Effects of Shock and Turbulence Properties on Electron Acceleration
NASA Astrophysics Data System (ADS)
Qin, G.; Kong, F.-J.; Zhang, L.-H.
2018-06-01
Using test particle simulations, we study electron acceleration at collisionless shocks with a two-component model turbulent magnetic field with slab component including dissipation range. We investigate the importance of the shock-normal angle θ Bn, magnetic turbulence level {(b/{B}0)}2, and shock thickness on the acceleration efficiency of electrons. It is shown that at perpendicular shocks the electron acceleration efficiency is enhanced with the decrease of {(b/{B}0)}2, and at {(b/{B}0)}2=0.01 the acceleration becomes significant due to a strong drift electric field with long time particles staying near the shock front for shock drift acceleration (SDA). In addition, at parallel shocks the electron acceleration efficiency is increasing with the increase of {(b/{B}0)}2, and at {(b/{B}0)}2=10.0 the acceleration is very strong due to sufficient pitch-angle scattering for first-order Fermi acceleration, as well as due to the large local component of the magnetic field perpendicular to the shock-normal angle for SDA. On the other hand, the high perpendicular shock acceleration with {(b/{B}0)}2=0.01 is stronger than the high parallel shock acceleration with {(b/{B}0)}2=10.0, the reason might be the assumption that SDA is more efficient than first-order Fermi acceleration. Furthermore, for oblique shocks, the acceleration efficiency is small no matter whether the turbulence level is low or high. Moreover, for the effect of shock thickness on electron acceleration at perpendicular shocks, we show that there exists the bendover thickness, L diff,b. The acceleration efficiency does not noticeably change if the shock thickness is much smaller than L diff,b. However, if the shock thickness is much larger than L diff,b, the acceleration efficiency starts to drop abruptly.
The Energy Efficiency of High Intensity Proton Driver Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakovlev, Vyacheslav; Grillenberger, Joachim; Kim, Sang-Ho
2017-05-01
For MW class proton driver accelerators the energy efficiency is an important aspect; the talk reviews the efficiency of different accelerator concepts including s.c./n.c. linac, rapid cycling synchrotron, cyclotron; the potential of these concepts for very high beam power is discussed.
Li, W.; Thorne, R. M.; Bortnik, J.; ...
2015-09-07
In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outermore » radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.« less
Conceptual design of a high real-estate gradient cavity for a SRF ERL
NASA Astrophysics Data System (ADS)
Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; Xin, Tianmu; Wang, Haipeng
2017-10-01
The term "real-estate gradient" is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total accelerating efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this paper, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).
High efficiency RF amplifier development over wide dynamic range for accelerator application
NASA Astrophysics Data System (ADS)
Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber
2017-10-01
Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.
Sharma, Ashutosh
2018-02-01
Relativistic electron rings hold the possibility of very high accelerating rates, and hopefully a relatively cheap and compact accelerator/collimator for ultrahigh energy proton source. In this work, we investigate the generation of helical shaped quasi-monoenergetic relativistic electron beam and high-energy proton beam from near critical density plasmas driven by petawatt-circularly polarized-short laser pulses. We numerically observe the efficient proton acceleration from magnetic vortex acceleration mechanism by using the three dimensional particle-in-cell simulations; proton beam with peak energy 350 MeV, charge ~10nC and conversion efficiency more than 6% (which implies 2.4 J proton beam out of the 40 J incident laser energy) is reported. We detailed the microphysics involved in the ion acceleration mechanism, which requires investigating the role of self-generated plasma electric and magnetic fields. The concept of efficient generation of quasi-monoenergetic electron and proton beam from near critical density gas targets may be verified experimentally at advanced high power - high repetition rate laser facilities e.g. ELI-ALPS. Such study should be an important step towards the development of high quality electron and proton beam.
Conceptual design of a high real-estate gradient cavity for a SRF ERL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chen; Ben-Zvi, Ilan; Hao, Yue
The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total acceleratingmore » efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).« less
Conceptual design of a high real-estate gradient cavity for a SRF ERL
Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; ...
2017-07-19
The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total acceleratingmore » efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).« less
Acceleration of a trailing positron bunch in a plasma wakefield accelerator
Doche, A.; Beekman, C.; Corde, S.; ...
2017-10-27
High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less
Acceleration of a trailing positron bunch in a plasma wakefield accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doche, A.; Beekman, C.; Corde, S.
High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, K. A.; Schoefer, V.; Tomizawa, M.
The new accelerator complex at J-PARC will operate with both high energy and very high intensity proton beams. With a design slow extraction efficiency of greater than 99% this facility will still be depositing significant beam power onto accelerator components [2]. To achieve even higher efficiencies requires some new ideas. The design of the extraction system and the accelerator lattice structure leaves little room for improvement using conventional techniques. In this report we will present one method for improving the slow extraction efficiency at J-PARC by adding duodecapoles or octupoles to the slow extraction system. We will review the theorymore » of resonant extraction, describe simulation methods, and present the results of detailed simulations. From our investigations we find that we can improve extraction efficiency and thereby reduce the level of residual activation in the accelerator components and surrounding shielding.« less
Efficiency Versus Instability in Plasma Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei
2017-01-05
Plasma wake-field acceleration in a strongly nonlinear (a.k.a. the blowout) regime is one of the main candidates for future high-energy colliders. For this case, we derive a universal efficiency-instability relation, between the power efficiency and the key instability parameter of the witness bunch. We also show that in order to stabilize the witness bunch in a regime with high power efficiency, the bunch needs to have high energy spread, which is not presently compatible with collider-quality beam properties. It is unclear how such limitations could be overcome for high-luminosity linear colliders.
Slot-coupled CW standing wave accelerating cavity
Wang, Shaoheng; Rimmer, Robert; Wang, Haipeng
2017-05-16
A slot-coupled CW standing wave multi-cell accelerating cavity. To achieve high efficiency graded beta acceleration, each cell in the multi-cell cavity may include different cell lengths. Alternatively, to achieve high efficiency with acceleration for particles with beta equal to 1, each cell in the multi-cell cavity may include the same cell design. Coupling between the cells is achieved with a plurality of axially aligned kidney-shaped slots on the wall between cells. The slot-coupling method makes the design very compact. The shape of the cell, including the slots and the cone, are optimized to maximize the power efficiency and minimize the peak power density on the surface. The slots are non-resonant, thereby enabling shorter slots and less power loss.
Injection of thermal and suprathermal seed particles into coronal shocks of varying obliquity
NASA Astrophysics Data System (ADS)
Battarbee, M.; Vainio, R.; Laitinen, T.; Hietala, H.
2013-10-01
Context. Diffusive shock acceleration in the solar corona can accelerate solar energetic particles to very high energies. Acceleration efficiency is increased by entrapment through self-generated waves, which is highly dependent on the amount of accelerated particles. This, in turn, is determined by the efficiency of particle injection into the acceleration process. Aims: We present an analysis of the injection efficiency at coronal shocks of varying obliquity. We assessed injection through reflection and downstream scattering, including the effect of a cross-shock potential. Both quasi-thermal and suprathermal seed populations were analysed. We present results on the effect of cross-field diffusion downstream of the shock on the injection efficiency. Methods: Using analytical methods, we present applicable injection speed thresholds that were compared with both semi-analytical flux integration and Monte Carlo simulations, which do not resort to binary thresholds. Shock-normal angle θBn and shock-normal velocity Vs were varied to assess the injection efficiency with respect to these parameters. Results: We present evidence of a significant bias of thermal seed particle injection at small shock-normal angles. We show that downstream isotropisation methods affect the θBn-dependence of this result. We show a non-negligible effect caused by the cross-shock potential, and that the effect of downstream cross-field diffusion is highly dependent on boundary definitions. Conclusions: Our results show that for Monte Carlo simulations of coronal shock acceleration a full distribution function assessment with downstream isotropisation through scatterings is necessary to realistically model particle injection. Based on our results, seed particle injection at quasi-parallel coronal shocks can result in significant acceleration efficiency, especially when combined with varying field-line geometry. Appendices are available in electronic form at http://www.aanda.org
High efficiency ion beam accelerator system
NASA Technical Reports Server (NTRS)
Aston, G.
1981-01-01
An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.
Prolonged electron accelerations at a high-Mach-number, quasi-perpendicular shock
NASA Astrophysics Data System (ADS)
Matsumoto, Y.; Amano, T.; Kato, T.; Hoshino, M.
2016-12-01
Elucidating acceleration mechanisms of charged particles have been of great interests in laboratory, space, and astrophysical plasmas. Among other mechanisms, a collision-less shock is thought as an efficient particle accelerator. The idea has been strengthened by radio, X-ray, and gamma-ray observations of astrophysical objects such as supernova remnant shocks, where it has been indicated that protons and electrons are efficiently accelerated to TeV energies at such very strong shock waves. Efficient electron accelerations at high-Mach-number shocks was also suggested recently by in-situ measurements at the Saturn's bow shock. Motivated by these circumstances, laboratory experiments using high-power laser facilities emerge to provide a new platform to tackle these problems.Numerical simulations have revealed that electrons can be efficiently heated and accelerated via so-called the shock surfing acceleration mechanism in which electron-scale Buneman instability played key roles. Recently, Matsumoto et al. [2015] proposed a stochastic acceleration mechanism by turbulent reconnection in the shock transition region through excitation of the ion Weibel instability. In order to deal with the two different acceleration mechanisms in a self-consistent system, we examined 3D PIC simulations of a quasi-perpendicular, high-Mach-number shock. We successfully followed a long term evolution in which two different acceleration mechanisms coexist in the 3D shock structure. The Buneman instability is strongly excited ahead of the shock front in the same manner as have been found in 2D simulations. The surfing acceleration is found to be very effective in the present 3D system. In the transition region, the ion-beam Weibel instability generated strong magnetic field turbulence in 3D space. Energetic electrons, which initially experienced the surfing acceleration, undergo pitch-angle diffusion by interacting with the turbulent fields and thus stay in the upstream regions. The ion Weibel turbulence is essentially the key to prolonged acceleration processes which can produce relativistic particles with energies more than 1000 times the initial kinetic energy. We present how such relativistic electrons are produced during traveling in the 3D shock structure.
Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.; ...
2016-03-01
Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.
Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less
Plasma wakefield acceleration experiments at FACET II
NASA Astrophysics Data System (ADS)
Joshi, C.; Adli, E.; An, W.; Clayton, C. E.; Corde, S.; Gessner, S.; Hogan, M. J.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; O'shea, B.; Xu, Xinlu; White, G.; Yakimenko, V.
2018-03-01
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the ‘blow-out regime’ have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currently under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. We then briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.
Plasma wakefield acceleration experiments at FACET II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, C.; Adli, E.; An, W.
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less
Plasma wakefield acceleration experiments at FACET II
Joshi, C.; Adli, E.; An, W.; ...
2018-01-12
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less
Efficient particle acceleration in shocks
NASA Astrophysics Data System (ADS)
Heavens, A. F.
1984-10-01
A self-consistent non-linear theory of acceleration of particles by shock waves is developed, using an extension of the two-fluid hydrodynamical model by Drury and Völk. The transport of the accelerated particles is governed by a diffusion coefficient which is initially assumed to be independent of particle momentum, to obtain exact solutions for the spectrum. It is found that steady-state shock structures with high acceleration efficiency are only possible for shocks with Mach numbers less than about 12. A more realistic diffusion coefficient is then considered, and this maximum Mach number is reduced to about 6. The efficiency of the acceleration process determines the relative importance of the non-relativistic and relativistic particles in the distribution of accelerated particles, and this determines the effective specific heat ratio.
NASA Astrophysics Data System (ADS)
Yasin, Zafar; Negoita, Florin; Tabbassum, Sana; Borcea, Ruxandra; Kisyov, Stanimir
2017-12-01
The plastic scintillators are used in different areas of science and technology. One of the use of these scintillator detectors is as beam loss monitors (BLM) for new generation of high intensity heavy ion in superconducting linear accelerators. Operated in pulse counting mode with rather high thresholds and shielded by few centimeters of lead in order to cope with radiofrequency noise and X-ray background emitted by accelerator cavities, they preserve high efficiency for high energy gamma ray and neutrons produced in the nuclear reactions of lost beam particles with accelerator components. Efficiency calculation and calibration of detectors is very important before their practical usage. In the present work, the efficiency of plastic scintillator detectors is simulated using FLUKA for different gamma and neutron sources like, 60Co, 137Cs and 238Pu-Be. The sources are placed at different positions around the detector. Calculated values are compared with the measured values and a reasonable agreement is observed.
Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels.
Luo, J; Chen, M; Wu, W Y; Weng, S M; Sheng, Z M; Schroeder, C B; Jaroszynski, D A; Esarey, E; Leemans, W P; Mori, W B; Zhang, J
2018-04-13
Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.
Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels
NASA Astrophysics Data System (ADS)
Luo, J.; Chen, M.; Wu, W. Y.; Weng, S. M.; Sheng, Z. M.; Schroeder, C. B.; Jaroszynski, D. A.; Esarey, E.; Leemans, W. P.; Mori, W. B.; Zhang, J.
2018-04-01
Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.
Lemery, F.; Piot, P.
2015-08-03
Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemery, F.; Piot, P.
Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less
Multimegawatt cyclotron autoresonance accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K.
1996-05-01
Means are discussed for generation of high-quality multimegawatt gyrating electron beams using rf gyroresonant acceleration. TE{sub 111}-mode cylindrical cavities in a uniform axial magnetic field have been employed for beam acceleration since 1968; such beams have more recently been employed for generation of radiation at harmonics of the gyration frequency. Use of a TE{sub 11}-mode waveguide for acceleration, rather than a cavity, is discussed. It is shown that the applied magnetic field and group velocity axial tapers allow resonance to be maintained along a waveguide, but that this is impractical in a cavity. In consequence, a waveguide cyclotron autoresonance acceleratormore » (CARA) can operate with near-100{percent} efficiency in power transfer from rf source to beam, while cavity accelerators will, in practice, have efficiency values limited to about 40{percent}. CARA experiments are described in which an injected beam of up to 25 A, 95 kV has had up to 7.2 MW of rf power added, with efficiencies of up to 96{percent}. Such levels of efficiency are higher than observed previously in any fast-wave interaction, and are competitive with efficiency values in industrial linear accelerators. Scaling arguments suggest that good quality gyrating megavolt beams with peak and average powers of 100 MW and 100 kW can be produced using an advanced CARA, with applications in the generation of high-power microwaves and for possible remediation of flue gas pollutants. {copyright} {ital 1996 American Institute of Physics.}« less
Method for computationally efficient design of dielectric laser accelerator structures
Hughes, Tyler; Veronis, Georgios; Wootton, Kent P.; ...
2017-06-22
Here, dielectric microstructures have generated much interest in recent years as a means of accelerating charged particles when powered by solid state lasers. The acceleration gradient (or particle energy gain per unit length) is an important figure of merit. To design structures with high acceleration gradients, we explore the adjoint variable method, a highly efficient technique used to compute the sensitivity of an objective with respect to a large number of parameters. With this formalism, the sensitivity of the acceleration gradient of a dielectric structure with respect to its entire spatial permittivity distribution is calculated by the use of onlymore » two full-field electromagnetic simulations, the original and ‘adjoint’. The adjoint simulation corresponds physically to the reciprocal situation of a point charge moving through the accelerator gap and radiating. Using this formalism, we perform numerical optimizations aimed at maximizing acceleration gradients, which generate fabricable structures of greatly improved performance in comparison to previously examined geometries.« less
Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield.
Corde, S; Adli, E; Allen, J M; An, W; Clarke, C I; Clayton, C E; Delahaye, J P; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Lipkowitz, N; Litos, M; Lu, W; Marsh, K A; Mori, W B; Schmeltz, M; Vafaei-Najafabadi, N; Walz, D; Yakimenko, V; Yocky, G
2015-08-27
Electrical breakdown sets a limit on the kinetic energy that particles in a conventional radio-frequency accelerator can reach. New accelerator concepts must be developed to achieve higher energies and to make future particle colliders more compact and affordable. The plasma wakefield accelerator (PWFA) embodies one such concept, in which the electric field of a plasma wake excited by a bunch of charged particles (such as electrons) is used to accelerate a trailing bunch of particles. To apply plasma acceleration to electron-positron colliders, it is imperative that both the electrons and their antimatter counterpart, the positrons, are efficiently accelerated at high fields using plasmas. Although substantial progress has recently been reported on high-field, high-efficiency acceleration of electrons in a PWFA powered by an electron bunch, such an electron-driven wake is unsuitable for the acceleration and focusing of a positron bunch. Here we demonstrate a new regime of PWFAs where particles in the front of a single positron bunch transfer their energy to a substantial number of those in the rear of the same bunch by exciting a wakefield in the plasma. In the process, the accelerating field is altered--'self-loaded'--so that about a billion positrons gain five gigaelectronvolts of energy with a narrow energy spread over a distance of just 1.3 metres. They extract about 30 per cent of the wake's energy and form a spectrally distinct bunch with a root-mean-square energy spread as low as 1.8 per cent. This ability to transfer energy efficiently from the front to the rear within a single positron bunch makes the PWFA scheme very attractive as an energy booster to an electron-positron collider.
Experimental demonstration of high efficiency electron cyclotron autoresonance acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPointe, M.A.; Yoder, R.B.; Wang, C.
1996-04-01
First experimental results are reported on the operation of a multimegawatt 2.856 GHz cyclotron autoresonance accelerator (CARA). A 90{endash}100 kV, 2{endash}3 MW linear electron beam has had up to6.6 MW added to it in CARA, with an rf-to-beam power efficiency of up to 96{percent}. This efficiency level is larger than that reported for any fast-wave interaction between radiation and electrons, and also larger than that in normal conducting rf linear accelerators. The results obtained are in good agreement with theoretical predictions. {copyright} {ital 1996 The American Physical Society.}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgashev, Valery; Tantawi, Sami
The goal of this project was to perform engineering design studies of three extremely high efficiency electron accelerators with the following parameters [1]: 2 MeV output beam energy and 1 MW average beam power; 10 MeV output energy and 10 MW; 10 MeV output energy and 1 MW. These linacs are intended for energy and environmental applications [2]. We based our designs on normal conducting radio-frequency technology. We have successfully reached this goal where we show rf-to-beam efficiency of 96.7 %, 97.2 %, and 79.6 % for these linacs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, D.L.; Cuneo, M.E.; McKay, P.F.
We present results from initial experiments with a high impedance applied-B extraction diode on the SABRE ten stage linear induction accelerator (6.7 MV, 300 kA). We have demonstrated efficient coupling of power from the accelerator through an extended MITL (Magnetically Insulated Transmission Line) into a high intensity ion beam. Both MITL electron flow in the diode region and ion diode behavior, including ion source turn-on, virtual cathode formation and evolution, enhancement delay, and ion coupling efficiency, are strongly influenced by the geometry of the diode insulating magnetic field. For our present diode electrode geometry, electrons from the diode feed stronglymore » influence the evolution of the virtual cathode. Both experimental data and particle-in-cell numerical simulations show that uniform insulation of these feed electrons is required for uniform ion emission and efficient diode operation.« less
Programming and Runtime Support to Blaze FPGA Accelerator Deployment at Datacenter Scale
Huang, Muhuan; Wu, Di; Yu, Cody Hao; Fang, Zhenman; Interlandi, Matteo; Condie, Tyson; Cong, Jason
2017-01-01
With the end of CPU core scaling due to dark silicon limitations, customized accelerators on FPGAs have gained increased attention in modern datacenters due to their lower power, high performance and energy efficiency. Evidenced by Microsoft’s FPGA deployment in its Bing search engine and Intel’s 16.7 billion acquisition of Altera, integrating FPGAs into datacenters is considered one of the most promising approaches to sustain future datacenter growth. However, it is quite challenging for existing big data computing systems—like Apache Spark and Hadoop—to access the performance and energy benefits of FPGA accelerators. In this paper we design and implement Blaze to provide programming and runtime support for enabling easy and efficient deployments of FPGA accelerators in datacenters. In particular, Blaze abstracts FPGA accelerators as a service (FaaS) and provides a set of clean programming APIs for big data processing applications to easily utilize those accelerators. Our Blaze runtime implements an FaaS framework to efficiently share FPGA accelerators among multiple heterogeneous threads on a single node, and extends Hadoop YARN with accelerator-centric scheduling to efficiently share them among multiple computing tasks in the cluster. Experimental results using four representative big data applications demonstrate that Blaze greatly reduces the programming efforts to access FPGA accelerators in systems like Apache Spark and YARN, and improves the system throughput by 1.7 × to 3× (and energy efficiency by 1.5× to 2.7×) compared to a conventional CPU-only cluster. PMID:28317049
Programming and Runtime Support to Blaze FPGA Accelerator Deployment at Datacenter Scale.
Huang, Muhuan; Wu, Di; Yu, Cody Hao; Fang, Zhenman; Interlandi, Matteo; Condie, Tyson; Cong, Jason
2016-10-01
With the end of CPU core scaling due to dark silicon limitations, customized accelerators on FPGAs have gained increased attention in modern datacenters due to their lower power, high performance and energy efficiency. Evidenced by Microsoft's FPGA deployment in its Bing search engine and Intel's 16.7 billion acquisition of Altera, integrating FPGAs into datacenters is considered one of the most promising approaches to sustain future datacenter growth. However, it is quite challenging for existing big data computing systems-like Apache Spark and Hadoop-to access the performance and energy benefits of FPGA accelerators. In this paper we design and implement Blaze to provide programming and runtime support for enabling easy and efficient deployments of FPGA accelerators in datacenters. In particular, Blaze abstracts FPGA accelerators as a service (FaaS) and provides a set of clean programming APIs for big data processing applications to easily utilize those accelerators. Our Blaze runtime implements an FaaS framework to efficiently share FPGA accelerators among multiple heterogeneous threads on a single node, and extends Hadoop YARN with accelerator-centric scheduling to efficiently share them among multiple computing tasks in the cluster. Experimental results using four representative big data applications demonstrate that Blaze greatly reduces the programming efforts to access FPGA accelerators in systems like Apache Spark and YARN, and improves the system throughput by 1.7 × to 3× (and energy efficiency by 1.5× to 2.7×) compared to a conventional CPU-only cluster.
NASA Technical Reports Server (NTRS)
Aston, Graeme (Inventor)
1984-01-01
A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.
NASA Astrophysics Data System (ADS)
Laird, Darin W.; Vaidya, Swanand; Li, Sergey; Mathai, Mathew; Woodworth, Brian; Sheina, Elena; Williams, Shawn; Hammond, Troy
2007-09-01
We report NREL-certified efficiencies and initial lifetime data for organic photovoltaic (OPV) cells based on Plexcore PV photoactive layer and Plexcore HTL-OPV hole transport layer technology. Plexcore PV-F3, a photoactive layer OPV ink, was certified in a single-layer OPV cell at the National Renewable Energy Laboratory (NREL) at 5.4%, which represents the highest official mark for a single-layer organic solar cell. We have fabricated and measured P3HT:PCBM solar cells with a peak efficiency of 4.4% and typical efficiencies of 3 - 4% (internal, NREL-calibrated measurement) with P3HT manufactured at Plextronics by the Grignard Metathesis (GRIM) method. Outdoor and accelerated lifetime testing of these devices is reported. Both Plexcore PV-F3 and P3HT:PCBM-based OPV cells exhibit >750 hours of outdoor roof-top, non-accelerated lifetime with less than 8% loss in initial efficiency for both active layer systems when exposed continuously to the climate of Western Pennsylvania. These devices are continuously being tested to date. Accelerated testing using a high-intensity (1000W) metal-halide lamp affords shorter lifetimes; however, the true acceleration factor is still to be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Lebedev, V.
State of the art high-current superconducting accelerators require efficient RF sources with a fast dynamic phase and power control. This allows for compensation of the phase and amplitude deviations of the accelerating voltage in the Superconducting RF (SRF) cavities caused by microphonics, etc. Efficient magnetron transmitters with fast phase and power control are attractive RF sources for this application. They are more cost effective than traditional RF sources such as klystrons, IOTs and solid-state amplifiers used with large scale accelerator projects. However, unlike traditional RF sources, controlled magnetrons operate as forced oscillators. Study of the impact of the controlling signalmore » on magnetron stability, noise and efficiency is therefore important. This paper discusses experiments with 2.45 GHz, 1 kW tubes and verifies our analytical model which is based on the charge drift approximation.« less
A Simplified Model for the Acceleration of Cosmic Ray Particles
ERIC Educational Resources Information Center
Gron, Oyvind
2010-01-01
Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…
NASA Technical Reports Server (NTRS)
Aston, G. (Inventor)
1981-01-01
A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.
A preliminary design of the collinear dielectric wakefield accelerator
NASA Astrophysics Data System (ADS)
Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J. G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I.; Jing, C.; Kanareykin, A.; Li, Y.; Gao, Q.; Shchegolkov, D. Y.; Simakov, E. I.
2016-09-01
A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from 0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.
Increase in the Acceleration Efficiency of Solids in a Hybrid Coaxial Magnetoplasma Accelerator
NASA Astrophysics Data System (ADS)
Gerasimov, D. Yu.; Sivkov, A. A.
2018-01-01
It is shown that in a hybrid coaxial magnetoplasma accelerator with a channel length of 350 mm and a diameter of 23 mm, the acceleration velocity and the energy conversion efficiency increase as the length of the plasma structure formation channel filled with a gas-generating material decreases from 17 to 9 mm. It is found that it is reasonable to use paraffin as the gas-generating material as it has a less significant deionizing effect on the high-current arc discharge and hence causes a less significant decrease in the discharge current intensity and an increase in conductive and inductive electrodynamic forces.
Baturin, Stanislav; Zholents, A.
2017-06-19
Here, the interrelation between the accelerating gradient and the transformer ratio in the collinear wake field accelerator has been analyzed. It has been shown that the high transformer ratio and the high efficiency of the energy transfer from the drive bunch to the witness bunch can only be achieved at the expense of the accelerating gradient. Rigorous proof is given that in best cases of meticulously shaped charge density distributions in the drive bunch, the maximum accelerating gradient falls proportionally to the gain in the transformer ratio. Conclusions are verified using several representative examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baturin, Stanislav; Zholents, A.
Here, the interrelation between the accelerating gradient and the transformer ratio in the collinear wake field accelerator has been analyzed. It has been shown that the high transformer ratio and the high efficiency of the energy transfer from the drive bunch to the witness bunch can only be achieved at the expense of the accelerating gradient. Rigorous proof is given that in best cases of meticulously shaped charge density distributions in the drive bunch, the maximum accelerating gradient falls proportionally to the gain in the transformer ratio. Conclusions are verified using several representative examples.
Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines
NASA Astrophysics Data System (ADS)
Filippi, F.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.
2016-09-01
Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC_LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC_LAB is presented.
Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Wang, Peng; Plimpton, Steven J
The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - 1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory,more » 2) minimizing the amount of code that must be ported for efficient acceleration, 3) utilizing the available processing power from both many-core CPUs and accelerators, and 4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.« less
Sodickson, Daniel K.
2010-01-01
Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions. PMID:17562047
NASA Astrophysics Data System (ADS)
Cai, Han-Jie; Zhang, Zhi-Lei; Fu, Fen; Li, Jian-Yang; Zhang, Xun-Chao; Zhang, Ya-Ling; Yan, Xue-Song; Lin, Ping; Xv, Jian-Ya; Yang, Lei
2018-02-01
The dense granular flow spallation target is a new target concept chosen for the Accelerator-Driven Subcritical (ADS) project in China. For the R&D of this kind of target concept, a dedicated Monte Carlo (MC) program named GMT was developed to perform the simulation study of the beam-target interaction. Owing to the complexities of the target geometry, the computational cost of the MC simulation of particle tracks is highly expensive. Thus, improvement of computational efficiency will be essential for the detailed MC simulation studies of the dense granular target. Here we present the special design of the GMT program and its high efficiency performance. In addition, the speedup potential of the GPU-accelerated spallation models is discussed.
Liao, Congyu; Chen, Ying; Cao, Xiaozhi; Chen, Song; He, Hongjian; Mani, Merry; Jacob, Mathews; Magnotta, Vincent; Zhong, Jianhui
2017-03-01
To propose a novel reconstruction method using parallel imaging with low rank constraint to accelerate high resolution multishot spiral diffusion imaging. The undersampled high resolution diffusion data were reconstructed based on a low rank (LR) constraint using similarities between the data of different interleaves from a multishot spiral acquisition. The self-navigated phase compensation using the low resolution phase data in the center of k-space was applied to correct shot-to-shot phase variations induced by motion artifacts. The low rank reconstruction was combined with sensitivity encoding (SENSE) for further acceleration. The efficiency of the proposed joint reconstruction framework, dubbed LR-SENSE, was evaluated through error quantifications and compared with ℓ1 regularized compressed sensing method and conventional iterative SENSE method using the same datasets. It was shown that with a same acceleration factor, the proposed LR-SENSE method had the smallest normalized sum-of-squares errors among all the compared methods in all diffusion weighted images and DTI-derived index maps, when evaluated with different acceleration factors (R = 2, 3, 4) and for all the acquired diffusion directions. Robust high resolution diffusion weighted image can be efficiently reconstructed from highly undersampled multishot spiral data with the proposed LR-SENSE method. Magn Reson Med 77:1359-1366, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
The effect of cosmic-ray acceleration on supernova blast wave dynamics
NASA Astrophysics Data System (ADS)
Pais, M.; Pfrommer, C.; Ehlert, K.; Pakmor, R.
2018-05-01
Non-relativistic shocks accelerate ions to highly relativistic energies provided that the orientation of the magnetic field is closely aligned with the shock normal (quasi-parallel shock configuration). In contrast, quasi-perpendicular shocks do not efficiently accelerate ions. We model this obliquity-dependent acceleration process in a spherically expanding blast wave setup with the moving-mesh code AREPO for different magnetic field morphologies, ranging from homogeneous to turbulent configurations. A Sedov-Taylor explosion in a homogeneous magnetic field generates an oblate ellipsoidal shock surface due to the slower propagating blast wave in the direction of the magnetic field. This is because of the efficient cosmic ray (CR) production in the quasi-parallel polar cap regions, which softens the equation of state and increases the compressibility of the post-shock gas. We find that the solution remains self-similar because the ellipticity of the propagating blast wave stays constant in time. This enables us to derive an effective ratio of specific heats for a composite of thermal gas and CRs as a function of the maximum acceleration efficiency. We finally discuss the behavior of supernova remnants expanding into a turbulent magnetic field with varying coherence lengths. For a maximum CR acceleration efficiency of about 15 per cent at quasi-parallel shocks (as suggested by kinetic plasma simulations), we find an average efficiency of about 5 per cent, independent of the assumed magnetic coherence length.
Broadband Observations and Modeling of the Shell-Type Supernova Remnant G347.3-0.5
NASA Technical Reports Server (NTRS)
Ellison, Donald C.; Slane, Patrick O.; Gaensler, Bryan M.
2002-01-01
The supernova remnant G347.3-0.5 emits a featureless power law in X-rays, thought to indicate shock acceleration of electrons to high energies. We here produce a broadband spectrum of the bright northwest limb of this source by combining radio observations from the Australia Telescope Compact Array (ATCA), X-ray observations from the Advanced Satellite for Cosmology and Astrophysics (ASCA), and TeV gamma-ray observations from the CANGAROO imaging Cerenkov telescope. We assume that this emission is produced by an electron population generated by diffusive shock acceleration at the remnant forward shock. The nonlinear aspects of the particle acceleration force a connection between the widely different wavelength bands and between the electrons and the unseen ions, presumably accelerated simultaneously with the electrons. This allows us to infer the relativistic proton spectrum and estimate ambient parameters such as the supernova explosion energy, magnetic field, matter density in the emission region, and efficiency of the shock acceleration process. We find convincing evidence that the shock acceleration is efficient, placing greater than 25% of the shock kinetic energy flux into relativistic ions. Despite this high efficiency, the maximum electron and proton energies, while depending somewhat on assumptions for the compression of the magnetic field in the shock, are well below the observed 'knee' at 10(exp 15) eV in the Galactic cosmic-ray spectrum.
Modelling of proton acceleration in application to a ground level enhancement
NASA Astrophysics Data System (ADS)
Afanasiev, A.; Vainio, R.; Rouillard, A. P.; Battarbee, M.; Aran, A.; Zucca, P.
2018-06-01
Context. The source of high-energy protons (above 500 MeV) responsible for ground level enhancements (GLEs) remains an open question in solar physics. One of the candidates is a shock wave driven by a coronal mass ejection, which is thought to accelerate particles via diffusive-shock acceleration. Aims: We perform physics-based simulations of proton acceleration using information on the shock and ambient plasma parameters derived from the observation of a real GLE event. We analyse the simulation results to find out which of the parameters are significant in controlling the acceleration efficiency and to get a better understanding of the conditions under which the shock can produce relativistic protons. Methods: We use the results of the recently developed technique to determine the shock and ambient plasma parameters, applied to the 17 May 2012 GLE event, and carry out proton acceleration simulations with the Coronal Shock Acceleration (CSA) model. Results: We performed proton acceleration simulations for nine individual magnetic field lines characterised by various plasma conditions. Analysis of the simulation results shows that the acceleration efficiency of the shock, i.e. its ability to accelerate particles to high energies, tends to be higher for those shock portions that are characterised by higher values of the scattering-centre compression ratio rc and/or the fast-mode Mach number MFM. At the same time, the acceleration efficiency can be strengthened by enhanced plasma density in the corresponding flux tube. The simulations show that protons can be accelerated to GLE energies in the shock portions characterised by the highest values of rc. Analysis of the delays between the flare onset and the production times of protons of 1 GV rigidity for different field lines in our simulations, and a subsequent comparison of those with the observed values indicate a possibility that quasi-perpendicular portions of the shock play the main role in producing relativistic protons.
High Efficiency Electron-Laser Interactions in Tapered Helical Undulators
NASA Astrophysics Data System (ADS)
Duris, Joseph Patrick
Efficient coupling of relativistic electron beams with high power radiation lies at the heart of advanced accelerator and light source research and development. The inverse free electron laser is a stable accelerator capable of harnessing very high intensity laser electric fields to efficiently transfer large powers from lasers to electron beams. In this dissertation, we first present the theoretical framework to describe the interaction, and then apply our improved understanding of the IFEL to the design and numerical study of meter-long, GeV IFELs for compact light sources. The central experimental work of the dissertation is the UCLA BNL helical inverse free electron laser experiment at the Accelerator Test Facility in Brookhaven National Laboratory which used a strongly tapered 54cm long, helical, permanent magnet undulator and a several hundred GW CO2 laser to accelerate electrons from 52 to 106MeV, setting new records for inverse free electron laser energy gain (54MeV) and average accelerating gradient (100MeV/m). The undulator design and fabrication as well as experimental diagnostics are presented. In order to improve the stability and quality of the accelerated electron beam, we redesigned the undulator for a slightly reduced output energy by modifying the magnet gap throughout the undulator, and we used this modified undulator to demonstrated capture of >25% of the injected beam without prebunching. In the study of heavily loaded GeV inverse free electron lasers, we show that a majority of the power may be transferred from a laser to the accelerated electron beam. Reversing the process to decelerate high power electron beams, a mechanism we refer to as tapering enhanced stimulated superradiant amplification, offers a clear path to high power light sources. We present studies of radiation production for a wide range of wavelengths (10mum, 13nm, and 0.3nm) using this method and discuss the design for a deceleration experiment using the same undulator used for acceleration in this experiment. By accounting for the evolving radiation field in the design of the undulator tapering, a large fraction of energy may be transferred between the electrons and laser, enabling compact, high-current GeV accelerators and various wavelength light-sources of unprecedented peak powers.
Beam manipulation for resonant plasma wakefield acceleration
NASA Astrophysics Data System (ADS)
Chiadroni, E.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Bisesto, F. G.; Cardelli, F.; Castorina, G.; Cianchi, A.; Croia, M.; Gallo, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giribono, A.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Spataro, B.; Stella, A.; Vaccarezza, C.; Villa, F.
2017-09-01
Plasma-based acceleration has already proved the ability to reach ultra-high accelerating gradients. However the step towards the realization of a plasma-based accelerator still requires some effort to guarantee high brightness beams, stability and reliability. A significant improvement in the efficiency of PWFA has been demonstrated so far accelerating a witness bunch in the wake of a higher charge driver bunch. The transformer ratio, therefore the energy transfer from the driver to the witness beam, can be increased by resonantly exciting the plasma with a properly pre-shaped drive electron beam. Theoretical and experimental studies of beam manipulation for resonant PWFA will be presented here.
NASA Astrophysics Data System (ADS)
Wang, X. L.; Xu, Z. Y.; Luo, W.; Lu, H. Y.; Zhu, Z. C.; Yan, X. Q.
2017-09-01
Photo-transmutation of long-lived nuclear waste induced by a high-charge relativistic electron beam (e-beam) from a laser plasma accelerator is demonstrated. A collimated relativistic e-beam with a high charge of approximately 100 nC is produced from high-intensity laser interaction with near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor and then radiates energetic bremsstrahlung photons with flux approaching 1011 per laser shot. Taking a long-lived radionuclide 126Sn as an example, the resulting transmutation reaction yield is the order of 109 per laser shot, which is two orders of magnitude higher than obtained from previous studies. It is found that at lower densities, a tightly focused laser irradiating relatively longer NCD plasmas can effectively enhance the transmutation efficiency. Furthermore, the photo-transmutation is generalized by considering mixed-nuclide waste samples, which suggests that the laser-accelerated high-charge e-beam could be an efficient tool to transmute long-lived nuclear waste.
Methods of Phase and Power Control in Magnetron Transmitters for Superconducting Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazadevich, G.; Johnson, R.; Neubauer, M.
Various methods of phase and power control in magnetron RF sources of superconducting accelerators intended for ADS-class projects were recently developed and studied with conventional 2.45 GHz, 1 kW, CW magnetrons operating in pulsed and CW regimes. Magnetron transmitters excited by a resonant (injection-locking) phasemodulated signal can provide phase and power control with the rates required for precise stabilization of phase and amplitude of the accelerating field in Superconducting RF (SRF) cavities of the intensity-frontier accelerators. An innovative technique that can significantly increase the magnetron transmitter efficiency at the widerange power control required for superconducting accelerators was developed and verifiedmore » with the 2.45 GHz magnetrons operating in CW and pulsed regimes. High efficiency magnetron transmitters of this type can significantly reduce the capital and operation costs of the ADSclass accelerator projects.« less
Code TESLA for Modeling and Design of High-Power High-Efficiency Klystrons
2011-03-01
CODE TESLA FOR MODELING AND DESIGN OF HIGH - POWER HIGH -EFFICIENCY KLYSTRONS * I.A. Chernyavskiy, SAIC, McLean, VA 22102, U.S.A. S.J. Cooke, B...and multiple-beam klystrons as high - power RF sources. These sources are widely used or proposed to be used in accelerators in the future. Comparison...of TESLA modelling results with experimental data for a few multiple-beam klystrons are shown. INTRODUCTION High - power and high -efficiency
High-field plasma acceleration in a high-ionization-potential gas
Corde, S.; Adli, E.; Allen, J. M.; ...
2016-06-17
Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m -1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less
Embedded Streaming Deep Neural Networks Accelerator With Applications.
Dundar, Aysegul; Jin, Jonghoon; Martini, Berin; Culurciello, Eugenio
2017-07-01
Deep convolutional neural networks (DCNNs) have become a very powerful tool in visual perception. DCNNs have applications in autonomous robots, security systems, mobile phones, and automobiles, where high throughput of the feedforward evaluation phase and power efficiency are important. Because of this increased usage, many field-programmable gate array (FPGA)-based accelerators have been proposed. In this paper, we present an optimized streaming method for DCNNs' hardware accelerator on an embedded platform. The streaming method acts as a compiler, transforming a high-level representation of DCNNs into operation codes to execute applications in a hardware accelerator. The proposed method utilizes maximum computational resources available based on a novel-scheduled routing topology that combines data reuse and data concatenation. It is tested with a hardware accelerator implemented on the Xilinx Kintex-7 XC7K325T FPGA. The system fully explores weight-level and node-level parallelizations of DCNNs and achieves a peak performance of 247 G-ops while consuming less than 4 W of power. We test our system with applications on object classification and object detection in real-world scenarios. Our results indicate high-performance efficiency, outperforming all other presented platforms while running these applications.
Phase-I investigation of high-efficiency power amplifiers for 325 and 650 MHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raab, Frederick
2018-01-27
This Phase-I SBIR grant investigated techniques for high-efficiency power amplification for DoE particle accelerators such as Project X that operate at 325 and 650 MHz. The recommended system achieves high efficiency, high reliability, and hot-swap capability by integrating class-F power amplifiers, class-S modulators, power combiners, and a digital signal processor. Experimental evaluations demonstrate the production of 120 W per transistor with overall efficiencies from 86 percent at 325 MHz and 80 percent at 650 MHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhyankar, Nikit; Shah, Nihar; Park, Won Young
Falling AC prices, increasing incomes, increasing urbanization, and high cooling requirements due to hot climate are all driving increasing uptake of Room Air Conditioners (RACs) in the Indian market. Air conditioning already comprises 40-60% of summer peak load in large metropolitan Indian cities such as Delhi and is likely to contribute 150 GW to the peak demand in 2030. Standards and labeling policies have contributed to improving the efficiency of RACs in India by about 2.5% in the last 10 years (2.5% per year) while inflation adjusted RAC prices have continued to decline. In this paper, we assess the technicalmore » feasibility, cost-benefit, and required policy enhancements by further accelerating the efficiency improvement of RACs in India. We find that there are examples of significantly more accelerated improvements such as those in Japan and Korea where AC efficiency improved by more than 7% per year resulting in almost a doubling of energy efficiency in 7 to 10 years while inflation adjusted AC prices continued to decline. We find that the most efficient RAC sold on the Indian market is almost twice as efficient as the typical AC sold on the market and hence see no technology constraints in a similar acceleration of improvement of efficiency. If starting 2018, AC efficiency improves at a rate of 6% instead of 3%, 40-60 GW of peak load (equivalent to connected load of 5-6 billion LED bulbs), and over 75 TWh/yr (equivalent to 60 million consumers consuming 100 kWh/month) will be saved by 2030; total peak load reduction would be as high as 50 GW. The net present value (NPV) of the consumer benefit between 2018-2030 will range from Rs 18,000 Cr in the most conservative case (in which prices don’t continue to decline and increase based estimates of today’s cost of efficiency improvement) to 140,000 Cr in a more realistic case (in which prices are not affected by accelerated efficiency improvement as shown by historical experience). This benefit is achievable by ratcheting up the 1 star level for fixed and inverter ACs to the level of today’s five star rating for inverter ACs by 2022. Bulk procurement (similar to the Domestic Efficient Lighting Program) and incentive programs can complement the accelerated ratcheting up of star levels. Similar programs can also be implemented for other types of ACs.« less
Optimized operation of dielectric laser accelerators: Multibunch
NASA Astrophysics Data System (ADS)
Hanuka, Adi; Schächter, Levi
2018-06-01
We present a self-consistent analysis to determine the optimal charge, gradient, and efficiency for laser driven accelerators operating with a train of microbunches. Specifically, we account for the beam loading reduction on the material occurring at the dielectric-vacuum interface. In the case of a train of microbunches, such beam loading effect could be detrimental due to energy spread, however this may be compensated by a tapered laser pulse. We ultimately propose an optimization procedure with an analytical solution for group velocity which equals to half the speed of light. This optimization results in a maximum efficiency 20% lower than the single bunch case, and a total accelerated charge of 1 06 electrons in the train. The approach holds promise for improving operations of dielectric laser accelerators and may have an impact on emerging laser accelerators driven by high-power optical lasers.
Exploring high dimensional free energy landscapes: Temperature accelerated sliced sampling
NASA Astrophysics Data System (ADS)
Awasthi, Shalini; Nair, Nisanth N.
2017-03-01
Biased sampling of collective variables is widely used to accelerate rare events in molecular simulations and to explore free energy surfaces. However, computational efficiency of these methods decreases with increasing number of collective variables, which severely limits the predictive power of the enhanced sampling approaches. Here we propose a method called Temperature Accelerated Sliced Sampling (TASS) that combines temperature accelerated molecular dynamics with umbrella sampling and metadynamics to sample the collective variable space in an efficient manner. The presented method can sample a large number of collective variables and is advantageous for controlled exploration of broad and unbound free energy basins. TASS is also shown to achieve quick free energy convergence and is practically usable with ab initio molecular dynamics techniques.
Cryogenics for high-energy particle accelerators: highlights from the first fifty years
NASA Astrophysics Data System (ADS)
Lebrun, Ph
2017-02-01
Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices - magnets and high-frequency cavities - distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic fluid management.
High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator
NASA Astrophysics Data System (ADS)
Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.
2017-10-01
Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.
Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, J.; Chen, M.; Wu, W. Y.
Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors, while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize simultaneous coupling of the electron beam and the laser pulse into a second stage. Furthermore, a curved channel with transition segment is used to guide a fresh laser pulse into a subsequent straight channel, while allowing the electrons to propagate in a straight channel. This scheme then benefitsmore » from a shorter coupling distance and continuous guiding of the electrons in plasma, while suppressing transverse beam dispersion. Within moderate laser parameters, particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration, while maintaining high capture efficiency, stability, and beam quality.« less
Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channel
Luo, J.; Chen, M.; Wu, W. Y.; ...
2018-04-10
Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors, while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize simultaneous coupling of the electron beam and the laser pulse into a second stage. Furthermore, a curved channel with transition segment is used to guide a fresh laser pulse into a subsequent straight channel, while allowing the electrons to propagate in a straight channel. This scheme then benefitsmore » from a shorter coupling distance and continuous guiding of the electrons in plasma, while suppressing transverse beam dispersion. Within moderate laser parameters, particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration, while maintaining high capture efficiency, stability, and beam quality.« less
Efficient acceleration of neutral atoms in laser produced plasma
Dalui, M.; Trivikram, T. M.; Colgan, James Patrick; ...
2017-06-20
Recent advances in high-intensity laser-produced plasmas have demonstrated their potential as compact charge particle accelerators. Unlike conventional accelerators, transient quasi-static charge separation acceleration fields in laser produced plasmas are highly localized and orders of magnitude larger. Manipulating these ion accelerators, to convert the fast ions to neutral atoms with little change in momentum, transform these to a bright source of MeV atoms. The emittance of the neutral atom beam would be similar to that expected for an ion beam. Since intense laser-produced plasmas have been demonstrated to produce high-brightness-low-emittance beams, it is possible to envisage generation of high-flux, low-emittance, highmore » energy neutral atom beams in length scales of less than a millimeter. Here, we show a scheme where more than 80% of the fast ions are reduced to energetic neutral atoms and demonstrate the feasibility of a high energy neutral atom accelerator that could significantly impact applications in neutral atom lithography and diagnostics.« less
Collective acceleration of ions in a system with an insulated anode
NASA Astrophysics Data System (ADS)
Bystritskii, V. M.; Didenko, A. N.; Krasik, Ya. E.; Lopatin, V. S.; Podkatov, V. I.
1980-11-01
An investigation was made of the processes of collective acceleration of protons in vacuum in a system with an insulated anode and trans-anode electrodes, which were insulated or grounded, in high-current Tonus and Vera electron accelerators. The influence of external conditions and parameters of the electron beam on the efficiency of acceleration processes was investigated. Experiments were carried out in which protons were accelerated in a system with trans-anode electrodes. A study was made of the influence of a charge prepulse and of the number of trans-anode electrodes on the energy of the accelerated electrons. A system with a single anode produced Np=1014 protons of 2Ee < Ep < 3Ee energy. Suppression of a charge prepulse increased the proton energy to (6 8)Ee and the yield was then 1013. The maximum proton energy of 14Ee was obtained in a system with three trans-anode electrodes. A possible mechanism of proton acceleration was analyzed. The results obtained were compared with those of other investigations. Ways of increasing the efficiency of this acceleration method were considered.
Coherent Structures and Chaos Control in High-Power Microwave and Charged-Particle Beam Devices
2009-01-31
34Equilibrium Theory of an Intense Elliptic Beam for High - Power Ribbon-Beam Klystron Applications," Proc. 2007 Part. Accel. Conf. p. 2316. Courant...34Equilibrium Theory of an Intense Elliptic Beam for High - Power Ribbon-Beam Klystron Applications," C. Chen and J. Zhou, Proc. 2007 Part. Accel. Conf. (2007...accelerator focusing systems. Over 600 high - power , high -efficiency klystrons , for example, may be needed to provide rf power for the acceleration
High contrast ion acceleration at intensities exceeding 10{sup 21} Wcm{sup −2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dollar, F.; Zulick, C.; Matsuoka, T.
2013-05-15
Ion acceleration from short pulse laser interactions at intensities of 2×10{sup 21}Wcm{sup −2} was studied experimentally under a wide variety of parameters, including laser contrast, incidence angle, and target thickness. Trends in maximum proton energy were observed, as well as evidence of improvement in the acceleration gradients by using dual plasma mirrors over traditional pulse cleaning techniques. Extremely high efficiency acceleration gradients were produced, accelerating both the contaminant layer and high charge state ions from the bulk of the target. Two dimensional particle-in-cell simulations enabled the study of the influence of scale length on submicron targets, where hydrodynamic expansion affectsmore » the rear surface as well as the front. Experimental evidence of larger electric fields for sharp density plasmas is observed in simulation results as well for such targets, where target ions are accelerated without the need for contaminant removal.« less
Multi-beam linear accelerator EVT
NASA Astrophysics Data System (ADS)
Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.
2016-09-01
A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.
Multi-beam linear accelerator EVT
Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.
2016-03-29
A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initialmore » specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. Furthermore, a relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.« less
Mirror symmetric optics design for charge-stripping section in Rare Isotope Science Project
NASA Astrophysics Data System (ADS)
Kim, Hye-Jin; Kim, Hyung-Jin; Jeon, Dong-O.; Hwang, Ji-Gwang; Kim, Eun-San
2013-12-01
The main aim of the Rare Isotope Science Project is to construct a high power heavy-ion accelerator based on the superconducting linear accelerator (SCL). The heavy ion accelerator is a key research facility that will allow ground-breaking research into numerous facets of basic science, such as nuclear physics, astrophysics, atomic physics, life science, medicine and material science. The machine will provide a beam power of 400 kW with a 238U79+ beam of 8 pμA and 200 MeV/u. One of the critical components in the SCL is the charge stripper between the two segments, SCL1 and SCL2, of the SCL. The charge stripper removes electrons from the ion beams to enhance the acceleration efficiency in the subsequent SCL2. To improve the efficiency of acceleration and power in SCL2, the optimal energy of stripped ions in a solid carbon foil stripper was estimated using the code LISE++. The thickness of the solid carbon foil was 300 μg/m2. The charge stripping efficiency of the solid carbon stripper in the present study was approximately 87%. For charge selection from the ions produced by the solid carbon stripper, a dispersive section is needed down-stream of the foil. The designed optics for the dispersive section is based on the mirror-symmetric optics to minimize the effect of high-order aberrations.
Acceleration of low-energy ions at parallel shocks with a focused transport model
Zuo, Pingbing; Zhang, Ming; Rassoul, Hamid K.
2013-04-10
Here, we present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by parallel shocks with a focused transport model. The focused transport equation contains all necessary physics of shock acceleration, but avoids the limitation of diffusive shock acceleration (DSA) that requires a small pitch angle anisotropy. This simulation verifies that the particles with speeds of a fraction of to a few times the shock speed can indeed be directly injected and accelerated into the DSA regime by parallel shocks. At higher energies starting from a few times the shock speed, the energy spectrum of acceleratedmore » particles is a power law with the same spectral index as the solution of standard DSA theory, although the particles are highly anisotropic in the upstream region. The intensity, however, is different from that predicted by DSA theory, indicating a different level of injection efficiency. It is found that the shock strength, the injection speed, and the intensity of an electric cross-shock potential (CSP) jump can affect the injection efficiency of the low-energy particles. A stronger shock has a higher injection efficiency. In addition, if the speed of injected particles is above a few times the shock speed, the produced power-law spectrum is consistent with the prediction of standard DSA theory in both its intensity and spectrum index with an injection efficiency of 1. CSP can increase the injection efficiency through direct particle reflection back upstream, but it has little effect on the energetic particle acceleration once the speed of injected particles is beyond a few times the shock speed. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection.« less
Chirped pulse inverse free-electron laser vacuum accelerator
Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.
2002-01-01
A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.
Millisecond newly born pulsars as efficient accelerators of electrons
NASA Astrophysics Data System (ADS)
Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino
2015-09-01
The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 1018 eV for parameters characteristic of a young star.
Gyroharmonic conversion experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirshfield, J. L.; LaPointe, M. A.; Yale University, New Haven, Connecticut 06511
1999-05-07
Generation of high power microwaves has been observed in experiments where a 250-350 kV, 20-30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allowsmore » efficient 20 GHz co-generation within the CARA waveguide itself.« less
Low-Energy Ions Injection and Acceleration at Oblique Shocks with Focused Transport Model
NASA Astrophysics Data System (ADS)
Zuo, P.; Zhang, M.; Feng, X. S.
