability in land-cover patterns among the study catchments. We used hierarchical clustering to organize the catchments into four groups, each with a distinct landscape pattern. Among these groups, the connectivity of combined land-cover patches accounted for 40 %, and the size and shape of lawns and buildings accounted for 20 %, of the overall variation in land-cover patterns among catchments. Storm water infrastructure metrics accounted for 8 % of the remaining variation. Our analysis demonstrates that land-cover patterns do vary among urban catchments, and that trees and grass (lawns) are divergent cover types in urban systems. The complex interactions among land-covers have several direct implications for the ongoing management of urban watersheds.

  9. Application of growing hierarchical SOM for visualisation of network forensics traffic data.

    PubMed

    Palomo, E J; North, J; Elizondo, D; Luque, R M; Watson, T

    2012-08-01

    Digital investigation methods are becoming more and more important due to the proliferation of digital crimes and crimes involving digital evidence. Network forensics is a research area that gathers evidence by collecting and analysing network traffic data logs. This analysis can be a difficult process, especially because of the high variability of these attacks and large amount of data. Therefore, software tools that can help with these digital investigations are in great demand. In this paper, a novel approach to analysing and visualising network traffic data based on growing hierarchical self-organising maps (GHSOM) is presented. The self-organising map (SOM) has been shown to be successful for the analysis of highly-dimensional input data in data mining applications as well as for data visualisation in a more intuitive and understandable manner. However, the SOM has some problems related to its static topology and its inability to represent hierarchical relationships in the input data. The GHSOM tries to overcome these limitations by generating a hierarchical architecture that is automatically determined according to the input data and reflects the inherent hierarchical relationships among them. Moreover, the proposed GHSOM has been modified to correctly treat the qualitative features that are present in the traffic data in addition to the quantitative features. Experimental results show that this approach can be very useful for a better understanding of network traffic data, making it easier to search for evidence of attacks or anomalous behaviour in a network environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  11. Understanding seasonal variability of uncertainty in hydrological prediction

    NASA Astrophysics Data System (ADS)

    Li, M.; Wang, Q. J.

    2012-04-01

    Understanding uncertainty in hydrological prediction can be highly valuable for improving the reliability of streamflow prediction. In this study, a monthly water balance model, WAPABA, in a Bayesian joint probability with error models are presented to investigate the seasonal dependency of prediction error structure. A seasonal invariant error model, analogous to traditional time series analysis, uses constant parameters for model error and account for no seasonal variations. In contrast, a seasonal variant error model uses a different set of parameters for bias, variance and autocorrelation for each individual calendar month. Potential connection amongst model parameters from similar months is not considered within the seasonal variant model and could result in over-fitting and over-parameterization. A hierarchical error model further applies some distributional restrictions on model parameters within a Bayesian hierarchical framework. An iterative algorithm is implemented to expedite the maximum a posterior (MAP) estimation of a hierarchical error model. Three error models are applied to forecasting streamflow at a catchment in southeast Australia in a cross-validation analysis. This study also presents a number of statistical measures and graphical tools to compare the predictive skills of different error models. From probability integral transform histograms and other diagnostic graphs, the hierarchical error model conforms better to reliability when compared to the seasonal invariant error model. The hierarchical error model also generally provides the most accurate mean prediction in terms of the Nash-Sutcliffe model efficiency coefficient and the best probabilistic prediction in terms of the continuous ranked probability score (CRPS). The model parameters of the seasonal variant error model are very sensitive to each cross validation, while the hierarchical error model produces much more robust and reliable model parameters. Furthermore, the result of the hierarchical error model shows that most of model parameters are not seasonal variant except for error bias. The seasonal variant error model is likely to use more parameters than necessary to maximize the posterior likelihood. The model flexibility and robustness indicates that the hierarchical error model has great potential for future streamflow predictions.

  12. Adaptive resolution simulation of oligonucleotides

    NASA Astrophysics Data System (ADS)

    Netz, Paulo A.; Potestio, Raffaello; Kremer, Kurt

    2016-12-01

    Nucleic acids are characterized by a complex hierarchical structure and a variety of interaction mechanisms with other molecules. These features suggest the need of multiscale simulation methods in order to grasp the relevant physical properties of deoxyribonucleic acid (DNA) and RNA using in silico experiments. Here we report an implementation of a dual-resolution modeling of a DNA oligonucleotide in physiological conditions; in the presented setup only the nucleotide molecule and the solvent and ions in its proximity are described at the atomistic level; in contrast, the water molecules and ions far from the DNA are represented as computationally less expensive coarse-grained particles. Through the analysis of several structural and dynamical parameters, we show that this setup reliably reproduces the physical properties of the DNA molecule as observed in reference atomistic simulations. These results represent a first step towards a realistic multiscale modeling of nucleic acids and provide a quantitatively solid ground for their simulation using dual-resolution methods.

  13. Combining High Spatial Resolution Optical and LIDAR Data for Object-Based Image Classification

    NASA Astrophysics Data System (ADS)

    Li, R.; Zhang, T.; Geng, R.; Wang, L.

    2018-04-01

    In order to classify high spatial resolution images more accurately, in this research, a hierarchical rule-based object-based classification framework was developed based on a high-resolution image with airborne Light Detection and Ranging (LiDAR) data. The eCognition software is employed to conduct the whole process. In detail, firstly, the FBSP optimizer (Fuzzy-based Segmentation Parameter) is used to obtain the optimal scale parameters for different land cover types. Then, using the segmented regions as basic units, the classification rules for various land cover types are established according to the spectral, morphological and texture features extracted from the optical images, and the height feature from LiDAR respectively. Thirdly, the object classification results are evaluated by using the confusion matrix, overall accuracy and Kappa coefficients. As a result, a method using the combination of an aerial image and the airborne Lidar data shows higher accuracy.

  14. Cascade process modeling with mechanism-based hierarchical neural networks.

    PubMed

    Cong, Qiumei; Yu, Wen; Chai, Tianyou

    2010-02-01

    Cascade process, such as wastewater treatment plant, includes many nonlinear sub-systems and many variables. When the number of sub-systems is big, the input-output relation in the first block and the last block cannot represent the whole process. In this paper we use two techniques to overcome the above problem. Firstly we propose a new neural model: hierarchical neural networks to identify the cascade process; then we use serial structural mechanism model based on the physical equations to connect with neural model. A stable learning algorithm and theoretical analysis are given. Finally, this method is used to model a wastewater treatment plant. Real operational data of wastewater treatment plant is applied to illustrate the modeling approach.

  15. VR Employment Outcomes of Individuals with Autism Spectrum Disorders: A Decade in the Making

    ERIC Educational Resources Information Center

    Alverson, Charlotte Y.; Yamamoto, Scott H.

    2018-01-01

    This study utilized hierarchical linear modeling analysis of a 10-year extant dataset from Rehabilitation Services Administration to investigate significant predictors of employment outcomes for vocational rehabilitation (VR) clients with autism. Predictor variables were gender, ethnicity, attained education level, IEP status in high school,…

  16. Personality and Physical Correlates of Bulimic Symptomatology among Mexican American Female College Students.

    ERIC Educational Resources Information Center

    Lester, Regan; Petrie, Trent A.

    1995-01-01

    Examined the relationship of personality and physical variables to bulimic symptoms. Hierarchical regression analysis of a sample of Mexican American female students revealed that body mass and endorsement of United States societal values concerning attractiveness were related positively to bulimic symptomatology; age, body satisfaction, and…

  17. Economic and Demographic Factors Impacting Placement of Students with Autism

    ERIC Educational Resources Information Center

    Kurth, Jennifer A.; Mastergeorge, Ann M.; Paschall, Katherine

    2016-01-01

    Educational placement of students with autism is often associated with child factors, such as IQ and communication skills. However, variability in placement patterns across states suggests that other factors are at play. This study used hierarchical cluster analysis techniques to identify demographic, economic, and educational covariates…

  18. Educational Attainment as Process: Using Hierarchical Discrete-Time Event History Analysis to Model Rate of Progress

    ERIC Educational Resources Information Center

    Bahr, Peter Riley

    2009-01-01

    Variables that address student enrollment patterns (e.g., persistence, enrollment inconsistency, completed credit hours, course credit load, course completion rate, procrastination) constitute a longstanding fixture of analytical strategies in educational research, particularly research that focuses on explaining variation in academic outcomes.…

  19. Psychosocial and demographic predictors of fruit, juice and vegetable consumption among 11-14-year-old Boy Scouts

    USDA-ARS?s Scientific Manuscript database

    Psychosocial and demographic correlates of fruit, juice, and vegetable (FJV) consumption were investigated to guide how to increase FJV intake. Experimental design consisted of hierarchical multiple regression analysis of FJV consumption on demographics and psychosocial variables. Subjects were boys...

  20. Knowing When to Retire: The First Step towards Financial Planning in Malaysia

    ERIC Educational Resources Information Center

    Kock, Tan Hoe; Yoong, Folk Jee

    2011-01-01

    This article draws upon expected retirement age cohorts as a main determinant to financial planning preparation in Malaysia. The return rate was 55% from 600 questionnaires distributed. Five hypotheses were analyzed using hierarchical and stepwise regression analysis. The results revealed that expected retirement age cohort variables made…

  1. Functions of Marijuana Use in College Students

    ERIC Educational Resources Information Center

    Bates, Julie K.; Accordino, Michael P.; Hewes, Robert L.

    2010-01-01

    Hierarchical regression analysis was used to test the hypothesis that specific functional factors of marijuana use would predict past 30-day marijuana use in 425 college students more precisely than demographic variables alone. This hypothesis was confirmed. Functional factors of personal/physical enhancement as well as activity enhancement were…

  2. OBSERVATIONS OF HIERARCHICAL SOLAR-TYPE MULTIPLE STAR SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Lewis C. Jr.; Tokovinin, Andrei; Mason, Brian D.

    2015-10-15

    Twenty multiple stellar systems with solar-type primaries were observed at high angular resolution using the PALM-3000 adaptive optics system at the 5 m Hale telescope. The goal was to complement the knowledge of hierarchical multiplicity in the solar neighborhood by confirming recent discoveries by the visible Robo-AO system with new near-infrared observations with PALM-3000. The physical status of most, but not all, of the new pairs is confirmed by photometry in the Ks band and new positional measurements. In addition, we resolved for the first time five close sub-systems: the known astrometric binary in HIP 17129AB, companions to the primariesmore » of HIP 33555, and HIP 118213, and the companions to the secondaries in HIP 25300 and HIP 101430. We place the components on a color–magnitude diagram and discuss each multiple system individually.« less

  3. Hierarchical organization of butterfly gyroid nanostructures provide a time-frozen glimpse of intracellular membrane development

    NASA Astrophysics Data System (ADS)

    Wilts, Bodo; Winter, Benjamin; Klatt, Michael; Butz, Benjamin; Fischer, Michael; Kelly, Stephen; Spieker, Erdmann; Steiner, Ullrich; Schroeder-Turk, Gerd

    The formation of the biophotonic gyroid material in butterfly wing scales is an exceptional feat of evolutionary engineering of functional nanostructures. Previous work hypothesized that this nanostructure forms by chitin polymerization inside a convoluted membrane of corresponding shape in the endoplasmic reticulum. In vivo imaging however cannot yet elucidate this dynamic formation process, including whether membrane folding and chitin expression are simultaneous or subsequent processes. Here we show an unusual hierarchical ultrastructure in a Hairstreak butterfly that allows high-resolution 3D microscopy. Rather than the conventional polycrystalline space-filling arrangement, the gyroid occurs in isolated facetted crystallites with a pronounced size-gradient. This arrangement is interpreted as a sequence of time-frozen snapshots of the morphogenesis. This provides insight into the formation mechanisms of the nanoporous gyroid material, especially when compared among other butterflies with different arrangements. Financially supported through DFG, the NCCR Bio-inspired Mateirals and the SNF Ambizione programme.

  4. A hierarchical storage management (HSM) scheme for cost-effective on-line archival using lossy compression.

    PubMed

    Avrin, D E; Andriole, K P; Yin, L; Gould, R G; Arenson, R L

    2001-03-01

    A hierarchical storage management (HSM) scheme for cost-effective on-line archival of image data using lossy compression is described. This HSM scheme also provides an off-site tape backup mechanism and disaster recovery. The full-resolution image data are viewed originally for primary diagnosis, then losslessly compressed and sent off site to a tape backup archive. In addition, the original data are wavelet lossy compressed (at approximately 25:1 for computed radiography, 10:1 for computed tomography, and 5:1 for magnetic resonance) and stored on a large RAID device for maximum cost-effective, on-line storage and immediate retrieval of images for review and comparison. This HSM scheme provides a solution to 4 problems in image archiving, namely cost-effective on-line storage, disaster recovery of data, off-site tape backup for the legal record, and maximum intermediate storage and retrieval through the use of on-site lossy compression.

  5. A multiresolution hierarchical classification algorithm for filtering airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Chen, Chuanfa; Li, Yanyan; Li, Wei; Dai, Honglei

    2013-08-01

    We presented a multiresolution hierarchical classification (MHC) algorithm for differentiating ground from non-ground LiDAR point cloud based on point residuals from the interpolated raster surface. MHC includes three levels of hierarchy, with the simultaneous increase of cell resolution and residual threshold from the low to the high level of the hierarchy. At each level, the surface is iteratively interpolated towards the ground using thin plate spline (TPS) until no ground points are classified, and the classified ground points are used to update the surface in the next iteration. 15 groups of benchmark dataset, provided by the International Society for Photogrammetry and Remote Sensing (ISPRS) commission, were used to compare the performance of MHC with those of the 17 other publicized filtering methods. Results indicated that MHC with the average total error and average Cohen’s kappa coefficient of 4.11% and 86.27% performs better than all other filtering methods.

  6. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere

    NASA Technical Reports Server (NTRS)

    Gorski, K. M.; Hivon, Eric; Banday, A. J.; Wandelt, Benjamin D.; Hansen, Frode K.; Reinecke, Mstvos; Bartelmann, Matthia

    2005-01-01

    HEALPix the Hierarchical Equal Area isoLatitude Pixelization is a versatile structure for the pixelization of data on the sphere. An associated library of computational algorithms and visualization software supports fast scientific applications executable directly on discretized spherical maps generated from very large volumes of astronomical data. Originally developed to address the data processing and analysis needs of the present generation of cosmic microwave background experiments (e.g., BOOMERANG, WMAP), HEALPix can be expanded to meet many of the profound challenges that will arise in confrontation with the observational output of future missions and experiments, including, e.g., Planck, Herschel, SAFIR, and the Beyond Einstein inflation probe. In this paper we consider the requirements and implementation constraints on a framework that simultaneously enables an efficient discretization with associated hierarchical indexation and fast analysis/synthesis of functions defined on the sphere. We demonstrate how these are explicitly satisfied by HEALPix.

  7. Laminar fMRI and computational theories of brain function.

    PubMed

    Stephan, K E; Petzschner, F H; Kasper, L; Bayer, J; Wellstein, K V; Stefanics, G; Pruessmann, K P; Heinzle, J

    2017-11-02

    Recently developed methods for functional MRI at the resolution of cortical layers (laminar fMRI) offer a novel window into neurophysiological mechanisms of cortical activity. Beyond physiology, laminar fMRI also offers an unprecedented opportunity to test influential theories of brain function. Specifically, hierarchical Bayesian theories of brain function, such as predictive coding, assign specific computational roles to different cortical layers. Combined with computational models, laminar fMRI offers a unique opportunity to test these proposals noninvasively in humans. This review provides a brief overview of predictive coding and related hierarchical Bayesian theories, summarises their predictions with regard to layered cortical computations, examines how these predictions could be tested by laminar fMRI, and considers methodological challenges. We conclude by discussing the potential of laminar fMRI for clinically useful computational assays of layer-specific information processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Quantitative nanoscopy: Tackling sampling limitations in (S)TEM imaging of polymers and composites.

    PubMed

    Gnanasekaran, Karthikeyan; Snel, Roderick; de With, Gijsbertus; Friedrich, Heiner

    2016-01-01

    Sampling limitations in electron microscopy questions whether the analysis of a bulk material is representative, especially while analyzing hierarchical morphologies that extend over multiple length scales. We tackled this problem by automatically acquiring a large series of partially overlapping (S)TEM images with sufficient resolution, subsequently stitched together to generate a large-area map using an in-house developed acquisition toolbox (TU/e Acquisition ToolBox) and stitching module (TU/e Stitcher). In addition, we show that quantitative image analysis of the large scale maps provides representative information that can be related to the synthesis and process conditions of hierarchical materials, which moves electron microscopy analysis towards becoming a bulk characterization tool. We demonstrate the power of such an analysis by examining two different multi-phase materials that are structured over multiple length scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levegruen, Sabine, E-mail: sabine.levegruen@uni-due.de; Poettgen, Christoph; Abu Jawad, Jehad

    Purpose: To evaluate megavoltage computed tomography (MVCT)-based image guidance with helical tomotherapy in patients with vertebral tumors by analyzing factors influencing interobserver variability, considered as quality criterion of image guidance. Methods and Materials: Five radiation oncologists retrospectively registered 103 MVCTs in 10 patients to planning kilovoltage CTs by rigid transformations in 4 df. Interobserver variabilities were quantified using the standard deviations (SDs) of the distributions of the correction vector components about the observers' fraction mean. To assess intraobserver variabilities, registrations were repeated after {>=}4 weeks. Residual deviations after setup correction due to uncorrectable rotational errors and elastic deformations were determinedmore » at 3 craniocaudal target positions. To differentiate observer-related variations in minimizing these residual deviations across the 3-dimensional MVCT from image resolution effects, 2-dimensional registrations were performed in 30 single transverse and sagittal MVCT slices. Axial and longitudinal MVCT image resolutions were quantified. For comparison, image resolution of kilovoltage cone-beam CTs (CBCTs) and interobserver variability in registrations of 43 CBCTs were determined. Results: Axial MVCT image resolution is 3.9 lp/cm. Longitudinal MVCT resolution amounts to 6.3 mm, assessed as full-width at half-maximum of thin objects in MVCTs with finest pitch. Longitudinal CBCT resolution is better (full-width at half-maximum, 2.5 mm for CBCTs with 1-mm slices). In MVCT registrations, interobserver variability in the craniocaudal direction (SD 1.23 mm) is significantly larger than in the lateral and ventrodorsal directions (SD 0.84 and 0.91 mm, respectively) and significantly larger compared with CBCT alignments (SD 1.04 mm). Intraobserver variabilities are significantly smaller than corresponding interobserver variabilities (variance ratio [VR] 1.8-3.1). Compared with 3-dimensional registrations, 2-dimensional registrations have significantly smaller interobserver variability in the lateral and ventrodorsal directions (VR 3.8 and 2.8, respectively) but not in the craniocaudal direction (VR 0.75). Conclusion: Tomotherapy image guidance precision is affected by image resolution and residual deviations after setup correction. Eliminating the effect of residual deviations yields small interobserver variabilities with submillimeter precision in the axial plane. In contrast, interobserver variability in the craniocaudal direction is dominated by the poorer longitudinal MVCT image resolution. Residual deviations after image guidance exist and need to be considered when dose gradients ultimately achievable with image guided radiation therapy techniques are analyzed.« less

  10. Climate SPHINX: High-resolution present-day and future climate simulations with an improved representation of small-scale variability

    NASA Astrophysics Data System (ADS)

    Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Subramanian, Aneesh; Weisheimer, Antje; Christensen, Hannah; Juricke, Stephan; Palmer, Tim

    2016-04-01

    The PRACE Climate SPHINX project investigates the sensitivity of climate simulations to model resolution and stochastic parameterization. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in 30-years climate integrations as a function of model resolution (from 80km up to 16km for the atmosphere). The experiments include more than 70 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), using RCP8.5 CMIP5 forcing. A total amount of 20 million core hours will be used at end of the project (March 2016) and about 150 TBytes of post-processed data will be available to the climate community. Preliminary results show a clear improvement in the representation of climate variability over the Euro-Atlantic following resolution increase. More specifically, the well-known atmospheric blocking negative bias over Europe is definitely resolved. High resolution runs also show improved fidelity in representation of tropical variability - such as the MJO and its propagation - over the low resolution simulations. It is shown that including stochastic parameterization in the low resolution runs help to improve some of the aspects of the MJO propagation further. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).

  11. Comparison of four methods for deriving hospital standardised mortality ratios from a single hierarchical logistic regression model.

    PubMed

    Mohammed, Mohammed A; Manktelow, Bradley N; Hofer, Timothy P

    2016-04-01

    There is interest in deriving case-mix adjusted standardised mortality ratios so that comparisons between healthcare providers, such as hospitals, can be undertaken in the controversial belief that variability in standardised mortality ratios reflects quality of care. Typically standardised mortality ratios are derived using a fixed effects logistic regression model, without a hospital term in the model. This fails to account for the hierarchical structure of the data - patients nested within hospitals - and so a hierarchical logistic regression model is more appropriate. However, four methods have been advocated for deriving standardised mortality ratios from a hierarchical logistic regression model, but their agreement is not known and neither do we know which is to be preferred. We found significant differences between the four types of standardised mortality ratios because they reflect a range of underlying conceptual issues. The most subtle issue is the distinction between asking how an average patient fares in different hospitals versus how patients at a given hospital fare at an average hospital. Since the answers to these questions are not the same and since the choice between these two approaches is not obvious, the extent to which profiling hospitals on mortality can be undertaken safely and reliably, without resolving these methodological issues, remains questionable. © The Author(s) 2012.

  12. A hierarchical model for spatial capture-recapture data

    USGS Publications Warehouse

    Royle, J. Andrew; Young, K.V.

    2008-01-01

    Estimating density is a fundamental objective of many animal population studies. Application of methods for estimating population size from ostensibly closed populations is widespread, but ineffective for estimating absolute density because most populations are subject to short-term movements or so-called temporary emigration. This phenomenon invalidates the resulting estimates because the effective sample area is unknown. A number of methods involving the adjustment of estimates based on heuristic considerations are in widespread use. In this paper, a hierarchical model of spatially indexed capture recapture data is proposed for sampling based on area searches of spatial sample units subject to uniform sampling intensity. The hierarchical model contains explicit models for the distribution of individuals and their movements, in addition to an observation model that is conditional on the location of individuals during sampling. Bayesian analysis of the hierarchical model is achieved by the use of data augmentation, which allows for a straightforward implementation in the freely available software WinBUGS. We present results of a simulation study that was carried out to evaluate the operating characteristics of the Bayesian estimator under variable densities and movement patterns of individuals. An application of the model is presented for survey data on the flat-tailed horned lizard (Phrynosoma mcallii) in Arizona, USA.

  13. Assessment of Differential Item Functioning in Health-Related Outcomes: A Simulation and Empirical Analysis with Hierarchical Polytomous Data

    PubMed Central

    Sharafi, Zahra

    2017-01-01

    Background The purpose of this study was to evaluate the effectiveness of two methods of detecting differential item functioning (DIF) in the presence of multilevel data and polytomously scored items. The assessment of DIF with multilevel data (e.g., patients nested within hospitals, hospitals nested within districts) from large-scale assessment programs has received considerable attention but very few studies evaluated the effect of hierarchical structure of data on DIF detection for polytomously scored items. Methods The ordinal logistic regression (OLR) and hierarchical ordinal logistic regression (HOLR) were utilized to assess DIF in simulated and real multilevel polytomous data. Six factors (DIF magnitude, grouping variable, intraclass correlation coefficient, number of clusters, number of participants per cluster, and item discrimination parameter) with a fully crossed design were considered in the simulation study. Furthermore, data of Pediatric Quality of Life Inventory™ (PedsQL™) 4.0 collected from 576 healthy school children were analyzed. Results Overall, results indicate that both methods performed equivalently in terms of controlling Type I error and detection power rates. Conclusions The current study showed negligible difference between OLR and HOLR in detecting DIF with polytomously scored items in a hierarchical structure. Implications and considerations while analyzing real data were also discussed. PMID:29312463

  14. Assessment of Differential Item Functioning in Health-Related Outcomes: A Simulation and Empirical Analysis with Hierarchical Polytomous Data.

    PubMed

    Sharafi, Zahra; Mousavi, Amin; Ayatollahi, Seyyed Mohammad Taghi; Jafari, Peyman

    2017-01-01

    The purpose of this study was to evaluate the effectiveness of two methods of detecting differential item functioning (DIF) in the presence of multilevel data and polytomously scored items. The assessment of DIF with multilevel data (e.g., patients nested within hospitals, hospitals nested within districts) from large-scale assessment programs has received considerable attention but very few studies evaluated the effect of hierarchical structure of data on DIF detection for polytomously scored items. The ordinal logistic regression (OLR) and hierarchical ordinal logistic regression (HOLR) were utilized to assess DIF in simulated and real multilevel polytomous data. Six factors (DIF magnitude, grouping variable, intraclass correlation coefficient, number of clusters, number of participants per cluster, and item discrimination parameter) with a fully crossed design were considered in the simulation study. Furthermore, data of Pediatric Quality of Life Inventory™ (PedsQL™) 4.0 collected from 576 healthy school children were analyzed. Overall, results indicate that both methods performed equivalently in terms of controlling Type I error and detection power rates. The current study showed negligible difference between OLR and HOLR in detecting DIF with polytomously scored items in a hierarchical structure. Implications and considerations while analyzing real data were also discussed.

  15. Hierarchical Heteroclinics in Dynamical Model of Cognitive Processes: Chunking

    NASA Astrophysics Data System (ADS)

    Afraimovich, Valentin S.; Young, Todd R.; Rabinovich, Mikhail I.

    Combining the results of brain imaging and nonlinear dynamics provides a new hierarchical vision of brain network functionality that is helpful in understanding the relationship of the network to different mental tasks. Using these ideas it is possible to build adequate models for the description and prediction of different cognitive activities in which the number of variables is usually small enough for analysis. The dynamical images of different mental processes depend on their temporal organization and, as a rule, cannot be just simple attractors since cognition is characterized by transient dynamics. The mathematical image for a robust transient is a stable heteroclinic channel consisting of a chain of saddles connected by unstable separatrices. We focus here on hierarchical chunking dynamics that can represent several cognitive activities. Chunking is the dynamical phenomenon that means dividing a long information chain into shorter items. Chunking is known to be important in many processes of perception, learning, memory and cognition. We prove that in the phase space of the model that describes chunking there exists a new mathematical object — heteroclinic sequence of heteroclinic cycles — using the technique of slow-fast approximations. This new object serves as a skeleton of motions reflecting sequential features of hierarchical chunking dynamics and is an adequate image of the chunking processing.

  16. Does history of childhood maltreatment make a difference in prison? A hierarchical approach on early family events and personality traits.

    PubMed

    Sergentanis, Theodoros N; Sakelliadis, Emmanouil I; Vlachodimitropoulos, Dimitrios; Goutas, Nikolaos; Sergentanis, Ioannis N; Spiliopoulou, Chara A; Papadodima, StavroulaA

    2014-12-30

    This study attempts to assess childhood maltreatment in prison through a hierarchical approach. The hierarchical approach principally aims to disentangle the independent effects of childhood maltreatment upon psychiatric morbidity/personality traits, if any, from the burden that the adverse family conditions have already imposed to the mental health of the maltreated individual-prisoner. To this direction, a conceptual framework with five hierarchical levels was constructed, namely: immutable demographic factors; family conditions; childhood maltreatment (physical abuse, neglect and sexual abuse); personality traits, habits and psychiatric morbidity; prison-related variables. A self-administered, anonymous set (battery) of questionnaires was administered to 173 male prisoners in the Chalkida prison, Greece; 26% of prisoners disclosed childhood maltreatment. Psychiatric condition in the family, parental alcoholism and parental divorce correlated with childhood maltreatment. After adjustment for immutable demographic factors and family conditions, childhood maltreatment was associated with aggression (both in terms of Lifetime History of Aggression and Buss–Perry Aggression Questionnaire scores), illicit substance use, personal history of psychiatric condition, current smoking, impulsivity and alcohol abuse. In conclusion, childhood maltreatment represents a pivotal, determining factor in the life course of male prisoners. Delinquents seem to suffer from long-term consequences of childhood maltreatment in terms of numerous mental health aspects.

