Sample records for high accuracy analysis

  1. Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis

    PubMed Central

    Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.

    2015-01-01

    Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505

  2. The construction of high-accuracy schemes for acoustic equations

    NASA Technical Reports Server (NTRS)

    Tang, Lei; Baeder, James D.

    1995-01-01

    An accuracy analysis of various high order schemes is performed from an interpolation point of view. The analysis indicates that classical high order finite difference schemes, which use polynomial interpolation, hold high accuracy only at nodes and are therefore not suitable for time-dependent problems. Thus, some schemes improve their numerical accuracy within grid cells by the near-minimax approximation method, but their practical significance is degraded by maintaining the same stencil as classical schemes. One-step methods in space discretization, which use piecewise polynomial interpolation and involve data at only two points, can generate a uniform accuracy over the whole grid cell and avoid spurious roots. As a result, they are more accurate and efficient than multistep methods. In particular, the Cubic-Interpolated Psuedoparticle (CIP) scheme is recommended for computational acoustics.

  3. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis.

    PubMed

    van Dijken, Bart R J; van Laar, Peter Jan; Holtman, Gea A; van der Hoorn, Anouk

    2017-10-01

    Treatment response assessment in high-grade gliomas uses contrast enhanced T1-weighted MRI, but is unreliable. Novel advanced MRI techniques have been studied, but the accuracy is not well known. Therefore, we performed a systematic meta-analysis to assess the diagnostic accuracy of anatomical and advanced MRI for treatment response in high-grade gliomas. Databases were searched systematically. Study selection and data extraction were done by two authors independently. Meta-analysis was performed using a bivariate random effects model when ≥5 studies were included. Anatomical MRI (five studies, 166 patients) showed a pooled sensitivity and specificity of 68% (95%CI 51-81) and 77% (45-93), respectively. Pooled apparent diffusion coefficients (seven studies, 204 patients) demonstrated a sensitivity of 71% (60-80) and specificity of 87% (77-93). DSC-perfusion (18 studies, 708 patients) sensitivity was 87% (82-91) with a specificity of 86% (77-91). DCE-perfusion (five studies, 207 patients) sensitivity was 92% (73-98) and specificity was 85% (76-92). The sensitivity of spectroscopy (nine studies, 203 patients) was 91% (79-97) and specificity was 95% (65-99). Advanced techniques showed higher diagnostic accuracy than anatomical MRI, the highest for spectroscopy, supporting the use in treatment response assessment in high-grade gliomas. • Treatment response assessment in high-grade gliomas with anatomical MRI is unreliable • Novel advanced MRI techniques have been studied, but diagnostic accuracy is unknown • Meta-analysis demonstrates that advanced MRI showed higher diagnostic accuracy than anatomical MRI • Highest diagnostic accuracy for spectroscopy and perfusion MRI • Supports the incorporation of advanced MRI in high-grade glioma treatment response assessment.

  4. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    PubMed Central

    Sun, Ting; Xing, Fei; You, Zheng

    2013-01-01

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527

  5. High accuracy method for the application of isotope dilution to gas chromatography/mass spectrometric analysis of gases.

    PubMed

    Milton, Martin J T; Wang, Jian

    2003-01-01

    A new isotope dilution mass spectrometry (IDMS) method for high-accuracy quantitative analysis of gases has been developed and validated by the analysis of standard mixtures of carbon dioxide in nitrogen. The method does not require certified isotopic reference materials and does not require direct measurements of the highly enriched spike. The relative uncertainty of the method is shown to be 0.2%. Reproduced with the permission of Her Majesty's Stationery Office. Copyright Crown copyright 2003.

  6. Generating high-accuracy urban distribution map for short-term change monitoring based on convolutional neural network by utilizing SAR imagery

    NASA Astrophysics Data System (ADS)

    Iino, Shota; Ito, Riho; Doi, Kento; Imaizumi, Tomoyuki; Hikosaka, Shuhei

    2017-10-01

    In the developing countries, urban areas are expanding rapidly. With the rapid developments, a short term monitoring of urban changes is important. A constant observation and creation of urban distribution map of high accuracy and without noise pollution are the key issues for the short term monitoring. SAR satellites are highly suitable for day or night and regardless of atmospheric weather condition observations for this type of study. The current study highlights the methodology of generating high-accuracy urban distribution maps derived from the SAR satellite imagery based on Convolutional Neural Network (CNN), which showed the outstanding results for image classification. Several improvements on SAR polarization combinations and dataset construction were performed for increasing the accuracy. As an additional data, Digital Surface Model (DSM), which are useful to classify land cover, were added to improve the accuracy. From the obtained result, high-accuracy urban distribution map satisfying the quality for short-term monitoring was generated. For the evaluation, urban changes were extracted by taking the difference of urban distribution maps. The change analysis with time series of imageries revealed the locations of urban change areas for short-term. Comparisons with optical satellites were performed for validating the results. Finally, analysis of the urban changes combining X-band, L-band and C-band SAR satellites was attempted to increase the opportunity of acquiring satellite imageries. Further analysis will be conducted as future work of the present study

  7. System and method for high precision isotope ratio destructive analysis

    DOEpatents

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  8. High accuracy-nationwide differential global positioning system test and analysis : phase II report

    DOT National Transportation Integrated Search

    2005-07-01

    The High Accuracy-Nationwide Differential Global Positioning System (HA-NDGPS) program focused on the development of compression and broadcast techniques to provide users over a large area wit very accurate radio navigation solutions. The goal was ac...

  9. Mapping Vegetation Community Types in a Highly-Disturbed Landscape: Integrating Hiearchical Object-Based Image Analysis with Digital Surface Models

    NASA Astrophysics Data System (ADS)

    Snavely, Rachel A.

    Focusing on the semi-arid and highly disturbed landscape of San Clemente Island, California, this research tests the effectiveness of incorporating a hierarchal object-based image analysis (OBIA) approach with high-spatial resolution imagery and light detection and range (LiDAR) derived canopy height surfaces for mapping vegetation communities. The study is part of a large-scale research effort conducted by researchers at San Diego State University's (SDSU) Center for Earth Systems Analysis Research (CESAR) and Soil Ecology and Restoration Group (SERG), to develop an updated vegetation community map which will support both conservation and management decisions on Naval Auxiliary Landing Field (NALF) San Clemente Island. Trimble's eCognition Developer software was used to develop and generate vegetation community maps for two study sites, with and without vegetation height data as input. Overall and class-specific accuracies were calculated and compared across the two classifications. The highest overall accuracy (approximately 80%) was observed with the classification integrating airborne visible and near infrared imagery having very high spatial resolution with a LiDAR derived canopy height model. Accuracies for individual vegetation classes differed between both classification methods, but were highest when incorporating the LiDAR digital surface data. The addition of a canopy height model, however, yielded little difference in classification accuracies for areas of very dense shrub cover. Overall, the results show the utility of the OBIA approach for mapping vegetation with high spatial resolution imagery, and emphasizes the advantage of both multi-scale analysis and digital surface data for accuracy characterizing highly disturbed landscapes. The integrated imagery and digital canopy height model approach presented both advantages and limitations, which have to be considered prior to its operational use in mapping vegetation communities.

  10. Improving the sensitivity and accuracy of gamma activation analysis for the rapid determination of gold in mineral ores.

    PubMed

    Tickner, James; Ganly, Brianna; Lovric, Bojan; O'Dwyer, Joel

    2017-04-01

    Mining companies rely on chemical analysis methods to determine concentrations of gold in mineral ore samples. As gold is often mined commercially at concentrations around 1 part-per-million, it is necessary for any analysis method to provide good sensitivity as well as high absolute accuracy. We describe work to improve both the sensitivity and accuracy of the gamma activation analysis (GAA) method for gold. We present analysis results for several suites of ore samples and discuss the design of a GAA facility designed to replace conventional chemical assay in industrial applications. Copyright © 2017. Published by Elsevier Ltd.

  11. Diagnostic accuracy of imaging devices in glaucoma: A meta-analysis.

    PubMed

    Fallon, Monica; Valero, Oliver; Pazos, Marta; Antón, Alfonso

    Imaging devices such as the Heidelberg retinal tomograph-3 (HRT3), scanning laser polarimetry (GDx), and optical coherence tomography (OCT) play an important role in glaucoma diagnosis. A systematic search for evidence-based data was performed for prospective studies evaluating the diagnostic accuracy of HRT3, GDx, and OCT. The diagnostic odds ratio (DOR) was calculated. To compare the accuracy among instruments and parameters, a meta-analysis considering the hierarchical summary receiver-operating characteristic model was performed. The risk of bias was assessed using quality assessment of diagnostic accuracy studies, version 2. Studies in the context of screening programs were used for qualitative analysis. Eighty-six articles were included. The DOR values were 29.5 for OCT, 18.6 for GDx, and 13.9 for HRT. The heterogeneity analysis demonstrated statistically a significant influence of degree of damage and ethnicity. Studies analyzing patients with earlier glaucoma showed poorer results. The risk of bias was high for patient selection. Screening studies showed lower sensitivity values and similar specificity values when compared with those included in the meta-analysis. The classification capabilities of GDx, HRT, and OCT were high and similar across the 3 instruments. The highest estimated DOR was obtained with OCT. Diagnostic accuracy could be overestimated in studies including prediagnosed groups of subjects. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. An analysis of the accuracy and cost-effectiveness of a cropland inventory utilizing remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Jensen, J. R.; Tinney, L. R.; Estes, J. E.

    1975-01-01

    Cropland inventories utilizing high altitude and Landsat imagery were conducted in Kern County, California. It was found that in terms of the overall mean relative and absolute inventory accuracies, a Landsat multidate analysis yielded the most optimum results, i.e., 98% accuracy. The 1:125,000 CIR high altitude inventory is a serious alternative which can be very accurate (97% or more) if imagery is available for a specific study area. The operational remote sensing cropland inventories documented in this study are considered cost-effective. When compared to conventional survey costs of $62-66 per 10,000 acres, the Landsat and high-altitude inventories required only 3-5% of this amount, i.e., $1.97-2.98.

  13. Assessment of craniometric traits in South Indian dry skulls for sex determination.

    PubMed

    Ramamoorthy, Balakrishnan; Pai, Mangala M; Prabhu, Latha V; Muralimanju, B V; Rai, Rajalakshmi

    2016-01-01

    The skeleton plays an important role in sex determination in forensic anthropology. The skull bone is considered as the second best after the pelvic bone in sex determination due to its better retention of morphological features. Different populations have varying skeletal characteristics, making population specific analysis for sex determination essential. Hence the objective of this investigation is to obtain the accuracy of sex determination using cranial parameters of adult skulls to the highest percentage in South Indian population and to provide a baseline data for sex determination in South India. Seventy adult preserved human skulls were taken and based on the morphological traits were classified into 43 male skulls and 27 female skulls. A total of 26 craniometric parameters were studied. The data were analyzed by using the SPSS discriminant function. The analysis of stepwise, multivariate, and univariate discriminant function gave an accuracy of 77.1%, 85.7%, and 72.9% respectively. Multivariate direct discriminant function analysis classified skull bones into male and female with highest levels of accuracy. Using stepwise discriminant function analysis, the most dimorphic variable to determine sex of the skull, was biauricular breadth followed by weight. Subjecting the best dimorphic variables to univariate discriminant analysis, high levels of accuracy of sexual dimorphism was obtained. Percentage classification of high accuracies were obtained in this study indicating high level of sexual dimorphism in the crania, setting specific discriminant equations for the gender determination in South Indian people. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  14. Virtual Assessment of Sex: Linear and Angular Traits of the Mandibular Ramus Using Three-Dimensional Computed Tomography.

    PubMed

    Inci, Ercan; Ekizoglu, Oguzhan; Turkay, Rustu; Aksoy, Sema; Can, Ismail Ozgur; Solmaz, Dilek; Sayin, Ibrahim

    2016-10-01

    Morphometric analysis of the mandibular ramus (MR) provides highly accurate data to discriminate sex. The objective of this study was to demonstrate the utility and accuracy of MR morphometric analysis for sex identification in a Turkish population.Four hundred fifteen Turkish patients (18-60 y; 201 male and 214 female) who had previously had multidetector computed tomography scans of the cranium were included in the study. Multidetector computed tomography images were obtained using three-dimensional reconstructions and a volume-rendering technique, and 8 linear and 3 angular values were measured. Univariate, bivariate, and multivariate discriminant analyses were performed, and the accuracy rates for determining sex were calculated.Mandibular ramus values produced high accuracy rates of 51% to 95.6%. Upper ramus vertical height had the highest rate at 95.6%, and bivariate analysis showed 89.7% to 98.6% accuracy rates with the highest ratios of mandibular flexure upper border and maximum ramus breadth. Stepwise discrimination analysis gave a 99% accuracy rate for all MR variables.Our study showed that the MR, in particular morphometric measures of the upper part of the ramus, can provide valuable data to determine sex in a Turkish population. The method combines both anthropological and radiologic studies.

  15. Interactional Effects of Instructional Quality and Teacher Judgement Accuracy on Achievement.

    ERIC Educational Resources Information Center

    Helmke, Andreas; Schrader, Friedrich-Wilhelm

    1987-01-01

    Analysis of predictions of 32 teachers regarding 690 fifth-graders' scores on a mathematics achievement test found that the combination of high judgement accuracy with varied instructional techniques was particularly favorable to students in contrast to a combination of high diagnostic sensitivity with a low frequency of cues or individual…

  16. NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis.

    PubMed

    Markiewicz, Pawel J; Ehrhardt, Matthias J; Erlandsson, Kjell; Noonan, Philip J; Barnes, Anna; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Ourselin, Sebastien

    2018-01-01

    We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage. The pipeline of the platform starts from MR and raw PET input data and is divided into the following processing stages: (1) list-mode data processing; (2) accurate attenuation coefficient map generation; (3) detector normalisation; (4) exact forward and back projection between sinogram and image space; (5) estimation of reduced-variance random events; (6) high accuracy fully 3D estimation of scatter events; (7) voxel-based partial volume correction; (8) region- and voxel-level image analysis. We demonstrate the advantages of this platform using an amyloid brain scan where all the processing is executed from a single and uniform computational environment in Python. The high accuracy acquisition modelling is achieved through span-1 (no axial compression) ray tracing for true, random and scatter events. Furthermore, the platform offers uncertainty estimation of any image derived statistic to facilitate robust tracking of subtle physiological changes in longitudinal studies. The platform also supports the development of new reconstruction and analysis algorithms through restricting the axial field of view to any set of rings covering a region of interest and thus performing fully 3D reconstruction and corrections using real data significantly faster. All the software is available as open source with the accompanying wiki-page and test data.

  17. Secondary Ion Mass Spectrometers (SIMS) for calcium isotope measurements as an application to biological samples

    NASA Astrophysics Data System (ADS)

    Craven, S. M.; Hoenigman, J. R.; Moddeman, W. E.

    1981-11-01

    The potential use of secondary ion mass spectroscopy (SIMS) to analyze biological samples for calcium isotopes is discussed. Comparison of UTI and Extranuclear based quadrupole systems is made on the basis of the analysis of CaO and calcium metal. The Extranuclear quadrupole based system is superior in resolution and sensitivity to the UTI system and is recommended. For determination of calcium isotopes to within an accuracy of a few percent a high resolution quadrupole, such as the Extranuclear, and signal averaging capability are required. Charge neutralization will be mandated for calcium oxide, calcium nitrate, or calcium oxalate. SIMS is not capable of the high precision and high accuracy results possible by thermal ionization methods, but where faster analysis is desirable with an accuracy of a few percent, SIMS is a viable alternative.

  18. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Time Tagging the Data

    DTIC Science & Technology

    2015-09-01

    this report made use of posttest processing techniques to provide packet-level time tagging with an accuracy close to 3 µs relative to Coordinated...h set of test records. The process described herein made use of posttest processing techniques to provide packet-level time tagging with an accuracy

  19. The Accuracy of Integrated [18F] Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography in Detection of Pelvic and Para-aortic Nodal Metastasis in Patients with High Risk Endometrial Cancer

    PubMed Central

    Gholkar, Nikhil Shirish; Saha, Subhas Chandra; Prasad, GRV; Bhattacharya, Anish; Srinivasan, Radhika; Suri, Vanita

    2014-01-01

    Lymph nodal (LN) metastasis is the most important prognostic factor in high-risk endometrial cancer. However, the benefit of routine lymphadenectomy in endometrial cancer is controversial. This study was conducted to assess the accuracy of [18F] fluorodeoxyglucose-positron emission tomography/computed tomography ([18F] FDG-PET/CT) in detection of pelvic and para-aortic nodal metastases in high-risk endometrial cancer. 20 patients with high-risk endometrial carcinoma underwent [18F] FDG-PET/CT followed by total abdominal hysterectomy, bilateral salpingo-oophorectomy and systematic pelvic lymphadenectomy with or without para-aortic lymphadenectomy. The findings on histopathology were compared with [18F] FDG-PET/CT findings to calculate the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of [18F] FDG-PET/CT. The pelvic nodal findings were analyzed on a patient and nodal chain based criteria. The para-aortic nodal findings were reported separately. Histopathology documented nodal involvement in two patients (10%). For detection of pelvic nodes, on a patient based analysis, [18F] FDG-PET/CT had a sensitivity of 100%, specificity of 61.11%, PPV of 22.22%, NPV of 100% and accuracy of 65% and on a nodal chain based analysis, [18F] FDG-PET/CT had a sensitivity of 100%, specificity of 80%, PPV of 20%, NPV of 100%, and accuracy of 80.95%. For detection of para-aortic nodes, [18F] FDG-PET/CT had sensitivity of 100%, specificity of 66.67%, PPV of 20%, NPV of 100%, and accuracy of 69.23%. Although [18F] FDG-PET/CT has high sensitivity for detection of LN metastasis in endometrial carcinoma, it had moderate accuracy and high false positivity. However, the high NPV is important in selecting patients in whom lymphadenectomy may be omitted. PMID:25538488

  20. Sex estimation from sternal measurements using multidetector computed tomography.

    PubMed

    Ekizoglu, Oguzhan; Hocaoglu, Elif; Inci, Ercan; Bilgili, Mustafa Gokhan; Solmaz, Dilek; Erdil, Irem; Can, Ismail Ozgur

    2014-12-01

    We aimed to show the utility and reliability of sternal morphometric analysis for sex estimation.Sex estimation is a very important step in forensic identification. Skeletal surveys are main methods for sex estimation studies. Morphometric analysis of sternum may provide high accuracy rated data in sex discrimination. In this study, morphometric analysis of sternum was evaluated in 1 mm chest computed tomography scans for sex estimation. Four hundred forty 3 subjects (202 female, 241 male, mean age: 44 ± 8.1 [distribution: 30-60 year old]) were included the study. Manubrium length (ML), mesosternum length (2L), Sternebra 1 (S1W), and Sternebra 3 (S3W) width were measured and also sternal index (SI) was calculated. Differences between genders were evaluated by student t-test. Predictive factors of sex were determined by discrimination analysis and receiver operating characteristic (ROC) analysis. Male sternal measurement values are significantly higher than females (P < 0.001) while SI is significantly low in males (P < 0.001). In discrimination analysis, MSL has high accuracy rate with 80.2% in females and 80.9% in males. MSL also has the best sensitivity (75.9%) and specificity (87.6%) values. Accuracy rates were above 80% in 3 stepwise discrimination analysis for both sexes. Stepwise 1 (ML, MSL, S1W, S3W) has the highest accuracy rate in stepwise discrimination analysis with 86.1% in females and 83.8% in males. Our study showed that morphometric computed tomography analysis of sternum might provide important information for sex estimation.

  1. [RS estimation of inventory parameters and carbon storage of moso bamboo forest based on synergistic use of object-based image analysis and decision tree].

    PubMed

    Du, Hua Qiang; Sun, Xiao Yan; Han, Ning; Mao, Fang Jie

    2017-10-01

    By synergistically using the object-based image analysis (OBIA) and the classification and regression tree (CART) methods, the distribution information, the indexes (including diameter at breast, tree height, and crown closure), and the aboveground carbon storage (AGC) of moso bamboo forest in Shanchuan Town, Anji County, Zhejiang Province were investigated. The results showed that the moso bamboo forest could be accurately delineated by integrating the multi-scale ima ge segmentation in OBIA technique and CART, which connected the image objects at various scales, with a pretty good producer's accuracy of 89.1%. The investigation of indexes estimated by regression tree model that was constructed based on the features extracted from the image objects reached normal or better accuracy, in which the crown closure model archived the best estimating accuracy of 67.9%. The estimating accuracy of diameter at breast and tree height was relatively low, which was consistent with conclusion that estimating diameter at breast and tree height using optical remote sensing could not achieve satisfactory results. Estimation of AGC reached relatively high accuracy, and accuracy of the region of high value achieved above 80%.

  2. Multivariate pattern analysis for MEG: A comparison of dissimilarity measures.

    PubMed

    Guggenmos, Matthias; Sterzer, Philipp; Cichy, Radoslaw Martin

    2018-06-01

    Multivariate pattern analysis (MVPA) methods such as decoding and representational similarity analysis (RSA) are growing rapidly in popularity for the analysis of magnetoencephalography (MEG) data. However, little is known about the relative performance and characteristics of the specific dissimilarity measures used to describe differences between evoked activation patterns. Here we used a multisession MEG data set to qualitatively characterize a range of dissimilarity measures and to quantitatively compare them with respect to decoding accuracy (for decoding) and between-session reliability of representational dissimilarity matrices (for RSA). We tested dissimilarity measures from a range of classifiers (Linear Discriminant Analysis - LDA, Support Vector Machine - SVM, Weighted Robust Distance - WeiRD, Gaussian Naïve Bayes - GNB) and distances (Euclidean distance, Pearson correlation). In addition, we evaluated three key processing choices: 1) preprocessing (noise normalisation, removal of the pattern mean), 2) weighting decoding accuracies by decision values, and 3) computing distances in three different partitioning schemes (non-cross-validated, cross-validated, within-class-corrected). Four main conclusions emerged from our results. First, appropriate multivariate noise normalization substantially improved decoding accuracies and the reliability of dissimilarity measures. Second, LDA, SVM and WeiRD yielded high peak decoding accuracies and nearly identical time courses. Third, while using decoding accuracies for RSA was markedly less reliable than continuous distances, this disadvantage was ameliorated by decision-value-weighting of decoding accuracies. Fourth, the cross-validated Euclidean distance provided unbiased distance estimates and highly replicable representational dissimilarity matrices. Overall, we strongly advise the use of multivariate noise normalisation as a general preprocessing step, recommend LDA, SVM and WeiRD as classifiers for decoding and highlight the cross-validated Euclidean distance as a reliable and unbiased default choice for RSA. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Secondary ion mass spectrometers (SIMS) for calcium isotope measurements as an application to biological samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craven, S.M.; Hoenigman, J.R.; Moddeman, W.E.

    1981-11-20

    The potential use of secondary ion mass spectroscopy (SIMS) to analyze biological samples for calcium isotopes is discussed. Comparison of UTI and Extranuclear based quadrupole systems is made on the basis of the analysis of CaO and calcium metal. The Extranuclear quadrupole based system is superior in resolution and sensitivity to the UTI system and is recommended. For determination of calcium isotopes to within an accuracy of a few percent a high resolution quadrupole, such as the Extranuclear, and signal averaging capability are required. Charge neutralization will be mandated for calcium oxide, calcium nitrate, or calcium oxalate. SIMS is notmore » capable of the high precision and high accuracy results possible by thermal ionization methods, but where faster analysis is desirable with an accuracy of a few percent, SIMS is a viable alternative.« less

  4. A Flexible Analysis Tool for the Quantitative Acoustic Assessment of Infant Cry

    PubMed Central

    Reggiannini, Brian; Sheinkopf, Stephen J.; Silverman, Harvey F.; Li, Xiaoxue; Lester, Barry M.

    2015-01-01

    Purpose In this article, the authors describe and validate the performance of a modern acoustic analyzer specifically designed for infant cry analysis. Method Utilizing known algorithms, the authors developed a method to extract acoustic parameters describing infant cries from standard digital audio files. They used a frame rate of 25 ms with a frame advance of 12.5 ms. Cepstral-based acoustic analysis proceeded in 2 phases, computing frame-level data and then organizing and summarizing this information within cry utterances. Using signal detection methods, the authors evaluated the accuracy of the automated system to determine voicing and to detect fundamental frequency (F0) as compared to voiced segments and pitch periods manually coded from spectrogram displays. Results The system detected F0 with 88% to 95% accuracy, depending on tolerances set at 10 to 20 Hz. Receiver operating characteristic analyses demonstrated very high accuracy at detecting voicing characteristics in the cry samples. Conclusions This article describes an automated infant cry analyzer with high accuracy to detect important acoustic features of cry. A unique and important aspect of this work is the rigorous testing of the system’s accuracy as compared to ground-truth manual coding. The resulting system has implications for basic and applied research on infant cry development. PMID:23785178

  5. An Analysis of the Selected Materials Used in Step Measurements During Pre-Fits of Thermal Protection System Tiles and the Accuracy of Measurements Made Using These Selected Materials

    NASA Technical Reports Server (NTRS)

    Kranz, David William

    2010-01-01

    The goal of this research project was be to compare and contrast the selected materials used in step measurements during pre-fits of thermal protection system tiles and to compare and contrast the accuracy of measurements made using these selected materials. The reasoning for conducting this test was to obtain a clearer understanding to which of these materials may yield the highest accuracy rate of exacting measurements in comparison to the completed tile bond. These results in turn will be presented to United Space Alliance and Boeing North America for their own analysis and determination. Aerospace structures operate under extreme thermal environments. Hot external aerothermal environments in high Mach number flights lead to high structural temperatures. The differences between tile heights from one to another are very critical during these high Mach reentries. The Space Shuttle Thermal Protection System is a very delicate and highly calculated system. The thermal tiles on the ship are measured to within an accuracy of .001 of an inch. The accuracy of these tile measurements is critical to a successful reentry of an orbiter. This is why it is necessary to find the most accurate method for measuring the height of each tile in comparison to each of the other tiles. The test results indicated that there were indeed differences in the selected materials used in step measurements during prefits of Thermal Protection System Tiles and that Bees' Wax yielded a higher rate of accuracy when compared to the baseline test. In addition, testing for experience level in accuracy yielded no evidence of difference to be found. Lastly the use of the Trammel tool over the Shim Pack yielded variable difference for those tests.

  6. A Systematic Review and Meta-analysis of the Diagnostic Accuracy of Prostate Health Index and 4-Kallikrein Panel Score in Predicting Overall and High-grade Prostate Cancer.

    PubMed

    Russo, Giorgio Ivan; Regis, Federica; Castelli, Tommaso; Favilla, Vincenzo; Privitera, Salvatore; Giardina, Raimondo; Cimino, Sebastiano; Morgia, Giuseppe

    2017-08-01

    Markers for prostate cancer (PCa) have progressed over recent years. In particular, the prostate health index (PHI) and the 4-kallikrein (4K) panel have been demonstrated to improve the diagnosis of PCa. We aimed to review the diagnostic accuracy of PHI and the 4K panel for PCa detection. We performed a systematic literature search of PubMed, EMBASE, Cochrane, and Academic One File databases until July 2016. We included diagnostic accuracy studies that used PHI or 4K panel for the diagnosis of PCa or high-grade PCa. The methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Twenty-eight studies including 16,762 patients have been included for the analysis. The pooled data showed a sensitivity of 0.89 and 0.74 for PHI and 4K panel, respectively, for PCa detection and a pooled specificity of 0.34 and 0.60 for PHI and 4K panel, respectively. The derived area under the curve (AUC) from the hierarchical summary receiver operating characteristic (HSROC) showed an accuracy of 0.76 and 0.72 for PHI and 4K panel respectively. For high-grade PCa detection, the pooled sensitivity was 0.93 and 0.87 for PHI and 4K panel, respectively, whereas the pooled specificity was 0.34 and 0.61 for PHI and 4K panel, respectively. The derived AUC from the HSROC showed an accuracy of 0.82 and 0.81 for PHI and 4K panel, respectively. Both PHI and the 4K panel provided good diagnostic accuracy in detecting overall and high-grade PCa. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Optical registration of spaceborne low light remote sensing camera

    NASA Astrophysics Data System (ADS)

    Li, Chong-yang; Hao, Yan-hui; Xu, Peng-mei; Wang, Dong-jie; Ma, Li-na; Zhao, Ying-long

    2018-02-01

    For the high precision requirement of spaceborne low light remote sensing camera optical registration, optical registration of dual channel for CCD and EMCCD is achieved by the high magnification optical registration system. System integration optical registration and accuracy of optical registration scheme for spaceborne low light remote sensing camera with short focal depth and wide field of view is proposed in this paper. It also includes analysis of parallel misalignment of CCD and accuracy of optical registration. Actual registration results show that imaging clearly, MTF and accuracy of optical registration meet requirements, it provide important guarantee to get high quality image data in orbit.

  8. Fourier analysis for hydrostatic pressure sensing in a polarization-maintaining photonic crystal fiber.

    PubMed

    Childs, Paul; Wong, Allan C L; Fu, H Y; Liao, Yanbiao; Tam, Hwayaw; Lu, Chao; Wai, P K A

    2010-12-20

    We measured the hydrostatic pressure dependence of the birefringence and birefringent dispersion of a Sagnac interferometric sensor incorporating a length of highly birefringent photonic crystal fiber using Fourier analysis. Sensitivity of both the phase and chirp spectra to hydrostatic pressure is demonstrated. Using this analysis, phase-based measurements showed a good linearity with an effective sensitivity of 9.45 nm/MPa and an accuracy of ±7.8 kPa using wavelength-encoded data and an effective sensitivity of -55.7 cm(-1)/MPa and an accuracy of ±4.4 kPa using wavenumber-encoded data. Chirp-based measurements, though nonlinear in response, showed an improvement in accuracy at certain pressure ranges with an accuracy of ±5.5 kPa for the full range of measured pressures using wavelength-encoded data and dropping to within ±2.5 kPa in the range of 0.17 to 0.4 MPa using wavenumber-encoded data. Improvements of the accuracy demonstrated the usefulness of implementing chirp-based analysis for sensing purposes.

  9. Effect of radiance-to-reflectance transformation and atmosphere removal on maximum likelihood classification accuracy of high-dimensional remote sensing data

    NASA Technical Reports Server (NTRS)

    Hoffbeck, Joseph P.; Landgrebe, David A.