2017-12-01
There is strong evidence that a small portion of suprathermal particles from hot coronal material or remnants of previous solar energetic particle (SEP) events serve as the source of large SEP events. Here we present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by Laminar nonrelativistic oblique shocks in the framework of the focused transport theory, which is proved to contain all necessary physics of shock acceleration, but avoid the limitation of diffusive shock acceleration (DSA). We first characterize the role of cross-shock potential (CSP) on pickup ions (PUIs) acceleration. The CSP can affect the shape of the spectrum segment at lower energies, but it does not change the spectral index of the final power-law spectrum at high energies. It is found that a stronger CSP jump results in a dramatically improved injection efficiency. Our simulation results also show that the injection efficiency of PUIs is mass-dependent, which is lower for species with a higher mass. The injection efficiency as the function of Mach number, obliquity, injection speed, and shock strength is also calculated. It can be proved that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of source particle injection.
Sensitivity of 30-cm mercury bombardment ion thruster characteristics to accelerator grid design
NASA Technical Reports Server (NTRS)
Rawlin, V. K.
1978-01-01
The design of ion optics for bombardment thrusters strongly influences overall performance and lifetime. The operation of a 30 cm thruster with accelerator grid open area fractions ranging from 43 to 24 percent, was evaluated and compared with experimental and theoretical results. Ion optics properties measured included the beam current extraction capability, the minimum accelerator grid voltage to prevent backstreaming, ion beamlet diameter as a function of radial position on the grid and accelerator grid hole diameter, and the high energy, high angle ion beam edge location. Discharge chamber properties evaluated were propellant utilization efficiency, minimum discharge power per beam amp, and minimum discharge voltage.
Accelerator-driven transmutation of spent fuel elements
Venneri, Francesco; Williamson, Mark A.; Li, Ning
2002-01-01
An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing
Laser Acceleration of Ions for Radiation Therapy
NASA Astrophysics Data System (ADS)
Tajima, Toshiki; Habs, Dietrich; Yan, Xueqing
Ion beam therapy for cancer has proven to be a successful clinical approach, affording as good a cure as surgery and a higher quality of life. However, the ion beam therapy installation is large and expensive, limiting its availability for public benefit. One of the hurdles is to make the accelerator more compact on the basis of conventional technology. Laser acceleration of ions represents a rapidly developing young field. The prevailing acceleration mechanism (known as target normal sheath acceleration, TNSA), however, shows severe limitations in some key elements. We now witness that a new regime of coherent acceleration of ions by laser (CAIL) has been studied to overcome many of these problems and accelerate protons and carbon ions to high energies with higher efficiencies. Emerging scaling laws indicate possible realization of an ion therapy facility with compact, cost-efficient lasers. Furthermore, dense particle bunches may allow the use of much higher collective fields, reducing the size of beam transport and dump systems. Though ultimate realization of a laser-driven medical facility may take many years, the field is developing fast with many conceptual innovations and technical progress.
Novel Linac Structures For Low-Beta Ions And For Muons
NASA Astrophysics Data System (ADS)
Kurennoy, Sergey S.
2011-06-01
Development of two innovative linacs is discussed. (1) High-efficiency normal-conducting accelerating structures for ions with beam velocities in the range of a few percent of the speed of light. Two existing accelerator technologies—the H-mode resonator cavities and transverse beam focusing by permanent-magnet quadrupoles (PMQ)—are merged to create efficient structures for light-ion beams of considerable currents. The inter-digital H-mode accelerator with PMQ focusing (IH-PMQ) has the shunt impedance 10-20 times higher than the standard drift-tube linac. Results of the combined 3-D modeling for an IH-PMQ accelerator tank—electromagnetic computations, beam-dynamics simulations, and thermal-stress analysis—are presented. H-PMQ structures following a short RFQ accelerator can be used in the front end of ion linacs or in stand-alone applications like a compact mobile deuteron-beam accelerator up to a few MeV. (2) A large-acceptance high-gradient linac for accelerating low-energy muons in a strong solenoidal magnetic field. When a proton beam hits a target, many low-energy pions are produced almost isotropically, in addition to a small number of high-energy pions in the forward direction. We propose to collect and accelerate copious muons created as the low-energy pions decay. The acceleration should bring muons to a kinetic energy of ˜200 MeV in about 10 m, where both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. One potential solution is a normal-conducting linac consisting of independently fed 0-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. Potential applications range from basic research to homeland defense to industry and medicine.
High-Energy Two-Stage Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Markusic, Tom
2003-01-01
A high-energy (28 kJ per pulse) two-stage pulsed plasma thruster (MSFC PPT-1) has been constructed and tested. The motivation of this project is to develop a high power (approximately 500 kW), high specific impulse (approximately 10000 s), highly efficient (greater than 50%) thruster for use as primary propulsion in a high power nuclear electric propulsion system. PPT-1 was designed to overcome four negative characteristics which have detracted from the utility of pulsed plasma thrusters: poor electrical efficiency, poor propellant utilization efficiency, electrode erosion, and reliability issues associated with the use of high speed gas valves and high current switches. Traditional PPTs have been plagued with poor efficiency because they have not been operated in a plasma regime that fully exploits the potential benefits of pulsed plasma acceleration by electromagnetic forces. PPTs have generally been used to accelerate low-density plasmas with long current pulses. Operation of thrusters in this plasma regime allows for the development of certain undesirable particle-kinetic effects, such as Hall effect-induced current sheet canting. PPT-1 was designed to propel a highly collisional, dense plasma that has more fluid-like properties and, hence, is more effectively pushed by a magnetic field. The high-density plasma loading into the second stage of the accelerator is achieved through the use of a dense plasma injector (first stage). The injector produces a thermal plasma, derived from a molten lithium propellant feed system, which is subsequently accelerated by the second stage using mega-amp level currents, which eject the plasma at a speed on the order of 100 kilometers per second. Traditional PPTs also suffer from dynamic efficiency losses associated with snowplow loading of distributed neutral propellant. The twostage scheme used in PPT-I allows the propellant to be loaded in a manner which more closely approximates the optimal slug loading. Lithium propellant was chosen to test whether or not the reduced electrode erosion found in the Lithium Lorentz Force Accelerator (LiLFA) could also be realized in a pulsed plasma thruster. The use of the molten lithium dense plasma injector also eliminates the need for a gas valve and electrical switch; the injector design fulfills both roles, and uses no moving parts to provide, in principle, a highly reliable propellant feed and electrical switching system. Experimental results reported in this paper include: second-stage current traces, high-speed photographic and holographic imaging of the thruster exit plume, and internal mapping of the discharge chamber magnetic field from B-dot probe data. The magnetic field data is used to create a two-dimensional description of the evolution of the current sheet inside the thruster.
Investigations of turbulent motions and particle acceleration in solar flares
NASA Technical Reports Server (NTRS)
Jakimiec, J.; Fludra, A.; Lemen, J. R.; Dennis, B. R.; Sylwester, J.
1986-01-01
Investigations of X-raya spectra of solar flares show that intense random (turbulent) motions are present in hot flare plasma. Here it is argued that the turbulent motions are of great importance for flare development. They can efficiently enhance flare energy release and accelerate particles to high energies.
NASA Astrophysics Data System (ADS)
Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.
2013-11-01
We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.
NASA Astrophysics Data System (ADS)
Dandavino, S.; Ataman, C.; Ryan, C. N.; Chakraborty, S.; Courtney, D.; Stark, J. P. W.; Shea, H.
2014-07-01
Microfabricated electrospray thrusters could revolutionize the spacecraft industry by providing efficient propulsion capabilities to micro and nano satellites (1-100 kg). We present the modeling, design, fabrication and characterization of a new generation of devices, for the first time integrating in the fabrication process individual accelerator electrodes capable of focusing and accelerating the emitted sprays. Integrating these electrodes is a key milestone in the development of this technology; in addition to increasing the critical performance metrics of thrust, specific impulse and propulsive efficiency, the accelerators enable a number of new system features such as power tuning and thrust vectoring and balancing. Through microfabrication, we produced high density arrays (213 emitters cm-2) of capillary emitters, assembling them at wafer-level with an extractor/accelerator electrode pair separated by micro-sandblasted glass. Through IV measurements, we could confirm that acceleration could be decoupled from the extraction of the spray—an important element towards the flexibility of this technology. We present the largest reported internally fed microfabricated arrays operation, with 127 emitters spraying in parallel, for a total beam of 10-30 µA composed by 95% of ions. Effective beam focusing was also demonstrated, with plume half-angles being reduced from approximately 30° to 15° with 2000 V acceleration. Based on these results, we predict, with 3000 V acceleration, thrust per emitter of 38.4 nN, specific impulse of 1103 s and a propulsive efficiency of 22% with <1 mW/emitter power consumption.
Field characteristics of an alvarez-type linac structure having chain-like electrode array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odera, M.; Goto, A.; Hemmi, M.
1985-10-01
A chain-like electrode configuration in an Alvarez-type linac cavity was studied by models. The structure has been devised to get a moderate shunt impedance together with simplicity of operation, in ion velocity region of more than a few percent of that of light by incorporating focusing scheme by high frequency quadrupolar fields into an TM-010 accelerating field of an Alvarez linac. It has a chain-like electrode array instead of drift tubes containing quadrupole lenses for ordinary linacs. The chain-like electrode structure generates along its central axis, high frequency acceleration and focusing fields alternately, separating the acceleration and focusing functions inmore » space. The separation discriminates this structure from spatially uniform acceleration and focusing scheme of the RFQs devised by Kapchinsky and Teplyakov. It gives beam acceleration effects different from those by conventional linacs and reveals possibility of getting a high acceleration efficiency. Resonant frequency spectrum was found relatively simple by measurements on high frequency models. Separation of unwanted modes from the TM-010 acceleration mode is large; a few 10 MHz, at least. Tilt of the acceleration field is not very sensitive to pertubation in gap capacitance for the TM-010 mode.« less
The FAST (FRC Acceleration Space Thruster) Experiment
NASA Technical Reports Server (NTRS)
Martin, Adam; Eskridge, R.; Lee, M.; Richeson, J.; Smith, J.; Thio, Y. C. F.; Slough, J.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
The Field Reverse Configuration (FRC) is a magnetized plasmoid that has been developed for use in magnetic confinement fusion. Several of its properties suggest that it may also be useful as a thruster for in-space propulsion. The FRC is a compact toroid that has only poloidal field, and is characterized by a high plasma beta = (P)/(B (sup 2) /2Mu0), the ratio of plasma pressure to magnetic field pressure, so that it makes efficient use of magnetic field to confine a plasma. In an FRC thruster, plasmoids would be repetitively formed and accelerated to high velocity; velocities of = 250 km/s (Isp = 25,000s) have already been achieved in fusion experiments. The FRC is inductively formed and accelerated, and so is not subject to the problem of electrode erosion. As the plasmoid may be accelerated over an extended length, it can in principle be made very efficient. And the achievable jet powers should be scalable to the MW range. A 10 kW thruster experiment - FAST (FRC Acceleration Space Thruster) has just started at the Marshall Space Flight Center. The design of FAST and the status of construction and operation will be presented.
RF pulse compression for future linear colliders
NASA Astrophysics Data System (ADS)
Wilson, Perry B.
1995-07-01
Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.
NASA Astrophysics Data System (ADS)
Liang, Xiuying; Zhu, Chunyan
2017-11-01
With rising global emphasizes on climate change and sustainable development, how to accelerate the transformation of energy efficiency has become an important question. Designing and implementing energy-efficiency policies for super-efficient products represents an important direction to achieve breakthroughs in the field of energy conservation. On December 31, 2014, China’s National Development and Reform Commission (NDRC) jointly six other ministerial agencies launched China Leading Energy Efficiency Program (LEP), which identifies top efficiency models for selected product categories. LEP sets the highest energy efficiency benchmark. Design of LEP took into consideration of how to best motivate manufacturers to accelerate technical innovation, promote high efficiency products. This paper explains core elements of LEP, such as objectives, selection criteria, implementation method and supportive policies. It also proposes recommendations to further improve LEP through international policy comparison with Japan’s Top Runner Program, U.S. Energy Star Most Efficient, and SEAD Global Efficiency Medal.
Further Development of the Gyrotron- Powered Pellet Accelerator
NASA Astrophysics Data System (ADS)
Perkins, Francis
2007-11-01
The Gyrotron-Powered Pellet Accelerator provides an enabling technology to efficiently fuel ITER with fast pellets launched from the High Field Side (HFS) separatrix. Pellet experiments have repeatedly found that fuel efficiently is high - consistent with 100%. In contrast, Low Field Side (LFS) launch experiments find efficiencies of 50% or less. This report addresses what experimental program and what material choices can be made to retain program momentum. An initial program seeks to establish that our heterogeneous approach to conductivity works, maintaining s 1 mho/m. A demonstration of acceleration can be carried out in a very simple laboratory when the pusher material D2[Be] is replaced by LiH[C] which is a room temperature solid with a graphite particle suspension. No cryogenics or hazard chemicals. The mm-wave mirror will be graphite, the tamper is sapphire, and the payload LiD. The payload has a pellet has diameter = 3mm and a mass M = 4.4x10-4 kg which is 220 joules at V=1000 m/s. A barrel length of 15 cm completes the design specification.
77 FR 54777 - Accelerating Investment in Industrial Energy Efficiency
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
...--Accelerating Investment in Industrial Energy Efficiency Executive Order 13625--Improving Access to Mental... Accelerating Investment in Industrial Energy Efficiency By the authority vested in me as President by the... helping to facilitate investments in energy efficiency at industrial facilities, it is hereby ordered as...
The evolution of cosmic-ray-mediated magnetohydrodynamic shocks: A two-fluid approach
NASA Astrophysics Data System (ADS)
Jun, Byung-Il; Clarke, David A.; Norman, Michael L.
1994-07-01
We study the shock structure and acceleration efficiency of cosmic-ray mediated Magnetohydrodynamic (MHD) shocks both analytically and numerically by using a two-fluid model. Our model includes the dynamical effect of magnetic fields and cosmic rays on a background thermal fluid. The steady state solution is derived by following the technique of Drury & Voelk (1981) and compared to numerical results. We explore the time evolution of plane-perpendicular, piston-driven shocks. From the results of analytical and numerical studies, we conclude that the mean magnetic field plays an important role in the structure and acceleration efficiency of cosmic-ray mediated MHD shocks. The acceleration of cosmic-ray particles becomes less efficient in the presence of strong magnetic pressure since the field makes the shock less compressive. This feature is more prominent at low Mach numbers than at high Mach numbers.
The evolution of cosmic-ray-mediated magnetohydrodynamic shocks: A two-fluid approach
NASA Technical Reports Server (NTRS)
Jun, Byung-Il; Clarke, David A.; Norman, Michael L.
1994-01-01
We study the shock structure and acceleration efficiency of cosmic-ray mediated Magnetohydrodynamic (MHD) shocks both analytically and numerically by using a two-fluid model. Our model includes the dynamical effect of magnetic fields and cosmic rays on a background thermal fluid. The steady state solution is derived by following the technique of Drury & Voelk (1981) and compared to numerical results. We explore the time evolution of plane-perpendicular, piston-driven shocks. From the results of analytical and numerical studies, we conclude that the mean magnetic field plays an important role in the structure and acceleration efficiency of cosmic-ray mediated MHD shocks. The acceleration of cosmic-ray particles becomes less efficient in the presence of strong magnetic pressure since the field makes the shock less compressive. This feature is more prominent at low Mach numbers than at high Mach numbers.
Compact two-beam push-pull free electron laser
Hutton, Andrew [Yorktown, VA
2009-03-03
An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.
Electron Acceleration and Efficiency in Nonthermal Gamma-Ray Sources
NASA Astrophysics Data System (ADS)
Bykov, A. M.; Meszaros, P.
1996-04-01
In energetic nonthermal sources such as gamma-ray bursts, active galactic nuclei, or galactic jets, etc., one expects both relativistic and transrelativistic shocks accompanied by violent motions of moderately relativistic plasma. We present general considerations indicating that these sites are electron and positron accelerators leading to a modified power-law spectrum. The electron (or e+/-) energy index is very hard, ~ gamma -1 or flatter, up to a comoving frame break energy gamma *, and becomes steeper above that. In the example of gamma-ray bursts, the Lorentz factor reaches gamma * ~ 103 for e+/- accelerated by the internal shock ensemble on subhydrodynamical timescales. For pairs accelerated on hydrodynamical timescales in the external shocks, similar hard spectra are obtained, and the break Lorentz factor can be as high as gamma * <~ 105. Radiation from the nonthermal electrons produces photon spectra with shapes and characteristic energies in qualitative agreement with observed generic gamma-ray burst and blazar spectra. The scenario described here provides a plausible way to solve one of the crucial problems of nonthermal high-energy sources, namely, the efficient transfer of energy from the proton flow to an appropriate nonthermal lepton component.
Multiple beam induction accelerators for heavy ion fusion
NASA Astrophysics Data System (ADS)
Seidl, Peter A.; Barnard, John J.; Faltens, Andris; Friedman, Alex; Waldron, William L.
2014-01-01
Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (≥10 kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.
Proton acceleration by multi-terawatt interaction with a near-critical density hydrogen jet
NASA Astrophysics Data System (ADS)
Goers, Andy; Feder, Linus; Hine, George; Salehi, Fatholah; Woodbury, Daniel; Su, J. J.; Papadopoulos, Dennis; Zigler, Arie; Milchberg, Howard
2016-10-01
We investigate the high intensity laser interaction with thin, near critical density plasmas as a means of efficient acceleration of MeV protons. A promising mechanism is magnetic vortex acceleration, where the ponderomotive force of a tightly focused laser pulse drives a relativistic electron current which generates a strong azimuthal magnetic field. The rapid expansion of this azimuthal magnetic field at the back side of the target can accelerate plasma ions to MeV scale energies. Compared to typical ion acceleration experiments utilizing a laser- thin solid foil interaction, magnetic vortex acceleration in near critical density plasma may be realized in a high density gas jet, making it attractive for applications requiring high repetition rates. We present preliminary experiments studying laser-plasma interaction and proton acceleration in a thin (< 200 μm) near-critical density hydrogen gas jet delivering electron densities 1020 -1021 cm-3 . This research was funded by the United States Department of Energy and the Defense Advanced Research Projects Agency (DARPA) under Contract Number W911-NF-15-C-0217, issued by the Army Research Office.
NASA Astrophysics Data System (ADS)
Wang, Bo; Tian, Kuo; Zhao, Haixin; Hao, Peng; Zhu, Tianyu; Zhang, Ke; Ma, Yunlong
2017-06-01
In order to improve the post-buckling optimization efficiency of hierarchical stiffened shells, a multilevel optimization framework accelerated by adaptive equivalent strategy is presented in this paper. Firstly, the Numerical-based Smeared Stiffener Method (NSSM) for hierarchical stiffened shells is derived by means of the numerical implementation of asymptotic homogenization (NIAH) method. Based on the NSSM, a reasonable adaptive equivalent strategy for hierarchical stiffened shells is developed from the concept of hierarchy reduction. Its core idea is to self-adaptively decide which hierarchy of the structure should be equivalent according to the critical buckling mode rapidly predicted by NSSM. Compared with the detailed model, the high prediction accuracy and efficiency of the proposed model is highlighted. On the basis of this adaptive equivalent model, a multilevel optimization framework is then established by decomposing the complex entire optimization process into major-stiffener-level and minor-stiffener-level sub-optimizations, during which Fixed Point Iteration (FPI) is employed to accelerate convergence. Finally, the illustrative examples of the multilevel framework is carried out to demonstrate its efficiency and effectiveness to search for the global optimum result by contrast with the single-level optimization method. Remarkably, the high efficiency and flexibility of the adaptive equivalent strategy is indicated by compared with the single equivalent strategy.
REVIEWS OF TOPICAL PROBLEMS: Acceleration of cosmic rays by shock waves
NASA Astrophysics Data System (ADS)
Berezhko, E. G.; Krymskiĭ, G. F.
1988-01-01
Theoretical work on various processes by which shock waves accelerate cosmic rays is reviewed. The most efficient of these processes, Fermi acceleration, is singled out for special attention. A linear theory for this process is presented. The results found on the basis of nonlinear models of Fermi acceleration, which incorporate the modification of the structure caused by the accelerated particles, are reported. There is a discussion of various possibilities for explaining the generation of high-energy particles observed in interplanetary and interstellar space on the basis of a Fermi acceleration mechanism. The acceleration by shock waves from supernova explosions is discussed as a possible source of galactic cosmic rays. The most important unresolved questions in the theory of acceleration of charged particles by shock waves are pointed out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, Stepan S.; Brantov, Andrei; Bychenkov, Valery Yu.
2008-05-15
Proton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10{sup -11} achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 10{sup 22} W/cm{sup 2} that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions/light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energiesmore » from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 {mu}m (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover, the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. Two-dimensional PIC simulations show that a 150-500 TW laser pulse is able to accelerate protons up to 100-220 MeV energies.« less
Bulanov, Stepan S.; Brantov, Andrei; Bychenkov, Valery Yu.; Chvykov, Vladimir; Kalinchenko, Galina; Matsuoka, Takeshi; Rousseau, Pascal; Reed, Stephen; Yanovsky, Victor; Krushelnick, Karl; Litzenberg, Dale William; Maksimchuk, Anatoly
2008-01-01
Proton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10−11 achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W∕cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions∕light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 μm (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover, the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. Two-dimensional PIC simulations show that a 150–500 TW laser pulse is able to accelerate protons up to 100–220 MeV energies. PMID:18561651
Willert, Jeffrey; Park, H.; Taitano, William
2015-11-01
High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.
Gyroharmonic conversion experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K.
1999-05-01
Generation of high power microwaves has been observed in experiments where a 250{endash}350 kV, 20{endash}30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allowsmore » efficient 20 GHz co-generation within the CARA waveguide itself. {copyright} {ital 1999 American Institute of Physics.}« less
Highly Efficient Proteolysis Accelerated by Electromagnetic Waves for Peptide Mapping
Chen, Qiwen; Liu, Ting; Chen, Gang
2011-01-01
Proteomics will contribute greatly to the understanding of gene functions in the post-genomic era. In proteome research, protein digestion is a key procedure prior to mass spectrometry identification. During the past decade, a variety of electromagnetic waves have been employed to accelerate proteolysis. This review focuses on the recent advances and the key strategies of these novel proteolysis approaches for digesting and identifying proteins. The subjects covered include microwave-accelerated protein digestion, infrared-assisted proteolysis, ultraviolet-enhanced protein digestion, laser-assisted proteolysis, and future prospects. It is expected that these novel proteolysis strategies accelerated by various electromagnetic waves will become powerful tools in proteome research and will find wide applications in high throughput protein digestion and identification. PMID:22379392
WarpIV: In situ visualization and analysis of ion accelerator simulations
Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc; ...
2016-05-09
The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less
NASA Technical Reports Server (NTRS)
Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.
1992-01-01
The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.
Enabling cost-effective high-current burst-mode operation in superconducting accelerators
Sheffield, Richard L.
2015-06-01
Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current,more » 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.« less
Characterization of Quantum Efficiency and Robustness of Cesium-Based Photocathodes
2010-01-01
photocathodes produce picosecond-pulsed, high- current electron beams for photoinjection applications like free electron lasers . In photoinjectors, a...pulsed drive laser incident on the photocathode causes photoemission of short, dense bunches of electrons, which are then accelerated into a...relativistic, high quality beam. Future free electron lasers demand reliable photocathodes with long-lived quantum efficiency at suitable drive laser
Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Electrons can “surf” on waves of plasma – a hot gas of charged particles – gaining very high energies in very short distances. This approach, called plasma wakefield acceleration, has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider has been the focus of FACET, a National User Facility at SLAC. FACET used part of SLAC’s two-mile-long linearmore » accelerator to generate high-density beams of electrons and their antimatter counterparts, positrons. Research into plasma wakefield acceleration was the primary motivation for constructing FACET. In April 2016, FACET operations came to an end to make way for the second phase of SLAC’s x-ray laser, the LCLS-II, which will use part of the tunnel occupied by FACET. FACET-II is a new test facility to provide the unique capability to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. FACET-II represents a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique.« less
Large-scale particle acceleration by magnetic reconnection during solar flares
NASA Astrophysics Data System (ADS)
Li, X.; Guo, F.; Li, H.; Li, G.; Li, S.
2017-12-01
Magnetic reconnection that triggers explosive magnetic energy release has been widely invoked to explain the large-scale particle acceleration during solar flares. While great efforts have been spent in studying the acceleration mechanism in small-scale kinetic simulations, there have been rare studies that make predictions to acceleration in the large scale comparable to the flare reconnection region. Here we present a new arrangement to study this problem. We solve the large-scale energetic-particle transport equation in the fluid velocity and magnetic fields from high-Lundquist-number MHD simulations of reconnection layers. This approach is based on examining the dominant acceleration mechanism and pitch-angle scattering in kinetic simulations. Due to the fluid compression in reconnection outflows and merging magnetic islands, particles are accelerated to high energies and develop power-law energy distributions. We find that the acceleration efficiency and power-law index depend critically on upstream plasma beta and the magnitude of guide field (the magnetic field component perpendicular to the reconnecting component) as they influence the compressibility of the reconnection layer. We also find that the accelerated high-energy particles are mostly concentrated in large magnetic islands, making the islands a source of energetic particles and high-energy emissions. These findings may provide explanations for acceleration process in large-scale magnetic reconnection during solar flares and the temporal and spatial emission properties observed in different flare events.
Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, J.H.; Michelotti, M.D.; Riemer, N.
2016-10-01
Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removalmore » rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Kohlmeyer, Axel; Plimpton, Steven J
The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. In this paper, we present a continuation of previous work implementing algorithms for using accelerators into the LAMMPS molecular dynamics software for distributed memory parallel hybrid machines. In our previous work, we focused on acceleration for short-range models with anmore » approach intended to harness the processing power of both the accelerator and (multi-core) CPUs. To augment the existing implementations, we present an efficient implementation of long-range electrostatic force calculation for molecular dynamics. Specifically, we present an implementation of the particle-particle particle-mesh method based on the work by Harvey and De Fabritiis. We present benchmark results on the Keeneland InfiniBand GPU cluster. We provide a performance comparison of the same kernels compiled with both CUDA and OpenCL. We discuss limitations to parallel efficiency and future directions for improving performance on hybrid or heterogeneous computers.« less
Electron cyclotron wave acceleration outside a flaring loop
NASA Technical Reports Server (NTRS)
Sprangle, P.; Vlahos, L.
1983-01-01
A model for the secondary acceleration of electrons outside a flaring loop is proposed. The results suggest that the narrow bandwidth radiation emitted by the unstable electron distribution inside a flaring loop can become the driver for secondary electron acceleration outside the loop. It is shown that a system of electrons gyrating about and streaming along an adiabatically spatially varying, static magnetic field can be efficiently accelerated to high energies by an electromagnetic wave propagating along and polarized transverse to the static magnetic field. The predictions from our model appear to be in general agreement with existing observations.
First results with the novel petawatt laser acceleration facility in Dresden
NASA Astrophysics Data System (ADS)
Schramm, U.; Bussmann, M.; Irman, A.; Siebold, M.; Zeil, K.; Albach, D.; Bernert, C.; Bock, S.; Brack, F.; Branco, J.; Couperus, JP; Cowan, TE; Debus, A.; Eisenmann, C.; Garten, M.; Gebhardt, R.; Grams, S.; Helbig, U.; Huebl, A.; Kluge, T.; Köhler, A.; Krämer, JM; Kraft, S.; Kroll, F.; Kuntzsch, M.; Lehnert, U.; Loeser, M.; Metzkes, J.; Michel, P.; Obst, L.; Pausch, R.; Rehwald, M.; Sauerbrey, R.; Schlenvoigt, HP; Steiniger, K.; Zarini, O.
2017-07-01
We report on first commissioning results of the DRACO Petawatt ultra-short pulse laser system implemented at the ELBE center for high power radiation sources of Helmholtz-Zentrum Dresden-Rossendorf. Key parameters of the laser system essential for efficient and reproducible performance of plasma accelerators are presented and discussed with the demonstration of 40 MeV proton acceleration under TNSA conditions as well as peaked electron spectra with unprecedented bunch charge in the 0.5 nC range.
Acceleration of FDTD mode solver by high-performance computing techniques.
Han, Lin; Xi, Yanping; Huang, Wei-Ping
2010-06-21
A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.
Nonthermally dominated electron acceleration during magnetic reconnection in a low- β plasma
Li, Xiaocan; Guo, Fan; Li, Hui; ...
2015-09-24
By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization.more » We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. Thus, the nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the highly efficient electron acceleration in solar flares and other astrophysical systems.« less
NASA Astrophysics Data System (ADS)
Shang, Jing; Li, Juexin; Xu, Bing; Li, Yuxiong
2011-10-01
Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the 60Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.
Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity
Clayton, C. E.; Adli, E.; Allen, J.; ...
2016-08-16
The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.).more » Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m –1 to a similar degree of accuracy. Lastly, these results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.« less
Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity
Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.
2016-01-01
The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m−1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity. PMID:27527569
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Lebedev, V.
A simplified analytical model of the resonant interaction of the beam of Larmor electrons drifting in the crossed constant fields of a magnetron with a synchronous wave providing a phase grouping of the drifting charge was developed to optimize the parameters of an rf resonant injected signal driving the magnetrons for management of phase and power of rf sources with a rate required for superconducting high-current accelerators. The model, which considers the impact of the rf resonant signal injected into the magnetron on the operation of the injection-locked tube, substantiates the recently developed method of fast power control of magnetronsmore » in the range up to 10 dB at the highest generation efficiency, with low noise, precise stability of the carrier frequency, and the possibility of wideband phase control. Experiments with continuous wave 2.45 GHz, 1 kW microwave oven magnetrons have verified the correspondence of the behavior of these tubes to the analytical model. A proof of the principle of the novel method of power control in magnetrons, based on the developed model, was demonstrated in the experiments. The method is attractive for high-current superconducting rf accelerators. This study also discusses vector methods of power control with the rates required for superconducting accelerators, the impact of the rf resonant signal injected into the magnetron on the rate of phase control of the injection-locked tubes, and a conceptual scheme of the magnetron transmitter with highest efficiency for high-current accelerators.« less
Kazakevich, G.; Johnson, R.; Lebedev, V.; ...
2018-06-14
A simplified analytical model of the resonant interaction of the beam of Larmor electrons drifting in the crossed constant fields of a magnetron with a synchronous wave providing a phase grouping of the drifting charge was developed to optimize the parameters of an rf resonant injected signal driving the magnetrons for management of phase and power of rf sources with a rate required for superconducting high-current accelerators. The model, which considers the impact of the rf resonant signal injected into the magnetron on the operation of the injection-locked tube, substantiates the recently developed method of fast power control of magnetronsmore » in the range up to 10 dB at the highest generation efficiency, with low noise, precise stability of the carrier frequency, and the possibility of wideband phase control. Experiments with continuous wave 2.45 GHz, 1 kW microwave oven magnetrons have verified the correspondence of the behavior of these tubes to the analytical model. A proof of the principle of the novel method of power control in magnetrons, based on the developed model, was demonstrated in the experiments. The method is attractive for high-current superconducting rf accelerators. This study also discusses vector methods of power control with the rates required for superconducting accelerators, the impact of the rf resonant signal injected into the magnetron on the rate of phase control of the injection-locked tubes, and a conceptual scheme of the magnetron transmitter with highest efficiency for high-current accelerators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogacz, Slawomir Alex
Here, we summarize current state of concept for muon acceleration aimed at future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance through exploring interplay between complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival of the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to initially low RF frequency, e.g. 325 MHz, and then increased to 650 MHz, as the transverse size shrinks with increasing energy. High-gradient normalmore » conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Here, we considered two cost effective schemes for accelerating muon beams for a stagable Neutrino Factory: Exploration of the so-called 'dual-use' linac concept, where the same linac structure is used for acceleration of both H- and muons and alternatively, the SRF efficient design based on multi-pass (4.5) 'dogbone' RLA, extendable to multi-pass FFAG-like arcs.« less
Probing the fusion of neutron-rich nuclei with re-accelerated radioactive beams
NASA Astrophysics Data System (ADS)
Vadas, J.; Singh, Varinderjit; Wiggins, B. B.; Huston, J.; Hudan, S.; deSouza, R. T.; Lin, Z.; Horowitz, C. J.; Chbihi, A.; Ackermann, D.; Famiano, M.; Brown, K. W.
2018-03-01
We report the first measurement of the fusion excitation functions for K,4739+28Si at near-barrier energies. Evaporation residues resulting from the fusion process were identified by direct measurement of their energy and time of flight with high geometric efficiency. At the lowest incident energy, the cross section measured for the neutron-rich 47K-induced reaction is ≈6 times larger than that of the β -stable system. This experimental approach, both in measurement and in analysis, demonstrates how to efficiently measure fusion with low-intensity re-accelerated radioactive beams, establishing the framework for future studies.
Preparation of reflective CsI photocathodes with reproducible high quantum efficiency
NASA Astrophysics Data System (ADS)
Maier-Komor, P.; Bauer, B. B.; Friese, J.; Gernhäuser, R.; Kienle, P.; Körner, H. J.; Montermann, G.; Zeitelhack, K.
1995-02-01
CsI as a solid UV-photocathode material has many promising applications in fast gaseous photon detectors. They are proposed in large area Ring Imaging CHerenkov (RICH) devices in forthcoming experiments at various high-energy particle accelerators. A high photon-to-electron conversion efficiency is a basic requirement for the successful operation of these devices. High reproducible quantum efficiencies could be achieved with CsI layers prepared by electron beam evaporation from a water-cooled copper crucible. CsI films were deposited in the thickness range of 30 to 500 μg/cm 2. Absorption coefficients and quantum efficiencies were measured in the wavelength region of 150 nm to 250 nm. The influence of various evaporation parameters on the quantum efficiency were investigated.
Muon Acceleration Concepts for NuMAX: "Dual-use" Linac and "Dogbone" RLA
Bogacz, S. A.
2018-02-01
In this paper, we summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650 MHz asmore » the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Finally, we consider two cost effective schemes for accelerating muon beams for a stageable Neutrino Factory: exploration of the so-called "dual-use" linac concept, where the same linac structure is used for acceleration of both H - and muons and, alternatively, an SRF-efficient design based on a multi-pass (4.5) "dogbone" RLA, extendable to multi-pass FFAG-like arcs.« less
Overview of the design of the ITER heating neutral beam injectors
NASA Astrophysics Data System (ADS)
Hemsworth, R. S.; Boilson, D.; Blatchford, P.; Dalla Palma, M.; Chitarin, G.; de Esch, H. P. L.; Geli, F.; Dremel, M.; Graceffa, J.; Marcuzzi, D.; Serianni, G.; Shah, D.; Singh, M.; Urbani, M.; Zaccaria, P.
2017-02-01
The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7 MW of 1 MeV D0 or 0.87 MeV H0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam (NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a realistic design is not possible, whereas the neutralisation of H- and D- remains acceptable (≈56%). The design of a long pulse negative ion based injector is inherently more complicated than that of short pulse positive ion based injectors because: • negative ions are harder to create so that they can be extracted and accelerated from the ion source; • electrons can be co-extracted from the ion source along with the negative ions, and their acceleration must be minimised to maintain an acceptable overall accelerator efficiency; • negative ions are easily lost by collisions with the background gas in the accelerator; • electrons created in the extractor and accelerator can impinge on the extraction and acceleration grids, leading to high power loads on the grids; • positive ions are created in the accelerator by ionisation of the background gas by the accelerated negative ions and the positive ions are back-accelerated into the ion source creating a massive power load to the ion source; • electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on various downstream beamline components. The design of the ITER HNBs is further complicated because ITER is a nuclear installation which will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components have to survive in that harsh environment. Additionally the beamline components and the NB cell, where the beams are housed, will be activated and all maintenance will have to be performed remotely. This paper describes the design of the HNB injectors, but not the associated power supplies, cooling system, cryogenic system etc, or the high voltage bushing which separates the vacuum of the beamline from the high pressure SF6 of the high voltage (1 MV) transmission line, through which the power, gas and cooling water are supplied to the beam source. Also the magnetic field reduction system is not described.
Plasma Accelerator and Energy Conversion Research
1982-10-29
performance tests have been accomplished. A self-contained recirculating AMTEC device with a thermal to electric conversion efficiency of 19% has been...combined efficiency . These two match up particularly well, because thermionic conversion is a high temperature technique, whereas AMTEC is limited to...EXPERIENTAL: Samples: The samples were prepared with a high rate DC magnetron sputtering apparatus ( SFI model 1 ). The sample set consisted of four
NASA Technical Reports Server (NTRS)
Ellison, D. C.; Jones, F. C.; Eichler, D.
1983-01-01
Both hydrodynamic calculations (Drury and Volk, 1981, and Axford et al., 1982) and kinetic simulations imply the existence of thermal subshocks in high-Mach-number cosmic-ray-mediated shocks. The injection efficiency of particles from the thermal background into the diffusive shock-acceleration process is determined in part by the sharpness and compression ratio of these subshocks. Results are reported for a Monte Carlo simulation that includes both the back reaction of accelerated particles on the inflowing plasma, producing a smoothing of the shock transition, and the free escape of particles allowing arbitrarily large overall compression ratios in high-Mach-number steady-state shocks. Energy spectra and estimates of the proportion of thermal ions accelerated to high energy are obtained.
NASA Astrophysics Data System (ADS)
Ellison, D. C.; Jones, F. C.; Eichler, D.
1983-08-01
Both hydrodynamic calculations (Drury and Volk, 1981, and Axford et al., 1982) and kinetic simulations imply the existence of thermal subshocks in high-Mach-number cosmic-ray-mediated shocks. The injection efficiency of particles from the thermal background into the diffusive shock-acceleration process is determined in part by the sharpness and compression ratio of these subshocks. Results are reported for a Monte Carlo simulation that includes both the back reaction of accelerated particles on the inflowing plasma, producing a smoothing of the shock transition, and the free escape of particles allowing arbitrarily large overall compression ratios in high-Mach-number steady-state shocks. Energy spectra and estimates of the proportion of thermal ions accelerated to high energy are obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogacz, Alex
We summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory and extendable to Higgs Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650more » MHz as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. We consider an SRF-efficient design based on a multi-pass (4.5) ?dogbone? RLA, extendable to multi-pass FFAG-like arcs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, Arno; Li, Z.; Ng, C.
The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedentedmore » accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.« less
New self-magnetically insulated connection of multilevel accelerators to a common load
VanDevender, J. Pace; Langston, William L.; Pasik, Michael F.; ...
2015-03-04
A new way to connect pulsed-power modules to a common load is presented. Unlike previous connectors, the clam shell magnetically insulated transmission line (CSMITL) has magnetic nulls only at large radius where the cathode electric field is kept below the threshold for emission, has only a simply connected magnetic topology to avoid plasma motion along magnetic field lines into highly stressed gaps, and has electron injectors that ensure efficient electron flow even in the limiting case of self-limited MITLs. Multilevel magnetically insulated transmission lines with a posthole convolute are the standard solution but associated losses limit the performance of state-of-the-artmore » accelerators. Mitigating these losses is critical for the next generation of pulsed-power accelerators. A CSMITL has been successfully implemented on the Saturn accelerator. A reference design for the Z accelerator is derived and presented. The design conservatively meets the design requirements and shows excellent transport efficiency in three simulations of increasing complexity: circuit simulations, electromagnetic fields only with Emphasis, fields plus electron and ion emission with Quicksilver.« less
Efficient high density train operations
Gordon, Susanna P.; Evans, John A.
2001-01-01
The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.
Zuo, Pingbing; Zhang, Ming; Rassoul, Hamid K.
2013-10-03
The focused transport theory is appropriate to describe the injection and acceleration of low-energy particles at shocks as an extension of diffusive shock acceleration (DSA). In this investigation, we aim to characterize the role of cross-shock potential (CSP) originated in the charge separation across the shock ramp on pickup ion (PUI) acceleration at various types of shocks with a focused transport model. The simulation results of energy spectrum and spatial density distribution for the cases with and without CSP added in the model are compared. With sufficient acceleration time, the focused transport acceleration finally falls into the DSA regime withmore » the power-law spectral index equal to the solution of the DSA theory. The CSP can affect the shape of the spectrum segment at lower energies, but it does not change the spectral index of the final power-law spectrum at high energies. It is found that the CSP controls the injection efficiency which is the fraction of PUIs reaching the DSA regime. A stronger CSP jump results in a dramatically improved injection efficiency. Our simulation results also show that the injection efficiency of PUIs is mass-dependent, which is lower for species with a higher mass. Additionally, the CSP is able to enhance the particle reflection upstream to produce a stronger intensity spike at the shock front. Lastly, we conclude that the CSP is a non-negligible factor that affects the dynamics of PUIs at shocks.« less
NASA Technical Reports Server (NTRS)
Alger, D. L.; Steinberg, R.; Weisenbach, P.
1974-01-01
Target, in cylinder form, rotates rapidly in front of beam. Titanium tritide film is much thicker than range of accelerated deutron. Sputtering electrode permits full use of thick film. Stream of high-velocity coolant provides efficient transfer of heat from target.
High-energy particle acceleration in the shell of a supernova remnant.
Aharonian, F A; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Bolz, O; Boisson, C; Borgmeier, C; Breitling, F; Brown, A M; Gordo, J Bussons; Chadwick, P M; Chitnis, V R; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ataï, A; Drury, L O'C; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Guy, J; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; De Jager, O C; Jung, I; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemoine, M; Lemière, A; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; De Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pohl, M; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rivoal, M; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J-P; Théoret, C G; Tluczykont, M; Van Der Walt, D J; Vasileiadis, G; Vincent, P; Visser, B; Völk, H J; Wagner, S J
2004-11-04
A significant fraction of the energy density of the interstellar medium is in the form of high-energy charged particles (cosmic rays). The origin of these particles remains uncertain. Although it is generally accepted that the only sources capable of supplying the energy required to accelerate the bulk of Galactic cosmic rays are supernova explosions, and even though the mechanism of particle acceleration in expanding supernova remnant (SNR) shocks is thought to be well understood theoretically, unequivocal evidence for the production of high-energy particles in supernova shells has proven remarkably hard to find. Here we report on observations of the SNR RX J1713.7 - 3946 (G347.3 - 0.5), which was discovered by ROSAT in the X-ray spectrum and later claimed as a source of high-energy gamma-rays of TeV energies (1 TeV = 10(12) eV). We present a TeV gamma-ray image of the SNR: the spatially resolved remnant has a shell morphology similar to that seen in X-rays, which demonstrates that very-high-energy particles are accelerated there. The energy spectrum indicates efficient acceleration of charged particles to energies beyond 100 TeV, consistent with current ideas of particle acceleration in young SNR shocks.
A GPU accelerated PDF transparency engine
NASA Astrophysics Data System (ADS)
Recker, John; Lin, I.-Jong; Tastl, Ingeborg
2011-01-01
As commercial printing presses become faster, cheaper and more efficient, so too must the Raster Image Processors (RIP) that prepare data for them to print. Digital press RIPs, however, have been challenged to on the one hand meet the ever increasing print performance of the latest digital presses, and on the other hand process increasingly complex documents with transparent layers and embedded ICC profiles. This paper explores the challenges encountered when implementing a GPU accelerated driver for the open source Ghostscript Adobe PostScript and PDF language interpreter targeted at accelerating PDF transparency for high speed commercial presses. It further describes our solution, including an image memory manager for tiling input and output images and documents, a PDF compatible multiple image layer blending engine, and a GPU accelerated ICC v4 compatible color transformation engine. The result, we believe, is the foundation for a scalable, efficient, distributed RIP system that can meet current and future RIP requirements for a wide range of commercial digital presses.
NASA Technical Reports Server (NTRS)
Rebeske, John J , Jr; Rohlik, Harold E
1953-01-01
An analytical investigation was made to determine from component performance characteristics the effect of air bleed at the compressor outlet on the acceleration characteristics of a typical high-pressure-ratio single-spool turbojet engine. Consideration of several operating lines on the compressor performance map with two turbine-inlet temperatures showed that for a minimum acceleration time the turbine-inlet temperature should be the maximum allowable, and the operating line on the compressor map should be as close to the surge region as possible throughout the speed range. Operation along such a line would require a continuously varying bleed area. A relatively simple two-step area bleed gives only a small increase in acceleration time over a corresponding variable-area bleed. For the modes of operation considered, over 84 percent of the total acceleration time was required to accelerate through the low-speed range ; therefore, better low-speed compressor performance (higher pressure ratios and efficiencies) would give a significant reduction in acceleration time.
Distributed coupling high efficiency linear accelerator
Tantawi, Sami G.; Neilson, Jeffrey
2016-07-19
A microwave circuit for a linear accelerator includes multiple monolithic metallic cell plates stacked upon each other so that the beam axis passes vertically through a central acceleration cavity of each plate. Each plate has a directional coupler with coupling arms. A first coupling slot couples the directional coupler to an adjacent directional coupler of an adjacent cell plate, and a second coupling slot couples the directional coupler to the central acceleration cavity. Each directional coupler also has an iris protrusion spaced from corners joining the arms, a convex rounded corner at a first corner joining the arms, and a corner protrusion at a second corner joining the arms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brantov, A. V., E-mail: brantov@lebedev.ru; Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru
2015-06-15
Optimal regimes of proton acceleration in the interaction of short high-power laser pulses with thin foils and low-density targets are determined by means of 3D numerical simulation. It is demonstrated that the maximum proton energy can be increased by using low-density targets in which ions from the front surface of the target are accelerated most efficiently. It is shown using a particular example that, for the same laser pulse, the energy of protons accelerated from a low-density target can be increased by one-third as compared to a solid-state target.
The punctum fixum-punctum mobile model: a neuromuscular principle for efficient movement generation?
von Laßberg, Christoph; Rapp, Walter
2015-01-01
According to the "punctum fixum-punctum mobile model" that was introduced in prior studies, for generation of the most effective intentional acceleration of a body part the intersegmental neuromuscular onset succession has to spread successively from the rotation axis (punctum fixum) toward the body part that shall be accelerated (punctum mobile). The aim of the present study was to investigate whether this principle is, indeed, fundamental for any kind of efficient rotational accelerations in general, independent of the kind of movements, type of rotational axis, the current body position, or movement direction. Neuromuscular onset succession was captured by surface electromyography of relevant muscles of the anterior and posterior muscle chain in 16 high-level gymnasts during intentional accelerating movement phases while performing 18 different gymnastics elements (in various body positions to forward and backward, performed on high bar, parallel bars, rings and trampoline), as well as during non-sport specific pivot movements around the longitudinal axis. The succession patterns to generate the acceleration phases during these movements were described and statistically evaluated based on the onset time difference between the muscles of the corresponding muscle chain. In all the analyzed movement phases, the results clearly support the hypothesized succession pattern from punctum fixum to punctum mobile. This principle was further underlined by the finding that the succession patterns do change their direction running through the body when the rotational axis (punctum fixum) has been changed (e.g., high bar or rings [hands] vs. floor or trampoline [feet]). The findings improve our understanding of intersegmental neuromuscular coordination patterns to generate intentional movements most efficiently. This could help to develop more specific methods to facilitate such patterns in particular contexts, thus allowing for shorter motor learning procedures of context-specific key movement sequences in different disciplines of sports, as well as during non-sport specific movements.
The Punctum Fixum-Punctum Mobile Model: A Neuromuscular Principle for Efficient Movement Generation?
von Laßberg, Christoph; Rapp, Walter
2015-01-01
According to the “punctum fixum–punctum mobile model” that was introduced in prior studies, for generation of the most effective intentional acceleration of a body part the intersegmental neuromuscular onset succession has to spread successively from the rotation axis (punctum fixum) toward the body part that shall be accelerated (punctum mobile). The aim of the present study was to investigate whether this principle is, indeed, fundamental for any kind of efficient rotational accelerations in general, independent of the kind of movements, type of rotational axis, the current body position, or movement direction. Neuromuscular onset succession was captured by surface electromyography of relevant muscles of the anterior and posterior muscle chain in 16 high-level gymnasts during intentional accelerating movement phases while performing 18 different gymnastics elements (in various body positions to forward and backward, performed on high bar, parallel bars, rings and trampoline), as well as during non-sport specific pivot movements around the longitudinal axis. The succession patterns to generate the acceleration phases during these movements were described and statistically evaluated based on the onset time difference between the muscles of the corresponding muscle chain. In all the analyzed movement phases, the results clearly support the hypothesized succession pattern from punctum fixum to punctum mobile. This principle was further underlined by the finding that the succession patterns do change their direction running through the body when the rotational axis (punctum fixum) has been changed (e.g., high bar or rings [hands] vs. floor or trampoline [feet]). The findings improve our understanding of intersegmental neuromuscular coordination patterns to generate intentional movements most efficiently. This could help to develop more specific methods to facilitate such patterns in particular contexts, thus allowing for shorter motor learning procedures of context-specific key movement sequences in different disciplines of sports, as well as during non-sport specific movements. PMID:25822498
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Zvi, Ilan
Energy Recovery Linacs (ERL) are important for a variety of applications, from high-power Free-Electron Lasers (FEL) to polarized-electron polarized-proton colliders. The ERL current is arguably the most important characteristic of ERLs for such applications. With that in mind, the Collider-Accelerator Department at Brookhaven National Laboratory embarked on the development of a 300 mA ERL to serve as an R and D test-bed for high-current ERL technologies. These include high-current, extremely well damped superconducting accelerating cavities, high-current superconducting laser-photocathode electron guns and high quantum-efficiency photocathodes. In this presentation I will cover these ERL related developments.
Acceleration Modes and Transitions in Pulsed Plasma Accelerators
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Greve, Christine M.
2018-01-01
Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma accelerators was developed by Cheng, et al. The Coaxial High ENerGy (CHENG) thruster operated on the 10-microseconds timescales of pulsed plasma thrusters, but claimed high thrust density, high efficiency and low electrode erosion rates, which are more consistent with the deflagration mode of acceleration. Separate work on gas-fed pulsed plasma thrusters (PPTs) by Ziemer, et al. identified two separate regimes of performance. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency (ratio of jet kinetic energy to input electrical energy) as a function of mass bit. In the second regime at very low mass bits (termed Mode II), the efficiency increased with decreasing mass bit. Work by Poehlmann et al. and by Sitaraman and Raja sought to understand the performance of the CHENG thruster and the Mode I / Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes representing two distinct sets of solutions to the relevant conservation laws. These works studied the proposal that, depending upon the values of the various controllable parameters, the accelerator would operate in either the detonation or deflagration mode. In the present work, we propose a variation on the explanation for the differences in performance between the various pulsed plasma accelerators. Instead of treating the accelerator as if it were only operating in one mode or the other during a pulse, we model the initial stage of the discharge in all cases as an accelerating current sheet (detonation mode). If the current sheet reaches the exit of the accelerator before the discharge is completed, the acceleration mode transitions to the deflagration mode type found in the quasi-steady MPD thrusters. This modeling method is used to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall acceleration of the plasma depending upon the behavior of the plasma discharge during initial transient phase and the relative lengths of the detonation and deflagration modes of operation.
NASA Astrophysics Data System (ADS)
Guan, X.; Murata, I.; Wang, T.
2017-09-01
The performance of an epithermal neutron flux monitor developed for boron neutron capture therapy (BNCT) is verified by Monte Carlo simulations using accelerator-based neutron sources (ABNSs). The results indicate that the developed epithermal neutron flux monitor works well and it can be efficiently used in practical applications to measure the epithermal neutron fluxes of ABNSs in a high accuracy.
AMS with light nuclei at small accelerators
NASA Astrophysics Data System (ADS)
Stan-Sion, C.; Enachescu, M.
2017-06-01
AMS applications with lighter nuclei are presented. It will be shown how Carbon-14, Boron-10, Beryllium-10, and Tritium-3 can be used to provide valuable information in forensic science, environmental physics, nuclear pollution, in material science and for diagnose of the plasma confinement in fusion reactors. Small accelerators are reliable, efficient and possess the highest ion beam transmissions that confer high precision in measurements.
NASA Astrophysics Data System (ADS)
Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.
2013-11-01
This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.
HV discharge acceleration by sequences of UV laser filaments with visible and near-infrared pulses
NASA Astrophysics Data System (ADS)
Schubert, Elise; Rastegari, Ali; Feng, Chengyong; Mongin, Denis; Kamer, Brian; Kasparian, Jérôme; Wolf, Jean-Pierre; Arissian, Ladan; Diels, Jean-Claude
2017-12-01
We investigate the triggering and guiding of DC high-voltage discharges over a distance of 37 cm by filaments produced by ultraviolet (266 nm) laser pulses of 200 ps duration. The latter reduce the breakdown electric field by half and allow up to 80% discharge probability in an electric field of 920 kV m–1. This high efficiency is not further increased by adding nanosecond pulses in the Joule range at 532 and at 1064 nm. However, the latter statistically increases the guiding length, thereby accelerating the discharge by a factor of 2. This effect is due both to photodetachment and to the heating of the plasma channel, that increases the efficiency of avalanche ionization and reduces electron attachment and recombination.
Application of Plasma Waveguides to High Energy Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milchberg, Howard M
2013-03-30
The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysismore » of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We will continue our development of advanced simulation tools by modifying the QuickPIC algorithm to allow for the simulation of plasma particle pick-up by the wake fields. We have also performed extensive simulations of plasma slow wave structures for efficient THz generation by guided laser beams or accelerated electron beams. We will pursue experimental studies of direct laser acceleration, and THz generation by two methods, ponderomotive-induced THz polarization, and THz radiation by laser accelerated electron beams. We also plan to study both conventional and corrugated plasma channels using our new 30 TW in our new lab facilities. We will investigate production of very long hydrogen plasma waveguides (5 cm). We will study guiding at increasing power levels through the onset of laser-induced cavitation (bubble regime) to assess the role played by the preformed channel. Experiments in direct acceleration will be performed, using laser plasma wakefields as the electron injector. Finally, we will use 2-colour ionization of gases as a high frequency THz source (<60 THz) in order for femtosecond measurements of low plasma densities in waveguides and beams.« less
Multi-GPU Accelerated Admittance Method for High-Resolution Human Exposure Evaluation.