  17. Hierarchical Order Parameters for Macromolecular Assembly Simulations I: Construction and Dynamical Properties of Order Parameters

    PubMed Central

    Singharoy, Abhishek; Sereda, Yuriy

    2012-01-01

    Macromolecular assemblies often display a hierarchical organization of macromolecules or their sub-assemblies. To model this, we have formulated a space warping method that enables capturing overall macromolecular structure and dynamics via a set of coarse-grained order parameters (OPs). This article is the first of two describing the construction and computational implementation of an additional class of OPs that has built into them the hierarchical architecture of macromolecular assemblies. To accomplish this, first, the system is divided into subsystems, each of which is described via a representative set of OPs. Then, a global set of variables is constructed from these subsystem-centered OPs to capture overall system organization. Dynamical properties of the resulting OPs are compared to those of our previous nonhierarchical ones, and implied conceptual and computational advantages are discussed for a 100ns, 2 million atom solvated Human Papillomavirus-like particle simulation. In the second article, the hierarchical OPs are shown to enable a multiscale analysis that starts with the N-atom Liouville equation and yields rigorous Langevin equations of stochastic OP dynamics. The latter is demonstrated via a force-field based simulation algorithm that probes key structural transition pathways, simultaneously accounting for all-atom details and overall structure. PMID:22661911

  18. [Factors Influencing Quality of Life of Alcoholics Anonymous Members in Korea].

    PubMed

    Yoo, Jae Soon; Lee, Jongeun; Park, Woo Young

    2016-04-01

    The purpose of this study was to determine quality of life (QOL) related factors in Alcoholics Anonymous (AA) members based on PRECEDE Model. A cross sectional survey was conducted with participants (N =203) from AA meeting in 11 alcohol counsel centers all over South Korea. Data were collected using a specially designed questionnaire based on the PRECEDE model and including QOL, epidemiological factors (including depression and perceived health status), behavioral factors (continuous abstinence and physical health status and practice), predisposing factors (abstinence self-efficacy and self-esteem), reinforcing factors (social capital and family functioning), and enabling factors. Data were analyzed using t-test, one way ANOVA, Tukey HSD test and hierarchical multiple regression analysis with SPSS (ver. 21.0). Of the educational diagnostic variables, self-esteem (β=.23), family functioning (β=.12), abstinence self-efficacy (β=.12) and social capital (β=.11) were strong influential factors in AA members' QOL. In addition, epidemiological diagnostic variables such as depression (β=-.44) and perceived health status (β=.35) were the main factors in QOL. Also, physical health status and practice (β=.106), one of behavioral diagnostic variables was a beneficial factor in QOL. Hierarchical multiple regression analysis showed the determinant variables accounted for 44.0% of the variation in QOL (F=25.76, p<.001). The finding of the study can be used as a framework for planning interventions in order to promote the quality of life of AA members. It is necessary to develop nursing intervention strategies for strengthening educational and epidemiological diagnostic variables in order to improve AA members' QOL.

  19. Attributing the effects of climate on phenology change suggests high sensitivity in coastal zones

    NASA Astrophysics Data System (ADS)

    Seyednasrollah, B.; Clark, J. S.

    2015-12-01

    The impact of climate change on spring phenology depends on many variables that cannot be separated using current models. Phenology can influence carbon sequestration, plant nutrition, forest health, and species distributions. Leaf phenology is sensitive to changes of environmental factors, including climate, species composition, latitude, and solar radiation. The many variables and their interactions frustrate efforts to attribute variation to climate change. We developed a Bayesian framework to quantify the influence of environment on the speed of forest green-up. This study presents a state-space hierarchical model to infer and predict change in forest greenness over time using satellite observations and ground measurements. The framework accommodates both observation and process errors and it allows for main effects of variables and their interactions. We used daily spaceborne remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to quantify temporal variability in the enhanced vegetation index (EVI) along a habitat gradient in the Southeastern United States. The ground measurements of meteorological parameters are obtained from study sites located in the Appalachian Mountains, the Piedmont and the Atlantic Coastal Plain between years 2000 and 2015. Results suggest that warming accelerates spring green-up in the Coastal Plain to a greater degree than in the Piedmont and Appalachian. In other words, regardless of variation in the timing of spring onset, the rate of greenness in non-coastal zones decreases with increasing temperature and hence with time over the spring transitional period. However, in coastal zones, as air temperature increases, leaf expansion becomes faster. This may indicate relative vulnerability to warming in non-coastal regions where moisture could be a limiting factor, whereas high temperatures in regions close to the coast enhance forest physiological activities. Model predictions agree with the remotely sensed observations of the enhanced vegetation index. These findings could be used in forest managements for identifying vulnerable forests based on their habitat type and hydrological status.

  20. Links between riparian landcover, instream environment and fish assemblages in headwater streams of south-eastern Brazil

    USGS Publications Warehouse

    Cruz, Bruna B.; Miranda, Leandro E.; Cetra, Mauricio

    2013-01-01

    We hypothesised and tested a hierarchical organisation model where riparian landcover would influence bank composition and light availability, which in turn would influence instream environments and control fish assemblages. The study was conducted during the dry season in 11 headwater tributaries of the Sorocaba River in the upper Paraná River Basin, south-eastern Brazil. We focused on seven environmental factors each represented by one or multiple environmental variables and seven fish functional traits each represented by two or more classes. Multivariate direct gradient analyses suggested that riparian zone landcover can be considered a higher level causal factor in a network of relations that control instream characteristics and fish assemblages. Our results provide a framework for a hierarchical conceptual model that identifies singular and collective influences of variables from different scales on each other and ultimately on different aspects related to stream fish functional composition. This conceptual model is focused on the relationships between riparian landcover and instream variables as causal factors on the organisation of stream fish assemblages. Our results can also be viewed as a model for headwater stream management in that landcover can be manipulated to influence factors such as bank composition, substrates and water quality, whereas fish assemblage composition can be used as indicators to monitor the success of such efforts.

  1. Monitoring biological heterogeneity in a northern mixed prairie using hierarchical remote sensing methods

    NASA Astrophysics Data System (ADS)

    Zhang, Chunhua

    Heterogeneity, the degree of dissimilarity, is one of the most important and widely applicable concepts in ecology. It is highly related to ecosystem conditions and features wildlife habitat. Grasslands have been described as inherently heterogeneous because their composition and productivity are highly variable across multiple scales. Therefore, biological heterogeneity can be an indicator of ecosystem health. The mixed prairie in Canada, characterized by its semiarid environment, sparse canopy, and plant litter, offers a challenging region for environmental research using remote sensing techniques. This thesis dwells with the plant canopy heterogeneity of the mixed prairie ecosystem in the Grasslands National Park (GNP) and surrounding pastures by combining field biological parameters (e.g., grass cover, leaf area index, and biomass), field collected hyperspectral data, and hierarchical resolution satellite imagery. The thesis scrutinized four aspects of heterogeneity study: the importance of scale in grassland research, relationships between biological parameters and remotely collected data, methodology of measuring biological heterogeneity, and the influence of climatic variation on grasslands biological heterogeneity. First, the importance of scale is examined by applying the semivariogram analysis on field collected hyperspectral and biophysical data. Results indicate that 15 - 20 m should be the appropriate resolution when variations of biological parameters and canopy reflectance are sampled. Therefore, it is reasonable to use RADARSAT 1, Landsat TM, and SPOT images, whose resolutions are around 20 m, to assess the variation of biological heterogeneity. Second, the efficiency of vegetation indices derived from SPOT 4 and Landsat 5 TM images in monitoring the northern mixed prairie health was examined using Pearson's correlation and stepwise regression analyses. Results show that the spectral curve of the grass canopy is similar to that of the bare soil with lower reflectance at each band. Therefore, vegetation indices are not necessarily better than reflectance at green and red wavelength regions in extracting biological information. Two new indices, combining reflectance from red and mid infrared wavelength regions, are proposed to measure biological parameters in the northern mixed prairie. Third, texture analysis was applied to quantify the biological variation in the grasslands. The textural parameters of RADARSAT imagery correlated highly with standard deviation of the field collected canopy parameters. Therefore, textural parameters can be applied to study the variations within the mixed prairie. Finally, the impacts of climatic variation on grassland heterogeneity at a long time scale were evaluated using Advanced Very High Resolution Radiometer (AVHRR), Normalized Difference Vegetation Index (NDVI), Maximum Value Composite (MVC), and SPOT Vegetation NDVI MVC imagery from 1993 to 2004. A drought index based on precipitation data was used to represent soil moisture for the study area. It was found that changes of temperature and precipitation explain about 50% of the variation in AVHRR NDVI (i.e., temporal heterogeneity) of the northern mixed prairie. Trend line analysis indicates that the removal of grazing cattle carry multiple influences such as decreasing NDVI in some parts of the upland and valley grassland and increasing NDVI in the valley grassland. Results from this thesis are relevant for park management by adjusting grassland management strategies and monitoring the changes in community sizes. The other output of the thesis is furthering the remote sensing investigation of the mixed prairie based on information of the most appropriate resolution imagery.

  2. Mind the Gap! A Multilevel Analysis of Factors Related to Variation in Published Cost-Effectiveness Estimates within and between Countries

    PubMed Central

    Boehler, Christian E. H.; Lord, Joanne

    2016-01-01

    Background. Published cost-effectiveness estimates can vary considerably, both within and between countries. Despite extensive discussion, little is known empirically about factors relating to these variations. Objectives. To use multilevel statistical modeling to integrate cost-effectiveness estimates from published economic evaluations to investigate potential causes of variation. Methods. Cost-effectiveness studies of statins for cardiovascular disease prevention were identified by systematic review. Estimates of incremental costs and effects were extracted from reported base case, sensitivity, and subgroup analyses, with estimates grouped in studies and in countries. Three bivariate models were developed: a cross-classified model to accommodate data from multinational studies, a hierarchical model with multinational data allocated to a single category at country level, and a hierarchical model excluding multinational data. Covariates at different levels were drawn from a long list of factors suggested in the literature. Results. We found 67 studies reporting 2094 cost-effectiveness estimates relating to 23 countries (6 studies reporting for more than 1 country). Data and study-level covariates included patient characteristics, intervention and comparator cost, and some study methods (e.g., discount rates and time horizon). After adjusting for these factors, the proportion of variation attributable to countries was negligible in the cross-classified model but moderate in the hierarchical models (14%−19% of total variance). Country-level variables that improved the fit of the hierarchical models included measures of income and health care finance, health care resources, and population risks. Conclusions. Our analysis suggested that variability in published cost-effectiveness estimates is related more to differences in study methods than to differences in national context. Multinational studies were associated with much lower country-level variation than single-country studies. These findings are for a single clinical question and may be atypical. PMID:25878194

  3. Hydrologic Derivatives for Modeling and Analysis—A new global high-resolution database

    USGS Publications Warehouse

    Verdin, Kristine L.

    2017-07-17

    The U.S. Geological Survey has developed a new global high-resolution hydrologic derivative database. Loosely modeled on the HYDRO1k database, this new database, entitled Hydrologic Derivatives for Modeling and Analysis, provides comprehensive and consistent global coverage of topographically derived raster layers (digital elevation model data, flow direction, flow accumulation, slope, and compound topographic index) and vector layers (streams and catchment boundaries). The coverage of the data is global, and the underlying digital elevation model is a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010), and the SRTM (Shuttle Radar Topography Mission). For most of the globe south of 60°N., the raster resolution of the data is 3 arc-seconds, corresponding to the resolution of the SRTM. For the areas north of 60°N., the resolution is 7.5 arc-seconds (the highest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30 arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information. This database is appropriate for use in continental-scale modeling efforts. The work described in this report was conducted by the U.S. Geological Survey in cooperation with the National Aeronautics and Space Administration Goddard Space Flight Center.

  4. Impact of Resolution on the Representation of Precipitation Variability Associated With the ITCZ

    NASA Astrophysics Data System (ADS)

    De Benedetti, Marc; Moore, G. W. K.

    2017-12-01

    The Intertropical Convergence Zone (ITCZ) is responsible for most of the weather and climate in equatorial regions along with many tropical-midlatitude interactions. It is therefore important to understand how models represent its structure and variability. Most ITCZ-associated precipitation is convective, making it unclear how horizontal resolution impacts its representation. To assess this, we introduce a novel technique that involves calculation of the precipitation field's decorrelation length scale (DCLS) using model data sets that share a common lineage with horizontal resolutions from 16 to 160 km. All resolutions captured the ITCZ's mean structure; however, imprints of topography, such as Hawaii and sea surface temperature, including the variability associated with upwelling cold water off the coast of South America, are more clearly represented at higher resolutions. The DCLS analysis indicates that there are changes in the spatial variability of the ITCZ's precipitation that are not reflected in its mean structure, thus confirming its utility as a diagnostic.

  5. A downscaling scheme for atmospheric variables to drive soil-vegetation-atmosphere transfer models

    NASA Astrophysics Data System (ADS)

    Schomburg, A.; Venema, V.; Lindau, R.; Ament, F.; Simmer, C.

    2010-09-01

    For driving soil-vegetation-transfer models or hydrological models, high-resolution atmospheric forcing data is needed. For most applications the resolution of atmospheric model output is too coarse. To avoid biases due to the non-linear processes, a downscaling system should predict the unresolved variability of the atmospheric forcing. For this purpose we derived a disaggregation system consisting of three steps: (1) a bi-quadratic spline-interpolation of the low-resolution data, (2) a so-called `deterministic' part, based on statistical rules between high-resolution surface variables and the desired atmospheric near-surface variables and (3) an autoregressive noise-generation step. The disaggregation system has been developed and tested based on high-resolution model output (400m horizontal grid spacing). A novel automatic search-algorithm has been developed for deriving the deterministic downscaling rules of step 2. When applied to the atmospheric variables of the lowest layer of the atmospheric COSMO-model, the disaggregation is able to adequately reconstruct the reference fields. Applying downscaling step 1 and 2, root mean square errors are decreased. Step 3 finally leads to a close match of the subgrid variability and temporal autocorrelation with the reference fields. The scheme can be applied to the output of atmospheric models, both for stand-alone offline simulations, and a fully coupled model system.

  6. A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas

    2018-04-01

    In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.

  7. Resolution of Unwanted Pregnancy during Adolescence through Abortion versus Childbirth: Individual and Family Predictors and Psychological Consequences

    ERIC Educational Resources Information Center

    Coleman, Priscilla K.

    2006-01-01

    Using data from the National Longitudinal Study of Adolescent Health, various demographic, psychological, educational, and family variables were explored as predictors of pregnancy resolution. Only 2 of the 17 variables examined were significantly associated with pregnancy resolution (risk-taking and the desire to leave home). After controlling…

  8. Primeval galaxies in the sub-mm and mm

    NASA Technical Reports Server (NTRS)

    Bond, J. Richard; Myers, Steven T.

    1993-01-01

    Although the results of COBE's FIRAS experiment 1 constrain the deviation in energy from the CMB blackbody in the 500-5000 micron range to be delta E/E, sub cmb less than 0.005, primeval galaxies can still lead to a brilliant sub-mm sky of non-Gaussian sources that are detectable at 10 inch resolution from planned arrays such as SCUBA on the James Clerk Maxwell Telescope and, quite plausibly, at sub-arcsecond resolution in planned mm and sub-mm interferometers. Here, we apply our hierarchical peaks method to a CDM model to construct sub-mm and mm maps of bursting PG's appropriate for these instruments with minimum contours chosen to correspond to realistic observational parameters for them and which pass the FIRAS limits.

  9. Analyzing and leveraging self-similarity for variable resolution atmospheric models

    NASA Astrophysics Data System (ADS)

    O'Brien, Travis; Collins, William

    2015-04-01

    Variable resolution modeling techniques are rapidly becoming a popular strategy for achieving high resolution in a global atmospheric models without the computational cost of global high resolution. However, recent studies have demonstrated a variety of resolution-dependent, and seemingly artificial, features. We argue that the scaling properties of the atmosphere are key to understanding how the statistics of an atmospheric model should change with resolution. We provide two such examples. In the first example we show that the scaling properties of the cloud number distribution define how the ratio of resolved to unresolved clouds should increase with resolution. We show that the loss of resolved clouds, in the high resolution region of variable resolution simulations, with the Community Atmosphere Model version 4 (CAM4) is an artifact of the model's treatment of condensed water (this artifact is significantly reduced in CAM5). In the second example we show that the scaling properties of the horizontal velocity field, combined with the incompressibility assumption, necessarily result in an intensification of vertical mass flux as resolution increases. We show that such an increase is present in a wide variety of models, including CAM and the regional climate models of the ENSEMBLES intercomparision. We present theoretical arguments linking this increase to the intensification of precipitation with increasing resolution.

  10. Reconstruction of climate in China during 17th-19th centuries using Chinese chronological records

    NASA Astrophysics Data System (ADS)

    Wang, Pao; Lin, Kuan-Hui; Liao, Yi-Chun; Lee, Shih-Yu; Liao, Hsiung-Ming; Pai, Pi-Ling; Fan, I.-Chun

    2017-04-01

    Chinese historical documents are an extremely useful source from which much climate information can be retrieved if treated carefully. This is especially relevant to the reconstruction of climate in East Asia in the last 2000 years as the Chinese has kept official chronicles since 500BC and China also represents a large portion of East Asia's land. In addition, there are also local records in many cities and counties. When available, such documentary sources are often superior to environmental proxy data, especially in the time resolution as they usually provide at least annual resolution and even as high as daily records in some cases. This research will report on our recent advances on using a new REACHS dataset that collects primarily documented meteorological records from thousands of imperial and local chronicles in the Chinese history for more than 2000 years. The meteorological records were digitized and coded in the relational database management system in which accurate time (from yearly to daily), space (from province to city/county) and event (from meteorological to phonological and social) information is carefully reserved for analysis. We then formed digital climate series and performed time series and spatial analysis on them to obtain their temporal and spatial characteristics. Our present research results on the annual and seasonal temperature reconstruction during 17th-19th indicates lower temperature in the 17th century. There were also strangely high occurrence frequency of summer snowfall records in the lower reaches of Yangtze River during the Maunder Minimum. Reconstructed precipitation series fluctuated with strong regional character in the Northeast, Central-east and Southeast China. Spectral analysis shows that precipitation series have significant periodicity of 3-5 and 8-12 years during the period, suggesting strong interannual variability and different regional signatures. Flood happened frequently but long lasting drought was more frequently occurred in the 17th than in the following century. Furthermore drought is highly correlated with locust records, especially in the 17th century. The temporal and spatial variability of the climate reconstruction implies hierarchical and multi-scaled climate variability and a likely changing regime of monsoon: its spatial distribution, pattern and intensity. More detailed spatial-temporal analysis will be applied to analyze the dynamism.

  11. [Motivation perception measurement of intermediate directors in three complex hospitals of the Region of the Maule, Chile].

    PubMed

    Bustamante-Ubilla, Miguel Alejandro; del Río-Rivero, María Carolina; Lobos-Andrade, Germán Enrique; Villarreal-Navarrete, Patricia Isabel

    2009-01-01

    In this work, a questionnaire was designed and perceptions of motivation and demotivation of middle managers in three hospitals in the Region del Maule, Chile were measured. The fieldwork was carried out between September and October, 2006. A questionnaire that included 57 statements to measure attitude was administered and qualified according to a five-point Likert-type scale. The population studied included l25 professionals that supervise roughly 3 800 employees. Ten variables were identified, 5 motivational and 5 demotivational. Notable among the motivational variables are vocation and service-oriented spirit; among the demotivational variables are lack of recognition and commitment. It is affirmed that both motivational variables as well as demotivational variables are essentially qualitative and that economic and salary variables are less relevant and less hierarchical.

  12. Vanishing point: Scale independence in geomorphological hierarchies

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.

    2016-08-01

    Scale linkage problems in geosciences are often associated with a hierarchy of components. Both dynamical systems perspectives and intuition suggest that processes or relationships operating at fundamentally different scales are independent with respect to influences on system dynamics. But how far apart is ;fundamentally different;-that is, what is the ;vanishing point; at which scales are no longer interdependent? And how do we reconcile that with the idea (again, supported by both theory and intuition) that we can work our way along scale hierarchies from microscale to planetary (and vice-versa)? Graph and network theory are employed here to address these questions. Analysis of two archetypal hierarchical networks shows low algebraic connectivity, indicating low levels of inferential synchronization. This explains the apparent paradox between scale independence and hierarchical linkages. Incorporating more hierarchical levels results in an increase in complexity or entropy of the network as a whole, but at a nonlinear rate. Complexity increases as a power α of the number of levels in the hierarchy, with α < 1 and usually ≤ 0.6. However, algebraic connectivity decreases at a more rapid rate. Thus, the ability to infer one part of the hierarchical network from other level decays rapidly as more levels are added. Relatedness among system components decreases with differences in scale or resolution, analogous to distance decay in the spatial domain. These findings suggest a strategy of identifying and focusing on the most important or interesting scale levels, rather than attempting to identify the smallest or largest scale levels and work top-down or bottom-up from there. Examples are given from soil geomorphology and karst flow networks.

  13. On representation of temporal variability in electricity capacity planning models

    DOE PAGES

    Merrick, James H.

    2016-08-23

    This study systematically investigates how to represent intra-annual temporal variability in models of optimum electricity capacity investment. Inappropriate aggregation of temporal resolution can introduce substantial error into model outputs and associated economic insight. The mechanisms underlying the introduction of this error are shown. How many representative periods are needed to fully capture the variability is then investigated. For a sample dataset, a scenario-robust aggregation of hourly (8760) resolution is possible in the order of 10 representative hours when electricity demand is the only source of variability. The inclusion of wind and solar supply variability increases the resolution of the robustmore » aggregation to the order of 1000. A similar scale of expansion is shown for representative days and weeks. These concepts can be applied to any such temporal dataset, providing, at the least, a benchmark that any other aggregation method can aim to emulate. Finally, how prior information about peak pricing hours can potentially reduce resolution further is also discussed.« less

  14. On representation of temporal variability in electricity capacity planning models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrick, James H.

    This study systematically investigates how to represent intra-annual temporal variability in models of optimum electricity capacity investment. Inappropriate aggregation of temporal resolution can introduce substantial error into model outputs and associated economic insight. The mechanisms underlying the introduction of this error are shown. How many representative periods are needed to fully capture the variability is then investigated. For a sample dataset, a scenario-robust aggregation of hourly (8760) resolution is possible in the order of 10 representative hours when electricity demand is the only source of variability. The inclusion of wind and solar supply variability increases the resolution of the robustmore » aggregation to the order of 1000. A similar scale of expansion is shown for representative days and weeks. These concepts can be applied to any such temporal dataset, providing, at the least, a benchmark that any other aggregation method can aim to emulate. Finally, how prior information about peak pricing hours can potentially reduce resolution further is also discussed.« less

  15. Chemical Structure and Molecular Dimension As Controls on the Inherent Stability of Charcoal in Boreal Forest Soil

    NASA Astrophysics Data System (ADS)

    Hockaday, W. C.; Kane, E. S.; Ohlson, M.; Huang, R.; Von Bargen, J.; Davis, R.

    2014-12-01

    Efforts have been made by various scientific disciplines to study hyporheic zones and characterize their associated processes. One way to approach the study of the hyporheic zone is to define facies, which are elements of a (hydrobio) geologic classification scheme that groups components of a complex system with high variability into a manageable set of discrete classes. In this study, we try to classify the hyporheic zone based on the geology, geochemistry, microbiology, and understand their interactive influences on the integrated biogeochemical distributions and processes. A number of measurements have been taken for 21 freeze core samples along the Columbia River bank in the Hanford 300 Area, and unique datasets have been obtained on biomass, pH, number of microbial taxa, percentage of N/C/H/S, microbial activity parameters, as well as microbial community attributes/modules. In order to gain a complete understanding of the geological control on these variables and processes, the explanatory variables are set to include quantitative gravel/sand/mud/silt/clay percentages, statistical moments of grain size distributions, as well as geological (e.g., Folk-Wentworth) and statistical (e.g., hierarchical) clusters. The dominant factors for major microbial and geochemical variables are identified and summarized using exploratory data analysis approaches (e.g., principal component analysis, hierarchical clustering, factor analysis, multivariate analysis of variance). The feasibility of extending the facies definition and its control of microbial and geochemical properties to larger scales is discussed.

  16. Microbial facies distribution and its geological and geochemical controls at the Hanford 300 area

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Nelson, W.; Stegen, J.; Murray, C. J.; Arntzen, E.

    2015-12-01

    Efforts have been made by various scientific disciplines to study hyporheic zones and characterize their associated processes. One way to approach the study of the hyporheic zone is to define facies, which are elements of a (hydrobio) geologic classification scheme that groups components of a complex system with high variability into a manageable set of discrete classes. In this study, we try to classify the hyporheic zone based on the geology, geochemistry, microbiology, and understand their interactive influences on the integrated biogeochemical distributions and processes. A number of measurements have been taken for 21 freeze core samples along the Columbia River bank in the Hanford 300 Area, and unique datasets have been obtained on biomass, pH, number of microbial taxa, percentage of N/C/H/S, microbial activity parameters, as well as microbial community attributes/modules. In order to gain a complete understanding of the geological control on these variables and processes, the explanatory variables are set to include quantitative gravel/sand/mud/silt/clay percentages, statistical moments of grain size distributions, as well as geological (e.g., Folk-Wentworth) and statistical (e.g., hierarchical) clusters. The dominant factors for major microbial and geochemical variables are identified and summarized using exploratory data analysis approaches (e.g., principal component analysis, hierarchical clustering, factor analysis, multivariate analysis of variance). The feasibility of extending the facies definition and its control of microbial and geochemical properties to larger scales is discussed.

  17. A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images

    PubMed Central

    Hou, Bin; Wang, Yunhong; Liu, Qingjie

    2016-01-01

    Characterizations of up to date information of the Earth’s surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs) allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC) segmentation. Then, saliency and morphological building index (MBI) extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF). Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation. PMID:27618903

  18. A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images.

    PubMed

    Hou, Bin; Wang, Yunhong; Liu, Qingjie

    2016-08-27

    Characterizations of up to date information of the Earth's surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs) allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC) segmentation. Then, saliency and morphological building index (MBI) extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF). Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation.

  19. Hierarchical group dynamics in pigeon flocks.

    PubMed

    Nagy, Máté; Akos, Zsuzsa; Biro, Dora; Vicsek, Tamás

    2010-04-08

    Animals that travel together in groups display a variety of fascinating motion patterns thought to be the result of delicate local interactions among group members. Although the most informative way of investigating and interpreting collective movement phenomena would be afforded by the collection of high-resolution spatiotemporal data from moving individuals, such data are scarce and are virtually non-existent for long-distance group motion within a natural setting because of the associated technological difficulties. Here we present results of experiments in which track logs of homing pigeons flying in flocks of up to 10 individuals have been obtained by high-resolution lightweight GPS devices and analysed using a variety of correlation functions inspired by approaches common in statistical physics. We find a well-defined hierarchy among flock members from data concerning leading roles in pairwise interactions, defined on the basis of characteristic delay times between birds' directional choices. The average spatial position of a pigeon within the flock strongly correlates with its place in the hierarchy, and birds respond more quickly to conspecifics perceived primarily through the left eye-both results revealing differential roles for birds that assume different positions with respect to flock-mates. From an evolutionary perspective, our results suggest that hierarchical organization of group flight may be more efficient than an egalitarian one, at least for those flock sizes that permit regular pairwise interactions among group members, during which leader-follower relationships are consistently manifested.