    1994-01-01

    Many analysis algorithms for high-dimensional remote sensing data require that the remotely sensed radiance spectra be transformed to approximate reflectance to allow comparison with a library of laboratory reflectance spectra. In maximum likelihood classification, however, the remotely sensed spectra are compared to training samples, thus a transformation to reflectance may or may not be helpful. The effect of several radiance-to-reflectance transformations on maximum likelihood classification accuracy is investigated in this paper. We show that the empirical line approach, LOWTRAN7, flat-field correction, single spectrum method, and internal average reflectance are all non-singular affine transformations, and that non-singular affine transformations have no effect on discriminant analysis feature extraction and maximum likelihood classification accuracy. (An affine transformation is a linear transformation with an optional offset.) Since the Atmosphere Removal Program (ATREM) and the log residue method are not affine transformations, experiments with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were conducted to determine the effect of these transformations on maximum likelihood classification accuracy. The average classification accuracy of the data transformed by ATREM and the log residue method was slightly less than the accuracy of the original radiance data. Since the radiance-to-reflectance transformations allow direct comparison of remotely sensed spectra with laboratory reflectance spectra, they can be quite useful in labeling the training samples required by maximum likelihood classification, but these transformations have only a slight effect or no effect at all on discriminant analysis and maximum likelihood classification accuracy.

  10. Preliminary navigation accuracy analysis for the TDRSS Onboard Navigation System (TONS) experiment on EP/EUVE

    NASA Technical Reports Server (NTRS)

    Gramling, C. J.; Long, A. C.; Lee, T.; Ottenstein, N. A.; Samii, M. V.

    1991-01-01

    A Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is currently being developed by NASA to provide a high accuracy autonomous navigation capability for users of TDRSS and its successor, the Advanced TDRSS (ATDRSS). The fully autonomous user onboard navigation system will support orbit determination, time determination, and frequency determination, based on observation of a continuously available, unscheduled navigation beacon signal. A TONS experiment will be performed in conjunction with the Explorer Platform (EP) Extreme Ultraviolet Explorer (EUVE) mission to flight quality TONS Block 1. An overview is presented of TONS and a preliminary analysis of the navigation accuracy anticipated for the TONS experiment. Descriptions of the TONS experiment and the associated navigation objectives, as well as a description of the onboard navigation algorithms, are provided. The accuracy of the selected algorithms is evaluated based on the processing of realistic simulated TDRSS one way forward link Doppler measurements. The analysis process is discussed and the associated navigation accuracy results are presented.

  11. Determining the accuracy of maximum likelihood parameter estimates with colored residuals

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Klein, Vladislav

    1994-01-01

    An important part of building high fidelity mathematical models based on measured data is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of the accuracy of parameter estimates, the estimates themselves have limited value. In this work, an expression based on theoretical analysis was developed to properly compute parameter accuracy measures for maximum likelihood estimates with colored residuals. This result is important because experience from the analysis of measured data reveals that the residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Simulated data runs were used to show that the parameter accuracy measures computed with this technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for analysis of the output residuals in the frequency domain or heuristically determined multiplication factors. The result is general, although the application studied here is maximum likelihood estimation of aerodynamic model parameters from flight test data.

  12. Instrument for evaluation of sedentary lifestyle in patients with high blood pressure.

    PubMed

    Lopes, Marcos Venícios de Oliveira; da Silva, Viviane Martins; de Araujo, Thelma Leite; Guedes, Nirla Gomes; Martins, Larissa Castelo Guedes; Teixeira, Iane Ximenes

    2015-01-01

    this article describes the diagnostic accuracy of the International Physical Activity Questionnaire to identify the nursing diagnosis of sedentary lifestyle. a diagnostic accuracy study was developed with 240 individuals with established high blood pressure. The analysis of diagnostic accuracy was based on measures of sensitivity, specificity, predictive values, likelihood ratios, efficiency, diagnostic odds ratio, Youden index, and area under the receiver-operating characteristic curve. statistical differences between genders were observed for activities of moderate intensity and for total physical activity. Age was negatively correlated with activities of moderate intensity and total physical activity. the analysis of area under the receiver-operating characteristic curve for moderate intensity activities, walking, and total physical activity showed that the International Physical Activity Questionnaire present moderate capacity to correctly classify individuals with and without sedentary lifestyle.

  13. Formal Solutions for Polarized Radiative Transfer. II. High-order Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janett, Gioele; Steiner, Oskar; Belluzzi, Luca, E-mail: gioele.janett@irsol.ch

    When integrating the radiative transfer equation for polarized light, the necessity of high-order numerical methods is well known. In fact, well-performing high-order formal solvers enable higher accuracy and the use of coarser spatial grids. Aiming to provide a clear comparison between formal solvers, this work presents different high-order numerical schemes and applies the systematic analysis proposed by Janett et al., emphasizing their advantages and drawbacks in terms of order of accuracy, stability, and computational cost.

  14. Derivation of an artificial gene to improve classification accuracy upon gene selection.

    PubMed

    Seo, Minseok; Oh, Sejong

    2012-02-01

    Classification analysis has been developed continuously since 1936. This research field has advanced as a result of development of classifiers such as KNN, ANN, and SVM, as well as through data preprocessing areas. Feature (gene) selection is required for very high dimensional data such as microarray before classification work. The goal of feature selection is to choose a subset of informative features that reduces processing time and provides higher classification accuracy. In this study, we devised a method of artificial gene making (AGM) for microarray data to improve classification accuracy. Our artificial gene was derived from a whole microarray dataset, and combined with a result of gene selection for classification analysis. We experimentally confirmed a clear improvement of classification accuracy after inserting artificial gene. Our artificial gene worked well for popular feature (gene) selection algorithms and classifiers. The proposed approach can be applied to any type of high dimensional dataset. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Cervical vertebral maturation as a biologic indicator of skeletal maturity.

    PubMed

    Santiago, Rodrigo César; de Miranda Costa, Luiz Felipe; Vitral, Robert Willer Farinazzo; Fraga, Marcelo Reis; Bolognese, Ana Maria; Maia, Lucianne Cople

    2012-11-01

    To identify and review the literature regarding the reliability of cervical vertebrae maturation (CVM) staging to predict the pubertal spurt. The selection criteria included cross-sectional and longitudinal descriptive studies in humans that evaluated qualitatively or quantitatively the accuracy and reproducibility of the CVM method on lateral cephalometric radiographs, as well as the correlation with a standard method established by hand-wrist radiographs. The searches retrieved 343 unique citations. Twenty-three studies met the inclusion criteria. Six articles had moderate to high scores, while 17 of 23 had low scores. Analysis also showed a moderate to high statistically significant correlation between CVM and hand-wrist maturation methods. There was a moderate to high reproducibility of the CVM method, and only one specific study investigated the accuracy of the CVM index in detecting peak pubertal growth. This systematic review has shown that the studies on CVM method for radiographic assessment of skeletal maturation stages suffer from serious methodological failures. Better-designed studies with adequate accuracy, reproducibility, and correlation analysis, including studies with appropriate sensitivity-specificity analysis, should be performed.

  16. Sex Estimation From Sternal Measurements Using Multidetector Computed Tomography

    PubMed Central

    Ekizoglu, Oguzhan; Hocaoglu, Elif; Inci, Ercan; Bilgili, Mustafa Gokhan; Solmaz, Dilek; Erdil, Irem; Can, Ismail Ozgur

    2014-01-01

    Abstract We aimed to show the utility and reliability of sternal morphometric analysis for sex estimation. Sex estimation is a very important step in forensic identification. Skeletal surveys are main methods for sex estimation studies. Morphometric analysis of sternum may provide high accuracy rated data in sex discrimination. In this study, morphometric analysis of sternum was evaluated in 1 mm chest computed tomography scans for sex estimation. Four hundred forty 3 subjects (202 female, 241 male, mean age: 44 ± 8.1 [distribution: 30–60 year old]) were included the study. Manubrium length (ML), mesosternum length (2L), Sternebra 1 (S1W), and Sternebra 3 (S3W) width were measured and also sternal index (SI) was calculated. Differences between genders were evaluated by student t-test. Predictive factors of sex were determined by discrimination analysis and receiver operating characteristic (ROC) analysis. Male sternal measurement values are significantly higher than females (P < 0.001) while SI is significantly low in males (P < 0.001). In discrimination analysis, MSL has high accuracy rate with 80.2% in females and 80.9% in males. MSL also has the best sensitivity (75.9%) and specificity (87.6%) values. Accuracy rates were above 80% in 3 stepwise discrimination analysis for both sexes. Stepwise 1 (ML, MSL, S1W, S3W) has the highest accuracy rate in stepwise discrimination analysis with 86.1% in females and 83.8% in males. Our study showed that morphometric computed tomography analysis of sternum might provide important information for sex estimation. PMID:25501090

  17. Processing of high-precision ceramic balls with a spiral V-groove plate

    NASA Astrophysics Data System (ADS)

    Feng, Ming; Wu, Yongbo; Yuan, Julong; Ping, Zhao

    2017-03-01

    As the demand for high-performance bearings gradually increases, ceramic balls with excellent properties, such as high accuracy, high reliability, and high chemical durability used, are extensively used for highperformance bearings. In this study, a spiral V-groove plate method is employed in processing high-precision ceramic balls. After the kinematic analysis of the ball-spin angle and enveloped lapping trajectories, an experimental rig is constructed and experiments are conducted to confirm the feasibility of this method. Kinematic analysis results indicate that the method not only allows for the control of the ball-spin angle but also uniformly distributes the enveloped lapping trajectories over the entire ball surface. Experimental results demonstrate that the novel spiral Vgroove plate method performs better than the conventional concentric V-groove plate method in terms of roundness, surface roughness, diameter difference, and diameter decrease rate. Ceramic balls with a G3-level accuracy are achieved, and their typical roundness, minimum surface roughness, and diameter difference are 0.05, 0.0045, and 0.105 μm, respectively. These findings confirm that the proposed method can be applied to high-accuracy and high-consistency ceramic ball processing.

  18. Accuracy and Feasibility of Video Analysis for Assessing Hamstring Flexibility and Validity of the Sit-and-Reach Test

    ERIC Educational Resources Information Center

    Mier, Constance M.

    2011-01-01

    The accuracy of video analysis of the passive straight-leg raise test (PSLR) and the validity of the sit-and-reach test (SR) were tested in 60 men and women. Computer software measured static hip-joint flexion accurately. High within-session reliability of the PSLR was demonstrated (R greater than 0.97). Test-retest (separate days) reliability for…

  19. Real-Time Optical Biopsy of Colon Polyps With Narrow Band Imaging in Community Practice Does Not Yet Meet Key Thresholds for Clinical Decisions

    PubMed Central

    LADABAUM, URI; FIORITTO, ANN; MITANI, AYA; DESAI, MANISHA; KIM, JANE P.; REX, DOUGLAS K.; IMPERIALE, THOMAS; GUNARATNAM, NARESH

    2017-01-01

    BACKGROUND & AIMS Accurate optical analysis of colorectal polyps (optical biopsy) could prevent unnecessary polypectomies or allow a “resect and discard” strategy with surveillance intervals determined based on the results of the optical biopsy; this could be less expensive than histopathologic analysis of polyps. We prospectively evaluated real-time optical biopsy analysis of polyps with narrow band imaging (NBI) by community-based gastroenterologists. METHODS We first analyzed a computerized module to train gastroenterologists (N = 13) in optical biopsy skills using photographs of polyps. Then we evaluated a practice-based learning program for these gastroenterologists (n = 12) that included real-time optical analysis of polyps in vivo, comparison of optical biopsy predictions to histopathologic analysis, and ongoing feedback on performance. RESULTS Twelve of 13 subjects identified adenomas with >90% accuracy at the end of the computer study, and 3 of 12 subjects did so with accuracy ≥90% in the in vivo study. Learning curves showed considerable variation among batches of polyps. For diminutive rectosigmoid polyps assessed with high confidence at the end of the study, adenomas were identified with mean (95% confidence interval [CI]) accuracy, sensitivity, specificity, and negative predictive values of 81% (73%–89%), 85% (74%–96%), 78% (66%–92%), and 91% (86%–97%), respectively. The adjusted odds ratio for high confidence as a predictor of accuracy was 1.8 (95% CI, 1.3–2.5). The agreement between surveillance recommendations informed by high-confidence NBI analysis of diminutive polyps and results from histopathologic analysis of all polyps was 80% (95% CI, 77%–82%). CONCLUSIONS In an evaluation of real-time optical biopsy analysis of polyps with NBI, only 25% of gastroenterologists assessed polyps with ≥90% accuracy. The negative predictive value for identification of adenomas, but not the surveillance interval agreement, met the American Society for Gastrointestinal Endoscopy–recommended thresholds for optical biopsy. Better results in community practice must be achieved before NBI-based optical biopsy methods can be used routinely to evaluate polyps; ClinicalTrials.gov number, NCT01638091. PMID:23041328

  20. Accuracy analysis for triangulation and tracking based on time-multiplexed structured light.

    PubMed

    Wagner, Benjamin; Stüber, Patrick; Wissel, Tobias; Bruder, Ralf; Schweikard, Achim; Ernst, Floris

    2014-08-01

    The authors' research group is currently developing a new optical head tracking system for intracranial radiosurgery. This tracking system utilizes infrared laser light to measure features of the soft tissue on the patient's forehead. These features are intended to offer highly accurate registration with respect to the rigid skull structure by means of compensating for the soft tissue. In this context, the system also has to be able to quickly generate accurate reconstructions of the skin surface. For this purpose, the authors have developed a laser scanning device which uses time-multiplexed structured light to triangulate surface points. The accuracy of the authors' laser scanning device is analyzed and compared for different triangulation methods. These methods are given by the Linear-Eigen method and a nonlinear least squares method. Since Microsoft's Kinect camera represents an alternative for fast surface reconstruction, the authors' results are also compared to the triangulation accuracy of the Kinect device. Moreover, the authors' laser scanning device was used for tracking of a rigid object to determine how this process is influenced by the remaining triangulation errors. For this experiment, the scanning device was mounted to the end-effector of a robot to be able to calculate a ground truth for the tracking. The analysis of the triangulation accuracy of the authors' laser scanning device revealed a root mean square (RMS) error of 0.16 mm. In comparison, the analysis of the triangulation accuracy of the Kinect device revealed a RMS error of 0.89 mm. It turned out that the remaining triangulation errors only cause small inaccuracies for the tracking of a rigid object. Here, the tracking accuracy was given by a RMS translational error of 0.33 mm and a RMS rotational error of 0.12°. This paper shows that time-multiplexed structured light can be used to generate highly accurate reconstructions of surfaces. Furthermore, the reconstructed point sets can be used for high-accuracy tracking of objects, meeting the strict requirements of intracranial radiosurgery.

  1. High Accuracy Liquid Propellant Slosh Predictions Using an Integrated CFD and Controls Analysis Interface

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  2. Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  3. SeaWiFS technical report series. Volume 11: Analysis of selected orbit propagation models for the SeaWiFS mission

    NASA Technical Reports Server (NTRS)

    Patt, Frederick S.; Hoisington, Charles M.; Gregg, Watson W.; Coronado, Patrick L.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Indest, A. W. (Editor)

    1993-01-01

    An analysis of orbit propagation models was performed by the Mission Operations element of the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) Project, which has overall responsibility for the instrument scheduling. The orbit propagators selected for this analysis are widely available general perturbations models. The analysis includes both absolute accuracy determination and comparisons of different versions of the models. The results show that all of the models tested meet accuracy requirements for scheduling and data acquisition purposes. For internal Project use the SGP4 propagator, developed by the North American Air Defense (NORAD) Command, has been selected. This model includes atmospheric drag effects and, therefore, provides better accuracy. For High Resolution Picture Transmission (HRPT) ground stations, which have less stringent accuracy requirements, the publicly available Brouwer-Lyddane models are recommended. The SeaWiFS Project will make available portable source code for a version of this model developed by the Data Capture Facility (DCF).

  4. Classification of urban features using airborne hyperspectral data

    NASA Astrophysics Data System (ADS)

    Ganesh Babu, Bharath

    Accurate mapping and modeling of urban environments are critical for their efficient and successful management. Superior understanding of complex urban environments is made possible by using modern geospatial technologies. This research focuses on thematic classification of urban land use and land cover (LULC) using 248 bands of 2.0 meter resolution hyperspectral data acquired from an airborne imaging spectrometer (AISA+) on 24th July 2006 in and near Terre Haute, Indiana. Three distinct study areas including two commercial classes, two residential classes, and two urban parks/recreational classes were selected for classification and analysis. Four commonly used classification methods -- maximum likelihood (ML), extraction and classification of homogeneous objects (ECHO), spectral angle mapper (SAM), and iterative self organizing data analysis (ISODATA) - were applied to each data set. Accuracy assessment was conducted and overall accuracies were compared between the twenty four resulting thematic maps. With the exception of SAM and ISODATA in a complex commercial area, all methods employed classified the designated urban features with more than 80% accuracy. The thematic classification from ECHO showed the best agreement with ground reference samples. The residential area with relatively homogeneous composition was classified consistently with highest accuracy by all four of the classification methods used. The average accuracy amongst the classifiers was 93.60% for this area. When individually observed, the complex recreational area (Deming Park) was classified with the highest accuracy by ECHO, with an accuracy of 96.80% and 96.10% Kappa. The average accuracy amongst all the classifiers was 92.07%. The commercial area with relatively high complexity was classified with the least accuracy by all classifiers. The lowest accuracy was achieved by SAM at 63.90% with 59.20% Kappa. This was also the lowest accuracy in the entire analysis. This study demonstrates the potential for using the visible and near infrared (VNIR) bands from AISA+ hyperspectral data in urban LULC classification. Based on their performance, the need for further research using ECHO and SAM is underscored. The importance incorporating imaging spectrometer data in high resolution urban feature mapping is emphasized.

  5. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests

    PubMed Central

    2011-01-01

    Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed overall classification accuracy above a median value of 0.63, but for most sensitivity was around or even lower than a median value of 0.5. Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing. PMID:21849043

  6. Using pan-sharpened high resolution satellite data to improve impervious surfaces estimation

    NASA Astrophysics Data System (ADS)

    Xu, Ru; Zhang, Hongsheng; Wang, Ting; Lin, Hui

    2017-05-01

    Impervious surface is an important environmental and socio-economic indicator for numerous urban studies. While a large number of researches have been conducted to estimate the area and distribution of impervious surface from satellite data, the accuracy for impervious surface estimation (ISE) is insufficient due to high diversity of urban land cover types. This study evaluated the use of panchromatic (PAN) data in very high resolution satellite image for improving the accuracy of ISE by various pan-sharpening approaches, with a further comprehensive analysis of its scale effects. Three benchmark pan-sharpening approaches, Gram-Schmidt (GS), PANSHARP and principal component analysis (PCA) were applied to WorldView-2 in three spots of Hong Kong. The on-screen digitization were carried out based on Google Map and the results were viewed as referenced impervious surfaces. The referenced impervious surfaces and the ISE results were then re-scaled to various spatial resolutions to obtain the percentage of impervious surfaces. The correlation coefficient (CC) and root mean square error (RMSE) were adopted as the quantitative indicator to assess the accuracy. The accuracy differences between three research areas were further illustrated by the average local variance (ALV) which was used for landscape pattern analysis. The experimental results suggested that 1) three research regions have various landscape patterns; 2) ISE accuracy extracted from pan-sharpened data was better than ISE from original multispectral (MS) data; and 3) this improvement has a noticeable scale effects with various resolutions. The improvement was reduced slightly as the resolution became coarser.

  7. Accuracy Analysis of a Dam Model from Drone Surveys

    PubMed Central

    Buffi, Giulia; Venturi, Sara

    2017-01-01

    This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs) used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D) model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations. PMID:28771185

  8. Accuracy Analysis of a Dam Model from Drone Surveys.

    PubMed

    Ridolfi, Elena; Buffi, Giulia; Venturi, Sara; Manciola, Piergiorgio

    2017-08-03

    This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs) used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D) model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations.

  9. Diagnostic accuracy of ultrasonography, MRI and MR arthrography in the characterisation of rotator cuff disorders: a systematic review and meta-analysis

    PubMed Central

    Roy, Jean-Sébastien; Braën, Caroline; Leblond, Jean; Desmeules, François; Dionne, Clermont E; MacDermid, Joy C; Bureau, Nathalie J; Frémont, Pierre

    2015-01-01

    Background Different diagnostic imaging modalities, such as ultrasonography (US), MRI, MR arthrography (MRA) are commonly used for the characterisation of rotator cuff (RC) disorders. Since the most recent systematic reviews on medical imaging, multiple diagnostic studies have been published, most using more advanced technological characteristics. The first objective was to perform a meta-analysis on the diagnostic accuracy of medical imaging for characterisation of RC disorders. Since US is used at the point of care in environments such as sports medicine, a secondary analysis assessed accuracy by radiologists and non-radiologists. Methods A systematic search in three databases was conducted. Two raters performed data extraction and evaluation of risk of bias independently, and agreement was achieved by consensus. Hierarchical summary receiver-operating characteristic package was used to calculate pooled estimates of included diagnostic studies. Results Diagnostic accuracy of US, MRI and MRA in the characterisation of full-thickness RC tears was high with overall estimates of sensitivity and specificity over 0.90. As for partial RC tears and tendinopathy, overall estimates of specificity were also high (>0.90), while sensitivity was lower (0.67–0.83). Diagnostic accuracy of US was similar whether a trained radiologist, sonographer or orthopaedist performed it. Conclusions Our results show the diagnostic accuracy of US, MRI and MRA in the characterisation of full-thickness RC tears. Since full thickness tear constitutes a key consideration for surgical repair, this is an important characteristic when selecting an imaging modality for RC disorder. When considering accuracy, cost, and safety, US is the best option. PMID:25677796

  10. Topography-based analysis of Hurricane Katrina inundation of New Orleans: Chapter 3G in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Gesch, Dean

    2007-01-01

    The ready availability of high-resolution, high-accuracy elevation data proved valuable for development of topographybased products to determine rough estimates of the inundation of New Orleans, La., from Hurricane Katrina. Because of its high level of spatial detail and vertical accuracy of elevation measurements, light detection and ranging (lidar) remote sensing is an excellent mapping technology for use in low-relief hurricane-prone coastal areas.

  11. Grazing Incidence Optics for X-rays Interferometry

    NASA Technical Reports Server (NTRS)

    Shipley, Ann; Zissa, David; Cash, Webster; Joy, Marshall

    1999-01-01

    Grazing incidence mirror parameters and constraints for x-ray interferometry are described. We present interferometer system tolerances and ray trace results used to define mirror surface accuracy requirements. Mirror material, surface figure, roughness, and geometry are evaluated based on analysis results. We also discuss mirror mount design constraints, finite element analysis, environmental issues, and solutions. Challenges associated with quantifying high accuracy mirror surface quality are addressed and test results are compared with theoretical predictions.

  12. An analysis of the adaptability of Loran-C to air navigation

    NASA Technical Reports Server (NTRS)

    Littlefield, J. A.

    1981-01-01

    The sources of position errors characteristics of the Loran-C navigation system were identified. Particular emphasis was given to their point on entry as well as their elimination. It is shown that the ratio of realized accuracy to theoretical accuracy of the Loran-C is highly receiver dependent.

  13. Accuracy analysis and design of A3 parallel spindle head

    NASA Astrophysics Data System (ADS)

    Ni, Yanbing; Zhang, Biao; Sun, Yupeng; Zhang, Yuan

    2016-03-01

    As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.

  14. An accuracy measurement method for star trackers based on direct astronomic observation

    PubMed Central

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-01-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers. PMID:26948412

  15. An accuracy measurement method for star trackers based on direct astronomic observation.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-03-07

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers.

  16. Diagnostic accuracy of refractometer and Brix refractometer to assess failure of passive transfer in calves: protocol for a systematic review and meta-analysis.

    PubMed

    Buczinski, S; Fecteau, G; Chigerwe, M; Vandeweerd, J M

    2016-06-01

    Calves are highly dependent of colostrum (and antibody) intake because they are born agammaglobulinemic. The transfer of passive immunity in calves can be assessed directly by dosing immunoglobulin G (IgG) or by refractometry or Brix refractometry. The latter are easier to perform routinely in the field. This paper presents a protocol for a systematic review meta-analysis to assess the diagnostic accuracy of refractometry or Brix refractometry versus dosage of IgG as a reference standard test. With this review protocol we aim to be able to report refractometer and Brix refractometer accuracy in terms of sensitivity and specificity as well as to quantify the impact of any study characteristic on test accuracy.

  17. Highly efficient, very low-thrust transfer to geosynchronous orbit - Exact and approximate solutions

    NASA Astrophysics Data System (ADS)

    Redding, D. C.

    1984-04-01

    An overview is provided of the preflight, postflight, and accuracy analysis of the Titan IIIC launch vehicle that injects payloads into geosynchronous orbits. The postflight trajectory reconstruction plays an important role in determining payload injection accuracy. Furthermore, the postflight analysis provides useful information about the characteristics of measuring instruments subjected to a flight environment. Suitable approaches for meeting mission specifications, trajectory requirements, and instrument constraints are considered, taking into account the importance of preflight trajectory analysis activities. Gimbal flip avoidance algorithms in the flight software, and considerable beta gimbal analysis ensures a singularity-free trajectory.

  18. A low-cost sensor for high density urban CO2 monitoring

    NASA Astrophysics Data System (ADS)

    Zeng, N.; Martin, C.

    2015-12-01

    The high spatial-termporal variability of greenhouse gases and other pollution sources in an urban environment can not be easily resolved with current high-accuracy but expensive instruments. We have tested a small, low-cost NDIR CO2 sensor designed for potential use. It has a manufacturer's specified accuracy of +- 30 parts per million (ppm). However, initial results running parallel with a research-grade greenhouse gas analyzer have shown that the absolute accuracy of the sensor is within +-5ppm, suggesting their utility for sensing ambient air variations in carbon dioxide. Through a multivariate analysis, we have determined a correction procedure that when accounting for environmental temperature, humidity, air pressure, and the device's span and offset, we can further increase the accuracy of the collected data. We will show results from rooftop measurements over a period of one year and CO2 tracking data in the Washington-Baltimore Metropolitan area.

  19. High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields

    NASA Astrophysics Data System (ADS)

    He, Yang; Sun, Yajuan; Zhang, Ruili; Wang, Yulei; Liu, Jian; Qin, Hong

    2016-09-01

    We construct high order symmetric volume-preserving methods for the relativistic dynamics of a charged particle by the splitting technique with processing. By expanding the phase space to include the time t, we give a more general construction of volume-preserving methods that can be applied to systems with time-dependent electromagnetic fields. The newly derived methods provide numerical solutions with good accuracy and conservative properties over long time of simulation. Furthermore, because of the use of an accuracy-enhancing processing technique, the explicit methods obtain high-order accuracy and are more efficient than the methods derived from standard compositions. The results are verified by the numerical experiments. Linear stability analysis of the methods shows that the high order processed method allows larger time step size in numerical integrations.

  20. Analysis of polonium-210 in food products and bioassay samples by isotope-dilution alpha spectrometry.

    PubMed

    Lin, Zhichao; Wu, Zhongyu

    2009-05-01

    A rapid and reliable radiochemical method coupled with a simple and compact plating apparatus was developed, validated, and applied for the analysis of (210)Po in variety of food products and bioassay samples. The method performance characteristics, including accuracy, precision, robustness, and specificity, were evaluated along with a detailed measurement uncertainty analysis. With high Po recovery, improved energy resolution, and effective removal of interfering elements by chromatographic extraction, the overall method accuracy was determined to be better than 5% with measurement precision of 10%, at 95% confidence level.

  1. Ranging performance of satellite laser altimeters

    NASA Technical Reports Server (NTRS)

    Gardner, Chester S.

    1992-01-01

    Topographic mapping of the earth, moon and planets can be accomplished with high resolution and accuracy using satellite laser altimeters. These systems employ nanosecond laser pulses and microradian beam divergences to achieve submeter vertical range resolution from orbital altitudes of several hundred kilometers. Here, we develop detailed expressions for the range and pulse width measurement accuracies and use the results to evaluate the ranging performances of several satellite laser altimeters currently under development by NASA for launch during the next decade. Our analysis includes the effects of the target surface characteristics, spacecraft pointing jitter and waveform digitizer characteristics. The results show that ranging accuracy is critically dependent on the pointing accuracy and stability of the altimeter especially over high relief terrain where surface slopes are large. At typical orbital altitudes of several hundred kilometers, single-shot accuracies of a few centimeters can be achieved only when the pointing jitter is on the order of 10 mu rad or less.

  2. Evaluation of the Aurora Application Shade Measurement Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-12-01

    Aurora is an integrated, Web-based application that helps solar installers perform sales, engineering design, and financial analysis. One of Aurora's key features is its high-resolution remote shading analysis.

  3. Technics study on high accuracy crush dressing and sharpening of diamond grinding wheel

    NASA Astrophysics Data System (ADS)

    Jia, Yunhai; Lu, Xuejun; Li, Jiangang; Zhu, Lixin; Song, Yingjie

    2011-05-01

    Mechanical grinding of artificial diamond grinding wheel was traditional wheel dressing process. The rotate speed and infeed depth of tool wheel were main technics parameters. The suitable technics parameters of metals-bonded diamond grinding wheel and resin-bonded diamond grinding wheel high accuracy crush dressing were obtained by a mount of experiment in super-hard material wheel dressing grind machine and by analysis of grinding force. In the same time, the effect of machine sharpening and sprinkle granule sharpening was contrasted. These analyses and lots of experiments had extent instruction significance to artificial diamond grinding wheel accuracy crush dressing.

  4. Number-Density Measurements of CO2 in Real Time with an Optical Frequency Comb for High Accuracy and Precision

    NASA Astrophysics Data System (ADS)

    Scholten, Sarah K.; Perrella, Christopher; Anstie, James D.; White, Richard T.; Al-Ashwal, Waddah; Hébert, Nicolas Bourbeau; Genest, Jérôme; Luiten, Andre N.

    2018-05-01

    Real-time and accurate measurements of gas properties are highly desirable for numerous real-world applications. Here, we use an optical-frequency comb to demonstrate absolute number-density and temperature measurements of a sample gas with state-of-the-art precision and accuracy. The technique is demonstrated by measuring the number density of 12C16O2 with an accuracy of better than 1% and a precision of 0.04% in a measurement and analysis cycle of less than 1 s. This technique is transferable to numerous molecular species, thus offering an avenue for near-universal gas concentration measurements.