Xiong, Zubiao; Feng, Shi; Kautz, Richard; Chandra, Sandeep; Altunyurt, Nevin; Chen, Ji
2015-12-01
A multi-graphics processing unit (GPU) accelerated admittance method solver is presented for solving the induced electric field in high-resolution anatomical models of human body when exposed to external low-frequency magnetic fields. In the solver, the anatomical model is discretized as a three-dimensional network of admittances. The conjugate orthogonal conjugate gradient (COCG) iterative algorithm is employed to take advantage of the symmetric property of the complex-valued linear system of equations. Compared against the widely used biconjugate gradient stabilized method, the COCG algorithm can reduce the solving time by 3.5 times and reduce the storage requirement by about 40%. The iterative algorithm is then accelerated further by using multiple NVIDIA GPUs. The computations and data transfers between GPUs are overlapped in time by using asynchronous concurrent execution design. The communication overhead is well hidden so that the acceleration is nearly linear with the number of GPU cards. Numerical examples show that our GPU implementation running on four NVIDIA Tesla K20c cards can reach 90 times faster than the CPU implementation running on eight CPU cores (two Intel Xeon E5-2603 processors). The implemented solver is able to solve large dimensional problems efficiently. A whole adult body discretized in 1-mm resolution can be solved in just several minutes. The high efficiency achieved makes it practical to investigate human exposure involving a large number of cases with a high resolution that meets the requirements of international dosimetry guidelines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc
The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less
Review of laser-driven ion sources and their applications.
Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S
2012-05-01
For many years, laser-driven ion acceleration, mainly proton acceleration, has been proposed and a number of proof-of-principle experiments have been carried out with lasers whose pulse duration was in the nanosecond range. In the 1990s, ion acceleration in a relativistic plasma was demonstrated with ultra-short pulse lasers based on the chirped pulse amplification technique which can provide not only picosecond or femtosecond laser pulse duration, but simultaneously ultra-high peak power of terawatt to petawatt levels. Starting from the year 2000, several groups demonstrated low transverse emittance, tens of MeV proton beams with a conversion efficiency of up to several percent. The laser-accelerated particle beams have a duration of the order of a few picoseconds at the source, an ultra-high peak current and a broad energy spectrum, which make them suitable for many, including several unique, applications. This paper reviews, firstly, the historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion. Secondly, we describe several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers. We pay special attention to relatively simple models of several acceleration regimes. The models connect the laser, plasma and proton/ion beam parameters, predicting important features, such as energy spectral shape, optimum conditions and scalings under these conditions for maximum ion energy, conversion efficiency, etc. The models also suggest possible ways to manipulate the proton/ion beams by tailoring the target and irradiation conditions. Thirdly, we review experimental results on proton/ion acceleration, starting with the description of driving lasers. We list experimental results and show general trends of parameter dependences and compare them with the theoretical predictions and simulations. The fourth topic includes a review of scientific, industrial and medical applications of laser-driven proton or ion sources, some of which have already been established, while the others are yet to be demonstrated. In most applications, the laser-driven ion sources are complementary to the conventional accelerators, exhibiting significantly different properties. Finally, we summarize the paper.
Investigation of high duty factor ISR RFQ-1000
NASA Astrophysics Data System (ADS)
Lu, Y. R.; Chen, C. E.; Fang, J. X.; Gao, S. L.; Guo, J. F.; Guo, Z. Y.; Li, D. S.; Li, W. G.; Pan, O. J.; Ren, X. T.; Wu, Y.; Yan, X. Q.; Yu, J. X.; Yu, M. L.; Ratzinger, U.; Deitinghoff, H.; Klein, H.; Schempp, A.
2003-12-01
Two Integral Split Ring (ISR) RFQs with high duty factor of 16.7% have been designed for the application of heavy ion implantation and built in the past several years at Institute of Heavy Ion Physics (IHIP) in Peking University. Two kinds of PIG ion sources with permanent magnets and LEBT were installed and optimized for the injection into these two RFQs. The positive O+ and negative O- ions were extracted and accelerated separately as well as simultaneously. The output macro pulse O- beam current reached 660 μA at a transmission efficiency of more than 82%. The N+ beam was also accelerated with similar transmission efficiency, but the output current intensity for positive ions were lower than the negative ions because of the extracted current limitation of ion sources. The improvements, especially for high duty factor and experimental results with the 1 MeV ISR RFQ will be presented in this paper.
Ultra high energy electrons powered by pulsar rotation.
Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino
2013-01-01
A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.
NASA Astrophysics Data System (ADS)
Steinberg, Elad; Metzger, Brian D.
2018-06-01
Radiative shocks, behind which gas cools faster than the dynamical time, play a key role in many astrophysical transients, including classical novae and young supernovae interacting with circumstellar material. The dense layer behind high Mach number M ≫ 1 radiative shocks is susceptible to thin-shell instabilities, creating a "corrugated" shock interface. We present two and three-dimensional hydrodynamical simulations of optically-thin radiative shocks to study their thermal radiation and acceleration of non-thermal relativistic ions. We employ a moving-mesh code and a specialized numerical technique to eliminate artificial heat conduction across grid cells. The fraction of the shock's luminosity Ltot radiated at X-ray temperatures kT_sh ≈ (3/16)μ m_p v_sh2 expected from a one-dimensional analysis is suppressed by a factor L(>T_sh/3)/L_tot ≈ 4.5/M^{4/3} for M ≈ 4-36. This suppression results in part from weak shocks driven into under-pressured cold filaments by hot shocked gas, which sap thermal energy from the latter faster than it is radiated. Combining particle-in-cell simulation results for diffusive shock acceleration with the inclination angle distribution across the shock (relative to an upstream magnetic field in the shock plane-the expected geometry for transient outflows), we predict the efficiency and energy spectrum of ion acceleration. Though negligible acceleration is predicted for adiabatic shocks, the corrugated shock front enables local regions to satisfy the quasi-parallel magnetic field geometry required for efficient acceleration, resulting in an average acceleration efficiency of ɛnth ˜ 0.005 - 0.02 for M ≈ 12-36, in agreement with modeling of the gamma-ray nova ASASSN-16ma.
NASA Astrophysics Data System (ADS)
Li, Hongzhi; Min, Donghong; Liu, Yusong; Yang, Wei
2007-09-01
To overcome the possible pseudoergodicity problem, molecular dynamic simulation can be accelerated via the realization of an energy space random walk. To achieve this, a biased free energy function (BFEF) needs to be priori obtained. Although the quality of BFEF is essential for sampling efficiency, its generation is usually tedious and nontrivial. In this work, we present an energy space metadynamics algorithm to efficiently and robustly obtain BFEFs. Moreover, in order to deal with the associated diffusion sampling problem caused by the random walk in the total energy space, the idea in the original umbrella sampling method is generalized to be the random walk in the essential energy space, which only includes the energy terms determining the conformation of a region of interest. This essential energy space generalization allows the realization of efficient localized enhanced sampling and also offers the possibility of further sampling efficiency improvement when high frequency energy terms irrelevant to the target events are free of activation. The energy space metadynamics method and its generalization in the essential energy space for the molecular dynamics acceleration are demonstrated in the simulation of a pentanelike system, the blocked alanine dipeptide model, and the leucine model.
Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules
NASA Astrophysics Data System (ADS)
Hamelberg, Donald; Mongan, John; McCammon, J. Andrew
2004-06-01
Many interesting dynamic properties of biological molecules cannot be simulated directly using molecular dynamics because of nanosecond time scale limitations. These systems are trapped in potential energy minima with high free energy barriers for large numbers of computational steps. The dynamic evolution of many molecular systems occurs through a series of rare events as the system moves from one potential energy basin to another. Therefore, we have proposed a robust bias potential function that can be used in an efficient accelerated molecular dynamics approach to simulate the transition of high energy barriers without any advance knowledge of the location of either the potential energy wells or saddle points. In this method, the potential energy landscape is altered by adding a bias potential to the true potential such that the escape rates from potential wells are enhanced, which accelerates and extends the time scale in molecular dynamics simulations. Our definition of the bias potential echoes the underlying shape of the potential energy landscape on the modified surface, thus allowing for the potential energy minima to be well defined, and hence properly sampled during the simulation. We have shown that our approach, which can be extended to biomolecules, samples the conformational space more efficiently than normal molecular dynamics simulations, and converges to the correct canonical distribution.
NASA Astrophysics Data System (ADS)
Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald; Hamilton, Christopher; Santiago, Miguel; Kreuzer, Christian; Shah, Rahul; Fernandez, Juan; Los Alamos National Laboratory Team; Ludwig-Maximilian-University Team
2015-11-01
Table-top laser-plasma ion accelerators seldom achieve narrow energy spreads, and never without serious compromises in efficiency, particle yield, etc. Using massive computer simulations, we identify a self-organizing scheme that exploits persisting self-generated plasma electric (~ TV/m) and magnetic (~ 104 Tesla) fields to reduce the ion energy spread after the laser exits the plasma - separating the ion acceleration from the energy spread reduction. Consistent with the scheme, we experimentally demonstrate aluminum and carbon ion beams with narrow spectral peaks at energies up to 310 MeV (11.5 MeV/nucleon) and 220 MeV (18.3 MeV/nucleon), respectively, with high conversion efficiency (~ 5%, i.e., 4J out of 80J laser). This is achieved with 0.12 PW high-contrast Gaussian laser pulses irradiating planar foils with optimal thicknesses of up to 250 nm that scale with laser intensity. When increasing the focused laser intensity fourfold (by reducing the focusing optic f/number twofold), the spectral-peak energy increases twofold. These results pave the way for next generation compact accelerators suitable for applications. For example, 400 MeV (33.3 MeV/nucleon) carbon-ion beam with narrow energy spread required for ion fast ignition could be generated using PW-class lasers.
Probing the fusion of neutron-rich nuclei with re-accelerated radioactive beams
Vadas, J.; Singh, Varinderjit; Wiggins, B. B.; ...
2018-03-27
Here, we report the first measurement of the fusion excitation functions for 39,47K + 28Si at near-barrier energies. Evaporation residues resulting from the fusion process were identified by direct measurement of their energy and time-of-flight with high geometric efficiency. At the lowest incident energy, the cross section measured for the neutron-rich 47K-induced reaction is ≈6 times larger than that of the β-stable system. This experimental approach, both in measurement and in analysis, demonstrates how to efficiently measure fusion with low-intensity re-accelerated radioactive beams, establishing the framework for future studies.
Probing the fusion of neutron-rich nuclei with re-accelerated radioactive beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vadas, J.; Singh, Varinderjit; Wiggins, B. B.
Here, we report the first measurement of the fusion excitation functions for 39,47K + 28Si at near-barrier energies. Evaporation residues resulting from the fusion process were identified by direct measurement of their energy and time-of-flight with high geometric efficiency. At the lowest incident energy, the cross section measured for the neutron-rich 47K-induced reaction is ≈6 times larger than that of the β-stable system. This experimental approach, both in measurement and in analysis, demonstrates how to efficiently measure fusion with low-intensity re-accelerated radioactive beams, establishing the framework for future studies.
Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration
NASA Astrophysics Data System (ADS)
Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; de Gouveia Dal Pino, E. M.
2012-11-01
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700-718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.
Acceleration and torque feedback for robotic control - Experimental results
NASA Technical Reports Server (NTRS)
Mclnroy, John E.; Saridis, George N.
1990-01-01
Gross motion control of robotic manipulators typically requires significant on-line computations to compensate for nonlinear dynamics due to gravity, Coriolis, centripetal, and friction nonlinearities. One controller proposed by Luo and Saridis avoids these computations by feeding back joint acceleration and torque. This study implements the controller on a Puma 600 robotic manipulator. Joint acceleration measurement is obtained by measuring linear accelerations of each joint, and deriving a computationally efficient transformation from the linear measurements to the angular accelerations. Torque feedback is obtained by using the previous torque sent to the joints. The implementation has stability problems on the Puma 600 due to the extremely high gains inherent in the feedback structure. Since these high gains excite frequency modes in the Puma 600, the algorithm is modified to decrease the gain inherent in the feedback structure. The resulting compensator is stable and insensitive to high frequency unmodeled dynamics. Moreover, a second compensator is proposed which uses acceleration and torque feedback, but still allows nonlinear terms to be fed forward. Thus, by feeding the increment in the easily calculated gravity terms forward, improved responses are obtained. Both proposed compensators are implemented, and the real time results are compared to those obtained with the computed torque algorithm.
NASA Astrophysics Data System (ADS)
Tower, M. M.; Haight, C. H.
1984-03-01
The development status of a single-pulse distributed-energy-source electromagnetic railgun (ER) based on the design of Tower (1982) is reviewed. The five-stage ER is 3.65 m long, with energy inputs every 30 cm starting at the breech and a 12.7-mm-square bore cross section, and is powered by a 660-kJ 6-kV modular capacitor bank. Lexan cubes weighing 2.5 grams have been accelerated to velocities up to 8.5 km/sec at 500 kA and conversion efficiency up to 20 percent. Design goal for a 20-mm-sq-cross-section ER is acceleration of a 60-g projectile to 3-4 km/sec at 35-percent efficiency. Drawings, photographs, and graphs of performance are provided.
A new mechanism for relativistic particle acceleration via wave-particle interaction
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni; Markidis, Stefano; Marocchino, Alberto
2006-10-01
Often in laboratory, space and astrophysical plasma, high energy populations are observed. Two puzzling factors still defy our understanding. First, such populations of high energy particles produce power law distributions that are not only ubiquitous but also persistent in time. Such persistence is in direct contradiction to the H theorem that states the ineluctable transition of physical systems towards thermodynamic equilibrium, and ergo Maxwellian distributions. Second, such high energy populations are efficiently produced, much more efficiently than processes that we know can produce. A classic example of such a situation is cosmic rays where power alws extend up to tremendolus energy ranges. In the present work, we identify a new mechanism for particle acceleration via wave-particle interaction. The mechanism is peculiar to special relativity and has no classical equivalent. That explains why it is not observed in most simulation studies of plasma processes, based on classical physics. The mechanism is likely to be active in systems undergoing streaming instabilities and in particular shocked systems. The new mechanism can produce energy increases vastly superior to previously known mechanisms (such as Fermi acceleration) and can hold the promise of explaining at least some of the observed power laws.
Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator
NASA Astrophysics Data System (ADS)
Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun
2017-12-01
A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.
Bowman, C.D.
1992-11-03
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Bowman, Charles D.
1992-01-01
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Livermore Big Artificial Neural Network Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essen, Brian Van; Jacobs, Sam; Kim, Hyojin
2016-07-01
LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.
High efficiency labeling of glycoproteins on living cells
Zeng, Ying; Ramya, T. N. C.; Dirksen, Anouk; Dawson, Philip E.; Paulson, James C.
2010-01-01
We describe a simple method for efficiently labeling cell surface glycans on virtually any living animal cell. The method employs mild Periodate oxidation to generate an aldehyde on sialic acids, followed by Aniline-catalyzed oxime Ligation with a suitable tag (PAL). Aniline catalysis dramatically accelerates oxime ligation, allowing use of low concentrations of aminooxy-biotin at neutral pH to label the majority of cell surface glycoproteins while maintaining high cell viability. PMID:19234450
Utterance Detection by Intraoral Acceleration Sensor
NASA Astrophysics Data System (ADS)
Saiki, Tsunemasa; Takizawa, Yukako; Hashizume, Tsutomu; Higuchi, Kohei; Fujita, Takayuki; Maenaka, Kazusuke
In order to establish monitoring systems for home health in elderly people including the prevention of mental illness, we investigated the acceleration of teeth in utterance on the assumption that an acceleration sensor can be implanted into an artificial denture in the near future. In the experiment, an acceleration sensor was fixed in front of the central incisors on the lower jaw by using a denture adhesive, and female and male subjects spoke five Japanese vowels. We then measured the teeth accelerations in three (front-to-back, right-to-left and top-to-bottom) axes and conducted frequency analyses. The result showed that high power spectral densities of the teeth accelerations were observed at a low frequency range of 2-10Hz (both the female and the male) and at a high frequency range of 200-300Hz (the female) or 100-150 Hz (the male). The low and high frequency components indicate movements of the lower jaw and voice sounds by bone conduction, respectively. Especially in the top-to-bottom axis of the central incisor, the frequency component appeared to be significant. Therefore, we found that utterance can be efficiently detected using the acceleration in this axis. We also found that three conditions of normal speech, lip synchronizing and humming can be recognized by using frequency analysis of the acceleration in the top-to-bottom axis of the central incisor.
Robustness of waves with a high phase velocity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajima, T., E-mail: ttajima@uci.edu; Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, CA 92688; Necas, A., E-mail: anecas@trialphaenergy.com
Norman Rostoker pioneered research of (1) plasma-driven accelerators and (2) beam-driven fusion reactors. The collective acceleration, coined by Veksler, advocates to drive above-ionization plasma waves by an electron beam to accelerate ions. The research on this, among others, by the Rostoker group incubated the idea that eventually led to the birth of the laser wakefield acceleration (LWFA), by which a large and robust accelerating collective fields may be generated in plasma in which plasma remains robust and undisrupted. Besides the emergence of LWFA, the Rostoker research spawned our lessons learned on the importance of adiabatic acceleration of ions in collectivemore » accelerators, including the recent rebirth in laser-driven ion acceleration efforts in a smooth adiabatic fashion by a variety of ingenious methods. Following Rostoker’s research in (2), the beam-driven Field Reversed Configuration (FRC) has accomplished breakthroughs in recent years. The beam-driven kinetic plasma instabilities have been found to drive the reactivity of deuteron-deuteron fusion beyond the thermonuclear yield in C-2U plasma that Rostoker started. This remarkable result in FRCs as well as the above mentioned LWFA may be understood with the aid of the newly introduced idea of the “robustness hypothesis of waves with a high phase velocity”. It posits that when the wave driven by a particle beam (or laser pulse) has a high phase velocity, its amplitude is high without disrupting the supporting bulk plasma. This hypothesis may guide us into more robust and efficient fusion reactors and more compact accelerators.« less
Post-acceleration of laser driven protons with a compact high field linac
NASA Astrophysics Data System (ADS)
Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.
2013-05-01
We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.
Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.
2001-01-01
The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using the VPS process to form anode sections for a Lorentz force accelerator from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and accelerates the metal powder onto the mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the anode. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of the Lorentz force accelerator.
Selective deuterium ion acceleration using the Vulcan petawatt laser
NASA Astrophysics Data System (ADS)
Krygier, A. G.; Morrison, J. T.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.
2015-05-01
We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, > 10 20 W / cm 2 laser pulse by cryogenically freezing heavy water (D2O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°-8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.
NASA Astrophysics Data System (ADS)
Wibowo; Fadillah, Y.
2018-03-01
Efficiency in a construction works is a very important thing. Concrete with ease of workmanship and rapid achievement of service strength will to determine the level of efficiency. In this research, we studied the optimization of accelerator usage in achieving performance on compressive strength of concrete in function of time. The addition of variation of 0.3% - 2.3% to the weight of cement gives a positive impact of the rapid achievement of hardened concrete, however the speed of increasing of concrete strength achievement in term of time influence present increasing value of filling ability parameter of self-compacting concrete. The right composition of accelerator aligned with range of the values standard of filling ability parameters of HSSCC will be an advantage guidance for producers in the ready-mix concrete industry.
Study of shock-induced combustion using an implicit TVD scheme
NASA Technical Reports Server (NTRS)
Yungster, Shayne
1992-01-01
The supersonic combustion flowfields associated with various hypersonic propulsion systems, such as the ram accelerator, the oblique detonation wave engine, and the scramjet, are being investigated using a new computational fluid dynamics (CFD) code. The code solves the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. It employs an iterative method and a second order differencing scheme to improve computational efficiency. The code is currently being applied to study shock wave/boundary layer interactions in premixed combustible gases, and to investigate the ram accelerator concept. Results obtained for a ram accelerator configuration indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outward and downstream. The combustion process creates a high pressure region over the back of the projectile resulting in a net positive thrust forward.
Integration Testing of a Modular Discharge Supply for NASA's High Voltage Hall Accelerator Thruster
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Kamhawi, hani; Drummond, Geoff
2010-01-01
NASA s In-Space Propulsion Technology Program is developing a high performance Hall thruster that can fulfill the needs of future Discovery-class missions. The result of this effort is the High Voltage Hall Accelerator thruster that can operate over a power range from 0.3 to 3.5 kW and a specific impulse from 1,000 to 2,800 sec, and process 300 kg of xenon propellant. Simultaneously, a 4.0 kW discharge power supply comprised of two parallel modules was developed. These power modules use an innovative three-phase resonant topology that can efficiently supply full power to the thruster at an output voltage range of 200 to 700 V at an input voltage range of 80 to 160 V. Efficiencies as high as 95.9 percent were measured during an integration test with the NASA103M.XL thruster. The accuracy of the master/slave current sharing circuit and various thruster ignition techniques were evaluated.
Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPointe, M. A.; Hirshfield, J. L.; Department of Physics, Yale University, P.O. Box 208124, New Haven, Connecticut 06520-8124
1999-06-10
Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96%. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications.« less
Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...
2015-03-13
Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirotani, Kouichi
2015-01-10
We investigate the particle accelerator that arises in a rotating neutron-star magnetosphere. Simultaneously solving the Poisson equation for the electro-static potential, the Boltzmann equations for relativistic electrons and positrons, and the radiative transfer equation, we demonstrate that the electric field is substantially screened along the magnetic field lines by pairs that are created and separated within the accelerator. As a result, the magnetic-field-aligned electric field is localized in higher altitudes near the light cylinder and efficiently accelerates the positrons created in the lower altitudes outward but does not accelerate the electrons inward. The resulting photon flux becomes predominantly outward, leadingmore » to typical double-peak light curves, which are commonly observed from many high-energy pulsars.« less
Hole Boring in a DT Pellet and Fast-Ion Ignition with Ultraintense Laser Pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naumova, N.; Mourou, G.; Schlegel, T.
Recently achieved high intensities of short laser pulses open new prospects in their application to hole boring in inhomogeneous overdense plasmas and for ignition in precompressed DT fusion targets. A simple analytical model and numerical simulations demonstrate that pulses with intensities exceeding 10{sup 22} W/cm{sup 2} may penetrate deeply into the plasma as a result of efficient ponderomotive acceleration of ions in the forward direction. The penetration depth as big as hundreds of microns depends on the laser fluence, which has to exceed a few tens of GJ/cm{sup 2}. The fast ions, accelerated at the bottom of the channel withmore » an efficiency of more than 20%, show a high directionality and may heat the precompressed target core to fusion conditions.« less
Monte Carlo simulations of particle acceleration at oblique shocks
NASA Technical Reports Server (NTRS)
Baring, Matthew G.; Ellison, Donald C.; Jones, Frank C.
1994-01-01
The Fermi shock acceleration mechanism may be responsible for the production of high-energy cosmic rays in a wide variety of environments. Modeling of this phenomenon has largely focused on plane-parallel shocks, and one of the most promising techniques for its study is the Monte Carlo simulation of particle transport in shocked fluid flows. One of the principal problems in shock acceleration theory is the mechanism and efficiency of injection of particles from the thermal gas into the accelerated population. The Monte Carlo technique is ideally suited to addressing the injection problem directly, and previous applications of it to the quasi-parallel Earth bow shock led to very successful modeling of proton and heavy ion spectra, as well as other observed quantities. Recently this technique has been extended to oblique shock geometries, in which the upstream magnetic field makes a significant angle Theta(sub B1) to the shock normal. Spectral resutls from test particle Monte Carlo simulations of cosmic-ray acceleration at oblique, nonrelativistic shocks are presented. The results show that low Mach number shocks have injection efficiencies that are relatively insensitive to (though not independent of) the shock obliquity, but that there is a dramatic drop in efficiency for shocks of Mach number 30 or more as the obliquity increases above 15 deg. Cosmic-ray distributions just upstream of the shock reveal prominent bumps at energies below the thermal peak; these disappear far upstream but might be observable features close to astrophysical shocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SCHNEIDER,LARRY X.
2000-06-01
The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of componentmore » and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.« less
Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.
Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M
2015-03-27
An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19} W/ cm^{2}. Highly charged gold ions with kinetic energies up to >200 MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.
Study of the Insulating Magnetic Field in an Accelerating Ion Diode
NASA Astrophysics Data System (ADS)
Kozlovsky, K. I.; Martynenko, A. S.; Vovchenko, E. D.; Lisovsky, M. I.; Isaev, A. A.
2017-12-01
The results of examination of the insulating magnetic field in an accelerating ion diode are presented. This field is produced in order to suppress the electron current and thus enhance the neutron yield of the D( d, n)3He nuclear reaction. The following two designs are discussed: a gas-filled diode with inertial electrostatic confinement of ions and a vacuum diode with a laser-plasma ion source and pulsed magnetic insulation. Although the insulating field of permanent magnets is highly nonuniform, it made it possible to extend the range of accelerating voltages to U = 200 kV and raise the neutron yield to Q = 107 in the first design. The nonuniform field structure is less prominent in the device with pulsed magnetic insulation, which demonstrated efficient deuteron acceleration with currents up to 1 kA at U = 400 kV. The predicted neutron yield is as high as 109 neutrons/pulse.
Modeling multi-GeV class laser-plasma accelerators with INF&RNO
NASA Astrophysics Data System (ADS)
Benedetti, Carlo; Schroeder, Carl; Bulanov, Stepan; Geddes, Cameron; Esarey, Eric; Leemans, Wim
2016-10-01
Laser plasma accelerators (LPAs) can produce accelerating gradients on the order of tens to hundreds of GV/m, making them attractive as compact particle accelerators for radiation production or as drivers for future high-energy colliders. Understanding and optimizing the performance of LPAs requires detailed numerical modeling of the nonlinear laser-plasma interaction. We present simulation results, obtained with the computationally efficient, PIC/fluid code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde), concerning present (multi-GeV stages) and future (10 GeV stages) LPA experiments performed with the BELLA PW laser system at LBNL. In particular, we will illustrate the issues related to the guiding of a high-intensity, short-pulse, laser when a realistic description for both the laser driver and the background plasma is adopted. Work Supported by the U.S. Department of Energy under contract No. DE-AC02-05CH11231.
Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.
1984-01-01
A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.
Solid state RF power: The route to 1W per euro cent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heid, Oliver
2013-04-19
In most particle accelerators RF power is a decisive design constraint due to high costs and relative inflexibility of current electron beam based RF sources, i.e. Klystrons, Magnetrons, Tetrodes etc. At VHF/UHF frequencies the transition to solid state devices promises to fundamentally change the situation. Recent progress brings 1 Watt per Euro cent installed cost within reach. We present a Silicon Carbide semiconductor solution utilising the Solid State Direct Drive technology at unprecedented efficiency, power levels and power densities. The proposed solution allows retrofitting of existing RF accelerators and opens the route to novel particle accelerator concepts.
Kinetic Simulations of Particle Acceleration at Shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caprioli, Damiano; Guo, Fan
2015-07-16
Collisionless shocks are mediated by collective electromagnetic interactions and are sources of non-thermal particles and emission. The full particle-in-cell approach and a hybrid approach are sketched, simulations of collisionless shocks are shown using a multicolor presentation. Results for SN 1006, a case involving ion acceleration and B field amplification where the shock is parallel, are shown. Electron acceleration takes place in planetary bow shocks and galaxy clusters. It is concluded that acceleration at shocks can be efficient: >15%; CRs amplify B field via streaming instability; ion DSA is efficient at parallel, strong shocks; ions are injected via reflection and shockmore » drift acceleration; and electron DSA is efficient at oblique shocks.« less
Transfection microarray and the applications.
Miyake, Masato; Yoshikawa, Tomohiro; Fujita, Satoshi; Miyake, Jun
2009-05-01
Microarray transfection has been extensively studied for high-throughput functional analysis of mammalian cells. However, control of efficiency and reproducibility are the critical issues for practical use. By using solid-phase transfection accelerators and nano-scaffold, we provide a highly efficient and reproducible microarray-transfection device, "transfection microarray". The device would be applied to the limited number of available primary cells and stem cells not only for large-scale functional analysis but also reporter-based time-lapse cellular event analysis.
Parallel discontinuous Galerkin FEM for computing hyperbolic conservation law on unstructured grids
NASA Astrophysics Data System (ADS)
Ma, Xinrong; Duan, Zhijian
2018-04-01
High-order resolution Discontinuous Galerkin finite element methods (DGFEM) has been known as a good method for solving Euler equations and Navier-Stokes equations on unstructured grid, but it costs too much computational resources. An efficient parallel algorithm was presented for solving the compressible Euler equations. Moreover, the multigrid strategy based on three-stage three-order TVD Runge-Kutta scheme was used in order to improve the computational efficiency of DGFEM and accelerate the convergence of the solution of unsteady compressible Euler equations. In order to make each processor maintain load balancing, the domain decomposition method was employed. Numerical experiment performed for the inviscid transonic flow fluid problems around NACA0012 airfoil and M6 wing. The results indicated that our parallel algorithm can improve acceleration and efficiency significantly, which is suitable for calculating the complex flow fluid.
NASA Astrophysics Data System (ADS)
Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.
2018-04-01
High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Mark
Plasma wakefield acceleration has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider is the focus of FACET, a National User Facility at SLAC. The existing FACET National User Facility uses part of SLAC’s two-mile-long linear accelerator to generate high-density beams of electrons and positrons. FACET-II is a new test facility to develop advanced acceleration and coherent radiationmore » techniques with high-energy electron and positron beams. It is the only facility in the world with high energy positron beams. FACET-II provides a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique. It will synergistically pursue accelerator science that is vital to the future of both advanced acceleration techniques for High Energy Physics, ultra-high brightness beams for Basic Energy Science, and novel radiation sources for a wide variety of applications. The design parameters for FACET-II are set by the requirements of the plasma wakefield experimental program. To drive the plasma wakefield requires a high peak current, in excess of 10kA. To reach this peak current, the electron and positron design bunch size is 10μ by 10μ transversely with a bunch length of 10μ. This is more than 200 times better than what has been achieved at the existing FACET. The beam energy is 10 GeV, set by the Linac length available and the repetition rate is up to 30 Hz. The FACET-II project is scheduled to be constructed in three major stages. Components of the project discussed in detail include the following: electron injector, bunch compressors and linac, the positron system, the Sector 20 sailboat and W chicanes, and experimental area and infrastructure.« less
Implementing Molecular Dynamics on Hybrid High Performance Computers - Three-Body Potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Yamada, Masako
The use of coprocessors or accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power re- quirements. Hybrid high-performance computers, defined as machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. Although there has been extensive research into methods to efficiently use accelerators to improve the performance of molecular dynamics (MD) employing pairwise potential energy models, little is reported in the literature for models that includemore » many-body effects. 3-body terms are required for many popular potentials such as MEAM, Tersoff, REBO, AIREBO, Stillinger-Weber, Bond-Order Potentials, and others. Because the per-atom simulation times are much higher for models incorporating 3-body terms, there is a clear need for efficient algo- rithms usable on hybrid high performance computers. Here, we report a shared-memory force-decomposition for 3-body potentials that avoids memory conflicts to allow for a deterministic code with substantial performance improvements on hybrid machines. We describe modifications necessary for use in distributed memory MD codes and show results for the simulation of water with Stillinger-Weber on the hybrid Titan supercomputer. We compare performance of the 3-body model to the SPC/E water model when using accelerators. Finally, we demonstrate that our approach can attain a speedup of 5.1 with acceleration on Titan for production simulations to study water droplet freezing on a surface.« less
Kinematic Diversity in Rorqual Whale Feeding Mechanisms.
Cade, David E; Friedlaender, Ari S; Calambokidis, John; Goldbogen, Jeremy A
2016-10-10
Rorqual whales exhibit an extreme lunge filter-feeding strategy characterized by acceleration to high speed and engulfment of a large volume of prey-laden water [1-4]. Although tagging studies have quantified the kinematics of lunge feeding, the timing of engulfment relative to body acceleration has been modeled conflictingly because it could never be directly measured [5-7]. The temporal coordination of these processes has a major impact on the hydrodynamics and energetics of this high-cost feeding strategy [5-9]. If engulfment and body acceleration are temporally distinct, the overall cost of this dynamic feeding event would be minimized. However, greater temporal overlap of these two phases would theoretically result in higher drag and greater energetic costs. To address this discrepancy, we used animal-borne synchronized video and 3D movement sensors to quantify the kinematics of both the skull and body during feeding events. Krill-feeding blue and humpback whales exhibited temporally distinct acceleration and engulfment phases, with humpback whales reaching maximum gape earlier than blue whales. In these whales, engulfment coincided largely with body deceleration; however, humpback whales pursuing more agile fish demonstrated highly variable coordination of skull and body kinematics in the context of complex prey-herding techniques. These data suggest that rorquals modulate the coordination of acceleration and engulfment to optimize foraging efficiency by minimizing locomotor costs and maximizing prey capture. Moreover, this newfound kinematic diversity observed among rorquals indicates that the energetic efficiency of foraging is driven both by the whale's engulfment capacity and the comparative locomotor capabilities of predator and prey. VIDEO ABSTRACT. Copyright © 2016 Elsevier Ltd. All rights reserved.
Combination free electron and gaseous laser
Brau, Charles A.; Rockwood, Stephen D.; Stein, William E.
1980-01-01
A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.
Green's function methods in heavy ion shielding
NASA Technical Reports Server (NTRS)
Wilson, John W.; Costen, Robert C.; Shinn, Judy L.; Badavi, Francis F.
1993-01-01
An analytic solution to the heavy ion transport in terms of Green's function is used to generate a highly efficient computer code for space applications. The efficiency of the computer code is accomplished by a nonperturbative technique extending Green's function over the solution domain. The computer code can also be applied to accelerator boundary conditions to allow code validation in laboratory experiments.
Vectorized algorithms for spiking neural network simulation.
Brette, Romain; Goodman, Dan F M
2011-06-01
High-level languages (Matlab, Python) are popular in neuroscience because they are flexible and accelerate development. However, for simulating spiking neural networks, the cost of interpretation is a bottleneck. We describe a set of algorithms to simulate large spiking neural networks efficiently with high-level languages using vector-based operations. These algorithms constitute the core of Brian, a spiking neural network simulator written in the Python language. Vectorized simulation makes it possible to combine the flexibility of high-level languages with the computational efficiency usually associated with compiled languages.
Kwiatkowski, Piotr; Cholewiak, Agnieszka; Kasztelan, Adrian
2014-11-21
A very effective high-pressure-induced acceleration of asymmetric organocatalytic conjugate addition of nitromethane to sterically congested β,β-disubstituted β-CF3 enones has been developed. A combination of pressure (8-10 kbar) and noncovalent catalysis with low-loading of chiral tertiary amine-thioureas (0.5-3 mol %) is shown to provide very efficient access to a wide range of γ-nitroketones containing trifluoromethylated all-carbon quaternary stereogenic centers in the β-position (80-97%, 92-98% ee).
Airfoil shape for flight at subsonic speeds
Whitcomb, Richard T.
1976-01-01
An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.
NASA Astrophysics Data System (ADS)
Gales, S.
2015-10-01
Extreme Light Infrastructure (ELI) is a pan European research initiative selected on the European Strategy Forum on Research Infrastructures Roadmap that aims to close the gap between the existing laboratory-based laser driven research and international facility-grade research centre. The ELI-NP facility, one of the three ELI pillars under construction, placed in Romania and to be operational in 2018, has as core elements a couple of new generation 10 PW laser systems and a narrow bandwidth Compton backscattering gamma source with photon energies up to 19 MeV. ELI-NP will address nuclear photonics, nuclear astrophysics and quantum electrodynamics involving extreme photon fields. Prospective applications of high power laser in nuclear astrophysics, accelerator physics, in particular towards future Accelerator Driven System, as well as in nuclear photonics, for detection and characterization of nuclear material, and for nuclear medicine, will be discussed. Key issues in these research areas will be at reach with significant increase of the repetition rates and of the efficiency at the plug of the high power laser systems as proposed by the ICAN collaboration.
2017-01-01
Thermally activated delayed fluorescence (TADF) materials have shown great potential for highly efficient organic light-emitting diodes (OLEDs). While the current molecular design of TADF materials primarily focuses on combining donor and acceptor units, we present a novel system based on the use of excited-state intramolecular proton transfer (ESIPT) to achieve efficient TADF without relying on the well-established donor–acceptor scheme. In an appropriately designed acridone-based compound with intramolecular hydrogen bonding, ESIPT leads to separation of the highest occupied and lowest unoccupied molecular orbitals, resulting in TADF emission with a photoluminescence quantum yield of nearly 60%. High external electroluminescence quantum efficiencies of up to 14% in OLEDs using this emitter prove that efficient triplet harvesting is possible with ESIPT-based TADF materials. This work will expand and accelerate the development of a wide variety of TADF materials for high performance OLEDs. PMID:28776019
NASA Astrophysics Data System (ADS)
Birx, Daniel
1992-03-01
Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.
Laser and optical system for laser assisted hydrogen ion beam stripping at SNS
Liu, Y.; Rakhman, A.; Menshov, A.; ...
2016-12-01
A high-efficiency laser assisted hydrogen ion (H-) beam stripping was recently successfully carried out in the Spallation Neutron Source (SNS) accelerator. The experiment was not only an important step toward foil-less H- stripping for charge exchange injection, it also set up a first example of using megawatt ultraviolet (UV) laser source in an operational high power proton accelerator facility. This study reports in detail the design, installation, and commissioning result of a macro-pulsed multi-megawatt UV laser system and laser beam transport line for the laser stripping experiment.
Laser and optical system for laser assisted hydrogen ion beam stripping at SNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Rakhman, A.; Menshov, A.
A high-efficiency laser assisted hydrogen ion (H-) beam stripping was recently successfully carried out in the Spallation Neutron Source (SNS) accelerator. The experiment was not only an important step toward foil-less H- stripping for charge exchange injection, it also set up a first example of using megawatt ultraviolet (UV) laser source in an operational high power proton accelerator facility. This study reports in detail the design, installation, and commissioning result of a macro-pulsed multi-megawatt UV laser system and laser beam transport line for the laser stripping experiment.
Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPointe, M.A.; Hirshfield, J.L.; Hirshfield, J.L.
1999-06-01
Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96{percent}. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications. {copyright} {ital 1999 American Institute of Physics.}« less
Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source
NASA Astrophysics Data System (ADS)
Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Boulware, C. H.; Grimm, T. L.; Hayes, T.; Litvinenko, Vladimir N.; Mernick, K.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Severino, F.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Xiao, B.; Xie, H.; Zaltsman, A.
2016-09-01
High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment. The gun utilizes a quarter-wave resonator geometry for assuring beam dynamics and uses high quantum efficiency multi-alkali photocathodes for generating electrons.
Dubrovskiĭ, V I; Razumov, A N; Liadov, K V; Babkin, A P; Dubrovskaia, A V
2009-01-01
The objective of the present study was to evaluate the possibility of accelerating adaptation and acclimation of 106 athletes aged from 18 to 34 years to hot and moist conditions by combined treatment including consumption of a special drink and cryomassage including the use of aromatic oils. It was shown that the proposed approach proved highly efficient in that it accelerates acclimatization and adaptation to hot and moist climate.
Microstructured snow targets for high energy quasi-monoenergetic proton acceleration
NASA Astrophysics Data System (ADS)
Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Baspaly, A.; Pomerantz, I.; Abricht, F.; Branzel, J.; Priebe, G.; Steinke, S.; Andreev, A.; Schnuerer, M.; Sandner, W.; Gordon, D.; Sprangle, P.; Ledingham, K. W. D.; Zigler, A.
2013-05-01
Compact size sources of high energy protons (50-200MeV) are expected to be key technology in a wide range of scientific applications 1-8. One promising approach is the Target Normal Sheath Acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Another approach is the Break-Out Afterburner (BOA) scheme which is a more efficient acceleration scheme but requires an extremely clean pulse with contrast ratio of above 10-10. Increasing the energy of the accelerated protons using modest energy laser sources is a very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13 but no significant enhancement of the accelerated proton energy was measured. Here we report on the generation of up to 20MeV by a modest (5TW) laser system interacting with a microstructured snow target deposited on a Sapphire substrate. This scheme relax also the requirement of high contrast ratio between the pulse and the pre-pulse, where the latter produces the highly structured plasma essential for the interaction process. The plasma near the tip of the snow target is subject to locally enhanced laser intensity with high spatial gradients, and enhanced charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. PIC simulations of this targets reproduce the experimentally measured energy scaling and predict the generation of 150 MeV protons from laser power of 100TW laser system18.
Schwarz, S; Bollen, G; Johnson, M; Kester, O; Kostin, M; Ottarson, J; Portillo, M; Wilson, C; López-Urrutia, J R Crespo; Dilling, J
2010-02-01
NSCL is currently constructing the ReA3 reaccelerator, which will accelerate rare isotopes obtained from gas stopping of fast-fragment beams to energies of up to 3 MeV/u for uranium and higher for lighter ions. A high-current charge breeder, based on an electron beam ion trap (EBIT), has been chosen as the first step in the acceleration process, as it has the potential to efficiently produce highly charged ions in a single charge state. These ions are fed into a compact linear accelerator consisting of a radio frequency quadrupole structure and superconducting cavities. The NSCL EBIT has been fully designed with most of the parts constructed. The design concept of the EBIT and results from initial commissioning tests of the electron gun and collector with a temporary 0.4 T magnet are presented.
NASA Technical Reports Server (NTRS)
Komatsu, G. K.; Stellen, J. M., Jr.
1976-01-01
Measurements have been made of the high energy thrust ions, (Group I), high angle/high energy ions (Group II), and high angle/low energy ions (Group IV) of a mercury electron bombardment thruster in the angular divergence range from 0 deg to greater than 90 deg. The measurements have been made as a function of thrust ion current, propellant utilization efficiency, bombardment discharge voltage, screen and accelerator grid potential (accel-decel ratio) and neutralizer keeper potential. The shape of the Group IV (charge exchange) ion plume has remained essentially fixed within the range of variation of the engine operation parameters. The magnitude of the charge exchange ion flux scales with thrust ion current, for good propellant utilization conditions. For fixed thrust ion current, charge exchange ion flux increases for diminishing propellant utilization efficiency. Facility effects influence experimental accuracies within the range of propellant utilization efficiency used in the experiments. The flux of high angle/high energy Group II ions is significantly diminished by the use of minimum decel voltages on the accelerator grid. A computer model of charge exchange ion production and motion has been developed. The program allows computation of charge exchange ion volume production rate, total production rate, and charge exchange ion trajectories for "genuine" and "facilities effects" particles. In the computed flux deposition patterns, the Group I and Group IV ion plumes exhibit a counter motion.
Efficiency equations of the railgun
NASA Astrophysics Data System (ADS)
Sadedin, D. R.
1984-03-01
The feasibility of an employment of railguns for large scale applications, such as space launching, will ultimately be determined by efficiency considerations. The present investigation is concerned with the calculation of the efficiencies for constant current railguns. Elementary considerations are discussed, taking into account a simple condition for high efficiency, the magnetic field of the rails, and the acceleration force on the projectile. The loss in a portion of the rails is considered along with rail loss comparisons, applications to the segmented gun, rail losses related to the constant resistance per unit length, efficiency expressions, and arc, or muzzle voltage energy.
Theoretical performance of plasma driven railguns
NASA Astrophysics Data System (ADS)
Thio, Y. C.; McNab, I. R.; Condit, W. C.
1983-07-01
The overall efficiency of a railgun launch system is the product of efficiencies of its subsystems: prime mover, energy storage, pulse forming network, and accelerator. In this paper, the efficiency of the accelerator is examined in terms of the processes occurring in the accelerator. The principal loss mechanisms include Joule heating in the plasma, in the rails, kinetic energy of the driving plasma and magnetic energy remaining in the accelerator after projectile exit. The mass of the plasma and the atomic weight of the ionic species are important parameters in determining the energy loss in the plasma. Techniques are developed for selecting these parameters of minimize this loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-12-01
While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management,more » energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.« less
Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas
Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.
2015-01-01
Table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ∼5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (∼1012 V m−1) and magnetic (∼104 T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science. PMID:26657147
Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas
Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; ...
2015-12-11
Here, table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~10 12 V m –1) and magnetic (~10 4 T)more » fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.« less
NASA Astrophysics Data System (ADS)
Xu, Yanxia; Wang, Jiaxiang; Hora, Heinrich; Qi, Xin; Xing, Yifan; Yang, Lei; Zhu, Wenjun
2018-04-01
A new scheme of plasma block acceleration based upon the interaction between double targets and an ultra-intense linearly polarized laser pulse with intensity I ˜ 1022 W/cm2 is investigated via two-dimensional particle-in-cell simulations. The targets are composed of a pre-target of low-density aluminium plasma and an overdense main-target of hydrogen plasma. Through intensive parameter optimization, we have observed highly efficient plasma block accelerations with a monochromatic proton beam peaked at GeVs. The underlying mechanism is attributed to the enhancement of the charge separation field due to the properly selected pre-target.
EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra
NASA Technical Reports Server (NTRS)
Chupp, Edward L.
1997-01-01
UNH was assigned the responsibility to use their accelerator neutron measurements to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution. Direct accelerator-based measurements by UNH of the energy-dependent efficiencies for detecting neutrons with energies from 36 to 720 MeV in NaI were compared with Monte Carlo TASC calculations. The calculated TASC efficiencies are somewhat lower (by about 20%) than the accelerator results in the energy range 70-300 MeV. The measured energy-loss spectrum for 207 MeV neutron interactions in NaI were compared with the Monte Carlo response for 200 MeV neutrons in the TASC indicating good agreement. Based on this agreement, the simulation was considered to be sufficiently accurate to generate a neutron response library to be used by UNH in modifying the TASC fitting program to include a neutron component in the flare spectrum modeling. TASC energy-loss data on the 1991 June 11 flare was transferred to UNH. Also included appendix: Gamma-rays and neutrons as a probe of flare proton spectra: the solar flare of 11 June 1991.
Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.
2004-01-01
The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center, working with the Jet Propulsion Laboratory, has developed and demonstrated a fabrication technique using the VPS process to form anode and cathode sections for a Lorentz force accelerator made from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and deposits the molten metal powder onto a mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions for the inside surface of the anode or cathode of the accelerator. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of Lorentz force accelerator components.
NASA Technical Reports Server (NTRS)
Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory
2012-01-01
Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil. geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma acceleration processes.
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; ...
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less
Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question
Yang, X.; Brunetti, E.; Gil, D. Reboredo; Welsh, G. H.; Li, F. Y.; Cipiccia, S.; Ersfeld, B.; Grant, D. W.; Grant, P. A.; Islam, M. R.; Tooley, M. P.; Vieux, G.; Wiggins, S. M.; Sheng, Z. M.; Jaroszynski, D. A.
2017-01-01
Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators. PMID:28281679
SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thatcher, T; Madsen, S; Sudowe, R
2015-06-15
Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cmmore » solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.« less
Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.
2015-01-01
High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25–30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018 W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048
Electron Surfing Acceleration in High Mach Number Shocks
NASA Astrophysics Data System (ADS)
Hoshino, M.; Amano, T.; Matsumoto, Y.
2016-12-01
Many energetic events associated with shock waves have been argued in this context of the diffusive shock acceleration (DSA), and the origin of high-energy particles observed in astrophysical shocks are believed to be attributed to DSA. However, electron nonthermal acceleration still remains an unresolved issue of considerable interest. While cosmic rays of supernova remnant shocks with power-law spectra are believed to be produced by DSA, energetic electrons with a power-law energy spectrum are rarely ever observed at interplanetary shocks and at planetary bow shocks (e.g., Lario et al. 2003), and the diffusive-type acceleration seems to be necessarily malfunctioning in the heliosphere. The malfunctioning reason is thought to be a lack of pre-acceleration mechanism of supra-thermal electrons.In this presentation, we propose that the supra-thermal electrons can be generated by the mechanism of shock surfing acceleration (SSA) in a high Mach number magnetosonic shock. In the surfing mechanism, a series of large-amplitude electrostatic waves are excited by Buneman instability in the foot region under the interaction between the reflected ions and the incoming electrons, and it is argued that the electrons trapped in the electrostatic waves can be accelerated up to a relativistic energy (Hoshino and Shimada, 2002). Since the electron SSA has been studied based on one- or two-dimensional PIC simulations so far, SSA in three-dimensional system is questionable and remains an open question. We discuss based on our theoretical model and three-dimensional PIC simulation with a high-performance computing that the efficiency of SSA in three-dimensional system remains amazingly strong and plays an important role on the electron pre-acceleration/injection problem.
PBFA II, a 100 TW Pulsed Power Driver for the Inertial Confinement Fusion Program
1985-06-01
providing a 30 MV, 15 ns output pulse,which accelerates lithium ions. The ions will focus onto a pellet containing deuterium-tritium, producing fusion ... energy . Several research areas will be reviewed: low jitter, highly reliable 370 kJ Marx generators; highly synchronized gas switching at 5 MV; efficient
Channeling technique to make nanoscale ion beams
NASA Astrophysics Data System (ADS)
Biryukov, V. M.; Bellucci, S.; Guidi, V.
2005-04-01
Particle channeling in a bent crystal lattice has led to an efficient instrument for beam steering at accelerators [Biryukov et al., Crystal Channeling and its Application at High Energy Accelerators, Springer, Berlin, 1997], demonstrated from MeV to TeV energies. In particular, crystal focusing of high-energy protons to micron size has been demonstrated at IHEP with the results well in match with Lindhard (critical angle) prediction. Channeling in crystal microstructures has been proposed as a unique source of a microbeam of high-energy particles [Bellucci et al., Phys. Rev. ST Accel. Beams 6 (2003) 033502]. Channeling in nanostructures (single-wall and multi-wall nanotubes) offers the opportunities to produce ion beams on nanoscale. Particles channeled in a nanotube (with typical diameter of about 1 nm) are trapped in two dimensions and can be steered (deflected, focused) with the efficiency similar to that of crystal channeling or better. This technique has been a subject of computer simulations, with experimental efforts under way in several high-energy labs, including IHEP. We present the theoretical outlook for making channeling-based nanoscale ion beams and report the experience with crystal-focused microscale proton beams.
Gow, J.D.
1961-01-10
An extremely compact two-terminal gaseous discharge device is described that is capable of producing neutrons in copious quantities, relatively high energy ions, intense x rays, and the like. Principal novelty resides in the provision of a crossed electric-magnetic field region in the discharge envelope that traps electrons and accelerates them to very high energies to provide an intense ionizing medium adjacent the anode of the device for ionizing gas therein with extremely high efficiency. In addition, the crossed-field trapping region holds the electrons close to the anode whereby the acceleration of ions to the cathode is not materially effected by the electron sheath and the ions assume substantially the full energy of the anodecathode potential drop. (auth)
A centrifuge CO2 pellet cleaning system
NASA Technical Reports Server (NTRS)
Foster, C. A.; Fisher, P. W.; Nelson, W. D.; Schechter, D. E.
1995-01-01
An advanced turbine/CO2 pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory (ORNL). The program, sponsored by Warner Robins Air Logistics Center (ALC), Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air 'sandblast' pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting and by combining the use of environmentally benign solvents with the pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies.
Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang; Song, Junhua; Xia, Haibing; Du, Dan; Lin, Yuehe
2016-10-01
To accelerate hydrogel formation and further simplify the synthetic procedure, a series of MCu (M = Pd, Pt, and Au) bimetallic aerogels is synthesized from the in situ reduction of metal precursors through enhancement of the gelation kinetics at elevated temperature. Moreover, the resultant PdCu aerogel with ultrathin nanowire networks exhibits excellent electrocatalytic performance toward ethanol oxidation, holding promise in fuel-cell applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High energy neutrinos and gamma-ray emission from supernovae in compact star clusters
NASA Astrophysics Data System (ADS)
Bykov, A. M.; Ellison, D. C.; Gladilin, P. E.; Osipov, S. M.
2017-01-01
Compact clusters of young massive stars are observed in the Milky Way and in starburst galaxies. The compact clusters with multiple powerful winds of young massive stars and supernova shocks are favorable sites for high-energy particle acceleration. We argue that expanding young supernova (SN) shells in compact stellar clusters can be very efficient PeV CR accelerators. At a stage when a supernova shock is colliding with collective fast winds from massive stars in a compact cluster the Fermi mechanism allows particle acceleration to energies well above the standard limits of diffusive shock acceleration in an isolated SNR. The energy spectrum of protons in such an accelerator is a hard power-law with a broad spectral upturn above TeV before a break at multi-PeV energies, providing a large energy flux in the high-energy end of the spectrum. The acceleration stage in the colliding shock flow lasts for a few hundred years after the supernova explosion producing high-energy CRs that escape the accelerator and diffuse through the ambient matter producing γ-rays and neutrinos in inelastic nuclear collisions. In starburst galaxies a sizeable fraction of core collapse supernovae is expected to occur in compact star clusters and therefore their high energy gamma-ray and neutrino spectra in the PeV energy regime may differ strongly from that of our Galaxy. To test the model with individual sources we briefly discuss the recent H.E.S.S. detections of gamma-rays from two potential candidate sources, Westerlund 1 and HESS J1806-204 in the Milky Way. We argue that this model of compact star clusters, with typical parameters, could produce a neutrino flux sufficient to explain a fraction of the recently detected IceCube South Pole Observatory neutrinos.