  20. Variability aware compact model characterization for statistical circuit design optimization

    NASA Astrophysics Data System (ADS)

    Qiao, Ying; Qian, Kun; Spanos, Costas J.

    2012-03-01

    Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose an efficient variabilityaware compact model characterization methodology based on the linear propagation of variance. Hierarchical spatial variability patterns of selected compact model parameters are directly calculated from transistor array test structures. This methodology has been implemented and tested using transistor I-V measurements and the EKV-EPFL compact model. Calculation results compare well to full-wafer direct model parameter extractions. Further studies are done on the proper selection of both compact model parameters and electrical measurement metrics used in the method.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ruixue; Chen, Kezheng, E-mail: dxb@sdu.edu.cn; Liao, Zhongmiao

    Highlights: ► Hydroxyapatite hierarchical microstructures have been synthesized by a facile method. ► The morphology and size of the building units of 3D structures can be controlled. ► The hydroxyapatite with 3D structure is morphologically and structurally stable up to 800 °C. - Abstract: Hydroxyapatite (HAp) hierarchical microstructures with novel 3D morphology were prepared through a template- and surfactant-free hydrothermal homogeneous precipitation method. Field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) were used to characterize the morphology and composition of the synthesized products. Interestingly, the obtained HAp with 3D structure is composed ofmore » one-dimensional (1D) nanorods or two-dimensional (2D) nanoribbons, and the length and morphology of these building blocks can be controlled through controlling the pH of the reaction. The building blocks are single crystalline and have different preferential orientation growth under different pH conditions. At low pH values, octacalcium phosphate (OCP) phase formed first and then transformed into HAp phase due to the increased pH value caused by the decomposition of urea. The investigation on the thermal stability reveals that the prepared HAp hierarchical microstructures are morphologically and structurally stable up to 800 °C.« less

  2. Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales

    PubMed Central

    Hogstrom, L. J.; Guo, S. M.; Murugadoss, K.; Bathe, M.

    2016-01-01

    Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758

  3. Critical role for hierarchical geospatial analyses in the design of fluvial research, assessment, and management

    EPA Science Inventory

    River science and management can be conducted at a range of spatiotemporal scales from reach to basin levels as long as the project goals and questions are matched correctly with the study design’s spatiotemporal scales and dependent variables. These project goals should also inc...

  4. Changes in Leadership Attitudes and Beliefs Associated with the College Experience: A Longitudinal Study

    ERIC Educational Resources Information Center

    Fischer, Donald V.; Wielkiewicz, Richard M.; Stelzner, Stephen P.; Overland, Maribeth; Meuwissen, Alyssa S.

    2015-01-01

    Incoming first-year college students completed a leadership survey prior to any formal leadership education. These students were reassessed during the spring of their senior year; 386 students completed both surveys. The differential effect of 33 leadership and demographic variables on change in hierarchical and systemic leadership beliefs were…

  5. Interplay among School Climate, Gender, Attitude toward Mathematics, and Mathematics Performance of Middle School Students

    ERIC Educational Resources Information Center

    Choi, Namok; Chang, Mido

    2011-01-01

    This research examined the important factors influencing the mathematics achievement of students in middle schools by hierarchically specifying the personal and contextual variables. The study focused on the effect of school climate at the class level and the effects of student gender, attitude toward mathematics, educational aspiration, parent…

  6. A Multilevel Study of the Role of Environment in Adolescent Substance Use

    ERIC Educational Resources Information Center

    Steen, Julie A.

    2010-01-01

    The purpose of this study is to assess the relationships between county-level characteristics and adolescent use of alcohol, cigarettes, and marijuana. The study consisted of a hierarchical generalized linear analysis of secondary data from the Florida Youth Substance Abuse Survey. Variables on the county level included the percent of adolescents…

  7. Predictors of College Readiness: An Analysis of the Student Readiness Inventory

    ERIC Educational Resources Information Center

    Wilson, James K., III

    2012-01-01

    The purpose of this study was to better predict how a first semester college freshman becomes prepared for college. The theoretical framework guiding this study is Vrooms' expectancy theory, motivation plays a key role in success. This study used a hierarchical multiple regression model. The independent variables of interest included high school…

  8. Comparing Dichotomous and Trichotomous Approaches to Achievement Goal Theory: An Example Using Motivational Regulations as Outcome Variables

    ERIC Educational Resources Information Center

    Barkoukis, Vassilis; Ntoumanis, Nikos; Nikitaras, Nikitas

    2007-01-01

    Background: It is commonly assumed that there is conceptual equivalence between the task and ego achievement goals proposed by Nicholl's (1989) dichotomous achievement goal theory (Nicholls, 1989), and the mastery and performance approach goals advanced by Elliot's (1997) trichotomous hierarchical model of approach and avoidance achievement…

  9. The land-cover cascade: relationships coupling land and water

    Treesearch

    C.L. Burcher; H.M. Valett; E.F. Benfield

    2007-01-01

    We introduce the land-cover cascade (LCC) as a conceptual framework to quantify the transfer of land-cover-disturbance effects to stream biota. We hypothesize that disturbance is propagated through multivariate systems through key variables that transform a disturbance and pass a reorganized disturbance effect to the next hierarchical level where the process repeats...

  10. Investigating the Incremental Validity of Cognitive Variables in Early Mathematics Screening

    ERIC Educational Resources Information Center

    Clarke, Ben; Shanley, Lina; Kosty, Derek; Baker, Scott K.; Cary, Mari Strand; Fien, Hank; Smolkowski, Keith

    2018-01-01

    The purpose of this study was to investigate the incremental validity of a set of domain general cognitive measures added to a traditional screening battery of early numeracy measures. The sample consisted of 458 kindergarten students of whom 285 were designated as severely at-risk for mathematics difficulty. Hierarchical multiple regression…

  11. An Investigation of Teacher Impact on Student Inquiry Science Performance Using a Hierarchical Linear Model

    ERIC Educational Resources Information Center

    Liu, Ou Lydia; Lee, Hee-Sun; Linn, Marcia C.

    2010-01-01

    Teachers play a central role in inquiry science classrooms. In this study, we investigate how seven teacher variables (i.e., gender, experience, perceived importance of inquiry and traditional teaching, workshop attendance, partner teacher, use of technology) affect student knowledge integration understanding of science topics drawing on previous…

  12. Learning Additional Languages as Hierarchical Probabilistic Inference: Insights from First Language Processing

    ERIC Educational Resources Information Center

    Pajak, Bozena; Fine, Alex B.; Kleinschmidt, Dave F.; Jaeger, T. Florian

    2016-01-01

    We present a framework of second and additional language (L2/L"n") acquisition motivated by recent work on socio-indexical knowledge in first language (L1) processing. The distribution of linguistic categories covaries with socio-indexical variables (e.g., talker identity, gender, dialects). We summarize evidence that implicit…

  13. Suppressor Variables and Multilevel Mixture Modelling

    ERIC Educational Resources Information Center

    Darmawan, I Gusti Ngurah; Keeves, John P.

    2006-01-01

    A major issue in educational research involves taking into consideration the multilevel nature of the data. Since the late 1980s, attempts have been made to model social science data that conform to a nested structure. Among other models, two-level structural equation modelling or two-level path modelling and hierarchical linear modelling are two…

  14. Student and School Factors Affecting Mathematics Achievement: International Comparisons between Korea, Japan and the USA

    ERIC Educational Resources Information Center

    Shin, Jongho; Lee, Hyunjoo; Kim, Yongnam

    2009-01-01

    The purpose of the study was to comparatively investigate student- and school-level factors affecting mathematics achievement of Korean, Japanese and American students. For international comparisons, the PISA 2003 data were analysed by using the Hierarchical Linear Modeling method. The variables of competitive-learning preference, instrumental…

  15. Variability, Negative Evidence, and the Acquisition of Verb Argument Constructions

    ERIC Educational Resources Information Center

    Perfors, Amy; Tenenbaum, Joshua B.; Wonnacott, Elizabeth

    2010-01-01

    We present a hierarchical Bayesian framework for modeling the acquisition of verb argument constructions. It embodies a domain-general approach to learning higher-level knowledge in the form of inductive constraints (or overhypotheses), and has been used to explain other aspects of language development such as the shape bias in learning object…

  16. Nonparametric Hierarchical Bayesian Model for Functional Brain Parcellation

    PubMed Central

    Lashkari, Danial; Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina

    2011-01-01

    We develop a method for unsupervised analysis of functional brain images that learns group-level patterns of functional response. Our algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over the sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to simultaneously learn the patterns of response that are shared across the group, and to estimate the number of these patterns supported by data. Inference based on this model enables automatic discovery and characterization of salient and consistent patterns in functional signals. We apply our method to data from a study that explores the response of the visual cortex to a collection of images. The discovered profiles of activation correspond to selectivity to a number of image categories such as faces, bodies, and scenes. More generally, our results appear superior to the results of alternative data-driven methods in capturing the category structure in the space of stimuli. PMID:21841977

  17. Assessing and monitoring urban resilience using COPD in Porto.

    PubMed

    Monteiro, Ana; Carvalho, Vânia; Velho, Sara; Sousa, Carlos

    2012-01-01

    COPD morbidity is a good example of how the urban form may interfere with a disease's severity. Then, it may play an important role as a stimulus to increase the acceptability of several policy actions that aim to upgrade urban resilience. Despite the multiple dimensions of wellbeing, health is surely a key variable attracting everyone's attention, which is thus more likely to be able to persuade people that actions that may at first seem undesirable are fundamental in improving urban sustainability and well-being. After creating a short list of socio-economic and environmental factors relating to the onset and aggravation of COPD, daily admissions distributions were compared using both a non-weighted and a weighted multi-criteria hierarchical analysis procedure. Porto's COPD Social and Environmental Inequalities Index (SEII), calculated with a hierarchical analysis procedure, accurately illustrates a great relationship between COPD admissions and adverse urban form variables. COPD may be an important communication tool to stimulate the acceptability of some otherwise unpopular planning measures to improve urban resilience (sustainability and well-being). Copyright © 2011 Elsevier B.V. All rights reserved.

  18. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Seong, Baekhoon; Nguyen, VuDat; Byun, Doyoung

    2016-02-01

    Recently, the three-dimensional (3D) printing technique has received much attention for shape forming and manufacturing. The fused deposition modeling (FDM) printer is one of the various 3D printers available and has become widely used due to its simplicity, low-cost, and easy operation. However, the FDM technique has a limitation whereby its patterning resolution is too low at around 200 μm. In this paper, we first present a hybrid mechanism of electrohydrodynamic jet printing with the FDM technique, which we name E-FDM. We then develop a novel high-resolution 3D printer based on the E-FDM process. To determine the optimal condition for structuring, we also investigated the effect of several printing parameters, such as temperature, applied voltage, working height, printing speed, flow-rate, and acceleration on the patterning results. This method was capable of fabricating both high resolution 2D and 3D structures with the use of polylactic acid (PLA). PLA has been used to fabricate scaffold structures for tissue engineering, which has different hierarchical structure sizes. The fabrication speed was up to 40 mm/s and the pattern resolution could be improved to 10 μm.

  19. Hierarchical Bayesian Logistic Regression to forecast metabolic control in type 2 DM patients.

    PubMed

    Dagliati, Arianna; Malovini, Alberto; Decata, Pasquale; Cogni, Giulia; Teliti, Marsida; Sacchi, Lucia; Cerra, Carlo; Chiovato, Luca; Bellazzi, Riccardo

    2016-01-01

    In this work we present our efforts in building a model able to forecast patients' changes in clinical conditions when repeated measurements are available. In this case the available risk calculators are typically not applicable. We propose a Hierarchical Bayesian Logistic Regression model, which allows taking into account individual and population variability in model parameters estimate. The model is used to predict metabolic control and its variation in type 2 diabetes mellitus. In particular we have analyzed a population of more than 1000 Italian type 2 diabetic patients, collected within the European project Mosaic. The results obtained in terms of Matthews Correlation Coefficient are significantly better than the ones gathered with standard logistic regression model, based on data pooling.

  20. Improving the Calibration of the SN Ia Anchor Datasets with a Bayesian Hierarchal Model

    NASA Astrophysics Data System (ADS)

    Currie, Miles; Rubin, David

    2018-01-01

    Inter-survey calibration remains one of the largest systematic uncertainties in SN Ia cosmology today. Ideally, each survey would measure their system throughputs and observe well characterized spectrophotometric standard stars, but many important surveys have not done so. For these surveys, we calibrate using tertiary survey stars tied to SDSS and Pan-STARRS. We improve on previous efforts by taking the spatially variable response of each telescope/camera into account, and using improved color transformations in the surveys’ natural instrumental photometric system. We use a global hierarchical model of the data, automatically providing a covariance matrix of magnitude offsets and bandpass shifts which reduces the systematic uncertainty in inter-survey calibration, thereby providing better cosmological constraints.

  1. A variable resolution x-ray detector for computed tomography: II. Imaging theory and performance.

    PubMed

    DiBianca, F A; Zou, P; Jordan, L M; Laughter, J S; Zeman, H D; Sebes, J

    2000-08-01

    A computed tomography (CT) imaging technique called variable resolution x-ray (VRX) detection provides variable image resolution ranging from that of clinical body scanning (1 cy/mm) to that of microscopy (100 cy/mm). In this paper, an experimental VRX CT scanner based on a rotating subject table and an angulated storage phosphor screen detector is described and tested. The measured projection resolution of the scanner is > or = 20 lp/mm. Using this scanner, 4.8-s CT scans are made of specimens of human extremities and of in vivo hamsters. In addition, the system's projected spatial resolution is calculated to exceed 100 cy/mm for a future on-line CT scanner incorporating smaller focal spots (0.1 mm) than those currently used and a 1008-channel VRX detector with 0.6-mm cell spacing.

  2. Cross-Contextual Variability in Parents' and School Tutors' Conflict Resolution Styles and Positive Development

    ERIC Educational Resources Information Center

    Rodríguez-Ruiz, Beatriz; Rodrigo, María José; Martínez-González, Raquel-Amaya

    2015-01-01

    The authors examined how the variability in adult conflict resolution styles in family and school contexts was related to adolescents' positive development. Cluster analysis classified 440 fathers, 440 mothers, and 125 tutors into 4 clusters, based on self-reports of their conflict resolution styles. Adolescents exposed to Cluster 1 (inconsistency…

  3. A Study on the Effects of Spatial Scale on Snow Process in Hyper-Resolution Hydrological Modelling over Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.

    2017-12-01

    Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.

  4. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate resolution satellite missions for agricultural applications.

  5. Probabilistic assessment of compliance with the numerical criteria for fecal coliforms in rivers

    NASA Astrophysics Data System (ADS)

    Cha, YoonKyung

    2017-04-01

    Most guidelines for assessing fecal contamination in surface waters suggest that a waterbody is impaired if a certain percent or the geometric mean of samples exceeds the numerical criteria for fecal indicator organisms. However, this raw score approach is not able to account for the uncertainty and variability in the sample statistics. In a Bayesian hierarchical modeling approach, the uncertainty in the mean parameter is expressed as a posterior distribution, and the probability of not violating the criterion is referred to as the confidence of compliance (COC). Further, the spatiotemporal variability in the mean parameter can be quantified by imposing the hierarchical structure on the model. The monitoring data spanning 91 sites across the four major rivers (the Han, Geum, Yeongsan, and Nakdong) of South Korea for the years 2007-2016 were used. The Bayesian hierarchical model was developed for each river to predict the COC with the criteria for fecal coliforms. The established criteria for fecal coliforms are less than 10, 100, 200, and 1,000 CFU/100mL in the river whose water quality goal corresponds to Class Ia, Ib, II, and III, respectively. The model results suggested that the COC varied significantly by site, ranging from 0.0 to 98.9 percent across the four rivers. In the Geum, Yeongsan, and Nakdong Rivers, COC values in the upper river sections were substantially lower than those in the upper river sections. The model suggested that for all four rivers the spatial component, compared with annual and seasonal components, made the largest contribution to the variability in mean fecal coliforms. In all four rivers, mean levels for fecal coliform during the summer (July to September) were distinctly higher than those during other seasons. A decreasing pattern was clearly shown in the Yeongsan River over the recent decade, while monotonic increases or decreases were not shown in other three rivers.

  6. Linking bovine tuberculosis on cattle farms to white-tailed deer and environmental variables using Bayesian hierarchical analysis

    USGS Publications Warehouse

    Walter, W. David; Smith, Rick; Vanderklok, Mike; VerCauterren, Kurt C.

    2014-01-01

    Bovine tuberculosis is a bacterial disease caused by Mycobacterium bovis in livestock and wildlife with hosts that include Eurasian badgers (Meles meles), brushtail possum (Trichosurus vulpecula), and white-tailed deer (Odocoileus virginianus). Risk-assessment efforts in Michigan have been initiated on farms to minimize interactions of cattle with wildlife hosts but research onM. bovis on cattle farms has not investigated the spatial context of disease epidemiology. To incorporate spatially explicit data, initial likelihood of infection probabilities for cattle farms tested for M. bovis, prevalence of M. bovis in white-tailed deer, deer density, and environmental variables for each farm were modeled in a Bayesian hierarchical framework. We used geo-referenced locations of 762 cattle farms that have been tested for M. bovis, white-tailed deer prevalence, and several environmental variables that may lead to long-term survival and viability of M. bovis on farms and surrounding habitats (i.e., soil type, habitat type). Bayesian hierarchical analyses identified deer prevalence and proportion of sandy soil within our sampling grid as the most supported model. Analysis of cattle farms tested for M. bovisidentified that for every 1% increase in sandy soil resulted in an increase in odds of infection by 4%. Our analysis revealed that the influence of prevalence of M. bovis in white-tailed deer was still a concern even after considerable efforts to prevent cattle interactions with white-tailed deer through on-farm mitigation and reduction in the deer population. Cattle farms test positive for M. bovis annually in our study area suggesting that the potential for an environmental source either on farms or in the surrounding landscape may contributing to new or re-infections with M. bovis. Our research provides an initial assessment of potential environmental factors that could be incorporated into additional modeling efforts as more knowledge of deer herd factors and cattle farm prevalence is documented.

  7. Multi-Resolution Indexing for Hierarchical Out-of-Core Traversal of Rectilinear Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pascucci, V.

    2000-07-10

    The real time processing of very large volumetric meshes introduces specific algorithmic challenges due to the impossibility of fitting the input data in the main memory of a computer. The basic assumption (RAM computational model) of uniform-constant-time access to each memory location is not valid because part of the data is stored out-of-core or in external memory. The performance of most algorithms does not scale well in the transition from the in-core to the out-of-core processing conditions. The performance degradation is due to the high frequency of I/O operations that may start dominating the overall running time. Out-of-core computing [28]more » addresses specifically the issues of algorithm redesign and data layout restructuring to enable data access patterns with minimal performance degradation in out-of-core processing. Results in this area are also valuable in parallel and distributed computing where one has to deal with the similar issue of balancing processing time with data migration time. The solution of the out-of-core processing problem is typically divided into two parts: (i) analysis of a specific algorithm to understand its data access patterns and, when possible, redesign the algorithm to maximize their locality; and (ii) storage of the data in secondary memory with a layout consistent with the access patterns of the algorithm to amortize the cost of each I/O operation over several memory access operations. In the case of a hierarchical visualization algorithms for volumetric data the 3D input hierarchy is traversed to build derived geometric models with adaptive levels of detail. The shape of the output models is then modified dynamically with incremental updates of their level of detail. The parameters that govern this continuous modification of the output geometry are dependent on the runtime user interaction making it impossible to determine a priori what levels of detail are going to be constructed. For example they can be dependent from external parameters like the viewpoint of the current display window or from internal parameters like the isovalue of an isocontour or the position of an orthogonal slice. The structure of the access pattern can be summarized into two main points: (i) the input hierarchy is traversed level by level so that the data in the same level of resolution or in adjacent levels is traversed at the same time and (ii) within each level of resolution the data is mostly traversed at the same time in regions that are geometrically close. In this paper I introduce a new static indexing scheme that induces a data layout satisfying both requirements (i) and (ii) for the hierarchical traversal of n-dimensional regular grids. In one particular implementation the scheme exploits in a new way the recursive construction of the Z-order space filling curve. The standard indexing that maps the input nD data onto a 1D sequence for the Z-order curve is based on a simple bit interleaving operation that merges the n input indices into one index n times longer. This helps in grouping the data for geometric proximity but only for a specific level of detail. In this paper I show how this indexing can be transformed into an alternative index that allows to group the data per level of resolution first and then the data within each level per geometric proximity. This yields a data layout that is appropriate for hierarchical out-of-core processing of large grids.« less

  8. [Study of the clinical phenotype of symptomatic chronic airways disease by hierarchical cluster analysis and two-step cluster analyses].

    PubMed

    Ning, P; Guo, Y F; Sun, T Y; Zhang, H S; Chai, D; Li, X M

    2016-09-01

    To study the distinct clinical phenotype of chronic airway diseases by hierarchical cluster analysis and two-step cluster analysis. A population sample of adult patients in Donghuamen community, Dongcheng district and Qinghe community, Haidian district, Beijing from April 2012 to January 2015, who had wheeze within the last 12 months, underwent detailed investigation, including a clinical questionnaire, pulmonary function tests, total serum IgE levels, blood eosinophil level and a peak flow diary. Nine variables were chosen as evaluating parameters, including pre-salbutamol forced expired volume in one second(FEV1)/forced vital capacity(FVC) ratio, pre-salbutamol FEV1, percentage of post-salbutamol change in FEV1, residual capacity, diffusing capacity of the lung for carbon monoxide/alveolar volume adjusted for haemoglobin level, peak expiratory flow(PEF) variability, serum IgE level, cumulative tobacco cigarette consumption (pack-years) and respiratory symptoms (cough and expectoration). Subjects' different clinical phenotype by hierarchical cluster analysis and two-step cluster analysis was identified. (1) Four clusters were identified by hierarchical cluster analysis. Cluster 1 was chronic bronchitis in smokers with normal pulmonary function. Cluster 2 was chronic bronchitis or mild chronic obstructive pulmonary disease (COPD) patients with mild airflow limitation. Cluster 3 included COPD patients with heavy smoking, poor quality of life and severe airflow limitation. Cluster 4 recognized atopic patients with mild airflow limitation, elevated serum IgE and clinical features of asthma. Significant differences were revealed regarding pre-salbutamol FEV1/FVC%, pre-salbutamol FEV1% pred, post-salbutamol change in FEV1%, maximal mid-expiratory flow curve(MMEF)% pred, carbon monoxide diffusing capacity per liter of alveolar(DLCO)/(VA)% pred, residual volume(RV)% pred, total serum IgE level, smoking history (pack-years), St.George's respiratory questionnaire(SGRQ) score, acute exacerbation in the past one year, PEF variability and allergic dermatitis (P<0.05). (2) Four clusters were also identified by two-step cluster analysis as followings, cluster 1, COPD patients with moderate to severe airflow limitation; cluster 2, asthma and COPD patients with heavy smoking, airflow limitation and increased airways reversibility; cluster 3, patients having less smoking and normal pulmonary function with wheezing but no chronic cough; cluster 4, chronic bronchitis patients with normal pulmonary function and chronic cough. Significant differences were revealed regarding gender distribution, respiratory symptoms, pre-salbutamol FEV1/FVC%, pre-salbutamol FEV1% pred, post-salbutamol change in FEV1%, MMEF% pred, DLCO/VA% pred, RV% pred, PEF variability, total serum IgE level, cumulative tobacco cigarette consumption (pack-years), and SGRQ score (P<0.05). By different cluster analyses, distinct clinical phenotypes of chronic airway diseases are identified. Thus, individualized treatments may guide doctors to provide based on different phenotypes.

  9. Generating Ground Reference Data for a Global Impervious Surface Survey

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; deColstoun, Eric Brown; Wolfe, Robert E.; Tan, Bin; Huang, Chengquan

    2012-01-01

    We are engaged in a project to produce a 30m impervious cover data set of the entire Earth for the years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. The GLS data from Landsat provide an unprecedented opportunity to map global urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such as buildings, roads and parking lots. Finally, with GLS data available for the 1975, 1990, 2000, and 2005 time periods, and soon for the 2010 period, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. Our approach works across spatial scales using very high spatial resolution commercial satellite data to both produce and evaluate continental scale products at the 30m spatial resolution of Landsat data. We are developing continental scale training data at 1m or so resolution and aggregating these to 30m for training a regression tree algorithm. Because the quality of the input training data are critical, we have developed an interactive software tool, called HSegLearn, to facilitate the photo-interpretation of high resolution imagery data, such as Quickbird or Ikonos data, into an impervious versus non-impervious map. Previous work has shown that photo-interpretation of high resolution data at 1 meter resolution will generate an accurate 30m resolution ground reference when coarsened to that resolution. Since this process can be very time consuming when using standard clustering classification algorithms, we are looking at image segmentation as a potential avenue to not only improve the training process but also provide a semi-automated approach for generating the ground reference data. HSegLearn takes as its input a hierarchical set of image segmentations produced by the HSeg image segmentation program [1, 2]. HSegLearn lets an analyst specify pixel locations as being either positive or negative examples, and displays a classification of the study area based on these examples. For our study, the positive examples are examples of impervious surfaces and negative examples are examples of non-impervious surfaces. HSegLearn searches the hierarchical segmentation from HSeg for the coarsest level of segmentation at which selected positive example locations do not conflict with negative example locations and labels the image accordingly. The negative example regions are always defined at the finest level of segmentation detail. The resulting classification map can be then further edited at a region object level using the previously developed HSegViewer tool [3]. After providing an overview of the HSeg image segmentation program, we provide a detailed description of the HSegLearn software tool. We then give examples of using HSegLearn to generate ground reference data and conclude with comments on the effectiveness of the HSegLearn tool.

  10. A dynamic aerodynamic resistance approach to calculate high resolution sensible heat fluxes in urban areas

    NASA Astrophysics Data System (ADS)

    Crawford, Ben; Grimmond, Sue; Kent, Christoph; Gabey, Andrew; Ward, Helen; Sun, Ting; Morrison, William

    2017-04-01

    Remotely sensed data from satellites have potential to enable high-resolution, automated calculation of urban surface energy balance terms and inform decisions about urban adaptations to environmental change. However, aerodynamic resistance methods to estimate sensible heat flux (QH) in cities using satellite-derived observations of surface temperature are difficult in part due to spatial and temporal variability of the thermal aerodynamic resistance term (rah). In this work, we extend an empirical function to estimate rah using observational data from several cities with a broad range of surface vegetation land cover properties. We then use this function to calculate spatially and temporally variable rah in London based on high-resolution (100 m) land cover datasets and in situ meteorological observations. In order to calculate high-resolution QH based on satellite-observed land surface temperatures, we also develop and employ novel methods to i) apply source area-weighted averaging of surface and meteorological variables across the study spatial domain, ii) calculate spatially variable, high-resolution meteorological variables (wind speed, friction velocity, and Obukhov length), iii) incorporate spatially interpolated urban air temperatures from a distributed sensor network, and iv) apply a modified Monte Carlo approach to assess uncertainties with our results, methods, and input variables. Modeled QH using the aerodynamic resistance method is then compared to in situ observations in central London from a unique network of scintillometers and eddy-covariance measurements.

  11. Reuse, Recycle, Reweigh: Combating Influenza through Efficient Sequential Bayesian Computation for Massive Data.

    PubMed

    Tom, Jennifer A; Sinsheimer, Janet S; Suchard, Marc A

    Massive datasets in the gigabyte and terabyte range combined with the availability of increasingly sophisticated statistical tools yield analyses at the boundary of what is computationally feasible. Compromising in the face of this computational burden by partitioning the dataset into more tractable sizes results in stratified analyses, removed from the context that justified the initial data collection. In a Bayesian framework, these stratified analyses generate intermediate realizations, often compared using point estimates that fail to account for the variability within and correlation between the distributions these realizations approximate. However, although the initial concession to stratify generally precludes the more sensible analysis using a single joint hierarchical model, we can circumvent this outcome and capitalize on the intermediate realizations by extending the dynamic iterative reweighting MCMC algorithm. In doing so, we reuse the available realizations by reweighting them with importance weights, recycling them into a now tractable joint hierarchical model. We apply this technique to intermediate realizations generated from stratified analyses of 687 influenza A genomes spanning 13 years allowing us to revisit hypotheses regarding the evolutionary history of influenza within a hierarchical statistical framework.