  5. Comparative effectiveness of i-SCAN™ and high-definition white light characterizing small colonic polyps.

    PubMed

    Chan, Johanna L; Lin, Li; Feiler, Michael; Wolf, Andrew I; Cardona, Diana M; Gellad, Ziad F

    2012-11-07

    To evaluate accuracy of in vivo diagnosis of adenomatous vs non-adenomatous polyps using i-SCAN digital chromoendoscopy compared with high-definition white light. This is a single-center comparative effectiveness pilot study. Polyps (n = 103) from 75 average-risk adult outpatients undergoing screening or surveillance colonoscopy between December 1, 2010 and April 1, 2011 were evaluated by two participating endoscopists in an academic outpatient endoscopy center. Polyps were evaluated both with high-definition white light and with i-SCAN to make an in vivo prediction of adenomatous vs non-adenomatous pathology. We determined diagnostic characteristics of i-SCAN and high-definition white light, including sensitivity, specificity, and accuracy, with regards to identifying adenomatous vs non-adenomatous polyps. Histopathologic diagnosis was the gold standard comparison. One hundred and three small polyps, detected from forty-three patients, were included in the analysis. The average size of the polyps evaluated in the analysis was 3.7 mm (SD 1.3 mm, range 2 mm to 8 mm). Formal histopathology revealed that 54/103 (52.4%) were adenomas, 26/103 (25.2%) were hyperplastic, and 23/103 (22.3%) were other diagnoses include "lymphoid aggregates", "non-specific colitis," and "no pathologic diagnosis." Overall, the combined accuracy of endoscopists for predicting adenomas was identical between i-SCAN (71.8%, 95%CI: 62.1%-80.3%) and high-definition white light (71.8%, 95%CI: 62.1%-80.3%). However, the accuracy of each endoscopist differed substantially, where endoscopist A demonstrated 63.0% overall accuracy (95%CI: 50.9%-74.0%) as compared with endoscopist B demonstrating 93.3% overall accuracy (95%CI: 77.9%-99.2%), irrespective of imaging modality. Neither endoscopist demonstrated a significant learning effect with i-SCAN during the study. Though endoscopist A increased accuracy using i-SCAN from 59% (95%CI: 42.1%-74.4%) in the first half to 67.6% (95%CI: 49.5%-82.6%) in the second half, and endoscopist B decreased accuracy using i-SCAN from 100% (95%CI: 80.5%-100.0%) in the first half to 84.6% (95%CI: 54.6%-98.1%) in the second half, neither of these differences were statistically significant. i-SCAN and high-definition white light had similar efficacy predicting polyp histology. Endoscopist training likely plays a critical role in diagnostic test characteristics and deserves further study.

  6. Accuracy and reliability of observational gait analysis data: judgments of push-off in gait after stroke.

    PubMed

    McGinley, Jennifer L; Goldie, Patricia A; Greenwood, Kenneth M; Olney, Sandra J

    2003-02-01

    Physical therapists routinely observe gait in clinical practice. The purpose of this study was to determine the accuracy and reliability of observational assessments of push-off in gait after stroke. Eighteen physical therapists and 11 subjects with hemiplegia following a stroke participated in the study. Measurements of ankle power generation were obtained from subjects following stroke using a gait analysis system. Concurrent videotaped gait performances were observed by the physical therapists on 2 occasions. Ankle power generation at push-off was scored as either normal or abnormal using two 11-point rating scales. These observational ratings were correlated with the measurements of peak ankle power generation. A high correlation was obtained between the observational ratings and the measurements of ankle power generation (mean Pearson r=.84). Interobserver reliability was moderately high (mean intraclass correlation coefficient [ICC (2,1)]=.76). Intraobserver reliability also was high, with a mean ICC (2,1) of.89 obtained. Physical therapists were able to make accurate and reliable judgments of push-off in videotaped gait of subjects following stroke using observational assessment. Further research is indicated to explore the accuracy and reliability of data obtained with observational gait analysis as it occurs in clinical practice.

  7. Spatial variability in sensitivity of reference crop ET to accuracy of climate data in the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    A detailed sensitivity analysis was conducted to determine the relative effects of measurement errors in climate data input parameters on the accuracy of calculated reference crop evapotranspiration (ET) using the ASCE-EWRI Standardized Reference ET Equation. Data for the period of 1995 to 2008, fro...

  8. Determining elemental composition of phytochemicals in camelina seed meal by high mass accuracy and spectral accuracy

    USDA-ARS?s Scientific Manuscript database

    An optimized single run evaluation that would accurately determine the elemental composition of as many compounds present in an extract would greatly aid in the evaluation of plant tissues. For phytochemicals, we have used accurate mass analysis to quickly characterize the potential chemical formula...

  9. Combining geostatistics with Moran's I analysis for mapping soil heavy metals in Beijing, China.

    PubMed

    Huo, Xiao-Ni; Li, Hong; Sun, Dan-Feng; Zhou, Lian-Di; Li, Bao-Guo

    2012-03-01

    Production of high quality interpolation maps of heavy metals is important for risk assessment of environmental pollution. In this paper, the spatial correlation characteristics information obtained from Moran's I analysis was used to supplement the traditional geostatistics. According to Moran's I analysis, four characteristics distances were obtained and used as the active lag distance to calculate the semivariance. Validation of the optimality of semivariance demonstrated that using the two distances where the Moran's I and the standardized Moran's I, Z(I) reached a maximum as the active lag distance can improve the fitting accuracy of semivariance. Then, spatial interpolation was produced based on the two distances and their nested model. The comparative analysis of estimation accuracy and the measured and predicted pollution status showed that the method combining geostatistics with Moran's I analysis was better than traditional geostatistics. Thus, Moran's I analysis is a useful complement for geostatistics to improve the spatial interpolation accuracy of heavy metals.

  10. Combining Geostatistics with Moran’s I Analysis for Mapping Soil Heavy Metals in Beijing, China

    PubMed Central

    Huo, Xiao-Ni; Li, Hong; Sun, Dan-Feng; Zhou, Lian-Di; Li, Bao-Guo

    2012-01-01

    Production of high quality interpolation maps of heavy metals is important for risk assessment of environmental pollution. In this paper, the spatial correlation characteristics information obtained from Moran’s I analysis was used to supplement the traditional geostatistics. According to Moran’s I analysis, four characteristics distances were obtained and used as the active lag distance to calculate the semivariance. Validation of the optimality of semivariance demonstrated that using the two distances where the Moran’s I and the standardized Moran’s I, Z(I) reached a maximum as the active lag distance can improve the fitting accuracy of semivariance. Then, spatial interpolation was produced based on the two distances and their nested model. The comparative analysis of estimation accuracy and the measured and predicted pollution status showed that the method combining geostatistics with Moran’s I analysis was better than traditional geostatistics. Thus, Moran’s I analysis is a useful complement for geostatistics to improve the spatial interpolation accuracy of heavy metals. PMID:22690179

  11. Design and Error Analysis of a Vehicular AR System with Auto-Harmonization.

    PubMed

    Foxlin, Eric; Calloway, Thomas; Zhang, Hongsheng

    2015-12-01

    This paper describes the design, development and testing of an AR system that was developed for aerospace and ground vehicles to meet stringent accuracy and robustness requirements. The system uses an optical see-through HMD, and thus requires extremely low latency, high tracking accuracy and precision alignment and calibration of all subsystems in order to avoid mis-registration and "swim". The paper focuses on the optical/inertial hybrid tracking system and describes novel solutions to the challenges with the optics, algorithms, synchronization, and alignment with the vehicle and HMD systems. Tracker accuracy is presented with simulation results to predict the registration accuracy. A car test is used to create a through-the-eyepiece video demonstrating well-registered augmentations of the road and nearby structures while driving. Finally, a detailed covariance analysis of AR registration error is derived.

  12. Robust object tracking techniques for vision-based 3D motion analysis applications

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  13. Instantaneous Real-Time Kinematic Decimeter-Level Positioning with BeiDou Triple-Frequency Signals over Medium Baselines.

    PubMed

    He, Xiyang; Zhang, Xiaohong; Tang, Long; Liu, Wanke

    2015-12-22

    Many applications, such as marine navigation, land vehicles location, etc., require real time precise positioning under medium or long baseline conditions. In this contribution, we develop a model of real-time kinematic decimeter-level positioning with BeiDou Navigation Satellite System (BDS) triple-frequency signals over medium distances. The ambiguities of two extra-wide-lane (EWL) combinations are fixed first, and then a wide lane (WL) combination is reformed based on the two EWL combinations for positioning. Theoretical analysis and empirical analysis is given of the ambiguity fixing rate and the positioning accuracy of the presented method. The results indicate that the ambiguity fixing rate can be up to more than 98% when using BDS medium baseline observations, which is much higher than that of dual-frequency Hatch-Melbourne-Wübbena (HMW) method. As for positioning accuracy, decimeter level accuracy can be achieved with this method, which is comparable to that of carrier-smoothed code differential positioning method. Signal interruption simulation experiment indicates that the proposed method can realize fast high-precision positioning whereas the carrier-smoothed code differential positioning method needs several hundreds of seconds for obtaining high precision results. We can conclude that a relatively high accuracy and high fixing rate can be achieved for triple-frequency WL method with single-epoch observations, displaying significant advantage comparing to traditional carrier-smoothed code differential positioning method.

  14. An analytical model with flexible accuracy for deep submicron DCVSL cells

    NASA Astrophysics Data System (ADS)

    Valiollahi, Sepideh; Ardeshir, Gholamreza

    2018-07-01

    Differential cascoded voltage switch logic (DCVSL) cells are among the best candidates of circuit designers for a wide range of applications due to advantages such as low input capacitance, high switching speed, small area and noise-immunity; nevertheless, a proper model has not yet been developed to analyse them. This paper analyses deep submicron DCVSL cells based on a flexible accuracy-simplicity trade-off including the following key features: (1) the model is capable of producing closed-form expressions with an acceptable accuracy; (2) model equations can be solved numerically to offer higher accuracy; (3) the short-circuit currents occurring in high-low/low-high transitions are accounted in analysis and (4) the changes in the operating modes of transistors during transitions together with an efficient submicron I-V model, which incorporates the most important non-ideal short-channel effects, are considered. The accuracy of the proposed model is validated in IBM 0.13 µm CMOS technology through comparisons with the accurate physically based BSIM3 model. The maximum error caused by analytical solutions is below 10%, while this amount is below 7% for numerical solutions.

  15. Research on aspheric focusing lens processing and testing technology in the high-energy laser test system

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Fu, Xiu-hua; Jia, Zong-he; Wang, Zhe; Dong, Huan

    2014-08-01

    In the high-energy laser test system, surface profile and finish of the optical element are put forward higher request. Taking a focusing aspherical zerodur lens with a diameter of 100mm as example, using CNC and classical machining method of combining surface profile and surface quality of the lens were investigated. Taking profilometer and high power microscope measurement results as a guide, by testing and simulation analysis, process parameters were improved constantly in the process of manufacturing. Mid and high frequency error were trimmed and improved so that the surface form gradually converged to the required accuracy. The experimental results show that the final accuracy of the surface is less than 0.5μm and the surface finish is □, which fulfils the accuracy requirement of aspherical focusing lens in optical system.

  16. Tense Marking in the English Narrative Retells of Dual Language Preschoolers.

    PubMed

    Gusewski, Svenja; Rojas, Raúl

    2017-07-26

    This longitudinal study investigated the emergence of English tense marking in young (Spanish-English) dual language learners (DLLs) over 4 consecutive academic semesters, addressing the need for longitudinal data on typical acquisition trajectories of English in DLL preschoolers. Language sample analysis was conducted on 139 English narrative retells elicited from 39 preschool-age (Spanish-English) DLLs (range = 39-65 months). Growth curve models captured within- and between-individual change in tense-marking accuracy over time. Tense-marking accuracy was indexed by the finite verb morphology composite and by 2 specifically developed adaptations. Individual tense markers were systematically described in terms of overall accuracy and specific error patterns. Tense-marking accuracy exhibited significant growth over time for each composite. Initially, irregular past-tense accuracy was higher than regular past-tense accuracy; over time, however, regular past-tense marking outpaced accuracy on irregular verbs. These findings suggest that young DLLs can achieve high tense-marking accuracy assuming 2 years of immersive exposure to English. Monitoring the growth in tense-marking accuracy over time and considering productive tense-marking errors as partially correct more precisely captured the emergence of English tense marking in this population with highly variable expressive language skills. https://doi.org/10.23641/asha.5176942.

  17. The urine dipstick test useful to rule out infections. A meta-analysis of the accuracy

    PubMed Central

    Devillé, Walter LJM; Yzermans, Joris C; van Duijn, Nico P; Bezemer, P Dick; van der Windt, Daniëlle AWM; Bouter, Lex M

    2004-01-01

    Background Many studies have evaluated the accuracy of dipstick tests as rapid detectors of bacteriuria and urinary tract infections (UTI). The lack of an adequate explanation for the heterogeneity of the dipstick accuracy stimulates an ongoing debate. The objective of the present meta-analysis was to summarise the available evidence on the diagnostic accuracy of the urine dipstick test, taking into account various pre-defined potential sources of heterogeneity. Methods Literature from 1990 through 1999 was searched in Medline and Embase, and by reference tracking. Selected publications should be concerned with the diagnosis of bacteriuria or urinary tract infections, investigate the use of dipstick tests for nitrites and/or leukocyte esterase, and present empirical data. A checklist was used to assess methodological quality. Results 70 publications were included. Accuracy of nitrites was high in pregnant women (Diagnostic Odds Ratio = 165) and elderly people (DOR = 108). Positive predictive values were ≥80% in elderly and in family medicine. Accuracy of leukocyte-esterase was high in studies in urology patients (DOR = 276). Sensitivities were highest in family medicine (86%). Negative predictive values were high in both tests in all patient groups and settings, except for in family medicine. The combination of both test results showed an important increase in sensitivity. Accuracy was high in studies in urology patients (DOR = 52), in children (DOR = 46), and if clinical information was present (DOR = 28). Sensitivity was highest in studies carried out in family medicine (90%). Predictive values of combinations of positive test results were low in all other situations. Conclusions Overall, this review demonstrates that the urine dipstick test alone seems to be useful in all populations to exclude the presence of infection if the results of both nitrites and leukocyte-esterase are negative. Sensitivities of the combination of both tests vary between 68 and 88% in different patient groups, but positive test results have to be confirmed. Although the combination of positive test results is very sensitive in family practice, the usefulness of the dipstick test alone to rule in infection remains doubtful, even with high pre-test probabilities. PMID:15175113

  18. Systematic review and meta-analysis of the accuracy of MRI and endorectal ultrasound in the restaging and response assessment of rectal cancer following neoadjuvant therapy.

    PubMed

    Memon, S; Lynch, A C; Bressel, M; Wise, A G; Heriot, A G

    2015-09-01

    Restaging imaging by MRI or endorectal ultrasound (ERUS) following neoadjuvant chemoradiotherapy is not routinely performed, but the assessment of response is becoming increasingly important to facilitate individualization of management. A search of the MEDLINE and Scopus databases was performed for studies that evaluated the accuracy of restaging of rectal cancer following neoadjuvant chemoradiotherapy with MRI or ERUS against the histopathological outcome. A systematic review of selected studies was performed. The methodological quality of studies that qualified for meta-analysis was critically assessed to identify studies suitable for inclusion in the meta-analysis. Sixty-three articles were included in the systematic review. Twelve restaging MRI studies and 18 restaging ERUS studies were eligible for meta-analysis of T-stage restaging accuracy. Overall, ERUS T-stage restaging accuracy (mean [95% CI]: 65% [56-72%]) was nonsignificantly higher than MRI T-stage accuracy (52% [44-59%]). Restaging MRI is accurate at excluding circumferential resection margin involvement. Restaging MRI and ERUS were equivalent for prediction of nodal status: the accuracy of both investigations was 72% with over-staging and under-staging occurring in 10-15%. The heterogeneity amongst restaging studies is high, limiting conclusive findings regarding their accuracies. The accuracy of restaging imaging is different for different pathological T stages and highest for T3 tumours. Morphological assessment of T- or N-stage by MRI or ERUS is currently not accurate or consistent enough for clinical application. Restaging MRI appears to have a role in excluding circumferential resection margin involvement. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  19. [Analysis on accuracy and influencing factors of oral fluid-based rapid HIV self-testing among men who have sex with men].

    PubMed

    Li, Youfang; Wang, Yumiao; Zhang, Renzhong; Wang, Jue; Li, Zhiqing; Wang, Ling; Pan, Songfeng; Yang, Yanling; Ma, Yanling; Jia, Manhong

    2016-01-01

    To understood the accuracy of oral fluid-based rapid HIV self-testing among men who have sex with men (MSM) and related factors. Survey was conducted among MSM selected through non-probability sampling to evaluate the quality of their rapid HIV self-testing, and related information was analyzed. The most MSM were aged 21-30 years (57.0%). Among them, 45.7% had educational level of college or above, 78.5% were unmarried, 59.3% were casual laborers. The overall accuracy rate of oral fluid based self-testing was 95.0%, the handling of"inserting test paper into tube as indicated by arrow on it"had the highest accuracy rate (98.0%), and the handling of"gently upsetting tube for 3 times"had lowest accuracy rate (65.0%); Chi-square analysis showed that educational level, no touch with middle part of test paper, whether reading the instruction carefully, whether understanding the instruction and inserting test paper into tube as indicated by the arrow on it were associated with the accuracy of oral fluid-based rapid HIV self-testing, (P<0.05). Multivariate logistic regression analysis indicated that educational level, no touch with middle part of test paper and understanding instructions were associated with the accuracy of oral fluid-based rapid HIV self-testing. The accuracy of oral fluid-based rapid HIV self-testing was high among MSM, the accuracy varied with the educational level of the MSM. Touch with the middle part of test paper or not and understanding the instructions or not might influence the accuracy of the self-testing.

  20. Analysis of parameters for technological equipment of parallel kinematics based on rods of variable length for processing accuracy assurance

    NASA Astrophysics Data System (ADS)

    Koltsov, A. G.; Shamutdinov, A. H.; Blokhin, D. A.; Krivonos, E. V.

    2018-01-01

    A new classification of parallel kinematics mechanisms on symmetry coefficient, being proportional to mechanism stiffness and accuracy of the processing product using the technological equipment under study, is proposed. A new version of the Stewart platform with a high symmetry coefficient is presented for analysis. The workspace of the mechanism under study is described, this space being a complex solid figure. The workspace end points are reached by the center of the mobile platform which moves in parallel related to the base plate. Parameters affecting the processing accuracy, namely the static and dynamic stiffness, natural vibration frequencies are determined. The capability assessment of the mechanism operation under various loads, taking into account resonance phenomena at different points of the workspace, was conducted. The study proved that stiffness and therefore, processing accuracy with the use of the above mentioned mechanisms are comparable with the stiffness and accuracy of medium-sized series-produced machines.

  1. Effects of plot size on forest-type algorithm accuracy

    Treesearch

    James A. Westfall

    2009-01-01

    The Forest Inventory and Analysis (FIA) program utilizes an algorithm to consistently determine the forest type for forested conditions on sample plots. Forest type is determined from tree size and species information. Thus, the accuracy of results is often dependent on the number of trees present, which is highly correlated with plot area. This research examines the...

  2. Inventory and analysis of rangeland resources of the state land block on Parker Mountain, Utah

    NASA Technical Reports Server (NTRS)

    Jaynes, R. A. (Principal Investigator)

    1983-01-01

    High altitude color infrared (CIR) photography was interpreted to provide an 1:24,000 overlay to U.S.G.S. topographic maps. The inventory and analysis of rangeland resources was augmented by the digital analysis of LANDSAT MSS data. Available geology, soils, and precipitation maps were used to sort out areas of confusion on the CIR photography. The map overlay from photo interpretation was also prepared with reference to print maps developed from LANDSAT MSS data. The resulting map overlay has a high degree of interpretive and spatial accuracy. An unacceptable level of confusion between the several sagebrush types in the MSS mapping was largely corrected by introducing ancillary data. Boundaries from geology, soils, and precipitation maps, as well as field observations, were digitized and pixel classes were adjusted according to the location of pixels with particular spectral signatures with respect to such boundaries. The resulting map, with six major cover classes, has an overall accuracy of 89%. Overall accuracy was 74% when these six classes were expanded to 20 classes.

  3. Recent developments in heterodyne laser interferometry at Harbin Institute of Technology

    NASA Astrophysics Data System (ADS)

    Hu, P. C.; Tan, J. B. B.; Yang, H. X. X.; Fu, H. J. J.; Wang, Q.

    2013-01-01

    In order to fulfill the requirements for high-resolution and high-precision heterodyne interferometric technologies and instruments, the laser interferometry group of HIT has developed some novel techniques for high-resolution and high-precision heterodyne interferometers, such as high accuracy laser frequency stabilization, dynamic sub-nanometer resolution phase interpolation and dynamic nonlinearity measurement. Based on a novel lock point correction method and an asymmetric thermal structure, the frequency stabilized laser achieves a long term stability of 1.2×10-8, and it can be steadily stabilized even in the air flowing up to 1 m/s. In order to achieve dynamic sub-nanometer resolution of laser heterodyne interferometers, a novel phase interpolation method based on digital delay line is proposed. Experimental results show that, the proposed 0.62 nm, phase interpolator built with a 64 multiple PLL and an 8-tap digital delay line achieves a static accuracy better than 0.31nm and a dynamic accuracy better than 0.62 nm over the velocity ranging from -2 m/s to 2 m/s. Meanwhile, an accuracy beam polarization measuring setup is proposed to check and ensure the light's polarization state of the dual frequency laser head, and a dynamic optical nonlinearity measuring setup is built to measure the optical nonlinearity of the heterodyne system accurately and quickly. Analysis and experimental results show that, the beam polarization measuring setup can achieve an accuracy of 0.03° in ellipticity angles and an accuracy of 0.04° in the non-orthogonality angle respectively, and the optical nonlinearity measuring setup can achieve an accuracy of 0.13°.

  4. Error tolerance analysis of wave diagnostic based on coherent modulation imaging in high power laser system

    NASA Astrophysics Data System (ADS)

    Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2018-02-01

    Coherent modulation imaging providing fast convergence speed and high resolution with single diffraction pattern is a promising technique to satisfy the urgent demands for on-line multiple parameter diagnostics with single setup in high power laser facilities (HPLF). However, the influence of noise on the final calculated parameters concerned has not been investigated yet. According to a series of simulations with twenty different sampling beams generated based on the practical parameters and performance of HPLF, the quantitative analysis based on statistical results was first investigated after considering five different error sources. We found the background noise of detector and high quantization error will seriously affect the final accuracy and different parameters have different sensitivity to different noise sources. The simulation results and the corresponding analysis provide the potential directions to further improve the final accuracy of parameter diagnostics which is critically important to its formal applications in the daily routines of HPLF.

  5. Multiresidue analysis of 22 sulfonamides and their metabolites in animal tissues using quick, easy, cheap, effective, rugged, and safe extraction and high resolution mass spectrometry (hybrid linear ion trap-Orbitrap).

    PubMed

    Abdallah, H; Arnaudguilhem, C; Jaber, F; Lobinski, R

    2014-08-15

    A new high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) method was developed for a simultaneous multi-residue analysis of 22 sulfonamides (SAs) and their metabolites in edible animal (pig, beef, sheep and chicken) tissues. Sample preparation was optimized on the basis of the "QuEChERS" protocol. The analytes were identified using their LC retention times and accurate mass; the identification was further confirmed by multi-stage high mass accuracy (<5ppm) mass spectrometry. The performance of the method was evaluated according to the EU guidelines for the validation of screening methods for the analysis of veterinary drugs residues. Acceptable values were obtained for: linearity (R(2)<0.99), limit of detection (LOD, 3-26μg/kg), limit of quantification (LOQ, 11-88μg/kg), accuracy (recovery 88-112%), intra- and inter-day precision 1-14 and 1-17%, respectively, decision limit (CCα) and detection capability (CCβ) around the maximum residue limits (MRL) of SAs (100μg/kg). The method was validated by analysis of a reference material FAPAS-02188 "Pig kidney" with ǀ Z-scoreǀ<0.63. The method was applied to various matrices (kidney, liver, muscle) originated from pig, beef, sheep, and chicken) allowing the simultaneous quantification of target sulfonamides at concentration levels above the MRL/2 and the identification of untargeted compounds such as N(4)-acetyl metabolites using multi-stage high mass accuracy mass spectrometry. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Is High Resolution Melting Analysis (HRMA) Accurate for Detection of Human Disease-Associated Mutations? A Meta Analysis

    PubMed Central

    Ma, Feng-Li; Jiang, Bo; Song, Xiao-Xiao; Xu, An-Gao

    2011-01-01

    Background High Resolution Melting Analysis (HRMA) is becoming the preferred method for mutation detection. However, its accuracy in the individual clinical diagnostic setting is variable. To assess the diagnostic accuracy of HRMA for human mutations in comparison to DNA sequencing in different routine clinical settings, we have conducted a meta-analysis of published reports. Methodology/Principal Findings Out of 195 publications obtained from the initial search criteria, thirty-four studies assessing the accuracy of HRMA were included in the meta-analysis. We found that HRMA was a highly sensitive test for detecting disease-associated mutations in humans. Overall, the summary sensitivity was 97.5% (95% confidence interval (CI): 96.8–98.5; I2 = 27.0%). Subgroup analysis showed even higher sensitivity for non-HR-1 instruments (sensitivity 98.7% (95%CI: 97.7–99.3; I2 = 0.0%)) and an eligible sample size subgroup (sensitivity 99.3% (95%CI: 98.1–99.8; I2 = 0.0%)). HRMA specificity showed considerable heterogeneity between studies. Sensitivity of the techniques was influenced by sample size and instrument type but by not sample source or dye type. Conclusions/Significance These findings show that HRMA is a highly sensitive, simple and low-cost test to detect human disease-associated mutations, especially for samples with mutations of low incidence. The burden on DNA sequencing could be significantly reduced by the implementation of HRMA, but it should be recognized that its sensitivity varies according to the number of samples with/without mutations, and positive results require DNA sequencing for confirmation. PMID:22194806

  7. A neural network approach to cloud classification

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan; Weger, Ronald C.; Sengupta, Sailes K.; Welch, Ronald M.

    1990-01-01

    It is shown that, using high-spatial-resolution data, very high cloud classification accuracies can be obtained with a neural network approach. A texture-based neural network classifier using only single-channel visible Landsat MSS imagery achieves an overall cloud identification accuracy of 93 percent. Cirrus can be distinguished from boundary layer cloudiness with an accuracy of 96 percent, without the use of an infrared channel. Stratocumulus is retrieved with an accuracy of 92 percent, cumulus at 90 percent. The use of the neural network does not improve cirrus classification accuracy. Rather, its main effect is in the improved separation between stratocumulus and cumulus cloudiness. While most cloud classification algorithms rely on linear parametric schemes, the present study is based on a nonlinear, nonparametric four-layer neural network approach. A three-layer neural network architecture, the nonparametric K-nearest neighbor approach, and the linear stepwise discriminant analysis procedure are compared. A significant finding is that significantly higher accuracies are attained with the nonparametric approaches using only 20 percent of the database as training data, compared to 67 percent of the database in the linear approach.

  8. Effect of Lamina Thickness of Prepreg on the Surface Accuracy of Carbon Fiber Composite Space Mirrors

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyong; Tang, Zhanwen; Xie, Yongjie; Shi, Hanqiao; Zhang, Boming; Guo, Hongjun

    2018-02-01

    Composite space mirror can completely replicate the high-precision surface of mould by replication process, but the actual surface accuracy of the replication composite mirror always decreases. Lamina thickness of prepreg affects the layers and layup sequence of composite space mirror, and which would affect surface accuracy of space mirror. In our research, two groups of contrasting cases through finite element analyses (FEA) and comparative experiments were studied; the effect of different lamina thicknesses of prepreg and corresponding lay-up sequences was focused as well. We describe a special analysis model, validated process and result analysis. The simulated and measured surface figures both get the same conclusion. Reducing lamina thickness of prepreg used in replicating composite space mirror is propitious to optimal design of layup sequence for fabricating composite mirror, and could improve its surface accuracy.

  9. Optimizing classification performance in an object-based very-high-resolution land use-land cover urban application

    NASA Astrophysics Data System (ADS)

    Georganos, Stefanos; Grippa, Tais; Vanhuysse, Sabine; Lennert, Moritz; Shimoni, Michal; Wolff, Eléonore

    2017-10-01

    This study evaluates the impact of three Feature Selection (FS) algorithms in an Object Based Image Analysis (OBIA) framework for Very-High-Resolution (VHR) Land Use-Land Cover (LULC) classification. The three selected FS algorithms, Correlation Based Selection (CFS), Mean Decrease in Accuracy (MDA) and Random Forest (RF) based Recursive Feature Elimination (RFE), were tested on Support Vector Machine (SVM), K-Nearest Neighbor, and Random Forest (RF) classifiers. The results demonstrate that the accuracy of SVM and KNN classifiers are the most sensitive to FS. The RF appeared to be more robust to high dimensionality, although a significant increase in accuracy was found by using the RFE method. In terms of classification accuracy, SVM performed the best using FS, followed by RF and KNN. Finally, only a small number of features is needed to achieve the highest performance using each classifier. This study emphasizes the benefits of rigorous FS for maximizing performance, as well as for minimizing model complexity and interpretation.

  10. High accuracy position method based on computer vision and error analysis

    NASA Astrophysics Data System (ADS)

    Chen, Shihao; Shi, Zhongke

    2003-09-01

    The study of high accuracy position system is becoming the hotspot in the field of autocontrol. And positioning is one of the most researched tasks in vision system. So we decide to solve the object locating by using the image processing method. This paper describes a new method of high accuracy positioning method through vision system. In the proposed method, an edge-detection filter is designed for a certain running condition. Here, the filter contains two mainly parts: one is image-processing module, this module is to implement edge detection, it contains of multi-level threshold self-adapting segmentation, edge-detection and edge filter; the other one is object-locating module, it is to point out the location of each object in high accurate, and it is made up of medium-filtering and curve-fitting. This paper gives some analysis error for the method to prove the feasibility of vision in position detecting. Finally, to verify the availability of the method, an example of positioning worktable, which is using the proposed method, is given at the end of the paper. Results show that the method can accurately detect the position of measured object and identify object attitude.

  11. Object Based Image Analysis Combining High Spatial Resolution Imagery and Laser Point Clouds for Urban Land Cover

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    With the rapid developments of the sensor technology, high spatial resolution imagery and airborne Lidar point clouds can be captured nowadays, which make classification, extraction, evaluation and analysis of a broad range of object features available. High resolution imagery, Lidar dataset and parcel map can be widely used for classification as information carriers. Therefore, refinement of objects classification is made possible for the urban land cover. The paper presents an approach to object based image analysis (OBIA) combing high spatial resolution imagery and airborne Lidar point clouds. The advanced workflow for urban land cover is designed with four components. Firstly, colour-infrared TrueOrtho photo and laser point clouds were pre-processed to derive the parcel map of water bodies and nDSM respectively. Secondly, image objects are created via multi-resolution image segmentation integrating scale parameter, the colour and shape properties with compactness criterion. Image can be subdivided into separate object regions. Thirdly, image objects classification is performed on the basis of segmentation and a rule set of knowledge decision tree. These objects imagery are classified into six classes such as water bodies, low vegetation/grass, tree, low building, high building and road. Finally, in order to assess the validity of the classification results for six classes, accuracy assessment is performed through comparing randomly distributed reference points of TrueOrtho imagery with the classification results, forming the confusion matrix and calculating overall accuracy and Kappa coefficient. The study area focuses on test site Vaihingen/Enz and a patch of test datasets comes from the benchmark of ISPRS WG III/4 test project. The classification results show higher overall accuracy for most types of urban land cover. Overall accuracy is 89.5% and Kappa coefficient equals to 0.865. The OBIA approach provides an effective and convenient way to combine high resolution imagery and Lidar ancillary data for classification of urban land cover.