Li, Mingyan; Zuo, Zhentao; Jin, Jin; Xue, Rong; Trakic, Adnan; Weber, Ewald; Liu, Feng; Crozier, Stuart
2014-03-01
Parallel imaging (PI) is widely used for imaging acceleration by means of coil spatial sensitivities associated with phased array coils (PACs). By employing a time-division multiplexing technique, a single-channel rotating radiofrequency coil (RRFC) provides an alternative method to reduce scan time. Strategically combining these two concepts could provide enhanced acceleration and efficiency. In this work, the imaging acceleration ability and homogeneous image reconstruction strategy of 4-element rotating radiofrequency coil array (RRFCA) was numerically investigated and experimental validated at 7T with a homogeneous phantom. Each coil of RRFCA was capable of acquiring a large number of sensitivity profiles, leading to a better acceleration performance illustrated by the improved geometry-maps that have lower maximum values and more uniform distributions compared to 4- and 8-element stationary arrays. A reconstruction algorithm, rotating SENSitivity Encoding (rotating SENSE), was proposed to provide image reconstruction. Additionally, by optimally choosing the angular sampling positions and transmit profiles under the rotating scheme, phantom images could be faithfully reconstructed. The results indicate that, the proposed technique is able to provide homogeneous reconstructions with overall higher and more uniform signal-to-noise ratio (SNR) distributions at high reduction factors. It is hoped that, by employing the high imaging acceleration and homogeneous imaging reconstruction ability of RRFCA, the proposed method will facilitate human imaging for ultra high field MRI. Copyright © 2013 Elsevier Inc. All rights reserved.
Electrochemical impedance spectroscopy of biofilms
USDA-ARS?s Scientific Manuscript database
Microbial activity that leads to the formation of biofilms on process equipment can accelerate corrosion, reduce heat transfer rates, and generally decrease process efficiencies. Additional concerns arise in the food and pharma industries where product quality and safety are a high priority. Pharmac...
High-energy particles associated with solar flares
NASA Technical Reports Server (NTRS)
Sakurai, K.; Klimas, A. J.
1974-01-01
High-energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial varation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badziak, J.; Rosiński, M.; Krousky, E.
2015-03-15
A novel, efficient method of generating ultra-high-pressure shocks is proposed and investigated. In this method, the shock is generated by collision of a fast plasma projectile (a macro-particle) driven by laser-induced cavity pressure acceleration (LICPA) with a solid target placed at the LICPA accelerator channel exit. Using the measurements performed at the kilojoule PALS laser facility and two-dimensional hydrodynamic simulations, it is shown that the shock pressure ∼ Gbar can be produced with this method at the laser driver energy of only a few hundred joules, by an order of magnitude lower than the energy needed for production of suchmore » pressure with other laser-based methods known so far.« less
Ma, Sanyuan; Liu, Yue; Liu, Yuanyuan; Chang, Jiasong; Zhang, Tong; Wang, Xiaogang; Shi, Run; Lu, Wei; Xia, Xiaojuan; Zhao, Ping; Xia, Qingyou
2017-04-01
Genome editing enabled unprecedented new opportunities for targeted genomic engineering of a wide variety of organisms ranging from microbes, plants, animals and even human embryos. The serial establishing and rapid applications of genome editing tools significantly accelerated Bombyx mori (B. mori) research during the past years. However, the only CRISPR system in B. mori was the commonly used SpCas9, which only recognize target sites containing NGG PAM sequence. In the present study, we first improve the efficiency of our previous established SpCas9 system by 3.5 folds. The improved high efficiency was also observed at several loci in both BmNs cells and B. mori embryos. Then to expand the target sites, we showed that two newly discovered CRISPR system, SaCas9 and AsCpf1, could also induce highly efficient site-specific genome editing in BmNs cells, and constructed an integrated CRISPR system. Genome-wide analysis of targetable sites was further conducted and showed that the integrated system cover 69,144,399 sites in B. mori genome, and one site could be found in every 6.5 bp. The efficiency and resolution of this CRISPR platform will probably accelerate both fundamental researches and applicable studies in B. mori, and perhaps other insects. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lopatin, V. S.; Remnev, G. E.; Martynenko, A. A.
2017-05-01
We have studied the collective acceleration of protons and deuterons in an electron beam emitted from plasma formed at the surface of a dielectric anode insert. The experiments were performed with a pulsed electron accelerator operating at an accelerating voltage up to 1 MV, current amplitude up to 40 kA, and pulse duration of 50 ns. Reduction of the accelerating voltage pulse front width and optimization of the diode unit and drift region ensured the formation of several annular structures in the electron beam. As a result, up to 50% of the radioactivity induced in a copper target was concentrated in a ring with 4.5-cm diameter and 0.2-cm width. The formation of high energy density in these circular traces and the appearance of an axial component of the self-generated magnetic field of the electron beam are related with the increasing efficiency of acceleration of the most intense group of ions.
NASA Astrophysics Data System (ADS)
Petruk, O.; Kopytko, B.
2016-11-01
Three approaches are considered to solve the equation which describes the time-dependent diffusive shock acceleration of test particles at the non-relativistic shocks. At first, the solution of Drury for the particle distribution function at the shock is generalized to any relation between the acceleration time-scales upstream and downstream and for the time-dependent injection efficiency. Three alternative solutions for the spatial dependence of the distribution function are derived. Then, the two other approaches to solve the time-dependent equation are presented, one of which does not require the Laplace transform. At the end, our more general solution is discussed, with a particular attention to the time-dependent injection in supernova remnants. It is shown that, comparing to the case with the dominant upstream acceleration time-scale, the maximum momentum of accelerated particles shifts towards the smaller momenta with increase of the downstream acceleration time-scale. The time-dependent injection affects the shape of the particle spectrum. In particular, (I) the power-law index is not solely determined by the shock compression, in contrast to the stationary solution; (II) the larger the injection efficiency during the first decades after the supernova explosion, the harder the particle spectrum around the high-energy cutoff at the later times. This is important, in particular, for interpretation of the radio and gamma-ray observations of supernova remnants, as demonstrated on a number of examples.
Quasi-static modeling of beam-plasma and laser-plasma interactions
NASA Astrophysics Data System (ADS)
Huang, Chengkun
Plasma wave wakefields excited by either laser or particle beams can sustain acceleration gradients three orders of magnitude larger than conventional RF accelerators. They are promising for accelerating particles in short distances for applications such as future high-energy colliders, and medical and industrial accelerators. In a Plasma Wakefield Accelerator (PWFA) or a Laser Wakefield Accelerator (LWFA), an intense particle or laser beam drives a plasma wave and generates a strong wakefield which has a phase velocity equal to the velocity of the driver. This wakefield can then be used to accelerate part of the drive beam or a separate trailing beam. The interaction between the plasma and the driver is highly nonlinear and therefore a particle description is required for computer modeling. A highly efficient, fully parallelized, fully relativistic, three-dimensional particle-in-cell code called QuickPIC for simulating plasma and laser wakefield acceleration has been developed. The model is based on the quasi-static or frozen field approximation, which assumes that the drive beam and/or the laser does not evolve during the time it takes for it to pass a plasma particle. The electromagnetic fields of the plasma wake and its associated index of refraction are then used to evolve the driver using very large time steps. This algorithm reduces the computational time by at least 2 to 3 orders of magnitude. Comparison between the new algorithm and a fully explicit model (OSIRIS) are presented. The agreement is excellent for problems of interest. Direction for future work is also discussed. QuickPIC has been used to study the "afterburner" concept. In this concept a fraction of an existing high-energy beam is separated out and used as a trailing beam with the goal that the trailing beam acquires at least twice the energy of the drive beam. Several critical issues such as the efficient transfer of energy and the stable propagation of both the drive and trailing beams in the plasma are investigated. We have simulated a 100 GeV and a 1 TeV plasma "afterburner" stages for electron beams and the results are presented. QuickPIC also has enabled us to develop a new theory for understanding the hosing instability of the drive and trailing beams. The new theory is based on a perturbation to the ion column boundary which includes relativistic effects, axial motion and the full electromagnetic character of the wake. The new theory is verified by comparing it to the simulation results. In the adiabatic long beam limit it recovers the result of previous work from fluid models.
Plasma propulsion for space applications
NASA Astrophysics Data System (ADS)
Fruchtman, Amnon
2000-04-01
The various mechanisms for plasma acceleration employed in electric propulsion of space vehicles will be described. Special attention will be given to the Hall thruster. Electric propulsion utilizes electric and magnetic fields to accelerate a propellant to a much higher velocity than chemical propulsion does, and, as a result, the required propellant mass is reduced. Because of limitations on electric power density, electric thrusters will be low thrust engines compared with chemical rockets. The large jet velocity and small thrust of electric thrusters make them most suitable for space applications such as station keeping of GEO communication satellites, low orbit drag compensation, orbit raising and interplanetary missions. The acceleration in the thruster is either thermal, electrostatic or electromagnetic. The arcjet is an electrothermal device in which the propellant is heated by an electric arc and accelerated while passing through a supersonic nozzle to a relatively low velocity. In the Pulsed Plasma Thruster a solid propellant is accelerated by a magnetic field pressure in a way that is similar in principle to pulsed acceleration of plasmas in other, very different devices, such as the railgun or the plasma opening switch. Magnetoplasmadynamic thrusters also employ magnetic field pressure for the acceleration but with a reasonable efficiency at high power only. In an ion thruster ions are extracted from a plasma through a double grid structure. Ion thrusters provide a high jet velocity but the thrust density is low due to space-charge limitations. The Hall thruster, which in recent years has enjoyed impressive progress, employs a quasi-neutral plasma, and therefore is not subject to a space-charge limit on the current. An applied radial magnetic field impedes the mobility of the electrons so that the applied potential drops across a large region inside the plasma. Methods for separately controlling the profiles of the electric and the magnetic fields will be described. The role of the sonic transition in plasma accelerators will be discussed. It will be shown that large potential drops can be localized to regions of an abrupt sonic transition in a Hall plasma. A configuration with segmented side electrodes can be used to further control the electric field profile and to increase the efficiency.
Megawatt-class free-electron laser concept for shipboard self-defense
NASA Astrophysics Data System (ADS)
Todd, Alan M. M.; Colson, William B.; Neil, George R.
1997-05-01
An efficient MW-class free electron laser (FEL) directed energy weapon (DEW) system holds promise for satisfying shipboard self-defense (SSD) requirements on future generations of Navy vessels because of the potential for high- power operation and the accessibility to all IR wavelengths. In order to meet shipboard packaging and prime power constraints, the power efficiency and high real-estate gradient achievable in a FEL driven by a superconducting rf accelerator is attractive. Configuration options and the key development issues for such a system are described.
Achieving Regional Energy Efficiency Potential in the Northeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Angelo, Laura
With this grant, NEEP sought to accelerate the adoption of energy efficiency in the Northeast and Mid-Atlantic region through regional partnership projects that bring together leadership and staff from state and local government, utilities, industry, environmental and consumer groups, and other related interests to make efficiency visible and understood, reduce energy use in buildings, speed the adoption of high efficiency products, and advance knowledge and best practices. At the time of this grant, the NEEP region included the states of Maine, New Hampshire, Vermont, Massachusetts, New York, Connecticut, Rhode Island, Washington DC, Pennsylvania, Delaware, New Jersey, and Maryland.
High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Kegong; Wu, Yuchi; Zhu, Bin
The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoidmore » the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.« less
NASA Technical Reports Server (NTRS)
Anagnostopoulos, G. C.; Sarris, E. T.; Krimigis, S. M.
1988-01-01
The efficiency of proposed shock acceleration mechanisms as they operate at the bow shock in the presence of a seed energetic particle population was examined using data from simultaneous observations of energetic solar-origin protons, carried out by the IMP 7 and 8 spacecraft in the vicinity of the quasi-parallel (dawn) and quasi-perpendicular (dusk) regions of the earth's bow shock, respectively. The results of observations (which include acceleration effects in the intensities of the energetic protons with energies as high as 4 MeV observed at the vicinity of the dusk bow shock, but no evidence for any particle acceleration at the energy equal to or above 50 keV at the dawn side of the bow shock) indicate that the acceleration of a seed particle population occurs only at the quasi-perpendicular bow shock through shock drift acceleration and that the major source of observed upstream ion populations is the leakage of magnetospheric ions of energies not less than 50 keV, rather than in situ acceleration.
Horneck, G; Schafer, M; Baltschukat, K; Weisbrod, U; Micke, U; Facius, R; Bucker, H
1989-01-01
To understand the mechanisms of accelerated heavy ions on biological matter, the responses of spores of B. subtilis to this structured high LET radiation was investigated applying two different approaches. 1) By the use of the Biostack concept, the inactivation probability as a function of radial distance to single particles' trajectory (i.e. impact parameter) was determined in space experiments as well as at accelerators using low fluences of heavy ions. It was found that spores can survive even a central hit and that the effective range of inactivation extends far beyond impact parameters where inactivation by delta-ray dose would be effective. Concerning the space experiment, the inactivation cross section exceeds those from comparable accelerator experiments by roughly a factor of 20. 2) From fluence effect curves, cross sections for inactivation and mutation induction, and the efficiency of repair processes were determined. They are influenced by the ions characteristics in a complex manner. According to dependence on LET, at least 3 LET ranges can be differentiated: A low LET range (app. < 200 keV/micrometers), where cross sections for inactivation and mutation induction follow a common curve for different ions and where repair processes are effective; an intermediate LET range of the so-called saturation cross section with negligible mutagenic and repair efficiency; and a high LET range (>1000 keV/micrometers) where the biological endpoints are majorly dependent on atomic mass and energy of the ion under consideration.
Transport synthetic acceleration for long-characteristics assembly-level transport problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zika, M.R.; Adams, M.L.
2000-02-01
The authors apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, the authors take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. The main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme. The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. The authorsmore » devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, they define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. They implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; they prove that the long-characteristics discretization yields an SPD matrix. They present results of the acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly.« less
Gait switches in deep-diving beaked whales: biomechanical strategies for long-duration dives.
Martín López, Lucía Martina; Miller, Patrick J O; Aguilar de Soto, Natacha; Johnson, Mark
2015-05-01
Diving animals modulate their swimming gaits to promote locomotor efficiency and so enable longer, more productive dives. Beaked whales perform extremely long and deep foraging dives that probably exceed aerobic capacities for some species. Here, we use biomechanical data from suction-cup tags attached to three species of beaked whales (Mesoplodon densirostris, N=10; Ziphius cavirostris, N=9; and Hyperoodon ampullatus, N=2) to characterize their swimming gaits. In addition to continuous stroking and stroke-and-glide gaits described for other diving mammals, all whales produced occasional fluke-strokes with distinctly larger dorso-ventral acceleration, which we termed 'type-B' strokes. These high-power strokes occurred almost exclusively during deep dive ascents as part of a novel mixed gait. To quantify body rotations and specific acceleration generated during strokes we adapted a kinematic method combining data from two sensors in the tag. Body rotations estimated with high-rate magnetometer data were subtracted from accelerometer data to estimate the resulting surge and heave accelerations. Using this method, we show that stroke duration, rotation angle and acceleration were bi-modal for these species, with B-strokes having 76% of the duration, 52% larger body rotation and four times more surge than normal strokes. The additional acceleration of B-strokes did not lead to faster ascents, but rather enabled brief glides, which may improve the overall efficiency of this gait. Their occurrence towards the end of long dives leads us to propose that B-strokes may recruit fast-twitch fibres that comprise ∼80% of swimming muscles in Blainville's beaked whales, thus prolonging foraging time at depth. © 2015. Published by The Company of Biologists Ltd.
Optimization of a Small Scale Linear Reluctance Accelerator
NASA Astrophysics Data System (ADS)
Barrera, Thor; Beard, Robby
2011-11-01
Reluctance accelerators are extremely promising future methods of transportation. Several problems still plague these devices, most prominently low efficiency. Variables to overcoming efficiency problems are many and difficult to correlate how they affect our accelerator. The study examined several differing variables that present potential challenges in optimizing the efficiency of reluctance accelerators. These include coil and projectile design, power supplies, switching, and the elusive gradient inductance problem. Extensive research in these areas has been performed from computational and theoretical to experimental. Findings show that these parameters share significant similarity to transformer design elements, thus general findings show current optimized parameters the research suggests as a baseline for further research and design. Demonstration of these current findings will be offered at the time of presentation.
Lai, Jianping; Guo, Shaojun
2017-12-01
Nanocatalysts with high platinum (Pt) utilization efficiency are attracting extensive attention for oxygen reduction reactions (ORR) conducted at the cathode of fuel cells. Ultrathin Pt-based multimetallic nanostructures show obvious advantages in accelerating the sluggish cathodic ORR due to their ultrahigh Pt utilization efficiency. A focus on recent important developments is provided in using wet chemistry techniques for making/tuning the multimetallic nanostructures with high Pt utilization efficiency for boosting ORR activity and durability. First, new synthetic methods for multimetallic core/shell nanoparticles with ultrathin shell sizes for achieving highly efficient ORR catalysts are reviewed. To obtain better ORR activity and stability, multimetallic nanowires or nanosheets with well-defined structure and surface are further highlighted. Furthermore, ultrathin Pt-based multimetallic nanoframes that feature 3D molecularly accessible surfaces for achieving more efficient ORR catalysis are discussed. Finally, the remaining challenges and outlooks for the future will be provided for this promising research field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Testing cosmic ray acceleration with radio relics: a high-resolution study using MHD and tracers
NASA Astrophysics Data System (ADS)
Wittor, D.; Vazza, F.; Brüggen, M.
2017-02-01
Weak shocks in the intracluster medium may accelerate cosmic-ray protons and cosmic-ray electrons differently depending on the angle between the upstream magnetic field and the shock normal. In this work, we investigate how shock obliquity affects the production of cosmic rays in high-resolution simulations of galaxy clusters. For this purpose, we performed a magnetohydrodynamical simulation of a galaxy cluster using the mesh refinement code ENZO. We use Lagrangian tracers to follow the properties of the thermal gas, the cosmic rays and the magnetic fields over time. We tested a number of different acceleration scenarios by varying the obliquity-dependent acceleration efficiencies of protons and electrons, and by examining the resulting hadronic γ-ray and radio emission. We find that the radio emission does not change significantly if only quasi-perpendicular shocks are able to accelerate cosmic-ray electrons. Our analysis suggests that radio-emitting electrons found in relics have been typically shocked many times before z = 0. On the other hand, the hadronic γ-ray emission from clusters is found to decrease significantly if only quasi-parallel shocks are allowed to accelerate cosmic ray protons. This might reduce the tension with the low upper limits on γ-ray emission from clusters set by the Fermi satellite.
NASA Astrophysics Data System (ADS)
Hovey, Luke; Hughes, John P.; McCully, Curtis; Pandya, Viraj; Eriksen, Kristoffer
2018-01-01
We present results from an optical study of two young Balmer-dominated remnants of SNIa in the Large Magellanic Cloud, 0509-67.5 and 0519-69.0, in an attempt to search for signatures of efficient cosmic-ray (CR) acceleration. We combine proper motion measurements from HST with corresponding optical spectroscopic measurements of the Hα line at multiple rim positions from VLT/FORS2 and SALT/RSS and compare our results to published Balmer shock models. Analysis of the optical spectra result in broad Hα widths in the range of 1800-4000 km s-1 for twelve separate Balmer-dominated filaments that show no evidence for forbidden line emission, the corresponding shock speeds from proper motion measurements span a range of 1600-8500 km s-1. Our measured values of shock speeds and broad Hα widths in 0509-67.5 and 0519-69.0 are fit well with a Balmer shock model that does not include effects of efficient CR acceleration. We determine an upper limit of 7%/Χ (95% confidence) on the CR acceleration efficiency for our ensemble of data points, where Χ is the ionization fraction of the pre-shock gas. The upper limits on the individual remnants are 6%/Χ (0509-67.5) and 11%/Χ (0519-69.0). These upper limits are below the integrated CR acceleration efficiency in the Tycho supernova remnant, where the shocks predominantly show little Hα emission, indicating that Balmer-dominated shocks are not efficient CR accelerators.
Wu, Qi; Yuan, Huiming; Zhang, Lihua; Zhang, Yukui
2012-06-20
With the acceleration of proteome research, increasing attention has been paid to multidimensional liquid chromatography-mass spectrometry (MDLC-MS) due to its high peak capacity and separation efficiency. Recently, many efforts have been put to improve MDLC-based strategies including "top-down" and "bottom-up" to enable highly sensitive qualitative and quantitative analysis of proteins, as well as accelerate the whole analytical procedure. Integrated platforms with combination of sample pretreatment, multidimensional separations and identification were also developed to achieve high throughput and sensitive detection of proteomes, facilitating highly accurate and reproducible quantification. This review summarized the recent advances of such techniques and their applications in qualitative and quantitative analysis of proteomes. Copyright © 2012 Elsevier B.V. All rights reserved.
Electron dynamics in Hall thruster
NASA Astrophysics Data System (ADS)
Marini, Samuel; Pakter, Renato
2015-11-01
Hall thrusters are plasma engines those use an electromagnetic fields combination to confine electrons, generate and accelerate ions. Widely used by aerospace industries those thrusters stand out for its simple geometry, high specific impulse and low demand for electric power. Propulsion generated by those systems is due to acceleration of ions produced in an acceleration channel. The ions are generated by collision of electrons with propellant gas atoms. In this context, we can realize how important is characterizing the electronic dynamics. Using Hamiltonian formalism, we derive the electron motion equation in a simplified electromagnetic fields configuration observed in hall thrusters. We found conditions those must be satisfied by electromagnetic fields to have electronic confinement in acceleration channel. We present configurations of electromagnetic fields those maximize propellant gas ionization and thus make propulsion more efficient. This work was supported by CNPq.
Kim, Young-Kuk; Cho, Myung-Hoon; Song, Hyung Seon; Kang, Teyoun; Park, Hyung Ju; Jung, Moon Youn; Hur, Min Sup
2015-10-01
We investigated ion acceleration by an electrostatic shock in an exploded target irradiated by an ultrashort, circularly polarized laser pulse by means of one- and three-dimensional particle-in-cell simulations. We discovered that the laser field penetrating via relativistic transparency (RT) rapidly heated the upstream electron plasma to enable the formation of a high-speed electrostatic shock. Owing to the RT-based rapid heating and the fast compression of the initial density spike by a circularly polarized pulse, a new regime of the shock ion acceleration driven by an ultrashort (20-40 fs), moderately intense (1-1.4 PW) laser pulse is envisaged. This regime enables more efficient shock ion acceleration under a limited total pulse energy than a linearly polarized pulse with crystal laser systems of λ∼1μm.
Families of FPGA-Based Accelerators for Approximate String Matching1
Van Court, Tom; Herbordt, Martin C.
2011-01-01
Dynamic programming for approximate string matching is a large family of different algorithms, which vary significantly in purpose, complexity, and hardware utilization. Many implementations have reported impressive speed-ups, but have typically been point solutions – highly specialized and addressing only one or a few of the many possible options. The problem to be solved is creating a hardware description that implements a broad range of behavioral options without losing efficiency due to feature bloat. We report a set of three component types that address different parts of the approximate string matching problem. This allows each application to choose the feature set required, then make maximum use of the FPGA fabric according to that application’s specific resource requirements. Multiple, interchangeable implementations are available for each component type. We show that these methods allow the efficient generation of a large, if not complete, family of accelerators for this application. This flexibility was obtained while retaining high performance: We have evaluated a sample against serial reference codes and found speed-ups of from 150× to 400× over a high-end PC. PMID:21603598
Mission Assessment of the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Polzin, Kurt A.
2008-01-01
Pulsed inductive thrusters have typically been considered for future, high-power, missions requiring nuclear electric propulsion. These high-power systems, while promising equivalent or improved performance over state-of-the-art propulsion systems, presently have no planned missions for which they are well suited. The ability to efficiently operate an inductive thruster at lower energy and power levels may provide inductive thrusters near term applicability and mission pull. The Faraday Accelerator with Radio-frequency Assisted Discharge concept demonstrated potential for a high-efficiency, low-energy pulsed inductive thruster. The added benefits of energy recapture and/or pulse compression are shown to enhance the performance of the pulsed inductive propulsion system, yielding a system that con compete with and potentially outperform current state-of-the-art electric propulsion technologies. These enhancements lead to mission-level benefits associated with the use of a pulsed inductive thruster. Analyses of low-power near to mid-term missions and higher power far-term missions are undertaken to compare the performance of pulsed inductive thrusters with that delivered by state-of-the-art and development-level electric propulsion systems.
An Initial Multi-Domain Modeling of an Actively Cooled Structure
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur
1997-01-01
A methodology for the simulation of turbine cooling flows is being developed. The methodology seeks to combine numerical techniques that optimize both accuracy and computational efficiency. Key components of the methodology include the use of multiblock grid systems for modeling complex geometries, and multigrid convergence acceleration for enhancing computational efficiency in highly resolved fluid flow simulations. The use of the methodology has been demonstrated in several turbo machinery flow and heat transfer studies. Ongoing and future work involves implementing additional turbulence models, improving computational efficiency, adding AMR.
On the enhanced sampling over energy barriers in molecular dynamics simulations.
Gao, Yi Qin; Yang, Lijiang
2006-09-21
We present here calculations of free energies of multidimensional systems using an efficient sampling method. The method uses a transformed potential energy surface, which allows an efficient sampling of both low and high energy spaces and accelerates transitions over barriers. It allows efficient sampling of the configuration space over and only over the desired energy range(s). It does not require predetermined or selected reaction coordinate(s). We apply this method to study the dynamics of slow barrier crossing processes in a disaccharide and a dipeptide system.
Development of high-efficiency power amplifiers for PIP2 (Project X), Phase II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raab, Frederick
The Fermi Lab PIP II (formerly Project X) accelerator will require the generation of over a megawatt of radio-frequency (RF) power at 325 and 650 MHz. This Phase-II SBIR grant developed techniques to generate this RF power efficienly. The basis of this approach is a system comprising high-efficiency RF power amplifiers, high-efficiency class-S modulators to maintain efficiency at all power levels, and low-loss power combiners. A digital signal processor adjusts signal parameters to obtain the maximum efficiency while producing a signal of the desired amplitude and phase. Components of 4-kW prototypes were designed, assembled, and tested. The 500-W modules producemore » signals at 325 MHz with an overall efficiency of 83 percent and signals at 650 MHz with an overall efficiency of 79 percent. This efficiency is nearly double that available from conventional techniques, which makes it possible to cut the power consumption nearly in half. The system is designed to be scalable to the multi-kilowatt level and can be adapted to other DoE applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, D.; Krasheninnikov, S. I.; Luan, S. X.
The generation of super-high energetic electrons influenced by pre-plasma in relativistic intensity laser–matter interaction is studied in a one-dimensional slab approximation with particle-in-cell simulations. Different pre-plasma scale lengths and laser intensities are considered, showing an increase in both particle number and cut-off kinetic energy of electrons with the increase of pre-plasma scale length and laser intensity, the cut-off kinetic energy greatly exceeding the corresponding laser ponderomotive energy. A two-stage electron acceleration model is proposed to explain the underlying physics. The first stage is attributed to the synergetic acceleration by longitudinal electric field and counter-propagating laser pulses, and a scaling lawmore » is obtained with efficiency depending on the pre-plasma scale length and laser intensity. These electrons pre-accelerated in the first stage could build up an intense electrostatic potential barrier with maximal value several times as large as the initial electron kinetic energy. Some of the energetic electrons could be further accelerated by reflection off the electrostatic potential barrier, with their finial kinetic energies significantly higher than the values pre-accelerated in the first stage.« less
Comparison of test particle acceleration in torsional spine and fan reconnection regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosseinpour, M., E-mail: hosseinpour@tabrizu.ac.ir; Mehdizade, M.; Mohammadi, M. A.
2014-10-15
Magnetic reconnection is a common phenomenon taking place in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. Torsional spine and fan reconnections are important mechanisms proposed for steady-state three-dimensional null-point reconnection. By using the magnetic and electric fields for these regimes, we numerically investigate the features of test particle acceleration in both regimes with input parameters for the solar corona. By comparison, torsional spine reconnection is found to be more efficient than torsional fan reconnection in an acceleration of a proton to a high kinetic energy. A proton can gain as highmore » as 100 MeV of relativistic kinetic energy within only a few milliseconds. Moreover, in torsional spine reconnection, an accelerated particle can escape either along the spine axis or on the fan plane depending on its injection position. However, in torsional fan reconnection, the particle is only allowed to accelerate along the spine axis. In addition, in both regimes, the particle's trajectory and final kinetic energy depend on the injection position but adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.« less
Wu, D.; Krasheninnikov, S. I.; Luan, S. X.; ...
2016-10-03
The generation of super-high energetic electrons influenced by pre-plasma in relativistic intensity laser–matter interaction is studied in a one-dimensional slab approximation with particle-in-cell simulations. Different pre-plasma scale lengths and laser intensities are considered, showing an increase in both particle number and cut-off kinetic energy of electrons with the increase of pre-plasma scale length and laser intensity, the cut-off kinetic energy greatly exceeding the corresponding laser ponderomotive energy. A two-stage electron acceleration model is proposed to explain the underlying physics. The first stage is attributed to the synergetic acceleration by longitudinal electric field and counter-propagating laser pulses, and a scaling lawmore » is obtained with efficiency depending on the pre-plasma scale length and laser intensity. These electrons pre-accelerated in the first stage could build up an intense electrostatic potential barrier with maximal value several times as large as the initial electron kinetic energy. Some of the energetic electrons could be further accelerated by reflection off the electrostatic potential barrier, with their finial kinetic energies significantly higher than the values pre-accelerated in the first stage.« less
Yao, Xin; Liang, Junhui; Li, Yuelong; Luo, Jingshan; Shi, Biao; Wei, Changchun; Zhang, Dekun; Li, Baozhang; Ding, Yi; Zhao, Ying; Zhang, Xiaodan
2017-10-01
Intensive studies on low-temperature deposited electron transport materials have been performed to improve the efficiency of n-i-p type planar perovskite solar cells to extend their application on plastic and multijunction device architectures. Here, a TiO 2 film with enhanced conductivity and tailored band edge is prepared by magnetron sputtering at room temperature by hydrogen doping (HTO), which accelerates the electron extraction from perovskite photoabsorber and reduces charge transfer resistance, resulting in an improved short circuit current density and fill factor. The HTO film with upward shifted Fermi level guarantees a smaller loss on V OC and facilitates the growth of high-quality absorber with much larger grains and more uniform size, leading to devices with negligible hysteresis. In comparison with the pristine TiO 2 prepared without hydrogen doping, the HTO-based device exhibits a substantial performance enhancement leading to an efficiency of 19.30% and more stabilized photovoltaic performance maintaining 93% of its initial value after 300 min continuous illumination in the glove box. These properties permit the room-temperature magnetron sputtered HTO film as a promising electron transport material for flexible and tandem perovskite solar cell in the future.
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Cash, B. L.; Semones, E. J.; Yasuda, H.; Fujitaka, K.
1999-01-01
Response of thermoluminescent detectors (TLD-100) to high linear energy transfer (LET) particles has been studied using helium, carbon, silicon, and iron ions from the Heavy Ion Medical Accelerator at Chiba (Japan), iron ions from the Brookhaven National Laboratory (NY) Alternate Gradient Synchrotron, and 53, 134, 185, and 232 MeV protons from the Loma Linda accelerator. Using the measured relative (to 137Cs) dose efficiency, and measured LET spectra from a tissue equivalent proportional counter (TEPC) on 20 Space Shuttle flights, and 7 Mir flights, the underestimation of absorbed dose by these detectors has been evaluated. The dose underestimation is between 15-20% depending upon the flight inclination and shielding location. This has been confirmed by direct correlation of measured dose by TEPC and TLD-100 at a low shielded location in the Shuttle mid-deck. A comparison of efficiency- LET data with a compilation of similar data from TLD-700, shows that shapes of the two curves are nearly identical, but that the TLD-100 curve is systematically lower by about 13%, and is the major cause of dose underestimation. These results strongly suggest that TLDs used for crew dose estimation be regularly calibrated using heavy ions.
Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide
Yi, Longqing; Pukhov, Alexander; Shen, Baifei
2016-01-01
Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications. PMID:27320197
First application of calorimetric low-temperature detectors in accelerator mass spectrometry
NASA Astrophysics Data System (ADS)
Kraft, S.; Andrianov, V.; Bleile, A.; Egelhof, P.; Golser, R.; Kiseleva, A.; Kiselev, O.; Kutschera, W.; Meier, J. P.; Priller, A.; Shrivastava, A.; Steier, P.; Vockenhuber, C.
2004-03-01
For the first time, calorimetric low-temperature detectors were applied in accelerator mass spectrometry, a well-known method for determination of very small isotope ratios with high sensitivity. The aim of the experiment was to determine with high accuracy the isotope ratio of 236U/238U for several samples of natural uranium, 236U being known as a sensitive monitor for neutron flux. Measurements were performed at the VERA tandem accelerator at Vienna, Austria. The detectors consist of sapphire absorbers and superconducting transition edge thermometers operated at T≈ 1.5 K. The relative energy resolution obtained for 17.39 MeV 238U is ΔE/E=4-9×10-3, depending on the experimental conditions. This performance enabled to substantially reduce background from neighbouring isotopes and to increase the detection efficiency. Due to the high sensitivity achieved, a value of 236U/238U=6.5×10-12 could be obtained, representing the smallest 236U/238U ratio measured until now.
LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.
DOE Office of Scientific and Technical Information (OSTI.GOV)
WANG, S.; WEI, J.; BROWN, K.
2006-06-23
Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles.more » Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.« less
The Environmental Technology Verification (ETV) Program has been established to verify the performance characteristics of innovative environmental technologies and report this objective information, thus, accelerating the entrance of these new technologies into the marketplace. V...
Rodríguez, Manuel; Magdaleno, Eduardo; Pérez, Fernando; García, Cristhian
2017-03-28
Non-equispaced Fast Fourier transform (NFFT) is a very important algorithm in several technological and scientific areas such as synthetic aperture radar, computational photography, medical imaging, telecommunications, seismic analysis and so on. However, its computation complexity is high. In this paper, we describe an efficient NFFT implementation with a hardware coprocessor using an All-Programmable System-on-Chip (APSoC). This is a hybrid device that employs an Advanced RISC Machine (ARM) as Processing System with Programmable Logic for high-performance digital signal processing through parallelism and pipeline techniques. The algorithm has been coded in C language with pragma directives to optimize the architecture of the system. We have used the very novel Software Develop System-on-Chip (SDSoC) evelopment tool that simplifies the interface and partitioning between hardware and software. This provides shorter development cycles and iterative improvements by exploring several architectures of the global system. The computational results shows that hardware acceleration significantly outperformed the software based implementation.
Rodríguez, Manuel; Magdaleno, Eduardo; Pérez, Fernando; García, Cristhian
2017-01-01
Non-equispaced Fast Fourier transform (NFFT) is a very important algorithm in several technological and scientific areas such as synthetic aperture radar, computational photography, medical imaging, telecommunications, seismic analysis and so on. However, its computation complexity is high. In this paper, we describe an efficient NFFT implementation with a hardware coprocessor using an All-Programmable System-on-Chip (APSoC). This is a hybrid device that employs an Advanced RISC Machine (ARM) as Processing System with Programmable Logic for high-performance digital signal processing through parallelism and pipeline techniques. The algorithm has been coded in C language with pragma directives to optimize the architecture of the system. We have used the very novel Software Develop System-on-Chip (SDSoC) evelopment tool that simplifies the interface and partitioning between hardware and software. This provides shorter development cycles and iterative improvements by exploring several architectures of the global system. The computational results shows that hardware acceleration significantly outperformed the software based implementation. PMID:28350358
Advanced ion thruster and electrochemical launcher research
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1983-01-01
The theoretical model of orificed hollow cathode operation predicted experimentally observed cathode performance with reasonable accuracy. The deflection and divergence characteristics of ion beamlets emanating from a two grid optics system as a function of the relative offset of screen and accel grids hole axes were described. Ion currents associated with discharge chamber operation were controlled to improve ion thruster performance markedly. Limitations imposed by basic physical laws on reductions in screen grid hole size and grid spacing for ion optics systems were described. The influence of stray magnetic fields in the vicinity of a neutralizer on the performance of that neutralizer was demonstrated. The ion current density extracted from a thruster was enhanced by injecting electrons into the region between its ion accelerating grids. Theoretical analysis of the electrothermal ramjet concept of launching space bound payloads at high acceleration levels is described. The operation of this system is broken down into two phases. In the light gas gun phase the payload is accelerated to the velocity at which the ramjet phase can commence. Preliminary models of operation are examined and shown to yield overall energy efficiences for a typical Earth escape launch of 60 to 70%. When shock losses are incorporated these efficiencies are still observed to remain at the relatively high values of 40 to 50%.
NASA Astrophysics Data System (ADS)
Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo
2013-08-01
Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.
Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz
Graves, W. S.; Bessuille, J.; Brown, P.; ...
2014-12-01
A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standingwave linac and rf photoinjector powered by a single ultrastable rf transmitter at X-band rf frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. Themore » entire accelerator is approximately 1 meter long and produces hard x rays tunable over a wide range of photon energies. The colliding laser is a Yb:YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for many passes in a ringdown cavity to match the linac pulse structure. At a photon energy of 12.4 keV, the predicted x-ray flux is 5 × 10¹¹ photons/second in a 5% bandwidth and the brilliance is 2 × 10¹² photons/(sec mm² mrad² 0.1%) in pulses with rms pulse length of 490 fs. The nominal electron beam parameters are 18 MeV kinetic energy, 10 microamp average current, 0.5 microsecond macropulse length, resulting in average electron beam power of 180 W. Optimization of the x-ray output is presented along with design of the accelerator, laser, and x-ray optic components that are specific to the particular characteristics of the Compton scattered x-ray pulses.« less
Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction
NASA Astrophysics Data System (ADS)
Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.
2016-03-01
In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.
NASA Astrophysics Data System (ADS)
Chambers, Jessica; McGarry, Joseph; Ahmed, Kareem
2015-11-01
Detonation is a high energetic mode of pressure gain combustion. Detonation combustion exploits the pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. The driving mechanism of deflagrated flame acceleration to detonation is turbulence generation and induction. A fluidic jet is an innovative method for the production of turbulence intensities and flame acceleration. Compared to traditional obstacles, the jet reduces the pressure losses and heat soak effects while providing turbulence generation control. The investigation characterizes the turbulent flame-flow interactions. The focus of the study is on classifying the turbulent flame dynamics and the temporal evolution of turbulent flame regime. The turbulent flame-flow interactions are experimentally studied using a LEGO Detonation facility. Advanced high-speed laser diagnostics, particle image velocimetry (PIV), planar laser induced florescence (PLIF), and Schlieren imaging are used in analyzing the physics of the interaction and flame acceleration. Higher turbulence induction is observed within the turbulent flame after contact with the jet, leading to increased flame burning rates. The interaction with the fluidic jet results in turbulent flame transition from the thin reaction zones to the broken reaction regime.
Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source
Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; ...
2016-09-01
High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers (FELs). Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for the Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment. Lastly, the gun utilizes a quarter-wave resonator (QWR) geometrymore » for assuring beam dynamics, and uses high quantum efficiency (QE) multi-alkali photocathodes for generating electrons.« less
NASA Astrophysics Data System (ADS)
Guan, X. C.; Gong, Y.; Murata, I.; Wang, T. S.
2018-05-01
The performance of the neutron flux monitors from 20 keV to 1 MeV developed for boron neutron capture therapy (BNCT) is studied by Monte Carlo simulations using accelerator-based neutron sources (ABNSs). The results show that the performance of the neutron flux monitors is very satisfactory and they can be efficiently used in practical applications to measure the neutron fluxes from 20 keV to 1 MeV of ABNSs for BNCT to high accuracy.
NASA Astrophysics Data System (ADS)
Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Rashchikov, V. I.; Shatokhin, V. L.
2018-04-01
A model for acceleration of deuterons and generation of neutrons in a compact laser-plasma diode with electron isolation using magnetic field generated by a hollow cylindrical permanent magnet is presented. Experimental and computer-simulated neutron yields are compared for the diode structure under study. An accelerating neutron tube with a relatively high neutron generation efficiency can be constructed using suppression of electron conduction with the aid of a magnet placed in the vacuum volume.
NASA Technical Reports Server (NTRS)
Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.
Numerical Analysis of Neutral Entrainment Effect on Field-Reversed Configuration Thruster Efficiency
2014-12-01
and acceleration. Whereas such a high Isp may be highly desirable for deep space missions, the low - Earth - orbit and geosynchronous- Earth - orbit ...Due to the aforementioned factors, the optimal conditions are achieved for low -Z plasma at high (∼50 eV) temperature and in strong magnetic fields...cannot capture strongly nonequilibrium velocity distributions of charged and neutral species typical for high-energy plasma –neutral interaction . A
Annular MHD Physics for Turbojet Energy Bypass
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
2011-01-01
The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).
USDA-ARS?s Scientific Manuscript database
Microbial activity that leads to the formation of biofilms on process equipment can accelerate corrosion, reduce heat transfer rates, and generally decrease process efficiencies. Additional concerns arise in the food and pharma industries where product quality and safety are a high priority. Followi...
Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate.
Yamada, Chihaya; Kato, Souichiro; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo
2015-06-01
Anaerobic digester is one of the attractive technologies for treatment of organic wastes and wastewater, while continuous development and improvements on their stable operation with efficient organic removal are required. Particles of conductive iron oxides (e.g., magnetite) are known to facilitate microbial interspecies electron transfer (termed as electric syntrophy). Electric syntrophy has been reported to enhance methanogenic degradation of organic acids by mesophilic communities in soil and anaerobic digester. Here we investigated the effects of supplementation of conductive iron oxides (magnetite) on thermophilic methanogenic microbial communities derived from a thermophilic anaerobic digester. Supplementation of magnetite accelerated methanogenesis from acetate and propionate under thermophilic conditions, while supplementation of ferrihydrite also accelerated methanogenesis from propionate. Microbial community analysis revealed that supplementation of magnetite drastically changed bacterial populations in the methanogenic acetate-degrading cultures, in which Tepidoanaerobacter sp. and Coprothermobacter sp. dominated. These results suggest that supplementation of magnetite induce electric syntrophy between organic acid-oxidizing bacteria and methanogenic archaea and accelerate methanogenesis even under thermophilic conditions. Findings from this study would provide a possibility for the achievement of stably operating thermophilic anaerobic digestion systems with high efficiency for removal of organics and generation of CH4. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Weijun; Hong, Xueren; Xie, Baisong; Yang, Yang; Wang, Li; Tian, Jianmin; Tang, Rongan; Duan, Wenshan
2018-02-01
In order to generate high quality ion beams through a relatively uniform radiation pressure acceleration (RPA) of a common flat foil, a new scheme is proposed to overcome the curve of the target while being radiated by a single transversely Gaussian laser. In this scheme, two matched counterpropagating transversely Gaussian laser pulses, a main pulse and an auxiliary pulse, impinge on the foil target at the meantime. It is found that in the two-dimensional (2D) particle-in-cell (PIC) simulation, by the restraint of the auxiliary laser, the curve of the foil can be effectively suppressed. As a result, a high quality monoenergetic ion beam is generated through an efficient RPA of the foil target. For example, two counterpropagating transversely circularly polarized Gaussian lasers with normalized amplitudes a1=120 and a2=30 , respectively, impinge on the foil target at the meantime, a 1.3 GeV monoenergetic proton beam with high collimation is obtained finally. Furthermore, the effects on the ions acceleration with different parameters of the auxiliary laser are also investigated.
Wang, Zihao; Chen, Yu; Zhang, Jingrong; Li, Lun; Wan, Xiaohua; Liu, Zhiyong; Sun, Fei; Zhang, Fa
2018-03-01
Electron tomography (ET) is an important technique for studying the three-dimensional structures of the biological ultrastructure. Recently, ET has reached sub-nanometer resolution for investigating the native and conformational dynamics of macromolecular complexes by combining with the sub-tomogram averaging approach. Due to the limited sampling angles, ET reconstruction typically suffers from the "missing wedge" problem. Using a validation procedure, iterative compressed-sensing optimized nonuniform fast Fourier transform (NUFFT) reconstruction (ICON) demonstrates its power in restoring validated missing information for a low-signal-to-noise ratio biological ET dataset. However, the huge computational demand has become a bottleneck for the application of ICON. In this work, we implemented a parallel acceleration technology ICON-many integrated core (MIC) on Xeon Phi cards to address the huge computational demand of ICON. During this step, we parallelize the element-wise matrix operations and use the efficient summation of a matrix to reduce the cost of matrix computation. We also developed parallel versions of NUFFT on MIC to achieve a high acceleration of ICON by using more efficient fast Fourier transform (FFT) calculation. We then proposed a hybrid task allocation strategy (two-level load balancing) to improve the overall performance of ICON-MIC by making full use of the idle resources on Tianhe-2 supercomputer. Experimental results using two different datasets show that ICON-MIC has high accuracy in biological specimens under different noise levels and a significant acceleration, up to 13.3 × , compared with the CPU version. Further, ICON-MIC has good scalability efficiency and overall performance on Tianhe-2 supercomputer.
A laser-abrasive method for the cutting of enamel and dentin.
Altshuler, G B; Belikov, A V; Sinelnik, Y A
2001-01-01
This paper introduced a new method for the removal of hard dental tissue based upon the use of particles accelerated by laser irradiation, which the authors have called the laser-abrasive method. The particles used were sapphire as powder or an aqueous suspension. The effect of the products of enamel ablation was also investigated. The particles were accelerated using submillisecond pulses of Er:YAG and Nd:YAG lasers. A strobing CCD camera was used to measure the speed of the ejected particles. The additional contribution of these particles to the efficiency of laser ablation of enamel and dentin was also investigated. The results showed that the enamel particles produced by the beam-tissue interaction were also accelerated by this process of ablation and were effective in the removal of enamel and dentin. The use of an aqueous suspension of sapphire particles increased the efficiency of enamel removal threefold when compared with the use of an Er:YAG laser with water spray. The laser-abrasive method allowed for the removal of enamel and dentin at speeds approaching those of the high-speed turbine. Copyright 2001 Wiley-Liss, Inc.
Dong, Jianwu; Chen, Feng; Zhou, Dong; Liu, Tian; Yu, Zhaofei; Wang, Yi
2017-03-01
Existence of low SNR regions and rapid-phase variations pose challenges to spatial phase unwrapping algorithms. Global optimization-based phase unwrapping methods are widely used, but are significantly slower than greedy methods. In this paper, dual decomposition acceleration is introduced to speed up a three-dimensional graph cut-based phase unwrapping algorithm. The phase unwrapping problem is formulated as a global discrete energy minimization problem, whereas the technique of dual decomposition is used to increase the computational efficiency by splitting the full problem into overlapping subproblems and enforcing the congruence of overlapping variables. Using three dimensional (3D) multiecho gradient echo images from an agarose phantom and five brain hemorrhage patients, we compared this proposed method with an unaccelerated graph cut-based method. Experimental results show up to 18-fold acceleration in computation time. Dual decomposition significantly improves the computational efficiency of 3D graph cut-based phase unwrapping algorithms. Magn Reson Med 77:1353-1358, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Maintaining stable radiation pressure acceleration of ion beams via cascaded electron replenishment
NASA Astrophysics Data System (ADS)
Shen, X. F.; Qiao, B.; Chang, H. X.; Zhang, W. L.; Zhang, H.; Zhou, C. T.; He, X. T.
2017-03-01
A method to maintain ion stable radiation pressure acceleration (RPA) from laser-irradiated thin foils is proposed, where a series of high-Z nanofilms are placed behind to successively replenish co-moving electrons into the accelerating foil as electron charging stations (ECSs). Such replenishment of co-moving electrons, on the one hand, helps to keep a dynamic balance between the electrostatic pressure in the accelerating slab and the increasing laser radiation pressure with a Gaussian temporal profile at the rising front, i.e. dynamically matching the optimal condition of RPA; on the other hand, it aids in suppressing the foil Coulomb explosion due to loss of electrons induced by transverse instabilities during RPA. Two-dimensional and three-dimensional particle-in-cell simulations show that a monoenergetic Si14+ beam with a peak energy of 3.7 GeV and particle number 4.8× {10}9 (charge 11 nC) can be obtained at an intensity of 7 × 1021 W cm-2 and the conversion efficiency from laser to high energy ions is improved significantly by using the ECSs in our scheme.
NASA Astrophysics Data System (ADS)
Simonin, A.; Achard, Jocelyn; Achkasov, K.; Bechu, S.; Baudouin, C.; Baulaigue, O.; Blondel, C.; Boeuf, J. P.; Bresteau, D.; Cartry, G.; Chaibi, W.; Drag, C.; de Esch, H. P. L.; Fiorucci, D.; Fubiani, G.; Furno, I.; Futtersack, R.; Garibaldi, P.; Gicquel, A.; Grand, C.; Guittienne, Ph.; Hagelaar, G.; Howling, A.; Jacquier, R.; Kirkpatrick, M. J.; Lemoine, D.; Lepetit, B.; Minea, T.; Odic, E.; Revel, A.; Soliman, B. A.; Teste, P.
2015-11-01
Since the signature of the ITER treaty in 2006, a new research programme targeting the emergence of a new generation of neutral beam (NB) system for the future fusion reactor (DEMO Tokamak) has been underway between several laboratories in Europe. The specifications required to operate a NB system on DEMO are very demanding: the system has to provide plasma heating, current drive and plasma control at a very high level of power (up to 150 MW) and energy (1 or 2 MeV), including high performances in term of wall-plug efficiency (η > 60%), high availability and reliability. To this aim, a novel NB concept based on the photodetachment of the energetic negative ion beam is under study. The keystone of this new concept is the achievement of a photoneutralizer where a high power photon flux (~3 MW) generated within a Fabry-Perot cavity will overlap, cross and partially photodetach the intense negative ion beam accelerated at high energy (1 or 2 MeV). The aspect ratio of the beam-line (source, accelerator, etc) is specifically designed to maximize the overlap of the photon beam with the ion beam. It is shown that such a photoneutralized based NB system would have the capability to provide several tens of MW of D0 per beam line with a wall-plug efficiency higher than 60%. A feasibility study of the concept has been launched between different laboratories to address the different physics aspects, i.e. negative ion source, plasma modelling, ion accelerator simulation, photoneutralization and high voltage holding under vacuum. The paper describes the present status of the project and the main achievements of the developments in laboratories.
Treatment of foods with high-energy X rays
NASA Astrophysics Data System (ADS)
Cleland, M. R.; Meissner, J.; Herer, A. S.; Beers, E. W.
2001-07-01
The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper.
Helicon Plasma Injector and Ion Cyclotron Acceleration Development in the VASIMR Experiment
NASA Technical Reports Server (NTRS)
Squire, Jared P.; Chang, Franklin R.; Jacobson, Verlin T.; McCaskill, Greg E.; Bengtson, Roger D.; Goulding, Richard H.
2000-01-01
In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) radio frequency (rf) waves both produce the plasma and then accelerate the ions. The plasma production is done by action of helicon waves. These waves are circular polarized waves in the direction of the electron gyromotion. The ion acceleration is performed by ion cyclotron resonant frequency (ICRF) acceleration. The Advanced Space Propulsion Laboratory (ASPL) is actively developing efficient helicon plasma production and ICRF acceleration. The VASIMR experimental device at the ASPL is called VX-10. It is configured to demonstrate the plasma production and acceleration at the 10kW level to support a space flight demonstration design. The VX-10 consists of three electromagnets integrated into a vacuum chamber that produce magnetic fields up to 0.5 Tesla. Magnetic field shaping is achieved by independent magnet current control and placement of the magnets. We have generated both helium and hydrogen high density (>10(exp 18) cu m) discharges with the helicon source. ICRF experiments are underway. This paper describes the VX-10 device, presents recent results and discusses future plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eriksen, Kristoffer A.; Hughes, John P.; Badenes, Carles
2011-02-20
Supernova remnants (SNRs) have long been assumed to be the source of cosmic rays (CRs) up to the 'knee' of the CR spectrum at 10{sup 15} eV, accelerating particles to relativistic energies in their blast waves by the process of diffusive shock acceleration (DSA). Since CR nuclei do not radiate efficiently, their presence must be inferred indirectly. Previous theoretical calculations and X-ray observations show that CR acceleration significantly modifies the structure of the SNR and greatly amplifies the interstellar magnetic field. We present new, deep X-ray observations of the remnant of Tycho's supernova (SN 1572, henceforth Tycho), which reveal amore » previously unknown, strikingly ordered pattern of non-thermal high-emissivity stripes in the projected interior of the remnant, with spacing that corresponds to the gyroradii of 10{sup 14}-10{sup 15} eV protons. Spectroscopy of the stripes shows the plasma to be highly turbulent on the (smaller) scale of the Larmor radii of TeV energy electrons. Models of the shock amplification of magnetic fields produce structure on the scale of the gyroradius of the highest energy CRs present, but they do not predict the highly ordered pattern we observe. We interpret the stripes as evidence for acceleration of particles to near the knee of the CR spectrum in regions of enhanced magnetic turbulence, while the observed highly ordered pattern of these features provides a new challenge to models of DSA.« less
Nonlinear Monte Carlo model of superdiffusive shock acceleration with magnetic field amplification
NASA Astrophysics Data System (ADS)
Bykov, Andrei M.; Ellison, Donald C.; Osipov, Sergei M.