  12. Reuse, Recycle, Reweigh: Combating Influenza through Efficient Sequential Bayesian Computation for Massive Data

    PubMed Central

    Tom, Jennifer A.; Sinsheimer, Janet S.; Suchard, Marc A.

    2015-01-01

    Massive datasets in the gigabyte and terabyte range combined with the availability of increasingly sophisticated statistical tools yield analyses at the boundary of what is computationally feasible. Compromising in the face of this computational burden by partitioning the dataset into more tractable sizes results in stratified analyses, removed from the context that justified the initial data collection. In a Bayesian framework, these stratified analyses generate intermediate realizations, often compared using point estimates that fail to account for the variability within and correlation between the distributions these realizations approximate. However, although the initial concession to stratify generally precludes the more sensible analysis using a single joint hierarchical model, we can circumvent this outcome and capitalize on the intermediate realizations by extending the dynamic iterative reweighting MCMC algorithm. In doing so, we reuse the available realizations by reweighting them with importance weights, recycling them into a now tractable joint hierarchical model. We apply this technique to intermediate realizations generated from stratified analyses of 687 influenza A genomes spanning 13 years allowing us to revisit hypotheses regarding the evolutionary history of influenza within a hierarchical statistical framework. PMID:26681992

  13. Beyond comorbidity: Toward a dimensional and hierarchal approach to understanding psychopathology across the lifespan

    PubMed Central

    Forbes, Miriam K.; Tackett, Jennifer L.; Markon, Kristian E.; Krueger, Robert F.

    2016-01-01

    In this review, we propose a novel developmentally informed framework to push research beyond a focus on comorbidity between discrete diagnostic categories, and to move towards research based on the well-validated dimensional and hierarchical structure of psychopathology. For example, a large body of research speaks to the validity and utility of the Internalizing and Externalizing (IE) spectra as organizing constructs for research on common forms of psychopathology. The IE spectra act as powerful explanatory variables that channel the psychopathological effects of genetic and environmental risk factors, predict adaptive functioning, and account for the likelihood of disorder-level manifestations of psychopathology. As such, our proposed theoretical framework uses the IE spectra as central constructs to guide future psychopathology research across the lifespan. The framework is particularly flexible, as any of the facets or factors from the dimensional and hierarchical structure of psychopathology can form the focus of research. We describe the utility and strengths of this framework for developmental psychopathology in particular, and explore avenues for future research. PMID:27739384

  14. A multi-scale comparison of trait linkages to environmental and spatial variables in fish communities across a large freshwater lake.

    PubMed

    Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J

    2011-07-01

    Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.

  15. Understanding the Personality and Behavioral Mechanisms Defining Hypersexuality in Men Who Have Sex with Men

    PubMed Central

    Miner, Michael H.; Romine, Rebecca Swinburne; Raymond, Nancy; Janssen, Erick; MacDonald, Angus; Coleman, Eli

    2016-01-01

    Objective The purpose of this study was to investigate personality factors and behavioral mechanisms that are relevant to hypersexuality in men who have sex with men. Method A sample of 242 men who have sex with men were recruited from various sites in a moderate size mid-western city. Participants were assigned to hypersexuality or control group using a SCID-type interview. Self-report inventories were administered that measured the broad band personality constructs of positive emotionality, negative emotionality and constraint, and more narrow constructs related to sexual behavioral control, behavioral activation, behavioral inhibition, sexual excitation, sexual inhibition, impulsivity, ADHD, and sexual behavior. Hierarchical logistic regression was used to determine the relationship between these personality and behavioral variables and group membership. Results A hierarchical logistic regression, controlling for age, revealed a significant positive relationship between hypersexuality and negative emotionality and a negative relationship with constraint. None of the behavioral mechanism variables entered this equation. However, a hierarchical multiple regression predicting sexual behavioral control indicated that lack of such control was positively related to sexual excitation and sexual inhibition due to the threat of performance failure and negatively related to sexual inhibition due to the threat of performance consequences and general behavioral inhibition Conclusions Hypersexuality was found to be related to two broad personality factors that are characterized by emotional reactivity, risk-taking, and impulsivity. The associated lack of sexual behavior control is influenced by both sexual excitatory and inhibitory mechanisms, but not general behavioral activation and inhibitory mechanisms. PMID:27486137

  16. Reconstruction of forest geometries from terrestrial laser scanning point clouds for canopy radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Bremer, Magnus; Schmidtner, Korbinian; Rutzinger, Martin

    2015-04-01

    The architecture of forest canopies is a key parameter for forest ecological issues helping to model the variability of wood biomass and foliage in space and time. In order to understand the nature of subpixel effects of optical space-borne sensors with coarse spatial resolution, hypothetical 3D canopy models are widely used for the simulation of radiative transfer in forests. Thereby, radiation is traced through the atmosphere and canopy geometries until it reaches the optical sensor. For a realistic simulation scene we decompose terrestrial laser scanning point cloud data of leaf-off larch forest plots in the Austrian Alps and reconstruct detailed model ready input data for radiative transfer simulations. The point clouds are pre-classified into primitive classes using Principle Component Analysis (PCA) using scale adapted radius neighbourhoods. Elongated point structures are extracted as tree trunks. The tree trunks are used as seeds for a Dijkstra-growing procedure, in order to obtain single tree segmentation in the interlinked canopies. For the optimized reconstruction of branching architectures as vector models, point cloud skeletonisation is used in combination with an iterative Dijkstra-growing and by applying distance constraints. This allows conducting a hierarchical reconstruction preferring the tree trunk and higher order branches and avoiding over-skeletonization effects. Based on the reconstructed branching architectures, larch needles are modelled based on the hierarchical level of branches and the geometrical openness of the canopy. For radiative transfer simulations, branch architectures are used as mesh geometries representing branches as cylindrical pipes. Needles are either used as meshes or as voxel-turbids. The presented workflow allows an automatic classification and single tree segmentation in interlinked canopies. The iterative Dijkstra-growing using distance constraints generated realistic reconstruction results. As the mesh representation of branches proved to be sufficient for the simulation approach, the modelling of huge amounts of needles is much more efficient in voxel-turbid representation.

  17. Sources and pathways of the upscale effects on the Southern Hemisphere jet in MPAS-CAM4 variable-resolution simulations

    DOE PAGES

    Sakaguchi, Koichi; Lu, Jian; Leung, L. Ruby; ...

    2016-10-22

    Impacts of regional grid refinement on large-scale circulations (“upscale effects”) were detected in a previous study that used the Model for Prediction Across Scales-Atmosphere coupled to the physics parameterizations of the Community Atmosphere Model version 4. The strongest upscale effect was identified in the Southern Hemisphere jet during austral winter. This study examines the detailed underlying processes by comparing two simulations at quasi-uniform resolutions of 30 and 120 km to three variable-resolution simulations in which the horizontal grids are regionally refined to 30 km in North America, South America, or Asia from 120 km elsewhere. In all the variable-resolution simulations,more » precipitation increases in convective areas inside the high-resolution domains, as in the reference quasi-uniform high-resolution simulation. With grid refinement encompassing the tropical Americas, the increased condensational heating expands the local divergent circulations (Hadley cell) meridionally such that their descending branch is shifted poleward, which also pushes the baroclinically unstable regions, momentum flux convergence, and the eddy-driven jet poleward. This teleconnection pathway is not found in the reference high-resolution simulation due to a strong resolution sensitivity of cloud radiative forcing that dominates the aforementioned teleconnection signals. The regional refinement over Asia enhances Rossby wave sources and strengthens the upper level southerly flow, both facilitating the cross-equatorial propagation of stationary waves. Evidence indicates that this teleconnection pathway is also found in the reference high-resolution simulation. Lastly, the result underlines the intricate diagnoses needed to understand the upscale effects in global variable-resolution simulations, with implications for science investigations using the computationally efficient modeling framework.« less

  18. Sources and pathways of the upscale effects on the Southern Hemisphere jet in MPAS-CAM4 variable-resolution simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, Koichi; Lu, Jian; Leung, L. Ruby

    Impacts of regional grid refinement on large-scale circulations (“upscale effects”) were detected in a previous study that used the Model for Prediction Across Scales-Atmosphere coupled to the physics parameterizations of the Community Atmosphere Model version 4. The strongest upscale effect was identified in the Southern Hemisphere jet during austral winter. This study examines the detailed underlying processes by comparing two simulations at quasi-uniform resolutions of 30 and 120 km to three variable-resolution simulations in which the horizontal grids are regionally refined to 30 km in North America, South America, or Asia from 120 km elsewhere. In all the variable-resolution simulations,more » precipitation increases in convective areas inside the high-resolution domains, as in the reference quasi-uniform high-resolution simulation. With grid refinement encompassing the tropical Americas, the increased condensational heating expands the local divergent circulations (Hadley cell) meridionally such that their descending branch is shifted poleward, which also pushes the baroclinically unstable regions, momentum flux convergence, and the eddy-driven jet poleward. This teleconnection pathway is not found in the reference high-resolution simulation due to a strong resolution sensitivity of cloud radiative forcing that dominates the aforementioned teleconnection signals. The regional refinement over Asia enhances Rossby wave sources and strengthens the upper level southerly flow, both facilitating the cross-equatorial propagation of stationary waves. Evidence indicates that this teleconnection pathway is also found in the reference high-resolution simulation. Lastly, the result underlines the intricate diagnoses needed to understand the upscale effects in global variable-resolution simulations, with implications for science investigations using the computationally efficient modeling framework.« less

  19. Bayesian methods to determine performance differences and to quantify variability among centers in multi-center trials: the IHAST trial.

    PubMed

    Bayman, Emine O; Chaloner, Kathryn M; Hindman, Bradley J; Todd, Michael M

    2013-01-16

    To quantify the variability among centers and to identify centers whose performance are potentially outside of normal variability in the primary outcome and to propose a guideline that they are outliers. Novel statistical methodology using a Bayesian hierarchical model is used. Bayesian methods for estimation and outlier detection are applied assuming an additive random center effect on the log odds of response: centers are similar but different (exchangeable). The Intraoperative Hypothermia for Aneurysm Surgery Trial (IHAST) is used as an example. Analyses were adjusted for treatment, age, gender, aneurysm location, World Federation of Neurological Surgeons scale, Fisher score and baseline NIH stroke scale scores. Adjustments for differences in center characteristics were also examined. Graphical and numerical summaries of the between-center standard deviation (sd) and variability, as well as the identification of potential outliers are implemented. In the IHAST, the center-to-center variation in the log odds of favorable outcome at each center is consistent with a normal distribution with posterior sd of 0.538 (95% credible interval: 0.397 to 0.726) after adjusting for the effects of important covariates. Outcome differences among centers show no outlying centers. Four potential outlying centers were identified but did not meet the proposed guideline for declaring them as outlying. Center characteristics (number of subjects enrolled from the center, geographical location, learning over time, nitrous oxide, and temporary clipping use) did not predict outcome, but subject and disease characteristics did. Bayesian hierarchical methods allow for determination of whether outcomes from a specific center differ from others and whether specific clinical practices predict outcome, even when some centers/subgroups have relatively small sample sizes. In the IHAST no outlying centers were found. The estimated variability between centers was moderately large.

  20. Quality of life in multiple sclerosis (MS) and role of fatigue, depression, anxiety, and stress: A bicenter study from north of Iran.

    PubMed

    Salehpoor, Ghasem; Rezaei, Sajjad; Hosseininezhad, Mozaffar

    2014-11-01

    Although studies have demonstrated significant negative relationships between quality of life (QOL), fatigue, and the most common psychological symptoms (depression, anxiety, stress), the main ambiguity of previous studies on QOL is in the relative importance of these predictors. Also, there is lack of adequate knowledge about the actual contribution of each of them in the prediction of QOL dimensions. Thus, the main objective of this study is to assess the role of fatigue, depression, anxiety, and stress in relation to QOL of multiple sclerosis (MS) patients. One hundred and sixty-two MS patients completed the questionnaire on demographic variables, and then they were evaluated by the Persian versions of Short-Form Health Survey Questionnaire (SF-36), Fatigue Survey Scale (FSS), and Depression, Anxiety, Stress Scale-21 (DASS-21). Data were analyzed by Pearson correlation coefficient and hierarchical regression. Correlation analysis showed a significant relationship between QOL elements in SF-36 (physical component summary and mental component summary) and depression, fatigue, stress, and anxiety (P < 0.01). Hierarchical regression analysis indicated that among the predictor variables in the final step, fatigue, depression, and anxiety were identified as the physical component summary predictor variables. Anxiety was found to be the most powerful predictor variable amongst all (β = -0.46, P < 0.001). Furthermore, results have shown depression as the only significant mental component summary predictor variable (β = -0.39, P < 0.001). This study has highlighted the role of anxiety, fatigue, and depression in physical dimensions and the role of depression in psychological dimensions of the lives of MS patients. In addition, the findings of this study indirectly suggest that psychological interventions for reducing fatigue, depression, and anxiety can lead to improved QOL of MS patients.

  1. Bayesian Models for Streamflow and River Network Reconstruction using Tree Rings

    NASA Astrophysics Data System (ADS)

    Ravindranath, A.; Devineni, N.

    2016-12-01

    Water systems face non-stationary, dynamically shifting risks due to shifting societal conditions and systematic long-term variations in climate manifesting as quasi-periodic behavior on multi-decadal time scales. Water systems are thus vulnerable to long periods of wet or dry hydroclimatic conditions. Streamflow is a major component of water systems and a primary means by which water is transported to serve ecosystems' and human needs. Thus, our concern is in understanding streamflow variability. Climate variability and impacts on water resources are crucial factors affecting streamflow, and multi-scale variability increases risk to water sustainability and systems. Dam operations are necessary for collecting water brought by streamflow while maintaining downstream ecological health. Rules governing dam operations are based on streamflow records that are woefully short compared to periods of systematic variation present in the climatic factors driving streamflow variability and non-stationarity. We use hierarchical Bayesian regression methods in order to reconstruct paleo-streamflow records for dams within a basin using paleoclimate proxies (e.g. tree rings) to guide the reconstructions. The riverine flow network for the entire basin is subsequently modeled hierarchically using feeder stream and tributary flows. This is a starting point in analyzing streamflow variability and risks to water systems, and developing a scientifically-informed dynamic risk management framework for formulating dam operations and water policies to best hedge such risks. We will apply this work to the Missouri and Delaware River Basins (DRB). Preliminary results of streamflow reconstructions for eight dams in the upper DRB using standard Gaussian regression with regional tree ring chronologies give streamflow records that now span two to two and a half centuries, and modestly smoothed versions of these reconstructed flows indicate physically-justifiable trends in the time series.

  2. Effects of temporal averaging on short-term irradiance variability under mixed sky conditions

    NASA Astrophysics Data System (ADS)

    Lohmann, Gerald M.; Monahan, Adam H.

    2018-05-01

    Characterizations of short-term variability in solar radiation are required to successfully integrate large numbers of photovoltaic power systems into the electrical grid. Previous studies have used ground-based irradiance observations with a range of different temporal resolutions and a systematic analysis of the effects of temporal averaging on the representation of variability is lacking. Using high-resolution surface irradiance data with original temporal resolutions between 0.01 and 1 s from six different locations in the Northern Hemisphere, we characterize the changes in representation of temporal variability resulting from time averaging. In this analysis, we condition all data to states of mixed skies, which are the most potentially problematic in terms of local PV power volatility. Statistics of clear-sky index k* and its increments Δk*τ (i.e., normalized surface irradiance and changes therein over specified intervals of time) are considered separately. Our results indicate that a temporal averaging time scale of around 1 s marks a transition in representing single-point irradiance variability, such that longer averages result in substantial underestimates of variability. Higher-resolution data increase the complexity of data management and quality control without appreciably improving the representation of variability. The results do not show any substantial discrepancies between locations or seasons.

  3. Processing Cones: A Computational Structure for Image Analysis.

    DTIC Science & Technology

    1981-12-01

    image analysis applications, referred to as a processing cone, is described and sample algorithms are presented. A fundamental characteristic of the structure is its hierarchical organization into two-dimensional arrays of decreasing resolution. In this architecture, a protypical function is defined on a local window of data and applied uniformly to all windows in a parallel manner. Three basic modes of processing are supported in the cone: reduction operations (upward processing), horizontal operations (processing at a single level) and projection operations (downward

  4. Isogeometric Collocation: Cost Comparison with Galerkin Methods and Extension to Adaptive Hierarchical NURBS Discretizations (Preprint)

    DTIC Science & Technology

    2013-02-06

    high order and smoothness. Consequently, the use of IGA for col- location suggests itself, since spline functions such as NURBS or T-splines can be...for the development of higher-order accurate time integration schemes due to the convergence of the high modes in the eigenspectrum [46] as well as...flows [19, 20, 49–52]. Due to their maximum smoothness, B-splines exhibit a high resolution power, which allows the representation of a broad range

  5. Sharpening method of satellite thermal image based on the geographical statistical model

    NASA Astrophysics Data System (ADS)

    Qi, Pengcheng; Hu, Shixiong; Zhang, Haijun; Guo, Guangmeng

    2016-04-01

    To improve the effectiveness of thermal sharpening in mountainous regions, paying more attention to the laws of land surface energy balance, a thermal sharpening method based on the geographical statistical model (GSM) is proposed. Explanatory variables were selected from the processes of land surface energy budget and thermal infrared electromagnetic radiation transmission, then high spatial resolution (57 m) raster layers were generated for these variables through spatially simulating or using other raster data as proxies. Based on this, the local adaptation statistical relationship between brightness temperature (BT) and the explanatory variables, i.e., the GSM, was built at 1026-m resolution using the method of multivariate adaptive regression splines. Finally, the GSM was applied to the high-resolution (57-m) explanatory variables; thus, the high-resolution (57-m) BT image was obtained. This method produced a sharpening result with low error and good visual effect. The method can avoid the blind choice of explanatory variables and remove the dependence on synchronous imagery at visible and near-infrared bands. The influences of the explanatory variable combination, sampling method, and the residual error correction on sharpening results were analyzed deliberately, and their influence mechanisms are reported herein.

  6. Bayesian Group Bridge for Bi-level Variable Selection.

    PubMed

    Mallick, Himel; Yi, Nengjun

    2017-06-01

    A Bayesian bi-level variable selection method (BAGB: Bayesian Analysis of Group Bridge) is developed for regularized regression and classification. This new development is motivated by grouped data, where generic variables can be divided into multiple groups, with variables in the same group being mechanistically related or statistically correlated. As an alternative to frequentist group variable selection methods, BAGB incorporates structural information among predictors through a group-wise shrinkage prior. Posterior computation proceeds via an efficient MCMC algorithm. In addition to the usual ease-of-interpretation of hierarchical linear models, the Bayesian formulation produces valid standard errors, a feature that is notably absent in the frequentist framework. Empirical evidence of the attractiveness of the method is illustrated by extensive Monte Carlo simulations and real data analysis. Finally, several extensions of this new approach are presented, providing a unified framework for bi-level variable selection in general models with flexible penalties.

  7. A New High Resolution Climate Dataset for Climate Change Impacts Assessments in New England

    NASA Astrophysics Data System (ADS)

    Komurcu, M.; Huber, M.

    2016-12-01

    Assessing regional impacts of climate change (such as changes in extreme events, land surface hydrology, water resources, energy, ecosystems and economy) requires much higher resolution climate variables than those available from global model projections. While it is possible to run global models in higher resolution, the high computational cost associated with these simulations prevent their use in such manner. To alleviate this problem, dynamical downscaling offers a method to deliver higher resolution climate variables. As part of an NSF EPSCoR funded interdisciplinary effort to assess climate change impacts on New Hampshire ecosystems, hydrology and economy (the New Hampshire Ecosystems and Society project), we create a unique high-resolution climate dataset for New England. We dynamically downscale global model projections under a high impact emissions scenario using the Weather Research and Forecasting model (WRF) with three nested grids of 27, 9 and 3 km horizontal resolution with the highest resolution innermost grid focusing over New England. We prefer dynamical downscaling over other methods such as statistical downscaling because it employs physical equations to progressively simulate climate variables as atmospheric processes interact with surface processes, emissions, radiation, clouds, precipitation and other model components, hence eliminates fix relationships between variables. In addition to simulating mean changes in regional climate, dynamical downscaling also allows for the simulation of climate extremes that significantly alter climate change impacts. We simulate three time slices: 2006-2015, 2040-2060 and 2080-2100. This new high-resolution climate dataset (with more than 200 variables saved in hourly (six hourly) intervals for the highest resolution domain (outer two domains)) along with model input and restart files used in our WRF simulations will be publicly available for use to the broader scientific community to support in-depth climate change impacts assessments for New England. We present results focusing on future changes in New England extreme events.

  8. A Multidimensional Approach to Explore the Understanding of the Notion of Absolute Value

    ERIC Educational Resources Information Center

    Gagatsis, Athanasios; Panaoura, Areti

    2014-01-01

    The study aimed to investigate students' conceptions on the notion of absolute value and their abilities in applying the specific notion in routine and non-routine situations. A questionnaire was constructed and administered to 17-year-old students. Data were analysed using the hierarchical clustering of variables and the implicative method, while…

  9. Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan

    2005-01-01

    In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…

  10. A multivariate decision tree analysis of biophysical factors in tropical forest fire occurrence

    Treesearch

    Rey S. Ofren; Edward Harvey

    2000-01-01

    A multivariate decision tree model was used to quantify the relative importance of complex hierarchical relationships between biophysical variables and the occurrence of tropical forest fires. The study site is the Huai Kha Kbaeng wildlife sanctuary, a World Heritage Site in northwestern Thailand where annual fires are common and particularly destructive. Thematic...

  11. Classification Based on Hierarchical Linear Models: The Need for Incorporation of Social Contexts in Classification Analysis

    ERIC Educational Resources Information Center

    Vaughn, Brandon K.; Wang, Qui

    2009-01-01

    Many areas in educational and psychological research involve the use of classification statistical analysis. For example, school districts might be interested in attaining variables that provide optimal prediction of school dropouts. In psychology, a researcher might be interested in the classification of a subject into a particular psychological…

  12. Analysis of Student Performance in Large-Enrollment Life Science Courses

    ERIC Educational Resources Information Center

    Creech, Leah Renee; Sweeder, Ryan D.

    2012-01-01

    This study examined the historical performance of students at Michigan State University in 12 life sciences courses over 13 yr to find variables impacting student success. Hierarchical linear modeling predicted 25.0-62.8% of the variance in students' grades in the courses analyzed. The primary predictor of a student's course grade was his or her…

  13. A Spreadsheet for a 2 x 3 x 2 Log-Linear Analysis. AIR 1991 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Saupe, Joe L.

    This paper describes a personal computer spreadsheet set up to carry out hierarchical log-linear analyses, a type of analysis useful for institutional research into multidimensional frequency tables formed from categorical variables such as faculty rank, student class level, gender, or retention status. The spreadsheet provides a concrete vehicle…

  14. Examining the Antecedents of ICT Adoption in Education Using an Extended Technology Acceptance Model (TAM)

    ERIC Educational Resources Information Center

    Teeroovengadum, Viraiyan; Heeraman, Nabeel; Jugurnath, Bhavish

    2017-01-01

    This study assesses the determinants of ICT adoption by educators in the teaching and learning process in the context of a developing country, Mauritius. A hierarchical regression analysis is used, to firstly determine the incremental effects of factors from the technology acceptance model (TAM) while controlling for demographic variables such as…

  15. Evidence that Gender Differences in Social Dominance Orientation Result from Gendered Self-Stereotyping and Group-Interested Responses to Patriarchy

    ERIC Educational Resources Information Center

    Schmitt, Michael T.; Wirth, James H.

    2009-01-01

    Numerous studies have found that, compared to women, men express higher levels of social dominance orientation (SDO), an individual difference variable reflecting support for unequal, hierarchical relationships between groups. Recent research suggests that the often-observed gender difference in SDO results from processes related to gender group…

  16. Illustration of a Multilevel Model for Meta-Analysis

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Camilli, Gregory; Vargas, Sadako; Vernon, R. Fox

    2007-01-01

    In this article, the authors present a multilevel (or hierarchical linear) model that illustrates issues in the application of the model to data from meta-analytic studies. In doing so, several issues are discussed that typically arise in the course of a meta-analysis. These include the presence of non-zero between-study variability, how multiple…

  17. HLM in Cluster-Randomised Trials--Measuring Efficacy across Diverse Populations of Learners

    ERIC Educational Resources Information Center

    Hegedus, Stephen; Tapper, John; Dalton, Sara; Sloane, Finbarr

    2013-01-01

    We describe the application of Hierarchical Linear Modelling (HLM) in a cluster-randomised study to examine learning algebraic concepts and procedures in an innovative, technology-rich environment in the US. HLM is applied to measure the impact of such treatment on learning and on contextual variables. We provide a detailed description of such…

  18. Union Status and Faculty Job Satisfaction: Contemporary Evidence from the 2004 National Study of Postsecondary Faculty

    ERIC Educational Resources Information Center

    Myers, Carrie B.

    2011-01-01

    This study tests the association between union status and job satisfaction using 8,000+ U.S. faculty at four-year public institutions surveyed in the 2004 National Study of Postsecondary Faculty. The results from hierarchical linear models that included individual and institutional variables found that nonunion faculty reported significantly…

  19. Examining the Variability of Mathematics Performance and Its Correlates Using Data from TIMSS '95 and TIMSS '99

    ERIC Educational Resources Information Center

    O'Dwyer, Laura M.

    2005-01-01

    International studies in education provide researchers with opportunities to examine how students with both similar and dissimilar formal education systems perform on a single test and provide rich information about the relationships among student outcomes and the factors that affect them. Using hierarchical linear regression techniques and TIMSS…

  20. Multiscale Simulation of Microbe Structure and Dynamics

    PubMed Central

    Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V.; Cheluvaraja, Srinath C.; Ortoleva, Peter J.

    2012-01-01

    A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin. PMID:21802438

  1. Determinants of postpartum weight variation in a cohort of adult women; a hierarchical approach.

    PubMed

    Monteiro da Silva, Maria da Conceição; Marlúcia Oliveira, Ana; Pereira Magalhães de Oliveira, Lucivalda; Silva dos Santos Fonseca, Dra Nedja; Portela de Santana, Mônica Leila; de Araújo Góes Neto, Edgar; Rodrigues Porto da Cruz, Thomaz

    2013-01-01

    Retention of the weight gained during pregnancy or the weight gain postpartum has been associated with increased prevalence of obesity in women of childbearing age. To identify determinants of weight variation at 24 months postpartum in women from 2 towns in Bahia, Brazil. Dynamic cohort data of 325 adult women were collected for 24 months postpartum. Weight variation at 24 months postpartum was considered a response variable. Socioeconomic, demographic, reproductive, related with childbirth variables and lifestyle conditions were considered exposure variables. A linear mixed-effects regression model with a hierarchical approach was used for data analysis. Suitable sanitary conditions in the household (2.175 kg; p = 0.001) and participation social programs for income transfer (1.300 kg; p = 0.018) contributed to weight gain in distal level of determinants, while at intermediate level, pre gestational overweight and surgical delivery had effects on postpartum weight, causing an average increase of 3.380 kg (p < 0.001) and loss of 2.451 kg (p < 0.001), respectively. At proximal level, a score point increase for breastfeeding yielded an average postpartum loss of 70 g (p = 0.002). Our results indicate the need to promote weight control during and after pregnancy, encourage extended breastfeeding, and improve living conditions through intersectoral interventions. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  2. Parameter estimation and prediction for the course of a single epidemic outbreak of a plant disease.