  12. An Investigation of the Accuracy of Alternative Methods of True Score Estimation in High-Stakes Mixed-Format Examinations.

    ERIC Educational Resources Information Center

    Klinger, Don A.; Rogers, W. Todd

    2003-01-01

    The estimation accuracy of procedures based on classical test score theory and item response theory (generalized partial credit model) were compared for examinations consisting of multiple-choice and extended-response items. Analysis of British Columbia Scholarship Examination results found an error rate of about 10 percent for both methods, with…

  13. Kinematic and kinetic analysis of overhand, sidearm and underhand lacrosse shot techniques.

    PubMed

    Macaulay, Charles A J; Katz, Larry; Stergiou, Pro; Stefanyshyn, Darren; Tomaghelli, Luciano

    2017-12-01

    Lacrosse requires the coordinated performance of many complex skills. One of these skills is shooting on the opponents' net using one of three techniques: overhand, sidearm or underhand. The purpose of this study was to (i) determine which technique generated the highest ball velocity and greatest shot accuracy and (ii) identify kinematic and kinetic variables that contribute to a high velocity and high accuracy shot. Twelve elite male lacrosse players participated in this study. Kinematic data were sampled at 250 Hz, while two-dimensional force plates collected ground reaction force data (1000 Hz). Statistical analysis showed significantly greater ball velocity for the sidearm technique than overhand (P < 0.001) and underhand (P < 0.001) techniques. No statistical difference was found for shot accuracy (P > 0.05). Kinematic and kinetic variables were not significantly correlated to shot accuracy or velocity across all shot types; however, when analysed independently, the lead foot horizontal impulse showed a negative correlation with underhand ball velocity (P = 0.042). This study identifies the technique with the highest ball velocity, defines kinematic and kinetic predictors related to ball velocity and provides information to coaches and athletes concerned with improving lacrosse shot performance.

  14. Semi-Lagrangian particle methods for high-dimensional Vlasov-Poisson systems

    NASA Astrophysics Data System (ADS)

    Cottet, Georges-Henri

    2018-07-01

    This paper deals with the implementation of high order semi-Lagrangian particle methods to handle high dimensional Vlasov-Poisson systems. It is based on recent developments in the numerical analysis of particle methods and the paper focuses on specific algorithmic features to handle large dimensions. The methods are tested with uniform particle distributions in particular against a recent multi-resolution wavelet based method on a 4D plasma instability case and a 6D gravitational case. Conservation properties, accuracy and computational costs are monitored. The excellent accuracy/cost trade-off shown by the method opens new perspective for accurate simulations of high dimensional kinetic equations by particle methods.

  15. Circumferential resection margin (CRM) positivity after MRI assessment and adjuvant treatment in 189 patients undergoing rectal cancer resection.

    PubMed

    Simpson, G S; Eardley, N; McNicol, F; Healey, P; Hughes, M; Rooney, P S

    2014-05-01

    The management of rectal cancer relies on accurate MRI staging. Multi-modal treatments can downstage rectal cancer prior to surgery and may have an effect on MRI accuracy. We aim to correlate the findings of MRI staging of rectal cancer with histological analysis, the effect of neoadjuvant therapy on this and the implications of circumferential resection margin (CRM) positivity following neoadjuvant therapy. An analysis of histological data and radiological staging of all cases of rectal cancer in a single centre between 2006 and 2011 were conducted. Two hundred forty-one patients had histologically proved rectal cancer during the study period. One hundred eighty-two patients underwent resection. Median age was 66.6 years, and male to female ratio was 13:5. R1 resection rate was 11.1%. MRI assessments of the circumferential resection margin in patients without neoadjuvant radiotherapy were 93.6 and 88.1% in patients who underwent neoadjuvant radiotherapy. Eighteen patients had predicted positive margins following chemoradiotherapy, of which 38.9% had an involved CRM on histological analysis. MRI assessment of the circumferential resection margin in rectal cancer is associated with high accuracy. Neoadjuvant chemoradiotherapy has a detrimental effect on this accuracy, although accuracy remains high. In the presence of persistently predicted positive margins, complete resection remains achievable but may necessitate a more radical approach to resection.

  16. Scalable Photogrammetric Motion Capture System "mosca": Development and Application

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.

    2015-05-01

    Wide variety of applications (from industrial to entertainment) has a need for reliable and accurate 3D information about motion of an object and its parts. Very often the process of movement is rather fast as in cases of vehicle movement, sport biomechanics, animation of cartoon characters. Motion capture systems based on different physical principles are used for these purposes. The great potential for obtaining high accuracy and high degree of automation has vision-based system due to progress in image processing and analysis. Scalable inexpensive motion capture system is developed as a convenient and flexible tool for solving various tasks requiring 3D motion analysis. It is based on photogrammetric techniques of 3D measurements and provides high speed image acquisition, high accuracy of 3D measurements and highly automated processing of captured data. Depending on the application the system can be easily modified for different working areas from 100 mm to 10 m. The developed motion capture system uses from 2 to 4 technical vision cameras for video sequences of object motion acquisition. All cameras work in synchronization mode at frame rate up to 100 frames per second under the control of personal computer providing the possibility for accurate calculation of 3D coordinates of interest points. The system was used for a set of different applications fields and demonstrated high accuracy and high level of automation.

  17. Recurrence quantification analysis and support vector machines for golf handicap and low back pain EMG classification.

    PubMed

    Silva, Luís; Vaz, João Rocha; Castro, Maria António; Serranho, Pedro; Cabri, Jan; Pezarat-Correia, Pedro

    2015-08-01

    The quantification of non-linear characteristics of electromyography (EMG) must contain information allowing to discriminate neuromuscular strategies during dynamic skills. There are a lack of studies about muscle coordination under motor constrains during dynamic contractions. In golf, both handicap (Hc) and low back pain (LBP) are the main factors associated with the occurrence of injuries. The aim of this study was to analyze the accuracy of support vector machines SVM on EMG-based classification to discriminate Hc (low and high handicap) and LBP (with and without LPB) in the main phases of golf swing. For this purpose recurrence quantification analysis (RQA) features of the trunk and the lower limb muscles were used to feed a SVM classifier. Recurrence rate (RR) and the ratio between determinism (DET) and RR showed a high discriminant power. The Hc accuracy for the swing, backswing, and downswing were 94.4±2.7%, 97.1±2.3%, and 95.3±2.6%, respectively. For LBP, the accuracy was 96.9±3.8% for the swing, and 99.7±0.4% in the backswing. External oblique (EO), biceps femoris (BF), semitendinosus (ST) and rectus femoris (RF) showed high accuracy depending on the laterality within the phase. RQA features and SVM showed a high muscle discriminant capacity within swing phases by Hc and by LBP. Low back pain golfers showed different neuromuscular coordination strategies when compared with asymptomatic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Fuzzy membership functions for analysis of high-resolution CT images of diffuse pulmonary diseases.

    PubMed

    Almeida, Eliana; Rangayyan, Rangaraj M; Azevedo-Marques, Paulo M

    2015-08-01

    We propose the use of fuzzy membership functions to analyze images of diffuse pulmonary diseases (DPDs) based on fractal and texture features. The features were extracted from preprocessed regions of interest (ROIs) selected from high-resolution computed tomography images. The ROIs represent five different patterns of DPDs and normal lung tissue. A Gaussian mixture model (GMM) was constructed for each feature, with six Gaussians modeling the six patterns. Feature selection was performed and the GMMs of the five significant features were used. From the GMMs, fuzzy membership functions were obtained by a probability-possibility transformation and further statistical analysis was performed. An average classification accuracy of 63.5% was obtained for the six classes. For four of the six classes, the classification accuracy was superior to 65%, and the best classification accuracy was 75.5% for one class. The use of fuzzy membership functions to assist in pattern classification is an alternative to deterministic approaches to explore strategies for medical diagnosis.

  19. Analysis of uncertainties in turbine metal temperature predictions

    NASA Technical Reports Server (NTRS)

    Stepka, F. S.

    1980-01-01

    An analysis was conducted to examine the extent to which various factors influence the accuracy of analytically predicting turbine blade metal temperatures and to determine the uncertainties in these predictions for several accuracies of the influence factors. The advanced turbofan engine gas conditions of 1700 K and 40 atmospheres were considered along with those of a highly instrumented high temperature turbine test rig and a low temperature turbine rig that simulated the engine conditions. The analysis showed that the uncertainty in analytically predicting local blade temperature was as much as 98 K, or 7.6 percent of the metal absolute temperature, with current knowledge of the influence factors. The expected reductions in uncertainties in the influence factors with additional knowledge and tests should reduce the uncertainty in predicting blade metal temperature to 28 K, or 2.1 percent of the metal absolute temperature.

  20. [Quantitative surface analysis of Pt-Co, Cu-Au and Cu-Ag alloy films by XPS and AES].

    PubMed

    Li, Lian-Zhong; Zhuo, Shang-Jun; Shen, Ru-Xiang; Qian, Rong; Gao, Jie

    2013-11-01

    In order to improve the quantitative analysis accuracy of AES, We associated XPS with AES and studied the method to reduce the error of AES quantitative analysis, selected Pt-Co, Cu-Au and Cu-Ag binary alloy thin-films as the samples, used XPS to correct AES quantitative analysis results by changing the auger sensitivity factors to make their quantitative analysis results more similar. Then we verified the accuracy of the quantitative analysis of AES when using the revised sensitivity factors by other samples with different composition ratio, and the results showed that the corrected relative sensitivity factors can reduce the error in quantitative analysis of AES to less than 10%. Peak defining is difficult in the form of the integral spectrum of AES analysis since choosing the starting point and ending point when determining the characteristic auger peak intensity area with great uncertainty, and to make analysis easier, we also processed data in the form of the differential spectrum, made quantitative analysis on the basis of peak to peak height instead of peak area, corrected the relative sensitivity factors, and verified the accuracy of quantitative analysis by the other samples with different composition ratio. The result showed that the analytical error in quantitative analysis of AES reduced to less than 9%. It showed that the accuracy of AES quantitative analysis can be highly improved by the way of associating XPS with AES to correct the auger sensitivity factors since the matrix effects are taken into account. Good consistency was presented, proving the feasibility of this method.

  1. A system for the analysis of foot and ankle kinematics during gait.

    PubMed

    Kidder, S M; Abuzzahab, F S; Harris, G F; Johnson, J E

    1996-03-01

    A five-camera Vicon (Oxford Metrics, Oxford, England) motion analysis system was used to acquire foot and ankle motion data. Static resolution and accuracy were computed as 0.86 +/- 0.13 mm and 98.9%, while dynamic resolution and accuracy were 0.1 +/- 0.89 and 99.4% (sagittal plane). Spectral analysis revealed high frequency noise and the need for a filter (6 Hz Butterworth low-pass) as used in similar clinical situations. A four-segment rigid body model of the foot and ankle was developed. The four rigid body foot model segments were 1) tibia and fibula, 2) calcaneus, talus, and navicular, 3) cuneiforms, cuboid, and metatarsals, and 4) hallux. The Euler method for describing relative foot and ankle segment orientation was utilized in order to maintain accuracy and ease of clinical application. Kinematic data from a single test subject are presented.

  2. Accuracy Enhancement of Inertial Sensors Utilizing High Resolution Spectral Analysis

    PubMed Central

    Noureldin, Aboelmagd; Armstrong, Justin; El-Shafie, Ahmed; Karamat, Tashfeen; McGaughey, Don; Korenberg, Michael; Hussain, Aini

    2012-01-01

    In both military and civilian applications, the inertial navigation system (INS) and the global positioning system (GPS) are two complementary technologies that can be integrated to provide reliable positioning and navigation information for land vehicles. The accuracy enhancement of INS sensors and the integration of INS with GPS are the subjects of widespread research. Wavelet de-noising of INS sensors has had limited success in removing the long-term (low-frequency) inertial sensor errors. The primary objective of this research is to develop a novel inertial sensor accuracy enhancement technique that can remove both short-term and long-term error components from inertial sensor measurements prior to INS mechanization and INS/GPS integration. A high resolution spectral analysis technique called the fast orthogonal search (FOS) algorithm is used to accurately model the low frequency range of the spectrum, which includes the vehicle motion dynamics and inertial sensor errors. FOS models the spectral components with the most energy first and uses an adaptive threshold to stop adding frequency terms when fitting a term does not reduce the mean squared error more than fitting white noise. The proposed method was developed, tested and validated through road test experiments involving both low-end tactical grade and low cost MEMS-based inertial systems. The results demonstrate that in most cases the position accuracy during GPS outages using FOS de-noised data is superior to the position accuracy using wavelet de-noising.

  3. High accuracy operon prediction method based on STRING database scores.

    PubMed

    Taboada, Blanca; Verde, Cristina; Merino, Enrique

    2010-07-01

    We present a simple and highly accurate computational method for operon prediction, based on intergenic distances and functional relationships between the protein products of contiguous genes, as defined by STRING database (Jensen,L.J., Kuhn,M., Stark,M., Chaffron,S., Creevey,C., Muller,J., Doerks,T., Julien,P., Roth,A., Simonovic,M. et al. (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412-D416). These two parameters were used to train a neural network on a subset of experimentally characterized Escherichia coli and Bacillus subtilis operons. Our predictive model was successfully tested on the set of experimentally defined operons in E. coli and B. subtilis, with accuracies of 94.6 and 93.3%, respectively. As far as we know, these are the highest accuracies ever obtained for predicting bacterial operons. Furthermore, in order to evaluate the predictable accuracy of our model when using an organism's data set for the training procedure, and a different organism's data set for testing, we repeated the E. coli operon prediction analysis using a neural network trained with B. subtilis data, and a B. subtilis analysis using a neural network trained with E. coli data. Even for these cases, the accuracies reached with our method were outstandingly high, 91.5 and 93%, respectively. These results show the potential use of our method for accurately predicting the operons of any other organism. Our operon predictions for fully-sequenced genomes are available at http://operons.ibt.unam.mx/OperonPredictor/.

  4. Vegetation classification of Coffea on Hawaii Island using WorldView-2 satellite imagery

    NASA Astrophysics Data System (ADS)

    Gaertner, Julie; Genovese, Vanessa Brooks; Potter, Christopher; Sewake, Kelvin; Manoukis, Nicholas C.

    2017-10-01

    Coffee is an important crop in tropical regions of the world; about 125 million people depend on coffee agriculture for their livelihoods. Understanding the spatial extent of coffee fields is useful for management and control of coffee pests such as Hypothenemus hampei and other pests that use coffee fruit as a host for immature stages such as the Mediterranean fruit fly, for economic planning, and for following changes in coffee agroecosystems over time. We present two methods for detecting Coffea arabica fields using remote sensing and geospatial technologies on WorldView-2 high-resolution spectral data of the Kona region of Hawaii Island. The first method, a pixel-based method using a maximum likelihood algorithm, attained 72% producer accuracy and 69% user accuracy (68% overall accuracy) based on analysis of 104 ground truth testing polygons. The second method, an object-based image analysis (OBIA) method, considered both spectral and textural information and improved accuracy, resulting in 76% producer accuracy and 94% user accuracy (81% overall accuracy) for the same testing areas. We conclude that the OBIA method is useful for detecting coffee fields grown in the open and use it to estimate the distribution of about 1050 hectares under coffee agriculture in the Kona region in 2012.

  5. Object-Based Random Forest Classification of Land Cover from Remotely Sensed Imagery for Industrial and Mining Reclamation

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Luo, M.; Xu, L.; Zhou, X.; Ren, J.; Zhou, J.

    2018-04-01

    The RF method based on grid-search parameter optimization could achieve a classification accuracy of 88.16 % in the classification of images with multiple feature variables. This classification accuracy was higher than that of SVM and ANN under the same feature variables. In terms of efficiency, the RF classification method performs better than SVM and ANN, it is more capable of handling multidimensional feature variables. The RF method combined with object-based analysis approach could highlight the classification accuracy further. The multiresolution segmentation approach on the basis of ESP scale parameter optimization was used for obtaining six scales to execute image segmentation, when the segmentation scale was 49, the classification accuracy reached the highest value of 89.58 %. The classification accuracy of object-based RF classification was 1.42 % higher than that of pixel-based classification (88.16 %), and the classification accuracy was further improved. Therefore, the RF classification method combined with object-based analysis approach could achieve relatively high accuracy in the classification and extraction of land use information for industrial and mining reclamation areas. Moreover, the interpretation of remotely sensed imagery using the proposed method could provide technical support and theoretical reference for remotely sensed monitoring land reclamation.

  6. Accurate label-free 3-part leukocyte recognition with single cell lens-free imaging flow cytometry.

    PubMed

    Li, Yuqian; Cornelis, Bruno; Dusa, Alexandra; Vanmeerbeeck, Geert; Vercruysse, Dries; Sohn, Erik; Blaszkiewicz, Kamil; Prodanov, Dimiter; Schelkens, Peter; Lagae, Liesbet

    2018-05-01

    Three-part white blood cell differentials which are key to routine blood workups are typically performed in centralized laboratories on conventional hematology analyzers operated by highly trained staff. With the trend of developing miniaturized blood analysis tool for point-of-need in order to accelerate turnaround times and move routine blood testing away from centralized facilities on the rise, our group has developed a highly miniaturized holographic imaging system for generating lens-free images of white blood cells in suspension. Analysis and classification of its output data, constitutes the final crucial step ensuring appropriate accuracy of the system. In this work, we implement reference holographic images of single white blood cells in suspension, in order to establish an accurate ground truth to increase classification accuracy. We also automate the entire workflow for analyzing the output and demonstrate clear improvement in the accuracy of the 3-part classification. High-dimensional optical and morphological features are extracted from reconstructed digital holograms of single cells using the ground-truth images and advanced machine learning algorithms are investigated and implemented to obtain 99% classification accuracy. Representative features of the three white blood cell subtypes are selected and give comparable results, with a focus on rapid cell recognition and decreased computational cost. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Detection of neovascularization based on fractal and texture analysis with interaction effects in diabetic retinopathy.

    PubMed

    Lee, Jack; Zee, Benny Chung Ying; Li, Qing

    2013-01-01

    Diabetic retinopathy is a major cause of blindness. Proliferative diabetic retinopathy is a result of severe vascular complication and is visible as neovascularization of the retina. Automatic detection of such new vessels would be useful for the severity grading of diabetic retinopathy, and it is an important part of screening process to identify those who may require immediate treatment for their diabetic retinopathy. We proposed a novel new vessels detection method including statistical texture analysis (STA), high order spectrum analysis (HOS), fractal analysis (FA), and most importantly we have shown that by incorporating their associated interactions the accuracy of new vessels detection can be greatly improved. To assess its performance, the sensitivity, specificity and accuracy (AUC) are obtained. They are 96.3%, 99.1% and 98.5% (99.3%), respectively. It is found that the proposed method can improve the accuracy of new vessels detection significantly over previous methods. The algorithm can be automated and is valuable to detect relatively severe cases of diabetic retinopathy among diabetes patients.

  8. Quality Analysis of Open Street Map Data

    NASA Astrophysics Data System (ADS)

    Wang, M.; Li, Q.; Hu, Q.; Zhou, M.

    2013-05-01

    Crowd sourcing geographic data is an opensource geographic data which is contributed by lots of non-professionals and provided to the public. The typical crowd sourcing geographic data contains GPS track data like OpenStreetMap, collaborative map data like Wikimapia, social websites like Twitter and Facebook, POI signed by Jiepang user and so on. These data will provide canonical geographic information for pubic after treatment. As compared with conventional geographic data collection and update method, the crowd sourcing geographic data from the non-professional has characteristics or advantages of large data volume, high currency, abundance information and low cost and becomes a research hotspot of international geographic information science in the recent years. Large volume crowd sourcing geographic data with high currency provides a new solution for geospatial database updating while it need to solve the quality problem of crowd sourcing geographic data obtained from the non-professionals. In this paper, a quality analysis model for OpenStreetMap crowd sourcing geographic data is proposed. Firstly, a quality analysis framework is designed based on data characteristic analysis of OSM data. Secondly, a quality assessment model for OSM data by three different quality elements: completeness, thematic accuracy and positional accuracy is presented. Finally, take the OSM data of Wuhan for instance, the paper analyses and assesses the quality of OSM data with 2011 version of navigation map for reference. The result shows that the high-level roads and urban traffic network of OSM data has a high positional accuracy and completeness so that these OSM data can be used for updating of urban road network database.

  9. Urban Land Cover Mapping Accuracy Assessment - A Cost-benefit Analysis Approach

    NASA Astrophysics Data System (ADS)

    Xiao, T.

    2012-12-01

    One of the most important components in urban land cover mapping is mapping accuracy assessment. Many statistical models have been developed to help design simple schemes based on both accuracy and confidence levels. It is intuitive that an increased number of samples increases the accuracy as well as the cost of an assessment. Understanding cost and sampling size is crucial in implementing efficient and effective of field data collection. Few studies have included a cost calculation component as part of the assessment. In this study, a cost-benefit sampling analysis model was created by combining sample size design and sampling cost calculation. The sampling cost included transportation cost, field data collection cost, and laboratory data analysis cost. Simple Random Sampling (SRS) and Modified Systematic Sampling (MSS) methods were used to design sample locations and to extract land cover data in ArcGIS. High resolution land cover data layers of Denver, CO and Sacramento, CA, street networks, and parcel GIS data layers were used in this study to test and verify the model. The relationship between the cost and accuracy was used to determine the effectiveness of each sample method. The results of this study can be applied to other environmental studies that require spatial sampling.

  10. A Method of Calculating Functional Independence Measure at Discharge from Functional Independence Measure Effectiveness Predicted by Multiple Regression Analysis Has a High Degree of Predictive Accuracy.

    PubMed

    Tokunaga, Makoto; Watanabe, Susumu; Sonoda, Shigeru

    2017-09-01

    Multiple linear regression analysis is often used to predict the outcome of stroke rehabilitation. However, the predictive accuracy may not be satisfactory. The objective of this study was to elucidate the predictive accuracy of a method of calculating motor Functional Independence Measure (mFIM) at discharge from mFIM effectiveness predicted by multiple regression analysis. The subjects were 505 patients with stroke who were hospitalized in a convalescent rehabilitation hospital. The formula "mFIM at discharge = mFIM effectiveness × (91 points - mFIM at admission) + mFIM at admission" was used. By including the predicted mFIM effectiveness obtained through multiple regression analysis in this formula, we obtained the predicted mFIM at discharge (A). We also used multiple regression analysis to directly predict mFIM at discharge (B). The correlation between the predicted and the measured values of mFIM at discharge was compared between A and B. The correlation coefficients were .916 for A and .878 for B. Calculating mFIM at discharge from mFIM effectiveness predicted by multiple regression analysis had a higher degree of predictive accuracy of mFIM at discharge than that directly predicted. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  11. Finish line distinctness and accuracy in 7 intraoral scanners versus conventional impression: an in vitro descriptive comparison.

    PubMed

    Nedelcu, Robert; Olsson, Pontus; Nyström, Ingela; Thor, Andreas

    2018-02-23

    Several studies have evaluated accuracy of intraoral scanners (IOS), but data is lacking regarding variations between IOS systems in the depiction of the critical finish line and the finish line accuracy. The aim of this study was to analyze the level of finish line distinctness (FLD), and finish line accuracy (FLA), in 7 intraoral scanners (IOS) and one conventional impression (IMPR). Furthermore, to assess parameters of resolution, tessellation, topography, and color. A dental model with a crown preparation including supra and subgingival finish line was reference-scanned with an industrial scanner (ATOS), and scanned with seven IOS: 3M, CS3500 and CS3600, DWIO, Omnicam, Planscan and Trios. An IMPR was taken and poured, and the model was scanned with a laboratory scanner. The ATOS scan was cropped at finish line and best-fit aligned for 3D Compare Analysis (Geomagic). Accuracy was visualized, and descriptive analysis was performed. All IOS, except Planscan, had comparable overall accuracy, however, FLD and FLA varied substantially. Trios presented the highest FLD, and with CS3600, the highest FLA. 3M, and DWIO had low overall FLD and low FLA in subgingival areas, whilst Planscan had overall low FLD and FLA, as well as lower general accuracy. IMPR presented high FLD, except in subgingival areas, and high FLA. Trios had the highest resolution by factor 1.6 to 3.1 among IOS, followed by IMPR, DWIO, Omnicam, CS3500, 3M, CS3600 and Planscan. Tessellation was found to be non-uniform except in 3M and DWIO. Topographic variation was found for 3M and Trios, with deviations below +/- 25 μm for Trios. Inclusion of color enhanced the identification of the finish line in Trios, Omnicam and CS3600, but not in Planscan. There were sizeable variations between IOS with both higher and lower FLD and FLA than IMPR. High FLD was more related to high localized finish line resolution and non-uniform tessellation, than to high overall resolution. Topography variations were low. Color improved finish line identification in some IOS. It is imperative that clinicians critically evaluate the digital impression, being aware of varying technical limitations among IOS, in particular when challenging subgingival conditions apply.

  12. The performance of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury: a meta-analysis.

    PubMed

    Wang, Z X; Chen, S L; Wang, Q Q; Liu, B; Zhu, J; Shen, J

    2015-06-01

    The aim of this study was to evaluate the accuracy of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury through a meta-analysis. A comprehensive literature search was conducted before 1 April 2014. All studies comparing magnetic resonance imaging results with arthroscopy or open surgery findings were reviewed, and 25 studies that satisfied the eligibility criteria were included. Data were pooled to yield pooled sensitivity and specificity, which were respectively 0.83 and 0.82. In detection of central and peripheral tears, magnetic resonance imaging had respectively a pooled sensitivity of 0.90 and 0.88 and a pooled specificity of 0.97 and 0.97. Six high-quality studies using Ringler's recommended magnetic resonance imaging parameters were selected for analysis to determine whether optimal imaging protocols yielded better results. The pooled sensitivity and specificity of these six studies were 0.92 and 0.82, respectively. The overall accuracy of magnetic resonance imaging was acceptable. For peripheral tears, the pooled data showed a relatively high accuracy. Magnetic resonance imaging with appropriate parameters are an ideal method for diagnosing different types of triangular fibrocartilage complex tears. © The Author(s) 2015.

  13. Assessing the dependence of sensitivity and specificity on prevalence in meta-analysis

    PubMed Central

    Li, Jialiang; Fine, Jason P.

    2011-01-01

    We consider modeling the dependence of sensitivity and specificity on the disease prevalence in diagnostic accuracy studies. Many meta-analyses compare test accuracy across studies and fail to incorporate the possible connection between the accuracy measures and the prevalence. We propose a Pearson type correlation coefficient and an estimating equation–based regression framework to help understand such a practical dependence. The results we derive may then be used to better interpret the results from meta-analyses. In the biomedical examples analyzed in this paper, the diagnostic accuracy of biomarkers are shown to be associated with prevalence, providing insights into the utility of these biomarkers in low- and high-prevalence populations. PMID:21525421

  14. Diagnostic Performance of DNA Hypermethylation Markers in Peripheral Blood for the Detection of Colorectal Cancer: A Meta-Analysis and Systematic Review

    PubMed Central

    Li, Bingsheng; Gan, Aihua; Chen, Xiaolong; Wang, Xinying; He, Weifeng; Zhang, Xiaohui; Huang, Renxiang; Zhou, Shuzhu; Song, Xiaoxiao; Xu, Angao

    2016-01-01

    DNA hypermethylation in blood is becoming an attractive candidate marker for colorectal cancer (CRC) detection. To assess the diagnostic accuracy of blood hypermethylation markers for CRC in different clinical settings, we conducted a meta-analysis of published reports. Of 485 publications obtained in the initial literature search, 39 studies were included in the meta-analysis. Hypermethylation markers in peripheral blood showed a high degree of accuracy for the detection of CRC. The summary sensitivity was 0.62 [95% confidence interval (CI), 0.56–0.67] and specificity was 0.91 (95% CI, 0.89–0.93). Subgroup analysis showed significantly greater sensitivity for the methylated Septin 9 gene (SEPT9) subgroup (0.75; 95% CI, 0.67–0.81) than for the non-methylated SEPT9 subgroup (0.58; 95% CI, 0.52–0.64). Sensitivity and specificity were not affected significantly by target gene number, CRC staging, study region, or methylation analysis method. These findings show that hypermethylation markers in blood are highly sensitive and specific for CRC detection, with methylated SEPT9 being particularly robust. The diagnostic performance of hypermethylation markers, which have varied across different studies, can be improved by marker optimization. Future research should examine variation in diagnostic accuracy according to non-neoplastic factors. PMID:27158984

  15. Computed Tomography-Derived Fractional Flow Reserve in the Detection of Lesion-Specific Ischemia: An Integrated Analysis of 3 Pivotal Trials.

    PubMed

    Xu, Rende; Li, Chenguang; Qian, Juying; Ge, Junbo

    2015-11-01

    Invasive fractional flow reserve (FFR) is the gold standard for the determination of physiologic stenosis severity and the need for revascularization. FFR computed from standard acquired coronary computed tomographic angiography datasets (FFRCT) is an emerging technology which allows calculation of FFR using resting image data from coronary computed tomographic angiography (CCTA). However, the diagnostic accuracy of FFRCT in the evaluation of lesion-specific myocardial ischemia remains to be confirmed, especially in patients with intermediate coronary stenosis. We performed an integrated analysis of data from 3 prospective, international, and multicenter trials, which assessed the diagnostic performance of FFRCT using invasive FFR as a reference standard. Three studies evaluating 609 patients and 1050 vessels were included. The total calculated sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of FFRCT were 82.8%, 77.7%, 60.8%, 91.6%, and 79.2%, respectively, for the per-vessel analysis, and 89.4%, 70.5%, 69.7%, 89.7%, and 78.7%, respectively, for the per-patient analysis. Compared with CCTA alone, FFRCT demonstrated significantly improved accuracy (P < 0.001) in detecting lesion-specific ischemia. In patients with intermediate coronary stenosis, FFRCT remained both highly sensitive and specific with respect to the diagnosis of ischemia. In conclusion, FFRCT appears to be a reliable noninvasive alternative to invasive FFR, as it demonstrates high accuracy in the determination of anatomy and lesion-specific ischemia, which justifies the performance of additional randomized controlled trials to evaluate both the clinical benefits and the cost-effectiveness of FFRCT-guided coronary revascularization.

  16. Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma.