2017-03-01
Fast collisionless shocks in cosmic plasmas convert their kinetic energy flow into the hot downstream thermal plasma with a substantial fraction of energy going into a broad spectrum of superthermal charged particles and magnetic fluctuations. The superthermal particles can penetrate into the shock upstream region producing an extended shock precursor. The cold upstream plasma flow is decelerated by the force provided by the superthermal particle pressure gradient. In high Mach number collisionless shocks, efficient particle acceleration is likely coupled with turbulent magnetic field amplification (MFA) generated by the anisotropic distribution of accelerated particles. This anisotropy is determined by fast particle transport, making the problem strongly nonlinear and multiscale. Here, we present a nonlinear Monte Carlo model of collisionless shock structure with superdiffusive propagation of high-energy Fermi accelerated particles coupled to particle acceleration and MFA, which affords a consistent description of strong shocks. A distinctive feature of the Monte Carlo technique is that it includes the full angular anisotropy of the particle distribution at all precursor positions. The model reveals that the superdiffusive transport of energetic particles (i.e., Lévy-walk propagation) generates a strong quadruple anisotropy in the precursor particle distribution. The resultant pressure anisotropy of the high-energy particles produces a nonresonant mirror-type instability that amplifies compressible wave modes with wavelengths longer than the gyroradii of the highest-energy protons produced by the shock.
Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy
NASA Astrophysics Data System (ADS)
Zhu, Changsheng; Liu, Jieqiong; Zhu, Mingfang; Feng, Li
2018-03-01
In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.
Status of multijunction solar cells
NASA Technical Reports Server (NTRS)
Yeh, Y. C. M.; Chu, C. L.
1996-01-01
This paper describes Applied Solar's present activity on Multijunction (MJ) space cells. We have worked on a variety of MJ cells, both monolithic and mechanically stacked. In recent years, most effort has been directed to GaInP2/GaAs monolithic cells, grown on Ge substrates, and the status of this cell design will be reviewed here. MJ cells are in demand to provide satellite power because of the acceptance of the overwhelming importance of high efficiency to reduce the area, weight and cost of space PV power systems. The need for high efficiencies has already accelerated the production of GaAs/Ge cells, with efficiencies 18.5-19%. When users realized that MJ cells could provide higher efficiencies (from 22% to 26%) with only fractional increase in costs, the demand for production MJ cells increased rapidly. The main purpose of the work described is to transfer the MOCVD growth technology of MJ high efficiency cells to a production environment, providing all the space requirements of users.
Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; ...
2016-09-07
Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The "flares" are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. As a result, higher magnetization studies are promising and will be carried out in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan
2016-09-10
Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The “flares” are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. Higher magnetization studies are promising and will be carried out in the future.« less
RF System for the MICE Demonstration of Ionisation Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald, K.; et al.
2017-04-01
Muon accelerators offer an attractive option for a range of future particle physics experiments. They can enable high energy (TeV+) high energy lepton colliders whilst mitigating the difficulty of synchrotron losses, and can provide intense beams of neutrinos for fundamental physics experiments investigating the physics of flavor. The method of production of muon beams results in high beam emittance which must be reduced for efficient acceleration. Conventional emittance control schemes take too long, given the very short (2.2 microsecond) rest lifetime of the muon. Ionisation cooling offers a much faster approach to reducing particle emittance, and the international MICE collaborationmore » aims to demonstrate this technique for the first time. This paper will present the MICE RF system and its role in the context of the overall experiment.« less
USDA-ARS?s Scientific Manuscript database
The cost-competitive production of bio-ethanol and other biofuels is currently impeded, mostly by high cost and low efficiency of enzymatic hydrolysis of feedstock biomass and especially plant celluloses. Despite substantial reduction in the cost of production of cellulolytic enzymes in recent times...
Mixing with microwaves: solvent-free and catalyst-free synthesis of pyrazoles and diazepines
A simple and facile condensation of hydrazines/hydrazides and diamines with 1,3-diketones/β-ketoester leads to the preparation of pyrazoles and diazepines in high yields. This eco-friendly protocol is accelerated by microwave heating and efficiently carried out without any r...
NASA Technical Reports Server (NTRS)
Ellison, Donald C.; Moebius, Eberhard; Paschmann, Goetz
1990-01-01
The injection and acceleration of thermal solar wind ions at the quasi-parallel earth's bow shock during radial interplanetary magnetic field conditions is investigated. Active Magnetospheric Particle Tracer Explorers/Ion Release Module satellite observations of complete proton spectra, and of heavy ion spectra above 10 keV/Q, made on September 12, 1984 near the nose of the shock, are presented and compared to the predictions of a Monte Carlo shock simulation which includes diffusive shock acceleration. It is found that the spectral observations are in good agreement with the predictions of the simulation when it is assumed that all accelerated ions originate in the solar wind and are injected into the acceleration mechanism by thermal leakage from the downstream plasma. The efficiency, which is determined directly from the downstream observations, is high, with at least 15 percent of the solar wind energy flux going into accelerated particles. The comparisons allow constraints to be placed on the rigidity dependence of the scattering mean free path and suggest that the upstream solar wind must be slowed substantially by backstreaming accelerated ions prior to undergoing a sharp transition in the viscous subshock.
Pulsed power accelerator for material physics experiments
Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; ...
2015-09-01
We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered tomore » the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.« less
Theoretical z -pinch scaling relations for thermonuclear-fusion experiments.
Stygar, W A; Cuneo, M E; Vesey, R A; Ives, H C; Mazarakis, M G; Chandler, G A; Fehl, D L; Leeper, R J; Matzen, M K; McDaniel, D H; McGurn, J S; McKenney, J L; Muron, D J; Olson, C L; Porter, J L; Ramirez, J J; Seamen, J F; Speas, C S; Spielman, R B; Struve, K W; Torres, J A; Waisman, E M; Wagoner, T C; Gilliland, T L
2005-08-01
We have developed wire-array z -pinch scaling relations for plasma-physics and inertial-confinement-fusion (ICF) experiments. The relations can be applied to the design of z -pinch accelerators for high-fusion-yield (approximately 0.4 GJ/shot) and inertial-fusion-energy (approximately 3 GJ/shot) research. We find that (delta(a)/delta(RT)) proportional (m/l)1/4 (Rgamma)(-1/2), where delta(a) is the imploding-sheath thickness of a wire-ablation-dominated pinch, delta(RT) is the sheath thickness of a Rayleigh-Taylor-dominated pinch, m is the total wire-array mass, l is the axial length of the array, R is the initial array radius, and gamma is a dimensionless functional of the shape of the current pulse that drives the pinch implosion. When the product Rgamma is held constant the sheath thickness is, at sufficiently large values of m/l, determined primarily by wire ablation. For an ablation-dominated pinch, we estimate that the peak radiated x-ray power P(r) proportional (I/tau(i))(3/2)Rlphigamma, where I is the peak pinch current, tau(i) is the pinch implosion time, and phi is a dimensionless functional of the current-pulse shape. This scaling relation is consistent with experiment when 13 MA < or = I < or = 20 MA, 93 ns < or = tau(i) < or = 169 ns, 10 mm < or = R < or = 20 mm, 10 mm < or = l < or = 20 mm, and 2.0 mg/cm < or = m/l < or = 7.3 mg/cm. Assuming an ablation-dominated pinch and that Rlphigamma is held constant, we find that the x-ray-power efficiency eta(x) congruent to P(r)/P(a) of a coupled pinch-accelerator system is proportional to (tau(i)P(r)(7/9 ))(-1), where P(a) is the peak accelerator power. The pinch current and accelerator power required to achieve a given value of P(r) are proportional to tau(i), and the requisite accelerator energy E(a) is proportional to tau2(i). These results suggest that the performance of an ablation-dominated pinch, and the efficiency of a coupled pinch-accelerator system, can be improved substantially by decreasing the implosion time tau(i). For an accelerator coupled to a double-pinch-driven hohlraum that drives the implosion of an ICF fuel capsule, we find that the accelerator power and energy required to achieve high-yield fusion scale as tau(i)0.36 and tau(i)1.36, respectively. Thus the accelerator requirements decrease as the implosion time is decreased. However, the x-ray-power and thermonuclear-yield efficiencies of such a coupled system increase with tau(i). We also find that increasing the anode-cathode gap of the pinch from 2 to 4 mm increases the requisite values of P(a) and E(a) by as much as a factor of 2.
High performance transcription factor-DNA docking with GPU computing
2012-01-01
Background Protein-DNA docking is a very challenging problem in structural bioinformatics and has important implications in a number of applications, such as structure-based prediction of transcription factor binding sites and rational drug design. Protein-DNA docking is very computational demanding due to the high cost of energy calculation and the statistical nature of conformational sampling algorithms. More importantly, experiments show that the docking quality depends on the coverage of the conformational sampling space. It is therefore desirable to accelerate the computation of the docking algorithm, not only to reduce computing time, but also to improve docking quality. Methods In an attempt to accelerate the sampling process and to improve the docking performance, we developed a graphics processing unit (GPU)-based protein-DNA docking algorithm. The algorithm employs a potential-based energy function to describe the binding affinity of a protein-DNA pair, and integrates Monte-Carlo simulation and a simulated annealing method to search through the conformational space. Algorithmic techniques were developed to improve the computation efficiency and scalability on GPU-based high performance computing systems. Results The effectiveness of our approach is tested on a non-redundant set of 75 TF-DNA complexes and a newly developed TF-DNA docking benchmark. We demonstrated that the GPU-based docking algorithm can significantly accelerate the simulation process and thereby improving the chance of finding near-native TF-DNA complex structures. This study also suggests that further improvement in protein-DNA docking research would require efforts from two integral aspects: improvement in computation efficiency and energy function design. Conclusions We present a high performance computing approach for improving the prediction accuracy of protein-DNA docking. The GPU-based docking algorithm accelerates the search of the conformational space and thus increases the chance of finding more near-native structures. To the best of our knowledge, this is the first ad hoc effort of applying GPU or GPU clusters to the protein-DNA docking problem. PMID:22759575
Compact torus accelerator as a driver for ICF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin, M.T.; Meier, W.R.; Morse, E.C.
1986-01-01
The authors have carried out further investigations of the technical issues associated with using a compact torus (CT) accelerator as a driver for inertial confinement fusion (ICF). In a CT accelerator, a magnetically confined, torus-shaped plasma is compressed, accelerated, and focused by two concentric electrodes. After its initial formation, the torus shape is maintained for lifetimes exceeding 1 ms by inherent poloidal and toroidal currents. Hartman suggests acceleration and focusing of such a plasma ring will not cause dissolution within certain constraints. In this study, we evaluated a point design based on an available capacitor bank energy of 9.2 MJ.more » This accelerator, which was modeled by a zero-dimensional code, produces a xenon plasma ring with a 0.73-cm radius, a velocity of 4.14 x 10/sup 9/ cm/s, and a mass of 4.42 ..mu..g. The energy of the plasma ring as it leaves the accelerator is 3.8 MJ, or 41% of the capacitor bank energy. Our studies confirm the feasibility of producing a plasma ring with the characteristics required to induce fusion in an ICF target with a gain greater than 50. The low cost and high efficiency of the CT accelerator are particularly attractive. Uncertainties concerning propagation, accelerator lifetime, and power supply must be resolved to establish the viability of the accelerator as an ICF driver.« less
NASA Astrophysics Data System (ADS)
Torrisi, Lorenzo
2018-01-01
Measurements of ion acceleration in plasma produced by fs lasers at intensity of the order of 1018 W/cm2 have been performed in different European laboratories. The forward emission in target-normal-sheath-acceleration (TNSA) regime indicated that the maximum energy is a function of the laser parameters, of the irradiation conditions and of the target properties.In particular the laser intensity and contrast play an important role to maximize the ion acceleration enhancing the conversion efficiency. Also the use of suitable prepulses, focal distances and polarized laser light has important roles. Finally the target composition, surface, geometry and multilayered structure, permit to enhance the electric field driving the forward ion acceleration.Experimental measurements will be reported and discussed.
Development work for a superconducting linear collider
NASA Technical Reports Server (NTRS)
Matheisen, Axel
1995-01-01
For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in a reproducible way.
Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Vassallo, Corinne; Tadge, Megan
2015-01-01
The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.
NASA Technical Reports Server (NTRS)
Zdziarski, Andrzej A.; Lightman, Alan P.; Maciolek-Niedzwiecki, Andrzej
1993-01-01
We show that the recent observations of the Seyfert galaxy NGC 4151 in hard X-rays and soft gamma rays by the OSSE and SIGMA detectors on board CGRO and GRANAT, respectively, are well explained by a nonthermal model with acceleration of relativistic electrons at an efficiency of less than 50 percent and with the remaining power dissipated thermally in the source (the standard nonthermal e(+/-) pair model assumed 100 percent efficiency). Such an acceleration efficiency is generally expected on physical grounds. The resulting model unifies previously proposed purely thermal and purely nonthermal models. The pure nonthermal model for NGC 4151 appears to be ruled out. The pure thermal model gives a worse fit to the data than our hybrid nonthermal/thermal model.
The last large pelletron accelerator of the Herb era
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, S.; Narayanan, M. M.; Joshi, R.
1999-04-26
Prof. Ray Herb pioneered the concept and design of the tandem Pelletron accelerator in the late sixties at NEC. The 15UD Pelletron at Nuclear Science Centre (NSC), upgraded for 16MV operation using compressed geometry accelerating tubes is the last such large Pelletron. It has unique features like offset and matching quadrupoles after the stripper for charge state selection inside the high voltage terminal and consequently the option of further stripping the ion species of the selected charge states at high energy dead section, and elaborate pulsing system in the pre-acceleration region consisting of a beam chopper, a travelling wave deflector,more » a light ion buncher (1-80 amu) and a heavy ion buncher (>80 amu). NSC was established as a heavy ion accelerator based inter university centre in 1985. It became operational in July 1991 to cater to the research requirements of a large user community which at present includes about fifty universities, twenty-eight colleges and a dozen other academic institutes and research laboratories. The number of users in Materials and allied sciences is about 500. Various important modifications have been made to improve the performance of the accelerator in the last seven years. These include replacement of the corona voltage grading system by a resistor based one, a pick-up loop to monitor charging system performance, conversion from basic double unit structure to singlet, installation of a spiral cavity based phase detector system with post-accelerator stripper after the analyzing magnet, and a high efficiency multi harmonic buncher. Installation of a turbo pump based stripper gas recirculation system in the terminal is also planned. A brief description of utilization of the machine will be given.« less
Application of wavelet multi-resolution analysis for correction of seismic acceleration records
NASA Astrophysics Data System (ADS)
Ansari, Anooshiravan; Noorzad, Assadollah; Zare, Mehdi
2007-12-01
During an earthquake, many stations record the ground motion, but only a few of them could be corrected using conventional high-pass and low-pass filtering methods and the others were identified as highly contaminated by noise and as a result useless. There are two major problems associated with these noisy records. First, since the signal to noise ratio (S/N) is low, it is not possible to discriminate between the original signal and noise either in the frequency domain or in the time domain. Consequently, it is not possible to cancel out noise using conventional filtering methods. The second problem is the non-stationary characteristics of the noise. In other words, in many cases the characteristics of the noise are varied over time and in these situations, it is not possible to apply frequency domain correction schemes. When correcting acceleration signals contaminated with high-level non-stationary noise, there is an important question whether it is possible to estimate the state of the noise in different bands of time and frequency. Wavelet multi-resolution analysis decomposes a signal into different time-frequency components, and besides introducing a suitable criterion for identification of the noise among each component, also provides the required mathematical tool for correction of highly noisy acceleration records. In this paper, the characteristics of the wavelet de-noising procedures are examined through the correction of selected real and synthetic acceleration time histories. It is concluded that this method provides a very flexible and efficient tool for the correction of very noisy and non-stationary records of ground acceleration. In addition, a two-step correction scheme is proposed for long period correction of the acceleration records. This method has the advantage of stable results in displacement time history and response spectrum.
A Bayesian Model for Highly Accelerated Phase-Contrast MRI
Rich, Adam; Potter, Lee C.; Jin, Ning; Ash, Joshua; Simonetti, Orlando P.; Ahmad, Rizwan
2015-01-01
Purpose Phase-contrast magnetic resonance imaging (PC-MRI) is a noninvasive tool to assess cardiovascular disease by quantifying blood flow; however, low data acquisition efficiency limits the spatial and temporal resolutions, real-time application, and extensions to 4D flow imaging in clinical settings. We propose a new data processing approach called Reconstructing Velocity Encoded MRI with Approximate message passing aLgorithms (ReVEAL) that accelerates the acquisition by exploiting data structure unique to PC-MRI. Theory and Methods ReVEAL models physical correlations across space, time, and velocity encodings. The proposed Bayesian approach exploits the relationships in both magnitude and phase among velocity encodings. A fast iterative recovery algorithm is introduced based on message passing. For validation, prospectively undersampled data are processed from a pulsatile flow phantom and five healthy volunteers. Results ReVEAL is in good agreement, quantified by peak velocity and stroke volume (SV), with reference data for acceleration rates R ≤ 10. For SV, Pearson r ≥ 0.996 for phantom imaging (n = 24) and r ≥ 0.956 for prospectively accelerated in vivo imaging (n = 10) for R ≤ 10. Conclusion ReVEAL enables accurate quantification of blood flow from highly undersampled data. The technique is extensible to 4D flow imaging, where higher acceleration may be possible due to additional redundancy. PMID:26444911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakanotani, Masaru; Matsukiyo, Shuichi; Hada, Tohru
A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock aremore » due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.« less
Sonochemical enzyme-catalyzed regioselective acylation of flavonoid glycosides.
Ziaullah; Rupasinghe, H P Vasantha
2016-04-01
This work compares a highly efficient and alternative method of sonication-assisted lipase catalyzed acylation of quercetin-3-O-glucoside and phloretin-2'-glucoside, using Candida antarctica lipase B (Novozyme 435(®)), with a range of fatty acids. In this study, sonication-assisted irradiation coupled with stirring has been found to be more efficient and economical than conventional reaction conditions. Sonication-assisted acylation accelerated the reactions and reduced the time required by 4-5 folds. Copyright © 2016 Elsevier Inc. All rights reserved.
Novel high-energy physics studies using intense lasers and plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leemans, Wim P.; Bulanov, Stepan; Esarey, Eric
2015-06-29
In the framework of the project “Novel high-energy physics studies using intense lasers and plasmas” we conducted the study of ion acceleration and “flying mirrors” with high intensity lasers in order to develop sources of ion beams and high frequency radiation for different applications. Since some schemes of laser ion acceleration are also considered a good source of “flying mirrors”, we proposed to investigate the mechanisms of “mirror” formation. As a result we were able to study the laser ion acceleration from thin foils and near critical density targets. We identified several fundamental factors limiting the acceleration in the RPAmore » regime and proposed the target design to compensate these limitations. In the case of near critical density targets, we developed a concept for the laser driven ion source for the hadron therapy. Also we studied the mechanism of “flying mirror” generation during the intense laser interaction with thin solid density targets. As for the laser-based positron creation and capture we initially proposed to study different regimes of positron beam generation and positron beam cooling. Since the for some of these schemes a good quality electron beam is required, we studied the generation of ultra-low emittance electron beams. In order to understand the fundamental physics of high energy electron beam interaction with high intensity laser pulses, which may affect the efficient generation of positron beams, we studied the radiation reaction effects.« less
Rapid Prototyping of Microbial Cell Factories via Genome-scale Engineering
Si, Tong; Xiao, Han; Zhao, Huimin
2014-01-01
Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. PMID:25450192
Focusing particle concentrator with application to ultrafine particles
Hering, Susanne; Lewis, Gregory; Spielman, Steven R.
2013-06-11
Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.
Acceleration of Dense Flowing Plasmas using ICRF Power in the VASIMR Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Squire, Jared P.
2005-09-26
ICRF power in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept energizes ions (> 100 eV) in a diverging magnetic field to accelerate a dense ({approx} 1019 m-3) flowing plasma to velocities useful for space propulsion ({approx}100 km/s). Theory predicts that an ICRF slow wave launched from the high field side of the resonance will propagate in the magnetic beach to absorb nearly all of the power at the resonance, thus efficiently converting the RF power to ion kinetic energy. The plasma flows through the resonance only once, so the ions are accelerated in a single pass. This process hasmore » proven efficient ({approx} 70%) with an ICRF power level of 1.5 kW at about 3.6 MHz in the VASIMR experiment, VX-30, using deuterium plasma created by a helicon operating in flowing mode. We have measured ICRF plasma loading up to 2 ohms, consistent with computational predictions made using Oak Ridge National Laboratory's EMIR code. Recent helicon power upgrades (20 kW at 13.56 MHz) have enabled a 5 cm diameter target plasma for ICRF with an ion flux of over 3x10 20 s-1 and a high degree of ionization. This paper summarizes our ICRF results and presents the latest helicon developments in VX-30.« less
Higher-order ice-sheet modelling accelerated by multigrid on graphics cards
NASA Astrophysics Data System (ADS)
Brædstrup, Christian; Egholm, David
2013-04-01
Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.
Single-turn extraction from a K110 AVF cyclotron by flat-top acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurashima, Satoshi; Miyawaki, Nobumasa; Okumura, Susumu
2009-03-15
Single-turn extraction from the Japan Atomic Energy Agency AVF cyclotron with a K number of 110 using a flat-top (FT) acceleration system has been achieved to reduce the energy spread of an ion beam for microbeam formation with energy up to hundreds of MeV and to increase extraction efficiency from the cyclotron. In order to generate a FT waveform voltage using the fifth-harmonic frequency on a dee electrode, a FT resonator was designed using MAFIA code to achieve downsizing and low power consumption. The FT resonator, coupled to the main resonator through a coupling capacitor, covered the full range ofmore » the fifth harmonic frequency from 55 to 110 MHz. Various ion beams, accelerated using different acceleration harmonic modes of h=1 and 2, such as 220 MeV {sup 12}C{sup 5+} (h=2), 260 MeV {sup 20}Ne{sup 7+} (h=2), and 45 MeV H{sup +} (h=1), were developed by FT acceleration. A clear turn separation of the beam bunches was successfully observed at the extraction region of the large-scale AVF cyclotron with number of revolutions greater than 200. As a result, high extraction efficiency (over 95%) from the cyclotron was achieved. Single-turn extraction was confirmed by counting the number of beam bunches out of the cyclotron for an injected beam pulsed by a beam chopping system in the injection line. The energy spread of the 260 MeV {sup 20}Ne{sup 7+} beam was measured using an analyzing magnet, and we verified a reduction in the energy spread from {delta}E/E=0.1% to 0.05% by single-turn extraction after FT acceleration.« less
A hole accelerator for InGaN/GaN light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Zi-Hui; Liu, Wei; Tan, Swee Tiam; Ji, Yun; Wang, Liancheng; Zhu, Binbin; Zhang, Yiping; Lu, Shunpeng; Zhang, Xueliang; Hasanov, Namig; Sun, Xiao Wei; Demir, Hilmi Volkan
2014-10-01
The quantum efficiency of InGaN/GaN light-emitting diodes (LEDs) has been significantly limited by the insufficient hole injection, and this is caused by the inefficient p-type doping and the low hole mobility. The low hole mobility makes the holes less energetic, which hinders the hole injection into the multiple quantum wells (MQWs) especially when a p-type AlGaN electron blocking layer (EBL) is adopted. In this work, we report a hole accelerator to accelerate the holes so that the holes can obtain adequate kinetic energy, travel across the p-type EBL, and then enter the MQWs more efficiently and smoothly. In addition to the numerical study, the effectiveness of the hole accelerator is experimentally shown through achieving improved optical output power and reduced efficiency droop for the proposed InGaN/GaN LED.
Supernova Remnant Kes 17: An Efficient Cosmic Ray Accelerator inside a Molecular Cloud
NASA Astrophysics Data System (ADS)
Gelfand, Joseph D.; Castro, Daniel; Slane, Patrick O.; Temim, Tea; Hughes, John P.; Rakowski, Cara
2013-11-01
The supernova remnant Kes 17 (SNR G304.6+0.1) is one of a few but growing number of remnants detected across the electromagnetic spectrum. In this paper, we analyze recent radio, X-ray, and γ-ray observations of this object, determining that efficient cosmic ray acceleration is required to explain its broadband non-thermal spectrum. These observations also suggest that Kes 17 is expanding inside a molecular cloud, though our determination of its age depends on whether thermal conduction or clump evaporation is primarily responsible for its center-filled thermal X-ray morphology. Evidence for efficient cosmic ray acceleration in Kes 17 supports recent theoretical work concluding that the strong magnetic field, turbulence, and clumpy nature of molecular clouds enhance cosmic ray production in supernova remnants. While additional observations are needed to confirm this interpretation, further study of Kes 17 is important for understanding how cosmic rays are accelerated in supernova remnants.
Scintillator for low accelerating voltage scanning electron microscopy imaging
NASA Astrophysics Data System (ADS)
Bowser, Christopher; Tzolov, Marian; Barbi, Nicholas
Scintillators are essential in detecting electrons in SEM. The conventional scintillators such as YAP and YAG have poor response at low accelerating voltages due to a top conductive layer of ITO or Al. We have developed a thin film ZnWO4 scintillator with high photoluminescence quantum efficiency of 60% with enough electrical conductivity to prevent charging. We are showing that the ZnWO4 films are effective in detecting electrons at low accelerating voltages. This makes it a good option for a top layer on crystalline scintillators and we have integrated ZnWO4 with YAP to explore the high response of YAP at high electron energies and the effective response of ZnWO4 at low electron energies. We will compare the spectral intensities over a range of accelerating voltages between 1 and 30kV between the conventional and coupled thin film scintillator. The results are interpreted using a simulation of the depth profile of the electron penetration in the scintillator using CASINO. We have verified the absence of charging by measuring the sum of the secondary and backscattered electron coefficients. We have built detectors with the combined scintillators and we will compare SEM images recorded simultaneously by conventional and ZnWO4-based scintillators.
Test bed ion engine development
NASA Technical Reports Server (NTRS)
Aston, G.; Deininger, W. D.
1984-01-01
A test bed ion (TBI) engine was developed to serve as a tool in exploring the limits of electrostatic ion thruster performance. A description of three key ion engine components, the decoupled extraction and amplified current (DE-AC) accelerator system, field enhanced refractory metal (FERM) hollow cathode and divergent line cusp (DLC) discharge chamber, whose designs and operating philosophies differ markedly from conventional thruster technology is given. Significant program achievements were: (1) high current density DE-AC accelerator system operation at low electric field stress with indicated feasibility of a 60 mA/sq cm argon ion beam; (2) reliable FERM cathode start up times of 1 to 2 secs. and demonstrated 35 ampere emission levels; (3) DLC discharge chamber plasma potentials negative of anode potential; and (4) identification of an efficient high plasma density engine operating mode. Using the performance projections of this program and reasonable estimates of other parameter values, a 1.0 Newton thrust ion engine is identified as a realizable technology goal. Calculations show that such an engine, comparable in beam area to a J series 30 cm thruster, could, operating on Xe or Hg, have thruster efficiencies as high as 0.76 and 0.78 respectively, with a 100 eV/ion discharge loss.
High-efficiency and high-reliability 9xx-nm bars and fiber-coupled devices at Coherent
NASA Astrophysics Data System (ADS)
Zhou, Hailong; Kennedy, Keith; Weiss, Eli; Li, Jun; Anikitchev, Serguei; Reichert, Patrick; Du, Jihua; Schleuning, David; Nabors, David; Reed, Murray; Toivonen, Mika; Lehkonen, Sami; Haapamaa, Jouko
2006-02-01
Ongoing optimization of epitaxial design within Coherent device engineering has led to a family of high power-conversion-efficiency (PCE) products on conductively cooled packages (CCP) and fiber array packages (FAP). At a 25°C heat sink temperature, the PCE was measured at 71.5% with 75W CW output power on 30% fill-factor (FF) bars with passive cooling. At heat sink temperatures as high as 60°C the PCE of these bars is still maintained above 60%. Powered by such high efficiency 9xx nm diodes, Coherent FAP products have consistently exceeded 55% PCE up to 50W power levels, with 62% PCE demonstrated out of the fiber. High linear-power-density (LPD) operation of 100μm x 7-emitter bars at LPD = 80 mW/μm was also demonstrated. Bars with 7-emitter were measured up to 140W QCW power before catastrophic optical mirror damage (COMD) occurred, which corresponds to a COMD value of 200mW/μm or 2D facet power density of 29.4 MW/cm2. Leveraging these improvements has enabled high power FAPs with >90W CW from an 800μm-diameter fiber bundle. Extensive reliability testing has already accumulated 400,000 total real-time device hours at a variety of accelerated and non-accelerated operating conditions. A random failure rate <0.5% per kilo-hours and gradual degradation rate <0.4% per kilo-hours have been observed. For a 30% FF 50W CW 9xx nm bar, this equates to >30,000 hours of median lifetime at a 90% confidence level. More optimized 30% FF 9xx nm bars are under development for power outputs up to 80W CW with extrapolated median lifetimes greater than 20,000 hours.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
1990-01-01
A novel method of microwave power conversion to direct current is discussed that relies on a modification of well known resonant linear relativistic electron accelerator techniques. An analysis is presented that shows how, by establishing a 'slow' electromagnetic field in a waveguide, electrons liberated from an array of field emission cathodes, are resonantly accelerated to several times their rest energy, thus establishing an electric current over a large potential difference. Such an approach is not limited to the relatively low frequencies that characterize the operation of rectennas, and can, with appropriate waveguide and slow wave structure design, be employed in the 300 to 600 GHz range where much smaller transmitting and receiving antennas are needed.
SHEAR ACCELERATION IN EXPANDING FLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rieger, F. M.; Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie
Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplifymore » that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).« less
High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenzweig, James; /UCLA; Travish, Gil
Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal ofmore » demonstrating >GeV acceleration in {approx}33 cm DWA tubes. In the nearer term before FACET's commissioning, we are planning measurements at the BNL ATF, in which we drive {approx}50-200 MV/m fields with single pulses or pulse trains. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for efficient operation with pulse trains.« less
Development of high efficiency ball-bearing turbocharger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyashita, K.; Kurasawa, M.; Matsuoka, H.
1987-01-01
Turbochargers have become very popular on passenger cars since the first mass-produced turbocharged passenger cars were put on market in Japan in 1979. Turbo lag is one of the most serious problem since the first mass-production started. Several new technologies such as a variable geometry turbocharger, ceramic turbocharger, etc. have been introduced to improve acceleration performance. A variable geometry turbocharger changes the area of gas flow passage and increases exhaust gas speed at low engine speed. A ceramic turbocharger reduces inertia moment of a turbine wheel and shaft. Turbocharger mechanical efficiency has equal importance as compressor efficiency and turbine efficiency.more » This paper describes the test results of ball bearing turbochargers.« less
NASA Technical Reports Server (NTRS)
Dennis, Brian R.; Martin, Franklin D.; Prince, T.; Lin, R.; Bruner, M.; Culhane, L.; Ramaty, R.; Doschek, G.; Emslie, G.; Lingenfelter, R.
1986-01-01
The concept of the Solar High-Energy Astrophysical Plasmas Explorer (SHAPE) is studied. The primary goal is to understand the impulsive release of energy, efficient acceleration of particles to high energies, and rapid transport of energy. Solar flare studies are the centerpieces of the investigation because in flares these high energy processes can be studied in unmatched detail at most wavelenth regions of the electromagnetic spectrum as well as in energetic charged particles and neutrons.
USDA-ARS?s Scientific Manuscript database
The cost-competitive production of bio-ethanol and other biofuels is currently impeded, mostly by high cost and low efficiency of enzymatic hydrolysis of feedstock biomass and especially plant celluloses. Despite substantial reduction in the cost of production of cellulolytic enzymes in recent times...
Possible limits of plasma linear colliders
NASA Astrophysics Data System (ADS)
Zimmermann, F.
2017-07-01
Plasma linear colliders have been proposed as next or next-next generation energy-frontier machines for high-energy physics. I investigate possible fundamental limits on energy and luminosity of such type of colliders, considering acceleration, multiple scattering off plasma ions, intrabeam scattering, bremsstrahlung, and betatron radiation. The question of energy efficiency is also addressed.
An efficient magnetron transmitter for superconducting accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Lebedev, V.; Yakovlev, V.
A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron powermore » in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.« less
"Light-box" accelerated growth of poinsettias: LED-only illumination
NASA Astrophysics Data System (ADS)
Weerasuriya, Charitha; Detez, Stewart; Hock Ng, Soon; Hughes, Andrew; Callaway, Michael; Harrison, Iain; Katkus, Tomas; Juodkazis, Saulius
2018-01-01
For the current commercialized agricultural industry which requires a reduced product lead time to customer and supply all year round, an artificial light emitting diodes (LEDs)-based illumination has high potential due to high efficiency of electrical-to-light conversion. The main advantage of the deployed Red Green Blue Amber LED lighting system is colour mixing capability, which means ability to generate all the colours in the spectrum by using three or four primary colours LEDs. The accelerated plant growth was carried out in a "light-box" which was made to generate an artificial day/night cycle by moving the colour mixing ratio along the colour temperature curve of the chromaticity diagram. The control group of plants form the same initial batch was grown on the same shelf in a greenhouse at the same conditions with addition of artificial illumination by incandescent lamps for few hours. Costs and efficiency projections of LED lamps for horticultural applications is discussed together with required capital investment. The total cost of the "light-box" including LED lamps and electronics was 850 AUD.
FBILI method for multi-level line transfer
NASA Astrophysics Data System (ADS)
Kuzmanovska, O.; Atanacković, O.; Faurobert, M.
2017-07-01
Efficient non-LTE multilevel radiative transfer calculations are needed for a proper interpretation of astrophysical spectra. In particular, realistic simulations of time-dependent processes or multi-dimensional phenomena require that the iterative method used to solve such non-linear and non-local problem is as fast as possible. There are several multilevel codes based on efficient iterative schemes that provide a very high convergence rate, especially when combined with mathematical acceleration techniques. The Forth-and-Back Implicit Lambda Iteration (FBILI) developed by Atanacković-Vukmanović et al. [1] is a Gauss-Seidel-type iterative scheme that is characterized by a very high convergence rate without the need of complementing it with additional acceleration techniques. In this paper we make the implementation of the FBILI method to the multilevel atom line transfer in 1D more explicit. We also consider some of its variants and investigate their convergence properties by solving the benchmark problem of CaII line formation in the solar atmosphere. Finally, we compare our solutions with results obtained with the well known code MULTI.
An efficient magnetron transmitter for superconducting accelerators
Kazakevich, G.; Lebedev, V.; Yakovlev, V.; ...
2016-09-22
A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron powermore » in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.« less
Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thirolf, P. G.; Gross, M.; Allinger, K.
We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH{sub 2} layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of {sup 232}Th with solid-state density can be generated from a Th target and a deuterated CD{sub 2} foil, both forming the production target assembly. Laser-accelerated Thmore » ions with about 7 MeV/u will pass through a thin CH{sub 2} layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD{sub 2} layer of the production target will be accelerated as well, inducing the fission process of {sup 232}Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10{sup 14} times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 10{sup 3} ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.« less
A Concept for Directly Coupled Pulsed Electromagnetic Acceleration of Plasmas
NASA Technical Reports Server (NTRS)
Thio, Y.C. Francis; Cassibry, Jason T.; Eskridge, Richard; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Plasma jets with high momentum flux density are required for a variety of applications in propulsion research. Methods of producing these plasma jets are being investigated at NASA Marshall Space Flight Center. The experimental goal in the immediate future is to develop plasma accelerators which are capable of producing plasma jets with momentum flux density represented by velocities up to 200 km/s and ion density up to 10(exp 24) per cu m, with sufficient precision and reproducibility in their properties, and with sufficiently high efficiency. The jets must be sufficiently focused to allow them to be transported over several meters. A plasma accelerator concept is presented that might be able to meet these requirements. It is a self-switching, shaped coaxial pulsed plasma thruster, with focusing of the plasma flow by shaping muzzle current distribution as in plasma focus devices, and by mechanical tapering of the gun walls. Some 2-D MHD modeling in support of the conceptual design will be presented.
Diffusive Shock Acceleration and Turbulent Reconnection
NASA Astrophysics Data System (ADS)
Garrel, Christian; Vlahos, Loukas; Isliker, Heinz; Pisokas, Theophilos
2018-05-01
Diffusive Shock Acceleration (DSA) cannot efficiently accelerate particles without the presence of self-consistently generated or pre-existing strong turbulence (δB/B ˜ 1) in the vicinity of the shock. The problem we address in this article is: if large amplitude magnetic disturbances are present upstream and downstream of a shock then Turbulent Reconnection (TR) will set in and will participate not only in the elastic scattering of particles but also in their heating and acceleration. We demonstrate that large amplitude magnetic disturbances and Unstable Current Sheets (UCS), spontaneously formed in the strong turbulence in the vicinity of a shock, can accelerate particles as efficiently as DSA in large scale systems and on long time scales. We start our analysis with "elastic" scatterers upstream and downstream and estimate the energy distribution of particles escaping from the shock, recovering the well known results from the DSA theory. Next we analyze the additional interaction of the particles with active scatterers (magnetic disturbances and UCS) upstream and downstream of the shock. We show that the asymptotic energy distribution of the particles accelerated by DSA/TR has very similar characteristics with the one due to DSA alone, but the synergy of DSA with TR is much more efficient: The acceleration time is an order of magnitude shorter and the maximum energy reached two orders of magnitude higher. We claim that DSA is the dominant acceleration mechanism in a short period before TR is established, and then strong turbulence will dominate the heating and acceleration of the particles. In other words, the shock serves as the mechanism to set up a strongly turbulent environment, in which the acceleration mechanism will ultimately be the synergy of DSA and TR.
Injection Efficiency of Low-energy Particles at Oblique Shocks with a Focused Transport Model
NASA Astrophysics Data System (ADS)
Zuo, P.; Zhang, M.; Rassoul, H.
2013-12-01
There is strong evidence that a small portion of thermal and suprathermal particles from hot coronal material or remnants of previous solar energetic particle (SEP) events serve as the source of large SEP events (Desai et al. 2006). To build more powerful SEP models, it is necessary to model the detailed particle injection and acceleration process for source particles especially at lower energies. We present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by Laminar nonrelativistic oblique shocks in the framework of the focused transport theory, which is proved to contain all necessary physics of shock acceleration, but avoid the limitation of diffusive shock acceleration (DSA). The injection efficiency as a function of Mach number, obliquity, injection speed, shock strength, cross-shock potential and the degree of turbulence is calculated. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection. The results can be applied to modeling the SEP acceleration from source particles.
Effect of field-aligned-beam in parallel diffusion of energetic particles in the Earth's foreshock
NASA Astrophysics Data System (ADS)
Matsukiyo, S.; Nakanishi, K.; Otsuka, F.; Kis, A.; Lemperger, I.; Hada, T.
2016-12-01
Diffusive shock acceleration (DSA) is one of the plausible acceleration mechanisms of cosmic rays. In the standard DSA model the partial density of the accelerated particles, diffused into upstream, exponentially decreases as the distance to the shock increases. Kis et al. (GRL, 31, L20801, 2004) examined the density gradients of energetic ions upstream of the bow shock with high accuracy by using Cluster data. They estimated the diffusion coefficients of energetic ions for the event in February 18, 2003 and showed that the obtained diffusion coefficients are significantly smaller than those estimated in the past statistical study. This implies that particle acceleration at the bow shock can be more efficient than considered before. Here, we focus on the effect of the field-aligned-beam (FAB) which is often observed in the foreshock, and examine how the FAB affects the efficiency of diffusion of the energetic ions by performing test particle simulations. The upstream turbulence is given by the superposition of parallel Alfven waves with power-law energy spectrum with random phase approximation. In the spectrum we further add a peak corresponding to the waves resonantly generated by the FAB. The dependence of the diffusion coefficient on the presence of the FAB as well as total energy of the turbulence, power-law index of the turbulence, and intensity of FAB oriented waves are discussed.
2011-03-24
and radiation resistance of rare earth permanent magnets for applications such as ion thrusters and high efficiency Stirling Radioisotope Generators...from Electron Transitioning Discharge Current Discharge Power Discharge Voltage Θ Divergence Angle Earths Gravity at Sea Level...Hall effect thruster HIVAC High Voltage Hall Accelerator LEO Low Earth Orbit LDS Laser Displacement System LVDT Linear variable differential
Technology Horizons: A Vision for Air Force Science and Technology 2010-30
2011-09-01
software, hardware, and networks, it is now recognized as en- compassing the entire system that couples information flow and decision processes across...acceleration, and scramjet cruise. Inward turning inlets and a dual- flow path design allow high volumetric efficiency, and high cruise speed provides...the same time, emerging “third- stream engine architectures” can enable constant-mass- flow engines that can provide further reductions in fuel
NASA Astrophysics Data System (ADS)
Chen, Guohai; Meng, Zeng; Yang, Dixiong
2018-01-01
This paper develops an efficient method termed as PE-PIM to address the exact nonstationary responses of pavement structure, which is modeled as a rectangular thin plate resting on bi-parametric Pasternak elastic foundation subjected to stochastic moving loads with constant acceleration. Firstly, analytical power spectral density (PSD) functions of random responses for thin plate are derived by integrating pseudo excitation method (PEM) with Duhamel's integral. Based on PEM, the new equivalent von Mises stress (NEVMS) is proposed, whose PSD function contains all cross-PSD functions between stress components. Then, the PE-PIM that combines the PEM with precise integration method (PIM) is presented to achieve efficiently stochastic responses of the plate by replacing Duhamel's integral with the PIM. Moreover, the semi-analytical Monte Carlo simulation is employed to verify the computational results of the developed PE-PIM. Finally, numerical examples demonstrate the high accuracy and efficiency of PE-PIM for nonstationary random vibration analysis. The effects of velocity and acceleration of moving load, boundary conditions of the plate and foundation stiffness on the deflection and NEVMS responses are scrutinized.
NASA Astrophysics Data System (ADS)
le Roux, J. A.
2017-12-01
We developed previously a focused transport kinetic theory formalism with Fokker-plank coefficients (and its Parker transport limit) to model large-scale energetic particle transport and acceleration in solar wind regions with multiple contracting and merging small-scale flux ropes on MHD (inertial) scales (Zank et al. 2014; le Roux et al. 2015). The theory unifies the main acceleration mechanisms identified in particle simulations for particles temporarily trapped in such active flux rope structures, such as acceleration by the parallel electric field in reconnection regions between merging flux ropes, curvature drift acceleration in incompressible/compressible contracting and merging flux ropes, and betatron acceleration (e.g., Dahlin et al 2016). Initial analytical solutions of the Parker transport equation in the test particle limit showed that the energetic particle pressure from efficient flux-rope energization can potentially be high in turbulent solar wind regions containing active flux-rope structures. This requires taking into account the back reaction of energetic particles on flux ropes to more accurately determine the efficiency of energetic particles acceleration by small-scale flux ropes. To accomplish this goal we developed recently an extension of the kinetic theory to a kinetic-MHD level. We will present the extended theory showing the focused transport equation to be coupled to a solar wind MHD transport equation for small-scale flux-rope energy density extracted from a recently published nearly incompressible theory for solar wind MHD turbulence with a plasma beta of 1 (Zank et al. 2017). In the flux-rope transport equation appears new expressions for the damping/growth rates of flux-rope energy derived from assuming energy conservation in the interaction between energetic particles and small-scale flux ropes for all the main flux-rope acceleration mechanisms, whereas previous expressions for average particle acceleration rates have been explored in more detail. Future applications will involve exploring the relative role of diffusive shock and flux-ropes acceleration in the vicinity of traveling shocks in the supersonic solar wind near Earth where many flux-rope structures were detected recently (Hu et al 2017, this session).
Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scisciò, M.; Antici, P., E-mail: patrizio.antici@polytechnique.edu; INRS-EMT, Université du Québec, 1650 Lionel Boulet, Varennes, Québec J3X 1S2
2016-03-07
In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequencymore » (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.« less
Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame
NASA Astrophysics Data System (ADS)
Vay, J.-L.; Geddes, C. G. R.; Benedetti, C.; Bruhwiler, D. L.; Cormier-Michel, E.; Cowan, B. M.; Cary, J. R.; Grote, D. P.
2010-11-01
Modeling of laser-plasma wakefield accelerators in an optimal frame of reference has been shown to produce up to three orders of magnitude speed-up in calculations from first principles of stages in the 100 MeV-10 GeV energy range. Maximum obtainable speedups calculated using linear theory predict that higher speedups are attainable, in the range of 4-6 orders of magnitude for stages in the energy range of 10 GeV-1 TeV respectively. Practical limitations have been reported and discussed which have prevented reaching these speedups so far, including a violent high frequency numerical instability. The limitations are briefly reviewed and discussed in this paper, as well as their mitigation. It is also reported that the high frequency numerical instability can be controlled effectively using novel numerical techniques that have been implemented in the Particle-In-Cell code Warp, and that 5 and 6 orders of magnitude speedups were demonstrated on 100 GeV and 1 TeV stages respectively, verifying the scaling of plasma accelerators to very high energies, and providing highly efficient tools for the detailed designs of experiments on new lasers such as BELLA.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex
2012-01-01
NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.
Microfabricated Ion Beam Drivers for Magnetized Target Fusion
NASA Astrophysics Data System (ADS)
Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas
2015-11-01
Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.
Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle
2009-10-19
Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps,more » then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.« less
Material science as basis for nuclear medicine: Holmium irradiation for radioisotopes production
NASA Astrophysics Data System (ADS)
Usman, Ahmed Rufai; Khandaker, Mayeen Uddin; Haba, Hiromitsu; Otuka, Naohiko
2018-05-01
Material Science, being an interdisciplinary field, plays important roles in nuclear science. These applications are seen in weaponry, armoured vehicles, accelerator structure and development, semiconductor detectors, nuclear medicine and many more. Present study presents the applications of some metals in nuclear medicine (radioisotope production). The charged-particle-induced nuclear reactions by using cyclotrons or accelerators have become a very vital feature of the modern nuclear medicine. Realising the importance of excitation functions for the efficient production of medical radionuclides, some very high purity holmium metals are generally prepared or purchased for bombardment in nuclear accelerators. In the present work, various methods to obtain pure holmium for radioisotope production have been discussed while also presenting details of our present studies. From the experimental work of the present studies, some very high purity holmium foils have been used in the work for a comprehensive study of residual radionuclides production cross-sections. The study was performed using a stacked-foil activation technique combined with γ-ray spectrometry. The stack was bombarded with 50.4 MeV alpha particle beam from AVF cyclotron of RI Beam Factory, Nishina Centre for Accelerator-Based Science, RIKEN, Japan. The work produced thulium radionuclides useful in nuclear medicine.
Opportunities and challenges of a low-energy positron source in the LERF
NASA Astrophysics Data System (ADS)
Benson, Stephen; Wojtsekhowski, Bogdan; Vlahovic, Branislav; Golge, Serkan
2018-05-01
Though there are many applications of low energy positrons, many experiments are source limited. Using the LERF accelerator at the Thomas Jefferson National Accelerator Facility, it is possible to build a high brightness source of very low-energy positrons. The accelerator requirements are well within the capabilities of the installed hardware. The accelerator can produce 120 kW of beam with a beam energy of up to 170 MeV. For these experiments, we only need run at up to 120 MeV. The gamma-to-positron converter must be able to absorb 20% of the beam power that the linac delivers. At this low an energy the converter, though challenging, is possible. The transport of the low energy positrons from the production target to the next stage, where the energy is reduced even further, must have a very large acceptance to be able to efficiently transport the flux of positrons from the positron production target to the moderator. We propose to accomplish such a transport by means of a guiding solenoidal field with a novel endcap design. In this presentation, we will present the proposed schemes necessary to realize such a high brightness positron source.
Effective correlator for RadioAstron project
NASA Astrophysics Data System (ADS)
Sergeev, Sergey
This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.
High-power microwave production by gyroharmonic conversion and co-generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPointe, M.A.; Yoder, R.B.; Wang, M.
1997-03-01
An rf accelerator that adds significant gyration energy to a relativistic electron beam, and mechanisms for extracting coherent radiation from the beam, are described. The accelerator is a cyclotron autoresonance accelerator (CARA), underlying theory and experimental tests of which are reviewed. The measurements illustrate the utility of CARA in preparing beams for high harmonic gyro interactions. Examples of preparation of gyrating axis-encircling beams of {approximately}400kV, 25 A with 1{lt}a{lt}2 using a 2.856 GHz CARA are discussed. Generation of MW-level harmonic power emanating from a beam prepared in CARA into an output cavity structure is predicted by theory. First measurements ofmore » intense superradiant 2nd through 6th harmonic emission from a CARA beam are described. Gyroharmonic conversion (GHC) at MW power levels into an appropriate resonator can be anticipated, in view of the results described here. Another radiation mechanism, closely related to GHC, is also described. This mechanism, dubbed {open_quotes}co-generation,{close_quotes} is based on the fact that the lowest TE{sub sm} mode in a cylindrical waveguide at frequency sw with group velocity nearly identical to group velocity for the TE{sub 11} mode at frequency w is that with s=7, m=2. This allows coherent radiation to be generated at the 7th harmonic co-existent with CARA and in the self-same rf structure. Conditions are found where co-generation of 7th harmonic power at 20 GHz is possible with overall efficiency greater than 80{percent}. It is shown that operation of a cw co-generator can take place without need of a power supply for the gun. Efficiency for a multi-MW 20 GHz co-generator is predicted to be high enough to compete with other sources, even after taking into account the finite efficiency of the rf driver required for CARA. {copyright} {ital 1997 American Institute of Physics.}« less
Variable-Speed Induction Motor Drives for Aircraft Environmental Control Compressors
NASA Technical Reports Server (NTRS)
Mildice, J. W.; Hansen, I. G.; Schreiner, K. E.; Roth, M. E.
1996-01-01
New, more-efficient designs for aircraft jet engines are not capable of supplying the large quantities of bleed air necessary to provide pressurization and air conditioning for the environmental control systems (ECS) of the next generation of large passenger aircraft. System analysis and engineering have determined that electrically-driven ECS can help to maintain the improved fuel efficiencies; and electronic controllers and induction motors are now being developed in a NASA/NPD SBIR Program to drive both types of ECS compressors. Previous variable-speed induction motor/controller system developments and publications have primarily focused on field-oriented control, with large transient reserve power, for maximum acceleration and optimum response in actuator and robotics systems. The application area addressed herein is characterized by slowly-changing inputs and outputs, small reserve power capability for acceleration, and optimization for maximum efficiency. This paper therefore focuses on the differences between this case and the optimum response case, and shows the development of this new motor/controller approach. It starts with the creation of a new set of controller requirements. In response to those requirements, new control algorithms are being developed and implemented in an embedded computer, which is integrated into the motor controller closed loop. Buffered logic outputs are used to drive the power switches in a resonant-technology, power processor/motor-controller, at switching/resonant frequencies high enough to support efficient high-frequency induction motor operation at speeds up to 50,000-RPA
Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; ...
2015-08-28
The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore » stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.
The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore » stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostroumov, P. N., E-mail: ostroumov@anl.gov; Barcikowski, A.; Dickerson, C. A.
The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore » stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less
Schach Von Wittenau, Alexis E.
2003-01-01
A method is provided to represent the calculated phase space of photons emanating from medical accelerators used in photon teletherapy. The method reproduces the energy distributions and trajectories of the photons originating in the bremsstrahlung target and of photons scattered by components within the accelerator head. The method reproduces the energy and directional information from sources up to several centimeters in radial extent, so it is expected to generalize well to accelerators made by different manufacturers. The method is computationally both fast and efficient overall sampling efficiency of 80% or higher for most field sizes. The computational cost is independent of the number of beams used in the treatment plan.
Linear induction accelerators made from pulse-line cavities with external pulse injection.
Smith, I
1979-06-01
Two types of linear induction accelerator have been reported previously. In one, unidirectional voltage pulses are generated outside the accelerator and injected into the accelerator cavity modules, which contain ferromagnetic material to reduce energy losses in the form of currents induced, in parallel with the beam, in the cavity structure. In the other type, the accelerator cavity modules are themselves pulse-forming lines with energy storage and switches; parallel current losses are made zero by the use of circuits that generate bidirectional acceleration waveforms with a zero voltage-time integral. In a third type of design described here, the cavities are externally driven, and 100% efficient coupling of energy to the beam is obtained by designing the external pulse generators to produce bidirectional voltage waveforms with zero voltage-time integral. A design for such a pulse generator is described that is itself one hundred percent efficient and which is well suited to existing pulse power techniques. Two accelerator cavity designs are described that can couple the pulse from such a generator to the beam; one of these designs provides voltage doubling. Comparison is made between the accelerating gradients that can be obtained with this and the preceding types of induction accelerator.
Liu, Fei; Zhang, Xi; Jia, Yan
2015-01-01
In this paper, we propose a computer information processing algorithm that can be used for biomedical image processing and disease prediction. A biomedical image is considered a data object in a multi-dimensional space. Each dimension is a feature that can be used for disease diagnosis. We introduce a new concept of the top (k1,k2) outlier. It can be used to detect abnormal data objects in the multi-dimensional space. This technique focuses on uncertain space, where each data object has several possible instances with distinct probabilities. We design an efficient sampling algorithm for the top (k1,k2) outlier in uncertain space. Some improvement techniques are used for acceleration. Experiments show our methods' high accuracy and high efficiency.