    PubMed

    Kleczkowski, A; Gilligan, C A

    2007-10-22

    Many epidemics of plant diseases are characterized by large variability among individual outbreaks. However, individual epidemics often follow a well-defined trajectory which is much more predictable in the short term than the ensemble (collection) of potential epidemics. In this paper, we introduce a modelling framework that allows us to deal with individual replicated outbreaks, based upon a Bayesian hierarchical analysis. Information about 'similar' replicate epidemics can be incorporated into a hierarchical model, allowing both ensemble and individual parameters to be estimated. The model is used to analyse the data from a replicated experiment involving spread of Rhizoctonia solani on radish in the presence or absence of a biocontrol agent, Trichoderma viride. The rate of primary (soil-to-plant) infection is found to be the most variable factor determining the final size of epidemics. Breakdown of biological control in some replicates results in high levels of primary infection and increased variability. The model can be used to predict new outbreaks of disease based upon knowledge from a 'library' of previous epidemics and partial information about the current outbreak. We show that forecasting improves significantly with knowledge about the history of a particular epidemic, whereas the precision of hindcasting to identify the past course of the epidemic is largely independent of detailed knowledge of the epidemic trajectory. The results have important consequences for parameter estimation, inference and prediction for emerging epidemic outbreaks.

  3. Multilevel modeling and panel data analysis in educational research (Case study: National examination data senior high school in West Java)

    NASA Astrophysics Data System (ADS)

    Zulvia, Pepi; Kurnia, Anang; Soleh, Agus M.

    2017-03-01

    Individual and environment are a hierarchical structure consist of units grouped at different levels. Hierarchical data structures are analyzed based on several levels, with the lowest level nested in the highest level. This modeling is commonly call multilevel modeling. Multilevel modeling is widely used in education research, for example, the average score of National Examination (UN). While in Indonesia UN for high school student is divided into natural science and social science. The purpose of this research is to develop multilevel and panel data modeling using linear mixed model on educational data. The first step is data exploration and identification relationships between independent and dependent variable by checking correlation coefficient and variance inflation factor (VIF). Furthermore, we use a simple model approach with highest level of the hierarchy (level-2) is regency/city while school is the lowest of hierarchy (level-1). The best model was determined by comparing goodness-of-fit and checking assumption from residual plots and predictions for each model. Our finding that for natural science and social science, the regression with random effects of regency/city and fixed effects of the time i.e multilevel model has better performance than the linear mixed model in explaining the variability of the dependent variable, which is the average scores of UN.

  4. A Novel Information-Theoretic Approach for Variable Clustering and Predictive Modeling Using Dirichlet Process Mixtures

    PubMed Central

    Chen, Yun; Yang, Hui

    2016-01-01

    In the era of big data, there are increasing interests on clustering variables for the minimization of data redundancy and the maximization of variable relevancy. Existing clustering methods, however, depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence among variables poses significant challenges on the traditional framework of predictive modeling. In the present work, we reformulate the problem of variable clustering from an information theoretic perspective that does not require the assumption of data structure for the identification of nonlinear interdependence among variables. Specifically, we propose the use of mutual information to characterize and measure nonlinear correlation structures among variables. Further, we develop Dirichlet process (DP) models to cluster variables based on the mutual-information measures among variables. Finally, orthonormalized variables in each cluster are integrated with group elastic-net model to improve the performance of predictive modeling. Both simulation and real-world case studies showed that the proposed methodology not only effectively reveals the nonlinear interdependence structures among variables but also outperforms traditional variable clustering algorithms such as hierarchical clustering. PMID:27966581

  5. A Novel Information-Theoretic Approach for Variable Clustering and Predictive Modeling Using Dirichlet Process Mixtures.

    PubMed

    Chen, Yun; Yang, Hui

    2016-12-14

    In the era of big data, there are increasing interests on clustering variables for the minimization of data redundancy and the maximization of variable relevancy. Existing clustering methods, however, depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence among variables poses significant challenges on the traditional framework of predictive modeling. In the present work, we reformulate the problem of variable clustering from an information theoretic perspective that does not require the assumption of data structure for the identification of nonlinear interdependence among variables. Specifically, we propose the use of mutual information to characterize and measure nonlinear correlation structures among variables. Further, we develop Dirichlet process (DP) models to cluster variables based on the mutual-information measures among variables. Finally, orthonormalized variables in each cluster are integrated with group elastic-net model to improve the performance of predictive modeling. Both simulation and real-world case studies showed that the proposed methodology not only effectively reveals the nonlinear interdependence structures among variables but also outperforms traditional variable clustering algorithms such as hierarchical clustering.

  6. Mapping nonlinear receptive field structure in primate retina at single cone resolution

    PubMed Central

    Li, Peter H; Greschner, Martin; Gunning, Deborah E; Mathieson, Keith; Sher, Alexander; Litke, Alan M; Paninski, Liam

    2015-01-01

    The function of a neural circuit is shaped by the computations performed by its interneurons, which in many cases are not easily accessible to experimental investigation. Here, we elucidate the transformation of visual signals flowing from the input to the output of the primate retina, using a combination of large-scale multi-electrode recordings from an identified ganglion cell type, visual stimulation targeted at individual cone photoreceptors, and a hierarchical computational model. The results reveal nonlinear subunits in the circuity of OFF midget ganglion cells, which subserve high-resolution vision. The model explains light responses to a variety of stimuli more accurately than a linear model, including stimuli targeted to cones within and across subunits. The recovered model components are consistent with known anatomical organization of midget bipolar interneurons. These results reveal the spatial structure of linear and nonlinear encoding, at the resolution of single cells and at the scale of complete circuits. DOI: http://dx.doi.org/10.7554/eLife.05241.001 PMID:26517879

  7. Segmentation methodology for automated classification and differentiation of soft tissues in multiband images of high-resolution ultrasonic transmission tomography.

    PubMed

    Jeong, Jeong-Won; Shin, Dae C; Do, Synho; Marmarelis, Vasilis Z

    2006-08-01

    This paper presents a novel segmentation methodology for automated classification and differentiation of soft tissues using multiband data obtained with the newly developed system of high-resolution ultrasonic transmission tomography (HUTT) for imaging biological organs. This methodology extends and combines two existing approaches: the L-level set active contour (AC) segmentation approach and the agglomerative hierarchical kappa-means approach for unsupervised clustering (UC). To prevent the trapping of the current iterative minimization AC algorithm in a local minimum, we introduce a multiresolution approach that applies the level set functions at successively increasing resolutions of the image data. The resulting AC clusters are subsequently rearranged by the UC algorithm that seeks the optimal set of clusters yielding the minimum within-cluster distances in the feature space. The presented results from Monte Carlo simulations and experimental animal-tissue data demonstrate that the proposed methodology outperforms other existing methods without depending on heuristic parameters and provides a reliable means for soft tissue differentiation in HUTT images.

  8. Downscaling Satellite Data for Predicting Catchment-scale Root Zone Soil Moisture with Ground-based Sensors and an Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Lin, H.; Baldwin, D. C.; Smithwick, E. A. H.

    2015-12-01

    Predicting root zone (0-100 cm) soil moisture (RZSM) content at a catchment-scale is essential for drought and flood predictions, irrigation planning, weather forecasting, and many other applications. Satellites, such as the NASA Soil Moisture Active Passive (SMAP), can estimate near-surface (0-5 cm) soil moisture content globally at coarse spatial resolutions. We develop a hierarchical Ensemble Kalman Filter (EnKF) data assimilation modeling system to downscale satellite-based near-surface soil moisture and to estimate RZSM content across the Shale Hills Critical Zone Observatory at a 1-m resolution in combination with ground-based soil moisture sensor data. In this example, a simple infiltration model within the EnKF-model has been parameterized for 6 soil-terrain units to forecast daily RZSM content in the catchment from 2009 - 2012 based on AMSRE. LiDAR-derived terrain variables define intra-unit RZSM variability using a novel covariance localization technique. This method also allows the mapping of uncertainty with our RZSM estimates for each time-step. A catchment-wide satellite-to-surface downscaling parameter, which nudges the satellite measurement closer to in situ near-surface data, is also calculated for each time-step. We find significant differences in predicted root zone moisture storage for different terrain units across the experimental time-period. Root mean square error from a cross-validation analysis of RZSM predictions using an independent dataset of catchment-wide in situ Time-Domain Reflectometry (TDR) measurements ranges from 0.060-0.096 cm3 cm-3, and the RZSM predictions are significantly (p < 0.05) correlated with TDR measurements [r = 0.47-0.68]. The predictive skill of this data assimilation system is similar to the Penn State Integrated Hydrologic Modeling (PIHM) system. Uncertainty estimates are significantly (p < 0.05) correlated to cross validation error during wet and dry conditions, but more so in dry summer seasons. Developing an EnKF-model system that downscales satellite data and predicts catchment-scale RZSM content is especially timely, given the anticipated release of SMAP surface moisture data in 2015.

  9. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Cloud Classification System

    NASA Astrophysics Data System (ADS)

    Hong, Yang

    Precipitation estimation from satellite information (VISIBLE , IR, or microwave) is becoming increasingly imperative because of its high spatial/temporal resolution and board coverage unparalleled by ground-based data. After decades' efforts of rainfall estimation using IR imagery as basis, it has been explored and concluded that the limitations/uncertainty of the existing techniques are: (1) pixel-based local-scale feature extraction; (2) IR temperature threshold to define rain/no-rain clouds; (3) indirect relationship between rain rate and cloud-top temperature; (4) lumped techniques to model high variability of cloud-precipitation processes; (5) coarse scales of rainfall products. As continuing studies, a new version of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network (PERSIANN), called Cloud Classification System (CCS), has been developed to cope with these limitations in this dissertation. CCS includes three consecutive components: (1) a hybrid segmentation algorithm, namely Hierarchically Topographical Thresholding and Stepwise Seeded Region Growing (HTH-SSRG), to segment satellite IR images into separated cloud patches; (2) a 3D feature extraction procedure to retrieve both pixel-based local-scale and patch-based large-scale features of cloud patch at various heights; (3) an ANN model, Self-Organizing Nonlinear Output (SONO) network, to classify cloud patches into similarity-based clusters, using Self-Organizing Feature Map (SOFM), and then calibrate hundreds of multi-parameter nonlinear functions to identify the relationship between every cloud types and their underneath precipitation characteristics using Probability Matching Method and Multi-Start Downhill Simplex optimization techniques. The model was calibrated over the Southwest of United States (100°--130°W and 25°--45°N) first and then adaptively adjusted to the study region of North America Monsoon Experiment (65°--135°W and 10°--50°N) using observations from Geostationary Operational Environmental Satellite (GOES) IR imagery, Next Generation Radar (NEXRAD) rainfall network, and Tropical Rainfall Measurement Mission (TRMM) microwave rain rate estimates. CCS functions as a distributed model that first identifies cloud patches and then dispatches different but the best matching cloud-precipitation function for each cloud patch to estimate instantaneous rain rate at high spatial resolution (4km) and full temporal resolution of GOES IR images (every 30-minute). Evaluated over a range of spatial and temporal scales, the performance of CCS compared favorably with GOES Precipitation Index (GPI), Universal Adjusted GPI (UAGPI), PERSIANN, and Auto-Estimator (AE) algorithms, consistently. Particularly, the large number of nonlinear functions and optimum IR-rain rate thresholds of CCS model are highly variable, reflecting the complexity of dominant cloud-precipitation processes from cloud patch to cloud patch over various regions. As a result, CCS can more successfully capture variability in rain rate at small scales than existing algorithms and potentially provides rainfall product from GOES IR-NEXARD-TRMM TMI (SSM/I) at 0.12° x 0.12° and 3-hour resolution with relative low standard error (˜=3.0mm/hr) and high correlation coefficient (˜=0.65).

  10. Time-resolved High Spectral Resolution Observation of 2MASSW J0746425+200032AB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Mawet, Dimitri; Prato, Lisa, E-mail: ji.wang@caltech.edu

    Many brown dwarfs (BDs) exhibit photometric variability at levels from tenths to tens of percents. The photometric variability is related to magnetic activity or patchy cloud coverage, characteristic of BDs near the L–T transition. Time-resolved spectral monitoring of BDs provides diagnostics of cloud distribution and condensate properties. However, current time-resolved spectral studies of BDs are limited to low spectral resolution ( R ∼ 100) with the exception of the study of Luhman 16 AB at a resolution of 100,000 using the VLT+CRIRES. This work yielded the first map of BD surface inhomogeneity, highlighting the importance and unique contribution of highmore » spectral resolution observations. Here, we report on the time-resolved high spectral resolution observations of a nearby BD binary, 2MASSW J0746425+200032AB. We find no coherent spectral variability that is modulated with rotation. Based on simulations, we conclude that the coverage of a single spot on 2MASSW J0746425+200032AB is smaller than 1% or 6.25% if spot contrast is 50% or 80% of its surrounding flux, respectively. Future high spectral resolution observations aided by adaptive optics systems can put tighter constraints on the spectral variability of 2MASSW J0746425+200032AB and other nearby BDs.« less

  11. VR Employment Outcomes of Individuals with Autism Spectrum Disorders: A Decade in the Making.

    PubMed

    Alverson, Charlotte Y; Yamamoto, Scott H

    2018-01-01

    This study utilized hierarchical linear modeling analysis of a 10-year extant dataset from Rehabilitation Services Administration to investigate significant predictors of employment outcomes for vocational rehabilitation (VR) clients with autism. Predictor variables were gender, ethnicity, attained education level, IEP status in high school, secondary disability status, and total number of VR services. Competitive employment was the criterion variable. Only one predictor variable, Total Number of VR Services, was significant across all 10 years. IEP status in high school was not significant in any year. The remaining predictors were significant in one or more years. Further research and implications for researchers and practitioners are included.

  12. Effects of model spatial resolution on ecohydrologic predictions and their sensitivity to inter-annual climate variability

    Treesearch

    Kyongho Son; Christina Tague; Carolyn Hunsaker

    2016-01-01

    The effect of fine-scale topographic variability on model estimates of ecohydrologic responses to climate variability in California’s Sierra Nevada watersheds has not been adequately quantified and may be important for supporting reliable climate-impact assessments. This study tested the effect of digital elevation model (DEM) resolution on model accuracy and estimates...

  13. Hierarchical representation of shapes in visual cortex—from localized features to figural shape segregation

    PubMed Central

    Tschechne, Stephan; Neumann, Heiko

    2014-01-01

    Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy. PMID:25157228

  14. Hierarchical representation of shapes in visual cortex-from localized features to figural shape segregation.

    PubMed

    Tschechne, Stephan; Neumann, Heiko

    2014-01-01

    Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.

  15. Hierarchical matrices implemented into the boundary integral approaches for gravity field modelling

    NASA Astrophysics Data System (ADS)

    Čunderlík, Róbert; Vipiana, Francesca

    2017-04-01

    Boundary integral approaches applied for gravity field modelling have been recently developed to solve the geodetic boundary value problems numerically, or to process satellite observations, e.g. from the GOCE satellite mission. In order to obtain numerical solutions of "cm-level" accuracy, such approaches require very refined level of the disretization or resolution. This leads to enormous memory requirements that need to be reduced. An implementation of the Hierarchical Matrices (H-matrices) can significantly reduce a numerical complexity of these approaches. A main idea of the H-matrices is based on an approximation of the entire system matrix that is split into a family of submatrices. Large submatrices are stored in factorized representation, while small submatrices are stored in standard representation. This allows reducing memory requirements significantly while improving the efficiency. The poster presents our preliminary results of implementations of the H-matrices into the existing boundary integral approaches based on the boundary element method or the method of fundamental solution.

  16. Atomic structure and hierarchical assembly of a cross-β amyloid fibril

    PubMed Central

    Fitzpatrick, Anthony W. P.; Debelouchina, Galia T.; Bayro, Marvin J.; Clare, Daniel K.; Caporini, Marc A.; Bajaj, Vikram S.; Jaroniec, Christopher P.; Wang, Luchun; Ladizhansky, Vladimir; Müller, Shirley A.; MacPhee, Cait E.; Waudby, Christopher A.; Mott, Helen R.; De Simone, Alfonso; Knowles, Tuomas P. J.; Saibil, Helen R.; Vendruscolo, Michele; Orlova, Elena V.; Griffin, Robert G.; Dobson, Christopher M.

    2013-01-01

    The cross-β amyloid form of peptides and proteins represents an archetypal and widely accessible structure consisting of ordered arrays of β-sheet filaments. These complex aggregates have remarkable chemical and physical properties, and the conversion of normally soluble functional forms of proteins into amyloid structures is linked to many debilitating human diseases, including several common forms of age-related dementia. Despite their importance, however, cross-β amyloid fibrils have proved to be recalcitrant to detailed structural analysis. By combining structural constraints from a series of experimental techniques spanning five orders of magnitude in length scale—including magic angle spinning nuclear magnetic resonance spectroscopy, X-ray fiber diffraction, cryoelectron microscopy, scanning transmission electron microscopy, and atomic force microscopy—we report the atomic-resolution (0.5 Å) structures of three amyloid polymorphs formed by an 11-residue peptide. These structures reveal the details of the packing interactions by which the constituent β-strands are assembled hierarchically into protofilaments, filaments, and mature fibrils. PMID:23513222

  17. Hierarchical domain structure of lead-free piezoelectric (Na{sub 1/2} Bi{sub 1/2})TiO{sub 3}-(K{sub 1/2} Bi{sub 1/2})TiO{sub 3} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Chengtao, E-mail: lchentao@vt.edu; Wang, Yaojin; Ge, Wenwei

    2016-05-07

    We report a unique hierarchical domain structure in single crystals of (Na{sub 1/2}Bi{sub 1/2})TiO{sub 3}-xat. %(K{sub 1/2}Bi{sub 1/2})TiO{sub 3} for x = 5 and 8 by transmission electron microscopy (TEM). A high density of polar nano-domains with a lamellar morphology was found, which were self-assembled into a quadrant-like configuration, which then assembled into conventional ferroelectric macro-domains. Studies by high resolution TEM revealed that the polar lamellar regions contained a coexistence of in-phase and anti-phase oxygen octahedral tilt regions of a few nanometers in size. Domain frustration over multiple length scales may play an important role in the stabilization of the hierarchy, andmore » in reducing the piezoelectric response of this Pb-free piezoelectric solid solution.« less

  18. Development of hierarchical, tunable pore size polymer foams for ICF targets

    DOE PAGES

    Hamilton, Christopher E.; Lee, Matthew Nicholson; Parra-Vasquez, A. Nicholas Gerardo

    2016-08-01

    In this study, one of the great challenges of inertial confinement fusion experiments is poor understanding of the effects of reactant heterogeneity on fusion reactions. The Marble campaign, conceived at Los Alamos National Laboratory, aims to gather new insights into this issue by utilizing target capsules containing polymer foams of variable pore sizes, tunable over an order of magnitude. Here, we describe recent and ongoing progress in the development of CH and CH/CD polymer foams in support of Marble. Hierarchical and tunable pore sizes have been achieved by utilizing a sacrificial porogen template within an open-celled poly(divinylbenzene) or poly(divinylbenzene-co-styrene) aerogelmore » matrix, resulting in low-density foams (~30 mg/ml) with continuous multimodal pore networks.« less

  19. Groundwater Quality: Analysis of Its Temporal and Spatial Variability in a Karst Aquifer.

    PubMed

    Pacheco Castro, Roger; Pacheco Ávila, Julia; Ye, Ming; Cabrera Sansores, Armando

    2018-01-01

    This study develops an approach based on hierarchical cluster analysis for investigating the spatial and temporal variation of water quality governing processes. The water quality data used in this study were collected in the karst aquifer of Yucatan, Mexico, the only source of drinking water for a population of nearly two million people. Hierarchical cluster analysis was applied to the quality data of all the sampling periods lumped together. This was motivated by the observation that, if water quality does not vary significantly in time, two samples from the same sampling site will belong to the same cluster. The resulting distribution maps of clusters and box-plots of the major chemical components reveal the spatial and temporal variability of groundwater quality. Principal component analysis was used to verify the results of cluster analysis and to derive the variables that explained most of the variation of the groundwater quality data. Results of this work increase the knowledge about how precipitation and human contamination impact groundwater quality in Yucatan. Spatial variability of groundwater quality in the study area is caused by: a) seawater intrusion and groundwater rich in sulfates at the west and in the coast, b) water rock interactions and the average annual precipitation at the middle and east zones respectively, and c) human contamination present in two localized zones. Changes in the amount and distribution of precipitation cause temporal variation by diluting groundwater in the aquifer. This approach allows to analyze the variation of groundwater quality controlling processes efficiently and simultaneously. © 2017, National Ground Water Association.

  20. Pursuit of STEM: Factors shaping degree completion for African American females in STEM

    NASA Astrophysics Data System (ADS)

    Wilkins, Ashlee N.

    The primary purpose of the study was to examine secondary data from the Cooperative Institutional Research Program (CIRP) Freshman and College Senior Surveys to investigate factors shaping degree aspirations for African American female undergraduates partaking in science, technology, engineering, and mathematics (STEM) majors. Hierarchical multiple regression was used to analyze the data and identify relationships between independent variables in relation to the dependent variable. The findings of the study reveal four key variables that were predictive of degree completion for African American females in STEM. Father's education, SAT composite, highest degree planned, and self-perception were positive predictors for females; while independent variable overall sense of community among students remained a negative predictor. Lastly implications for education and recommendations for future research were discussed.

  1. Alleviating tropical Atlantic sector biases in the Kiel climate model by enhancing horizontal and vertical atmosphere model resolution: climatology and interannual variability

    NASA Astrophysics Data System (ADS)

    Harlaß, Jan; Latif, Mojib; Park, Wonsun

    2018-04-01

    We investigate the quality of simulating tropical Atlantic (TA) sector climatology and interannual variability in integrations of the Kiel climate model (KCM) with varying atmosphere model resolution. The ocean model resolution is kept fixed. A reasonable simulation of TA sector annual-mean climate, seasonal cycle and interannual variability can only be achieved at sufficiently high horizontal and vertical atmospheric resolution. Two major reasons for the improvements are identified. First, the western equatorial Atlantic westerly surface wind bias in spring can be largely eliminated, which is explained by a better representation of meridional and especially vertical zonal momentum transport. The enhanced atmospheric circulation along the equator in turn greatly improves the thermal structure of the upper equatorial Atlantic with much reduced warm sea surface temperature (SST) biases. Second, the coastline in the southeastern TA and steep orography are better resolved at high resolution, which improves wind structure and in turn reduces warm SST biases in the Benguela upwelling region. The strongly diminished wind and SST biases at high atmosphere model resolution allow for a more realistic latitudinal position of the intertropical convergence zone. Resulting stronger cross-equatorial winds, in conjunction with a shallower thermocline, enable a rapid cold tongue development in the eastern TA in boreal spring. This enables simulation of realistic interannual SST variability and its seasonal phase locking in the KCM, which primarily is the result of a stronger thermocline feedback. Our findings suggest that enhanced atmospheric resolution, both vertical and horizontal, could be a key to achieving more realistic simulation of TA climatology and interannual variability in climate models.

  2. Forest biomass mapping from fusion of GEDI Lidar data and TanDEM-X InSAR data

    NASA Astrophysics Data System (ADS)

    Qi, W.; Hancock, S.; Armston, J.; Marselis, S.; Dubayah, R.

    2017-12-01

    Mapping forest above-ground biomass (hereafter biomass) can significantly improve our ability to assess the role of forest in terrestrial carbon budget and to analyze the ecosystem productivity. Global Ecosystem Dynamic Investigation (GEDI) mission will provide the most complete lidar observations of forest vertical structure and has the potential to provide global-scale forest biomass data at 1-km resolution. However, GEDI is intrinsically a sampling mission and will have a between-track spacing of 600 m. An increase in adjacent-swath distance and the presence of cloud cover may also lead to larger gaps between GEDI tracks. In order to provide wall-to-wall forest biomass maps, fusion algorithms of GEDI lidar data and TanDEM-X InSAR data were explored in this study. Relationship between biomass and lidar RH metrics was firstly developed and used to derive biomass values over GEDI tracks which were simulated using airborne lidar data. These GEDI biomass values were then averaged in each 1-km cell to represent the biomass density within that cell. Whereas for cells without any GEDI observations, regression models developed between GEDI-derived biomass and TDX InSAR variables were applied to predict biomass over those places. Based on these procedures, contiguous biomass maps were finally generated at 1-km resolution over three representative forest types. Uncertainties for these biomass maps were also estimated at 1 km following methods developed in Saarela et al. (2016). Our results indicated great potential of GEDI/TDX fusion for large-scale biomass mapping. Saarela, S., Holm, S., Grafstrom, A., Schnell, S., Naesset, E., Gregoire, T.G., Nelson, R.F., & Stahl, G. (2016). Hierarchical model-based inference for forest inventory utilizing three sources of information. Annals of Forest Science, 73, 895-910

  3. Intra- and interrater reliability of the Chicago Classification of achalasia subtypes in pediatric high-resolution esophageal manometry (HRM) recordings.

    PubMed

    Singendonk, M M J; Rosen, R; Oors, J; Rommel, N; van Wijk, M P; Benninga, M A; Nurko, S; Omari, T I

    2017-11-01

    Subtyping achalasia by high-resolution manometry (HRM) is clinically relevant as response to therapy and prognosis have shown to vary accordingly. The aim of this study was to assess inter- and intrarater reliability of diagnosing achalasia and achalasia subtyping in children using the Chicago Classification (CC) V3.0. Six observers analyzed 40 pediatric HRM recordings (22 achalasia and 18 non-achalasia) twice by using dedicated analysis software (ManoView 3.0, Given Imaging, Los Angeles, CA, USA). Integrated relaxation pressure (IRP4s), distal contractile integral (DCI), intrabolus pressurization pattern (IBP), and distal latency (DL) were extracted and analyzed hierarchically. Cohen's κ (2 raters) and Fleiss' κ (>2 raters) and the intraclass correlation coefficient (ICC) were used for categorical and ordinal data, respectively. Based on the results of dedicated analysis software only, intra- and interrater reliability was excellent and moderate (κ=0.89 and κ=0.52, respectively) for differentiating achalasia from non-achalasia. For subtyping achalasia, reliability decreased to substantial and fair (κ=0.72 and κ=0.28, respectively). When observers were allowed to change the software-driven diagnosis according to their own interpretation of the manometric patterns, intra- and interrater reliability increased for diagnosing achalasia (κ=0.98 and κ=0.92, respectively) and for subtyping achalasia (κ=0.79 and κ=0.58, respectively). Intra- and interrater agreement for diagnosing achalasia when using HRM and the CC was very good to excellent when results of automated analysis software were interpreted by experienced observers. More variability was seen when relying solely on the software-driven diagnosis and for subtyping achalasia. Therefore, diagnosing and subtyping achalasia should be performed in pediatric motility centers with significant expertise. © 2017 John Wiley & Sons Ltd.

  4. A hybrid video codec based on extended block sizes, recursive integer transforms, improved interpolation, and flexible motion representation

    NASA Astrophysics Data System (ADS)

    Karczewicz, Marta; Chen, Peisong; Joshi, Rajan; Wang, Xianglin; Chien, Wei-Jung; Panchal, Rahul; Coban, Muhammed; Chong, In Suk; Reznik, Yuriy A.