    PubMed

    Hu, Leland S; Ning, Shuluo; Eschbacher, Jennifer M; Gaw, Nathan; Dueck, Amylou C; Smith, Kris A; Nakaji, Peter; Plasencia, Jonathan; Ranjbar, Sara; Price, Stephen J; Tran, Nhan; Loftus, Joseph; Jenkins, Robert; O'Neill, Brian P; Elmquist, William; Baxter, Leslie C; Gao, Fei; Frakes, David; Karis, John P; Zwart, Christine; Swanson, Kristin R; Sarkaria, Jann; Wu, Teresa; Mitchell, J Ross; Li, Jing

    2015-01-01

    Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). Multi-parametric MRI and texture analysis can help characterize and visualize GBM's spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.

  17. Detection of Anomalies in Citrus Leaves Using Laser-Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Sankaran, Sindhuja; Ehsani, Reza; Morgan, Kelly T

    2015-08-01

    Nutrient assessment and management are important to maintain productivity in citrus orchards. In this study, laser-induced breakdown spectroscopy (LIBS) was applied for rapid and real-time detection of citrus anomalies. Laser-induced breakdown spectroscopy spectra were collected from citrus leaves with anomalies such as diseases (Huanglongbing, citrus canker) and nutrient deficiencies (iron, manganese, magnesium, zinc), and compared with those of healthy leaves. Baseline correction, wavelet multivariate denoising, and normalization techniques were applied to the LIBS spectra before analysis. After spectral pre-processing, features were extracted using principal component analysis and classified using two models, quadratic discriminant analysis and support vector machine (SVM). The SVM resulted in a high average classification accuracy of 97.5%, with high average canker classification accuracy (96.5%). LIBS peak analysis indicated that high intensities at 229.7, 247.9, 280.3, 393.5, 397.0, and 769.8 nm were observed of 11 peaks found in all the samples. Future studies using controlled experiments with variable nutrient applications are required for quantification of foliar nutrients by using LIBS-based sensing.

  18. Assessing map accuracy in a remotely sensed, ecoregion-scale cover map

    USGS Publications Warehouse

    Edwards, T.C.; Moisen, Gretchen G.; Cutler, D.R.

    1998-01-01

    Landscape- and ecoregion-based conservation efforts increasingly use a spatial component to organize data for analysis and interpretation. A challenge particular to remotely sensed cover maps generated from these efforts is how best to assess the accuracy of the cover maps, especially when they can exceed 1000 s/km2 in size. Here we develop and describe a methodological approach for assessing the accuracy of large-area cover maps, using as a test case the 21.9 million ha cover map developed for Utah Gap Analysis. As part of our design process, we first reviewed the effect of intracluster correlation and a simple cost function on the relative efficiency of cluster sample designs to simple random designs. Our design ultimately combined clustered and subsampled field data stratified by ecological modeling unit and accessibility (hereafter a mixed design). We next outline estimation formulas for simple map accuracy measures under our mixed design and report results for eight major cover types and the three ecoregions mapped as part of the Utah Gap Analysis. Overall accuracy of the map was 83.2% (SE=1.4). Within ecoregions, accuracy ranged from 78.9% to 85.0%. Accuracy by cover type varied, ranging from a low of 50.4% for barren to a high of 90.6% for man modified. In addition, we examined gains in efficiency of our mixed design compared with a simple random sample approach. In regard to precision, our mixed design was more precise than a simple random design, given fixed sample costs. We close with a discussion of the logistical constraints facing attempts to assess the accuracy of large-area, remotely sensed cover maps.

  19. Diagnostic accuracy of a bayesian latent group analysis for the detection of malingering-related poor effort.

    PubMed

    Ortega, Alonso; Labrenz, Stephan; Markowitsch, Hans J; Piefke, Martina

    2013-01-01

    In the last decade, different statistical techniques have been introduced to improve assessment of malingering-related poor effort. In this context, we have recently shown preliminary evidence that a Bayesian latent group model may help to optimize classification accuracy using a simulation research design. In the present study, we conducted two analyses. Firstly, we evaluated how accurately this Bayesian approach can distinguish between participants answering in an honest way (honest response group) and participants feigning cognitive impairment (experimental malingering group). Secondly, we tested the accuracy of our model in the differentiation between patients who had real cognitive deficits (cognitively impaired group) and participants who belonged to the experimental malingering group. All Bayesian analyses were conducted using the raw scores of a visual recognition forced-choice task (2AFC), the Test of Memory Malingering (TOMM, Trial 2), and the Word Memory Test (WMT, primary effort subtests). The first analysis showed 100% accuracy for the Bayesian model in distinguishing participants of both groups with all effort measures. The second analysis showed outstanding overall accuracy of the Bayesian model when estimates were obtained from the 2AFC and the TOMM raw scores. Diagnostic accuracy of the Bayesian model diminished when using the WMT total raw scores. Despite, overall diagnostic accuracy can still be considered excellent. The most plausible explanation for this decrement is the low performance in verbal recognition and fluency tasks of some patients of the cognitively impaired group. Additionally, the Bayesian model provides individual estimates, p(zi |D), of examinees' effort levels. In conclusion, both high classification accuracy levels and Bayesian individual estimates of effort may be very useful for clinicians when assessing for effort in medico-legal settings.

  20. Effect of time discretization of the imaging process on the accuracy of trajectory estimation in fluorescence microscopy

    PubMed Central

    Wong, Yau; Chao, Jerry; Lin, Zhiping; Ober, Raimund J.

    2014-01-01

    In fluorescence microscopy, high-speed imaging is often necessary for the proper visualization and analysis of fast subcellular dynamics. Here, we examine how the speed of image acquisition affects the accuracy with which parameters such as the starting position and speed of a microscopic non-stationary fluorescent object can be estimated from the resulting image sequence. Specifically, we use a Fisher information-based performance bound to investigate the detector-dependent effect of frame rate on the accuracy of parameter estimation. We demonstrate that when a charge-coupled device detector is used, the estimation accuracy deteriorates as the frame rate increases beyond a point where the detector’s readout noise begins to overwhelm the low number of photons detected in each frame. In contrast, we show that when an electron-multiplying charge-coupled device (EMCCD) detector is used, the estimation accuracy improves with increasing frame rate. In fact, at high frame rates where the low number of photons detected in each frame renders the fluorescent object difficult to detect visually, imaging with an EMCCD detector represents a natural implementation of the Ultrahigh Accuracy Imaging Modality, and enables estimation with an accuracy approaching that which is attainable only when a hypothetical noiseless detector is used. PMID:25321248

  1. Evaluating the accuracy of SHAPE-directed RNA secondary structure predictions

    PubMed Central

    Sükösd, Zsuzsanna; Swenson, M. Shel; Kjems, Jørgen; Heitsch, Christine E.

    2013-01-01

    Recent advances in RNA structure determination include using data from high-throughput probing experiments to improve thermodynamic prediction accuracy. We evaluate the extent and nature of improvements in data-directed predictions for a diverse set of 16S/18S ribosomal sequences using a stochastic model of experimental SHAPE data. The average accuracy for 1000 data-directed predictions always improves over the original minimum free energy (MFE) structure. However, the amount of improvement varies with the sequence, exhibiting a correlation with MFE accuracy. Further analysis of this correlation shows that accurate MFE base pairs are typically preserved in a data-directed prediction, whereas inaccurate ones are not. Thus, the positive predictive value of common base pairs is consistently higher than the directed prediction accuracy. Finally, we confirm sequence dependencies in the directability of thermodynamic predictions and investigate the potential for greater accuracy improvements in the worst performing test sequence. PMID:23325843

  2. Diagnostic performance of contrast-enhanced spectral mammography: Systematic review and meta-analysis.

    PubMed

    Tagliafico, Alberto Stefano; Bignotti, Bianca; Rossi, Federica; Signori, Alessio; Sormani, Maria Pia; Valdora, Francesca; Calabrese, Massimo; Houssami, Nehmat

    2016-08-01

    To estimate sensitivity and specificity of CESM for breast cancer diagnosis. Systematic review and meta-analysis of the accuracy of CESM in finding breast cancer in highly selected women. We estimated summary receiver operating characteristic curves, sensitivity and specificity according to quality criteria with QUADAS-2. Six hundred four studies were retrieved, 8 of these reporting on 920 patients with 994 lesions, were eligible for inclusion. Estimated sensitivity from all studies was: 0.98 (95% CI: 0.96-1.00). Specificity was estimated from six studies reporting raw data: 0.58 (95% CI: 0.38-0.77). The majority of studies were scored as at high risk of bias due to the very selected populations. CESM has a high sensitivity but very low specificity. The source studies were based on highly selected case series and prone to selection bias. High-quality studies are required to assess the accuracy of CESM in unselected cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A novel quantitative analysis method of three-dimensional fluorescence spectra for vegetable oils contents in edible blend oil

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei

    2015-04-01

    Edible blend oil is a mixture of vegetable oils. Eligible blend oil can meet the daily need of two essential fatty acids for human to achieve the balanced nutrition. Each vegetable oil has its different composition, so vegetable oils contents in edible blend oil determine nutritional components in blend oil. A high-precision quantitative analysis method to detect the vegetable oils contents in blend oil is necessary to ensure balanced nutrition for human being. Three-dimensional fluorescence technique is high selectivity, high sensitivity, and high-efficiency. Efficiency extraction and full use of information in tree-dimensional fluorescence spectra will improve the accuracy of the measurement. A novel quantitative analysis is proposed based on Quasi-Monte-Carlo integral to improve the measurement sensitivity and reduce the random error. Partial least squares method is used to solve nonlinear equations to avoid the effect of multicollinearity. The recovery rates of blend oil mixed by peanut oil, soybean oil and sunflower are calculated to verify the accuracy of the method, which are increased, compared the linear method used commonly for component concentration measurement.

  4. Introducing Graduate Students to High-Resolution Mass Spectrometry (HRMS) Using a Hands-On Approach

    ERIC Educational Resources Information Center

    Stock, Naomi L.

    2017-01-01

    High-resolution mass spectrometry (HRMS) features both high resolution and high mass accuracy and is a powerful tool for the analysis and quantitation of compounds, determination of elemental compositions, and identification of unknowns. A hands-on laboratory experiment for upper-level undergraduate and graduate students to investigate HRMS is…

  5. Diagnostic potential of Raman spectroscopy in Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Wong Kee Song, Louis-Michel; Molckovsky, Andrea; Wang, Kenneth K.; Burgart, Lawrence J.; Dolenko, Brion; Somorjai, Rajmund L.; Wilson, Brian C.

    2005-04-01

    Patients with Barrett's esophagus (BE) undergo periodic endoscopic surveillance with random biopsies in an effort to detect dysplastic or early cancerous lesions. Surveillance may be enhanced by near-infrared Raman spectroscopy (NIRS), which has the potential to identify endoscopically-occult dysplastic lesions within the Barrett's segment and allow for targeted biopsies. The aim of this study was to assess the diagnostic performance of NIRS for identifying dysplastic lesions in BE in vivo. Raman spectra (Pexc=70 mW; t=5 s) were collected from Barrett's mucosa at endoscopy using a custom-built NIRS system (λexc=785 nm) equipped with a filtered fiber-optic probe. Each probed site was biopsied for matching histological diagnosis as assessed by an expert pathologist. Diagnostic algorithms were developed using genetic algorithm-based feature selection and linear discriminant analysis, and classification was performed on all spectra with a bootstrap-based cross-validation scheme. The analysis comprised 192 samples (112 non-dysplastic, 54 low-grade dysplasia and 26 high-grade dysplasia/early adenocarcinoma) from 65 patients. Compared with histology, NIRS differentiated dysplastic from non-dysplastic Barrett's samples with 86% sensitivity, 88% specificity and 87% accuracy. NIRS identified 'high-risk' lesions (high-grade dysplasia/early adenocarcinoma) with 88% sensitivity, 89% specificity and 89% accuracy. In the present study, NIRS classified Barrett's epithelia with high and clinically-useful diagnostic accuracy.

  6. Genetic Diversity Analysis of Highly Incomplete SNP Genotype Data with Imputations: An Empirical Assessment

    PubMed Central

    Fu, Yong-Bi

    2014-01-01

    Genotyping by sequencing (GBS) recently has emerged as a promising genomic approach for assessing genetic diversity on a genome-wide scale. However, concerns are not lacking about the uniquely large unbalance in GBS genotype data. Although some genotype imputation has been proposed to infer missing observations, little is known about the reliability of a genetic diversity analysis of GBS data, with up to 90% of observations missing. Here we performed an empirical assessment of accuracy in genetic diversity analysis of highly incomplete single nucleotide polymorphism genotypes with imputations. Three large single-nucleotide polymorphism genotype data sets for corn, wheat, and rice were acquired, and missing data with up to 90% of missing observations were randomly generated and then imputed for missing genotypes with three map-independent imputation methods. Estimating heterozygosity and inbreeding coefficient from original, missing, and imputed data revealed variable patterns of bias from assessed levels of missingness and genotype imputation, but the estimation biases were smaller for missing data without genotype imputation. The estimates of genetic differentiation were rather robust up to 90% of missing observations but became substantially biased when missing genotypes were imputed. The estimates of topology accuracy for four representative samples of interested groups generally were reduced with increased levels of missing genotypes. Probabilistic principal component analysis based imputation performed better in terms of topology accuracy than those analyses of missing data without genotype imputation. These findings are not only significant for understanding the reliability of the genetic diversity analysis with respect to large missing data and genotype imputation but also are instructive for performing a proper genetic diversity analysis of highly incomplete GBS or other genotype data. PMID:24626289

  7. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  8. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Duoglas

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA s Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  9. A meta-analysis of use of Prostate Imaging Reporting and Data System Version 2 (PI-RADS V2) with multiparametric MR imaging for the detection of prostate cancer.

    PubMed

    Zhang, Li; Tang, Min; Chen, Sipan; Lei, Xiaoyan; Zhang, Xiaoling; Huan, Yi

    2017-12-01

    This meta-analysis was undertaken to review the diagnostic accuracy of PI-RADS V2 for prostate cancer (PCa) detection with multiparametric MR (mp-MR). A comprehensive literature search of electronic databases was performed by two observers independently. Inclusion criteria were original research using the PI-RADS V2 system in reporting prostate MRI. The methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Data necessary to complete 2 × 2 contingency tables were obtained from the included studies. Thirteen studies (2,049 patients) were analysed. This is an initial meta-analysis of PI-RADs V2 and the overall diagnostic accuracy in diagnosing PCa was as follows: pooled sensitivity, 0.85 (0.78-0.91); pooled specificity, 0.71 (0.60-0.80); pooled positive likelihood ratio (LR+), 2.92 (2.09-4.09); pooled negative likelihood ratio (LR-), 0.21 (0.14-0.31); pooled diagnostic odds ratio (DOR), 14.08 (7.93-25.01), respectively. Positive predictive values ranged from 0.54 to 0.97 and negative predictive values ranged from 0.26 to 0.92. Currently available evidence indicates that PI-RADS V2 appears to have good diagnostic accuracy in patients with PCa lesions with high sensitivity and moderate specificity. However, no recommendation regarding the best threshold can be provided because of heterogeneity. • PI-RADS V2 shows good diagnostic accuracy for PCa detection. • Initially pooled specificity of PI-RADS v2 remains moderate. • PCa detection is increased by experienced radiologists. • There is currently a high heterogeneity in prostate diagnostics with MRI.

  10. An oscillation-free flow solver based on flux reconstruction

    NASA Astrophysics Data System (ADS)

    Aguerre, Horacio J.; Pairetti, Cesar I.; Venier, Cesar M.; Márquez Damián, Santiago; Nigro, Norberto M.

    2018-07-01

    In this paper, a segregated algorithm is proposed to suppress high-frequency oscillations in the velocity field for incompressible flows. In this context, a new velocity formula based on a reconstruction of face fluxes is defined eliminating high-frequency errors. In analogy to the Rhie-Chow interpolation, this approach is equivalent to including a flux-based pressure gradient with a velocity diffusion in the momentum equation. In order to guarantee second-order accuracy of the numerical solver, a set of conditions are defined for the reconstruction operator. To arrive at the final formulation, an outlook over the state of the art regarding velocity reconstruction procedures is presented comparing them through an error analysis. A new operator is then obtained by means of a flux difference minimization satisfying the required spatial accuracy. The accuracy of the new algorithm is analyzed by performing mesh convergence studies for unsteady Navier-Stokes problems with analytical solutions. The stabilization properties of the solver are then tested in a problem where spurious numerical oscillations arise for the velocity field. The results show a remarkable performance of the proposed technique eliminating high-frequency errors without losing accuracy.

  11. Generalized Centroid Estimators in Bioinformatics

    PubMed Central

    Hamada, Michiaki; Kiryu, Hisanori; Iwasaki, Wataru; Asai, Kiyoshi

    2011-01-01

    In a number of estimation problems in bioinformatics, accuracy measures of the target problem are usually given, and it is important to design estimators that are suitable to those accuracy measures. However, there is often a discrepancy between an employed estimator and a given accuracy measure of the problem. In this study, we introduce a general class of efficient estimators for estimation problems on high-dimensional binary spaces, which represent many fundamental problems in bioinformatics. Theoretical analysis reveals that the proposed estimators generally fit with commonly-used accuracy measures (e.g. sensitivity, PPV, MCC and F-score) as well as it can be computed efficiently in many cases, and cover a wide range of problems in bioinformatics from the viewpoint of the principle of maximum expected accuracy (MEA). It is also shown that some important algorithms in bioinformatics can be interpreted in a unified manner. Not only the concept presented in this paper gives a useful framework to design MEA-based estimators but also it is highly extendable and sheds new light on many problems in bioinformatics. PMID:21365017

  12. Identification and delineation of areas flood hazard using high accuracy of DEM data

    NASA Astrophysics Data System (ADS)

    Riadi, B.; Barus, B.; Widiatmaka; Yanuar, M. J. P.; Pramudya, B.

    2018-05-01

    Flood incidents that often occur in Karawang regency need to be mitigated. These expectations exist on technologies that can predict, anticipate and reduce disaster risks. Flood modeling techniques using Digital Elevation Model (DEM) data can be applied in mitigation activities. High accuracy DEM data used in modeling, will result in better flooding flood models. The result of high accuracy DEM data processing will yield information about surface morphology which can be used to identify indication of flood hazard area. The purpose of this study was to identify and describe flood hazard areas by identifying wetland areas using DEM data and Landsat-8 images. TerraSAR-X high-resolution data is used to detect wetlands from landscapes, while land cover is identified by Landsat image data. The Topography Wetness Index (TWI) method is used to detect and identify wetland areas with basic DEM data, while for land cover analysis using Tasseled Cap Transformation (TCT) method. The result of TWI modeling yields information about potential land of flood. Overlay TWI map with land cover map that produces information that in Karawang regency the most vulnerable areas occur flooding in rice fields. The spatial accuracy of the flood hazard area in this study was 87%.

  13. Diagnostic accuracy of routine blood examinations and CSF lactate level for post-neurosurgical bacterial meningitis.

    PubMed

    Zhang, Yang; Xiao, Xiong; Zhang, Junting; Gao, Zhixian; Ji, Nan; Zhang, Liwei

    2017-06-01

    To evaluate the diagnostic accuracy of routine blood examinations and Cerebrospinal Fluid (CSF) lactate level for Post-neurosurgical Bacterial Meningitis (PBM) at a large sample-size of post-neurosurgical patients. The diagnostic accuracies of routine blood examinations and CSF lactate level to distinguish between PAM and PBM were evaluated with the values of the Area Under the Curve of the Receiver Operating Characteristic (AUC -ROC ) by retrospectively analyzing the datasets of post-neurosurgical patients in the clinical information databases. The diagnostic accuracy of routine blood examinations was relatively low (AUC -ROC <0.7). The CSF lactate level achieved rather high diagnostic accuracy (AUC -ROC =0.891; CI 95%, 0.852-0.922). The variables of patient age, operation duration, surgical diagnosis and postoperative days (the interval days between the neurosurgery and examinations) were shown to affect the diagnostic accuracy of these examinations. The variables were integrated with routine blood examinations and CSF lactate level by Fisher discriminant analysis to improve their diagnostic accuracy. As a result, the diagnostic accuracy of blood examinations and CSF lactate level was significantly improved with an AUC -ROC value=0.760 (CI 95%, 0.737-0.782) and 0.921 (CI 95%, 0.887-0.948) respectively. The PBM diagnostic accuracy of routine blood examinations was relatively low, whereas the accuracy of CSF lactate level was high. Some variables that are involved in the incidence of PBM can also affect the diagnostic accuracy for PBM. Taking into account the effects of these variables significantly improves the diagnostic accuracies of routine blood examinations and CSF lactate level. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Optimization of Dimensional accuracy in plasma arc cutting process employing parametric modelling approach

    NASA Astrophysics Data System (ADS)

    Naik, Deepak kumar; Maity, K. P.

    2018-03-01

    Plasma arc cutting (PAC) is a high temperature thermal cutting process employed for the cutting of extensively high strength material which are difficult to cut through any other manufacturing process. This process involves high energized plasma arc to cut any conducting material with better dimensional accuracy in lesser time. This research work presents the effect of process parameter on to the dimensional accuracy of PAC process. The input process parameters were selected as arc voltage, standoff distance and cutting speed. A rectangular plate of 304L stainless steel of 10 mm thickness was taken for the experiment as a workpiece. Stainless steel is very extensively used material in manufacturing industries. Linear dimension were measured following Taguchi’s L16 orthogonal array design approach. Three levels were selected to conduct the experiment for each of the process parameter. In all experiments, clockwise cut direction was followed. The result obtained thorough measurement is further analyzed. Analysis of variance (ANOVA) and Analysis of means (ANOM) were performed to evaluate the effect of each process parameter. ANOVA analysis reveals the effect of input process parameter upon leaner dimension in X axis. The results of the work shows that the optimal setting of process parameter values for the leaner dimension on the X axis. The result of the investigations clearly show that the specific range of input process parameter achieved the improved machinability.

  15. High-Reproducibility and High-Accuracy Method for Automated Topic Classification

    NASA Astrophysics Data System (ADS)

    Lancichinetti, Andrea; Sirer, M. Irmak; Wang, Jane X.; Acuna, Daniel; Körding, Konrad; Amaral, Luís A. Nunes

    2015-01-01

    Much of human knowledge sits in large databases of unstructured text. Leveraging this knowledge requires algorithms that extract and record metadata on unstructured text documents. Assigning topics to documents will enable intelligent searching, statistical characterization, and meaningful classification. Latent Dirichlet allocation (LDA) is the state of the art in topic modeling. Here, we perform a systematic theoretical and numerical analysis that demonstrates that current optimization techniques for LDA often yield results that are not accurate in inferring the most suitable model parameters. Adapting approaches from community detection in networks, we propose a new algorithm that displays high reproducibility and high accuracy and also has high computational efficiency. We apply it to a large set of documents in the English Wikipedia and reveal its hierarchical structure.

  16. High frequency, high time resolution time-to-digital converter employing passive resonating circuits.

    PubMed

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-05-01

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.

  17. Influence of Spatial Resolution in Three-dimensional Cine Phase Contrast Magnetic Resonance Imaging on the Accuracy of Hemodynamic Analysis

    PubMed Central

    Fukuyama, Atsushi; Isoda, Haruo; Morita, Kento; Mori, Marika; Watanabe, Tomoya; Ishiguro, Kenta; Komori, Yoshiaki; Kosugi, Takafumi

    2017-01-01

    Introduction: We aim to elucidate the effect of spatial resolution of three-dimensional cine phase contrast magnetic resonance (3D cine PC MR) imaging on the accuracy of the blood flow analysis, and examine the optimal setting for spatial resolution using flow phantoms. Materials and Methods: The flow phantom has five types of acrylic pipes that represent human blood vessels (inner diameters: 15, 12, 9, 6, and 3 mm). The pipes were fixed with 1% agarose containing 0.025 mol/L gadolinium contrast agent. A blood-mimicking fluid with human blood property values was circulated through the pipes at a steady flow. Magnetic resonance (MR) images (three-directional phase images with speed information and magnitude images for information of shape) were acquired using the 3-Tesla MR system and receiving coil. Temporal changes in spatially-averaged velocity and maximum velocity were calculated using hemodynamic analysis software. We calculated the error rates of the flow velocities based on the volume flow rates measured with a flowmeter and examined measurement accuracy. Results: When the acrylic pipe was the size of the thoracicoabdominal or cervical artery and the ratio of pixel size for the pipe was set at 30% or lower, spatially-averaged velocity measurements were highly accurate. When the pixel size ratio was set at 10% or lower, maximum velocity could be measured with high accuracy. It was difficult to accurately measure maximum velocity of the 3-mm pipe, which was the size of an intracranial major artery, but the error for spatially-averaged velocity was 20% or less. Conclusions: Flow velocity measurement accuracy of 3D cine PC MR imaging for pipes with inner sizes equivalent to vessels in the cervical and thoracicoabdominal arteries is good. The flow velocity accuracy for the pipe with a 3-mm-diameter that is equivalent to major intracranial arteries is poor for maximum velocity, but it is relatively good for spatially-averaged velocity. PMID:28132996

  18. The EO-1 hyperion and advanced land imager sensors for use in tundra classification studies within the Upper Kuparuk River Basin, Alaska

    NASA Astrophysics Data System (ADS)

    Hall-Brown, Mary

    The heterogeneity of Arctic vegetation can make land cover classification vey difficult when using medium to small resolution imagery (Schneider et al., 2009; Muller et al., 1999). Using high radiometric and spatial resolution imagery, such as the SPOT 5 and IKONOS satellites, have helped arctic land cover classification accuracies rise into the 80 and 90 percentiles (Allard, 2003; Stine et al., 2010; Muller et al., 1999). However, those increases usually come at a high price. High resolution imagery is very expensive and can often add tens of thousands of dollars onto the cost of the research. The EO-1 satellite launched in 2002 carries two sensors that have high specral and/or high spatial resolutions and can be an acceptable compromise between the resolution versus cost issues. The Hyperion is a hyperspectral sensor with the capability of collecting 242 spectral bands of information. The Advanced Land Imager (ALI) is an advanced multispectral sensor whose spatial resolution can be sharpened to 10 meters. This dissertation compares the accuracies of arctic land cover classifications produced by the Hyperion and ALI sensors to the classification accuracies produced by the Systeme Pour l' Observation de le Terre (SPOT), the Landsat Thematic Mapper (TM) and the Landsat Enhanced Thematic Mapper Plus (ETM+) sensors. Hyperion and ALI images from August 2004 were collected over the Upper Kuparuk River Basin, Alaska. Image processing included the stepwise discriminant analysis of pixels that were positively classified from coinciding ground control points, geometric and radiometric correction, and principle component analysis. Finally, stratified random sampling was used to perform accuracy assessments on satellite derived land cover classifications. Accuracy was estimated from an error matrix (confusion matrix) that provided the overall, producer's and user's accuracies. This research found that while the Hyperion sensor produced classfication accuracies that were equivalent to the TM and ETM+ sensor (approximately 78%), the Hyperion could not obtain the accuracy of the SPOT 5 HRV sensor. However, the land cover classifications derived from the ALI sensor exceeded most classification accuracies derived from the TM and ETM+ senors and were even comparable to most SPOT 5 HRV classifications (87%). With the deactivation of the Landsat series satellites, the monitoring of remote locations such as in the Arctic on an uninterupted basis thoughout the world is in jeopardy. The utilization of the Hyperion and ALI sensors are a way to keep that endeavor operational. By keeping the ALI sensor active at all times, uninterupted observation of the entire Earth can be accomplished. Keeping the Hyperion sensor as a "tasked" sensor can provide scientists with additional imagery and options for their studies without overburdening storage issues.

  19. Delineating Beach and Dune Morphology from Massive Terrestrial Laser Scanning Data Using the Generic Mapping Tools

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Wang, G.; Yan, B.; Kearns, T.

    2016-12-01

    Terrestrial laser scanning (TLS) techniques have been proven to be efficient tools to collect three-dimensional high-density and high-accuracy point clouds for coastal research and resource management. However, the processing and presenting of massive TLS data is always a challenge for research when targeting a large area with high-resolution. This article introduces a workflow using shell-scripting techniques to chain together tools from the Generic Mapping Tools (GMT), Geographic Resources Analysis Support System (GRASS), and other command-based open-source utilities for automating TLS data processing. TLS point clouds acquired in the beach and dune area near Freeport, Texas in May 2015 were used for the case study. Shell scripts for rotating the coordinate system, removing anomalous points, assessing data quality, generating high-accuracy bare-earth DEMs, and quantifying beach and sand dune features (shoreline, cross-dune section, dune ridge, toe, and volume) are presented in this article. According to this investigation, the accuracy of the laser measurements (distance from the scanner to the targets) is within a couple of centimeters. However, the positional accuracy of TLS points with respect to a global coordinate system is about 5 cm, which is dominated by the accuracy of GPS solutions for obtaining the positions of the scanner and reflector. The accuracy of TLS-derived bare-earth DEM is primarily determined by the size of grid cells and roughness of the terrain surface for the case study. A DEM with grid cells of 4m x 1m (shoreline by cross-shore) provides a suitable spatial resolution and accuracy for deriving major beach and dune features.

  20. Addressing issues associated with evaluating prediction models for survival endpoints based on the concordance statistic.

    PubMed

    Wang, Ming; Long, Qi

    2016-09-01

    Prediction models for disease risk and prognosis play an important role in biomedical research, and evaluating their predictive accuracy in the presence of censored data is of substantial interest. The standard concordance (c) statistic has been extended to provide a summary measure of predictive accuracy for survival models. Motivated by a prostate cancer study, we address several issues associated with evaluating survival prediction models based on c-statistic with a focus on estimators using the technique of inverse probability of censoring weighting (IPCW). Compared to the existing work, we provide complete results on the asymptotic properties of the IPCW estimators under the assumption of coarsening at random (CAR), and propose a sensitivity analysis under the mechanism of noncoarsening at random (NCAR). In addition, we extend the IPCW approach as well as the sensitivity analysis to high-dimensional settings. The predictive accuracy of prediction models for cancer recurrence after prostatectomy is assessed by applying the proposed approaches. We find that the estimated predictive accuracy for the models in consideration is sensitive to NCAR assumption, and thus identify the best predictive model. Finally, we further evaluate the performance of the proposed methods in both settings of low-dimensional and high-dimensional data under CAR and NCAR through simulations. © 2016, The International Biometric Society.

  1. Applications and accuracy of the parallel diagonal dominant algorithm

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He

    1993-01-01

    The Parallel Diagonal Dominant (PDD) algorithm is a highly efficient, ideally scalable tridiagonal solver. In this paper, a detailed study of the PDD algorithm is given. First the PDD algorithm is introduced. Then the algorithm is extended to solve periodic tridiagonal systems. A variant, the reduced PDD algorithm, is also proposed. Accuracy analysis is provided for a class of tridiagonal systems, the symmetric, and anti-symmetric Toeplitz tridiagonal systems. Implementation results show that the analysis gives a good bound on the relative error, and the algorithm is a good candidate for the emerging massively parallel machines.

  2. Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers.