Special issue on compact x-ray sources
NASA Astrophysics Data System (ADS)
Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James
2014-04-01
Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on compact x-ray sources, to appear in the winter of 2014, and invites you to submit a paper. The potential for high-brilliance x- and gamma-ray sources driven by advanced, compact accelerators has gained increasing attention in recent years. These novel sources—sometimes dubbed 'fifth generation sources'—will build on the revolutionary advance of the x-ray free-electron laser (FEL). New radiation sources of this type have widespread applications, including in ultra-fast imaging, diagnostic and therapeutic medicine, and studies of matter under extreme conditions. Rapid advances in compact accelerators and in FEL techniques make this an opportune moment to consider the opportunities which could be realized by bringing these two fields together. Further, the successful development of compact radiation sources driven by compact accelerators will be a significant milestone on the road to the development of high-gradient colliders able to operate at the frontiers of particle physics. Thus the time is right to publish a peer-reviewed collection of contributions concerning the state-of-the-art in: advanced and novel acceleration techniques; sophisticated physics at the frontier of FELs; and the underlying and enabling techniques of high brightness electron beam physics. Interdisciplinary research connecting two or more of these fields is also increasingly represented, as exemplified by entirely new concepts such as plasma based electron beam sources, and coherent imaging with fs-class electron beams. We hope that in producing this special edition of Journal of Physics B: Atomic, Molecular and Optical Physics (iopscience.iop.org/0953-4075/) we may help further a challenging mission and ongoing intellectual adventure: the harnessing of newly emergent, compact advanced accelerators to the creation of new, agile light sources with unprecedented capabilities. New schemes for compact accelerators: laser- and beam-driven plasma accelerators; dielectric laser accelerators; THz accelerators. Latest results for compact accelerators. Target design and staging of advanced accelerators. Advanced injection and phase space manipulation techniques. Novel diagnostics: single-shot measurement of sub-fs bunch duration; measurement of ultra-low emittance. Generation and characterization of incoherent radiation: betatron and undulator radiation; Thomson/Compton scattering sources, novel THz sources. Generation and characterization of coherent radiation. Novel FEL simulation techniques. Advances in simulations of novel accelerators: simulations of injection and acceleration processes; simulations of coherent and incoherent radiation sources; start-to-end simulations of fifth generation light sources. Novel undulator schemes. Novel laser drivers for laser-driven accelerators: high-repetition rate laser systems; high wall-plug efficiency systems. Applications of compact accelerators: imaging; radiography; medical applications; electron diffraction and microscopy. Please submit your article by 15 May 2014 (expected web publication: winter 2014); submissions received after this date will be considered for the journal, but may not be included in the special issue.
NASA Astrophysics Data System (ADS)
Benini, Luca
2017-06-01
The "internet of everything" envisions trillions of connected objects loaded with high-bandwidth sensors requiring massive amounts of local signal processing, fusion, pattern extraction and classification. From the computational viewpoint, the challenge is formidable and can be addressed only by pushing computing fabrics toward massive parallelism and brain-like energy efficiency levels. CMOS technology can still take us a long way toward this goal, but technology scaling is losing steam. Energy efficiency improvement will increasingly hinge on architecture, circuits, design techniques such as heterogeneous 3D integration, mixed-signal preprocessing, event-based approximate computing and non-Von-Neumann architectures for scalable acceleration.
Local re-acceleration and a modified thick target model of solar flare electrons
NASA Astrophysics Data System (ADS)
Brown, J. C.; Turkmani, R.; Kontar, E. P.; MacKinnon, A. L.; Vlahos, L.
2009-12-01
Context: The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts has become an almost “standard model” of flare impulsive phase energy transport and radiation. However, it faces various problems in the light of recent data, particularly the high electron beam density and anisotropy it involves. Aims: We consider how photon yield per electron can be increased, and hence fast electron beam intensity requirements reduced, by local re-acceleration of fast electrons throughout the HXR source itself, after injection. Methods: We show parametrically that, if net re-acceleration rates due to e.g. waves or local current sheet electric (E) fields are a significant fraction of collisional loss rates, electron lifetimes, and hence the net radiative HXR output per electron can be substantially increased over the CTTM values. In this local re-acceleration thick target model (LRTTM) fast electron number requirements and anisotropy are thus reduced. One specific possible scenario involving such re-acceleration is discussed, viz, a current sheet cascade (CSC) in a randomly stressed magnetic loop. Results: Combined MHD and test particle simulations show that local E fields in CSCs can efficiently accelerate electrons in the corona and and re-accelerate them after injection into the chromosphere. In this HXR source scenario, rapid synchronisation and variability of impulsive footpoint emissions can still occur since primary electron acceleration is in the high Alfvén speed corona with fast re-acceleration in chromospheric CSCs. It is also consistent with the energy-dependent time-of-flight delays in HXR features. Conclusions: Including electron re-acceleration in the HXR source allows an LRTTM modification of the CTTM in which beam density and anisotropy are much reduced, and alleviates theoretical problems with the CTTM, while making it more compatible with radio and interplanetary electron numbers. The LRTTM is, however, different in some respects such as spatial distribution of atmospheric heating by fast electrons.
Generation and application of ultrashort coherent mid-infrared electromagnetic radiation
NASA Astrophysics Data System (ADS)
Wandel, Scott
Particle accelerators are useful instruments that help address critical issues for the future development of nuclear energy. Current state-of-the-art accelerators based on conventional radio-frequency (rf) cavities are too large and expensive for widespread commercial use, and alternative designs must be considered for supplying relativistic beams to small-scale applications, including medical imaging, secu- rity screening, and scientific research in a university-scale laboratory. Laser-driven acceleration using micro-fabricated dielectric photonic structures is an attractive approach because such photonic microstructures can support accelerating fields that are 10 to 100 times higher than that of rf cavity-based accelerators. Dielectric laser accelerators (DLAs) use commercial lasers as a driving source, which are smaller and less expensive than the klystrons used to drive current rf-based accelerators. Despite the apparent need for compact and economical laser sources for laser-driven acceleration, the availability of suitable high-peak-power lasers that cover a broad spectral range is currently limited. To address the needs of several innovative acceleration mechanisms like DLA, it is proposed to develop a coherent source of mid-infrared (IR) electromagnetic radiation that can be implemented as a driving source of laser accelerators. The use of ultrashort mid-IR high peak power laser systems in various laser-driven acceleration schemes has shown the potential to greatly reduce the optical pump intensities needed to realize high acceleration gradients. The optical intensity needed to achieve a given ponderomotive potential is 25 times less when using a 5-mum mid-IR laser as compared to using a 1-mum near-IR solid-state laser. In addition, dielectric structure breakdown caused by multiphoton ionization can be avoided by using longer-wavelength driving lasers. Current mid-IR laser sources do not produce sufficiently short pulse durations, broad spectral bandwidths, or high energies as required by certain accelerator applications. The use of a high-peak-power mid-IR laser system in DLA could enable tabletop accelerators on the MeV to GeV scale for security scanners, medical therapy devices, and compact x-ray light sources. This dissertation reports on the design and construction of a simple and robust, short-pulse parametric source operating at a center wavelength of 5 mum. The design and construction of a high-energy, short-pulse 2-mum parametric source is also presented, which serves as a surrogate pumping source for the 5-mum source. An elegant method for mid-IR pulse characterization is demonstrated, which makes use of ubiquitous silicon photodetectors, traditionally reserved for the characterization of near-IR radiation. In addition, a dual-chirped parametric amplification technique is extended into the mid-IR spectral region, producing a bandwidth-tunable mid-IR source in a simple design without sacrificing conversion efficiency. The design and development of a compact single-shot mid-IR prism spectrometer is also reported, and its implementation in a number of condensed matter studies at the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center is discussed. Rapid tuning and optimization of a high-energy parametric laser system using the mid-IR spectrometer is demonstrated, which significantly enhances the capabilities of performing optical measurements on superconducting materials using the LCLS instrument. All of the laser sources and optical technologies presented in this dissertation were developed using relatively simple designs to provide compact and cost-e ective systems to address some of the challenges facing accelerator and IR spectroscopy technologies. (Abstract shortened by ProQuest.).
Creating space plasma from the ground
NASA Astrophysics Data System (ADS)
Carlson, H. C.; Djuth, F. T.; Zhang, L. D.
2017-01-01
We have performed an experiment to compare as directly as realizable the ionization production rate by HF radio wave energy versus by solar EUV. We take advantage of the commonality that ionization production by both ground-based high-power HF radio waves and by solar EUV is driven by primary and secondary suprathermal electrons near and above 20 eV. Incoherent scatter radar (ISR) plasma-line amplitudes are used as a measure of suprathermal electron fluxes for ISR wavelengths near those for 430 MHz and are indeed a clean measure of such for those fluxes sufficiently weak to have negligible self-damping. We present data from an HF heating experiment on November 2015 at Arecibo, which even more directly confirm the only prior midlatitude estimate, of order 10% efficiency for conversion of HF energy to ionospheric ionization. We note the theoretical maximum possible is 1/3, while 1% or less reduces the question to near practical irrelevance. Our measurements explicitly confirm the prediction that radio-frequency production of artificial ionospheres can be practicable, even at midlatitudes. Furthermore, that this midlatitude efficiency is comparable to efficiencies measured at high latitudes (which include enhancements unique to high latitudes including magnetic zenith effect, gyrofrequency multiples, and double resonances) requires reexamination of current theoretical thinking about soft-electron acceleration processes in weakly magnetized plasmas. The implications are that electron acceleration by any of a variety of processes may be a fundamental underpinning to energy redistribution in space plasmas.
Laboratory Observation of High-Mach Number, Laser-Driven Magnetized Collisionless Shocks
NASA Astrophysics Data System (ADS)
Schaeffer, Derek; Fox, Will; Haberberger, Dan; Fiksel, Gennady; Bhattacharjee, Amitava; Barnak, Daniel; Hu, Suxing; Germaschewski, Kai
2017-06-01
Collisionless shocks are common phenomena in space and astrophysical systems, including solar and planetary winds, coronal mass ejections, supernovae remnants, and the jets of active galactic nuclei, and in many the shocks are believed to efficiently accelerate particles to some of the highest observed energies. Only recently, however, have laser and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of collisionless shocks over a large parameter regime. We present the first laboratory generation of high-Mach number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number Mms≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on timescales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier, between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration. The platform is also flexible, allowing us to study shocks in different magnetic field geometries, in different ambient plasma conditions, and in relation to other effects in magnetized, high-Mach number plasmas such as magnetic reconnection or the Weibel instability.
Mu, Bingnan; Xu, Helan; Yang, Yiqi
2015-11-01
In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Plasma Acceleration by Rotating Magnetic Field Method using Helicon Source
NASA Astrophysics Data System (ADS)
Furukawa, Takeru; Shimura, Kaichi; Kuwahara, Daisuke; Shinohara, Shunjiro
2017-10-01
Electrodeless plasma thrusters are very promising due to no electrode damage, leading to realize further deep space exploration. As one of the important proposals, we have been concentrating on Rotating Magnetic Field (RMF) acceleration method. High-dense plasma (up to 1013 cm-3) can be generated by using a radio frequency (rf) external antenna, and also accelerated by an antenna wound around outside of a discharge tube. In this scheme, thrust increment is achieved by the axial Lorentz force caused by non linear effects. RMF penetration condition into plasma can be more satisfied than our previous experiment, by increasing RMF coil current and decreasing the RMF frequency, causing higher thrust and fuel efficiency. Measurements of AC RMF component s have been conducted to investigate the acceleration mechanism and the field penetration experimentally. This study has been partially supported by Grant-in-Aid for Scientific Research (B: 17H02995) from the Japan Society for the Promotion of Science.
Design of a Low-Energy FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Rose, M. F.; Miller, R.; Best, S.; Owens, T.; Dankanich, J.
2007-01-01
The design of an electrodeless thruster that relies on a pulsed, rf-assisted discharge and electromagnetic acceleration using an inductive coil is presented. The thruster design is optimized using known performance,scaling parameters, and experimentally-determined design rules, with design targets for discharge energy, plasma exhaust velocity; and thrust efficiency of 100 J/pulse, 25 km/s, and 50%, respectively. Propellant is injected using a high-speed gas valve and preionized by a pulsed-RF signal supplied by a vector inversion generator, allowing for current sheet formation at lower discharge voltages and energies relative to pulsed inductive accelerators that do not employ preionization. The acceleration coil is designed to possess an inductance of at least 700 nH while the target stray (non-coil) inductance in the circuit is 70 nH. A Bernardes and Merryman pulsed power train or a pulse compression power train provide current to the acceleration coil and solid-state components are used to switch both powertrains.
Dynamics of electron injection in a laser-wakefield accelerator
NASA Astrophysics Data System (ADS)
Xu, J.; Buck, A.; Chou, S.-W.; Schmid, K.; Shen, B.; Tajima, T.; Kaluza, M. C.; Veisz, L.
2017-08-01
The detailed temporal evolution of the laser-wakefield acceleration process with controlled injection, producing reproducible high-quality electron bunches, has been investigated. The localized injection of electrons into the wakefield has been realized in a simple way—called shock-front injection—utilizing a sharp drop in plasma density. Both experimental and numerical results reveal the electron injection and acceleration process as well as the electron bunch's temporal properties. The possibility to visualize the plasma wave gives invaluable spatially resolved information about the local background electron density, which in turn allows for an efficient suppression of electron self-injection before the controlled process of injection at the sharp density jump. Upper limits for the electron bunch duration of 6.6 fs FWHM, or 2.8 fs (r.m.s.) were found. These results indicate that shock-front injection not only provides stable and tunable, but also few-femtosecond short electron pulses for applications such as ultrashort radiation sources, time-resolved electron diffraction or for the seeding of further acceleration stages.
Lemoine-Goumard, M.; Renaud, M.; Vink, J.; ...
2012-08-31
Several young supernova remnants (SNRs) have recently been detected in the high-energy (HE; 0.1 < E < 100 GeV) and very-high-energy (VHE; E > 100 GeV) gamma-ray domains. As exemplified by RX J1713.7-3946, the nature of this emission has been hotly debated, and direct evidence for the efficient acceleration of cosmic-ray protons at the SNR shocks still remains elusive. Here, we study the broadband gamma-ray emission from one of these young SNRs, namely RCW 86, for which several observational lines of evidence indirectly point towards the presence of accelerated hadrons. We then attempt to detect any putative hadronic signal from this SNR in the available gamma-ray data, in order to assess the level of acceleration efficiency. We also analyzed more than 40 months of data acquired by the Large Area Telescope (LAT) on-board the Fermi Gamma-Ray Space Telescope in the HE domain, and gathered all of the relevant multi-wavelength (from radio to VHE gamma-rays) information about the broadband nonthermal emission from RCW 86. For this purpose, we re-analyzed the archival X-ray data from the ASCA/Gas Imaging Spectrometer (GIS), the XMM-Newton/EPIC-MOS, and the RXTE/Proportional Counter Array (PCA). Beyond the expected Galactic diffuse background, no significant gamma-ray emission in the direction of RCW 86 is detected in any of the 0.1–1, 1–10 and 10–100 GeV Fermi-LAT maps. The derived HE upper limits, together with the H.E.S.S. measurements in the VHE domain, are incompatible with a standard Dmore » $$-2\\atop{p}$$ hadronic emission arising from proton-proton interactions, and can only be accommodated by a spectral index Γ ≤ 1.8, i.e. a value in-between the standard (test-particle) index and the asymptotic limit of theoretical particle spectra in the case of strongly modified shocks. In such a hadronic scenario, the total energy in accelerated particles is at the level of ηCR = ECR/ESN ~0.07 d$$2\\atop{2.5}$$kpc/$$\\tilde{n}$$ (with the distance d 2.5 kpc ≡ d/2.5 kpc and the effective density $$\\tilde{n}$$ ≡ $$\\tilde{n}$$ /1 cm -3), and the average magnetic field must be stronger than 50 μG in order to significantly suppress any leptonic contribution. On the other hand, the interpretation of the gamma-ray emission by inverse Compton scattering of high energy electrons reproduces the multi-wavelength data using a reasonable value for the average magnetic field of 15–25 μG. In this leptonic scenario, we derive a conservative upper limit to ηCR of 0.04 d $$2\\atop{2.5}$$ kpc/$$\\tilde{n}$$. Furthermore, we discuss these results in the light of existing estimates of the magnetic field strength, the effective density and the acceleration efficiency in RCW 86.« less
NASA Astrophysics Data System (ADS)
Lemoine-Goumard, M.; Renaud, M.; Vink, J.; Allen, G. E.; Bamba, A.; Giordano, F.; Uchiyama, Y.
2012-09-01
Context. Several young supernova remnants (SNRs) have recently been detected in the high-energy (HE; 0.1 < E < 100 GeV) and very-high-energy (VHE; E > 100 GeV) gamma-ray domains. As exemplified by RX J1713.7-3946, the nature of this emission has been hotly debated, and direct evidence for the efficient acceleration of cosmic-ray protons at the SNR shocks still remains elusive. Aims: We study the broadband gamma-ray emission from one of these young SNRs, namely RCW 86, for which several observational lines of evidence indirectly point towards the presence of accelerated hadrons. We then attempt to detect any putative hadronic signal from this SNR in the available gamma-ray data, in order to assess the level of acceleration efficiency. Methods: We analyzed more than 40 months of data acquired by the Large Area Telescope (LAT) on-board the Fermi Gamma-Ray Space Telescope in the HE domain, and gathered all of the relevant multi-wavelength (from radio to VHE gamma-rays) information about the broadband nonthermal emission from RCW 86. For this purpose, we re-analyzed the archival X-ray data from the ASCA/Gas Imaging Spectrometer (GIS), the XMM-Newton/EPIC-MOS, and the RXTE/Proportional Counter Array (PCA). Results: Beyond the expected Galactic diffuse background, no significant gamma-ray emission in the direction of RCW 86 is detected in any of the 0.1-1, 1-10 and 10-100 GeV Fermi-LAT maps. The derived HE upper limits, together with the H.E.S.S. measurements in the VHE domain, are incompatible with a standard Ep-2 hadronic emission arising from proton-proton interactions, and can only be accommodated by a spectral index Γ ≤ 1.8, i.e. a value in-between the standard (test-particle) index and the asymptotic limit of theoretical particle spectra in the case of strongly modified shocks. In such a hadronic scenario, the total energy in accelerated particles is at the level of ηCR = E_{CR/ESN ˜ 0.07 d22.5 kpc/bar{ncm-3} (with the distance d2.5 kpc ≡ d/2.5 kpc and the effective density bar{ncm-3} ≡ bar{n}/1 cm-3), and the average magnetic field must be stronger than 50 μG in order to significantly suppress any leptonic contribution. On the other hand, the interpretation of the gamma-ray emission by inverse Compton scattering of high energy electrons reproduces the multi-wavelength data using a reasonable value for the average magnetic field of 15-25 μG. In this leptonic scenario, we derive a conservative upper limit to ηCR of 0.04 d22.5 kpc/bar{ncm-3}. We discuss these results in the light of existing estimates of the magnetic field strength, the effective density and the acceleration efficiency in RCW 86.
Solid-State Powered X-band Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Othman, Mohamed A.K.; Nann, Emilio A.; Dolgashev, Valery A.
2017-03-06
In this report we disseminate the hot test results of an X-band 100-W solid state amplifier chain for linear accelerator (linac) applications. Solid state power amplifiers have become increasingly attractive solutions for achieving high power in radar and maritime applications. Here the performance of solid state amplifiers when driving an RF cavity is investigated. Commercially available, matched and fully-packaged GaN on SiC HEMTs are utilized, comprising a wideband driver stage and two power stages. The amplifier chain has a high poweradded- efficiency and is able to supply up to ~1.2 MV/m field gradient at 9.2 GHz in a simple testmore » cavity, with a peak power exceeding 100 W. These findings set forth the enabling technology for solid-state powered linacs.« less
Working group written presentation: Solar radiation
NASA Technical Reports Server (NTRS)
Slemp, Wayne S.
1989-01-01
The members of the Solar Radiation Working Group arrived at two major solar radiation technology needs: (1) generation of a long term flight data base; and (2) development of a standardized UV testing methodology. The flight data base should include 1 to 5 year exposure of optical filters, windows, thermal control coatings, hardened coatings, polymeric films, and structural composites. The UV flux and wavelength distribution, as well as particulate radiation flux and energy, should be measured during this flight exposure. A standard testing methodology is needed to establish techniques for highly accelerated UV exposure which will correlate well with flight test data. Currently, UV can only be accelerated to about 3 solar constants and can correlate well with flight exposure data. With space missions to 30 years, acceleration rates of 30 to 100X are needed for efficient laboratory testing.
NASA Astrophysics Data System (ADS)
Simakov, Evgenya I.; Andrews, Heather L.; Herman, Matthew J.; Hubbard, Kevin M.; Weis, Eric
2017-03-01
Demonstration of a stand-alone practical dielectric laser accelerator (DLA) requires innovation in two major critical components: high-current ultra-low-emittance cathodes and efficient laser accelerator structures. LANL develops two technologies that in our opinion are applicable to the novel DLA architectures: diamond field emitter array (DFEA) cathodes and additive manufacturing of photonic band-gap (PBG) structures. This paper discusses the results of testing of DFEA cathodes in the field-emission regime and the possibilities for their operation in the photoemission regime, and compares their emission characteristics to the specific needs of DLAs. We also describe recent advances in additive manufacturing of dielectric woodpile structures using a Nanoscribe direct laser-writing device capable of maskless lithography and additive manufacturing, and the development of novel infrared dielectric materials compatible with additive manufacturing.
Relativistic cosmic-ray spectra in the fully nonlinear theory of shock acceleration
NASA Technical Reports Server (NTRS)
Ellison, D. C.; Eichler, D.
1985-01-01
The non-linear theory of shock acceleration was generalized to include wave dynamics. In the limit of rapid wave damping, it is found that a finite wave velocity tempers the acceleration of high Mach number shocks and limits the maximum compression ratio even when energy loss is important. For a given spectrum, the efficiency of relativistic particle production is essentially independent of v sub Ph. For the three families shown, the percentage of kinetic energy flux going into relativistic particles is (1) 72 percent, (2) 44 percent, and (3) 26 percent (this includes the energy loss at the upper energy cutoff). Even small v sub ph, typical of the HISM, produce quasi-universal spectra that depend only weakly on the acoustic Mach number. These spectra should be close enough to e(-2) to satisfy cosmic ray source requirements.
Second International Conference on Accelerating Biopharmaceutical Development
2009-01-01
The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme “Delivering cost-effective, robust processes and methods quickly and efficiently.” The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development. PMID:20065637
Osada, Naoki; Akashi, Hiroshi
2012-01-01
Accelerated rates of mitochondrial protein evolution have been proposed to reflect Darwinian coadaptation for efficient energy production for mammalian flight and brain activity. However, several features of mammalian mtDNA (absence of recombination, small effective population size, and high mutation rate) promote genome degradation through the accumulation of weakly deleterious mutations. Here, we present evidence for "compensatory" adaptive substitutions in nuclear DNA- (nDNA) encoded mitochondrial proteins to prevent fitness decline in primate mitochondrial protein complexes. We show that high mutation rate and small effective population size, key features of primate mitochondrial genomes, can accelerate compensatory adaptive evolution in nDNA-encoded genes. We combine phylogenetic information and the 3D structure of the cytochrome c oxidase (COX) complex to test for accelerated compensatory changes among interacting sites. Physical interactions among mtDNA- and nDNA-encoded components are critical in COX evolution; amino acids in close physical proximity in the 3D structure show a strong tendency for correlated evolution among lineages. Only nuclear-encoded components of COX show evidence for positive selection and adaptive nDNA-encoded changes tend to follow mtDNA-encoded amino acid changes at nearby sites in the 3D structure. This bias in the temporal order of substitutions supports compensatory weak selection as a major factor in accelerated primate COX evolution.
A Bayesian model for highly accelerated phase-contrast MRI.
Rich, Adam; Potter, Lee C; Jin, Ning; Ash, Joshua; Simonetti, Orlando P; Ahmad, Rizwan
2016-08-01
Phase-contrast magnetic resonance imaging is a noninvasive tool to assess cardiovascular disease by quantifying blood flow; however, low data acquisition efficiency limits the spatial and temporal resolutions, real-time application, and extensions to four-dimensional flow imaging in clinical settings. We propose a new data processing approach called Reconstructing Velocity Encoded MRI with Approximate message passing aLgorithms (ReVEAL) that accelerates the acquisition by exploiting data structure unique to phase-contrast magnetic resonance imaging. The proposed approach models physical correlations across space, time, and velocity encodings. The proposed Bayesian approach exploits the relationships in both magnitude and phase among velocity encodings. A fast iterative recovery algorithm is introduced based on message passing. For validation, prospectively undersampled data are processed from a pulsatile flow phantom and five healthy volunteers. The proposed approach is in good agreement, quantified by peak velocity and stroke volume (SV), with reference data for acceleration rates R≤10. For SV, Pearson r≥0.99 for phantom imaging (n = 24) and r≥0.96 for prospectively accelerated in vivo imaging (n = 10) for R≤10. The proposed approach enables accurate quantification of blood flow from highly undersampled data. The technique is extensible to four-dimensional flow imaging, where higher acceleration may be possible due to additional redundancy. Magn Reson Med 76:689-701, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target
NASA Astrophysics Data System (ADS)
Kraft, Stephan D.; Obst, Lieselotte; Metzkes-Ng, Josefine; Schlenvoigt, Hans-Peter; Zeil, Karl; Michaux, Sylvain; Chatain, Denis; Perin, Jean-Paul; Chen, Sophia N.; Fuchs, Julien; Gauthier, Maxence; Cowan, Thomas E.; Schramm, Ulrich
2018-04-01
We show efficient laser driven proton acceleration up to 14 MeV from a 62 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈350 fs at an energy of 8 J per pulse are directed onto the target. The results are compared to proton spectra from metal and plastic foils with different thicknesses and show a similarly good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.
First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target
Kraft, Stephan; Obst, Lieselotte; Metzkes-Ng, Josefine; ...
2018-02-09
We show efficient laser driven proton acceleration up to 14 MeV from a 50 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈ 350 fs at an energy of 8 J per pulse are directed onto the target. The results were then compared to proton spectra from metal and plastic foils with different thicknesses and show a similar good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.
First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraft, Stephan; Obst, Lieselotte; Metzkes-Ng, Josefine
We show efficient laser driven proton acceleration up to 14 MeV from a 50 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈ 350 fs at an energy of 8 J per pulse are directed onto the target. The results were then compared to proton spectra from metal and plastic foils with different thicknesses and show a similar good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.
Rapid prototyping of microbial cell factories via genome-scale engineering.
Si, Tong; Xiao, Han; Zhao, Huimin
2015-11-15
Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. Copyright © 2014 Elsevier Inc. All rights reserved.
Optimized operation of dielectric laser accelerators: Single bunch
NASA Astrophysics Data System (ADS)
Hanuka, Adi; Schächter, Levi
2018-05-01
We introduce a general approach to determine the optimal charge, efficiency and gradient for laser driven accelerators in a self-consistent way. We propose a way to enhance the operational gradient of dielectric laser accelerators by leverage of beam-loading effect. While the latter may be detrimental from the perspective of the effective gradient experienced by the particles, it can be beneficial as the effective field experienced by the accelerating structure, is weaker. As a result, the constraint imposed by the damage threshold fluence is accordingly weakened and our self-consistent approach predicts permissible gradients of ˜10 GV /m , one order of magnitude higher than previously reported experimental results—with unbunched pulse of electrons. Our approach leads to maximum efficiency to occur for higher gradients as compared with a scenario in which the beam-loading effect on the material is ignored. In any case, maximum gradient does not occur for the same conditions that maximum efficiency does—a trade-off set of parameters is suggested.
Qu, Lin; Sun, Peng; Wu, Ying; Zhang, Ke; Liu, Zhengping
2017-08-01
An efficient metal-free homodifunctional bimolecular ring-closure method is developed for the formation of cyclic polymers by combining reversible addition-fragmentation chain transfer (RAFT) polymerization and self-accelerating click reaction. In this approach, α,ω-homodifunctional linear polymers with azide terminals are prepared by RAFT polymerization and postmodification of polymer chain end groups. By virtue of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DBA) as small linkers, well-defined cyclic polymers are then prepared using the self-accelerating double strain-promoted azide-alkyne click (DSPAAC) reaction to ring-close the azide end-functionalized homodifunctional linear polymer precursors. Due to the self-accelerating property of DSPAAC ring-closing reaction, this novel method eliminates the requirement of equimolar amounts of telechelic polymers and small linkers in traditional bimolecular ring-closure methods. It facilitates this method to efficiently and conveniently produce varied pure cyclic polymers by employing an excess molar amount of DBA small linkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.
1996-01-01
Solving for dynamic responses of free-free launch vehicle/spacecraft systems acted upon by buffeting winds is commonly performed throughout the aerospace industry. Due to the unpredictable nature of this wind loading event, these problems are typically solved using frequency response random analysis techniques. To generate dynamic responses for spacecraft with statically-indeterminate interfaces, spacecraft contractors prefer to develop models which have response transformation matrices developed for mode acceleration data recovery. This method transforms spacecraft boundary accelerations and displacements into internal responses. Unfortunately, standard MSC/NASTRAN modal frequency response solution sequences cannot be used to combine acceleration- and displacement-dependent responses required for spacecraft mode acceleration data recovery. External user-written computer codes can be used with MSC/NASTRAN output to perform such combinations, but these methods can be labor and computer resource intensive. Taking advantage of the analytical and computer resource efficiencies inherent within MS C/NASTRAN, a DMAP Alter has been developed to combine acceleration- and displacement-dependent modal frequency responses for performing spacecraft mode acceleration data recovery. The Alter has been used successfully to efficiently solve a common aerospace buffeting wind analysis.
NASA Astrophysics Data System (ADS)
Dahlin, J. T.; Drake, J. F.; Swisdak, M.
2017-09-01
Magnetic reconnection is an important driver of energetic particles in many astrophysical phenomena. Using kinetic particle-in-cell simulations, we explore the impact of three-dimensional reconnection dynamics on the efficiency of particle acceleration. In two-dimensional systems, Alfvénic outflows expel energetic electrons into flux ropes where they become trapped and disconnected from acceleration regions. However, in three-dimensional systems these flux ropes develop an axial structure that enables particles to leak out and return to acceleration regions. This requires a finite guide field so that particles may move quickly along the flux rope axis. We show that greatest energetic electron production occurs when the guide field is of the same order as the reconnecting component: large enough to facilitate strong transport, but not so large as to throttle the dominant Fermi mechanism responsible for efficient electron acceleration. This suggests a natural explanation for the envelope of electron acceleration during the impulsive phase of eruptive flares.
Tayyab, M; Bagchi, S; Ramakrishna, B; Mandal, T; Upadhyay, A; Ramis, R; Chakera, J A; Naik, P A; Gupta, P D
2014-08-01
We report on the proton acceleration studies from thin metallic foils of varying atomic number (Z) and thicknesses, investigated using a 45 fs, 10 TW Ti:sapphire laser system. An optimum foil thickness was observed for efficient proton acceleration for our laser conditions, dictated by the laser ASE prepulse and hot electron propagation behavior inside the material. The hydrodynamic simulations for ASE prepulse support the experimental observation. The observed maximum proton energy at different thicknesses for a given element is in good agreement with the reported scaling laws. The results with foils of different atomic number Z suggest that a judicious choice of the foil material can enhance the proton acceleration efficiency, resulting into higher proton energy.
Accelerating Energy Efficiency in Indian Data Centers. Final Report for Phase I Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganguly, Suprotim; Raje, Sanyukta; Kumar, Satish
This report documents Phase 1 of the “Accelerating Energy Efficiency in Indian Data Centers” initiative to support the development of an energy efficiency policy framework for Indian data centers. The initiative is being led by the Confederation of Indian Industry (CII), in collaboration with Lawrence Berkeley National Laboratory (LBNL)-U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, and under the guidance of Bureau of Energy Efficiency (BEE). It is also part of the larger Power and Energy Efficiency Working Group of the US-India Bilateral Energy Dialogue. The initiative consists of two phases: Phase 1 (November 2014 – Septembermore » 2015) and Phase 2 (October 2015 – September 2016).« less
NASA Astrophysics Data System (ADS)
Psikal, J.; Matys, M.
2018-04-01
Laser-driven proton acceleration from novel cryogenic hydrogen target of the thickness of tens of microns irradiated by multiPW laser pulse is investigated here for relevant laser parameters accessible in near future. It is demonstrated that the efficiency of proton acceleration from relatively thick hydrogen solid ribbon largely exceeds the acceleration efficiency for a thinner ionized plastic foil, which can be explained by enhanced hole boring (HB) driven by laser ponderomotive force in the case of light ions and lower target density. Three-dimensional particle-in-cell (PIC) simulations of laser pulse interaction with relatively thick hydrogen target show larger energies of protons accelerated in the target interior during the HB phase and reduced energies of protons accelerated from the rear side of the target by quasistatic electric field compared with the results obtained from two-dimensional PIC calculations. Linearly and circularly polarized multiPW laser pulses of duration exceeding 100 fs show similar performance in terms of proton acceleration from both the target interior as well as from the rear side of the target. When ultrashort pulse (∼30 fs) is assumed, the number of accelerated protons from the target interior is substantially reduced.
NASA Astrophysics Data System (ADS)
Liu, M.; Weng, S. M.; Wang, H. C.; Chen, M.; Zhao, Q.; Sheng, Z. M.; He, M. Q.; Li, Y. T.; Zhang, J.
2018-06-01
We propose a hybrid laser-driven ion acceleration scheme using a combination target of a solid foil and a density-tailored background plasma. In the first stage, a sub-relativistic proton beam can be generated by radiation pressure acceleration in intense laser interaction with the solid foil. In the second stage, this sub-relativistic proton beam is further accelerated by the laser wakefield driven by the same laser pulse in a near-critical-density background plasma with decreasing density profile. The propagating velocity of the laser front and the phase velocity of the excited wakefield wave are effectively lowered at the beginning of the second stage. By decreasing the background plasma density gradually from near critical density along the laser propagation direction, the wake travels faster and faster, while it accelerates the protons. Consequently, the dephasing between the protons and the wake is postponed and an efficient wakefield proton acceleration is achieved. This hybrid laser-driven proton acceleration scheme can be realized by using ultrashort laser pulses at the peak power of 10 PW for the generation of multi-GeV proton beams.
Demonstration of relativistic electron beam focusing by a laser-plasma lens
Thaury, C.; Guillaume, E.; Döpp, A.; Lehe, R.; Lifschitz, A.; Ta Phuoc, K.; Gautier, J.; Goddet, J-P; Tafzi, A.; Flacco, A.; Tissandier, F.; Sebban, S.; Rousse, A.; Malka, V.
2015-01-01
Laser-plasma technology promises a drastic reduction of the size of high-energy electron accelerators. It could make free-electron lasers available to a broad scientific community and push further the limits of electron accelerators for high-energy physics. Furthermore, the unique femtosecond nature of the source makes it a promising tool for the study of ultrafast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line. PMID:25880791
Demonstration of relativistic electron beam focusing by a laser-plasma lens.
Thaury, C; Guillaume, E; Döpp, A; Lehe, R; Lifschitz, A; Ta Phuoc, K; Gautier, J; Goddet, J-P; Tafzi, A; Flacco, A; Tissandier, F; Sebban, S; Rousse, A; Malka, V
2015-04-16
Laser-plasma technology promises a drastic reduction of the size of high-energy electron accelerators. It could make free-electron lasers available to a broad scientific community and push further the limits of electron accelerators for high-energy physics. Furthermore, the unique femtosecond nature of the source makes it a promising tool for the study of ultrafast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line.
Accelerating Large Scale Image Analyses on Parallel, CPU-GPU Equipped Systems
Teodoro, George; Kurc, Tahsin M.; Pan, Tony; Cooper, Lee A.D.; Kong, Jun; Widener, Patrick; Saltz, Joel H.
2014-01-01
The past decade has witnessed a major paradigm shift in high performance computing with the introduction of accelerators as general purpose processors. These computing devices make available very high parallel computing power at low cost and power consumption, transforming current high performance platforms into heterogeneous CPU-GPU equipped systems. Although the theoretical performance achieved by these hybrid systems is impressive, taking practical advantage of this computing power remains a very challenging problem. Most applications are still deployed to either GPU or CPU, leaving the other resource under- or un-utilized. In this paper, we propose, implement, and evaluate a performance aware scheduling technique along with optimizations to make efficient collaborative use of CPUs and GPUs on a parallel system. In the context of feature computations in large scale image analysis applications, our evaluations show that intelligently co-scheduling CPUs and GPUs can significantly improve performance over GPU-only or multi-core CPU-only approaches. PMID:25419545
Lapierre, A; Schwarz, S; Baumann, T M; Cooper, K; Kittimanapun, K; Rodriguez, A J; Sumithrarachchi, C; Williams, S J; Wittmer, W; Leitner, D; Bollen, G
2014-02-01
An electron-beam ion trap (EBIT) charge breeder is being brought into operation at the National Superconducting Cyclotron Laboratory at Michigan State University. The EBIT is part of the ReA post-accelerator for reacceleration of rare isotopes, which are thermalized in a gas "stopping" cell after being produced at high energy by projectile fragmentation. The ReA EBIT has a distinctive design; it is characterized by a high-current electron gun and a two-field superconducting magnet to optimize the capture and charge-breeding efficiency of continuously injected singly charged ion beams. Following a brief overview of the reaccelerator system and the ReA EBIT, this paper presents the latest commissioning results, particularly, charge breeding and reacceleration of the highly charged rare isotopes, (76)Ga(24 +, 25 +).
Studies on the S-band bunching system with the Hybrid Bunching-accelerating Structure
NASA Astrophysics Data System (ADS)
Pei, Shi-Lun; Gao, Bin
2018-04-01
Generally, a standard bunching system is composed of a standing-wave (SW) pre-buncher (PB), a traveling-wave (TW) buncher (B) and a standard accelerating structure. In the industrial area, the bunching system is usually simplified by eliminating the PB and integrating the B and the standard accelerating structure together to form a β-varied accelerating structure. The beam capturing efficiency for this kind of simplified system is often worse than that for the standard one. The hybrid buncher (HB) has been proved to be a successful attempt to reduce the cost but preserve the beam quality as much as possible. Here we propose to exclusively simplify the standard bunching system by integrating the PB, the B and the standard accelerating structure together to form a Hybrid Bunching-accelerating Structure (HBaS). Compared to the standard bunching system, the one based on the HBaS is more compact, and the cost is lowered to the largest extent. With almost the same beam transportation efficiency (∼70%) from the electron gun to the linac exit, the peak-to-peak (p-to-p) beam energy spread and the 1 σ emittance of the linac with the HBaS are ∼20% and ∼60% bigger than those of the linac based on the split PB/B/standard accelerating structure system. Nonetheless, the proposed HBaS can be widely applied in the industrial linacs to greatly increase the beam capturing efficiency without fairly increasing the construction cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thirolf, P. G., E-mail: Peter.Thirolf@lmu.de
2015-02-24
High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanismsmore » for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called ‘fission-fusion’, which will be introduced in the second part of the article. Accelerating fissile species (e.g. {sup 232}Th) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. ‘Waiting points’ at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in ‘terra incognita’ of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to conventional nuclear reaction schemes even at next-generation radioactive beam facilities, underlining the attractive perspectives offered, e.g., by ELI-NP.« less
Test results of a Nb 3Al/Nb 3Sn subscale magnet for accelerator application
Iio, Masami; Xu, Qingjin; Nakamoto, Tatsushi; ...
2015-01-28
The High Energy Accelerator Research Organization (KEK) has been developing a Nb 3Al and Nb 3Sn subscale magnet to establish the technology for a high-field accelerator magnet. The development goals are a feasibility demonstration for a Nb 3Al cable and the technology acquisition of magnet fabrication with Nb 3Al superconductors. KEK developed two double-pancake racetrack coils with Rutherford-type cables composed of 28 Nb 3Al wires processed by rapid heating, quenching, and transformation in collaboration with the National Institute for Materials Science and the Fermi National Accelerator Laboratory. The magnet was fabricated to efficiently generate a high magnetic field in amore » minimum-gap common-coil configuration with two Nb 3Al coils sandwiched between two Nb 3Sn coils produced by the Lawrence Berkeley National Laboratory. A shell-based structure and a “bladder and key” technique have been used for adjusting coil prestress during both the magnet assembly and the cool down. In the first excitation test of the magnet at 4.5 K performed in June 2014, the highest quench current of the Nb 3Sn coil, i.e., 9667 A, was reached at 40 A/s corresponding to 9.0 T in the Nb 3Sn coil and 8.2 T in the Nb 3Al coil. The quench characteristics of the magnet were studied.« less
NASA Astrophysics Data System (ADS)
Swisdak, M.; Dahlin, J. T.; Drake, J. F.
2017-12-01
Magnetic reconnection is an important driver of energetic particles in many space and astrophysical phenomena. Using kinetic particle-in-cell simulations, we explore the effects that the dynamics in three-dimensions has on reconnection and the efficiency of particle acceleration. In two-dimensional systems, Alfvenic outflows expel energetic electrons into flux ropes where they become trapped and disconnected from acceleration regions. However, in three-dimensional systems these flux ropes develop axial structure that enables particles to leak out and return to acceleration regions. This requires a finite guide field so that particles may move quickly along the flux rope axis. The greatest energetic electron production occurs when the guide field is of the same order as the reconnecting component: large enough to facilitate strong transport, but not so large as to throttle the dominant Fermi mechanism responsible for efficient electron acceleration.
Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror
NASA Astrophysics Data System (ADS)
Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Arefiev, Alexey V.; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V.; Shvets, G.; Downer, M. C.
2015-02-01
We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a0 ˜ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic "denting" of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75-200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (˜6 × 10-12) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.
Design of a CW high charge state heavy ion RFQ for SSC-LINAC
NASA Astrophysics Data System (ADS)
Liu, G.; Lu, Y. R.; He, Y.; Wang, Z.; Xiao, C.; Gao, S. L.; Yang, Y. Q.; Zhu, K.; Yan, X. Q.; Chen, J. E.; Yuan, Y. J.; Zhao, H. W.
2013-02-01
The new linac injector SSC-LINAC has been proposed to replace the existing Separator Sector Cyclotron (SSC). This effort is to improve the beam efficiency of the Heavy Ion Research Facility of Lanzhou (HIRFL). As a key component of the linac, a continuous-wave (CW) mode high charge state heavy ion radio-frequency quadrupole (RFQ) accelerator has been designed. It accelerates ions with the ratio of mass to charge up to 7 from 3.728 keV/u to 143 keV/u. The requirements of CW mode operation and the transportation of intense beam have been considered as the greatest challenges. The design is based on 238U34+ beams, whose current is 0.5 pmA (0.5 particle mili-ampere, which is the measured 17 emA electric current divided by charge state of heavy ions). It achieves the transmission efficiency of 94% with 2508.46 mm long vanes in simulation. To improve the transmission efficiency and quality of the beams, the phase advance has been taken into account to analyze the reasons of beam loss and emittance growth. Parametric resonance and beam mismatch have been carefully avoided by adjusting the structure parameters. The parameter-sensitivity of the design is checked by transportation simulations of various input beams. To verify the applicability of machining, the effects of different vane manufacturing methods on beam dynamics are presented in this paper.
Development of high intensity linear accelerator for heavy ion inertial fusion driver
NASA Astrophysics Data System (ADS)
Lu, Liang; Hattori, Toshiyuki; Hayashizaki, Noriyosu; Ishibashi, Takuya; Okamura, Masahiro; Kashiwagi, Hirotsugu; Takeuchi, Takeshi; Zhao, Hongwei; He, Yuan
2013-11-01
In order to verify the direct plasma injection scheme (DPIS), an acceleration test was carried out in 2001 using a radio frequency quadrupole (RFQ) heavy ion linear accelerator (linac) and a CO2-laser ion source (LIS) (Okamura et al., 2002) [1]. The accelerated carbon beam was observed successfully and the obtained current was 9.22 mA for C4+. To confirm the capability of the DPIS, we succeeded in accelerating 60 mA carbon ions with the DPIS in 2004 (Okamura et al., 2004; Kashiwagi and Hattori, 2004) [2,3]. We have studied a multi-beam type RFQ with an interdigital-H (IH) cavity that has a power-efficient structure in the low energy region. We designed and manufactured a two-beam type RFQ linac as a prototype for the multi-beam type linac; the beam acceleration test of carbon beams showed that it successfully accelerated from 5 keV/u up to 60 keV/u with an output current of 108 mA (2×54 mA/channel) (Ishibashi et al., 2011) [4]. We believe that the acceleration techniques of DPIS and the multi-beam type IH-RFQ linac are technical breakthroughs for heavy-ion inertial confinement fusion (HIF). The conceptual design of the RF linac with these techniques for HIF is studied. New accelerator-systems using these techniques for the HIF basic experiment are being designed to accelerate 400 mA carbon ions using four-beam type IH-RFQ linacs with DPIS. A model with a four-beam acceleration cavity was designed and manufactured to establish the proof of principle (PoP) of the accelerator.
Operation regimes of a dielectric laser accelerator
NASA Astrophysics Data System (ADS)
Hanuka, Adi; Schächter, Levi
2018-04-01
We investigate three operation regimes in dielectric laser driven accelerators: maximum efficiency, maximum charge, and maximum loaded gradient. We demonstrate, using a self-consistent approach, that loaded gradients of the order of 1 to 6 [GV/m], efficiencies of 20% to 80%, and electrons flux of 1014 [el/s] are feasible, without significant concerns regarding damage threshold fluence. The latter imposes that the total charge per squared wavelength is constant (a total of 106 per μm2). We conceive this configuration as a zero-order design that should be considered for the road map of future accelerators.
GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Song, Shuaiwen; Agarwal, Kapil
2015-11-15
Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host andmore » device.« less
NASA Astrophysics Data System (ADS)
Faerber, Christian
2017-10-01
The LHCb experiment at the LHC will upgrade its detector by 2018/2019 to a ‘triggerless’ readout scheme, where all the readout electronics and several sub-detector parts will be replaced. The new readout electronics will be able to readout the detector at 40 MHz. This increases the data bandwidth from the detector down to the Event Filter farm to 40 TBit/s, which also has to be processed to select the interesting proton-proton collision for later storage. The architecture of such a computing farm, which can process this amount of data as efficiently as possible, is a challenging task and several compute accelerator technologies are being considered for use inside the new Event Filter farm. In the high performance computing sector more and more FPGA compute accelerators are used to improve the compute performance and reduce the power consumption (e.g. in the Microsoft Catapult project and Bing search engine). Also for the LHCb upgrade the usage of an experimental FPGA accelerated computing platform in the Event Building or in the Event Filter farm is being considered and therefore tested. This platform from Intel hosts a general CPU and a high performance FPGA linked via a high speed link which is for this platform a QPI link. On the FPGA an accelerator is implemented. The used system is a two socket platform from Intel with a Xeon CPU and an FPGA. The FPGA has cache-coherent memory access to the main memory of the server and can collaborate with the CPU. As a first step, a computing intensive algorithm to reconstruct Cherenkov angles for the LHCb RICH particle identification was successfully ported in Verilog to the Intel Xeon/FPGA platform and accelerated by a factor of 35. The same algorithm was ported to the Intel Xeon/FPGA platform with OpenCL. The implementation work and the performance will be compared. Also another FPGA accelerator the Nallatech 385 PCIe accelerator with the same Stratix V FPGA were tested for performance. The results show that the Intel Xeon/FPGA platforms, which are built in general for high performance computing, are also very interesting for the High Energy Physics community.
NASA Astrophysics Data System (ADS)
Geddes, Cameron G. R.; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.
2015-05-01
Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.
GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor
2013-07-01
It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Clustermore » spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.« less
Analysis on the time and frequency domains of the acceleration in front crawl stroke.
Gil, Joaquín Madera; Moreno, Luis-Millán González; Mahiques, Juan Benavent; Muñoz, Víctor Tella
2012-05-01
The swimming involves accelerations and decelerations in the swimmer's body. Thus, the main objective of this study is to make a temporal and frequency analysis of the acceleration in front crawl swimming, regarding the gender and the performance. The sample was composed by 31 male swimmers (15 of high-level and 16 of low-level) and 20 female swimmers (11 of high-level and 9 of low-level). The acceleration was registered from the third complete cycle during eight seconds in a 25 meters maximum velocity test. A position transducer (200Hz) was used to collect the data, and it was synchronized to an aquatic camera (25Hz). The acceleration in the temporal (root mean square, minimum and maximum of the acceleration) and frequency (power peak, power peak frequency and spectral area) domains was calculated with Fourier analysis, as well as the velocity and the spectrums distribution in function to present one or more main peaks (type 1 and type 2). A one-way ANOVA was used to establish differences between gender and performance. Results show differences between genders in all the temporal domain variables (p<0.05) and only the Spectral Area (SA) in the frequency domain (p<0.05). Between gender and performance, only the Root Mean Square (RMS) showed differences in the performance of the male swimmers (p<0.05) and in the higher level swimmers, the Maximum (Max) and the Power Peak (PP) of the acceleration showed differences between both genders (p<0.05). These results confirms the importance of knowing the RMS to determine the efficiency of the swimmers regarding gender and performance level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.
2011-01-04
We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency changemore » due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.« less
Matching into the Helical Bunch Coalescing Channel for a High Luminosity Muon Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sy, Amy; Ankenbrandt, Charles; Derbenev, Yaroslav
2015-09-01
For high luminosity in a muon collider, muon bunches that have been cooled in the six-dimensional helical cooling channel (HCC) must be merged into a single bunch and further cooled in preparation for acceleration and transport to the collider ring. The helical bunch coalescing channel has been previously simulated and provides the most natural match from helical upstream and downstream subsystems. This work focuses on the matching from the exit of the multiple bunch HCC into the start of the helical bunch coalescing channel. The simulated helical matching section simultaneously matches the helical spatial period lambda in addition to providingmore » the necessary acceleration for efficient bunch coalescing. Previous studies assumed that the acceleration of muon bunches from p=209.15 MeV/c to 286.816 MeV/c and matching of lambda from 0.5 m to 1.0 m could be accomplished with zero particle losses and zero emittance growth in the individual bunches. This study demonstrates nonzero values for both particle loss and emittance growth, and provides considerations for reducing these adverse effects to best preserve high luminosity.« less
Quan, Guotao; Gong, Hui; Deng, Yong; Fu, Jianwei; Luo, Qingming
2011-02-01
High-speed fluorescence molecular tomography (FMT) reconstruction for 3-D heterogeneous media is still one of the most challenging problems in diffusive optical fluorescence imaging. In this paper, we propose a fast FMT reconstruction method that is based on Monte Carlo (MC) simulation and accelerated by a cluster of graphics processing units (GPUs). Based on the Message Passing Interface standard, we modified the MC code for fast FMT reconstruction, and different Green's functions representing the flux distribution in media are calculated simultaneously by different GPUs in the cluster. A load-balancing method was also developed to increase the computational efficiency. By applying the Fréchet derivative, a Jacobian matrix is formed to reconstruct the distribution of the fluorochromes using the calculated Green's functions. Phantom experiments have shown that only 10 min are required to get reconstruction results with a cluster of 6 GPUs, rather than 6 h with a cluster of multiple dual opteron CPU nodes. Because of the advantages of high accuracy and suitability for 3-D heterogeneity media with refractive-index-unmatched boundaries from the MC simulation, the GPU cluster-accelerated method provides a reliable approach to high-speed reconstruction for FMT imaging.
High repetition rate laser-driven MeV ion acceleration at variable background pressures
NASA Astrophysics Data System (ADS)
Snyder, Joseph; Ngirmang, Gregory; Orban, Chris; Feister, Scott; Morrison, John; Frische, Kyle; Chowdhury, Enam; Roquemore, W. M.
2017-10-01
Ultra-intense laser-plasma interactions (LPI) can produce highly energetic photons, electrons, and ions with numerous potential real-world applications. Many of these applications will require repeatable, high repetition targets that are suitable for LPI experiments. Liquid targets can meet many of these needs, but they typically require higher chamber pressure than is used for many low repetition rate experiments. The effect of background pressure on the LPI has not been thoroughly studied. With this in mind, the Extreme Light group at the Air Force Research Lab has carried out MeV ion and electron acceleration experiments at kHz repetition rate with background pressures ranging from 30 mTorr to >1 Torr using a submicron ethylene glycol liquid sheet target. We present these results and provide two-dimensional particle-in-cell simulation results that offer insight on the thresholds for the efficient acceleration of electrons and ions. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.