    2011-01-01

    This paper describes video coding technology proposal submitted by Qualcomm Inc. in response to a joint call for proposal (CfP) issued by ITU-T SG16 Q.6 (VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG) in January 2010. Proposed video codec follows a hybrid coding approach based on temporal prediction, followed by transform, quantization, and entropy coding of the residual. Some of its key features are extended block sizes (up to 64x64), recursive integer transforms, single pass switched interpolation filters with offsets (single pass SIFO), mode dependent directional transform (MDDT) for intra-coding, luma and chroma high precision filtering, geometry motion partitioning, adaptive motion vector resolution. It also incorporates internal bit-depth increase (IBDI), and modified quadtree based adaptive loop filtering (QALF). Simulation results are presented for a variety of bit rates, resolutions and coding configurations to demonstrate the high compression efficiency achieved by the proposed video codec at moderate level of encoding and decoding complexity. For random access hierarchical B configuration (HierB), the proposed video codec achieves an average BD-rate reduction of 30.88c/o compared to the H.264/AVC alpha anchor. For low delay hierarchical P (HierP) configuration, the proposed video codec achieves an average BD-rate reduction of 32.96c/o and 48.57c/o, compared to the H.264/AVC beta and gamma anchors, respectively.

  5. Progressive Precision Surface Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchaineau, M; Joy, KJ

    2002-01-11

    We introduce a novel wavelet decomposition algorithm that makes a number of powerful new surface design operations practical. Wavelets, and hierarchical representations generally, have held promise to facilitate a variety of design tasks in a unified way by approximating results very precisely, thus avoiding a proliferation of undergirding mathematical representations. However, traditional wavelet decomposition is defined from fine to coarse resolution, thus limiting its efficiency for highly precise surface manipulation when attempting to create new non-local editing methods. Our key contribution is the progressive wavelet decomposition algorithm, a general-purpose coarse-to-fine method for hierarchical fitting, based in this paper on anmore » underlying multiresolution representation called dyadic splines. The algorithm requests input via a generic interval query mechanism, allowing a wide variety of non-local operations to be quickly implemented. The algorithm performs work proportionate to the tiny compressed output size, rather than to some arbitrarily high resolution that would otherwise be required, thus increasing performance by several orders of magnitude. We describe several design operations that are made tractable because of the progressive decomposition. Free-form pasting is a generalization of the traditional control-mesh edit, but for which the shape of the change is completely general and where the shape can be placed using a free-form deformation within the surface domain. Smoothing and roughening operations are enhanced so that an arbitrary loop in the domain specifies the area of effect. Finally, the sculpting effect of moving a tool shape along a path is simulated.« less

  6. Hierarchical Marginal Land Assessment for Land Use Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Shujiang; Post, Wilfred M; Wang, Dali

    2013-01-01

    Marginal land provides an alternative potential for food and bioenergy production in the face of limited land resources; however, effective assessment of marginal lands is not well addressed. Concerns over environmental risks, ecosystem services and sustainability for marginal land have been widely raised. The objective of this study was to develop a hierarchical marginal land assessment framework for land use planning and management. We first identified major land functions linking production, environment, ecosystem services and economics, and then classified land resources into four categories of marginal land using suitability and limitations associated with major management goals, including physically marginal land,more » biologically marginal land, environmental-ecological marginal land, and economically marginal land. We tested this assessment framework in south-western Michigan, USA. Our results indicated that this marginal land assessment framework can be potentially feasible on land use planning for food and bioenergy production, and balancing multiple goals of land use management. We also compared our results with marginal land assessment from the Conservation Reserve Program (CRP) and land capability classes (LCC) that are used in the US. The hierarchical assessment framework has advantages of quantitatively reflecting land functions and multiple concerns. This provides a foundation upon which focused studies can be identified in order to improve the assessment framework by quantifying high-resolution land functions associated with environment and ecosystem services as well as their criteria are needed to improve the assessment framework.« less

  7. A novel diamond micro-/nano-machining process for the generation of hierarchical micro-/nano-structures

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; To, Suet; Ehmann, Kornel F.; Xiao, Gaobo; Zhu, Wule

    2016-03-01

    A new mechanical micro-/nano-machining process that combines rotary spatial vibrations (RSV) of a diamond tool and the servo motions of the workpiece is proposed and applied for the generation of multi-tier hierarchical micro-/nano-structures. In the proposed micro-/nano-machining system, the servo motion, as the primary cutting motion generated by a slow-tool-servo, is adopted for the fine generation of the primary surfaces with complex shapes. The RSV, as the tertiary cutting operation, is superimposed on the secondary fundamental rotary cutting motion to construct secondary nano-structures on the primary surface. Since the RSV system generally works at much higher frequencies and motion resolution than the primary and secondary motions, it leads to an inherent hierarchical cutting architecture. To investigate the machining performance, complex micro-/nano-structures were generated and explored by both numerical simulations and actual cutting tests. Rotary vibrations of the diamond tool at a constant rotational distance offer an inherent constant cutting velocity, leading to the ability for the generation of homogeneous micro-/nano-structures with fixed amplitudes and frequencies of the vibrations, even over large-scale surfaces. Furthermore, by deliberately combining the non-resonant three-axial vibrations and the servo motion, the generation of a variety of micro-/nano-structures with complex shapes and with flexibly tunable feature sizes can be achieved.

  8. Hierarchical analysis of spatial pattern and processes of Douglas-fir forests. Ph.D. Thesis, 10 Sep. 1991 Abstract Only

    NASA Technical Reports Server (NTRS)

    Bradshaw, G. A.

    1995-01-01

    There has been an increased interest in the quantification of pattern in ecological systems over the past years. This interest is motivated by the desire to construct valid models which extend across many scales. Spatial methods must quantify pattern, discriminate types of pattern, and relate hierarchical phenomena across scales. Wavelet analysis is introduced as a method to identify spatial structure in ecological transect data. The main advantage of the wavelet transform over other methods is its ability to preserve and display hierarchical information while allowing for pattern decomposition. Two applications of wavelet analysis are illustrated, as a means to: (1) quantify known spatial patterns in Douglas-fir forests at several scales, and (2) construct spatially-explicit hypotheses regarding pattern generating mechanisms. Application of the wavelet variance, derived from the wavelet transform, is developed for forest ecosystem analysis to obtain additional insight into spatially-explicit data. Specifically, the resolution capabilities of the wavelet variance are compared to the semi-variogram and Fourier power spectra for the description of spatial data using a set of one-dimensional stationary and non-stationary processes. The wavelet cross-covariance function is derived from the wavelet transform and introduced as a alternative method for the analysis of multivariate spatial data of understory vegetation and canopy in Douglas-fir forests of the western Cascades of Oregon.

  9. Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuyuan; Du, Shihong; Wang, Qiao

    2017-10-01

    As the basic units of urban areas, functional zones are essential for city planning and management, but functional-zone maps are hardly available in most cities, as traditional urban investigations focus mainly on land-cover objects instead of functional zones. As a result, an automatic/semi-automatic method for mapping urban functional zones is highly required. Hierarchical semantic cognition (HSC) is presented in this study, and serves as a general cognition structure for recognizing urban functional zones. Unlike traditional classification methods, the HSC relies on geographic cognition and considers four semantic layers, i.e., visual features, object categories, spatial object patterns, and zone functions, as well as their hierarchical relations. Here, we used HSC to classify functional zones in Beijing with a very-high-resolution (VHR) satellite image and point-of-interest (POI) data. Experimental results indicate that this method can produce more accurate results than Support Vector Machine (SVM) and Latent Dirichlet Allocation (LDA) with a larger overall accuracy of 90.8%. Additionally, the contributions of diverse semantic layers are quantified: the object-category layer is the most important and makes 54% contribution to functional-zone classification; while, other semantic layers are less important but their contributions cannot be ignored. Consequently, the presented HSC is effective in classifying urban functional zones, and can further support urban planning and management.

  10. Final Report: Closeout of the Award NO. DE-FG02-98ER62618 (M.S. Fox-Rabinovitz, P.I.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox-Rabinovitz, M. S.

    The final report describes the study aimed at exploring the variable-resolution stretched-grid (SG) approach to decadal regional climate modeling using advanced numerical techniques. The obtained results have shown that variable-resolution SG-GCMs using stretched grids with fine resolution over the area(s) of interest, is a viable established approach to regional climate modeling. The developed SG-GCMs have been extensively used for regional climate experimentation. The SG-GCM simulations are aimed at studying the U.S. regional climate variability with an emphasis on studying anomalous summer climate events, the U.S. droughts and floods.

  11. Simulation of climatology and Interannual Variability of Spring Persistent Rains by Meteorological Research Institute Model: Impacts of different horizontal resolutions

    NASA Astrophysics Data System (ADS)

    Li, Puxi; Zhou, Tianjun; Zou, Liwei

    2016-04-01

    The authors evaluated the performance of Meteorological Research Institute (MRI) AGCM3.2 models in the simulations of climatology and interannual variability of the Spring Persistent Rains (SPR) over southeastern China. The possible impacts of different horizontal resolutions were also investigated based on the experiments with three different horizontal resolutions (i.e., 120, 60, and 20km). The model could reasonably reproduce the main rainfall center over southeastern China in boreal spring under the three different resolutions. In comparison with 120 simulation, it revealed that 60km and 20km simulations show the superiority in simulating rainfall centers anchored by the Nanling-Wuyi Mountains, but overestimate rainfall intensity. Water vapor budget diagnosis showed that, the 60km and 20km simulations tended to overestimate the water vapor convergence over southeastern China, which leads to wet biases. In the aspect of interannual variability of SPR, the model could reasonably reproduce the anomalous lower-tropospheric anticyclone in the western North Pacific (WNPAC) and positive precipitation anomalies over southeastern China in El Niño decaying spring. Compared with the 120km resolution, the large positive biases are substantially reduced in the mid and high resolution models which evidently improve the simulation of horizontal moisture advection in El Niño decaying spring. We highlight the importance of developing high resolution climate model as it could potentially improve the climatology and interannual variability of SPR.

  12. An analog silicon retina with multichip configuration.

    PubMed

    Kameda, Seiji; Yagi, Tetsuya

    2006-01-01

    The neuromorphic silicon retina is a novel analog very large scale integrated circuit that emulates the structure and the function of the retinal neuronal circuit. We fabricated a neuromorphic silicon retina, in which sample/hold circuits were embedded to generate fluctuation-suppressed outputs in the previous study [1]. The applications of this silicon retina, however, are limited because of a low spatial resolution and computational variability. In this paper, we have fabricated a multichip silicon retina in which the functional network circuits are divided into two chips: the photoreceptor network chip (P chip) and the horizontal cell network chip (H chip). The output images of the P chip are transferred to the H chip with analog voltages through the line-parallel transfer bus. The sample/hold circuits embedded in the P and H chips compensate for the pattern noise generated on the circuits, including the analog communication pathway. Using the multichip silicon retina together with an off-chip differential amplifier, spatial filtering of the image with an odd- and an even-symmetric orientation selective receptive fields was carried out in real time. The analog data transfer method in the present multichip silicon retina is useful to design analog neuromorphic multichip systems that mimic the hierarchical structure of neuronal networks in the visual system.

  13. Chaotic Transport in Circumterrestrial Orbits

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron Jay

    2018-04-01

    The slow deformation of circumterrestrial orbits in the medium region, subject to lunisolar secular resonances, is well approximated by a Hamiltonian system with 2.5 degrees of freedom. This dynamical model is referred to in the astrophysical and celestial dynamics communities as the quadrupolar, secular, hierarchical three-body problem, and, in the non-autonomous case, gives rise to the classical Kozai-Lidov mechanism. In the time-dependent model, brought about in our case by the Moon's perturbed motion, the action variables of the system may experience chaotic variations and large drifts due to the possible overlap of nearby resonances. Using variational chaos indicators, we compute high-resolution portraits of the action space, revealing the existence of tori and structures filling chaotic regions. Our refined and elaborate calculations allow us to isolate precise initial conditions near specific areas of interest and to study their asymptotic behavior in time. We highlight in particular how the drift in phase space is mediated by the complement of the numerically detected KAM tori. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors, and, like the small body remnants of Solar system formation, they have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.

  14. Cloud Classification in Polar and Desert Regions and Smoke Classification from Biomass Burning Using a Hierarchical Neural Network

    NASA Technical Reports Server (NTRS)

    Alexander, June; Corwin, Edward; Lloyd, David; Logar, Antonette; Welch, Ronald

    1996-01-01

    This research focuses on a new neural network scene classification technique. The task is to identify scene elements in Advanced Very High Resolution Radiometry (AVHRR) data from three scene types: polar, desert and smoke from biomass burning in South America (smoke). The ultimate goal of this research is to design and implement a computer system which will identify the clouds present on a whole-Earth satellite view as a means of tracking global climate changes. Previous research has reported results for rule-based systems (Tovinkere et at 1992, 1993) for standard back propagation (Watters et at. 1993) and for a hierarchical approach (Corwin et al 1994) for polar data. This research uses a hierarchical neural network with don't care conditions and applies this technique to complex scenes. A hierarchical neural network consists of a switching network and a collection of leaf networks. The idea of the hierarchical neural network is that it is a simpler task to classify a certain pattern from a subset of patterns than it is to classify a pattern from the entire set. Therefore, the first task is to cluster the classes into groups. The switching, or decision network, performs an initial classification by selecting a leaf network. The leaf networks contain a reduced set of similar classes, and it is in the various leaf networks that the actual classification takes place. The grouping of classes in the various leaf networks is determined by applying an iterative clustering algorithm. Several clustering algorithms were investigated, but due to the size of the data sets, the exhaustive search algorithms were eliminated. A heuristic approach using a confusion matrix from a lightly trained neural network provided the basis for the clustering algorithm. Once the clusters have been identified, the hierarchical network can be trained. The approach of using don't care nodes results from the difficulty in generating extremely complex surfaces in order to separate one class from all of the others. This approach finds pairwise separating surfaces and forms the more complex separating surface from combinations of simpler surfaces. This technique both reduces training time and improves accuracy over the previously reported results. Accuracies of 97.47%, 95.70%, and 99.05% were achieved for the polar, desert and smoke data sets.

  15. Non-linear clustering in the cold plus hot dark matter model

    NASA Astrophysics Data System (ADS)

    Bonometto, Silvio A.; Borgani, Stefano; Ghigna, Sebastiano; Klypin, Anatoly; Primack, Joel R.

    1995-03-01

    The main aim of this work is to find out if hierarchical scaling, observed in galaxy clustering, can be dynamically explained by studying N-body simulations. Previous analyses of dark matter (DM) particle distributions indicated heavy distortions with respect to the hierarchical pattern. Here, we shall describe how such distortions are to be interpreted and why they can be fully reconciled with the observed galaxy clustering. This aim is achieved by using high-resolution (512^3 grid-points) particle-mesh (PM) N-body simulations to follow the development of non-linear clustering in a Omega=1 universe, dominated either by cold dark matter (CDM) or by a mixture of cold+hot dark matter (CHDM) with Omega_cold=0.6, and Omega_hot=0.3 and Omega_baryon=0.1 a simulation box of side 100 Mpc (h=0.5) is used. We analyse two CHDM realizations with biasing factor b=1.5 (COBE normalization), starting from different initial random numbers, and compare them with CDM simulations with b=1 (COBE-compatible) and b=1.5. We evaluate high-order correlation functions and the void probability function (VPF). Correlation functions are obtained from both counts in cells and counts of neighbours. The analysis is carried out for DM particles and for galaxies identified as massive haloes of the evolved density field. We confirm that clustering of DM particles systematically exhibits deviations from hierarchical scaling, although the deviation increases somewhat in redshift space. Deviations from the hierarchical scaling of DM particles are found to be related to the spectrum shape, in a way that indicates that such distortions arise from finite sampling effects. We identify galaxy positions in the simulations and show that, quite differently from the DM particle background, galaxies follow hierarchical scaling (S_q=xi_q/& xgr^q-1_2=consta nt) far more closely, with reduced skewness and kurtosis coefficients S_3~2.5 and S_4~7.5, in general agreement with observational results. Unlike DM, the scaling of galaxy clustering is must marginally affected by redshift distortions and is obtained for both CDM and CHDM models. Hierarchical scaling in simulations is confirmed by VPF analysis. Also in this case, we find substantial agreement with observational findings.

  16. Prediction of road accidents: A Bayesian hierarchical approach.

    PubMed

    Deublein, Markus; Schubert, Matthias; Adey, Bryan T; Köhler, Jochen; Faber, Michael H

    2013-03-01

    In this paper a novel methodology for the prediction of the occurrence of road accidents is presented. The methodology utilizes a combination of three statistical methods: (1) gamma-updating of the occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate Poisson-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models. Prior Bayesian Probabilistic Networks are first established by means of multivariate regression analysis of the observed frequencies of the model response variables, e.g. the occurrence of an accident, and observed values of the risk indicating variables, e.g. degree of road curvature. Subsequently, parameter learning is done using updating algorithms, to determine the posterior predictive probability distributions of the model response variables, conditional on the values of the risk indicating variables. The methodology is illustrated through a case study using data of the Austrian rural motorway network. In the case study, on randomly selected road segments the methodology is used to produce a model to predict the expected number of accidents in which an injury has occurred and the expected number of light, severe and fatally injured road users. Additionally, the methodology is used for geo-referenced identification of road sections with increased occurrence probabilities of injury accident events on a road link between two Austrian cities. It is shown that the proposed methodology can be used to develop models to estimate the occurrence of road accidents for any road network provided that the required data are available. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Sympathy for the Devil: Detailing the Effects of Planning-Unit Size, Thematic Resolution of Reef Classes, and Socioeconomic Costs on Spatial Priorities for Marine Conservation

    PubMed Central

    Pressey, Robert L.; Weeks, Rebecca; Andréfouët, Serge; Moloney, James

    2016-01-01

    Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors—planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs—on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs. PMID:27829042

  18. Sympathy for the Devil: Detailing the Effects of Planning-Unit Size, Thematic Resolution of Reef Classes, and Socioeconomic Costs on Spatial Priorities for Marine Conservation.

    PubMed

    Cheok, Jessica; Pressey, Robert L; Weeks, Rebecca; Andréfouët, Serge; Moloney, James

    2016-01-01

    Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors-planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs-on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs.

  19. Revisiting the Impact of NCLB High-Stakes School Accountability, Capacity, and Resources: State NAEP 1990-2009 Reading and Math Achievement Gaps and Trends

    ERIC Educational Resources Information Center

    Lee, Jaekyung; Reeves, Todd

    2012-01-01

    This study examines the impact of high-stakes school accountability, capacity, and resources under NCLB on reading and math achievement outcomes through comparative interrupted time-series analyses of 1990-2009 NAEP state assessment data. Through hierarchical linear modeling latent variable regression with inverse probability of treatment…

  20. Won't You Be My Neighbor? Using an Ecological Approach to Examine the Impact of Community on Revictimization

    ERIC Educational Resources Information Center

    Obasaju, Mayowa A.; Palin, Frances L.; Jacobs, Carli; Anderson, Page; Kaslow, Nadine J.

    2009-01-01

    An ecological model is used to explore the moderating effects of community-level variables on the relation between childhood sexual, physical, and emotional abuse and adult intimate partner violence (IPV) within a sample of 98 African American women from low incomes. Results from hierarchical, binary logistics regressions analyses show that…

  1. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling | Office of Cancer Genomics

    Cancer.gov

    Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives.

  2. Hierarchical Linear Modelling of Sixth-Grade Students' Socio-Economic Status and School Factors on Mathematics Achievement: Case Studies of Kenya and Zimbabwe

    ERIC Educational Resources Information Center

    Kanyongo, Gibbs Y.; Ayieko, Rachel

    2017-01-01

    This study investigated the relationship between socio-economic status, school-level variables and mathematics achievement of sixth graders in Kenya and Zimbabwe. The study is based on secondary data collected by the Southern and Eastern Africa Consortium for Monitoring Educational Quality (SACMEQ III). SACMEQ employed cluster-sampling procedures…

  3. The Relationship among School Safety, School Liking, and Students' Self-Esteem: Based on a Multilevel Mediation Model

    ERIC Educational Resources Information Center

    Zhang, Xinghui; Xuan, Xin; Chen, Fumei; Zhang, Cai; Luo, Yuhan; Wang, Yun

    2016-01-01

    Background: Perceptions of school safety have an important effect on students' development. Based on the model of "context-process-outcomes," we examined school safety as a context variable to explore how school safety at the school level affected students' self-esteem. Methods: We used hierarchical linear modeling to examine the link…

  4. Hierarchical, parallel computing strategies using component object model for process modelling responses of forest plantations to interacting multiple stresses

    Treesearch

    J. G. Isebrands; G. E. Host; K. Lenz; G. Wu; H. W. Stech

    2000-01-01

    Process models are powerful research tools for assessing the effects of multiple environmental stresses on forest plantations. These models are driven by interacting environmental variables and often include genetic factors necessary for assessing forest plantation growth over a range of different site, climate, and silvicultural conditions. However, process models are...

  5. Factors associated with preventable infant death: a multiple logistic regression.

    PubMed

    Vidal E Silva, Sandra Maria Cunha; Tuon, Rogério Antonio; Probst, Livia Fernandes; Gondinho, Brunna Verna Castro; Pereira, Antonio Carlos; Meneghim, Marcelo de Castro; Cortellazzi, Karine Laura; Ambrosano, Glaucia Maria Bovi

    2018-01-01

    OBJECTIVE To identify and analyze factors associated with preventable child deaths. METHODS This analytical cross-sectional study had preventable child mortality as dependent variable. From a population of 34,284 live births, we have selected a systematic sample of 4,402 children who did not die compared to 272 children who died from preventable causes during the period studied. The independent variables were analyzed in four hierarchical blocks: sociodemographic factors, the characteristics of the mother, prenatal and delivery care, and health conditions of the patient and neonatal care. We performed a descriptive statistical analysis and estimated multiple hierarchical logistic regression models. RESULTS Approximatelly 35.3% of the deaths could have been prevented with the early diagnosis and treatment of diseases during pregnancy and 26.8% of them could have been prevented with better care conditions for pregnant women. CONCLUSIONS The following characteristics of the mother are determinant for the higher mortality of children before the first year of life: living in neighborhoods with an average family income lower than four minimum wages, being aged ≤ 19 years, having one or more alive children, having a child with low APGAR level at the fifth minute of life, and having a child with low birth weight.

  6. Hierarchical extraction of urban objects from mobile laser scanning data

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Dong, Zhen; Zhao, Gang; Dai, Wenxia

    2015-01-01

    Point clouds collected in urban scenes contain a huge number of points (e.g., billions), numerous objects with significant size variability, complex and incomplete structures, and variable point densities, raising great challenges for the automated extraction of urban objects in the field of photogrammetry, computer vision, and robotics. This paper addresses these challenges by proposing an automated method to extract urban objects robustly and efficiently. The proposed method generates multi-scale supervoxels from 3D point clouds using the point attributes (e.g., colors, intensities) and spatial distances between points, and then segments the supervoxels rather than individual points by combining graph based segmentation with multiple cues (e.g., principal direction, colors) of the supervoxels. The proposed method defines a set of rules for merging segments into meaningful units according to types of urban objects and forms the semantic knowledge of urban objects for the classification of objects. Finally, the proposed method extracts and classifies urban objects in a hierarchical order ranked by the saliency of the segments. Experiments show that the proposed method is efficient and robust for extracting buildings, streetlamps, trees, telegraph poles, traffic signs, cars, and enclosures from mobile laser scanning (MLS) point clouds, with an overall accuracy of 92.3%.

  7. Potential suicide ideation and its association with observing bullying at school.

    PubMed

    Rivers, Ian; Noret, Nathalie

    2013-07-01

    To explore those contextual factors that predict potential suicide ideation among students who observe bullying at school. 1,592 students of whom 1,009 who reported having observed bullying at school were surveyed from 14 secondary schools in the North of England. Role-related (not-involved, victim, perpetrator, 'bully-victim' and observer) and gender-wise comparisons of key variables were undertaken prior to hierarchical multiple regressions to determine those associated with potential suicide ideation. Analyses indicated that students who observed bullying behavior were significantly more likely than those not involved in bullying to report symptoms of interpersonal sensitivity, to indicate greater helplessness and potential suicide ideation. Hierarchical multiple regression analyses indicated that, among boys, helplessness (β = .48, p < .001) followed by frequency of bullying perpetration (β = .11, p < .001), and a less supportive home climate (β = -.10, p < .004) were associated with potential suicide ideation. Helplessness was found to be the only variable associated with potential suicide ideation among girls (β = .49, p < .001). Perceived helplessness is significantly associated with potential suicide ideation among students who observe bullying at school. Copyright © 2013 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  8. Fifty Years of Physics of Living Systems.

    PubMed

    Latash, Mark L

    2016-01-01

    The equilibrium-point hypothesis and its more recent version, the referent configuration hypothesis, represent the physical approach to the neural control of action. This hypothesis can be naturally combined with the idea of hierarchical control of movements and of synergic organization of the abundant systems involved in all actions. Any action starts with defining trajectories of a few referent coordinates for a handful of salient task-specific variables. Further, referent coordinates at hierarchically lower levels emerge down to thresholds of the tonic stretch reflex for the participating muscles. Stability of performance with respect to salient variables is reflected in the structure of inter-trial variance and phenomena of motor equivalence. Three lines of recent research within this framework are reviewed. First, synergic adjustments of the referent coordinate and apparent stiffness have been demonstrated during finger force production supporting the main idea of control with referent coordinates. Second, the notion of unintentional voluntary movements has been introduced reflecting unintentional drifts in referent coordinates. Two types of unintentional movements have been observed with different characteristic times. Third, this framework has been applied to studies of impaired movements in neurological patients. Overall, the physical approach searching for laws of nature underlying biological movement has been highly stimulating and productive.

  9. Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling

    USGS Publications Warehouse

    Zipkin, Elise F.; DeWan, Amielle; Royle, J. Andrew

    2009-01-01

    1. Species richness is often used as a tool for prioritizing conservation action. One method for predicting richness and other summaries of community structure is to develop species-specific models of occurrence probability based on habitat or landscape characteristics. However, this approach can be challenging for rare or elusive species for which survey data are often sparse. 2. Recent developments have allowed for improved inference about community structure based on species-specific models of occurrence probability, integrated within a hierarchical modelling framework. This framework offers advantages to inference about species richness over typical approaches by accounting for both species-level effects and the aggregated effects of landscape composition on a community as a whole, thus leading to increased precision in estimates of species richness by improving occupancy estimates for all species, including those that were observed infrequently. 3. We developed a hierarchical model to assess the community response of breeding birds in the Hudson River Valley, New York, to habitat fragmentation and analysed the model using a Bayesian approach. 4. The model was designed to estimate species-specific occurrence and the effects of fragment area and edge (as measured through the perimeter and the perimeter/area ratio, P/A), while accounting for imperfect detection of species. 5. We used the fitted model to make predictions of species richness within forest fragments of variable morphology. The model revealed that species richness of the observed bird community was maximized in small forest fragments with a high P/A. However, the number of forest interior species, a subset of the community with high conservation value, was maximized in large fragments with low P/A. 6. Synthesis and applications. Our results demonstrate the importance of understanding the responses of both individual, and groups of species, to environmental heterogeneity while illustrating the utility of hierarchical models for inference about species richness for conservation. This framework can be used to investigate the impacts of land-use change and fragmentation on species or assemblage richness, and to further understand trade-offs in species-specific occupancy probabilities associated with landscape variability.

  10. Design and testing of a novel multi-stroke micropositioning system with variable resolutions.

    PubMed

    Xu, Qingsong

    2014-02-01

    Multi-stroke stages are demanded in micro-/nanopositioning applications which require smaller and larger motion strokes with fine and coarse resolutions, respectively. This paper presents the conceptual design of a novel multi-stroke, multi-resolution micropositioning stage driven by a single actuator for each working axis. It eliminates the issue of the interference among different drives, which resides in conventional multi-actuation stages. The stage is devised based on a fully compliant variable stiffness mechanism, which exhibits unequal stiffnesses in different strokes. Resistive strain sensors are employed to offer variable position resolutions in the different strokes. To quantify the design of the motion strokes and coarse/fine resolution ratio, analytical models are established. These models are verified through finite-element analysis simulations. A proof-of-concept prototype XY stage is designed, fabricated, and tested to demonstrate the feasibility of the presented ideas. Experimental results of static and dynamic testing validate the effectiveness of the proposed design.