    PubMed

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S; Garcia-Closas, Montserrat; Sherman, Mark E; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P; Khan, Javed; Chanock, Stephen

    2011-01-17

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  3. Detection of Somatic Mutations by High-Resolution DNA Melting (HRM) Analysis in Multiple Cancers

    PubMed Central

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S.; Garcia-Closas, Montserrat; Sherman, Mark E.; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P.; Khan, Javed; Chanock, Stephen

    2011-01-01

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples. PMID:21264207

  4. Fabrication and Structural Design of Micro Pressure Sensors for Tire Pressure Measurement Systems (TPMS).

    PubMed

    Tian, Bian; Zhao, Yulong; Jiang, Zhuangde; Zhang, Ling; Liao, Nansheng; Liu, Yuanhao; Meng, Chao

    2009-01-01

    In this paper we describe the design and testing of a micro piezoresistive pressure sensor for a Tire Pressure Measurement System (TPMS) which has the advantages of a minimized structure, high sensitivity, linearity and accuracy. Through analysis of the stress distribution of the diaphragm using the ANSYS software, a model of the structure was established. The fabrication on a single silicon substrate utilizes the technologies of anisotropic chemical etching and packaging through glass anodic bonding. The performance of this type of piezoresistive sensor, including size, sensitivity, and long-term stability, were investigated. The results indicate that the accuracy is 0.5% FS, therefore this design meets the requirements for a TPMS, and not only has a smaller size and simplicity of preparation, but also has high sensitivity and accuracy.

  5. Combined diagnostic performance of coronary computed tomography angiography and computed tomography derived fractional flow reserve for the evaluation of myocardial ischemia: A meta-analysis.

    PubMed

    Tan, Xiao Wei; Zheng, Qishi; Shi, Luming; Gao, Fei; Allen, John Carson; Coenen, Adriaan; Baumann, Stefan; Schoepf, U Joseph; Kassab, Ghassan S; Lim, Soo Teik; Wong, Aaron Sung Lung; Tan, Jack Wei Chieh; Yeo, Khung Keong; Chin, Chee Tang; Ho, Kay Woon; Tan, Swee Yaw; Chua, Terrance Siang Jin; Chan, Edwin Shih Yen; Tan, Ru San; Zhong, Liang

    2017-06-01

    To evaluate the combined diagnostic accuracy of coronary computed tomography angiography (CCTA) and computed tomography derived fractional flow reserve (FFRct) in patients with suspected or known coronary artery disease (CAD). PubMed, The Cochrane library, Embase and OpenGray were searched to identify studies comparing diagnostic accuracy of CCTA and FFRct. Diagnostic test measurements of FFRct were either extracted directly from the published papers or calculated from provided information. Bivariate models were conducted to synthesize the diagnostic performance of combined CCTA and FFRct at both "per-vessel" and "per-patient" levels. 7 articles were included for analysis. The combined diagnostic outcomes from "both positive" strategy, i.e. a subject was considered as "positive" only when both CCTA and FFRct were "positive", demonstrated relative high specificity (per-vessel: 0.91; per-patient: 0.81), high positive likelihood ratio (LR+, per-vessel: 7.93; per-patient: 4.26), high negative likelihood ratio (LR-, per-vessel: 0.30; per patient: 0.24) and high accuracy (per-vessel: 0.91; per-patient: 0.81) while "either positive" strategy, i.e. a subject was considered as "positive" when either CCTA or FFRct was "positive", demonstrated relative high sensitivity (per-vessel: 0.97; per-patient: 0.98), low LR+ (per-vessel: 1.50; per-patient: 1.17), low LR- (per-vessel: 0.07; per-patient: 0.09) and low accuracy (per-vessel: 0.57; per-patient: 0.54). "Both positive" strategy showed better diagnostic performance to rule in patients with non-significant stenosis compared to "either positive" strategy, as it efficiently reduces the proportion of testing false positive subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Probabilistic power flow using improved Monte Carlo simulation method with correlated wind sources

    NASA Astrophysics Data System (ADS)

    Bie, Pei; Zhang, Buhan; Li, Hang; Deng, Weisi; Wu, Jiasi

    2017-01-01

    Probabilistic Power Flow (PPF) is a very useful tool for power system steady-state analysis. However, the correlation among different random injection power (like wind power) brings great difficulties to calculate PPF. Monte Carlo simulation (MCS) and analytical methods are two commonly used methods to solve PPF. MCS has high accuracy but is very time consuming. Analytical method like cumulants method (CM) has high computing efficiency but the cumulants calculating is not convenient when wind power output does not obey any typical distribution, especially when correlated wind sources are considered. In this paper, an Improved Monte Carlo simulation method (IMCS) is proposed. The joint empirical distribution is applied to model different wind power output. This method combines the advantages of both MCS and analytical method. It not only has high computing efficiency, but also can provide solutions with enough accuracy, which is very suitable for on-line analysis.

  7. Consistency and Accuracy of Multiple Pain Scales Measured in Cancer Patients from Multiple Ethnic Groups

    PubMed Central

    Ham, Ok-Kyung; Kang, Youjeong; Teng, Helen; Lee, Yaelim; Im, Eun-Ok

    2014-01-01

    Background Standardized pain-intensity measurement across different tools would enable practitioners to have confidence in clinical decision-making for pain management. Objectives The purpose was to examine the degree of agreement among unidimensional pain scales, and to determine the accuracy of the multidimensional pain scales in the diagnosis of severe pain. Methods A secondary analysis was performed. The sample included a convenience sample of 480 cancer patients recruited from both the internet and community settings. Cancer pain was measured using the Verbal Descriptor Scale (VDS), the Visual Analog Scale (VAS), the Faces Pain Scale (FPS), the McGill Pain Questionnaire-Short Form (MPQ-SF) and the Brief Pain Inventory-Short Form (BPI-SF). Data were analyzed using a multivariate analysis of variance (MANOVA) and a receiver operating characteristics (ROC) curve. Results The agreement between the VDS and VAS was 77.25%, while the agreement was 71.88% and 71.60% between the VDS and FPS, and VAS and FPS, respectively. The MPQ-SF and BPI-SF yielded high accuracy in the diagnosis of severe pain. Cutoff points for severe pain were > 8 for the MPQ-SF and > 14 for the BPI-SF, which exhibited high sensitivity and relatively low specificity. Conclusion The study found substantial agreement between the unidimensional pain scales, and high accuracy of the MPQ-SF and the BPI-SF in the diagnosis of severe pain. Implications for Practice Use of one or more pain screening tools that have been validated diagnostic accuracy and consistency will help classify pain effectively and subsequently promote optimal pain control in multi-ethnic groups of cancer patients. PMID:25068188

  8. Quantitative Myocardial Perfusion Imaging Versus Visual Analysis in Diagnosing Myocardial Ischemia: A CE-MARC Substudy.

    PubMed

    Biglands, John D; Ibraheem, Montasir; Magee, Derek R; Radjenovic, Aleksandra; Plein, Sven; Greenwood, John P

    2018-05-01

    This study sought to compare the diagnostic accuracy of visual and quantitative analyses of myocardial perfusion cardiovascular magnetic resonance against a reference standard of quantitative coronary angiography. Visual analysis of perfusion cardiovascular magnetic resonance studies for assessing myocardial perfusion has been shown to have high diagnostic accuracy for coronary artery disease. However, only a few small studies have assessed the diagnostic accuracy of quantitative myocardial perfusion. This retrospective study included 128 patients randomly selected from the CE-MARC (Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease) study population such that the distribution of risk factors and disease status was proportionate to the full population. Visual analysis results of cardiovascular magnetic resonance perfusion images, by consensus of 2 expert readers, were taken from the original study reports. Quantitative myocardial blood flow estimates were obtained using Fermi-constrained deconvolution. The reference standard for myocardial ischemia was a quantitative coronary x-ray angiogram stenosis severity of ≥70% diameter in any coronary artery of >2 mm diameter, or ≥50% in the left main stem. Diagnostic performance was calculated using receiver-operating characteristic curve analysis. The area under the curve for visual analysis was 0.88 (95% confidence interval: 0.81 to 0.95) with a sensitivity of 81.0% (95% confidence interval: 69.1% to 92.8%) and specificity of 86.0% (95% confidence interval: 78.7% to 93.4%). For quantitative stress myocardial blood flow the area under the curve was 0.89 (95% confidence interval: 0.83 to 0.96) with a sensitivity of 87.5% (95% confidence interval: 77.3% to 97.7%) and specificity of 84.5% (95% confidence interval: 76.8% to 92.3%). There was no statistically significant difference between the diagnostic performance of quantitative and visual analyses (p = 0.72). Incorporating rest myocardial blood flow values to generate a myocardial perfusion reserve did not significantly increase the quantitative analysis area under the curve (p = 0.79). Quantitative perfusion has a high diagnostic accuracy for detecting coronary artery disease but is not superior to visual analysis. The incorporation of rest perfusion imaging does not improve diagnostic accuracy in quantitative perfusion analysis. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Individual Patient Diagnosis of AD and FTD via High-Dimensional Pattern Classification of MRI

    PubMed Central

    Davatzikos, C.; Resnick, S. M.; Wu, X.; Parmpi, P.; Clark, C. M.

    2008-01-01

    The purpose of this study is to determine the diagnostic accuracy of MRI-based high-dimensional pattern classification in differentiating between patients with Alzheimer’s Disease (AD), Frontotemporal Dementia (FTD), and healthy controls, on an individual patient basis. MRI scans of 37 patients with AD and 37 age-matched cognitively normal elderly individuals, as well as 12 patients with FTD and 12 age-matched cognitively normal elderly individuals, were analyzed using voxel-based analysis and high-dimensional pattern classification. Diagnostic sensitivity and specificity of spatial patterns of regional brain atrophy found to be characteristic of AD and FTD were determined via cross-validation and via split-sample methods. Complex spatial patterns of relatively reduced brain volumes were identified, including temporal, orbitofrontal, parietal and cingulate regions, which were predominantly characteristic of either AD or FTD. These patterns provided 100% diagnostic accuracy, when used to separate AD or FTD from healthy controls. The ability to correctly distinguish AD from FTD averaged 84.3%. All estimates of diagnostic accuracy were determined via cross-validation. In conclusion, AD- and FTD-specific patterns of brain atrophy can be detected with high accuracy using high-dimensional pattern classification of MRI scans obtained in a typical clinical setting. PMID:18474436

  10. Simulation and performance analysis of a novel high-accuracy sheathless microfluidic impedance cytometer with coplanar electrode layout.

    PubMed

    Caselli, Federica; Bisegna, Paolo

    2017-10-01

    The performance of a novel microfluidic impedance cytometer (MIC) with coplanar configuration is investigated in silico. The main feature of the device is the ability to provide accurate particle-sizing despite the well-known measurement sensitivity to particle trajectory. The working principle of the device is presented and validated by means of an original virtual laboratory providing close-to-experimental synthetic data streams. It is shown that a metric correlating with particle trajectory can be extracted from the signal traces and used to compensate the trajectory-induced error in the estimated particle size, thus reaching high-accuracy. An analysis of relevant parameters of the experimental setup is also presented. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. High-accuracy biodistribution analysis of adeno-associated virus variants by double barcode sequencing.

    PubMed

    Marsic, Damien; Méndez-Gómez, Héctor R; Zolotukhin, Sergei

    2015-01-01

    Biodistribution analysis is a key step in the evaluation of adeno-associated virus (AAV) capsid variants, whether natural isolates or produced by rational design or directed evolution. Indeed, when screening candidate vectors, accurate knowledge about which tissues are infected and how efficiently is essential. We describe the design, validation, and application of a new vector, pTR-UF50-BC, encoding a bioluminescent protein, a fluorescent protein and a DNA barcode, which can be used to visualize localization of transduction at the organism, organ, tissue, or cellular levels. In addition, by linking capsid variants to different barcoded versions of the vector and amplifying the barcode region from various tissue samples using barcoded primers, biodistribution of viral genomes can be analyzed with high accuracy and efficiency.

  12. Radiomics-based Prognosis Analysis for Non-Small Cell Lung Cancer

    NASA Astrophysics Data System (ADS)

    Zhang, Yucheng; Oikonomou, Anastasia; Wong, Alexander; Haider, Masoom A.; Khalvati, Farzad

    2017-04-01

    Radiomics characterizes tumor phenotypes by extracting large numbers of quantitative features from radiological images. Radiomic features have been shown to provide prognostic value in predicting clinical outcomes in several studies. However, several challenges including feature redundancy, unbalanced data, and small sample sizes have led to relatively low predictive accuracy. In this study, we explore different strategies for overcoming these challenges and improving predictive performance of radiomics-based prognosis for non-small cell lung cancer (NSCLC). CT images of 112 patients (mean age 75 years) with NSCLC who underwent stereotactic body radiotherapy were used to predict recurrence, death, and recurrence-free survival using a comprehensive radiomics analysis. Different feature selection and predictive modeling techniques were used to determine the optimal configuration of prognosis analysis. To address feature redundancy, comprehensive analysis indicated that Random Forest models and Principal Component Analysis were optimum predictive modeling and feature selection methods, respectively, for achieving high prognosis performance. To address unbalanced data, Synthetic Minority Over-sampling technique was found to significantly increase predictive accuracy. A full analysis of variance showed that data endpoints, feature selection techniques, and classifiers were significant factors in affecting predictive accuracy, suggesting that these factors must be investigated when building radiomics-based predictive models for cancer prognosis.

  13. Use Of Clinical Decision Analysis In Predicting The Efficacy Of Newer Radiological Imaging Modalities: Radioscintigraphy Versus Single Photon Transverse Section Emission Computed Tomography

    NASA Astrophysics Data System (ADS)

    Prince, John R.

    1982-12-01

    Sensitivity, specificity, and predictive accuracy have been shown to be useful measures of the clinical efficacy of diagnostic tests and can be used to predict the potential improvement in diagnostic certitude resulting from the introduction of a competing technology. This communication demonstrates how the informal use of clinical decision analysis may guide health planners in the allocation of resources, purchasing decisions, and implementation of high technology. For didactic purposes the focus is on a comparison between conventional planar radioscintigraphy (RS) and single photon transverse section emission conputed tomography (SPECT). For example, positive predictive accuracy (PPA) for brain RS in a specialist hospital with a 50% disease prevalance is about 95%. SPECT should increase this predicted accuracy to 96%. In a primary care hospital with only a 15% disease prevalance the PPA is only 77% and SPECT may increase this accuracy to about 79%. Similar calculations based on published data show that marginal improvements are expected with SPECT in the liver. It is concluded that: a) The decision to purchase a high technology imaging modality such as SPECT for clinical purposes should be analyzed on an individual organ system and institutional basis. High technology may be justified in specialist hospitals but not necessarily in primary care hospitals. This is more dependent on disease prevalance than procedure volume; b) It is questionable whether SPECT imaging will be competitive with standard RS procedures. Research should concentrate on the development of different medical applications.

  14. Diagnostic Accuracy of Memory Measures in Alzheimer’s Dementia and Mild Cognitive Impairment: a Systematic Review and Meta-Analysis

    PubMed Central

    Weissberger, Gali H.; Strong, Jessica V.; Stefanidis, Kayla B.; Summers, Mathew J.; Bondi, Mark W.; Stricker, Nikki H.

    2018-01-01

    With an increasing focus on biomarkers in dementia research, illustrating the role of neuropsychological assessment in detecting mild cognitive impairment (MCI) and Alzheimer’s dementia (AD) is important. This systematic review and meta-analysis, conducted in accordance with PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) standards, summarizes the sensitivity and specificity of memory measures in individuals with MCI and AD. Both meta-analytic and qualitative examination of AD versus healthy control (HC) studies (n = 47) revealed generally high sensitivity and specificity (≥ 80% for AD comparisons) for measures of immediate (sensitivity = 87%, specificity = 88%) and delayed memory (sensitivity = 89%, specificity = 89%), especially those involving word-list recall. Examination of MCI versus HC studies (n = 38) revealed generally lower diagnostic accuracy for both immediate (sensitivity = 72%, specificity = 81%) and delayed memory (sensitivity = 75%, specificity = 81%). Measures that differentiated AD from other conditions (n = 10 studies) yielded mixed results, with generally high sensitivity in the context of low or variable specificity. Results confirm that memory measures have high diagnostic accuracy for identification of AD, are promising but require further refinement for identification of MCI, and provide support for ongoing investigation of neuropsychological assessment as a cognitive biomarker of preclinical AD. Emphasizing diagnostic test accuracy statistics over null hypothesis testing in future studies will promote the ongoing use of neuropsychological tests as Alzheimer’s disease research and clinical criteria increasingly rely upon cerebrospinal fluid (CSF) and neuroimaging biomarkers. PMID:28940127

  15. Support vector machine and principal component analysis for microarray data classification

    NASA Astrophysics Data System (ADS)

    Astuti, Widi; Adiwijaya

    2018-03-01

    Cancer is a leading cause of death worldwide although a significant proportion of it can be cured if it is detected early. In recent decades, technology called microarray takes an important role in the diagnosis of cancer. By using data mining technique, microarray data classification can be performed to improve the accuracy of cancer diagnosis compared to traditional techniques. The characteristic of microarray data is small sample but it has huge dimension. Since that, there is a challenge for researcher to provide solutions for microarray data classification with high performance in both accuracy and running time. This research proposed the usage of Principal Component Analysis (PCA) as a dimension reduction method along with Support Vector Method (SVM) optimized by kernel functions as a classifier for microarray data classification. The proposed scheme was applied on seven data sets using 5-fold cross validation and then evaluation and analysis conducted on term of both accuracy and running time. The result showed that the scheme can obtained 100% accuracy for Ovarian and Lung Cancer data when Linear and Cubic kernel functions are used. In term of running time, PCA greatly reduced the running time for every data sets.

  16. One Size Fits All: Evaluation of the Transferability of a New "Learning" Histologic Image Analysis Application.

    PubMed

    Arlt, Janine; Homeyer, André; Sänger, Constanze; Dahmen, Uta; Dirsch, Olaf

    2016-01-01

    Quantitative analysis of histologic slides is of importance for pathology and also to address surgical questions. Recently, a novel application was developed for the automated quantification of whole-slide images. The aim of this study was to test and validate the underlying image analysis algorithm with respect to user friendliness, accuracy, and transferability to different histologic scenarios. The algorithm splits the images into tiles of a predetermined size and identifies the tissue class of each tile. In the training procedure, the user specifies example tiles of the different tissue classes. In the subsequent analysis procedure, the algorithm classifies each tile into the previously specified classes. User friendliness was evaluated by recording training time and testing reproducibility of the training procedure of users with different background. Accuracy was determined with respect to single and batch analysis. Transferability was demonstrated by analyzing tissue of different organs (rat liver, kidney, small bowel, and spleen) and with different stainings (glutamine synthetase and hematoxylin-eosin). Users of different educational background could apply the program efficiently after a short introduction. When analyzing images with similar properties, accuracy of >90% was reached in single images as well as in batch mode. We demonstrated that the novel application is user friendly and very accurate. With the "training" procedure the application can be adapted to novel image characteristics simply by giving examples of relevant tissue structures. Therefore, it is suitable for the fast and efficient analysis of high numbers of fully digitalized histologic sections, potentially allowing "high-throughput" quantitative "histomic" analysis.

  17. Hybrid Optimization of Object-Based Classification in High-Resolution Images Using Continous ANT Colony Algorithm with Emphasis on Building Detection

    NASA Astrophysics Data System (ADS)

    Tamimi, E.; Ebadi, H.; Kiani, A.

    2017-09-01

    Automatic building detection from High Spatial Resolution (HSR) images is one of the most important issues in Remote Sensing (RS). Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM) classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO) algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF) classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object). These showed the superiority of the proposed method in terms of time and accuracy.

  18. Detecting exact breakpoints of deletions with diversity in hepatitis B viral genomic DNA from next-generation sequencing data.

    PubMed

    Cheng, Ji-Hong; Liu, Wen-Chun; Chang, Ting-Tsung; Hsieh, Sun-Yuan; Tseng, Vincent S

    2017-10-01

    Many studies have suggested that deletions of Hepatitis B Viral (HBV) are associated with the development of progressive liver diseases, even ultimately resulting in hepatocellular carcinoma (HCC). Among the methods for detecting deletions from next-generation sequencing (NGS) data, few methods considered the characteristics of virus, such as high evolution rates and high divergence among the different HBV genomes. Sequencing high divergence HBV genome sequences using the NGS technology outputs millions of reads. Thus, detecting exact breakpoints of deletions from these big and complex data incurs very high computational cost. We proposed a novel analytical method named VirDelect (Virus Deletion Detect), which uses split read alignment base to detect exact breakpoint and diversity variable to consider high divergence in single-end reads data, such that the computational cost can be reduced without losing accuracy. We use four simulated reads datasets and two real pair-end reads datasets of HBV genome sequence to verify VirDelect accuracy by score functions. The experimental results show that VirDelect outperforms the state-of-the-art method Pindel in terms of accuracy score for all simulated datasets and VirDelect had only two base errors even in real datasets. VirDelect is also shown to deliver high accuracy in analyzing the single-end read data as well as pair-end data. VirDelect can serve as an effective and efficient bioinformatics tool for physiologists with high accuracy and efficient performance and applicable to further analysis with characteristics similar to HBV on genome length and high divergence. The software program of VirDelect can be downloaded at https://sourceforge.net/projects/virdelect/. Copyright © 2017. Published by Elsevier Inc.

  19. Region based Brain Computer Interface for a home control application.

    PubMed

    Akman Aydin, Eda; Bay, Omer Faruk; Guler, Inan

    2015-08-01

    Environment control is one of the important challenges for disabled people who suffer from neuromuscular diseases. Brain Computer Interface (BCI) provides a communication channel between the human brain and the environment without requiring any muscular activation. The most important expectation for a home control application is high accuracy and reliable control. Region-based paradigm is a stimulus paradigm based on oddball principle and requires selection of a target at two levels. This paper presents an application of region based paradigm for a smart home control application for people with neuromuscular diseases. In this study, a region based stimulus interface containing 49 commands was designed. Five non-disabled subjects were attended to the experiments. Offline analysis results of the experiments yielded 95% accuracy for five flashes. This result showed that region based paradigm can be used to select commands of a smart home control application with high accuracy in the low number of repetitions successfully. Furthermore, a statistically significant difference was not observed between the level accuracies.

  20. 13C labeling analysis of sugars by high resolution-mass spectrometry for metabolic flux analysis.

    PubMed

    Acket, Sébastien; Degournay, Anthony; Merlier, Franck; Thomasset, Brigitte

    2017-06-15

    Metabolic flux analysis is particularly complex in plant cells because of highly compartmented metabolism. Analysis of free sugars is interesting because it provides data to define fluxes around hexose, pentose, and triose phosphate pools in different compartment. In this work, we present a method to analyze the isotopomer distribution of free sugars labeled with carbon 13 using a liquid chromatography-high resolution mass spectrometry, without derivatized procedure, adapted for Metabolic flux analysis. Our results showed a good sensitivity, reproducibility and better accuracy to determine isotopic enrichments of free sugars compared to our previous methods [5, 6]. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Application of Linear Discriminant Analysis in Dimensionality Reduction for Hand Motion Classification

    NASA Astrophysics Data System (ADS)

    Phinyomark, A.; Hu, H.; Phukpattaranont, P.; Limsakul, C.

    2012-01-01

    The classification of upper-limb movements based on surface electromyography (EMG) signals is an important issue in the control of assistive devices and rehabilitation systems. Increasing the number of EMG channels and features in order to increase the number of control commands can yield a high dimensional feature vector. To cope with the accuracy and computation problems associated with high dimensionality, it is commonplace to apply a processing step that transforms the data to a space of significantly lower dimensions with only a limited loss of useful information. Linear discriminant analysis (LDA) has been successfully applied as an EMG feature projection method. Recently, a number of extended LDA-based algorithms have been proposed, which are more competitive in terms of both classification accuracy and computational costs/times with classical LDA. This paper presents the findings of a comparative study of classical LDA and five extended LDA methods. From a quantitative comparison based on seven multi-feature sets, three extended LDA-based algorithms, consisting of uncorrelated LDA, orthogonal LDA and orthogonal fuzzy neighborhood discriminant analysis, produce better class separability when compared with a baseline system (without feature projection), principle component analysis (PCA), and classical LDA. Based on a 7-dimension time domain and time-scale feature vectors, these methods achieved respectively 95.2% and 93.2% classification accuracy by using a linear discriminant classifier.

  2. Quantitative underwater 3D motion analysis using submerged video cameras: accuracy analysis and trajectory reconstruction.

    PubMed

    Silvatti, Amanda P; Cerveri, Pietro; Telles, Thiago; Dias, Fábio A S; Baroni, Guido; Barros, Ricardo M L

    2013-01-01

    In this study we aim at investigating the applicability of underwater 3D motion capture based on submerged video cameras in terms of 3D accuracy analysis and trajectory reconstruction. Static points with classical direct linear transform (DLT) solution, a moving wand with bundle adjustment and a moving 2D plate with Zhang's method were considered for camera calibration. As an example of the final application, we reconstructed the hand motion trajectories in different swimming styles and qualitatively compared this with Maglischo's model. Four highly trained male swimmers performed butterfly, breaststroke and freestyle tasks. The middle fingertip trajectories of both hands in the underwater phase were considered. The accuracy (mean absolute error) of the two calibration approaches (wand: 0.96 mm - 2D plate: 0.73 mm) was comparable to out of water results and highly superior to the classical DLT results (9.74 mm). Among all the swimmers, the hands' trajectories of the expert swimmer in the style were almost symmetric and in good agreement with Maglischo's model. The kinematic results highlight symmetry or asymmetry between the two hand sides, intra- and inter-subject variability in terms of the motion patterns and agreement or disagreement with the model. The two outcomes, calibration results and trajectory reconstruction, both move towards the quantitative 3D underwater motion analysis.

  3. Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches

    NASA Astrophysics Data System (ADS)

    Diesing, Markus; Green, Sophie L.; Stephens, David; Lark, R. Murray; Stewart, Heather A.; Dove, Dayton

    2014-08-01

    Marine spatial planning and conservation need underpinning with sufficiently detailed and accurate seabed substrate and habitat maps. Although multibeam echosounders enable us to map the seabed with high resolution and spatial accuracy, there is still a lack of fit-for-purpose seabed maps. This is due to the high costs involved in carrying out systematic seabed mapping programmes and the fact that the development of validated, repeatable, quantitative and objective methods of swath acoustic data interpretation is still in its infancy. We compared a wide spectrum of approaches including manual interpretation, geostatistics, object-based image analysis and machine-learning to gain further insights into the accuracy and comparability of acoustic data interpretation approaches based on multibeam echosounder data (bathymetry, backscatter and derivatives) and seabed samples with the aim to derive seabed substrate maps. Sample data were split into a training and validation data set to allow us to carry out an accuracy assessment. Overall thematic classification accuracy ranged from 67% to 76% and Cohen's kappa varied between 0.34 and 0.52. However, these differences were not statistically significant at the 5% level. Misclassifications were mainly associated with uncommon classes, which were rarely sampled. Map outputs were between 68% and 87% identical. To improve classification accuracy in seabed mapping, we suggest that more studies on the effects of factors affecting the classification performance as well as comparative studies testing the performance of different approaches need to be carried out with a view to developing guidelines for selecting an appropriate method for a given dataset. In the meantime, classification accuracy might be improved by combining different techniques to hybrid approaches and multi-method ensembles.

  4. Performance Analysis of Classification Methods for Indoor Localization in Vlc Networks

    NASA Astrophysics Data System (ADS)

    Sánchez-Rodríguez, D.; Alonso-González, I.; Sánchez-Medina, J.; Ley-Bosch, C.; Díaz-Vilariño, L.

    2017-09-01

    Indoor localization has gained considerable attention over the past decade because of the emergence of numerous location-aware services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much room for improvement in the quality of the proposed classification models. In the last years, the emergence of Visible Light Communication (VLC) brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is immune to electromagnetic interference and has the advantage of having a smaller variance of received signal power compared to RF based technologies. In this paper, a performance analysis of seventeen machine leaning classifiers for indoor localization in VLC networks is carried out. The analysis is accomplished in terms of accuracy, average distance error, computational cost, training size, precision and recall measurements. Results show that most of classifiers harvest an accuracy above 90 %. The best tested classifier yielded a 99.0 % accuracy, with an average error distance of 0.3 centimetres.

  5. A comparison between Bayes discriminant analysis and logistic regression for prediction of debris flow in southwest Sichuan, China

    NASA Astrophysics Data System (ADS)

    Xu, Wenbo; Jing, Shaocai; Yu, Wenjuan; Wang, Zhaoxian; Zhang, Guoping; Huang, Jianxi

    2013-11-01

    In this study, the high risk areas of Sichuan Province with debris flow, Panzhihua and Liangshan Yi Autonomous Prefecture, were taken as the studied areas. By using rainfall and environmental factors as the predictors and based on the different prior probability combinations of debris flows, the prediction of debris flows was compared in the areas with statistical methods: logistic regression (LR) and Bayes discriminant analysis (BDA). The results through the comprehensive analysis show that (a) with the mid-range scale prior probability, the overall predicting accuracy of BDA is higher than those of LR; (b) with equal and extreme prior probabilities, the overall predicting accuracy of LR is higher than those of BDA; (c) the regional predicting models of debris flows with rainfall factors only have worse performance than those introduced environmental factors, and the predicting accuracies of occurrence and nonoccurrence of debris flows have been changed in the opposite direction as the supplemented information.

  6. Accuracy Enhancement of Raman Spectroscopy Using Complementary Laser-Induced Breakdown Spectroscopy (LIBS) with Geologically Mixed Samples.

    PubMed

    Choi, Soojin; Kim, Dongyoung; Yang, Junho; Yoh, Jack J

    2017-04-01

    Quantitative Raman analysis was carried out with geologically mixed samples that have various matrices. In order to compensate the matrix effect in Raman shift, laser-induced breakdown spectroscopy (LIBS) analysis was performed. Raman spectroscopy revealed the geological materials contained in the mixed samples. However, the analysis of a mixture containing different matrices was inaccurate due to the weak signal of the Raman shift, interference, and the strong matrix effect. On the other hand, the LIBS quantitative analysis of atomic carbon and calcium in mixed samples showed high accuracy. In the case of the calcite and gypsum mixture, the coefficient of determination of atomic carbon using LIBS was 0.99, while the signal using Raman was less than 0.9. Therefore, the geological composition of the mixed samples is first obtained using Raman and the LIBS-based quantitative analysis is then applied to the Raman outcome in order to construct highly accurate univariate calibration curves. The study also focuses on a method to overcome matrix effects through the two complementary spectroscopic techniques of Raman spectroscopy and LIBS.