Accelerating DNA analysis applications on GPU clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumeo, Antonino; Villa, Oreste
DNA analysis is an emerging application of high performance bioinformatic. Modern sequencing machinery are able to provide, in few hours, large input streams of data which needs to be matched against exponentially growing databases known fragments. The ability to recognize these patterns effectively and fastly may allow extending the scale and the reach of the investigations performed by biology scientists. Aho-Corasick is an exact, multiple pattern matching algorithm often at the base of this application. High performance systems are a promising platform to accelerate this algorithm, which is computationally intensive but also inherently parallel. Nowadays, high performance systems also includemore » heterogeneous processing elements, such as Graphic Processing Units (GPUs), to further accelerate parallel algorithms. Unfortunately, the Aho-Corasick algorithm exhibits large performance variabilities, depending on the size of the input streams, on the number of patterns to search and on the number of matches, and poses significant challenges on current high performance software and hardware implementations. An adequate mapping of the algorithm on the target architecture, coping with the limit of the underlining hardware, is required to reach the desired high throughputs. Load balancing also plays a crucial role when considering the limited bandwidth among the nodes of these systems. In this paper we present an efficient implementation of the Aho-Corasick algorithm for high performance clusters accelerated with GPUs. We discuss how we partitioned and adapted the algorithm to fit the Tesla C1060 GPU and then present a MPI based implementation for a heterogeneous high performance cluster. We compare this implementation to MPI and MPI with pthreads based implementations for a homogeneous cluster of x86 processors, discussing the stability vs. the performance and the scaling of the solutions, taking into consideration aspects such as the bandwidth among the different nodes.« less
Chen, Fangfang; Wang, Jiayu; Lu, Ruicong; Chen, Huiru; Xie, Xiaoyu
2018-08-10
A novel microwave-accelerated reversible addition fragmentation chain transfer (RAFT) polymerization strategy has been introduced to shorten reaction time and improved polymerization efficiency of the conventional molecularly imprinting technology based on RAFT. Magnetic molecular imprinted polymers (MMIPs) were successfully synthesized much more efficiently using 17β-estradiol (E2) as a template for the determination of estrogen residues. The resultant MMIPs had well-defined thin imprinted film, favoring the fast mass transfer. Moreover, the reaction time, which was just 1/24 of the time taken by conventional heating, was significantly decreased, improving the reaction efficiency and reducing the probability of side reactions. Meanwhile, the obtained polymers have good capacity of 6.67 mg g -1 and satisfactory selectivity to template molecule with the imprinting factor of 5.11. As a result, a method combination of the resultant MMIPs as solid phase extraction sorbents and high-performance liquid chromatography was successfully set up to determinate three estrogen residues in milk samples. For E2, estrone, and estriol, the limit of detections were calculated to be 0.03, 0.08, and 0.06 ng mL -1 , respectively, and the limit of quantifications were 0.11, 0.27, and 0.21 ng mL -1 , respectively. At the spiked level of 1, 5, and 10 ng mL -1 , the recoveries of the three estrogens were ranged from 69.1% to 91.9% and the intra-day relative standard deviation (RSD) was less than 5.7%. In addition, the resultant MMIPs exhibited good reproducibility and reusability with the inter-batch RSD of 5.3% and the intra-batch RSD of 6.2%, respectively. Overall, the realization of this strategy facilitates the preparation of MMIPs with good architecture and high reaction efficiencies for the analysis of complicated real samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Long-term shifts in life-cycle energy efficiency and carbon intensity.
Yeh, Sonia; Mishra, Gouri Shankar; Morrison, Geoff; Teter, Jacob; Quiceno, Raul; Gillingham, Kenneth; Riera-Palou, Xavier
2013-03-19
The quantity of primary energy needed to support global human activity is in large part determined by how efficiently that energy is converted to a useful form. We estimate the system-level life-cycle energy efficiency (EF) and carbon intensity (CI) across primary resources for 2005-2100. Our results underscore that although technological improvements at each energy conversion process will improve technology efficiency and lead to important reductions in primary energy use, market mediated effects and structural shifts toward less efficient pathways and pathways with multiple stages of conversion will dampen these efficiency gains. System-level life-cycle efficiency may decrease as mitigation efforts intensify, since low-efficiency renewable systems with high output have much lower GHG emissions than some high-efficiency fossil fuel systems. Climate policies accelerate both improvements in EF and the adoption of renewable technologies, resulting in considerably lower primary energy demand and GHG emissions. Life-cycle EF and CI of useful energy provide a useful metric for understanding dynamics of implementing climate policies. The approaches developed here reiterate the necessity of a combination of policies that target efficiency and decarbonized energy technologies. We also examine life-cycle exergy efficiency (ExF) and find that nearly all of the qualitative results hold regardless of whether we use ExF or EF.
Study of strength kinetics of sand concrete system of accelerated hardening
NASA Astrophysics Data System (ADS)
Sharanova, A. V.; Lenkova, D. A.; Panfilova, A. D.
2018-04-01
Methods of calorimetric analysis are used to study the dynamics of the hydration processes of concretes with different accelerator contents. The efficiency of the isothermal calorimetry method is shown for study of strength kinetics of concrete mixtures of accelerated hardening, promising for additive technologies in civil engineering.
Research on High-efficient Remanufacturing Technologies and Application of Electric Motor
NASA Astrophysics Data System (ADS)
Liu, Ren; Zhao, Yuejin; Yang, Xu; Wang, Gen
2017-09-01
The energy conservation of electric motor system is the key of industrial energy conservation. With the implementation and acceleration of electric motor energy efficiency improvement plan, more and more electric motors are knocked out. High-efficient remanufacturing of electric motor refers to improving the efficiency of electric motor and recycling the resources by replacing the winding, iron core and other components of electric motor on the basis of the low-efficient/outdated electric motors, which conforms to China’s policy of circular economy and resource recovery. The remanufacturing of electric motor not only maximizes the use of resources, but also reduces the energy consumption generated by reprocessing of cast iron, silicon steel sheet and other materials in dismantling of electric motor. However, structures and iron core materials used in design and manufacture of electric motors are different, and the degrees of wear of electric motors are also different under different operating conditions, which further result in diversified design schemes, increased remanufacturing cost and reduced remanufacturing efficiency. This paper analyzes the key process technologies for remanufacturing of electric motors are researched by analyzing the remanufacturing technologies of electric motors, and presents the feasibility to replace the cast-aluminum rotor with cast-copper rotor in high-efficient remanufacturing process of electric motor.
NASA Technical Reports Server (NTRS)
Whitcomb, R. T. (Inventor)
1976-01-01
An airfoil is examined that has an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency. Diagrams illustrating supersonic flow and shock waves over the airfoil are shown.
A high precision extrapolation method in multiphase-field model for simulating dendrite growth
NASA Astrophysics Data System (ADS)
Yang, Cong; Xu, Qingyan; Liu, Baicheng
2018-05-01
The phase-field method coupling with thermodynamic data has become a trend for predicting the microstructure formation in technical alloys. Nevertheless, the frequent access to thermodynamic database and calculation of local equilibrium conditions can be time intensive. The extrapolation methods, which are derived based on Taylor expansion, can provide approximation results with a high computational efficiency, and have been proven successful in applications. This paper presents a high precision second order extrapolation method for calculating the driving force in phase transformation. To obtain the phase compositions, different methods in solving the quasi-equilibrium condition are tested, and the M-slope approach is chosen for its best accuracy. The developed second order extrapolation method along with the M-slope approach and the first order extrapolation method are applied to simulate dendrite growth in a Ni-Al-Cr ternary alloy. The results of the extrapolation methods are compared with the exact solution with respect to the composition profile and dendrite tip position, which demonstrate the high precision and efficiency of the newly developed algorithm. To accelerate the phase-field and extrapolation computation, the graphic processing unit (GPU) based parallel computing scheme is developed. The application to large-scale simulation of multi-dendrite growth in an isothermal cross-section has demonstrated the ability of the developed GPU-accelerated second order extrapolation approach for multiphase-field model.
Controllability in Multi-Stage Laser Ion Acceleration
NASA Astrophysics Data System (ADS)
Kawata, S.; Kamiyama, D.; Ohtake, Y.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Li, X. F.; Yu, Q.
2015-11-01
The present paper shows a concept for a future laser ion accelerator, which should have an ion source, ion collimators, ion beam bunchers and ion post acceleration devices. Based on the laser ion accelerator components, the ion particle energy and the ion energy spectrum are controlled, and a future compact laser ion accelerator would be designed for ion cancer therapy or for ion material treatment. In this study each component is designed to control the ion beam quality. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser-target interaction. A combination of each component provides a high controllability of the ion beam quality to meet variable requirements in various purposes in the laser ion accelerator. The work was partly supported by MEXT, JSPS, ASHULA project/ ILE, Osaka University, CORE (Center for Optical Research and Education, Utsunomiya University, Japan), Fudan University and CDI (Creative Dept. for Innovation) in CCRD, Utsunomiya University.
Trends in Immigration of Selected High-Skilled Immigrants to the U.S. from 1997 to 2006
ERIC Educational Resources Information Center
Zhou, Fan
2009-01-01
One result of accelerating globalization is the competition for human capital. On one hand, nations are investing more and more in their educational systems to create their own human resources; on the other hand, these nations are struggling to effectively and efficiently utilize their existing human capital. Additionally, there is a massive wave…
NASA Astrophysics Data System (ADS)
Totmeninov, E. M.; Pegel, I. V.; Tarakanov, V. P.
2017-06-01
Using numerical simulation, the operating mode of a relativistic Cherenkov microwave generator of the twistronic type has been demonstrated. The generator includes an electrodynamic system based on a backward-wave oscillator and modulating reflector with nonmonotonous, highly nonuniform energy exchange along the length of the system. The efficiency of power conversion from the electron beam to electromagnetic radiation is 56%, and the electronic efficiency is 66%. For an accelerating voltage of 340 kV and an electron beam current of 3.3 kA, the simulated generation power is 630 MW at a frequency of 9.7 GHz and a guiding magnetic field of 2.2 T.
Precision is essential for efficient catalysis in an evolved Kemp eliminase.
Blomberg, Rebecca; Kries, Hajo; Pinkas, Daniel M; Mittl, Peer R E; Grütter, Markus G; Privett, Heidi K; Mayo, Stephen L; Hilvert, Donald
2013-11-21
Linus Pauling established the conceptual framework for understanding and mimicking enzymes more than six decades ago. The notion that enzymes selectively stabilize the rate-limiting transition state of the catalysed reaction relative to the bound ground state reduces the problem of design to one of molecular recognition. Nevertheless, past attempts to capitalize on this idea, for example by using transition state analogues to elicit antibodies with catalytic activities, have generally failed to deliver true enzymatic rates. The advent of computational design approaches, combined with directed evolution, has provided an opportunity to revisit this problem. Starting from a computationally designed catalyst for the Kemp elimination--a well-studied model system for proton transfer from carbon--we show that an artificial enzyme can be evolved that accelerates an elementary chemical reaction 6 × 10(8)-fold, approaching the exceptional efficiency of highly optimized natural enzymes such as triosephosphate isomerase. A 1.09 Å resolution crystal structure of the evolved enzyme indicates that familiar catalytic strategies such as shape complementarity and precisely placed catalytic groups can be successfully harnessed to afford such high rate accelerations, making us optimistic about the prospects of designing more sophisticated catalysts.
NASA Astrophysics Data System (ADS)
Rodríguez-Sánchez, Rafael; Martínez, José Luis; Cock, Jan De; Fernández-Escribano, Gerardo; Pieters, Bart; Sánchez, José L.; Claver, José M.; de Walle, Rik Van
2013-12-01
The H.264/AVC video coding standard introduces some improved tools in order to increase compression efficiency. Moreover, the multi-view extension of H.264/AVC, called H.264/MVC, adopts many of them. Among the new features, variable block-size motion estimation is one which contributes to high coding efficiency. Furthermore, it defines a different prediction structure that includes hierarchical bidirectional pictures, outperforming traditional Group of Pictures patterns in both scenarios: single-view and multi-view. However, these video coding techniques have high computational complexity. Several techniques have been proposed in the literature over the last few years which are aimed at accelerating the inter prediction process, but there are no works focusing on bidirectional prediction or hierarchical prediction. In this article, with the emergence of many-core processors or accelerators, a step forward is taken towards an implementation of an H.264/AVC and H.264/MVC inter prediction algorithm on a graphics processing unit. The results show a negligible rate distortion drop with a time reduction of up to 98% for the complete H.264/AVC encoder.
Radiation pressure acceleration: The factors limiting maximum attainable ion energy
Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...
2016-04-15
Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case,more » finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.« less
Simulation of orientational coherent effects via Geant4
NASA Astrophysics Data System (ADS)
Bagli, E.; Asai, M.; Brandt, D.; Dotti, A.; Guidi, V.; Verderi, M.; Wright, D.
2017-10-01
Simulation of orientational coherent effects via Geant4 beam manipulation of high-and very-high-energy particle beams is a hot topic in accelerator physics. Coherent effects of ultra-relativistic particles in bent crystals allow the steering of particle trajectories thanks to the strong electrical field generated between atomic planes. Recently, a collimation experiment with bent crystals was carried out at the CERN-LHC, paving the way to the usage of such technology in current and future accelerators. Geant4 is a widely used object-oriented tool-kit for the Monte Carlo simulation of the interaction of particles with matter in high-energy physics. Moreover, its areas of application include also nuclear and accelerator physics, as well as studies in medical and space science. We present the first Geant4 extension for the simulation of orientational effects in straight and bent crystals for high energy charged particles. The model allows the manipulation of particle trajectories by means of straight and bent crystals and the scaling of the cross sections of hadronic and electromagnetic processes for channeled particles. Based on such a model, an extension of the Geant4 toolkit has been developed. The code and the model have been validated by comparison with published experimental data regarding the deflection efficiency via channeling and the variation of the rate of inelastic nuclear interactions.
Acceleration of cosmic rays in supernova-remnants
NASA Technical Reports Server (NTRS)
Dorfi, E. A.; Drury, L. O.
1985-01-01
It is commonly accepted that supernova-explosions are the dominant source of cosmic rays up to an energy of 10 to the 14th power eV/nucleon. Moreover, these high energy particles provide a major contribution to the energy density of the interstellar medium (ISM) and should therefore be included in calculations of interstellar dynamic phenomena. For the following the first order Fermi mechanism in shock waves are considered to be the main acceleration mechanism. The influence of this process is twofold; first, if the process is efficient (and in fact this is the cas) it will modify the dynamics and evolution of a supernova-remnant (SNR), and secondly, the existence of a significant high energy component changes the overall picture of the ISM. The complexity of the underlying physics prevented detailed investigations of the full non-linear selfconsistent problem. For example, in the context of the energy balance of the ISM it has not been investigated how much energy of a SN-explosion can be transfered to cosmic rays in a time-dependent selfconsistent model. Nevertheless, a lot of progress was made on many aspects of the acceleration mechanism.
NASA Astrophysics Data System (ADS)
Zhao, Shaoshuai; Ni, Chen; Cao, Jing; Li, Zhengqiang; Chen, Xingfeng; Ma, Yan; Yang, Leiku; Hou, Weizhen; Qie, Lili; Ge, Bangyu; Liu, Li; Xing, Jin
2018-03-01
The remote sensing image is usually polluted by atmosphere components especially like aerosol particles. For the quantitative remote sensing applications, the radiative transfer model based atmospheric correction is used to get the reflectance with decoupling the atmosphere and surface by consuming a long computational time. The parallel computing is a solution method for the temporal acceleration. The parallel strategy which uses multi-CPU to work simultaneously is designed to do atmospheric correction for a multispectral remote sensing image. The parallel framework's flow and the main parallel body of atmospheric correction are described. Then, the multispectral remote sensing image of the Chinese Gaofen-2 satellite is used to test the acceleration efficiency. When the CPU number is increasing from 1 to 8, the computational speed is also increasing. The biggest acceleration rate is 6.5. Under the 8 CPU working mode, the whole image atmospheric correction costs 4 minutes.
Two-material optimization of plate armour for blast mitigation using hybrid cellular automata
NASA Astrophysics Data System (ADS)
Goetz, J.; Tan, H.; Renaud, J.; Tovar, A.
2012-08-01
With the increased use of improvised explosive devices in regions at war, the threat to military and civilian life has risen. Cabin penetration and gross acceleration are the primary threats in an explosive event. Cabin penetration crushes occupants, damaging the lower body. Acceleration causes death at high magnitudes. This investigation develops a process of designing armour that simultaneously mitigates cabin penetration and acceleration. The hybrid cellular automaton (HCA) method of topology optimization has proven efficient and robust in problems involving large, plastic deformations such as crash impact. Here HCA is extended to the design of armour under blast loading. The ability to distribute two metallic phases, as opposed to one material and void, is also added. The blast wave energy transforms on impact into internal energy (IE) inside the solid medium. Maximum attenuation occurs with maximized IE. The resulting structures show HCA's potential for designing blast mitigating armour structures.
A possible explanation of the knee of cosmic light component spectrum from 100 TeV to 3 PeV
NASA Astrophysics Data System (ADS)
Lin, Wen-Hui; Bao, Bi-Wen; Jiang, Ze-Jun; Zhang, Li
2017-10-01
A mixed hydrogen and helium (H + He) spectrum with a clear steepening at ∼ 700 TeV has been detected by the ARGO-YBJ experiments. In this paper, we demonstrate that the observed H + He spectrum can be reproduced well with a model of cosmic rays escaping from the supernova remnants (SNRs) in our Galaxy. In this model, particles are accelerated in a SNR through a non-linear diffusive shock acceleration mechanism. Three components of high energy light nuclei escaped from the SNR are considered. It should be noted that the proton spectrum observed by KASCADE can be also explained by this model given a higher acceleration efficiency. Supported by the National Natural Science Foundation of China (11433004, 11363006, 11103016, 11173020), Top Talents Program of Yunnan Province (2015HA030) and the Natural Science Foundation of Yunnan Province(2015FB103)
An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Degner, T.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülβ, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Piegsa, A.; Pieloth, D.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rizzo, A.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, M. W. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration
2012-04-01
Very energetic astrophysical events are required to accelerate cosmic rays to above 1018electronvolts. GRBs (γ-ray bursts) have been proposed as possible candidate sources. In the GRB `fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and γ-rays. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 1018electronvolts or that the efficiency of neutrino production is much lower than has been predicted.
NASA Astrophysics Data System (ADS)
Ichihara, D.; Nakagawa, Y.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.; Yamazaki, T.
2017-10-01
The effects of a radio-frequency (RF) power on the ion generation and electrostatic acceleration in a helicon electrostatic thruster were investigated with a constant discharge voltage of 300 V using argon as the working gas at a flow rate either of 0.5 Aeq (Ampere equivalent) or 1.0 Aeq. A RF power that was even smaller than a direct-current (DC) discharge power enhanced the ionization of the working gas, thereby both the ion beam current and energy were increased. However, an excessively high RF power input resulted in their saturation, leading to an unfavorable increase in an ionization cost with doubly charged ion production being accompanied. From the tradeoff between the ion production by the RF power and the electrostatic acceleration made by the direct current discharge power, the thrust efficiency has a maximum value at an optimal RF to DC discharge power ratio of 0.6 - 1.0.
Reichert, Janice M; Jacob, Nitya; Amanullah, Ashraf
2009-01-01
The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme "Delivering cost-effective, robust processes and methods quickly and efficiently." The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development.
Reichert, Janice M; Jacob, Nitya M; Amanullah, Ashraf
2009-01-01
The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme "Delivering cost-effective, robust processes and methods quickly and efficiently." The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development.
Accelerated Gaussian mixture model and its application on image segmentation
NASA Astrophysics Data System (ADS)
Zhao, Jianhui; Zhang, Yuanyuan; Ding, Yihua; Long, Chengjiang; Yuan, Zhiyong; Zhang, Dengyi
2013-03-01
Gaussian mixture model (GMM) has been widely used for image segmentation in recent years due to its superior adaptability and simplicity of implementation. However, traditional GMM has the disadvantage of high computational complexity. In this paper an accelerated GMM is designed, for which the following approaches are adopted: establish the lookup table for Gaussian probability matrix to avoid the repetitive probability calculations on all pixels, employ the blocking detection method on each block of pixels to further decrease the complexity, change the structure of lookup table from 3D to 1D with more simple data type to reduce the space requirement. The accelerated GMM is applied on image segmentation with the help of OTSU method to decide the threshold value automatically. Our algorithm has been tested through image segmenting of flames and faces from a set of real pictures, and the experimental results prove its efficiency in segmentation precision and computational cost.
Monte Carlo simulations of particle acceleration at oblique shocks: Including cross-field diffusion
NASA Technical Reports Server (NTRS)
Baring, M. G.; Ellison, D. C.; Jones, F. C.
1995-01-01
The Monte Carlo technique of simulating diffusive particle acceleration at shocks has made spectral predictions that compare extremely well with particle distributions observed at the quasi-parallel region of the earth's bow shock. The current extension of this work to compare simulation predictions with particle spectra at oblique interplanetary shocks has required the inclusion of significant cross-field diffusion (strong scattering) in the simulation technique, since oblique shocks are intrinsically inefficient in the limit of weak scattering. In this paper, we present results from the method we have developed for the inclusion of cross-field diffusion in our simulations, namely model predictions of particle spectra downstream of oblique subluminal shocks. While the high-energy spectral index is independent of the shock obliquity and the strength of the scattering, the latter is observed to profoundly influence the efficiency of injection of cosmic rays into the acceleration process.
Direct and accelerated parameter mapping using the unscented Kalman filter.
Zhao, Li; Feng, Xue; Meyer, Craig H
2016-05-01
To accelerate parameter mapping using a new paradigm that combines image reconstruction and model regression as a parameter state-tracking problem. In T2 mapping, the T2 map is first encoded in parameter space by multi-TE measurements and then encoded by Fourier transformation with readout/phase encoding gradients. Using a state transition function and a measurement function, the unscented Kalman filter can describe T2 mapping as a dynamic system and directly estimate the T2 map from the k-space data. The proposed method was validated with a numerical brain phantom and volunteer experiments with a multiple-contrast spin echo sequence. Its performance was compared with a conjugate-gradient nonlinear inversion method at undersampling factors of 2 to 8. An accelerated pulse sequence was developed based on this method to achieve prospective undersampling. Compared with the nonlinear inversion reconstruction, the proposed method had higher precision, improved structural similarity and reduced normalized root mean squared error, with acceleration factors up to 8 in numerical phantom and volunteer studies. This work describes a new perspective on parameter mapping by state tracking. The unscented Kalman filter provides a highly accelerated and efficient paradigm for T2 mapping. © 2015 Wiley Periodicals, Inc.
Neutrino Physics with Accelerator Driven Subcritical Reactors
NASA Astrophysics Data System (ADS)
Ciuffoli, Emilio
2017-09-01
Accelerator Driven Subcritical System (ADS) reactors are being developed around the world, to produce energy and, at the same time, to provide an efficient way to dispose of and to recycle nuclear waste. Used nuclear fuel, by itself, cannot sustain a chain reaction; however in ADS reactors the additional neutrons which are required will be supplied by a high-intensity accelerator. This accelerator will produce, as a by-product, a large quantity of {\\bar{ν }}μ via muon Decay At Rest (µDAR). Using liquid scintillators, it will be possible to to measure the CP-violating phase δCP and to look for experimental signs of the presence of sterile neutrinos in the appearance channel, testing the LSND and MiniBooNE anomalies. Even in the first stage of the project, when the beam energy will be lower, it will be possible to produce {\\bar{ν }}e via Isotope Decay At Rest (IsoDAR), which can be used to provide competitive bounds on sterile neutrinos in the disappearance channel. I will consider several experimental setups in which the antineutrinos are created using accelerators that will be constructed as part of the China-ADS program.
NASA Technical Reports Server (NTRS)
Badhwar, Gautam D.; Cash, B. L.; Semones, E. J.; Yasuda, H.; Fujitaka, K.
1999-01-01
Response of thermoluminescent detectors (TLD-100) to high linear energy transfer (LET) particles has been studied using helium, carbon, silicon, and iron ions from the Heavy Ion Medical Accelerator at Chiba (Japan), iron ions from the Brookhaven National Laboratory (NY) Alternate Gradient Synchrotron, and 53, 134, 185, and 232 MeV protons from the Loma Linda accelerator. Using the measured relative (to (137)Cs dose efficiency, and measured LET spectra from a tissue equivalent proportional counter (TEPC) on 20 Space Shuttle flights, and 7 Mir flights, the underestimation of absorbed dose by these detectors has been evaluated. The dose underestimation is between 15-20% depending upon the flight inclination and shielding location. This has been confirmed by direct correlation of measured dose by TEPC and TLD-100 at a low shielded location in the Shuttle mid-deck. A comparison of efficiency- LET data with a compilation of similar data from TLD-700, shows that shapes of the two curves are nearly identical, but that the TLD-100 curve is systematically lower by about 13%, and is the major cause of dose underestimation. These results strongly suggest that TLDs used for crew dose estimation be regularly calibrated using heavy ions.
HACC: Extreme Scaling and Performance Across Diverse Architectures
NASA Astrophysics Data System (ADS)
Habib, Salman; Morozov, Vitali; Frontiere, Nicholas; Finkel, Hal; Pope, Adrian; Heitmann, Katrin
2013-11-01
Supercomputing is evolving towards hybrid and accelerator-based architectures with millions of cores. The HACC (Hardware/Hybrid Accelerated Cosmology Code) framework exploits this diverse landscape at the largest scales of problem size, obtaining high scalability and sustained performance. Developed to satisfy the science requirements of cosmological surveys, HACC melds particle and grid methods using a novel algorithmic structure that flexibly maps across architectures, including CPU/GPU, multi/many-core, and Blue Gene systems. We demonstrate the success of HACC on two very different machines, the CPU/GPU system Titan and the BG/Q systems Sequoia and Mira, attaining unprecedented levels of scalable performance. We demonstrate strong and weak scaling on Titan, obtaining up to 99.2% parallel efficiency, evolving 1.1 trillion particles. On Sequoia, we reach 13.94 PFlops (69.2% of peak) and 90% parallel efficiency on 1,572,864 cores, with 3.6 trillion particles, the largest cosmological benchmark yet performed. HACC design concepts are applicable to several other supercomputer applications.
Monte Carlo shock-like solutions to the Boltzmann equation with collective scattering
NASA Technical Reports Server (NTRS)
Ellison, D. C.; Eichler, D.
1984-01-01
The results of Monte Carlo simulations of steady state shocks generated by a collision operator that isotropizes the particles by means of elastic scattering in some locally defined frame of reference are presented. The simulations include both the back reaction of accelerated particles on the inflowing plasma and the free escape of high-energy particles from finite shocks. Energetic particles are found to be naturally extracted out of the background plasma by the shock process with an efficiency in good quantitative agreement with an earlier analytic approximation (Eichler, 1983 and 1984) and observations (Gosling et al., 1981) of the entire particle spectrum at a quasi-parallel interplanetary shock. The analytic approximation, which allows a self-consistent determination of the effective adiabatic index of the shocked gas, is used to calculate the overall acceleration efficiency and particle spectrum for cases where ultrarelativistic energies are obtained. It is found that shocks of the strength necessary to produce galactic cosmic rays put approximately 15 percent of the shock energy into relativistic particles.
Prospects of target nanostructuring for laser proton acceleration
Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias
2017-01-01
In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser–plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck. PMID:28290479
Prospects of target nanostructuring for laser proton acceleration.
Lübcke, Andrea; Andreev, Alexander A; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias
2017-03-14
In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.
Prospects of target nanostructuring for laser proton acceleration
NASA Astrophysics Data System (ADS)
Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias
2017-03-01
In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.
Experimental investigation of a 2.5 centimeter diameter Kaufman microthruster
NASA Technical Reports Server (NTRS)
Cohen, A. J.
1973-01-01
A 2.5-centimeter-diameter Kaufman electron bombardment microthruster was fabricated and tested. The microthruster design was based on the 15-centimeter-diameter SERT 2 and 5-centimeter-diameter Lewis experimental thruster designs. The microthruster with a two-grid system, operating at a net accelerating potential of 600 volts and an accelerator potential of 500 volts, produced a calculated 445 micronewton thrust when it was run with a 9-milliampere beam current. A glass grid was initially used in testing. Later a two-grid system was successfully incorporated. Both the propellant utilization efficiency and the total power efficiency were lower than for large-size advanced thrusters, as expected; but they were sufficiently high that 2.5-centimeter thrusters show promise for future space applications. Total power of the microthruster with an assumed 7-watt hollow-cathode neutralizer was less than 30 watts at a thrust level of 445 micronewton (100 Nu LBf). The hollow cathode was operated at zero tip heater power for power requirement tests.
Summary of the Normal-Conducting Accelerating Structures for LEDA and APT
NASA Astrophysics Data System (ADS)
Schneider, J. David
1998-04-01
The accelerator production of tritium (APT) plant requires a continuous (100% duty-factor), 100-mA, 1000--1700-MeV proton beam. Superconducting structures will accelerate protons above about 200 MeV, but room-temperature, normal-conducting (NC) copper structures will be used for lower energies. We will assemble the front 11-MeV portion of this NC accelerator as the low-energy demonstration accelerator (LEDA). This presentation will cover the demonstated operation of the proton injector, the design, fabrication, and tuning status of the 6.7-MeV RFQ, and the design features of the CCDTL (coupled-cavity drift-tube linac) that will accelerate protons to 100 MeV, before use of a conventional CCL (coupled-cavity linac). Several innovative features result in improved performance, ease of use, and improved reliabiltiy. The75-keV injector features a microwave ion source, dual-solenoid transport, and has no electronics at high potential. Its demonstrated high efficiency (less than 800 Watts), excellent proton fraction (>90%), high current (>110 mA), and reliability make it attractive for several other high-current applications. The 6.7-MeV, 350-MHz RFQ is an 8-meter-long, brazed-copper structure with hundreds of cooling channels that carry away the 1.3 MW of waste heat. During beam operation, only the cooling-water temperature is adjustable to maintain structure resonance. LEDA's 700-MHz CCDTL structure is new, combining features of the conventional DTL and CCL structures. All focus magnets are external to the copper accelerating cavities, each of which contains either one or two drift tubes. A `hot model' will validate fabrication, cooling, tuning, and coupling techniques. The LEDA facility is being upgraded with 15 MW of power and cooling utiliites, to support seven 1-MW cw RF systems needed to power all structures. The first few of these 1.3 MW 350-MHz systems are operational, and extensive testing was completed on the critical RF windows. Updates will be given on the development of vacuum, diagnostic, control, and cooling systems, as well as transport lines and beam stops. The unique and very compact, thin-walled beam stop is surrounded by an integral water shield for the prompt neutrons.
Hogan, Mark
2018-02-13
SLAC's Facility for Advanced Accelerator Experimental Tests, or FACET, is a test-bed where researchers are developing the technologies required for particle accelerators of the future. Scientists from all over the world come to explore ways of improving the power and efficiency of the particle accelerators used in basic research, medicine, industry and other areas important to society. In this video, Mark Hogan, head of SLAC's Advanced Accelerator Research Department, offers a glimpse into FACET, which uses part of SLAC's historic two-mile-long linear accelerator.
First Experiments with Planar Wire Arrays on U Michigan's Linear Transformer Driver
NASA Astrophysics Data System (ADS)
Safronova, A. S.; Kantsyrev, V. L.; Weller, M. E.; Shrestha, I. K.; Shlyaptseva, V. V.; Cooper, M. C.; Lorance, M.; Stafford, A.; Patel, S. G.; Steiner, A. M.; Yager-Elorriaga, D. A.; Jordan, N. M.; Gilgenbach, R. M.
2014-10-01
For petawatt-class Z-pinch accelerators, a Linear Transformer Driver (LTD)-driven accelerator promises to be (at a given pinch current and implosion time) more efficient than the conventionally used Marx-driven accelerator. Because there exists almost no data on how wire arrays radiate on LTD-based machines in the USA, it is very important to perform radiation and plasma physics studies on this new type of generator. We report on the first outcome of the new partnership with University of Michigan (UM), which resulted in successful UNR-UM experiments on the low-impedance MAIZE generator with planar wire arrays (PWA). PWA is a novel wire array load that was introduced and tested in detail on high-impedance Zebra at UNR during the last years and found to be the most efficient radiator. Implosion of Al Double PWAs of different configurations were achieved on MAIZE, observed with a set of various diagnostics which include x-ray diode detectors, x-ray spectroscopy and imaging, and shadowgraphy. Al and Mg plasmas of more than 450 eV were studied in detail. Research supported by NNSA under DOE Cooperative Agreement DE-NA0001984. S. G. Patel and A. M. Steiner supported by Sandia National Laboratories. D. A. Yager-Elorriaga supported by NSF GF.
Xiao, Huaixian; Liu, Na; Tian, Ke; Liu, Shixiang; Ge, Fei
2018-09-01
Nanoparticles have been reported to induce toxicity to aquatic organisms, however, their potential impacts on phosphorus removal from wastewater by algae are unclear. In this study, the effects of nanoparticle ZnO (nano-ZnO) on phosphate (PO 4 3- ) removal by a green alga Chlorella vulgaris were investigated. We found that PO 4 3- removal efficiency was accelerated with high concentrations of nano-ZnO (0.04-0.15mM) but reduced with low concentrations of nano-ZnO (0.005-0.04mM) compared to the control (without nano-ZnO), suggesting that PO 4 3- removal efficiency by C. vulgaris was related to nano-ZnO concentrations. Moreover, we observed changes of nano-ZnO morphology and detected element P on the surface of nano-ZnO by using transmission electronic microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDX), indicating that PO 4 3- was interacted with nano-ZnO or the dissolved Zn 2+ from nano-ZnO. Furthermore, we confirmed this interaction induced the formation of Zn 3 (PO 4 ) 2 crystallites sedimentation by employing X-ray diffraction analysis (XRD) and X-ray photoelectron spectroscopy (XPS), which finally accelerates the removal of PO 4 3- . Copyright © 2018 Elsevier B.V. All rights reserved.
Measurements of charge state breeding efficiency at BNL test EBIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondrashev, S.; Alessi, J.; Beebe, E.N.
Charge breeding of singly charged ions is required to efficiently accelerate rare isotope ion beams for nuclear and astrophysics experiments, and to enhance the accuracy of low-energy Penning trap-assisted spectroscopy. An efficient charge breeder for the Californium Rare Isotope Breeder Upgrade (CARIBU) to the ANL Tandem Linear Accelerator System (ATLAS) facility is being developed using the BNL Test Electron Beam Ion Source (Test EBIS) as a prototype. Parameters of the CARIBU EBIS charge breeder are similar to those of the BNL Test EBIS except the electron beam current will be adjustable in the range from 1 to 2 {angstrom}. Themore » electron beam current density in the CARIBU EBIS trap will be significantly higher than in existing operational charge state breeders based on the EBIS concept. The charge state breeding efficiency is expected to be about 25% for the isotope ions extracted from the CARIBU. For the success of our EBIS project, it is essential to demonstrate high breeding efficiency at the BNL Test EBIS tuned to the regime close to the parameters of the CARIBU EBIS at ANL. The breeding efficiency optimization and measurements have been successfully carried out using a Cs{sup +} surface ionization ion source for externally pulsed injection into the BNL Test EBIS. A Cs{sup +} ion beam with a total number of ions of 5 x 10{sup 8} and optimized pulse length of 70 {mu}s has been injected into the Test EBIS and charge-bred for 5.3 ms for two different electron beam currents 1 and 1.5 {angstrom}. In these experiments we have achieved 70% injection/extraction efficiency and breeding efficiency into the most abundant charge state 17%.« less
A Global Review of Incentive Programs to Accelerate Energy-Efficient Appliances and Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
de la Rue du Can, Stephane; Phadke, Amol; Leventis, Greg
Incentive programs are an essential policy tool to move the market toward energy-efficient products. They offer a favorable complement to mandatory standards and labeling policies by accelerating the market penetration of energy-efficient products above equipment standard requirements and by preparing the market for increased future mandatory requirements. They sway purchase decisions and in some cases production decisions and retail stocking decisions toward energy-efficient products. Incentive programs are structured according to their regulatory environment, the way they are financed, by how the incentive is targeted, and by who administers them. This report categorizes the main elements of incentive programs, using casemore » studies from the Major Economies Forum to illustrate their characteristics. To inform future policy and program design, it seeks to recognize design advantages and disadvantages through a qualitative overview of the variety of programs in use around the globe. Examples range from rebate programs administered by utilities under an Energy-Efficiency Resource Standards (EERS) regulatory framework (California, USA) to the distribution of Eco-Points that reward customers for buying efficient appliances under a government recovery program (Japan). We found that evaluations have demonstrated that financial incentives programs have greater impact when they target highly efficient technologies that have a small market share. We also found that the benefits and drawbacks of different program design aspects depend on the market barriers addressed, the target equipment, and the local market context and that no program design surpasses the others. The key to successful program design and implementation is a thorough understanding of the market and effective identification of the most important local factors hindering the penetration of energy-efficient technologies.« less
Enzyme clustering accelerates processing of intermediates through metabolic channeling
Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.
2015-01-01
We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299
Supernova Remnant Kes 17: An Efficient Cosmic Ray Accelerator inside a Molecular Cloud
NASA Astrophysics Data System (ADS)
Gelfand, Joseph; Slane, Patrick; Hughes, John; Temim, Tea; Castro, Daniel; Rakowski, Cara
Supernova remnant are believed to be the dominant source of cosmic rays protons below the "knee" in the energy spectrum. However, relatively few supernova remnants have been identified as efficient producers of cosmic ray protons. In this talk, I will present evidence that the production of cosmic ray protons is required to explain the broadband non-thermal spectrum of supernova remnant Kes 17 (SNR G304.6+0.1). Evidence for efficient cosmic ray acceleration in Kes 17 supports recent theoretical work concluding that the strong magnetic field, turbulence, and clumpy nature of molecular clouds enhance cosmic ray production in supernova remnants. While additional observations are needed to confirm this interpretation, further study of Kes 17 and similar sources are important for understanding how cosmic rays are accelerated in supernova remnants.
Measured impacts of high efficiency domestic clothes washers in a community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomlinson, J.; Rizy, T.
1998-07-01
The US market for domestic clothes washers is currently dominated by conventional vertical-axis washers that typically require approximately 40 gallons of water for each wash load. Although the current market for high efficiency clothes washers that use much less water and energy is quite small, it is growing slowly as manufacturers make machines based on tumble action, horizontal-axis designs available and as information about the performance and benefits of such machines is developed and made available to consumers. To help build awareness of these benefits and to accelerate markets for high efficiency washers, the Department of Energy (DOE), under itsmore » ENERGY STAR{reg_sign} Program and in cooperation with a major manufacturers of high efficiency washers, conducted a field evaluation of high efficiency washers using Bern, Kansas as a test bed. Baseline washing machine performance data as well as consumer washing behavior were obtained from data collected on the existing machines of more than 100 participants in this instrumented study. Following a 2-month initial study period, all conventional machines were replaced by high efficiency, tumble-action washers, and the study continued for 3 months. Based on measured data from over 20,000 loads of laundry, the impact of the washer replacement on (1) individual customers` energy and water consumption, (2) customers` laundry habits and perceptions, and (3) the community`s water supply and waste water systems were determined. The study, its findings, and how information from the experiment was used to improve national awareness of high efficiency clothes washer benefits are described in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Xiangliang; Chen, Yao; Feng, Shiwei
2016-04-10
Using a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featuring a partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature ismore » larger than that of the magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of the efficient electron acceleration region along the shock front during its propagation. We also find that, in general, the electron acceleration at the shock flank is not as efficient as that at the top of the closed field because a collapsing magnetic trap can be formed at the top. In addition, we find that the energy spectra of electrons are power-law-like, first hardening then softening with the spectral index varying in a range of −3 to −6. Physical interpretations of the results and implications for the study of solar radio bursts are discussed.« less
Kong, Xiangliang; Chen, Yao; Guo, Fan; ...
2016-04-05
With a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature ismore » larger than that of magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of efficient electron acceleration region along the shock front during its propagation. We also found that in general the electron acceleration at the shock flank is not so efficient as that at the top of closed field since at the top a collapsing magnetic trap can be formed. In addition, we find that the energy spectra of electrons is power-law like, first hardening then softening with the spectral index varying in a range of -3 to -6. In conclusion, physical interpretations of the results and implications on the study of solar radio bursts are discussed.« less
A Hybrid CPU-GPU Accelerated Framework for Fast Mapping of High-Resolution Human Brain Connectome
Ren, Ling; Xu, Mo; Xie, Teng; Gong, Gaolang; Xu, Ningyi; Yang, Huazhong; He, Yong
2013-01-01
Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome). Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson’s Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based) brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states. PMID:23675425
High-Efficiency Hall Thruster Discharge Power Converter
NASA Technical Reports Server (NTRS)
Jaquish, Thomas
2015-01-01
Busek Company, Inc., is designing, building, and testing a new printed circuit board converter. The new converter consists of two series or parallel boards (slices) intended to power a high-voltage Hall accelerator (HiVHAC) thruster or other similarly sized electric propulsion devices. The converter accepts 80- to 160-V input and generates 200- to 700-V isolated output while delivering continually adjustable 300-W to 3.5-kW power. Busek built and demonstrated one board that achieved nearly 94 percent efficiency the first time it was turned on, with projected efficiency exceeding 97 percent following timing software optimization. The board has a projected specific mass of 1.2 kg/kW, achieved through high-frequency switching. In Phase II, Busek optimized to exceed 97 percent efficiency and built a second prototype in a form factor more appropriate for flight. This converter then was integrated with a set of upgraded existing boards for powering magnets and the cathode. The program culminated with integrating the entire power processing unit and testing it on a Busek thruster and on NASA's HiVHAC thruster.
Terán Hilares, Ruly; Ramos, Lucas; da Silva, Silvio Silvério; Dragone, Giuliano; Mussatto, Solange I; Santos, Júlio César Dos
2018-06-01
Hydrodynamic cavitation (HC) is a process technology with potential for application in different areas including environmental, food processing, and biofuels production. Although HC is an undesirable phenomenon for hydraulic equipment, the net energy released during this process is enough to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process was demonstrated as an attractive alternative when compared to other conventional pretreatment technologies. This is not only due to high pretreatment efficiency resulting in high enzymatic digestibility of carbohydrate fraction, but also, by its high energy efficiency, simple configuration, and construction of systems, besides the possibility of using on the large scale. This paper gives an overview regarding HC technology and its potential for application on the pretreatment of lignocellulosic biomass. The parameters affecting this process and the perspectives for future developments in this area are also presented and discussed.
Investigation of Microbunching Instabilities in Modern Recirculating Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Cheng
Particle accelerators are machines to accelerate and store charged particles, such as electrons or protons, to the energy levels for various scientific applications. A collection of charged particles usually forms a particle beam. There are three basic types of particle accelerators: linear accelerators (linac), storage-ring (or circular) accelerators, and recirculating accelerators. In a linac, particles are accelerated and pass through once along a linear or straight beamline. Storage-ring accelerators propel particles around a circular track and repetitively append the energy to the stored beam. The third type, also the most recent one in chronology, the recirculating accelerator, is designed tomore » accelerate the particle beam in a short section of linac, circulate the beam, and then either continue to accelerate for energy boost or decelerate it for energy recovery. The beam properties of a linac machine are set at best by the initial particle sources. For storage rings, the beam equilibria are instead determined by the overall machine design. The modern recirculating machines share with linacs the advantages to both accelerate and preserve the beam with high beam quality, as well as efficiently reuse the accelerating components. The beamline design in such a machine configuration can however be much more complicated than that of linacs. As modern accelerators push toward the high-brightness or high-intensity frontier by demanding particles in a highly charged bunch (about nano-Coulomb per bunch) to concentrate in an ever-decreasing beam phase space (transverse normalized emittance about 1 μm and relative energy spread of the order of 10^-5 in GeV beam energy), the interaction amongst particles via their self-generated electromagnetic fields can potentially lead to coherent instabilities of the beam and thus pose significant challenges to the machine design and operation. In the past decade and a half, microbunching instability (MBI) has been one of the most challenging issues for such high-brightness or high-intensity beam transport, as it would degrade lasing performance in the fourth-generation light sources, reduce cooling efficiency in electron cooling facilities, and compromise the luminosity of colliding beams in lepton or lepton-hadron colliders. The dissertation work will focus on the MBI in modern recirculating electron accelerators. It has been known that the collective interactions, the coherent synchrotron radiation (CSR) and the longitudinal space charge (LSC) forces, can drive MBI. The CSR effect is a collective phenomenon in which the electrons in a curved motion, e.g. a bending dipole, emit radiation at a scale comparable to the micro-bunched structure of the bunch distribution. The LSC effect stems from non-uniformity of the charge distribution, acts as plasma oscillation, and can eventually accumulate an amount of energy modulation when the beam traverses a long section of a beamline. MBI can be seeded by non-uniformity or shot noise of the beam, which originates from granularity of the elementary charge. Through the aforementioned collective effects, the modulation of the bunch sub-structure can be amplified and, once the beam-wave interaction formed a positive feedback, can result in MBI. The problem of MBI has been intensively studied for linac-based facilities and for storage-ring accelerators. However, systematic studies for recirculation machines are still very limited and form a knowledge gap. Because of the much more complicated machine configuration of the recirculating accelerators than that of linacs, the existing MBI analysis needs to be extended to accommodate the high-brightness particle beam transport in modern recirculating accelerators. This dissertation is focused on theoretical investigation of MBI in such machine configuration in the following seven themes: (1) Development and generalization of MBI theory The theoretical formulation has been extended so as to be applicable to a general linear beamline lattice including horizontal and vertical transport bending elements, and beam acceleration or deceleration. These featured generalizations are required for MBI analysis in recirculation accelerators. (2) Construction of CSR impedance models In addition to the steady-state CSR interaction, it has been found that the exit transient effect (or CSR drift) can even result in more serious MBI in high-brightness recirculation arcs. The onedimensional free-space CSR impedances, especially the exit transients, are derived. The steady-state CSR impedance is also extended to non-ultrarelativistic beam energy for MBI analysis of low-energy merger sections in recirculating accelerators. (3) Numerical implementation of the derived semi-analytical formulation This includes the development of a semi-analytical Vlasov solver for MBI analysis, and also benchmarking of the solver against massive particle tracking simulations. (4) Exploration of multistage amplification behavior of CSR microbunching development The CSR-induced MBI acts as an amplifier, which amplifies the sub-bunch modulation of a beam. The amplification is commonly quantified by the amplification gain. A beam transport system can be considered as a cascaded amplifier. Unlike the two-stage amplification of four-dipole bunch compressor chicanes employed in linacs, the recirculation arcs, which are usually constituted by several tens of bending magnets, show a distinguishing feature of up to six-stage microbunching amplification for our example arc lattices. That is, the maximal CSR amplification gain can be proportional to the peak bunch current up to sixth power. A method to compare lattice performance has been developed in terms of gain coefficients, which nearly depend on the lattice properties only. This method has also proven to be an effective way to quantify the current dependence of the maximal (5) Control of CSR MBI in multibend transport or recirculation arcs The existing mitigation schemes of MBI mostly aim to linac-based accelerators and may not be practical to the recirculating accelerator facilities. Thus a set of conditions for suppression of CSR MBI was proposed and examined for example lattices from low (~100 MeV) to high (~1 GeV) energies. (6) Study of more aspects of microbunched structures in beam phase spaces For a cascaded amplifier in circuit electronics, the total amplification gain can be estimated as the product of individual gains. In a beam transport line of an accelerator, the (scalar) gain multiplication was examined and found to under-estimate the overall microbunching amplification. The concept of gain matrix was developed, which includes the density, energy and transverse-longitudinal modulations in a beam phase space, and used to analyze MBI for a proposed recirculating machine. Throughout the gain matrix approach, it reasonably gives the upper limit of spectral MBI gain curves. This extended analysis can be employed to study multi-pass recirculation. (7) Study of MBI for magnetized beams Driven by a recent energy-recovery-linac based cooler design for electron cooling at Jefferson Lab Electron-Ion Collider Project, the generalized theoretical formulation for MBI to a transversely coupled beam has been developed and applied to this study. A magnetized beam in general features non-zero canonical angular momentum, thus considered to be a transversely coupled beam. A novel idea of utilizing magnetized beam transport was proposed for improvement of cooling efficiency and possible mitigation of collective effects. A concern of MBI regarding this design was studied and excluded. The large transverse beam size associated with the beam magnetization is found to help suppress MBI via the transverse-longitudinal correlation.« less
Liu, Wei; Chen, Yiqiao; Lu, Wentao; ...
2016-12-19
Photocathodes that provide high polarization and high quantum efficiency (QE) can significantly enhance the physics capabilities of electron accelerators. We report record-level QE from a high-polarization strained GaAs/GaAsP superlattice photocathode fabricated with a Distributed Bragg Reflector (DBR). The DBR photocathode technique enhances the absorption of incident laser light thereby enhancing QE, but as literature suggests, it is very challenging to optimize all of the parameters associated with the fabrication of complicated photocathode structures composed of many distinct layers. Past reports of DBR photocathodes describe high polarization but typically QE of only ~ 1%, which is comparable to QE of highmore » polarization photocathodes grown without a DBR structure. As a result, this work describes a new strained GaAs/GaAsP superlattice DBR photocathode exhibiting polarization of 84% and QE of 6.4%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Chen, Yiqiao; Lu, Wentao
Photocathodes that provide high polarization and high quantum efficiency (QE) can significantly enhance the physics capabilities of electron accelerators. We report record-level QE from a high-polarization strained GaAs/GaAsP superlattice photocathode fabricated with a Distributed Bragg Reflector (DBR). The DBR photocathode technique enhances the absorption of incident laser light thereby enhancing QE, but as literature suggests, it is very challenging to optimize all of the parameters associated with the fabrication of complicated photocathode structures composed of many distinct layers. Past reports of DBR photocathodes describe high polarization but typically QE of only ~ 1%, which is comparable to QE of highmore » polarization photocathodes grown without a DBR structure. As a result, this work describes a new strained GaAs/GaAsP superlattice DBR photocathode exhibiting polarization of 84% and QE of 6.4%.« less
Modeling magnetic field amplification in nonlinear diffusive shock acceleration
NASA Astrophysics Data System (ADS)
Vladimirov, Andrey
2009-02-01
This research was motivated by the recent observations indicating very strong magnetic fields at some supernova remnant shocks, which suggests in-situ generation of magnetic turbulence. The dissertation presents a numerical model of collisionless shocks with strong amplification of stochastic magnetic fields, self-consistently coupled to efficient shock acceleration of charged particles. Based on a Monte Carlo simulation of particle transport and acceleration in nonlinear shocks, the model describes magnetic field amplification using the state-of-the-art analytic models of instabilities in magnetized plasmas in the presence of non-thermal particle streaming. The results help one understand the complex nonlinear connections between the thermal plasma, the accelerated particles and the stochastic magnetic fields in strong collisionless shocks. Also, predictions regarding the efficiency of particle acceleration and magnetic field amplification, the impact of magnetic field amplification on the maximum energy of accelerated particles, and the compression and heating of the thermal plasma by the shocks are presented. Particle distribution functions and turbulence spectra derived with this model can be used to calculate the emission of observable nonthermal radiation.
Review of advanced catheter technologies in radiation oncology brachytherapy procedures
Zhou, Jun; Zamdborg, Leonid; Sebastian, Evelyn
2015-01-01
The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented. PMID:26203277
Advanced induction accelerator designs for ground based and space based FELs
NASA Astrophysics Data System (ADS)
Birx, Daniel
1994-04-01
The primary goal of this program was to improve the performance of induction accelerators with particular regards to their being used to drive Free Electron Lasers (FEL's). It is hoped that FEL's operating at visible wavelengths might someday be used to beam power from earth to extraterrestrial locations. One application of this technology might be strategic theater defense, but this power source might be used to propel vehicles or supplement solar energized systems. Our path toward achieving this goal was directed first toward optimization of the nonlinear magnetic material used in induction accelerator construction and secondly at the overall design in terms of cost, size and efficiency. We began this research effort with an in depth study into the properties of various nonlinear magnetic materials. With the data on nonlinear magnetic materials, so important to the optimization of efficiency, in hand, we envisioned a new induction accelerator design where all of the components were packaged together in one container. This induction accelerator module would combine an /ll-solid-state, nonlinear magnetic driver and the induction accelerator cells all in one convenient package. Each accelerator module (denoted SNOMAD-IVB) would produce 1.0 MeV of acceleration with the exception of the SNOMAD-IV injector module which would produce 0.5 MeV of acceleration for an electron beam current up to 1000 amperes.
An overview of the Nuclear Electric Xenon Ion System (NEXIS) program
NASA Technical Reports Server (NTRS)
Polk, Jay E.; Goebel, Don; Brophy, John R.; Beatty, John; Monheiser, J.; Giles, D.; Hobson, D.; Wilson, F.; Christensen, J.; De Pano, M.;
2003-01-01
NASA is investigating high power, high specific impulse propulsion technologies that could enable ambitious flights such as multi-body rendezvous missions, outer planet orbiters and interstellar precursor missions. The requirements for these missions are much more demanding than those for state-of-the-art solar-powered ion propulsion applications. The purpose of the NEXIS program is to develop advanced ion thruster technologies that satisfy the requirements for high power, high specific impulse operation, high efficiency and long thruster life. The nominal design point for the NEXIS thruster is 20 kWe at a specific impulse of 7500 s with an efficiency over 78% and a xenon throughput capability of greater than 2000 kg. These performance and throughput goals will be achieved by applying a combination of advanced technologies including a large discharge chamber, erosion resistant carbon-carbon grids, an advanced reservoir hollow cathode and techniques for increasing propellant efficiency such as grid masking and accelerator grid aperture diameter tailoring. This paper provides an overview of the challenges associated with these requirements and how they are being addressed in the NEXIS program.
Hofstetter, Jasmin; del Cañizo, Carlos; Wagner, Hannes; ...