  11. A High-Resolution Aerosol Retrieval Method for Urban Areas Using MISR Data

    NASA Astrophysics Data System (ADS)

    Moon, T.; Wang, Y.; Liu, Y.; Yu, B.

    2012-12-01

    Satellite-retrieved Aerosol Optical Depth (AOD) can provide a cost-effective way to monitor particulate air pollution without using expensive ground measurement sensors. One of the current state-of-the-art AOD retrieval method is NASA's Multi-angle Imaging SpectroRadiometer (MISR) operational algorithm, which has the spatial resolution of 17.6 km x 17.6 km. While the MISR baseline scheme already leads to exciting research opportunities to study particle compositions at regional scale, its spatial resolution is too coarse for analyzing urban areas where the AOD level has stronger spatial variations. We develop a novel high-resolution AOD retrieval algorithm that still uses MISR's radiance observations but has the resolution of 4.4km x 4.4km. We achieve the high resolution AOD retrieval by implementing a hierarchical Bayesian model and Monte-Carlo Markov Chain (MCMC) inference method. Our algorithm not only improves the spatial resolution, but also extends the coverage of AOD retrieval and provides with additional composition information of aerosol components that contribute to the AOD. We validate our method using the recent NASA's DISCOVER-AQ mission data, which contains the ground measured AOD values for Washington DC and Baltimore area. The validation result shows that, compared to the operational MISR retrievals, our scheme has 41.1% more AOD retrieval coverage for the DISCOVER-AQ data points and 24.2% improvement in mean-squared error (MSE) with respect to the AERONET ground measurements.

  12. How does aging affect recognition-based inference? A hierarchical Bayesian modeling approach.

    PubMed

    Horn, Sebastian S; Pachur, Thorsten; Mata, Rui

    2015-01-01

    The recognition heuristic (RH) is a simple strategy for probabilistic inference according to which recognized objects are judged to score higher on a criterion than unrecognized objects. In this article, a hierarchical Bayesian extension of the multinomial r-model is applied to measure use of the RH on the individual participant level and to re-evaluate differences between younger and older adults' strategy reliance across environments. Further, it is explored how individual r-model parameters relate to alternative measures of the use of recognition and other knowledge, such as adherence rates and indices from signal-detection theory (SDT). Both younger and older adults used the RH substantially more often in an environment with high than low recognition validity, reflecting adaptivity in strategy use across environments. In extension of previous analyses (based on adherence rates), hierarchical modeling revealed that in an environment with low recognition validity, (a) older adults had a stronger tendency than younger adults to rely on the RH and (b) variability in RH use between individuals was larger than in an environment with high recognition validity; variability did not differ between age groups. Further, the r-model parameters correlated moderately with an SDT measure expressing how well people can discriminate cases where the RH leads to a correct vs. incorrect inference; this suggests that the r-model and the SDT measures may offer complementary insights into the use of recognition in decision making. In conclusion, younger and older adults are largely adaptive in their application of the RH, but cognitive aging may be associated with an increased tendency to rely on this strategy. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Examining driver injury severity outcomes in rural non-interstate roadway crashes using a hierarchical ordered logit model.

    PubMed

    Chen, Cong; Zhang, Guohui; Huang, Helai; Wang, Jiangfeng; Tarefder, Rafiqul A

    2016-11-01

    Rural non-interstate crashes induce a significant amount of severe injuries and fatalities. Examination of such injury patterns and the associated contributing factors is of practical importance. Taking into account the ordinal nature of injury severity levels and the hierarchical feature of crash data, this study employs a hierarchical ordered logit model to examine the significant factors in predicting driver injury severities in rural non-interstate crashes based on two-year New Mexico crash records. Bayesian inference is utilized in model estimation procedure and 95% Bayesian Credible Interval (BCI) is applied to testing variable significance. An ordinary ordered logit model omitting the between-crash variance effect is evaluated as well for model performance comparison. Results indicate that the model employed in this study outperforms ordinary ordered logit model in model fit and parameter estimation. Variables regarding crash features, environment conditions, and driver and vehicle characteristics are found to have significant influence on the predictions of driver injury severities in rural non-interstate crashes. Factors such as road segments far from intersection, wet road surface condition, collision with animals, heavy vehicle drivers, male drivers and driver seatbelt used tend to induce less severe driver injury outcomes than the factors such as multiple-vehicle crashes, severe vehicle damage in a crash, motorcyclists, females, senior drivers, driver with alcohol or drug impairment, and other major collision types. Research limitations regarding crash data and model assumptions are also discussed. Overall, this research provides reasonable results and insight in developing effective road safety measures for crash injury severity reduction and prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Isolating causal pathways between flow and fish in the regulated river hierarchy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.

    Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less

  15. Novel Hierarchical Fall Detection Algorithm Using a Multiphase Fall Model.

    PubMed

    Hsieh, Chia-Yeh; Liu, Kai-Chun; Huang, Chih-Ning; Chu, Woei-Chyn; Chan, Chia-Tai

    2017-02-08

    Falls are the primary cause of accidents for the elderly in the living environment. Reducing hazards in the living environment and performing exercises for training balance and muscles are the common strategies for fall prevention. However, falls cannot be avoided completely; fall detection provides an alarm that can decrease injuries or death caused by the lack of rescue. The automatic fall detection system has opportunities to provide real-time emergency alarms for improving the safety and quality of home healthcare services. Two common technical challenges are also tackled in order to provide a reliable fall detection algorithm, including variability and ambiguity. We propose a novel hierarchical fall detection algorithm involving threshold-based and knowledge-based approaches to detect a fall event. The threshold-based approach efficiently supports the detection and identification of fall events from continuous sensor data. A multiphase fall model is utilized, including free fall, impact, and rest phases for the knowledge-based approach, which identifies fall events and has the potential to deal with the aforementioned technical challenges of a fall detection system. Seven kinds of falls and seven types of daily activities arranged in an experiment are used to explore the performance of the proposed fall detection algorithm. The overall performances of the sensitivity, specificity, precision, and accuracy using a knowledge-based algorithm are 99.79%, 98.74%, 99.05% and 99.33%, respectively. The results show that the proposed novel hierarchical fall detection algorithm can cope with the variability and ambiguity of the technical challenges and fulfill the reliability, adaptability, and flexibility requirements of an automatic fall detection system with respect to the individual differences.

  16. Novel Hierarchical Fall Detection Algorithm Using a Multiphase Fall Model

    PubMed Central

    Hsieh, Chia-Yeh; Liu, Kai-Chun; Huang, Chih-Ning; Chu, Woei-Chyn; Chan, Chia-Tai

    2017-01-01

    Falls are the primary cause of accidents for the elderly in the living environment. Reducing hazards in the living environment and performing exercises for training balance and muscles are the common strategies for fall prevention. However, falls cannot be avoided completely; fall detection provides an alarm that can decrease injuries or death caused by the lack of rescue. The automatic fall detection system has opportunities to provide real-time emergency alarms for improving the safety and quality of home healthcare services. Two common technical challenges are also tackled in order to provide a reliable fall detection algorithm, including variability and ambiguity. We propose a novel hierarchical fall detection algorithm involving threshold-based and knowledge-based approaches to detect a fall event. The threshold-based approach efficiently supports the detection and identification of fall events from continuous sensor data. A multiphase fall model is utilized, including free fall, impact, and rest phases for the knowledge-based approach, which identifies fall events and has the potential to deal with the aforementioned technical challenges of a fall detection system. Seven kinds of falls and seven types of daily activities arranged in an experiment are used to explore the performance of the proposed fall detection algorithm. The overall performances of the sensitivity, specificity, precision, and accuracy using a knowledge-based algorithm are 99.79%, 98.74%, 99.05% and 99.33%, respectively. The results show that the proposed novel hierarchical fall detection algorithm can cope with the variability and ambiguity of the technical challenges and fulfill the reliability, adaptability, and flexibility requirements of an automatic fall detection system with respect to the individual differences. PMID:28208694

  17. Socio-Ecological Risk Factors for Prime-Age Adult Death in Two Coastal Areas of Vietnam

    PubMed Central

    Kim, Deok Ryun; Ali, Mohammad; Thiem, Vu Dinh; Wierzba, Thomas F.

    2014-01-01

    Background Hierarchical spatial models enable the geographic and ecological analysis of health data thereby providing useful information for designing effective health interventions. In this study, we used a Bayesian hierarchical spatial model to evaluate mortality data in Vietnam. The model enabled identification of socio-ecological risk factors and generation of risk maps to better understand the causes and geographic implications of prime-age (15 to less than 45 years) adult death. Methods and Findings The study was conducted in two sites: Nha Trang and Hue in Vietnam. The study areas were split into 500×500 meter cells to define neighborhoods. We first extracted socio-demographic data from population databases of the two sites, and then aggregated the data by neighborhood. We used spatial hierarchical model that borrows strength from neighbors for evaluating risk factors and for creating spatially smoothed risk map after adjusting for neighborhood level covariates. The Markov chain Monte Carlo procedure was used to estimate the parameters. Male mortality was more than twice the female mortality. The rates also varied by age and sex. The most frequent cause of mortality was traffic accidents and drowning for men and traffic accidents and suicide for women. Lower education of household heads in the neighborhood was an important risk factor for increased mortality. The mortality was highly variable in space and the socio-ecological risk factors are sensitive to study site and sex. Conclusion Our study suggests that lower education of the household head is an important predictor for prime age adult mortality. Variability in socio-ecological risk factors and in risk areas by sex make it challenging to design appropriate intervention strategies aimed at decreasing prime-age adult deaths in Vietnam. PMID:24587031

  18. Socio-ecological risk factors for prime-age adult death in two coastal areas of Vietnam.

    PubMed

    Kim, Deok Ryun; Ali, Mohammad; Thiem, Vu Dinh; Wierzba, Thomas F

    2014-01-01

    Hierarchical spatial models enable the geographic and ecological analysis of health data thereby providing useful information for designing effective health interventions. In this study, we used a Bayesian hierarchical spatial model to evaluate mortality data in Vietnam. The model enabled identification of socio-ecological risk factors and generation of risk maps to better understand the causes and geographic implications of prime-age (15 to less than 45 years) adult death. The study was conducted in two sites: Nha Trang and Hue in Vietnam. The study areas were split into 500×500 meter cells to define neighborhoods. We first extracted socio-demographic data from population databases of the two sites, and then aggregated the data by neighborhood. We used spatial hierarchical model that borrows strength from neighbors for evaluating risk factors and for creating spatially smoothed risk map after adjusting for neighborhood level covariates. The Markov chain Monte Carlo procedure was used to estimate the parameters. Male mortality was more than twice the female mortality. The rates also varied by age and sex. The most frequent cause of mortality was traffic accidents and drowning for men and traffic accidents and suicide for women. Lower education of household heads in the neighborhood was an important risk factor for increased mortality. The mortality was highly variable in space and the socio-ecological risk factors are sensitive to study site and sex. Our study suggests that lower education of the household head is an important predictor for prime age adult mortality. Variability in socio-ecological risk factors and in risk areas by sex make it challenging to design appropriate intervention strategies aimed at decreasing prime-age adult deaths in Vietnam.

  19. Isolating causal pathways between flow and fish in the regulated river hierarchy

    DOE PAGES

    McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.; ...

    2015-07-07

    Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less

  20. A test of the hierarchical model of litter decomposition.

    PubMed

    Bradford, Mark A; Veen, G F Ciska; Bonis, Anne; Bradford, Ella M; Classen, Aimee T; Cornelissen, J Hans C; Crowther, Thomas W; De Long, Jonathan R; Freschet, Gregoire T; Kardol, Paul; Manrubia-Freixa, Marta; Maynard, Daniel S; Newman, Gregory S; Logtestijn, Richard S P; Viketoft, Maria; Wardle, David A; Wieder, William R; Wood, Stephen A; van der Putten, Wim H

    2017-12-01

    Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls regulating the rate at which plant biomass is decomposed into products such as CO 2 . Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature and moisture), with the controlling effects of decomposers negligible at such broad spatial scales. Using a regional-scale litter decomposition experiment at six sites spanning from northern Sweden to southern France-and capturing both within and among site variation in putative controls-we find that contrary to predictions from the hierarchical model, decomposer (microbial) biomass strongly regulates decomposition at regional scales. Furthermore, the size of the microbial biomass dictates the absolute change in decomposition rates with changing climate variables. Our findings suggest the need for revision of the hierarchical model, with decomposers acting as both local- and broad-scale controls on litter decomposition rates, necessitating their explicit consideration in global biogeochemical models.

  1. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.

    PubMed

    Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K

    2013-03-01

    Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.

  2. Adapting hierarchical bidirectional inter prediction on a GPU-based platform for 2D and 3D H.264 video coding

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, Rafael; Martínez, José Luis; Cock, Jan De; Fernández-Escribano, Gerardo; Pieters, Bart; Sánchez, José L.; Claver, José M.; de Walle, Rik Van

    2013-12-01

    The H.264/AVC video coding standard introduces some improved tools in order to increase compression efficiency. Moreover, the multi-view extension of H.264/AVC, called H.264/MVC, adopts many of them. Among the new features, variable block-size motion estimation is one which contributes to high coding efficiency. Furthermore, it defines a different prediction structure that includes hierarchical bidirectional pictures, outperforming traditional Group of Pictures patterns in both scenarios: single-view and multi-view. However, these video coding techniques have high computational complexity. Several techniques have been proposed in the literature over the last few years which are aimed at accelerating the inter prediction process, but there are no works focusing on bidirectional prediction or hierarchical prediction. In this article, with the emergence of many-core processors or accelerators, a step forward is taken towards an implementation of an H.264/AVC and H.264/MVC inter prediction algorithm on a graphics processing unit. The results show a negligible rate distortion drop with a time reduction of up to 98% for the complete H.264/AVC encoder.

  3. Three-level global resource allocation model for hiv control: A hierarchical decision system approach.

    PubMed

    Kassa, Semu Mitiku

    2018-02-01

    Funds from various global organizations, such as, The Global Fund, The World Bank, etc. are not directly distributed to the targeted risk groups. Especially in the so-called third-world-countries, the major part of the fund in HIV prevention programs comes from these global funding organizations. The allocations of these funds usually pass through several levels of decision making bodies that have their own specific parameters to control and specific objectives to achieve. However, these decisions are made mostly in a heuristic manner and this may lead to a non-optimal allocation of the scarce resources. In this paper, a hierarchical mathematical optimization model is proposed to solve such a problem. Combining existing epidemiological models with the kind of interventions being on practice, a 3-level hierarchical decision making model in optimally allocating such resources has been developed and analyzed. When the impact of antiretroviral therapy (ART) is included in the model, it has been shown that the objective function of the lower level decision making structure is a non-convex minimization problem in the allocation variables even if all the production functions for the intervention programs are assumed to be linear.

  4. Hierarchical Bayesian Markov switching models with application to predicting spawning success of shovelnose sturgeon

    USGS Publications Warehouse

    Holan, S.H.; Davis, G.M.; Wildhaber, M.L.; DeLonay, A.J.; Papoulias, D.M.

    2009-01-01

    The timing of spawning in fish is tightly linked to environmental factors; however, these factors are not very well understood for many species. Specifically, little information is available to guide recruitment efforts for endangered species such as the sturgeon. Therefore, we propose a Bayesian hierarchical model for predicting the success of spawning of the shovelnose sturgeon which uses both biological and behavioural (longitudinal) data. In particular, we use data that were produced from a tracking study that was conducted in the Lower Missouri River. The data that were produced from this study consist of biological variables associated with readiness to spawn along with longitudinal behavioural data collected by using telemetry and archival data storage tags. These high frequency data are complex both biologically and in the underlying behavioural process. To accommodate such complexity we developed a hierarchical linear regression model that uses an eigenvalue predictor, derived from the transition probability matrix of a two-state Markov switching model with generalized auto-regressive conditional heteroscedastic dynamics. Finally, to minimize the computational burden that is associated with estimation of this model, a parallel computing approach is proposed. ?? Journal compilation 2009 Royal Statistical Society.

  5. Multimodal emotional state recognition using sequence-dependent deep hierarchical features.

    PubMed

    Barros, Pablo; Jirak, Doreen; Weber, Cornelius; Wermter, Stefan

    2015-12-01

    Emotional state recognition has become an important topic for human-robot interaction in the past years. By determining emotion expressions, robots can identify important variables of human behavior and use these to communicate in a more human-like fashion and thereby extend the interaction possibilities. Human emotions are multimodal and spontaneous, which makes them hard to be recognized by robots. Each modality has its own restrictions and constraints which, together with the non-structured behavior of spontaneous expressions, create several difficulties for the approaches present in the literature, which are based on several explicit feature extraction techniques and manual modality fusion. Our model uses a hierarchical feature representation to deal with spontaneous emotions, and learns how to integrate multiple modalities for non-verbal emotion recognition, making it suitable to be used in an HRI scenario. Our experiments show that a significant improvement of recognition accuracy is achieved when we use hierarchical features and multimodal information, and our model improves the accuracy of state-of-the-art approaches from 82.5% reported in the literature to 91.3% for a benchmark dataset on spontaneous emotion expressions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Real-time hierarchically distributed processing network interaction simulation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Wu, C.

    1987-01-01

    The Telerobot Testbed is a hierarchically distributed processing system which is linked together through a standard, commercial Ethernet. Standard Ethernet systems are primarily designed to manage non-real-time information transfer. Therefore, collisions on the net (i.e., two or more sources attempting to send data at the same time) are managed by randomly rescheduling one of the sources to retransmit at a later time interval. Although acceptable for transmitting noncritical data such as mail, this particular feature is unacceptable for real-time hierarchical command and control systems such as the Telerobot. Data transfer and scheduling simulations, such as token ring, offer solutions to collision management, but do not appropriately characterize real-time data transfer/interactions for robotic systems. Therefore, models like these do not provide a viable simulation environment for understanding real-time network loading. A real-time network loading model is being developed which allows processor-to-processor interactions to be simulated, collisions (and respective probabilities) to be logged, collision-prone areas to be identified, and network control variable adjustments to be reentered as a means of examining and reducing collision-prone regimes that occur in the process of simulating a complete task sequence.

  7. Integrative Structure Determination of Protein Assemblies by Satisfaction of Spatial Restraints

    NASA Astrophysics Data System (ADS)

    Alber, Frank; Chait, Brian T.; Rout, Michael P.; Sali, Andrej

    To understand the cell, we need to determine the structures of macromolecular assemblies, many of which consist of tens to hundreds of components. A great variety of experimental data can be used to characterize the assemblies at several levels of resolution, from atomic structures to component configurations. To maximize completeness, resolution, accuracy, precision and efficiency of the structure determination, a computational approach is needed that can use spatial information from a variety of experimental methods. We propose such an approach, defined by its three main components: a hierarchical representation of the assembly, a scoring function consisting of spatial restraints derived from experimental data, and an optimization method that generates structures consistent with the data. We illustrate the approach by determining the configuration of the 456 proteins in the nuclear pore complex from Baker's yeast.

  8. Evaluation of a Mesoscale Convective System in Variable-Resolution CESM

    NASA Astrophysics Data System (ADS)

    Payne, A. E.; Jablonowski, C.

    2017-12-01

    Warm season precipitation over the Southern Great Plains (SGP) follows a well observed diurnal pattern of variability, peaking at night-time, due to the eastward propagation of mesoscale convection systems that develop over the eastern slopes of the Rockies in the late afternoon. While most climate models are unable to adequately capture the organization of convection and characteristic pattern of precipitation over this region, models with high enough resolution to explicitly resolve convection show improvement. However, high resolution simulations are computationally expensive and, in the case of regional climate models, are subject to boundary conditions. Newly developed variable resolution global climate models strike a balance between the benefits of high-resolution regional climate models and the large-scale dynamics of global climate models and low computational cost. Recently developed parameterizations that are insensitive to the model grid scale provide a way to improve model performance. Here, we present an evaluation of the newly available Cloud Layers Unified by Binormals (CLUBB) parameterization scheme in a suite of variable-resolution CESM simulations with resolutions ranging from 110 km to 7 km within a regionally refined region centered over the SGP Atmospheric Radiation Measurement (ARM) site. Simulations utilize the hindcast approach developed by the Department of Energy's Cloud-Associated Parameterizations Testbed (CAPT) for the assessment of climate models. We limit our evaluation to a single mesoscale convective system that passed over the region on May 24, 2008. The effects of grid-resolution on the timing and intensity of precipitation, as well as, on the transition from shallow to deep convection are assessed against ground-based observations from the SGP ARM site, satellite observations and ERA-Interim reanalysis.

  9. Two-Point Turbulence Closure Applied to Variable Resolution Modeling

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.; Rubinstein, Robert

    2011-01-01

    Variable resolution methods have become frontline CFD tools, but in order to take full advantage of this promising new technology, more formal theoretical development is desirable. Two general classes of variable resolution methods can be identified: hybrid or zonal methods in which RANS and LES models are solved in different flow regions, and bridging or seamless models which interpolate smoothly between RANS and LES. This paper considers the formulation of bridging methods using methods of two-point closure theory. The fundamental problem is to derive a subgrid two-equation model. We compare and reconcile two different approaches to this goal: the Partially Integrated Transport Model, and the Partially Averaged Navier-Stokes method.

  10. Approaches for advancing scientific understanding of macrosystems

    USGS Publications Warehouse

    Levy, Ofir; Ball, Becky A.; Bond-Lamberty, Ben; Cheruvelil, Kendra S.; Finley, Andrew O.; Lottig, Noah R.; Surangi W. Punyasena,; Xiao, Jingfeng; Zhou, Jizhong; Buckley, Lauren B.; Filstrup, Christopher T.; Keitt, Tim H.; Kellner, James R.; Knapp, Alan K.; Richardson, Andrew D.; Tcheng, David; Toomey, Michael; Vargas, Rodrigo; Voordeckers, James W.; Wagner, Tyler; Williams, John W.

    2014-01-01

    The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them.

  11. Ubiquitous Robotic Technology for Smart Manufacturing System.

    PubMed

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.

  12. Ubiquitous Robotic Technology for Smart Manufacturing System

    PubMed Central

    Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206

  13. PELEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-05-17

    PeleC is an adaptive-mesh compressible hydrodynamics code for reacting flows. It solves the compressible Navier-Stokes with multispecies transport in a block structured framework. The resulting algorithm is well suited for flows with localized resolution requirements and robust to discontinuities. User controllable refinement crieteria has the potential to result in extremely small numerical dissipation and dispersion, making this code appropriate for both research and applied usage. The code is built on the AMReX library which facilitates hierarchical parallelism and manages distributed memory parallism. PeleC algorithms are implemented to express shared memory parallelism.

  14. A neural-network approach to robotic control

    NASA Technical Reports Server (NTRS)

    Graham, D. P. W.; Deleuterio, G. M. T.

    1993-01-01

    An artificial neural-network paradigm for the control of robotic systems is presented. The approach is based on the Cerebellar Model Articulation Controller created by James Albus and incorporates several extensions. First, recognizing the essential structure of multibody equations of motion, two parallel modules are used that directly reflect the dynamical characteristics of multibody systems. Second, the architecture of the proposed network is imbued with a self-organizational capability which improves efficiency and accuracy. Also, the networks can be arranged in hierarchical fashion with each subsequent network providing finer and finer resolution.

  15. Multiple directed graph large-class multi-spectral processor

    NASA Technical Reports Server (NTRS)

    Casasent, David; Liu, Shiaw-Dong; Yoneyama, Hideyuki

    1988-01-01

    Numerical analysis techniques for the interpretation of high-resolution imaging-spectrometer data are described and demonstrated. The method proposed involves the use of (1) a hierarchical classifier with a tree structure generated automatically by a Fisher linear-discriminant-function algorithm and (2) a novel multiple-directed-graph scheme which reduces the local maxima and the number of perturbations required. Results for a 500-class test problem involving simulated imaging-spectrometer data are presented in tables and graphs; 100-percent-correct classification is achieved with an improvement factor of 5.

  16. A variable resolution x-ray detector for computed tomography: I. Theoretical basis and experimental verification.

    PubMed

    DiBianca, F A; Gupta, V; Zeman, H D

    2000-08-01

    A computed tomography imaging technique called variable resolution x-ray (VRX) detection provides detector resolution ranging from that of clinical body scanning to that of microscopy (1 cy/mm to 100 cy/mm). The VRX detection technique is based on a new principle denoted as "projective compression" that allows the detector resolution element to scale proportionally to the image field size. Two classes of VRX detector geometry are considered. Theoretical aspects related to x-ray physics and data sampling are presented. Measured resolution parameters (line-spread function and modulation-transfer function) are presented and discussed. A VRX image that resolves a pair of 50 micron tungsten hairs spaced 30 microns apart is shown.

  17. APEX/SABOCA observations of small-scale structure of infrared-dark clouds . I. Early evolutionary stages of star-forming cores

    NASA Astrophysics Data System (ADS)

    Ragan, Sarah E.; Henning, Thomas; Beuther, Henrik

    2013-11-01

    Infrared-dark clouds (IRDCs) harbor the early phases of cluster and high-mass star formation and are comprised of cold (~20 K), dense (n > 104 cm-3) gas. The spectral energy distribution (SED) of IRDCs is dominated by the far-infrared and millimeter wavelength regime, and our initial Herschel study examined IRDCs at the peak of the SED with high angular resolution. Here we present a follow-up study using the SABOCA instrument on APEX which delivers 7.8″ angular resolution at 350 μm, matching the resolution we achieved with Herschel/PACS, and allowing us to characterize substructure on ~0.1 pc scales. Our sample of 11 nearby IRDCs are a mix of filamentary and clumpy morphologies, and the filamentary clouds show significant hierarchical structure, while the clumpy IRDCs exhibit little hierarchical structure. All IRDCs, regardless of morphology, have about 14% of their total mass in small scale core-like structures which roughly follow a trend of constant volume density over all size scales. Out of the 89 protostellar cores we identified in this sample with Herschel, we recover 40 of the brightest and re-fit their SEDs and find their properties agree fairly well with our previous estimates (⟨ T ⟩ ~ 19 K). We detect a new population of "cold cores" which have no 70 μm counterpart, but are 100 and 160 μm-bright, with colder temperatures (⟨ T ⟩ ~ 16 K). This latter population, along with SABOCA-only detections, are predominantly low-mass objects, but their evolutionary diagnostics are consistent with the earliest starless or prestellar phase of cores in IRDCs. Based on observations carried out with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between Max Planck Institut für Radioastronomie (MPIfR), Onsala Space Observatory (OSO), and the European Southern Observatory (ESO).Appendices are available in electronic form at http://www.aanda.org

  18. A new map of standardized terrestrial ecosystems of Africa

    USGS Publications Warehouse

    Sayre, Roger G.; Comer, Patrick; Hak, Jon; Josse, Carmen; Bow, Jacquie; Warner, Harumi; Larwanou, Mahamane; Kelbessa, Ensermu; Bekele, Tamrat; Kehl, Harald; Amena, Ruba; Andriamasimanana, Rado; Ba, Taibou; Benson, Laurence; Boucher, Timothy; Brown, Matthew; Cress, Jill J.; Dassering, Oueddo; Friesen, Beverly A.; Gachathi, Francis; Houcine, Sebei; Keita, Mahamadou; Khamala, Erick; Marangu, Dan; Mokua, Fredrick; Morou, Boube; Mucina, Ladislav; Mugisha, Samuel; Mwavu, Edward; Rutherford, Michael; Sanou, Patrice; Syampungani, Stephen; Tomor, Bojoi; Vall, Abdallahi Ould Mohamed; Vande Weghe, Jean Pierre; Wangui, Eunice; Waruingi, Lucy

    2013-01-01

    Terrestrial ecosystems and vegetation of Africa were classified and mapped as part of a larger effort and global protocol (GEOSS – the Global Earth Observation System of Systems), which includes an activity to map terrestrial ecosystems of the earth in a standardized, robust, and practical manner, and at the finest possible spatial resolution. To model the potential distribution of ecosystems, new continental datasets for several key physical environment datalayers (including coastline, landforms, surficial lithology, and bioclimates) were developed at spatial and classification resolutions finer than existing similar datalayers. A hierarchical vegetation classification was developed by African ecosystem scientists and vegetation geographers, who also provided sample locations of the newly classified vegetation units. The vegetation types and ecosystems were then mapped across the continent using a classification and regression tree (CART) inductive model, which predicted the potential distribution of vegetation types from a suite of biophysical environmental attributes including bioclimate region, biogeographic region, surficial lithology, landform, elevation and land cover. Multi-scale ecosystems were classified and mapped in an increasingly detailed hierarchical framework using vegetation-based concepts of class, subclass, formation, division, and macrogroup levels. The finest vegetation units (macrogroups) classified and mapped in this effort are defined using diagnostic plant species and diagnostic growth forms that reflect biogeographic differences in composition and sub-continental to regional differences in mesoclimate, geology, substrates, hydrology, and disturbance regimes (FGDC, 2008). The macrogroups are regarded as meso-scale (100s to 10,000s of hectares) ecosystems. A total of 126 macrogroup types were mapped, each with multiple, repeating occurrences on the landscape. The modeling effort was implemented at a base spatial resolution of 90 m. In addition to creating several rich, new continent-wide biophysical datalayers describing African vegetation and ecosystems, our intention was to explore feasible approaches to rapidly moving this type of standardized, continent-wide, ecosystem classification and mapping effort forward.