  7. BBMerge – Accurate paired shotgun read merging via overlap

    DOE PAGES

    Bushnell, Brian; Rood, Jonathan; Singer, Esther

    2017-10-26

    Merging paired-end shotgun reads generated on high-throughput sequencing platforms can substantially improve various subsequent bioinformatics processes, including genome assembly, binning, mapping, annotation, and clustering for taxonomic analysis. With the inexorable growth of sequence data volume and CPU core counts, the speed and scalability of read-processing tools becomes ever-more important. The accuracy of shotgun read merging is crucial as well, as errors introduced by incorrect merging percolate through to reduce the quality of downstream analysis. Thus, we designed a new tool to maximize accuracy and minimize processing time, allowing the use of read merging on larger datasets, and in analyses highlymore » sensitive to errors. We present BBMerge, a new merging tool for paired-end shotgun sequence data. We benchmark BBMerge by comparison with eight other widely used merging tools, assessing speed, accuracy and scalability. Evaluations of both synthetic and real-world datasets demonstrate that BBMerge produces merged shotgun reads with greater accuracy and at higher speed than any existing merging tool examined. BBMerge also provides the ability to merge non-overlapping shotgun read pairs by using k-mer frequency information to assemble the unsequenced gap between reads, achieving a significantly higher merge rate while maintaining or increasing accuracy.« less

  8. BBMerge – Accurate paired shotgun read merging via overlap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bushnell, Brian; Rood, Jonathan; Singer, Esther

    Merging paired-end shotgun reads generated on high-throughput sequencing platforms can substantially improve various subsequent bioinformatics processes, including genome assembly, binning, mapping, annotation, and clustering for taxonomic analysis. With the inexorable growth of sequence data volume and CPU core counts, the speed and scalability of read-processing tools becomes ever-more important. The accuracy of shotgun read merging is crucial as well, as errors introduced by incorrect merging percolate through to reduce the quality of downstream analysis. Thus, we designed a new tool to maximize accuracy and minimize processing time, allowing the use of read merging on larger datasets, and in analyses highlymore » sensitive to errors. We present BBMerge, a new merging tool for paired-end shotgun sequence data. We benchmark BBMerge by comparison with eight other widely used merging tools, assessing speed, accuracy and scalability. Evaluations of both synthetic and real-world datasets demonstrate that BBMerge produces merged shotgun reads with greater accuracy and at higher speed than any existing merging tool examined. BBMerge also provides the ability to merge non-overlapping shotgun read pairs by using k-mer frequency information to assemble the unsequenced gap between reads, achieving a significantly higher merge rate while maintaining or increasing accuracy.« less

  9. Improving the analysis of near-spectroscopy data with multivariate classification of hemodynamic patterns: a theoretical formulation and validation.

    PubMed

    Gemignani, Jessica; Middell, Eike; Barbour, Randall L; Graber, Harry L; Blankertz, Benjamin

    2018-04-04

    The statistical analysis of functional near infrared spectroscopy (fNIRS) data based on the general linear model (GLM) is often made difficult by serial correlations, high inter-subject variability of the hemodynamic response, and the presence of motion artifacts. In this work we propose to extract information on the pattern of hemodynamic activations without using any a priori model for the data, by classifying the channels as 'active' or 'not active' with a multivariate classifier based on linear discriminant analysis (LDA). This work is developed in two steps. First we compared the performance of the two analyses, using a synthetic approach in which simulated hemodynamic activations were combined with either simulated or real resting-state fNIRS data. This procedure allowed for exact quantification of the classification accuracies of GLM and LDA. In the case of real resting-state data, the correlations between classification accuracy and demographic characteristics were investigated by means of a Linear Mixed Model. In the second step, to further characterize the reliability of the newly proposed analysis method, we conducted an experiment in which participants had to perform a simple motor task and data were analyzed with the LDA-based classifier as well as with the standard GLM analysis. The results of the simulation study show that the LDA-based method achieves higher classification accuracies than the GLM analysis, and that the LDA results are more uniform across different subjects and, in contrast to the accuracies achieved by the GLM analysis, have no significant correlations with any of the demographic characteristics. Findings from the real-data experiment are consistent with the results of the real-plus-simulation study, in that the GLM-analysis results show greater inter-subject variability than do the corresponding LDA results. The results obtained suggest that the outcome of GLM analysis is highly vulnerable to violations of theoretical assumptions, and that therefore a data-driven approach such as that provided by the proposed LDA-based method is to be favored.

  10. Kinematics Simulation Analysis of Packaging Robot with Joint Clearance

    NASA Astrophysics Data System (ADS)

    Zhang, Y. W.; Meng, W. J.; Wang, L. Q.; Cui, G. H.

    2018-03-01

    Considering the influence of joint clearance on the motion error, repeated positioning accuracy and overall position of the machine, this paper presents simulation analysis of a packaging robot — 2 degrees of freedom(DOF) planar parallel robot based on the characteristics of high precision and fast speed of packaging equipment. The motion constraint equation of the mechanism is established, and the analysis and simulation of the motion error are carried out in the case of turning the revolute clearance. The simulation results show that the size of the joint clearance will affect the movement accuracy and packaging efficiency of the packaging robot. The analysis provides a reference point of view for the packaging equipment design and selection criteria and has a great significance on the packaging industry automation.

  11. [Ultrastructure and Raman Spectral Characteristics of Two Kinds of Acute Myeloid Leukemia Cells].

    PubMed

    Liang, Hao-Yue; Cheng, Xue-Lian; Dong, Shu-Xu; Zhao, Shi-Xuan; Wang, Ying; Ru, Yong-Xin

    2018-02-01

    To investigate the Raman spectral characteristics of leukemia cells from 4 patients with acute promyelocytic leukemia (M 3 ) and 3 patients with acute monoblastic leukemia (M 5 ), establish a novel Raman label-free method to distinguish 2 kinds of acute myeloid leukemia cells so as to provide basis for clinical research. Leukemia cells were collected from bone marrow of above-mentioned patients. Raman spectra were acquired by Horiba Xplora Raman spectrometer and Raman spectra of 30-50 cells from each patient were recorded. The diagnostic model was established according to principle component analysis (PCA), discriminant function analysis (DFA) and cluster analysis, and the spectra of leukemia cells from 7 patients were analyzed and classified. Characteristics of Raman spectra were analyzed combining with ultrastructure of leukemia cells. There were significant differences between Raman spectra of 2 kinds of leukemia cells. Compared with acute monoblastic leukemia cells, the spectra of acute promyelocytic leukemia cells showed stronger peaks in 622, 643, 757, 852, 1003, 1033, 1117, 1157, 1173, 1208, 1340, 1551, 1581 cm -1 . The diagnostic models established by PCA-DFA and cluster analysis could successfully classify these Raman spectra of different samples with a high accuracy of 100% (233/233). The model was evaluated by "Leave-one-out" cross-validation and reached a high accuracy of 97% (226/233). The level of macromolecules of M 3 cells is higher than that of M 5 . The diagnostic models established by PCA-DFA can classify these Raman spectra of different cells with a high accuracy. Raman spectra shows consistent result with ultrastructure by TEM.

  12. A bioinformatic pipeline for identifying informative SNP panels for parentage assignment from RADseq data.

    PubMed

    Andrews, Kimberly R; Adams, Jennifer R; Cassirer, E Frances; Plowright, Raina K; Gardner, Colby; Dwire, Maggie; Hohenlohe, Paul A; Waits, Lisette P

    2018-06-05

    The development of high-throughput sequencing technologies is dramatically increasing the use of single nucleotide polymorphisms (SNPs) across the field of genetics, but most parentage studies of wild populations still rely on microsatellites. We developed a bioinformatic pipeline for identifying SNP panels that are informative for parentage analysis from restriction site-associated DNA sequencing (RADseq) data. This pipeline includes options for analysis with or without a reference genome, and provides methods to maximize genotyping accuracy and select sets of unlinked loci that have high statistical power. We test this pipeline on small populations of Mexican gray wolf and bighorn sheep, for which parentage analyses are expected to be challenging due to low genetic diversity and the presence of many closely related individuals. We compare the results of parentage analysis across SNP panels generated with or without the use of a reference genome, and between SNPs and microsatellites. For Mexican gray wolf, we conducted parentage analyses for 30 pups from a single cohort where samples were available from 64% of possible mothers and 53% of possible fathers, and the accuracy of parentage assignments could be estimated because true identities of parents were known a priori based on field data. For bighorn sheep, we conducted maternity analyses for 39 lambs from five cohorts where 77% of possible mothers were sampled, but true identities of parents were unknown. Analyses with and without a reference genome produced SNP panels with >95% parentage assignment accuracy for Mexican gray wolf, outperforming microsatellites at 78% accuracy. Maternity assignments were completely consistent across all SNP panels for the bighorn sheep, and were 74.4% consistent with assignments from microsatellites. Accuracy and consistency of parentage analysis were not reduced when using as few as 284 SNPs for Mexican gray wolf and 142 SNPs for bighorn sheep, indicating our pipeline can be used to develop SNP genotyping assays for parentage analysis with relatively small numbers of loci. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features.

    PubMed

    Li, Linyi; Xu, Tingbao; Chen, Yun

    2017-01-01

    In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.

  14. Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features

    PubMed Central

    Xu, Tingbao; Chen, Yun

    2017-01-01

    In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images. PMID:28761440

  15. Inventory and analysis of natural vegetation and related resources from space and high altitude photography

    NASA Technical Reports Server (NTRS)

    Poulton, C. E.; Faulkner, D. P.; Johnson, J. R.; Mouat, D. A.; Schrumpf, B. J.

    1971-01-01

    A high altitude photomosaic resource map of Site 29 was produced which provided an opportunity to test photo interpretation accuracy of natural vegetation resource features when mapped at a small (1:133,400) scale. Helicopter reconnaissance over 144 previously selected test points revealed a highly adequate level of photo interpretation accuracy. In general, the reasons for errors could be accounted for. The same photomosaic resource map enabled construction of interpretive land use overlays. Based on features of the landscape, including natural vegetation types, judgements for land use suitability were made and have been presented for two types of potential land use. These two, agriculture and urbanization, represent potential land use conflicts.

  16. Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers

    NASA Astrophysics Data System (ADS)

    Haring, Martijn T.; Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Voortman, Lenard M.; Kruit, Pieter; Hoogenboom, Jacob P.

    2017-03-01

    In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample.

  17. Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers.

    PubMed

    Haring, Martijn T; Liv, Nalan; Zonnevylle, A Christiaan; Narvaez, Angela C; Voortman, Lenard M; Kruit, Pieter; Hoogenboom, Jacob P

    2017-03-02

    In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample.

  18. Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers

    PubMed Central

    Haring, Martijn T.; Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Voortman, Lenard M.; Kruit, Pieter; Hoogenboom, Jacob P.

    2017-01-01

    In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample. PMID:28252673

  19. Maneuver Recovery Analysis for the Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Carpenter, Russell; Volle, Michael; Lee, Taesul; Long, Anne

    2007-01-01

    The use of spacecraft formations creates new and more demanding requirements for orbit determination accuracy. In addition to absolute navigation requirements, there are typically relative navigation requirements that are based on the size or shape of the formation. The difficulty in meeting these requirements is related to the relative dynamics of the spacecraft orbits and the frequency of the formation maintenance maneuvers. This paper examines the effects of bi-weekly formation maintenance maneuvers on the absolute and relative orbit determination accuracy for the four-spacecraft Magnetospheric Multiscale (MMS) formation. Results are presented from high fidelity simulations that include the effects of realistic orbit determination errors in the maneuver planning process. Solutions are determined using a high accuracy extended Kalman filter designed for onboard navigation. Three different solutions are examined, considering the effects of process noise and measurement rate on the solutions.

  20. Fabrication and Structural Design of Micro Pressure Sensors for Tire Pressure Measurement Systems (TPMS)

    PubMed Central

    Tian, Bian; Zhao, Yulong; Jiang, Zhuangde; Zhang, Ling; Liao, Nansheng; Liu, Yuanhao; Meng, Chao

    2009-01-01

    In this paper we describe the design and testing of a micro piezoresistive pressure sensor for a Tire Pressure Measurement System (TPMS) which has the advantages of a minimized structure, high sensitivity, linearity and accuracy. Through analysis of the stress distribution of the diaphragm using the ANSYS software, a model of the structure was established. The fabrication on a single silicon substrate utilizes the technologies of anisotropic chemical etching and packaging through glass anodic bonding. The performance of this type of piezoresistive sensor, including size, sensitivity, and long-term stability, were investigated. The results indicate that the accuracy is 0.5% FS, therefore this design meets the requirements for a TPMS, and not only has a smaller size and simplicity of preparation, but also has high sensitivity and accuracy. PMID:22573960

  1. A high accuracy sequential solver for simulation and active control of a longitudinal combustion instability

    NASA Technical Reports Server (NTRS)

    Shyy, W.; Thakur, S.; Udaykumar, H. S.

    1993-01-01

    A high accuracy convection scheme using a sequential solution technique has been developed and applied to simulate the longitudinal combustion instability and its active control. The scheme has been devised in the spirit of the Total Variation Diminishing (TVD) concept with special source term treatment. Due to the substantial heat release effect, a clear delineation of the key elements employed by the scheme, i.e., the adjustable damping factor and the source term treatment has been made. By comparing with the first-order upwind scheme previously utilized, the present results exhibit less damping and are free from spurious oscillations, offering improved quantitative accuracy while confirming the spectral analysis reported earlier. A simple feedback type of active control has been found to be capable of enhancing or attenuating the magnitude of the combustion instability.

  2. High-pressure liquid chromatography analysis of antibiotic susceptibility disks.

    PubMed Central

    Hagel, R B; Waysek, E H; Cort, W M

    1979-01-01

    The analysis of antibiotic susceptibility disks by high-pressure liquid chromatography (HPLC) was investigated. Methods are presented for the potency determination of mecillinam, ampicillin, carbenicillin, and cephalothin alone and in various combinations. Good agreement between HPLC and microbiological data is observed for potency determinations with recoveries of greater than 95%. Relative standard deviations of lower than 2% are recorded for each HPLC method. HPLC methods offer improved accuracy and greater precision when compared to the standard microbiological methods of analysis for susceptibility disks. PMID:507793

  3. Explicit area-based accuracy assessment for mangrove tree crown delineation using Geographic Object-Based Image Analysis (GEOBIA)

    NASA Astrophysics Data System (ADS)

    Kamal, Muhammad; Johansen, Kasper

    2017-10-01

    Effective mangrove management requires spatially explicit information of mangrove tree crown map as a basis for ecosystem diversity study and health assessment. Accuracy assessment is an integral part of any mapping activities to measure the effectiveness of the classification approach. In geographic object-based image analysis (GEOBIA) the assessment of the geometric accuracy (shape, symmetry and location) of the created image objects from image segmentation is required. In this study we used an explicit area-based accuracy assessment to measure the degree of similarity between the results of the classification and reference data from different aspects, including overall quality (OQ), user's accuracy (UA), producer's accuracy (PA) and overall accuracy (OA). We developed a rule set to delineate the mangrove tree crown using WorldView-2 pan-sharpened image. The reference map was obtained by visual delineation of the mangrove tree crowns boundaries form a very high-spatial resolution aerial photograph (7.5cm pixel size). Ten random points with a 10 m radius circular buffer were created to calculate the area-based accuracy assessment. The resulting circular polygons were used to clip both the classified image objects and reference map for area comparisons. In this case, the area-based accuracy assessment resulted 64% and 68% for the OQ and OA, respectively. The overall quality of the calculation results shows the class-related area accuracy; which is the area of correctly classified as tree crowns was 64% out of the total area of tree crowns. On the other hand, the overall accuracy of 68% was calculated as the percentage of all correctly classified classes (tree crowns and canopy gaps) in comparison to the total class area (an entire image). Overall, the area-based accuracy assessment was simple to implement and easy to interpret. It also shows explicitly the omission and commission error variations of object boundary delineation with colour coded polygons.

  4. Accuracy, safety, and tolerability of tissue collection by Cytosponge vs endoscopy for evaluation of eosinophilic esophagitis.

    PubMed

    Katzka, David A; Geno, Debra M; Ravi, Anupama; Smyrk, Thomas C; Lao-Sirieix, Pierre; Miremadi, Ahmed; Miramedi, Ahmed; Debiram, Irene; O'Donovan, Maria; Kita, Hirohito; Kephart, Gail M; Kryzer, Lori A; Camilleri, Michael; Alexander, Jeffrey A; Fitzgerald, Rebecca C

    2015-01-01

    Management of eosinophilic esophagitis (EoE) requires repeated endoscopic collection of mucosal samples to assess disease activity and response to therapy. An easier and less expensive means of monitoring of EoE is required. We compared the accuracy, safety, and tolerability of sample collection via Cytosponge (an ingestible gelatin capsule comprising compressed mesh attached to a string) with those of endoscopy for assessment of EoE. Esophageal tissues were collected from 20 patients with EoE (all with dysphagia, 15 with stricture, 13 with active EoE) via Cytosponge and then by endoscopy. Number of eosinophils/high-power field and levels of eosinophil-derived neurotoxin were determined; hematoxylin-eosin staining was performed. We compared the adequacy, diagnostic accuracy, safety, and patient preference for sample collection via Cytosponge vs endoscopy procedures. All 20 samples collected by Cytosponge were adequate for analysis. By using a cutoff value of 15 eosinophils/high power field, analysis of samples collected by Cytosponge identified 11 of the 13 individuals with active EoE (83%); additional features such as abscesses were also identified. Numbers of eosinophils in samples collected by Cytosponge correlated with those in samples collected by endoscopy (r = 0.50, P = .025). Analysis of tissues collected by Cytosponge identified 4 of the 7 patients without active EoE (57% specificity), as well as 3 cases of active EoE not identified by analysis of endoscopy samples. Including information on level of eosinophil-derived neurotoxin did not increase the accuracy of diagnosis. No complications occurred during the Cytosponge procedure, which was preferred by all patients, compared with endoscopy. In a feasibility study, the Cytosponge is a safe and well-tolerated method for collecting near mucosal specimens. Analysis of numbers of eosinophils/high-power field identified patients with active EoE with 83% sensitivity. Larger studies are needed to establish the efficacy and safety of this method of esophageal tissue collection. ClinicalTrials.gov number: NCT01585103. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Coarse-to-fine markerless gait analysis based on PCA and Gauss-Laguerre decomposition

    NASA Astrophysics Data System (ADS)

    Goffredo, Michela; Schmid, Maurizio; Conforto, Silvia; Carli, Marco; Neri, Alessandro; D'Alessio, Tommaso

    2005-04-01

    Human movement analysis is generally performed through the utilization of marker-based systems, which allow reconstructing, with high levels of accuracy, the trajectories of markers allocated on specific points of the human body. Marker based systems, however, show some drawbacks that can be overcome by the use of video systems applying markerless techniques. In this paper, a specifically designed computer vision technique for the detection and tracking of relevant body points is presented. It is based on the Gauss-Laguerre Decomposition, and a Principal Component Analysis Technique (PCA) is used to circumscribe the region of interest. Results obtained on both synthetic and experimental tests provide significant reduction of the computational costs, with no significant reduction of the tracking accuracy.

  6. A content analysis of the quantity and accuracy of dietary supplement information found in magazines with high adolescent readership.

    PubMed

    Shaw, Patricia; Zhang, Vivien; Metallinos-Katsaras, Elizabeth

    2009-02-01

    The objective of this study was to examine the quantity and accuracy of dietary supplement (DS) information through magazines with high adolescent readership. Eight (8) magazines (3 teen and 5 adult with high teen readership) were selected. A content analysis for DS was conducted on advertisements and editorials (i.e., articles, advice columns, and bulletins). Noted claims/cautions regarding DS were evaluated for accuracy using Medlineplus.gov and Naturaldatabase.com. Claims for dietary supplements with three or more types of ingredients and those in advertisements were not evaluated. Advertisements were evaluated with respect to size, referenced research, testimonials, and Dietary Supplement Health and Education Act of 1994 (DSHEA) warning visibility. Eighty-eight (88) issues from eight magazines yielded 238 DS references. Fifty (50) issues from five magazines contained no DS reference. Among teen magazines, seven DS references were found: five in the editorials and two in advertisements. In adult magazines, 231 DS references were found: 139 in editorials and 92 in advertisements. Of the 88 claims evaluated, 15% were accurate, 23% were inconclusive, 3% were inaccurate, 5% were partially accurate, and 55% were unsubstantiated (i.e., not listed in reference databases). Of the 94 DS evaluated in advertisements, 43% were full page or more, 79% did not have a DSHEA warning visible, 46% referred to research, and 32% used testimonials. Teen magazines contain few references to DS, none accurate. Adult magazines that have a high teen readership contain a substantial amount of DS information with questionable accuracy, raising concerns that this information may increase the chances of inappropriate DS use by adolescents, thereby increasing the potential for unexpected effects or possible harm.

  7. Statistical comparison of a hybrid approach with approximate and exact inference models for Fusion 2+

    NASA Astrophysics Data System (ADS)

    Lee, K. David; Wiesenfeld, Eric; Gelfand, Andrew

    2007-04-01

    One of the greatest challenges in modern combat is maintaining a high level of timely Situational Awareness (SA). In many situations, computational complexity and accuracy considerations make the development and deployment of real-time, high-level inference tools very difficult. An innovative hybrid framework that combines Bayesian inference, in the form of Bayesian Networks, and Possibility Theory, in the form of Fuzzy Logic systems, has recently been introduced to provide a rigorous framework for high-level inference. In previous research, the theoretical basis and benefits of the hybrid approach have been developed. However, lacking is a concrete experimental comparison of the hybrid framework with traditional fusion methods, to demonstrate and quantify this benefit. The goal of this research, therefore, is to provide a statistical analysis on the comparison of the accuracy and performance of hybrid network theory, with pure Bayesian and Fuzzy systems and an inexact Bayesian system approximated using Particle Filtering. To accomplish this task, domain specific models will be developed under these different theoretical approaches and then evaluated, via Monte Carlo Simulation, in comparison to situational ground truth to measure accuracy and fidelity. Following this, a rigorous statistical analysis of the performance results will be performed, to quantify the benefit of hybrid inference to other fusion tools.

  8. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes.

    PubMed

    Pruesse, Elmar; Peplies, Jörg; Glöckner, Frank Oliver

    2012-07-15

    In the analysis of homologous sequences, computation of multiple sequence alignments (MSAs) has become a bottleneck. This is especially troublesome for marker genes like the ribosomal RNA (rRNA) where already millions of sequences are publicly available and individual studies can easily produce hundreds of thousands of new sequences. Methods have been developed to cope with such numbers, but further improvements are needed to meet accuracy requirements. In this study, we present the SILVA Incremental Aligner (SINA) used to align the rRNA gene databases provided by the SILVA ribosomal RNA project. SINA uses a combination of k-mer searching and partial order alignment (POA) to maintain very high alignment accuracy while satisfying high throughput performance demands. SINA was evaluated in comparison with the commonly used high throughput MSA programs PyNAST and mothur. The three BRAliBase III benchmark MSAs could be reproduced with 99.3, 97.6 and 96.1 accuracy. A larger benchmark MSA comprising 38 772 sequences could be reproduced with 98.9 and 99.3% accuracy using reference MSAs comprising 1000 and 5000 sequences. SINA was able to achieve higher accuracy than PyNAST and mothur in all performed benchmarks. Alignment of up to 500 sequences using the latest SILVA SSU/LSU Ref datasets as reference MSA is offered at http://www.arb-silva.de/aligner. This page also links to Linux binaries, user manual and tutorial. SINA is made available under a personal use license.

  9. Rapid high performance liquid chromatography method development with high prediction accuracy, using 5cm long narrow bore columns packed with sub-2microm particles and Design Space computer modeling.

    PubMed

    Fekete, Szabolcs; Fekete, Jeno; Molnár, Imre; Ganzler, Katalin

    2009-11-06

    Many different strategies of reversed phase high performance liquid chromatographic (RP-HPLC) method development are used today. This paper describes a strategy for the systematic development of ultrahigh-pressure liquid chromatographic (UHPLC or UPLC) methods using 5cmx2.1mm columns packed with sub-2microm particles and computer simulation (DryLab((R)) package). Data for the accuracy of computer modeling in the Design Space under ultrahigh-pressure conditions are reported. An acceptable accuracy for these predictions of the computer models is presented. This work illustrates a method development strategy, focusing on time reduction up to a factor 3-5, compared to the conventional HPLC method development and exhibits parts of the Design Space elaboration as requested by the FDA and ICH Q8R1. Furthermore this paper demonstrates the accuracy of retention time prediction at elevated pressure (enhanced flow-rate) and shows that the computer-assisted simulation can be applied with sufficient precision for UHPLC applications (p>400bar). Examples of fast and effective method development in pharmaceutical analysis, both for gradient and isocratic separations are presented.

  10. Freezing degrees of freedom under stress: kinematic evidence of constrained movement strategies.

    PubMed

    Higuchi, Takahiro; Imanaka, Kuniyasu; Hatayama, Toshiteru

    2002-12-01

    The present study investigated the effect of psychological stress imposed on movement kinematics in a computer-simulated batting task involving a backward and forward swing of the forearm. The psychological stress was imposed by a mild electric stimulus following poor performance. Fourteen participants hit a moving ball with a horizontal lever and aimed at a distant target with as much accuracy as possible. The kinematic characteristics appearing under stress were delay of movement initiation, small amplitude of movement and low variability of spatial kinematic events between trials. These features were also found in previous studies in which the experimental task required high accuracy. The characteristic kinematics evident in the present study suggested that the movement strategies adopted by the stressed participants were similar to those that appear under high accuracy demand. Moreover, a correlation analysis between the onset times of kinematic events revealed that temporally consistent movements were reproduced under stress. Taken together, the present findings demonstrated that, under psychological stress, movement strategies tend to shift toward the production of more constrained trajectories, as is seen under conditions of high accuracy demand, even though the difficulty of the task itself does not change. Copyright 2002 Elsevier Science B.V.

  11. On the Accuracy of Double Scattering Approximation for Atmospheric Polarization Computations

    NASA Technical Reports Server (NTRS)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Marshak, Alexander L.

    2011-01-01

    Interpretation of multi-angle spectro-polarimetric data in remote sensing of atmospheric aerosols require fast and accurate methods of solving the vector radiative transfer equation (VRTE). The single and double scattering approximations could provide an analytical framework for the inversion algorithms and are relatively fast, however accuracy assessments of these approximations for the aerosol atmospheres in the atmospheric window channels have been missing. This paper provides such analysis for a vertically homogeneous aerosol atmosphere with weak and strong asymmetry of scattering. In both cases, the double scattering approximation gives a high accuracy result (relative error approximately 0.2%) only for the low optical path - 10(sup -2) As the error rapidly grows with optical thickness, a full VRTE solution is required for the practical remote sensing analysis. It is shown that the scattering anisotropy is not important at low optical thicknesses neither for reflected nor for transmitted polarization components of radiation.

  12. High School Physics Students' Personal Epistemologies and School Science Practice

    NASA Astrophysics Data System (ADS)

    Alpaslan, Muhammet Mustafa; Yalvac, Bugrahan; Loving, Cathleen

    2017-11-01

    This case study explores students' physics-related personal epistemologies in school science practices. The school science practices of nine eleventh grade students in a physics class were audio-taped over 6 weeks. The students were also interviewed to find out their ideas on the nature of scientific knowledge after each activity. Analysis of transcripts yielded several epistemological resources that students activated in their school science practice. The findings show that there is inconsistency between students' definitions of scientific theories and their epistemological judgments. Analysis revealed that students used several epistemological resources to decide on the accuracy of their data including accuracy via following the right procedure and accuracy via what the others find. Traditional, formulation-based, physics instruction might have led students to activate naive epistemological resources that prevent them to participate in the practice of science in ways that are more meaningful. Implications for future studies are presented.

  13. Collection and processing of data from a phase-coherent meteor radar

    NASA Technical Reports Server (NTRS)

    Backof, C. A., Jr.; Bowhill, S. A.

    1974-01-01

    An analysis of the measurement accuracy requirement of a high resolution meteor radar for observing short period, atmospheric waves is presented, and a system which satisfies the requirements is described. A medium scale, real time computer is programmed to perform all echo recognition and coordinate measurement functions. The measurement algorithms are exercised on noisy data generated by a program which simulates the hardware system, in order to find the effects of noise on the measurement accuracies.

  14. Accuracy of DSM based on digital aerial image matching. (Polish Title: Dokładność NMPT tworzonego metodą automatycznego dopasowania cyfrowych zdjęć lotniczych)

    NASA Astrophysics Data System (ADS)

    Kubalska, J. L.; Preuss, R.

    2013-12-01

    Digital Surface Models (DSM) are used in GIS data bases as single product more often. They are also necessary to create other products such as3D city models, true-ortho and object-oriented classification. This article presents results of DSM generation for classification of vegetation in urban areas. Source data allowed producing DSM with using of image matching method and ALS data. The creation of DSM from digital images, obtained by Ultra Cam-D digital Vexcel camera, was carried out in Match-T by INPHO. This program optimizes the configuration of images matching process, which ensures high accuracy and minimize gap areas. The analysis of the accuracy of this process was made by comparison of DSM generated in Match-T with DSM generated from ALS data. Because of further purpose of generated DSM it was decided to create model in GRID structure with cell size of 1 m. With this parameter differential model from both DSMs was also built that allowed determining the relative accuracy of the compared models. The analysis indicates that the generation of DSM with multi-image matching method is competitive for the same surface model creation from ALS data. Thus, when digital images with high overlap are available, the additional registration of ALS data seems to be unnecessary.

  15. Effects of Recovery Behavior and Strain-Rate Dependence of Stress-Strain Curve on Prediction Accuracy of Thermal Stress Analysis During Casting

    NASA Astrophysics Data System (ADS)

    Motoyama, Yuichi; Shiga, Hidetoshi; Sato, Takeshi; Kambe, Hiroshi; Yoshida, Makoto

    2017-06-01

    Recovery behavior (recovery) and strain-rate dependence of the stress-strain curve (strain-rate dependence) are incorporated into constitutive equations of alloys to predict residual stress and thermal stress during casting. Nevertheless, few studies have systematically investigated the effects of these metallurgical phenomena on the prediction accuracy of thermal stress in a casting. This study compares the thermal stress analysis results with in situ thermal stress measurement results of an Al-Si-Cu specimen during casting. The results underscore the importance for the alloy constitutive equation of incorporating strain-rate dependence to predict thermal stress that develops at high temperatures where the alloy shows strong strain-rate dependence of the stress-strain curve. However, the prediction accuracy of the thermal stress developed at low temperatures did not improve by considering the strain-rate dependence. Incorporating recovery into the constitutive equation improved the accuracy of the simulated thermal stress at low temperatures. Results of comparison implied that the constitutive equation should include strain-rate dependence to simulate defects that develop from thermal stress at high temperatures, such as hot tearing and hot cracking. Recovery should be incorporated into the alloy constitutive equation to predict the casting residual stress and deformation caused by the thermal stress developed mainly in the low temperature range.