2015-10-15
Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled tomore » effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.« less
Yu, Zhen; Tang, Jia; Liao, Hanpeng; Liu, Xiaoming; Zhou, Puxiong; Chen, Zhi; Rensing, Christopher; Zhou, Shungui
2018-06-07
The application of conventional thermophilic composting (TC) is limited by poor efficiency. Newly-developed hyperthermophilic composting (HTC) is expected to overcome this shortcoming. However, the characterization of microbial communities associated with HTC remains unclear. Here, we compared the performance of HTC and TC in a full-scale sludge composting plant, and found that HTC running at the hyperthermophilic and thermophilic phases for 21 days, led to higher composting efficiency and techno-economic advantages over TC. Results of high-throughput sequencing showed drastic changes in the microbial community during HTC. Thermaceae (35.5-41.7%) was the predominant family in the hyperthermophilic phase, while the thermophilic phase was dominated by both Thermaceae (28.0-53.3%) and Thermoactinomycetaceae (29.9-36.1%). The change of microbial community could be the cause of continuous high temperature in HTC, and thus improve composting efficiency by accelerating the maturation process. This work has provided theoretical and practical guidance for managing sewage sludge by HTC. Copyright © 2018 Elsevier Ltd. All rights reserved.
Thermally stable, highly efficient, ultraflexible organic photovoltaics
Xu, Xiaomin; Fukuda, Kenjiro; Karki, Akchheta; Park, Sungjun; Kimura, Hiroki; Jinno, Hiroaki; Watanabe, Nobuhiro; Yamamoto, Shuhei; Shimomura, Satoru; Kitazawa, Daisuke; Yokota, Tomoyuki; Umezu, Shinjiro; Nguyen, Thuc-Quyen; Someya, Takao
2018-01-01
Flexible photovoltaics with extreme mechanical compliance present appealing possibilities to power Internet of Things (IoT) sensors and wearable electronic devices. Although improvement in thermal stability is essential, simultaneous achievement of high power conversion efficiency (PCE) and thermal stability in flexible organic photovoltaics (OPVs) remains challenging due to the difficulties in maintaining an optimal microstructure of the active layer under thermal stress. The insufficient thermal capability of a plastic substrate and the environmental influences cannot be fully expelled by ultrathin barrier coatings. Here, we have successfully fabricated ultraflexible OPVs with initial efficiencies of up to 10% that can endure temperatures of over 100 °C, maintaining 80% of the initial efficiency under accelerated testing conditions for over 500 hours in air. Particularly, we introduce a low-bandgap poly(benzodithiophene-cothieno[3,4-b]thiophene) (PBDTTT) donor polymer that forms a sturdy microstructure when blended with a fullerene acceptor. We demonstrate a feasible way to adhere ultraflexible OPVs onto textiles through a hot-melt process without causing severe performance degradation. PMID:29666257
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofstetter, Jasmin; del Cañizo, Carlos; Wagner, Hannes
Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled tomore » effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.« less
Self-seeded injection-locked FEL amplifer
Sheffield, Richard L.
1999-01-01
A self-seeded free electron laser (FEL) provides a high gain and extraction efficiency for the emitted light. An accelerator outputs a beam of electron pulses to a permanent magnet wiggler having an input end for receiving the electron pulses and an output end for outputting light and the electron pulses. An optical feedback loop collects low power light in a small signal gain regime at the output end of said wiggler and returns the low power light to the input end of the wiggler while outputting high power light in a high signal gain regime.
Stoks, Robby; Swillen, Ine; De Block, Marjan
2012-09-01
1. To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2. We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3. The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4. The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of predation risk on food chain length. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
NASA Astrophysics Data System (ADS)
Posen, S.; Liepe, M.; Hall, D. L.
2015-02-01
Many future particle accelerators require hundreds of superconducting radiofrequency (SRF) cavities operating with high duty factor. The large dynamic heat load of the cavities causes the cryogenic plant to make up a significant part of the overall cost of the facility. This contribution can be reduced by replacing standard niobium cavities with ones coated with a low-dissipation superconductor such as Nb3Sn. In this paper, we present results for single cell cavities coated with Nb3Sn at Cornell. Five coatings were carried out, showing that at 4.2 K, high Q0 out to medium fields was reproducible, resulting in an average quench field of 14 MV/m and an average 4.2 K Q0 at quench of 8 × 109. In each case, the peak surface magnetic field at quench was well above Hc1, showing that it is not a limiting field in these cavities. The coating with the best performance had a quench field of 17 MV/m, exceeding gradient requirements for state-of-the-art high duty factor SRF accelerators. It is also shown that—taking into account the thermodynamic efficiency of the cryogenic plant—the 4.2 K Q0 values obtained meet the AC power consumption requirements of state-of-the-art high duty factor accelerators, making this a proof-of-principle demonstration for Nb3Sn cavities in future applications.
Propulsion systems from takeoff to high-speed flight
NASA Astrophysics Data System (ADS)
Billig, F. S.
Potential applications for missiles and aircraft requiring highly efficient engines serve as the basis for discussing new propulsion concepts and novel combinations of existing cycles. Comparisons are made between rocket and airbreathing powered missiles for anti-ballistic and surface-to-air missions. The properties of cryogenic hydrogen are presented to explain the mechanics and limitations of liquid air cycles. Conceptual vehicle designs of a transatmospheric accelerator are introduced to permit examination of the factors that guide the choice of the optimal propulsion system.
A nonlinear relaxation/quasi-Newton algorithm for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Edwards, Jack R.; Mcrae, D. S.
1992-01-01
A highly efficient implicit method for the computation of steady, two-dimensional compressible Navier-Stokes flowfields is presented. The discretization of the governing equations is hybrid in nature, with flux-vector splitting utilized in the streamwise direction and central differences with flux-limited artificial dissipation used for the transverse fluxes. Line Jacobi relaxation is used to provide a suitable initial guess for a new nonlinear iteration strategy based on line Gauss-Seidel sweeps. The applicability of quasi-Newton methods as convergence accelerators for this and other line relaxation algorithms is discussed, and efficient implementations of such techniques are presented. Convergence histories and comparisons with experimental data are presented for supersonic flow over a flat plate and for several high-speed compression corner interactions. Results indicate a marked improvement in computational efficiency over more conventional upwind relaxation strategies, particularly for flowfields containing large pockets of streamwise subsonic flow.
NASA Astrophysics Data System (ADS)
Ye, Daqian; Zhang, Dongyan; Wu, Chaoyu; Wang, Duxiang; Xu, Chenke; Zhang, Jie; Huang, Meichun
2017-05-01
We presented a compositionally graded hole reservoir layers(HRL) - an AlGaN/GaN super lattice hole reservoir layer with Al mole fraction multi-step gradient from high to low (GSL-HRL) in this paper. The designed LED with compositionally step graded HRL shows comparable low operating voltage and less efficiency droop. Simulation results reveal that this graded HRL could reserve the hole effectively and the hole in HRL can be energized by the strong electric field due to the polarization caused by different Al contents AlxGa1-xN layers. Such a design makes hole travel across the p-type EBL and inject into the MQWs more efficiently and smoothly. The novel structure of HRL improves the performance of the LED significantly and gives a promising application in high power GaN-based LED in the future.
NASA Astrophysics Data System (ADS)
Bae, Hyojung; Rho, Hokyun; Min, Jung-Wook; Lee, Yong-Tak; Lee, Sang Hyun; Fujii, Katsushi; Lee, Hyo-Jong; Ha, Jun-Seok
2017-11-01
Gallium nitride (GaN) nanowires are one of the most promising photoelectrode materials due to their high stability in acidic and basic electrolytes, and tunable band edge potentials. In this study, GaN nanowire arrays (GaN NWs) were prepared by molecular beam epitaxy (MBE); their large surface area enhanced the solar to hydrogen conversion efficiency. More significantly, graphene was grown by chemical vapor deposition (CVD), which enhanced the electron transfer between NWs for water splitting and protected the GaN NW surface. Structural characterizations of the prepared composite were performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocurrent density of Gr/GaN NWs exhibited a two-fold increase over pristine GaN NWs and sustained water splitting up to 70 min. These improvements may accelerate possible applications for hydrogen generation with high solar to hydrogen conversion efficiency.
Rail accelerator research at Lewis Research Center
NASA Technical Reports Server (NTRS)
Kerslake, W. R.; Cybyk, B. Z.
1982-01-01
A rail accelerator was chosen for study as an electromagnetic space propulsion device because of its simplicity and existing technology base. The results of a mission feasibility study using a large rail accelerator for direct launch of ton-size payloads from the Earth's surface to space, and the results of initial tests with a small, laboratory rail accelerator are presented. The laboratory rail accelerator has a bore of 3 by 3 mm and has accelerated 60 mg projectiles to velocities of 300 to 1000 m/s. Rail materials of Cu, W, and Mo were tested for efficiency and erosion rate.
Effects of Current Guides Destruction at Ultra-fast Acceleration of Macrobodies
NASA Astrophysics Data System (ADS)
Kataev, V. N.; Boriskin, A. S.; Golosov, S. N.; Demidov, V. A.; Klimashov, M. V.; Korolev, P. V.; Makartsev, G. F.; Pikar, A. S.; Russkov, A. S.; Shapovalov, E. V.; Shibitov, Yu. M.
2006-08-01
The paper is devoted to discussion of current guides destruction effects in different accelerators: thermal-electric and electro-magnetic rail accelerator at macrobodies acceleration value of 108-109 m/s2. Experimental results with thermal-electric accelerators powering from megajoule capacitor battery and helical magneto-cumulative generator MCG-100 at currents up to 3.5 MA are analyzed. The process of rails destruction at railgun at pressure magnetic field excess over the limit of metal fluidity is presented. Methods of efficiency coefficient increase of capacitive storage energy transmission to kinetic energy of accelerating body are discussed.
Magnetohydrodynamic Augmented Propulsion Experiment: I. Performance Analysis and Design
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Cole, J. W.; Lineberry, J. T.; Chapman, J. N.; Schmidt, H. J.; Lineberry, C. W.
2003-01-01
The performance of conventional thermal propulsion systems is fundamentally constrained by the specific energy limitations associated with chemical fuels and the thermal limits of available materials. Electromagnetic thrust augmentation represents one intriguing possibility for improving the fuel composition of thermal propulsion systems, thereby increasing overall specific energy characteristics; however, realization of such a system requires an extremely high-energy-density electrical power source as well as an efficient plasma acceleration device. This Technical Publication describes the development of an experimental research facility for investigating the use of cross-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In this experiment,a 1.5-MW(sub e) Aerotherm arc heater is used to drive a 2-MW(sub e) MHD accelerator. The heatsink MHD accelerator is configured as an externally diagonalized, segmented channel, which is inserted into a large-bore, 2-T electromagnet. The performance analysis and engineering design of the flow path are described as well as the parameter measurements and flow diagnostics planned for the initial series of test runs.
Expanding Capacity With an Accelerated On-Line BSN Program.
Lindley, Marie Kelly; Ashwill, Regina; Cipher, Daisha J; Mancini, Mary E
Colleges of nursing are challenged to identify innovative, efficient, and effective mechanisms to expand enrollment in prelicensure programs. This objective of this project was to identify whether a prelicensure nursing program that is both accelerated and on-line is as effective as a traditional face-to-face program, in terms of graduation rates and National Council Licensure Exam pass rates. This analysis of 1,064 students compared demographic and outcomes data between students in a state university's college of nursing who were enrolled in an accelerated, fully on-line bachelors of science in nursing (BSN) program and the traditional on-campus BSN program. Students significantly differed in their ethnicity, level of prior education, and graduation rates (95% vs. 89.3%). First-time National Council Licensure Exam pass rates for both groups did not significantly differ (92.5% vs. 94.5%). Results indicate that an accelerated on-line BSN program can overcome factors known to limit capacity expansion in schools of nursing and produce high-quality student outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Operational Characteristics of a Low-Energy FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Rose, M. Frank; Miller, Robert
2008-01-01
Data from a 100 J per pulse electrodeless accelerator employing pulsed RF-preionization are presented to gain insight into the accelerator's operating characteristics. The data suggest that the propellant distribution is highly unoptimized, with most of the gas inaccessible to the discharge and the remainder mostly concentrated at the inner radius of the coil. The pulsed RF-preionization discharge produces a visible plasma, but like the gas distribution it mostly appears concentrated at the inner radius of the thruster. Magnetic field probes in the discharge point to a current sheet that is not magnetically impermeable. These data also exhibit signs of nonrepeatability, and time-integrated discharge photography shows signs of spatial nonuniformity in both the radial and azimuthal directions. Terminal voltage measurements on the two capacitor banks of the thruster do not exhibit the asymmetric nature (in time) typically associated with an efficient pulsed plasma accelerator. Based on the experimental evidence, the poor performance of the thruster is thought to be due to insufficient preionization, which at these low discharge energy levels severely limits the ability of the main current pulse to couple with and effectively accelerate the propellant.
Nb3Sn SRF Cavities for Nuclear Physics Applications
NASA Astrophysics Data System (ADS)
Eremeev, Grigory
2017-01-01
Nuclear physics experiments rely increasingly on accelerators, which employ superconducting RF (SRF) technology. CEBAF, SNS, FRIB, ESS, among others exploit the low surface resistance of SRF cavities to efficiently accelerate particle beams towards experimental targets. Niobium is the cavity material of choice for all current or planned SRF accelerators, but it has been long recognized that other superconductors with high superconducting transition temperatures have the potential to surpass niobium for SRF applications. Among the alternatives, Nb3Sn coated cavities are the most advanced on the path to practical applications: Nb3Sn coatings on R&D cavities have Tc consistently close the optimal 18 K, very low RF surface resistances, and very recently were shown to reach above Hc1 without anomalous RF surface resistance increase. In my talk I will discuss the prospects of Nb3Sn SRF cavities, the research efforts to realize Nb3Sn coatings on practical multi-cell accelerating structures, and the path toward possible inclusion in CEBAF. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics.
Characterization and Accelerated Ageing of UHMWPE Used in Orthopedic Prosthesis by Peroxide
Rocha, Magda; Mansur, Alexandra; Mansur, Herman
2009-01-01
Ultra-high molecular weight polyethylene (UHMWPE) has been the most commonly used bearing material in total joint arthroplasty. Wear and oxidation fatigue resistance of UHMWPE are regarded as two important mechanical properties to extend the longevity of knee prostheses. Though accelerated in vitro protocols have been developed to test the relative oxidation resistance of various types of UHMWPE, its mechanism is not accurately understood yet. Thus, in the present study an accelerated ageing of UHMWPE in hydrogen peroxide solution was performed and relative oxidation was extensively characterized by Fourier Transformed Infrared Spectroscopy (FTIR) spectroscopy and the morphological changes were analyzed by Scanning Electron Microscopy (SEM). Different chemical groups of UHMWPE associated with the degradation reaction were monitored for over 120 days in order to evaluate the possible oxidation mechanism(s) which may have occurred. The results have provided strong evidence that the oxidation mechanism is rather complex, and two stages with their own particular first-order kinetics reaction patterns have been clearly identified. Furthermore, hydrogen peroxide has proven to be an efficient oxidative medium to accelerate ageing of UHMWPE.
Relativistically strong electromagnetic radiation in a plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. V., E-mail: svbulanov@gmail.com, E-mail: bulanov.sergei@jaea.go.jp; Esirkepov, T. Zh.; Kando, M.
Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated inmore » the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron–positron pairs, which is described within quantum electrodynamics theory.« less
Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating
NASA Astrophysics Data System (ADS)
Kazakov, Ye. O.; Ongena, J.; Wright, J. C.; Wukitch, S. J.; Lerche, E.; Mantsinen, M. J.; van Eester, D.; Craciunescu, T.; Kiptily, V. G.; Lin, Y.; Nocente, M.; Nabais, F.; Nave, M. F. F.; Baranov, Y.; Bielecki, J.; Bilato, R.; Bobkov, V.; Crombé, K.; Czarnecka, A.; Faustin, J. M.; Felton, R.; Fitzgerald, M.; Gallart, D.; Giacomelli, L.; Golfinopoulos, T.; Hubbard, A. E.; Jacquet, Ph.; Johnson, T.; Lennholm, M.; Loarer, T.; Porkolab, M.; Sharapov, S. E.; Valcarcel, D.; van Schoor, M.; Weisen, H.; Marmar, E. S.; Baek, S. G.; Barnard, H.; Bonoli, P.; Brunner, D.; Candy, J.; Canik, J.; Churchill, R. M.; Cziegler, I.; Dekow, G.; Delgado-Aparicio, L.; Diallo, A.; Edlund, E.; Ennever, P.; Faust, I.; Fiore, C.; Gao, Chi; Golfinopoulos, T.; Greenwald, M.; Hartwig, Z. S.; Holland, C.; Hubbard, A. E.; Hughes, J. W.; Hutchinson, I. H.; Irby, J.; Labombard, B.; Lin, Yijun; Lipschultz, B.; Loarte, A.; Mumgaard, R.; Parker, R. R.; Porkolab, M.; Reinke, M. L.; Rice, J. E.; Scott, S.; Shiraiwa, S.; Snyder, P.; Sorbom, B.; Terry, D.; Terry, J. L.; Theiler, C.; Vieira, R.; Walk, J. R.; Wallace, G. M.; White, A.; Whyte, D.; Wolfe, S. M.; Wright, G. M.; Wright, J.; Wukitch, S. J.; Xu, P.; Abduallev, S.; Abhangi, M.; Abreu, P.; Afzal, M.; Aggarwal, K. M.; Ahlgren, T.; Ahn, J. H.; Aho-Mantila, L.; Aiba, N.; Airila, M.; Albanese, R.; Aldred, V.; Alegre, D.; Alessi, E.; Aleynikov, P.; Alfier, A.; Alkseev, A.; Allinson, M.; Alper, B.; Alves, E.; Ambrosino, G.; Ambrosino, R.; Amicucci, L.; Amosov, V.; Sundén, E. Andersson; Angelone, M.; Anghel, M.; Angioni, C.; Appel, L.; Appelbee, C.; Arena, P.; Ariola, M.; Arnichand, H.; Arshad, S.; Ash, A.; Ashikawa, N.; Aslanyan, V.; Asunta, O.; Auriemma, F.; Austin, Y.; Avotina, L.; Axton, M. D.; Ayres, C.; Bacharis, M.; Baciero, A.; Baião, D.; Bailey, S.; Baker, A.; Balboa, I.; Balden, M.; Balshaw, N.; Bament, R.; Banks, J. W.; Baranov, Y. F.; Barnard, M. A.; Barnes, D.; Barnes, M.; Barnsley, R.; Wiechec, A. Baron; Orte, L. Barrera; Baruzzo, M.; Basiuk, V.; Bassan, M.; Bastow, R.; Batista, A.; Batistoni, P.; Baughan, R.; Bauvir, B.; Baylor, L.; Bazylev, B.; Beal, J.; Beaumont, P. S.; Beckers, M.; Beckett, B.; Becoulet, A.; Bekris, N.; Beldishevski, M.; Bell, K.; Belli, F.; Bellinger, M.; Belonohy, É.; Ayed, N. Ben; Benterman, N. A.; Bergsåker, H.; Bernardo, J.; Bernert, M.; Berry, M.; Bertalot, L.; Besliu, C.; Beurskens, M.; Bieg, B.; Bielecki, J.; Biewer, T.; Bigi, M.; Bílková, P.; Binda, F.; Bisoffi, A.; Bizarro, J. P. S.; Björkas, C.; Blackburn, J.; Blackman, K.; Blackman, T. R.; Blanchard, P.; Blatchford, P.; Bobkov, V.; Boboc, A.; Bodnár, G.; Bogar, O.; Bolshakova, I.; Bolzonella, T.; Bonanomi, N.; Bonelli, F.; Boom, J.; Booth, J.; Borba, D.; Borodin, D.; Borodkina, I.; Botrugno, A.; Bottereau, C.; Boulting, P.; Bourdelle, C.; Bowden, M.; Bower, C.; Bowman, C.; Boyce, T.; Boyd, C.; Boyer, H. J.; Bradshaw, J. M. A.; Braic, V.; Bravanec, R.; Breizman, B.; Bremond, S.; Brennan, P. D.; Breton, S.; Brett, A.; Brezinsek, S.; Bright, M. D. J.; Brix, M.; Broeckx, W.; Brombin, M.; Brosławski, A.; Brown, D. P. D.; Brown, M.; Bruno, E.; Bucalossi, J.; Buch, J.; Buchanan, J.; Buckley, M. A.; Budny, R.; Bufferand, H.; Bulman, M.; Bulmer, N.; Bunting, P.; Buratti, P.; Burckhart, A.; Buscarino, A.; Busse, A.; Butler, N. K.; Bykov, I.; Byrne, J.; Cahyna, P.; Calabrò, G.; Calvo, I.; Camenen, Y.; Camp, P.; Campling, D. C.; Cane, J.; Cannas, B.; Capel, A. J.; Card, P. J.; Cardinali, A.; Carman, P.; Carr, M.; Carralero, D.; Carraro, L.; Carvalho, B. B.; Carvalho, I.; Carvalho, P.; Casson, F. J.; Castaldo, C.; Catarino, N.; Caumont, J.; Causa, F.; Cavazzana, R.; Cave-Ayland, K.; Cavinato, M.; Cecconello, M.; Ceccuzzi, S.; Cecil, E.; Cenedese, A.; Cesario, R.; Challis, C. D.; Chandler, M.; Chandra, D.; Chang, C. S.; Chankin, A.; Chapman, I. T.; Chapman, S. C.; Chernyshova, M.; Chitarin, G.; Ciraolo, G.; Ciric, D.; Citrin, J.; Clairet, F.; Clark, E.; Clark, M.; Clarkson, R.; Clatworthy, D.; Clements, C.; Cleverly, M.; Coad, J. P.; Coates, P. A.; Cobalt, A.; Coccorese, V.; Cocilovo, V.; Coda, S.; Coelho, R.; Coenen, J. W.; Coffey, I.; Colas, L.; Collins, S.; Conka, D.; Conroy, S.; Conway, N.; Coombs, D.; Cooper, D.; Cooper, S. R.; Corradino, C.; Corre, Y.; Corrigan, G.; Cortes, S.; Coster, D.; Couchman, A. S.; Cox, M. P.; Craciunescu, T.; Cramp, S.; Craven, R.; Crisanti, F.; Croci, G.; Croft, D.; Crombé, K.; Crowe, R.; Cruz, N.; Cseh, G.; Cufar, A.; Cullen, A.; Curuia, M.; Czarnecka, A.; Dabirikhah, H.; Dalgliesh, P.; Dalley, S.; Dankowski, J.; Darrow, D.; Davies, O.; Davis, W.; Day, C.; Day, I. E.; de Bock, M.; de Castro, A.; de La Cal, E.; de La Luna, E.; Masi, G. De; de Pablos, J. L.; de Temmerman, G.; de Tommasi, G.; de Vries, P.; Deakin, K.; Deane, J.; Agostini, F. Degli; Dejarnac, R.; Delabie, E.; den Harder, N.; Dendy, R. O.; Denis, J.; Denner, P.; Devaux, S.; Devynck, P.; Maio, F. Di; Siena, A. Di; Troia, C. Di; Dinca, P.; D'Inca, R.; Ding, B.; Dittmar, T.; Doerk, H.; Doerner, R. P.; Donné, T.; Dorling, S. E.; Dormido-Canto, S.; Doswon, S.; Douai, D.; Doyle, P. T.; Drenik, A.; Drewelow, P.; Drews, P.; Duckworth, Ph.; Dumont, R.; Dumortier, P.; Dunai, D.; Dunne, M.; Ďuran, I.; Durodié, F.; Dutta, P.; Duval, B. P.; Dux, R.; Dylst, K.; Dzysiuk, N.; Edappala, P. V.; Edmond, J.; Edwards, A. M.; Edwards, J.; Eich, Th.; Ekedahl, A.; El-Jorf, R.; Elsmore, C. G.; Enachescu, M.; Ericsson, G.; Eriksson, F.; Eriksson, J.; Eriksson, L. G.; Esposito, B.; Esquembri, S.; Esser, H. G.; Esteve, D.; Evans, B.; Evans, G. E.; Evison, G.; Ewart, G. D.; Fagan, D.; Faitsch, M.; Falie, D.; Fanni, A.; Fasoli, A.; Faustin, J. M.; Fawlk, N.; Fazendeiro, L.; Fedorczak, N.; Felton, R. C.; Fenton, K.; Fernades, A.; Fernandes, H.; Ferreira, J.; Fessey, J. A.; Février, O.; Ficker, O.; Field, A.; Fietz, S.; Figueiredo, A.; Figueiredo, J.; Fil, A.; Finburg, P.; Firdaouss, M.; Fischer, U.; Fittill, L.; Fitzgerald, M.; Flammini, D.; Flanagan, J.; Fleming, C.; Flinders, K.; Fonnesu, N.; Fontdecaba, J. M.; Formisano, A.; Forsythe, L.; Fortuna, L.; Fortuna-Zalesna, E.; Fortune, M.; Foster, S.; Franke, T.; Franklin, T.; Frasca, M.; Frassinetti, L.; Freisinger, M.; Fresa, R.; Frigione, D.; Fuchs, V.; Fuller, D.; Futatani, S.; Fyvie, J.; Gál, K.; Galassi, D.; Gałązka, K.; Galdon-Quiroga, J.; Gallagher, J.; Gallart, D.; Galvão, R.; Gao, X.; Gao, Y.; Garcia, J.; Garcia-Carrasco, A.; García-Muñoz, M.; Gardarein, J.-L.; Garzotti, L.; Gaudio, P.; Gauthier, E.; Gear, D. F.; Gee, S. J.; Geiger, B.; Gelfusa, M.; Gerasimov, S.; Gervasini, G.; Gethins, M.; Ghani, Z.; Ghate, M.; Gherendi, M.; Giacalone, J. C.; Giacomelli, L.; Gibson, C. S.; Giegerich, T.; Gil, C.; Gil, L.; Gilligan, S.; Gin, D.; Giovannozzi, E.; Girardo, J. B.; Giroud, C.; Giruzzi, G.; Glöggler, S.; Godwin, J.; Goff, J.; Gohil, P.; Goloborod'Ko, V.; Gomes, R.; Gonçalves, B.; Goniche, M.; Goodliffe, M.; Goodyear, A.; Gorini, G.; Gosk, M.; Goulding, R.; Goussarov, A.; Gowland, R.; Graham, B.; Graham, M. E.; Graves, J. P.; Grazier, N.; Grazier, P.; Green, N. R.; Greuner, H.; Grierson, B.; Griph, F. S.; Grisolia, C.; Grist, D.; Groth, M.; Grove, R.; Grundy, C. N.; Grzonka, J.; Guard, D.; Guérard, C.; Guillemaut, C.; Guirlet, R.; Gurl, C.; Utoh, H. H.; Hackett, L. J.; Hacquin, S.; Hagar, A.; Hager, R.; Hakola, A.; Halitovs, M.; Hall, S. J.; Cook, S. P. Hallworth; Hamlyn-Harris, C.; Hammond, K.; Harrington, C.; Harrison, J.; Harting, D.; Hasenbeck, F.; Hatano, Y.; Hatch, D. R.; Haupt, T. D. V.; Hawes, J.; Hawkes, N. C.; Hawkins, J.; Hawkins, P.; Haydon, P. W.; Hayter, N.; Hazel, S.; Heesterman, P. J. L.; Heinola, K.; Hellesen, C.; Hellsten, T.; Helou, W.; Hemming, O. N.; Hender, T. C.; Henderson, M.; Henderson, S. S.; Henriques, R.; Hepple, D.; Hermon, G.; Hertout, P.; Hidalgo, C.; Highcock, E. G.; Hill, M.; Hillairet, J.; Hillesheim, J.; Hillis, D.; Hizanidis, K.; Hjalmarsson, A.; Hobirk, J.; Hodille, E.; Hogben, C. H. A.; Hogeweij, G. M. D.; Hollingsworth, A.; Hollis, S.; Homfray, D. A.; Horáček, J.; Hornung, G.; Horton, A. R.; Horton, L. D.; Horvath, L.; Hotchin, S. P.; Hough, M. R.; Howarth, P. J.; Hubbard, A.; Huber, A.; Huber, V.; Huddleston, T. M.; Hughes, M.; Huijsmans, G. T. A.; Hunter, C. L.; Huynh, P.; Hynes, A. M.; Iglesias, D.; Imazawa, N.; Imbeaux, F.; Imríšek, M.; Incelli, M.; Innocente, P.; Irishkin, M.; Ivanova-Stanik, I.; Jachmich, S.; Jacobsen, A. S.; Jacquet, P.; Jansons, J.; Jardin, A.; Järvinen, A.; Jaulmes, F.; Jednoróg, S.; Jenkins, I.; Jeong, C.; Jepu, I.; Joffrin, E.; Johnson, R.; Johnson, T.; Johnston, Jane; Joita, L.; Jones, G.; Jones, T. T. C.; Hoshino, K. K.; Kallenbach, A.; Kamiya, K.; Kaniewski, J.; Kantor, A.; Kappatou, A.; Karhunen, J.; Karkinsky, D.; Karnowska, I.; Kaufman, M.; Kaveney, G.; Kazakov, Y.; Kazantzidis, V.; Keeling, D. L.; Keenan, T.; Keep, J.; Kempenaars, M.; Kennedy, C.; Kenny, D.; Kent, J.; Kent, O. N.; Khilkevich, E.; Kim, H. T.; Kim, H. S.; Kinch, A.; King, C.; King, D.; King, R. F.; Kinna, D. J.; Kiptily, V.; Kirk, A.; Kirov, K.; Kirschner, A.; Kizane, G.; Klepper, C.; Klix, A.; Knight, P.; Knipe, S. J.; Knott, S.; Kobuchi, T.; Köchl, F.; Kocsis, G.; Kodeli, I.; Kogan, L.; Kogut, D.; Koivuranta, S.; Kominis, Y.; Köppen, M.; Kos, B.; Koskela, T.; Koslowski, H. R.; Koubiti, M.; Kovari, M.; Kowalska-Strzęciwilk, E.; Krasilnikov, A.; Krasilnikov, V.; Krawczyk, N.; Kresina, M.; Krieger, K.; Krivska, A.; Kruezi, U.; Książek, I.; Kukushkin, A.; Kundu, A.; Kurki-Suonio, T.; Kwak, S.; Kwiatkowski, R.; Kwon, O. J.; Laguardia, L.; Lahtinen, A.; Laing, A.; Lam, N.; Lambertz, H. T.; Lane, C.; Lang, P. T.; Lanthaler, S.; Lapins, J.; Lasa, A.; Last, J. R.; Łaszyńska, E.; Lawless, R.; Lawson, A.; Lawson, K. D.; Lazaros, A.; Lazzaro, E.; Leddy, J.; Lee, S.; Lefebvre, X.; Leggate, H. J.; Lehmann, J.; Lehnen, M.; Leichtle, D.; Leichuer, P.; Leipold, F.; Lengar, I.; Lennholm, M.; Lerche, E.; Lescinskis, A.; Lesnoj, S.; Letellier, E.; Leyland, M.; Leysen, W.; Li, L.; Liang, Y.; Likonen, J.; Linke, J.; Linsmeier, Ch.; Lipschultz, B.; Litaudon, X.; Liu, G.; Liu, Y.; Lo Schiavo, V. P.; Loarer, T.; Loarte, A.; Lobel, R. C.; Lomanowski, B.; Lomas, P. J.; Lönnroth, J.; López, J. M.; López-Razola, J.; Lorenzini, R.; Losada, U.; Lovell, J. J.; Loving, A. B.; Lowry, C.; Luce, T.; Lucock, R. M. A.; Lukin, A.; Luna, C.; Lungaroni, M.; Lungu, C. P.; Lungu, M.; Lunniss, A.; Lupelli, I.; Lyssoivan, A.; MacDonald, N.; Macheta, P.; Maczewa, K.; Magesh, B.; Maget, P.; Maggi, C.; Maier, H.; Mailloux, J.; Makkonen, T.; Makwana, R.; Malaquias, A.; Malizia, A.; Manas, P.; Manning, A.; Manso, M. E.; Mantica, P.; Mantsinen, M.; Manzanares, A.; Maquet, Ph.; Marandet, Y.; Marcenko, N.; Marchetto, C.; Marchuk, O.; Marinelli, M.; Marinucci, M.; Markovič, T.; Marocco, D.; Marot, L.; Marren, C. A.; Marshal, R.; Martin, A.; Martin, Y.; Martín de Aguilera, A.; Martínez, F. J.; Martín-Solís, J. R.; Martynova, Y.; Maruyama, S.; Masiello, A.; Maslov, M.; Matejcik, S.; Mattei, M.; Matthews, G. F.; Maviglia, F.; Mayer, M.; Mayoral, M. L.; May-Smith, T.; Mazon, D.; Mazzotta, C.; McAdams, R.; McCarthy, P. J.; McClements, K. G.; McCormack, O.; McCullen, P. A.; McDonald, D.; McIntosh, S.; McKean, R.; McKehon, J.; Meadows, R. C.; Meakins, A.; Medina, F.; Medland, M.; Medley, S.; Meigh, S.; Meigs, A. G.; Meisl, G.; Meitner, S.; Meneses, L.; Menmuir, S.; Mergia, K.; Merrigan, I. R.; Mertens, Ph.; Meshchaninov, S.; Messiaen, A.; Meyer, H.; Mianowski, S.; Michling, R.; Middleton-Gear, D.; Miettunen, J.; Militello, F.; Militello-Asp, E.; Miloshevsky, G.; Mink, F.; Minucci, S.; Miyoshi, Y.; Mlynář, J.; Molina, D.; Monakhov, I.; Moneti, M.; Mooney, R.; Moradi, S.; Mordijck, S.; Moreira, L.; Moreno, R.; Moro, F.; Morris, A. W.; Morris, J.; Moser, L.; Mosher, S.; Moulton, D.; Murari, A.; Muraro, A.; Murphy, S.; Asakura, N. N.; Na, Y. S.; Nabais, F.; Naish, R.; Nakano, T.; Nardon, E.; Naulin, V.; Nave, M. F. F.; Nedzelski, I.; Nemtsev, G.; Nespoli, F.; Neto, A.; Neu, R.; Neverov, V. S.; Newman, M.; Nicholls, K. J.; Nicolas, T.; Nielsen, A. H.; Nielsen, P.; Nilsson, E.; Nishijima, D.; Noble, C.; Nocente, M.; Nodwell, D.; Nordlund, K.; Nordman, H.; Nouailletas, R.; Nunes, I.; Oberkofler, M.; Odupitan, T.; Ogawa, M. T.; O'Gorman, T.; Okabayashi, M.; Olney, R.; Omolayo, O.; O'Mullane, M.; Ongena, J.; Orsitto, F.; Orszagh, J.; Oswuigwe, B. I.; Otin, R.; Owen, A.; Paccagnella, R.; Pace, N.; Pacella, D.; Packer, L. W.; Page, A.; Pajuste, E.; Palazzo, S.; Pamela, S.; Panja, S.; Papp, P.; Paprok, R.; Parail, V.; Park, M.; Diaz, F. Parra; Parsons, M.; Pasqualotto, R.; Patel, A.; Pathak, S.; Paton, D.; Patten, H.; Pau, A.; Pawelec, E.; Soldan, C. Paz; Peackoc, A.; Pearson, I. J.; Pehkonen, S.-P.; Peluso, E.; Penot, C.; Pereira, A.; Pereira, R.; Puglia, P. P. Pereira; von Thun, C. Perez; Peruzzo, S.; Peschanyi, S.; Peterka, M.; Petersson, P.; Petravich, G.; Petre, A.; Petrella, N.; Petržilka, V.; Peysson, Y.; Pfefferlé, D.; Philipps, V.; Pillon, M.; Pintsuk, G.; Piovesan, P.; Dos Reis, A. Pires; Piron, L.; Pironti, A.; Pisano; Pitts, R.; Pizzo, F.; Plyusnin, V.; Pomaro, N.; Pompilian, O. G.; Pool, P. J.; Popovichev, S.; Porfiri, M. T.; Porosnicu, C.; Porton, M.; Possnert, G.; Potzel, S.; Powell, T.; Pozzi, J.; Prajapati, V.; Prakash, R.; Prestopino, G.; Price, D.; Price, M.; Price, R.; Prior, P.; Proudfoot, R.; Pucella, G.; Puglia, P.; Puiatti, M. E.; Pulley, D.; Purahoo, K.; Pütterich, Th.; Rachlew, E.; Rack, M.; Ragona, R.; Rainford, M. S. J.; Rakha, A.; Ramogida, G.; Ranjan, S.; Rapson, C. J.; Rasmussen, J. J.; Rathod, K.; Rattá, G.; Ratynskaia, S.; Ravera, G.; Rayner, C.; Rebai, M.; Reece, D.; Reed, A.; Réfy, D.; Regan, B.; Regaña, J.; Reich, M.; Reid, N.; Reimold, F.; Reinhart, M.; Reinke, M.; Reiser, D.; Rendell, D.; Reux, C.; Cortes, S. D. A. Reyes; Reynolds, S.; Riccardo, V.; Richardson, N.; Riddle, K.; Rigamonti, D.; Rimini, F. G.; Risner, J.; Riva, M.; Roach, C.; Robins, R. J.; Robinson, S. A.; Robinson, T.; Robson, D. W.; Roccella, R.; Rodionov, R.; Rodrigues, P.; Rodriguez, J.; Rohde, V.; Romanelli, F.; Romanelli, M.; Romanelli, S.; Romazanov, J.; Rowe, S.; Rubel, M.; Rubinacci, G.; Rubino, G.; Ruchko, L.; Ruiz, M.; Ruset, C.; Rzadkiewicz, J.; Saarelma, S.; Sabot, R.; Safi, E.; Sagar, P.; Saibene, G.; Saint-Laurent, F.; Salewski, M.; Salmi, A.; Salmon, R.; Salzedas, F.; Samaddar, D.; Samm, U.; Sandiford, D.; Santa, P.; Santala, M. I. K.; Santos, B.; Santucci, A.; Sartori, F.; Sartori, R.; Sauter, O.; Scannell, R.; Schlummer, T.; Schmid, K.; Schmidt, V.; Schmuck, S.; Schneider, M.; Schöpf, K.; Schwörer, D.; Scott, S. D.; Sergienko, G.; Sertoli, M.; Shabbir, A.; Sharapov, S. E.; Shaw, A.; Shaw, R.; Sheikh, H.; Shepherd, A.; Shevelev, A.; Shumack, A.; Sias, G.; Sibbald, M.; Sieglin, B.; Silburn, S.; Silva, A.; Silva, C.; Simmons, P. A.; Simpson, J.; Simpson-Hutchinson, J.; Sinha, A.; Sipilä, S. K.; Sips, A. C. C.; Sirén, P.; Sirinelli, A.; Sjöstrand, H.; Skiba, M.; Skilton, R.; Slabkowska, K.; Slade, B.; Smith, N.; Smith, P. G.; Smith, R.; Smith, T. J.; Smithies, M.; Snoj, L.; Soare, S.; Solano, E. R.; Somers, A.; Sommariva, C.; Sonato, P.; Sopplesa, A.; Sousa, J.; Sozzi, C.; Spagnolo, S.; Spelzini, T.; Spineanu, F.; Stables, G.; Stamatelatos, I.; Stamp, M. F.; Staniec, P.; Stankūnas, G.; Stan-Sion, C.; Stead, M. J.; Stefanikova, E.; Stepanov, I.; Stephen, A. V.; Stephen, M.; Stevens, A.; Stevens, B. D.; Strachan, J.; Strand, P.; Strauss, H. R.; Ström, P.; Stubbs, G.; Studholme, W.; Subba, F.; Summers, H. P.; Svensson, J.; Świderski, Ł.; Szabolics, T.; Szawlowski, M.; Szepesi, G.; Suzuki, T. T.; Tál, B.; Tala, T.; Talbot, A. R.; Talebzadeh, S.; Taliercio, C.; Tamain, P.; Tame, C.; Tang, W.; Tardocchi, M.; Taroni, L.; Taylor, D.; Taylor, K. A.; Tegnered, D.; Telesca, G.; Teplova, N.; Terranova, D.; Testa, D.; Tholerus, E.; Thomas, J.; Thomas, J. D.; Thomas, P.; Thompson, A.; Thompson, C.-A.; Thompson, V. K.; Thorne, L.; Thornton, A.; Thrysøe, A. S.; Tigwell, P. A.; Tipton, N.; Tiseanu, I.; Tojo, H.; Tokitani, M.; Tolias, P.; Tomeš, M.; Tonner, P.; Towndrow, M.; Trimble, P.; Tripsky, M.; Tsalas, M.; Tsavalas, P.; Jun, D. Tskhakaya; Turner, I.; Turner, M. M.; Turnyanskiy, M.; Tvalashvili, G.; Tyrrell, S. G. J.; Uccello, A.; Ul-Abidin, Z.; Uljanovs, J.; Ulyatt, D.; Urano, H.; Uytdenhouwen, I.; Vadgama, A. P.; Valcarcel, D.; Valentinuzzi, M.; Valisa, M.; Olivares, P. Vallejos; Valovic, M.; van de Mortel, M.; van Eester, D.; van Renterghem, W.; van Rooij, G. J.; Varje, J.; Varoutis, S.; Vartanian, S.; Vasava, K.; Vasilopoulou, T.; Vega, J.; Verdoolaege, G.; Verhoeven, R.; Verona, C.; Rinati, G. Verona; Veshchev, E.; Vianello, N.; Vicente, J.; Viezzer, E.; Villari, S.; Villone, F.; Vincenzi, P.; Vinyar, I.; Viola, B.; Vitins, A.; Vizvary, Z.; Vlad, M.; Voitsekhovitch, I.; Vondráček, P.; Vora, N.; Vu, T.; de Sa, W. W. Pires; Wakeling, B.; Waldon, C. W. F.; Walkden, N.; Walker, M.; Walker, R.; Walsh, M.; Wang, E.; Wang, N.; Warder, S.; Warren, R. J.; Waterhouse, J.; Watkins, N. W.; Watts, C.; Wauters, T.; Weckmann, A.; Weiland, J.; Weisen, H.; Weiszflog, M.; Wellstood, C.; West, A. T.; Wheatley, M. R.; Whetham, S.; Whitehead, A. M.; Whitehead, B. D.; Widdowson, A. M.; Wiesen, S.; Wilkinson, J.; Williams, J.; Williams, M.; Wilson, A. R.; Wilson, D. J.; Wilson, H. R.; Wilson, J.; Wischmeier, M.; Withenshaw, G.; Withycombe, A.; Witts, D. M.; Wood, D.; Wood, R.; Woodley, C.; Wray, S.; Wright, J.; Wright, J. C.; Wu, J.; Wukitch, S.; Wynn, A.; Xu, T.; Yadikin, D.; Yanling, W.; Yao, L.; Yavorskij, V.; Yoo, M. G.; Young, C.; Young, D.; Young, I. D.; Young, R.; Zacks, J.; Zagorski, R.; Zaitsev, F. S.; Zanino, R.; Zarins, A.; Zastrow, K. D.; Zerbini, M.; Zhang, W.; Zhou, Y.; Zilli, E.; Zoita, V.; Zoletnik, S.; Zychor, I.
2017-10-01
We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed `three-ion' scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen-deuterium mixtures. Simultaneously, effective plasma heating is observed, as a result of the slowing-down of the fast 3He ions. The developed technique is not only limited to laboratory plasmas, but can also be applied to explain observations of energetic ions in space-plasma environments, in particular, 3He-rich solar flares.
Low-power, transparent optical network interface for high bandwidth off-chip interconnects.
Liboiron-Ladouceur, Odile; Wang, Howard; Garg, Ajay S; Bergman, Keren
2009-04-13
The recent emergence of multicore architectures and chip multiprocessors (CMPs) has accelerated the bandwidth requirements in high-performance processors for both on-chip and off-chip interconnects. For next generation computing clusters, the delivery of scalable power efficient off-chip communications to each compute node has emerged as a key bottleneck to realizing the full computational performance of these systems. The power dissipation is dominated by the off-chip interface and the necessity to drive high-speed signals over long distances. We present a scalable photonic network interface approach that fully exploits the bandwidth capacity offered by optical interconnects while offering significant power savings over traditional E/O and O/E approaches. The power-efficient interface optically aggregates electronic serial data streams into a multiple WDM channel packet structure at time-of-flight latencies. We demonstrate a scalable optical network interface with 70% improvement in power efficiency for a complete end-to-end PCI Express data transfer.
NASA Astrophysics Data System (ADS)
Scandale, W.; Taratin, A. M.; Kovalenko, A. D.
2013-01-01
The paper presents the current status with the use of the crystal defectors for high energy ion beams. The channeling properties of multicharged ions are discussed. The results of the experiments on the deflection and extraction (collimation) of high energy ion beams with bent crystals performed in the accelerator centers are shortly considered. The analysis of the recent collimation experiment with a Pb nuclei of 270GeV/c per charge at the CERN Super Proton Synchrotron showed that the channeling efficiency was as large as about 90%. For Pb ions of the LHC energies a new mechanism, which can reduce the channeling efficiency, appears. The electromagnetic dissociation (ED) becomes possible for well channeled particles. However, the estimations performed in the paper show that the ED probability is small and should not visibly reduce the collimation efficiency. On the other hand, the aligned crystal gives the possibility to study the ED processes of heavy nuclei in the conditions when nuclear interactions are fully suppressed.
100W high-brightness multi-emitter laser pump
NASA Astrophysics Data System (ADS)
Duesterberg, Richard; Xu, Lei; Skidmore, Jay A.; Guo, James; Cheng, Jane; Du, Jihua; Johnson, Brad; Vecht, David L.; Guerin, Nicolas; Huang, Benlih; Yin, Dongliang; Cheng, Peter; Raju, Reddy; Lee, Kong Weng; Cai, Jason; Rossin, Victor; Zucker, Erik P.
2011-03-01
We report results of a spatially-multiplexed broad area laser diode platform designed for efficient pumping of fiber lasers or direct-diode systems. Optical output power in excess of 100W from a 105μm core, 0.15NA fiber is demonstrated with high coupling efficiency. The compact form factor and low thermal resistance enable tight packing densities needed for kW-class fiber laser systems. Broad area laser diodes have been optimized to reduce near- and far-field performance and prevent blooming without sacrificing other electro-optic parameters. With proper lens optimization this produces ~5% increase in coupling / wall plug efficiency for our design. In addition to performance characteristics, an update on long term reliability testing of 9XX nm broad area laser diode is provided that continues to show no wear out under high acceleration. Under nominal operating conditions of 12W ex-facet power at 25C, the diode mean time to failure (MTTF) is forecast to be ~ 480 kh.
Shi, Dongying; Zheng, Rui; Sun, Ming-Jun; Cao, Xinrui; Sun, Chun-Xiao; Cui, Chao-Jie; Liu, Chun-Sen; Zhao, Junwei; Du, Miao
2017-11-13
As the first example of a photocatalytic system for splitting water without additional cocatalysts and photosensitizers, the comparatively cost-effective Cu 2 I 2 -based MOF, Cu-I-bpy (bpy=4,4'-bipyridine) exhibited highly efficient photocatalytic hydrogen production (7.09 mmol g -1 h -1 ). Density functional theory (DFT) calculations established the electronic structures of Cu-I-bpy with a narrow band gap of 2.05 eV, indicating its semiconductive behavior, which is consistent with the experimental value of 2.00 eV. The proposed mechanism demonstrates that Cu 2 I 2 clusters of Cu-I-bpy serve as photoelectron generators to accelerate the copper(I) hydride interaction, providing redox reaction sites for hydrogen evolution. The highly stable cocatalyst-free and self-sensitized Cu-I-bpy provides new insights into the future design of cost-effective d 10 -based MOFs for highly efficient and long-term solar fuels production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
GraphReduce: Large-Scale Graph Analytics on Accelerator-Based HPC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Agarwal, Kapil; Song, Shuaiwen
2015-09-30
Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of both edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the hostmore » and the device.« less
Liquid-metal-fed Pulsed Plasma Thrusters for In-space Propulsion
NASA Technical Reports Server (NTRS)
Markusic, Thomas E.
2004-01-01
Liquid metal propellants may provide a path toward more reliable and efficient pulsed plasma thrusters (PPTs). Conceptual thruster designs which eliminate the need for high current switches and propellant metering valves are described. Propellant loading techniques are suggested that show promise to increase thruster propellant utilization, dynamic, and electrical efficiency. Calibration results from a compact, electromagnetically-pumped propellant feed system are presented. Results for lithium and gallium propellants show capability to meter propellant at flow rates up to 10 +/- 0.1 mg/s. Experiments investigating the initiation of arc discharges using liquid metal droplets are presented. High speed photography and laser interferometry provide spatially and temporally resolved information on the decomposition of liquid metal droplets , and the evolution of the accelerating current channel.
NASA Astrophysics Data System (ADS)
Balkcum, Adam J.
In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along with MAGIC, are used to design a representative 200 MW, 40% efficient, X-band amplifier for linear accelerators and a 1 GW, 21% efficient, S-band oscillator for directed energy. The technique of axial mode profiling in the ubitron cavity oscillator is also proposed and shown to increase the simulated interaction efficiency to 46%. These devices are realizable and their experimental implementation, including electron beam formation and spurious mode suppression techniques, is discussed.
Some practical observations on the accelerated testing of Nickel-Cadmium Cells
NASA Technical Reports Server (NTRS)
Mcdermott, P. P.
1979-01-01
A large scale test of 6.0 Ah Nickel-Cadmium Cells conducted at the Naval Weapons Support Center, Crane, Indiana has demonstrated a methodology for predicting battery life based on failure data from cells cycled in an accelerated mode. After examining eight variables used to accelerate failure, it was determined that temperature and depth of discharge were the most reliable and efficient parameters for use in accelerating failure and for predicting life.
Guo, Fan; Liu, Yi -Hsin; Daughton, William; ...
2015-06-17
Magnetic reconnection is thought to be the driver for many explosive phenomena in the universe. The energy release and particle acceleration during reconnection have been proposed as a mechanism for producing high-energy emissions and cosmic rays. We carry out two- and three-dimensional (3D) kinetic simulations to investigate relativistic magnetic reconnection and the associated particle acceleration. The simulations focus on electron–positron plasmas starting with a magnetically dominated, force-free current sheet (σ ≡ B 2 / (4πn em ec 2) >> 1). For this limit, we demonstrate that relativistic reconnection is highly efficient at accelerating particles through a first-order Fermi process accomplishedmore » by the curvature drift of particles along the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra f α (γ - 1) -p and approaches p = 1 for sufficiently large σ and system size. Eventually most of the available magnetic free energy is converted into nonthermal particle kinetic energy. An analytic model is presented to explain the key results and predict a general condition for the formation of power-law distributions. The development of reconnection in these regimes leads to relativistic inflow and outflow speeds and enhanced reconnection rates relative to nonrelativistic regimes. In the 3D simulation, the interplay between secondary kink and tearing instabilities leads to strong magnetic turbulence, but does not significantly change the energy conversion, reconnection rate, or particle acceleration. This paper suggests that relativistic reconnection sites are strong sources of nonthermal particles, which may have important implications for a variety of high-energy astrophysical problems.« less
High power ring methods and accelerator driven subcritical reactor application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahar, Malek Haj
2016-08-07
High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today’s technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g.,more » PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the transverse beam dynamics. The results obtained allow to develop a correction scheme to minimize the tune variations of the FFAG. This is the cornerstone of a new fixed tune non-scaling FFAG that represents a potential candidate for high power applications. As part of the developments towards high power at the KURRI FFAG, beam dynamics studies have to account for space charge effects. In that framework, models have been installed in the tracking code ZGOUBI to account for the self-interaction of the particles in the accelerator. Application to the FFAG studies is shown. Finally, one focused on the ADSR concept as a candidate to solve the problem of nuclear waste. In order to establish the accelerator requirements, one compared the performance of ADSR with other conventional critical reactors by means of the levelized cost of energy. A general comparison between the different accelerator technologies that can satisfy these requirements is finally presented. In summary, the main drawback of the ADSR technology is the high Levelized Cost Of Energy compared to other advanced reactor concepts that do not employ an accelerator. Nowadays, this is a show-stopper for any industrial application aiming at producing energy (without dealing with the waste problem). Besides, the reactor is not intrinsically safer than critical reactor concepts, given the complexity of managing the target interface between the accelerator and the reactor core.« less
Ion Voltage Diagnostics in the Far-Field Plume of a High-Specific Impulse Hall Thruster
NASA Technical Reports Server (NTRS)
Hofer, Richard R.; Haas, James M.; Gallimore, Alec D.
2003-01-01
The effects of the magnetic field and discharge voltage on the far-field plume of the NASA 173Mv2 laboratory-model Hall thruster were investigated. A cylindrical Langmuir probe was used to measure the plasma potential and a retarding potential analyzer was employed to measure the ion voltage distribution. The plasma potential was affected by relatively small changes in the external magnetic field, which suggested a means to control the plasma surrounding the thruster. As the discharge voltage increased, the ion voltage distribution showed that the acceleration efficiency increased and the dispersion efficiency decreased. This implied that the ionization zone was growing axially and moving closer to the anode, which could have affected thruster efficiency and lifetime due to higher wall losses. However, wall losses may have been reduced by improved focusing efficiency since the total efficiency increased and the plume divergence decreased with discharge voltage.