  19. Simulation of Anomalous Regional Climate Events with a Variable Resolution Stretched Grid GCM

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.

    1999-01-01

    The stretched-grid approach provides an efficient down-scaling and consistent interactions between global and regional scales due to using one variable-resolution model for integrations. It is a workable alternative to the widely used nested-grid approach introduced over a decade ago as a pioneering step in regional climate modeling. A variable-resolution General Circulation Model (GCM) employing a stretched grid, with enhanced resolution over the US as the area of interest, is used for simulating two anomalous regional climate events, the US summer drought of 1988 and flood of 1993. The special mode of integration using a stretched-grid GCM and data assimilation system is developed that allows for imitating the nested-grid framework. The mode is useful for inter-comparison purposes and for underlining the differences between these two approaches. The 1988 and 1993 integrations are performed for the two month period starting from mid May. Regional resolutions used in most of the experiments is 60 km. The major goal and the result of the study is obtaining the efficient down-scaling over the area of interest. The monthly mean prognostic regional fields for the stretched-grid integrations are remarkably close to those of the verifying analyses. Simulated precipitation patterns are successfully verified against gauge precipitation observations. The impact of finer 40 km regional resolution is investigated for the 1993 integration and an example of recovering subregional precipitation is presented. The obtained results show that the global variable-resolution stretched-grid approach is a viable candidate for regional and subregional climate studies and applications.

  20. Toward a Unified Representation of Atmospheric Convection in Variable-Resolution Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walko, Robert

    2016-11-07

    The purpose of this project was to improve the representation of convection in atmospheric weather and climate models that employ computational grids with spatially-variable resolution. Specifically, our work targeted models whose grids are fine enough over selected regions that convection is resolved explicitly, while over other regions the grid is coarser and convection is represented as a subgrid-scale process. The working criterion for a successful scheme for representing convection over this range of grid resolution was that identical convective environments must produce very similar convective responses (i.e., the same precipitation amount, rate, and timing, and the same modification of themore » atmospheric profile) regardless of grid scale. The need for such a convective scheme has increased in recent years as more global weather and climate models have adopted variable resolution meshes that are often extended into the range of resolving convection in selected locations.« less

  1. HPC Aspects of Variable-Resolution Global Climate Modeling using a Multi-scale Convection Parameterization

    EPA Science Inventory

    High performance computing (HPC) requirements for the new generation variable grid resolution (VGR) global climate models differ from that of traditional global models. A VGR global model with 15 km grids over the CONUS stretching to 60 km grids elsewhere will have about ~2.5 tim...

  2. Investigating different approaches to develop informative priors in hierarchical Bayesian safety performance functions.

    PubMed

    Yu, Rongjie; Abdel-Aty, Mohamed

    2013-07-01

    The Bayesian inference method has been frequently adopted to develop safety performance functions. One advantage of the Bayesian inference is that prior information for the independent variables can be included in the inference procedures. However, there are few studies that discussed how to formulate informative priors for the independent variables and evaluated the effects of incorporating informative priors in developing safety performance functions. This paper addresses this deficiency by introducing four approaches of developing informative priors for the independent variables based on historical data and expert experience. Merits of these informative priors have been tested along with two types of Bayesian hierarchical models (Poisson-gamma and Poisson-lognormal models). Deviance information criterion (DIC), R-square values, and coefficients of variance for the estimations were utilized as evaluation measures to select the best model(s). Comparison across the models indicated that the Poisson-gamma model is superior with a better model fit and it is much more robust with the informative priors. Moreover, the two-stage Bayesian updating informative priors provided the best goodness-of-fit and coefficient estimation accuracies. Furthermore, informative priors for the inverse dispersion parameter have also been introduced and tested. Different types of informative priors' effects on the model estimations and goodness-of-fit have been compared and concluded. Finally, based on the results, recommendations for future research topics and study applications have been made. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Climate simulations and projections with a super-parameterized climate model

    DOE PAGES

    Stan, Cristiana; Xu, Li

    2014-07-01

    The mean climate and its variability are analyzed in a suite of numerical experiments with a fully coupled general circulation model in which subgrid-scale moist convection is explicitly represented through embedded 2D cloud-system resolving models. Control simulations forced by the present day, fixed atmospheric carbon dioxide concentration are conducted using two horizontal resolutions and validated against observations and reanalyses. The mean state simulated by the higher resolution configuration has smaller biases. Climate variability also shows some sensitivity to resolution but not as uniform as in the case of mean state. The interannual and seasonal variability are better represented in themore » simulation at lower resolution whereas the subseasonal variability is more accurate in the higher resolution simulation. The equilibrium climate sensitivity of the model is estimated from a simulation forced by an abrupt quadrupling of the atmospheric carbon dioxide concentration. The equilibrium climate sensitivity temperature of the model is 2.77 °C, and this value is slightly smaller than the mean value (3.37 °C) of contemporary models using conventional representation of cloud processes. As a result, the climate change simulation forced by the representative concentration pathway 8.5 scenario projects an increase in the frequency of severe droughts over most of the North America.« less

  4. Hierarchical contribution of river–ocean connectivity, water chemistry, hydraulics, and substrate to the distribution of diadromous snails in Puerto Rican streams.

    Treesearch

    Juan F. Blanco; Frederick N. Scatena

    2006-01-01

    Diadromous faunas dominate most tropical coastal streams and rivers, but the factors controlling their distribution are not well understood. Our study documents abiotic variables controlling the distribution and abundance of the diadromous snail Neritina virginea (Gastropoda:Neritidae) in the Caribbean island of Puerto Rico. An intensive survey of N. virginea density...

  5. The Meaning of an Orienting Response: A Study in the Hierarchical Order of Attending.

    ERIC Educational Resources Information Center

    Lewis, Michael; Harwitz, Marcia

    The purposes of this study are: (1) to attempt to show the weakness of the theory of a two-stage process of attending, i.e. having both separate and ordered focusing and elaborating aspects; and (2) to offer an alternative approach whereby both focusing and elaborating are under the service of cognitive variables. The discussion covers the issue…

  6. Language Shift in the United States and Foreign-Born Older Mexican Heritage Individuals: Co-Ethnic Context for Language Resistance

    ERIC Educational Resources Information Center

    Siordia, Carlos; Diaz, Maria E.

    2012-01-01

    In this study, we investigate individual-level language shift in a population of Mexican origin Latinos/as aged 65 and up. By using data from the Hispanic Established Populations for the Epidemiologic Study of the Elderly, we investigate their English language use as the dependent variable in a hierarchical linear model. The microlevel independent…

  7. Effects of Traditional and Nontraditional Forms of Parental Involvement on School-Level Achievement Outcome: An HLM Study Using SASS 2007-2008

    ERIC Educational Resources Information Center

    Shen, Jianping; Washington, Alandra L.; Bierlein Palmer, Louann; Xia, Jiangang

    2014-01-01

    The authors examined parental involvement's (PI) impact on school performance. The hierarchical linear modeling method was applied to national Schools and Staffing Survey 2007-2008 data. They found that PI variables explained significant variance for the outcomes of (a) meeting adequate yearly progress (AYP) and (b) being free from sanctions. The…

  8. Performability modeling with continuous accomplishment sets

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1979-01-01

    A general modeling framework that permits the definition, formulation, and evaluation of performability is described. It is shown that performability relates directly to system effectiveness, and is a proper generalization of both performance and reliability. A hierarchical modeling scheme is used to formulate the capability function used to evaluate performability. The case in which performance variables take values in a continuous accomplishment set is treated explicitly.

  9. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations.

    PubMed

    Gomez-Uchida, Daniel; Seeb, James E; Smith, Matt J; Habicht, Christopher; Quinn, Thomas P; Seeb, Lisa W

    2011-02-18

    Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent evidence for diversifying selection in two loci located in the MHC class II by means of outlier detection methods; yet, alternative scenarios for the evolution of these loci were also evaluated. Both conclusions argue that historical contingency and contemporary adaptation have likely driven differentiation between Kvichak River sockeye salmon populations, as revealed by a suite of SNPs. Our findings highlight the need for conservation of complex population structure, because it provides resilience in the face of environmental change, both natural and anthropogenic.

  10. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations

    PubMed Central

    2011-01-01

    Background Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. Results For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. Conclusions First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent evidence for diversifying selection in two loci located in the MHC class II by means of outlier detection methods; yet, alternative scenarios for the evolution of these loci were also evaluated. Both conclusions argue that historical contingency and contemporary adaptation have likely driven differentiation between Kvichak River sockeye salmon populations, as revealed by a suite of SNPs. Our findings highlight the need for conservation of complex population structure, because it provides resilience in the face of environmental change, both natural and anthropogenic. PMID:21332997

  11. Association between parental guilt and oral health problems in preschool children: a hierarchical approach.

    PubMed

    Gomes, Monalisa Cesarino; Clementino, Marayza Alves; Pinto-Sarmento, Tassia Cristina de Almeida; Martins, Carolina Castro; Granville-Garcia, Ana Flávia; Paiva, Saul Martins

    2014-08-16

    Dental caries and traumatic dental injury (TDI) can play an important role in the emergence of parental guilt, since parents feel responsible for their child's health. The aim of the present study was to evaluate the influence of oral health problems among preschool children on parental guilt. A preschool-based, cross-sectional study was carried out with 832 preschool children between three and five years of age in the city of Campina Grande, Brazil. Parents/caregivers answered the Brazilian version of the Early Childhood Oral Health Impact Scale (B-ECOHIS). The item "parental guilt" was the dependent variable. Questionnaires addressing socio-demographic variables (child's sex, child's age, parent's/caregiver's age, mother's schooling, type of preschool and household income), history of toothache and health perceptions (general and oral) were also administered. Clinical exams for dental caries and TDI were performed by three dentists who had undergone a training and calibration exercise (Kappa: 0.85-0.90). Poisson hierarchical regression was used to determine the significance of associations between parental guilt and oral health problems (α = 5%). The multivariate model was carried out on three levels using a hierarchical approach from distal to proximal determinants: 1) socio-demographic aspects; 2) health perceptions; and 3) oral health problems. The frequency of parental guilt was 22.8%. The following variables were significantly associated with parental guilt: parental perception of child's oral health as poor (PR = 2.010; 95% CI: 1.502-2.688), history of toothache (PR = 2.344; 95% CI: 1.755-3.130), cavitated lesions (PR = 2.002; 95% CI: 1.388-2.887), avulsion/luxation (PR = 2.029; 95% CI: 1.141-3.610) and tooth discoloration (PR = 1.540; 95% CI: 1.169-2.028). Based on the present findings, parental guilt increases with the occurrence of oral health problems that require treatment, such as dental caries and TDI of greater severity. Parental perceptions of poor oral health in their children and history of toothache were predictors of greater feelings of parental guilt.

  12. Comparing adult users of public and private dental services in the state of Minas Gerais, Brazil.

    PubMed

    Pinto, Rafaela da Silveira; de Abreu, Mauro Henrique Nogueira Guimarães; Vargas, Andrea Maria Duarte

    2014-08-06

    Studying the factors associated with the use of dental services can provide the necessary knowledge to understand the reasons why individuals seek out public healthcare services and the formulation of more appropriate public policies for the present-day reality. This work was a cross-sectional epidemiological study consisting of a sample of adults found in a research databank concerning the conditions of the oral health of the population of the state of Minas Gerais, Brazil. This study examined both main oral health disorders and relevant socioeconomic aspects. The dependent variable was defined as the type of service used, categorized under public and private use. The independent variables were selected and grouped to be inserted in the analysis model according to an adaptation of the behavioral model described by Andersen and Davidson. A hierarchical model was used to analyze the data. The description of variables and bivariate analyses were performed in an attempt to verify possible associations. For each group of variables at each hierarchical level, the gross and adjusted odds ratios (OR) and the respective 95% confidence intervals (CI) were estimated by means of logistic regression. The Complex Samples model from the SPSS statistics program, version 19.0, was used to analyze the sample framework. In the final model, the factors associated with the use of public healthcare services by adults were directly related to the socioeconomic and demographic conditions of the individuals, including: being of a dark-skinned black race/color, belonging to families with more than four household residents and with a lower income level, residing in small towns, having more teeth that need treatment. According to the findings from this study, socioeconomic and demographic factors, as well as normative treatment needs, are associated with the use of public dental services.

  13. Cost-effectiveness analysis using data from multinational trials: The use of bivariate hierarchical modelling

    PubMed Central

    Manca, Andrea; Lambert, Paul C; Sculpher, Mark; Rice, Nigel

    2008-01-01

    Healthcare cost-effectiveness analysis (CEA) often uses individual patient data (IPD) from multinational randomised controlled trials. Although designed to account for between-patient sampling variability in the clinical and economic data, standard analytical approaches to CEA ignore the presence of between-location variability in the study results. This is a restrictive limitation given that countries often differ in factors that could affect the results of CEAs, such as the availability of healthcare resources, their unit costs, clinical practice, and patient case-mix. We advocate the use of Bayesian bivariate hierarchical modelling to analyse multinational cost-effectiveness data. This analytical framework explicitly recognises that patient-level costs and outcomes are nested within countries. Using real life data, we illustrate how the proposed methods can be applied to obtain (a) more appropriate estimates of overall cost-effectiveness and associated measure of sampling uncertainty compared to standard CEA; and (b) country-specific cost-effectiveness estimates which can be used to assess the between-location variability of the study results, while controlling for differences in country-specific and patient-specific characteristics. It is demonstrated that results from standard CEA using IPD from multinational trials display a large degree of variability across the 17 countries included in the analysis, producing potentially misleading results. In contrast, ‘shrinkage estimates’ obtained from the modelling approach proposed here facilitate the appropriate quantification of country-specific cost-effectiveness estimates, while weighting the results based on the level of information available within each country. We suggest that the methods presented here represent a general framework for the analysis of economic data collected from different locations. PMID:17641141

  14. A Bayesian, generalized frailty model for comet assays.

    PubMed

    Ghebretinsae, Aklilu Habteab; Faes, Christel; Molenberghs, Geert; De Boeck, Marlies; Geys, Helena

    2013-05-01

    This paper proposes a flexible modeling approach for so-called comet assay data regularly encountered in preclinical research. While such data consist of non-Gaussian outcomes in a multilevel hierarchical structure, traditional analyses typically completely or partly ignore this hierarchical nature by summarizing measurements within a cluster. Non-Gaussian outcomes are often modeled using exponential family models. This is true not only for binary and count data, but also for, example, time-to-event outcomes. Two important reasons for extending this family are for (1) the possible occurrence of overdispersion, meaning that the variability in the data may not be adequately described by the models, which often exhibit a prescribed mean-variance link, and (2) the accommodation of a hierarchical structure in the data, owing to clustering in the data. The first issue is dealt with through so-called overdispersion models. Clustering is often accommodated through the inclusion of random subject-specific effects. Though not always, one conventionally assumes such random effects to be normally distributed. In the case of time-to-event data, one encounters, for example, the gamma frailty model (Duchateau and Janssen, 2007 ). While both of these issues may occur simultaneously, models combining both are uncommon. Molenberghs et al. ( 2010 ) proposed a broad class of generalized linear models accommodating overdispersion and clustering through two separate sets of random effects. Here, we use this method to model data from a comet assay with a three-level hierarchical structure. Although a conjugate gamma random effect is used for the overdispersion random effect, both gamma and normal random effects are considered for the hierarchical random effect. Apart from model formulation, we place emphasis on Bayesian estimation. Our proposed method has an upper hand over the traditional analysis in that it (1) uses the appropriate distribution stipulated in the literature; (2) deals with the complete hierarchical nature; and (3) uses all information instead of summary measures. The fit of the model to the comet assay is compared against the background of more conventional model fits. Results indicate the toxicity of 1,2-dimethylhydrazine dihydrochloride at different dose levels (low, medium, and high).

  15. Examining school effectiveness at the fourth grade: A hierarchical analysis of the Third International Mathematics and Science Study (TIMSS)

    NASA Astrophysics Data System (ADS)

    Stemler, Steven Edward

    This study explored school effectiveness in mathematics and science at the fourth grade using data from IEA's Third International Mathematics and Science Study (TIMSS). Fourteen of the 26 countries participating in TIMSS at the fourth grade possessed sufficient between-school variability in mathematics achievement to justify the creation of explanatory models of school effectiveness while 13 countries possessed sufficient between-school variability in science achievement. Exploratory models were developed using variables drawn from student, teacher, and school questionnaires. The variables were chosen to represent the domains of student involvement, instructional methods, classroom organization, school climate, and school structure. Six explanatory models for each subject were analyzed using two-level hierarchical linear modeling (HLM) and were compared to models using only school mean SES as an explanatory variable. The amount of variability in student achievement in mathematics attributable to differences between schools ranged from 16% in Cyprus to 56% in Latvia, while the amount of between-school variance in science achievement ranged from 12% in Korea to 59% in Latvia. In general, about one-quarter of the variability in mathematics and science achievement was found to lie between schools. The research findings revealed that after adjusting for differences in student backgrounds across schools, the most effective schools in mathematics and science had students who reported seeing a positive relationship between hard work, belief in their own abilities, and achievement. In addition, more effective schools had students who reported less frequent use of computers and calculators in the classroom. These relationships were found to be stable across explanatory models, cultural contexts, and subject areas. This study has contributed a unique element to the literature by examining school effectiveness at the fourth grade across two subject areas and across 14 different countries. The results indicate that further exploration of the relationship between school effectiveness and student locus of control warrants serious consideration. Future research on school effectiveness is recommended, perhaps using trend data and looking at different grade levels.

  16. Correlation spectrometer for filtering of (quasi) elastic neutron scattering with variable resolution

    NASA Astrophysics Data System (ADS)

    Magazù, Salvatore; Mezei, Ferenc; Migliardo, Federica

    2018-05-01

    In a variety of applications of inelastic neutron scattering spectroscopy the goal is to single out the elastic scattering contribution from the total scattered spectrum as a function of momentum transfer and sample environment parameters. The elastic part of the spectrum is defined in such a case by the energy resolution of the spectrometer. Variable elastic energy resolution offers a way to distinguish between elastic and quasi-elastic intensities. Correlation spectroscopy lends itself as an efficient, high intensity approach for accomplishing this both at continuous and pulsed neutron sources. On the one hand, in beam modulation methods the Liouville theorem coupling between intensity and resolution is relaxed and time-of-flight velocity analysis of the neutron velocity distribution can be performed with 50 % duty factor exposure for all available resolutions. On the other hand, the (quasi)elastic part of the spectrum generally contains the major part of the integrated intensity at a given detector, and thus correlation spectroscopy can be applied with most favorable signal to statistical noise ratio. The novel spectrometer CORELLI at SNS is an example for this type of application of the correlation technique at a pulsed source. On a continuous neutron source a statistical chopper can be used for quasi-random time dependent beam modulation and the total time-of-flight of the neutron from the statistical chopper to detection is determined by the analysis of the correlation between the temporal fluctuation of the neutron detection rate and the statistical chopper beam modulation pattern. The correlation analysis can either be used for the determination of the incoming neutron velocity or for the scattered neutron velocity, depending of the position of the statistical chopper along the neutron trajectory. These two options are considered together with an evaluation of spectrometer performance compared to conventional spectroscopy, in particular for variable resolution elastic neutron scattering (RENS) studies of relaxation processes and the evolution of mean square displacements. A particular focus of our analysis is the unique feature of correlation spectroscopy of delivering high and resolution independent beam intensity, thus the same statistical chopper scan contains both high intensity and high resolution information at the same time, and can be evaluated both ways. This flexibility for variable resolution data handling represents an additional asset for correlation spectroscopy in variable resolution work. Changing the beam width for the same statistical chopper allows us to additionally trade resolution for intensity in two different experimental runs, similarly for conventional single slit chopper spectroscopy. The combination of these two approaches is a capability of particular value in neutron spectroscopy studies requiring variable energy resolution, such as the systematic study of quasi-elastic scattering and mean square displacement. Furthermore the statistical chopper approach is particularly advantageous for studying samples with low scattering intensity in the presence of a high, sample independent background.

  17. Predicting Opportunities for Greening and Patterns of Vegetation on Private Urban Lands

    NASA Astrophysics Data System (ADS)

    Troy, Austin R.; Grove, J. Morgan; O'Neil-Dunne, Jarlath P. M.; Pickett, Steward T. A.; Cadenasso, Mary L.

    2007-09-01

    This paper examines predictors of vegetative cover on private lands in Baltimore, Maryland. Using high-resolution spatial data, we generated two measures: “possible stewardship,” which is the proportion of private land that does not have built structures on it and hence has the possibility of supporting vegetation, and “realized stewardship,” which is the proportion of possible stewardship land upon which vegetation is growing. These measures were calculated at the parcel level and averaged by US Census block group. Realized stewardship was further defined by proportion of tree canopy and grass. Expenditures on yard supplies and services, available by block group, were used to help understand where vegetation condition appears to be the result of current activity, past legacies, or abandonment. PRIZM™ market segmentation data were tested as categorical predictors of possible and realized stewardship and yard expenditures. PRIZM™ segmentations are hierarchically clustered into 5, 15, and 62 categories, which correspond to population density, social stratification (income and education), and lifestyle clusters, respectively. We found that PRIZM 15 best predicted variation in possible stewardship and PRIZM 62 best predicted variation in realized stewardship. These results were further analyzed by regressing each dependent variable against a set of continuous variables reflective of each of the three PRIZM groupings. Housing age, vacancy, and population density were found to be critical determinants of both stewardship metrics. A number of lifestyle factors, such as average family size, marriage rates, and percentage of single-family detached homes, were strongly related to realized stewardship. The percentage of African Americans by block group was positively related to realized stewardship but negatively related to yard expenditures.

  18. A multi-scalar approach for modelling river channel change in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Downs, Peter; Piégay, Hervé; Piffady, Jeremy; Valette, Laurent; Vaudor, Lise

    2017-04-01

    Adjustments in river channel morphology during the 'Anthropocene' arise as a cumulative impact from the influence of numerous natural and human stressors operating at multiple spatial and temporal scales. However, the research requirement for data on impacts at multiple scales, and at sufficiently high spatial and temporal resolution to determine reach-level effect, largely prevented such studies until recent improvements in digital technologies and data availability. A meta-analysis of recent cumulative impact studies indicates that the analytical component is still overwhelmingly interpretative, with cause-and-effect reasoning based largely on temporal synchronicity and spatial proximity, whereas our conceptual understanding of adjustment processes is far more nuanced. We propose, instead, that studies of cumulative impact should be underpinned by an analytical model of cause and effect, partly to test and enhance our predictive capabilities and allow scenario setting, but also to learn about the relative sensitivities involved in different parts of the model and thus to prioritize future research endeavours. Our requirements are that the model should be inherently designed to detect reach-level changes over Anthropocene timescales, be capable of integrating co-existing and hierarchical human and natural pressures on fluvial systems, be able to accommodate time-lagged effects and upstream-downstream connectivity, and be based on an explicit conceptual model that can be refined as our process understanding improves. Bayesian Belief Networks (BBNs) offer some potential in this regard and are becoming an increasingly popular option for dealing with complex, multi-scalar relationships in ecology and other environmental sciences. BBNs consist of a conceptual model of nodes and edges (i.e., graph theory) that qualitatively describe the structure of causal relationships between chains of variables, and a quantitative expression of the relative strength of the hypothesized relationships, described by probability distributions. BBNs offer the flexibility of incorporating different variables taken at various scales from within the catchment (thus accommodating geographical and historical differences in climate and human occupation), can be implemented even when there is some missing data, and can be rapidly optimised to improve data fit by modifying individual parts of the internal probability distributions. They are particularly well-suited to hierarchical cause and effect structuring because data uncertainties are inherently 'internalised' in the development of the model's structure, thus potentially mediating the overall error in a complex chain of relationships. We detail tests in progress to develop models for channel width and depth changes for the main stem of the Santa Clara River, which drains a 4,200 km2 catchment in coastal Southern California.

  19. Interannual rainfall variability over China in the MetUM GA6 and GC2 configurations

    NASA Astrophysics Data System (ADS)

    Stephan, Claudia Christine; Klingaman, Nicholas P.; Vidale, Pier Luigi; Turner, Andrew G.; Demory, Marie-Estelle; Guo, Liang

    2018-05-01

    Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyse the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ˜ 200, 90 and 40 km in the zonal direction at the equator, respectively) are analysed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China but improve with finer resolution and coupling. Empirical orthogonal teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal mean time series. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.

  20. High resolution simulations of a variable HH jet

    NASA Astrophysics Data System (ADS)

    Raga, A. C.; de Colle, F.; Kajdič, P.; Esquivel, A.; Cantó, J.

    2007-04-01

    Context: In many papers, the flows in Herbig-Haro (HH) jets have been modeled as collimated outflows with a time-dependent ejection. In particular, a supersonic variability of the ejection velocity leads to the production of "internal working surfaces" which (for appropriate forms of the time-variability) can produce emitting knots that resemble the chains of knots observed along HH jets. Aims: In this paper, we present axisymmetric simulations of an "internal working surface" in a radiative jet (produced by an ejection velocity variability). We concentrate on a given parameter set (i.e., on a jet with a constante ejection density, and a sinusoidal velocity variability with a 20 yr period and a 40 km s-1 half-amplitude), and carry out a study of the behaviour of the solution for increasing numerical resolutions. Methods: In our simulations, we solve the gasdynamic equations together with a 17-species atomic/ionic network, and we are therefore able to compute emission coefficients for different emission lines. Results: We compute 3 adaptive grid simulations, with 20, 163 and 1310 grid points (at the highest grid resolution) across the initial jet radius. From these simulations we see that successively more complex structures are obtained for increasing numerical resolutions. Such an effect is seen in the stratifications of the flow variables as well as in the predicted emission line intensity maps. Conclusions: .We find that while the detailed structure of an internal working surface depends on resolution, the predicted emission line luminosities (integrated over the volume of the working surface) are surprisingly stable. This is definitely good news for the future computation of predictions from radiative jet models for carrying out comparisons with observations of HH objects.

Top