  16. Thz and Long Path Fourier Transform Spectroscopy of Methanol; Torsionally Coupled High-K Levels

    NASA Astrophysics Data System (ADS)

    Pearson, John C.; Yu, Shanshan; Drouin, Brian J.; Lees, Ronald M.; Xu, Li-Hong; Billinghurst, Brant E.

    2012-06-01

    Methanol is nearly ubiquitous in the interstellar gas. The presence of both a-type and b-type dipole moments, asymmetry, and internal rotation assure that any small astronomical observation window will contain multiple methanol transitions. This often allows a great deal about the local physical conditions to be deduced, but only insofar as the spectra are characterized. The Herschel Space Observatory has detected numerous, clearly beam diluted, methanol transitions with quanta surpassing J = 35 in many regions. Unfortunately, observations of methanol often display strong non-thermal behavior whose modeling requires many additional levels to be included in a radiative transfer analysis. Additionally, the intensities of many more highly excited transitions are strongly dependent on the accuracy of the wave functions used in the calculation. We report a combined Fourier Transform Infrared and THz study targeting the high J and K transitions in the ground torsional manifold. Microwave accuracy energy levels have been derived to J > 40 and K as high as 20. These levels illuminate a number of strongly resonant torsional interactions that dominate the high K spectrum of the molecule. Comparison with levels calculated from the rho-axis method Hamiltonian suggest that the rho-axis method should be able to model v_t = 0, 1 and probably v_t = 2 to experimental accuracy. The challenges in determining methanol wave functions to experimental accuracy will be discussed.

  17. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE PAGES

    Gao, Kai; Huang, Lianjie

    2017-08-31

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  18. Theoretical study of surface plasmon resonance sensors based on 2D bimetallic alloy grating

    NASA Astrophysics Data System (ADS)

    Dhibi, Abdelhak; Khemiri, Mehdi; Oumezzine, Mohamed

    2016-11-01

    A surface plasmon resonance (SPR) sensor based on 2D alloy grating with a high performance is proposed. The grating consists of homogeneous alloys of formula MxAg1-x, where M is gold, copper, platinum and palladium. Compared to the SPR sensors based a pure metal, the sensor based on angular interrogation with silver exhibits a sharper (i.e. larger depth-to-width ratio) reflectivity dip, which provides a big detection accuracy, whereas the sensor based on gold exhibits the broadest dips and the highest sensitivity. The detection accuracy of SPR sensor based a metal alloy is enhanced by the increase of silver composition. In addition, the composition of silver which is around 0.8 improves the sensitivity and the quality of SPR sensor of pure metal. Numerical simulations based on rigorous coupled wave analysis (RCWA) show that the sensor based on a metal alloy not only has a high sensitivity and a high detection accuracy, but also exhibits a good linearity and a good quality.

  19. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Huang, Lianjie

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  20. An implicit spatial and high-order temporal finite difference scheme for 2D acoustic modelling

    NASA Astrophysics Data System (ADS)

    Wang, Enjiang; Liu, Yang

    2018-01-01

    The finite difference (FD) method exhibits great superiority over other numerical methods due to its easy implementation and small computational requirement. We propose an effective FD method, characterised by implicit spatial and high-order temporal schemes, to reduce both the temporal and spatial dispersions simultaneously. For the temporal derivative, apart from the conventional second-order FD approximation, a special rhombus FD scheme is included to reach high-order accuracy in time. Compared with the Lax-Wendroff FD scheme, this scheme can achieve nearly the same temporal accuracy but requires less floating-point operation times and thus less computational cost when the same operator length is adopted. For the spatial derivatives, we adopt the implicit FD scheme to improve the spatial accuracy. Apart from the existing Taylor series expansion-based FD coefficients, we derive the least square optimisation based implicit spatial FD coefficients. Dispersion analysis and modelling examples demonstrate that, our proposed method can effectively decrease both the temporal and spatial dispersions, thus can provide more accurate wavefields.

  1. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm for BeiDou GEO satellites. The real-time positioning results prove that the GPS + BeiDou + Galileo RT-PPP comparing to GPS-only can effectively accelerate convergence time by about 60%, improve the positioning accuracy by about 30% and obtain averaged RMS 4 cm in horizontal and 6 cm in vertical; additionally RT-SPP accuracy in the prototype system can realize positioning accuracy with about averaged RMS 1 m in horizontal and 1.5-2 m in vertical, which are improved by 60% and 70% to SPP based on broadcast ephemeris, respectively.

  2. A Vehicular Mobile Standard Instrument for Field Verification of Traffic Speed Meters Based on Dual-Antenna Doppler Radar Sensor

    PubMed Central

    Du, Lei; Sun, Qiao; Cai, Changqing; Bai, Jie; Fan, Zhe; Zhang, Yue

    2018-01-01

    Traffic speed meters are important legal measuring instruments specially used for traffic speed enforcement and must be tested and verified in the field every year using a vehicular mobile standard speed-measuring instrument to ensure speed-measuring performances. The non-contact optical speed sensor and the GPS speed sensor are the two most common types of standard speed-measuring instruments. The non-contact optical speed sensor requires extremely high installation accuracy, and its speed-measuring error is nonlinear and uncorrectable. The speed-measuring accuracy of the GPS speed sensor is rapidly reduced if the amount of received satellites is insufficient enough, which often occurs in urban high-rise regions, tunnels, and mountainous regions. In this paper, a new standard speed-measuring instrument using a dual-antenna Doppler radar sensor is proposed based on a tradeoff between the installation accuracy requirement and the usage region limitation, which has no specified requirements for its mounting distance and no limitation on usage regions and can automatically compensate for the effect of an inclined installation angle on its speed-measuring accuracy. Theoretical model analysis, simulated speed measurement results, and field experimental results compared with a GPS speed sensor with high accuracy showed that the dual-antenna Doppler radar sensor is effective and reliable as a new standard speed-measuring instrument. PMID:29621142

  3. A Vehicular Mobile Standard Instrument for Field Verification of Traffic Speed Meters Based on Dual-Antenna Doppler Radar Sensor.

    PubMed

    Du, Lei; Sun, Qiao; Cai, Changqing; Bai, Jie; Fan, Zhe; Zhang, Yue

    2018-04-05

    Traffic speed meters are important legal measuring instruments specially used for traffic speed enforcement and must be tested and verified in the field every year using a vehicular mobile standard speed-measuring instrument to ensure speed-measuring performances. The non-contact optical speed sensor and the GPS speed sensor are the two most common types of standard speed-measuring instruments. The non-contact optical speed sensor requires extremely high installation accuracy, and its speed-measuring error is nonlinear and uncorrectable. The speed-measuring accuracy of the GPS speed sensor is rapidly reduced if the amount of received satellites is insufficient enough, which often occurs in urban high-rise regions, tunnels, and mountainous regions. In this paper, a new standard speed-measuring instrument using a dual-antenna Doppler radar sensor is proposed based on a tradeoff between the installation accuracy requirement and the usage region limitation, which has no specified requirements for its mounting distance and no limitation on usage regions and can automatically compensate for the effect of an inclined installation angle on its speed-measuring accuracy. Theoretical model analysis, simulated speed measurement results, and field experimental results compared with a GPS speed sensor with high accuracy showed that the dual-antenna Doppler radar sensor is effective and reliable as a new standard speed-measuring instrument.

  4. Diagnostic Accuracy of Memory Measures in Alzheimer's Dementia and Mild Cognitive Impairment: a Systematic Review and Meta-Analysis.

    PubMed

    Weissberger, Gali H; Strong, Jessica V; Stefanidis, Kayla B; Summers, Mathew J; Bondi, Mark W; Stricker, Nikki H

    2017-12-01

    With an increasing focus on biomarkers in dementia research, illustrating the role of neuropsychological assessment in detecting mild cognitive impairment (MCI) and Alzheimer's dementia (AD) is important. This systematic review and meta-analysis, conducted in accordance with PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) standards, summarizes the sensitivity and specificity of memory measures in individuals with MCI and AD. Both meta-analytic and qualitative examination of AD versus healthy control (HC) studies (n = 47) revealed generally high sensitivity and specificity (≥ 80% for AD comparisons) for measures of immediate (sensitivity = 87%, specificity = 88%) and delayed memory (sensitivity = 89%, specificity = 89%), especially those involving word-list recall. Examination of MCI versus HC studies (n = 38) revealed generally lower diagnostic accuracy for both immediate (sensitivity = 72%, specificity = 81%) and delayed memory (sensitivity = 75%, specificity = 81%). Measures that differentiated AD from other conditions (n = 10 studies) yielded mixed results, with generally high sensitivity in the context of low or variable specificity. Results confirm that memory measures have high diagnostic accuracy for identification of AD, are promising but require further refinement for identification of MCI, and provide support for ongoing investigation of neuropsychological assessment as a cognitive biomarker of preclinical AD. Emphasizing diagnostic test accuracy statistics over null hypothesis testing in future studies will promote the ongoing use of neuropsychological tests as Alzheimer's disease research and clinical criteria increasingly rely upon cerebrospinal fluid (CSF) and neuroimaging biomarkers.

  5. Diagnostic accuracy of nucleic acid amplification tests (NAATs) in urine for genitourinary tuberculosis: a systematic review and meta-analysis.

    PubMed

    Altez-Fernandez, Carlos; Ortiz, Victor; Mirzazadeh, Majid; Zegarra, Luis; Seas, Carlos; Ugarte-Gil, Cesar

    2017-06-05

    Genitourinary tuberculosis is the third most common form of extrapulmonary tuberculosis. Diagnosis is difficult because of unspecific clinical manifestations and low accuracy of conventional tests. Unfortunately, the delayed diagnosis impacts the urinary tract severely. Nucleic acid amplification tests yield fast results, and among these, new technologies can also detect drug resistance. There is lack of consensus regarding the use of these tests in genitourinary tuberculosis; we therefore aimed to assess the accuracy of nucleic acid amplification tests in the diagnosis of genitourinary tuberculosis and to evaluate the heterogeneity between studies. We did a systematic review and meta-analysis of research articles comparing the accuracy of a reference standard and a nucleic acid amplification test for diagnosis of urinary tract tuberculosis. We searched Medline, EMBASE, Web of Science, LILACS, Cochrane Library, and Scopus for articles published between Jan 1, 1990, and Apr 14, 2016. Two investigators identified eligible articles and extracted data for individual study sites. We analyzed data in groups with the same index test. Then, we generated pooled summary estimates (95% CIs) for sensitivity and specificity by use of random-effects meta-analysis when studies were not heterogeneous. We identified eleven relevant studies from ten articles, giving information on PCR, LCR and Xpert MTB/RIF tests. All PCR studies were "in-house" tests, with different gene targets and had several quality concerns therefore we did not proceed with a pooled analysis. Only one study used LCR. Xpert studies were of good quality and not heterogeneous, pooled sensitivity was 0·87 (0·66-0·96) and specificity was 0·91 (0·84-0·95). PCR studies were highly heterogeneous. Among Xpert MTB/RIF studies, specificity was favorable with an acceptable confidence interval, however new studies can update meta-analysis and get more precise estimates. Further high-quality studies are urgently needed to improve diagnosis of genitourinary tuberculosis. PROSPERO CRD42016039020.

  6. Rigorous accuracy assessment for 3D reconstruction using time-series Dual Fluoroscopy (DF) image pairs

    NASA Astrophysics Data System (ADS)

    Al-Durgham, Kaleel; Lichti, Derek D.; Kuntze, Gregor; Ronsky, Janet

    2017-06-01

    High-speed biplanar videoradiography, or clinically referred to as dual fluoroscopy (DF), imaging systems are being used increasingly for skeletal kinematics analysis. Typically, a DF system comprises two X-ray sources, two image intensifiers and two high-speed video cameras. The combination of these elements provides time-series image pairs of articulating bones of a joint, which permits the measurement of bony rotation and translation in 3D at high temporal resolution (e.g., 120-250 Hz). Assessment of the accuracy of 3D measurements derived from DF imaging has been the subject of recent research efforts by several groups, however with methodological limitations. This paper presents a novel and simple accuracy assessment procedure based on using precise photogrammetric tools. We address the fundamental photogrammetry principles for the accuracy evaluation of an imaging system. Bundle adjustment with selfcalibration is used for the estimation of the system parameters. The bundle adjustment calibration uses an appropriate sensor model and applies free-network constraints and relative orientation stability constraints for a precise estimation of the system parameters. A photogrammetric intersection of time-series image pairs is used for the 3D reconstruction of a rotating planar object. A point-based registration method is used to combine the 3D coordinates from the intersection and independently surveyed coordinates. The final DF accuracy measure is reported as the distance between 3D coordinates from image intersection and the independently surveyed coordinates. The accuracy assessment procedure is designed to evaluate the accuracy over the full DF image format and a wide range of object rotation. Experiment of reconstruction of a rotating planar object reported an average positional error of 0.44 +/- 0.2 mm in the derived 3D coordinates (minimum 0.05 and maximum 1.2 mm).

  7. A New Computational Framework for Atmospheric and Surface Remote Sensing

    NASA Technical Reports Server (NTRS)

    Timucin, Dogan A.

    2004-01-01

    A Bayesian data-analysis framework is described for atmospheric and surface retrievals from remotely-sensed hyper-spectral data. Some computational techniques are high- lighted for improved accuracy in the forward physics model.

  8. Thermal-distortion analysis of an antenna strongback for geostationary high-frequency microwave applications

    NASA Technical Reports Server (NTRS)

    Farmer, Jeffrey T.; Wahls, Deborah M.; Wright, Robert L.

    1990-01-01

    The global change technology initiative calls for a geostationary platform for Earth science monitoring. One of the major science instruments is the high frequency microwave sounder (HFMS) which uses a large diameter, high resolution, high frequency microwave antenna. This antenna's size and required accuracy dictates the need for a segmented reflector. On-orbit disturbances may be a significant factor in its design. A study was performed to examine the effects of the geosynchronous thermal environment on the performance of the strongback structure for a proposed antenna concept for this application. The study included definition of the strongback and a corresponding numerical model to be used in the thermal and structural analyses definition of the thermal environment, determination of structural element temperature throughout potential orbits, estimation of resulting thermal distortions, and assessment of the structure's capability to meet surface accuracy requirements. Analyses show that shadows produced by the antenna reflector surface play a major role in increasing thermal distortions. Through customization of surface coating and element expansion characteristics, the segmented reflector concept can meet the tight surface accuracy requirements.

  9. Management applications of lidar-derived mean high water shorelines in North Carolina

    USGS Publications Warehouse

    Limber, Patrick W.; List, Jeffrey H.; Warren, Jeffrey D.

    2007-01-01

    The accuracy of shoreline change analysis is dependent on how the shoreline is defined and the consistency of the techniques(s) used to define it. Using the concurrent lidar (light detection and ranging) and orthophotography dataset from August and September of 2004 covering North Carolina's 516 kilometers of barrier island oceanfront, Limber et al. (2007) examined the spatial relationship between two common shoreline definitions used in shoreline change analysis, mean high water [MHW] derived from lidar data and the wet/dry line digitized from orthophotography. Here, we summarize this work and extend the analysis with a comparison between two different methods of MHW shoreline extraction from liar data: a profile-based method (Stockdon et al., 2002) and a method based on correction of the lidar data to a MHW datum (Hess et al., 2005). Potential bias generated by using these different shoreline types together can affect not only the accuracy of shoreline change analysis, but also the coastal management policies and decision that rely on it. Therefore, the implications of this study potential extend far beyond North Carolina and Atlantic Coast of the United States.

  10. Error analysis and correction of lever-type stylus profilometer based on Nelder-Mead Simplex method

    NASA Astrophysics Data System (ADS)

    Hu, Chunbing; Chang, Suping; Li, Bo; Wang, Junwei; Zhang, Zhongyu

    2017-10-01

    Due to the high measurement accuracy and wide range of applications, lever-type stylus profilometry is commonly used in industrial research areas. However, the error caused by the lever structure has a great influence on the profile measurement, thus this paper analyzes the error of high-precision large-range lever-type stylus profilometry. The errors are corrected by the Nelder-Mead Simplex method, and the results are verified by the spherical surface calibration. It can be seen that this method can effectively reduce the measurement error and improve the accuracy of the stylus profilometry in large-scale measurement.

  11. Systematic Review and Meta-Analysis of Studies Evaluating Diagnostic Test Accuracy: A Practical Review for Clinical Researchers-Part II. Statistical Methods of Meta-Analysis

    PubMed Central

    Lee, Juneyoung; Kim, Kyung Won; Choi, Sang Hyun; Huh, Jimi

    2015-01-01

    Meta-analysis of diagnostic test accuracy studies differs from the usual meta-analysis of therapeutic/interventional studies in that, it is required to simultaneously analyze a pair of two outcome measures such as sensitivity and specificity, instead of a single outcome. Since sensitivity and specificity are generally inversely correlated and could be affected by a threshold effect, more sophisticated statistical methods are required for the meta-analysis of diagnostic test accuracy. Hierarchical models including the bivariate model and the hierarchical summary receiver operating characteristic model are increasingly being accepted as standard methods for meta-analysis of diagnostic test accuracy studies. We provide a conceptual review of statistical methods currently used and recommended for meta-analysis of diagnostic test accuracy studies. This article could serve as a methodological reference for those who perform systematic review and meta-analysis of diagnostic test accuracy studies. PMID:26576107

  12. Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor

    PubMed Central

    Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng

    2016-01-01

    In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor. PMID:27649194

  13. Local staging and assessment of colon cancer with 1.5-T magnetic resonance imaging

    PubMed Central

    Blake, Helena; Jeyadevan, Nelesh; Abulafi, Muti; Swift, Ian; Toomey, Paul; Brown, Gina

    2016-01-01

    Objective: The aim of this study was to assess the accuracy of 1.5-T MRI in the pre-operative local T and N staging of colon cancer and identification of extramural vascular invasion (EMVI). Methods: Between 2010 and 2012, 60 patients with adenocarcinoma of the colon were prospectively recruited at 2 centres. 55 patients were included for final analysis. Patients received pre-operative 1.5-T MRI with high-resolution T2 weighted, gadolinium-enhanced T1 weighted and diffusion-weighted images. These were blindly assessed by two expert radiologists. Accuracy of the T-stage, N-stage and EMVI assessment was evaluated using post-operative histology as the gold standard. Results: Results are reported for two readers. Identification of T3 disease demonstrated an accuracy of 71% and 51%, sensitivity of 74% and 42% and specificity of 74% and 83%. Identification of N1 disease demonstrated an accuracy of 57% for both readers, sensitivity of 26% and 35% and specificity of 81% and 74%. Identification of EMVI demonstrated an accuracy of 74% and 69%, sensitivity 63% and 26% and specificity 80% and 91%. Conclusion: 1.5-T MRI achieved a moderate accuracy in the local evaluation of colon cancer, but cannot be recommended to replace CT on the basis of this study. Advances in knowledge: This study confirms that MRI is a viable alternative to CT for the local assessment of colon cancer, but this study does not reproduce the very high accuracy reported in the only other study to assess the accuracy of MRI in colon cancer staging. PMID:27226219

  14. Camera system considerations for geomorphic applications of SfM photogrammetry

    USGS Publications Warehouse

    Mosbrucker, Adam; Major, Jon J.; Spicer, Kurt R.; Pitlick, John

    2017-01-01

    The availability of high-resolution, multi-temporal, remotely sensed topographic data is revolutionizing geomorphic analysis. Three-dimensional topographic point measurements acquired from structure-from-motion (SfM) photogrammetry have been shown to be highly accurate and cost-effective compared to laser-based alternatives in some environments. Use of consumer-grade digital cameras to generate terrain models and derivatives is becoming prevalent within the geomorphic community despite the details of these instruments being largely overlooked in current SfM literature. This article is protected by copyright. All rights reserved.A practical discussion of camera system selection, configuration, and image acquisition is presented. The hypothesis that optimizing source imagery can increase digital terrain model (DTM) accuracy is tested by evaluating accuracies of four SfM datasets conducted over multiple years of a gravel bed river floodplain using independent ground check points with the purpose of comparing morphological sediment budgets computed from SfM- and lidar-derived DTMs. Case study results are compared to existing SfM validation studies in an attempt to deconstruct the principle components of an SfM error budget. This article is protected by copyright. All rights reserved.Greater information capacity of source imagery was found to increase pixel matching quality, which produced 8 times greater point density and 6 times greater accuracy. When propagated through volumetric change analysis, individual DTM accuracy (6–37 cm) was sufficient to detect moderate geomorphic change (order 100,000 m3) on an unvegetated fluvial surface; change detection determined from repeat lidar and SfM surveys differed by about 10%. Simple camera selection criteria increased accuracy by 64%; configuration settings or image post-processing techniques increased point density by 5–25% and decreased processing time by 10–30%. This article is protected by copyright. All rights reserved.Regression analysis of 67 reviewed datasets revealed that the best explanatory variable to predict accuracy of SfM data is photographic scale. Despite the prevalent use of object distance ratios to describe scale, nominal ground sample distance is shown to be a superior metric, explaining 68% of the variability in mean absolute vertical error.

  15. A projection hybrid high order finite volume/finite element method for incompressible turbulent flows

    NASA Astrophysics Data System (ADS)

    Busto, S.; Ferrín, J. L.; Toro, E. F.; Vázquez-Cendón, M. E.

    2018-01-01

    In this paper the projection hybrid FV/FE method presented in [1] is extended to account for species transport equations. Furthermore, turbulent regimes are also considered thanks to the k-ε model. Regarding the transport diffusion stage new schemes of high order of accuracy are developed. The CVC Kolgan-type scheme and ADER methodology are extended to 3D. The latter is modified in order to profit from the dual mesh employed by the projection algorithm and the derivatives involved in the diffusion term are discretized using a Galerkin approach. The accuracy and stability analysis of the new method are carried out for the advection-diffusion-reaction equation. Within the projection stage the pressure correction is computed by a piecewise linear finite element method. Numerical results are presented, aimed at verifying the formal order of accuracy of the scheme and to assess the performance of the method on several realistic test problems.

  16. Optimization design combined with coupled structural-electrostatic analysis for the electrostatically controlled deployable membrane reflector

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Yang, Guigeng; Zhang, Yiqun

    2015-01-01

    The electrostatically controlled deployable membrane reflector (ECDMR) is a promising scheme to construct large size and high precision space deployable reflector antennas. This paper presents a novel design method for the large size and small F/D ECDMR considering the coupled structure-electrostatic problem. First, the fully coupled structural-electrostatic system is described by a three field formulation, in which the structure and passive electrical field is modeled by finite element method, and the deformation of the electrostatic domain is predicted by a finite element formulation of a fictitious elastic structure. A residual formulation of the structural-electrostatic field finite element model is established and solved by Newton-Raphson method. The coupled structural-electrostatic analysis procedure is summarized. Then, with the aid of this coupled analysis procedure, an integrated optimization method of membrane shape accuracy and stress uniformity is proposed, which is divided into inner and outer iterative loops. The initial state of relatively high shape accuracy and uniform stress distribution is achieved by applying the uniform prestress on the membrane design shape and optimizing the voltages, in which the optimal voltage is computed by a sensitivity analysis. The shape accuracy is further improved by the iterative prestress modification using the reposition balance method. Finally, the results of the uncoupled and coupled methods are compared and the proposed optimization method is applied to design an ECDMR. The results validate the effectiveness of this proposed methods.

  17. Numerical integration and optimization of motions for multibody dynamic systems

    NASA Astrophysics Data System (ADS)

    Aguilar Mayans, Joan

    This thesis considers the optimization and simulation of motions involving rigid body systems. It does so in three distinct parts, with the following topics: optimization and analysis of human high-diving motions, efficient numerical integration of rigid body dynamics with contacts, and motion optimization of a two-link robot arm using Finite-Time Lyapunov Analysis. The first part introduces the concept of eigenpostures, which we use to simulate and analyze human high-diving motions. Eigenpostures are used in two different ways: first, to reduce the complexity of the optimal control problem that we solve to obtain such motions, and second, to generate an eigenposture space to which we map existing real world motions to better analyze them. The benefits of using eigenpostures are showcased through different examples. The second part reviews an extensive list of integration algorithms used for the integration of rigid body dynamics. We analyze the accuracy and stability of the different integrators in the three-dimensional space and the rotation space SO(3). Integrators with an accuracy higher than first order perform more efficiently than integrators with first order accuracy, even in the presence of contacts. The third part uses Finite-time Lyapunov Analysis to optimize motions for a two-link robot arm. Finite-Time Lyapunov Analysis diagnoses the presence of time-scale separation in the dynamics of the optimized motion and provides the information and methodology for obtaining an accurate approximation to the optimal solution, avoiding the complications that timescale separation causes for alternative solution methods.

  18. A meta-analysis of the validity of FFQ targeted to adolescents.

    PubMed

    Tabacchi, Garden; Filippi, Anna Rita; Amodio, Emanuele; Jemni, Monèm; Bianco, Antonino; Firenze, Alberto; Mammina, Caterina

    2016-05-01

    The present work is aimed at meta-analysing validity studies of FFQ for adolescents, to investigate their overall accuracy and variables that can affect it negatively. A meta-analysis of sixteen original articles was performed within the ASSO Project (Adolescents and Surveillance System in the Obesity prevention). The articles assessed the validity of FFQ for adolescents, compared with food records or 24 h recalls, with regard to energy and nutrient intakes. Pearson's or Spearman's correlation coefficients, means/standard deviations, kappa agreement, percentiles and mean differences/limits of agreement (Bland-Altman method) were extracted. Pooled estimates were calculated and heterogeneity tested for correlation coefficients and means/standard deviations. A subgroup analysis assessed variables influencing FFQ accuracy. An overall fair/high correlation between FFQ and reference method was found; a good agreement, measured through the intake mean comparison for all nutrients except sugar, carotene and K, was observed. Kappa values showed fair/moderate agreement; an overall good ability to rank adolescents according to energy and nutrient intakes was evidenced by data of percentiles; absolute validity was not confirmed by mean differences/limits of agreement. Interviewer administration mode, consumption interval of the previous year/6 months and high number of food items are major contributors to heterogeneity and thus can reduce FFQ accuracy. The meta-analysis shows that FFQ are accurate tools for collecting data and could be used for ranking adolescents in terms of energy and nutrient intakes. It suggests how the design and the validation of a new FFQ should be addressed.

  19. Intraindividual Comparison of 18F-PSMA-1007 PET/CT, Multiparametric MRI, and Radical Prostatectomy Specimens in Patients with Primary Prostate Cancer: A Retrospective, Proof-of-Concept Study.

    PubMed

    Kesch, Claudia; Vinsensia, Maria; Radtke, Jan P; Schlemmer, Heinz P; Heller, Martina; Ellert, Elena; Holland-Letz, Tim; Duensing, Stefan; Grabe, Nils; Afshar-Oromieh, Ali; Wieczorek, Kathrin; Schäfer, Martin; Neels, Oliver C; Cardinale, Jens; Kratochwil, Clemens; Hohenfellner, Markus; Kopka, Klaus; Haberkorn, Uwe; Hadaschik, Boris A; Giesel, Frederik L

    2017-11-01

    68 Ga-prostate-specific membrane antigen (PSMA)-11 PET/CT represents an advanced method for the staging of primary prostate cancer (PCa) and diagnosis of recurrent or metastatic PCa. However, because of the narrow availability of 68 Ga the development of alternative tracers is of high interest. The objective of this study was to examine the value of the new PET tracer 18 F-PSMA-1007 for the staging of local disease by comparing it with multiparametric MRI (mpMRI) and radical prostatectomy (RP) histopathology. Methods: In 2016, 18 F-PSMA-1007 PET/CT was performed in 10 men with biopsy-confirmed high-risk PCa. Nine patients underwent mpMRI in the process of primary diagnosis. Consecutively, RP was performed in all 10 men. Agreement analysis was performed retrospectively. PSMA staining was added for representative sections in RP specimen slices. Localization and agreement analysis of 18 F-PSMA-1007 PET/CT, mpMRI, and RP specimens was performed by dividing the prostate into 38 sections as described in the prostate imaging reporting and data system (PI-RADS) (version 2). Sensitivity, specificity, positive predictive values, negative predictive values (NPVs), and accuracy were calculated for total and near-total agreement. Results: 18 F-PSMA-1007 PET/CT had an NPV of 68% and an accuracy of 75%, and mpMRI had an NPV of 88% and an accuracy of 73% for total agreement. Near-total agreement analysis resulted in an NPV of 91% and an accuracy of 93% for 18 F-PSMA-1007 PET/CT and 91% and 87% for mpMRI, respectively. Retrospective combination of mpMRI and PET/CT had an accuracy of 81% for total and 93% for near-total agreement. Conclusion: Comparison with RP histopathology demonstrates that 18 F-PSMA-1007 PET/CT is promising for accurate local staging of PCa. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  20. Brain Gliomas: Multicenter Standardized Assessment of Dynamic Contrast-enhanced and Dynamic Susceptibility Contrast MR Images.

    PubMed

    Anzalone, Nicoletta; Castellano, Antonella; Cadioli, Marcello; Conte, Gian Marco; Cuccarini, Valeria; Bizzi, Alberto; Grimaldi, Marco; Costa, Antonella; Grillea, Giovanni; Vitali, Paolo; Aquino, Domenico; Terreni, Maria Rosa; Torri, Valter; Erickson, Bradley J; Caulo, Massimo

    2018-06-01

    Purpose To evaluate the feasibility of a standardized protocol for acquisition and analysis of dynamic contrast material-enhanced (DCE) and dynamic susceptibility contrast (DSC) magnetic resonance (MR) imaging in a multicenter clinical setting and to verify its accuracy in predicting glioma grade according to the new World Health Organization 2016 classification. Materials and Methods The local research ethics committees of all centers approved the study, and informed consent was obtained from patients. One hundred patients with glioma were prospectively examined at 3.0 T in seven centers that performed the same preoperative MR imaging protocol, including DCE and DSC sequences. Two independent readers identified the perfusion hotspots on maps of volume transfer constant (K trans ), plasma (v p ) and extravascular-extracellular space (v e ) volumes, initial area under the concentration curve, and relative cerebral blood volume (rCBV). Differences in parameters between grades and molecular subtypes were assessed by using Kruskal-Wallis and Mann-Whitney U tests. Diagnostic accuracy was evaluated by using receiver operating characteristic curve analysis. Results The whole protocol was tolerated in all patients. Perfusion maps were successfully obtained in 94 patients. An excellent interreader reproducibility of DSC- and DCE-derived measures was found. Among DCE-derived parameters, v p and v e had the highest accuracy (are under the receiver operating characteristic curve [A z ] = 0.847 and 0.853) for glioma grading. DSC-derived rCBV had the highest accuracy (A z = 0.894), but the difference was not statistically significant (P > .05). Among lower-grade gliomas, a moderate increase in both v p and rCBV was evident in isocitrate dehydrogenase wild-type tumors, although this was not significant (P > .05). Conclusion A standardized multicenter acquisition and analysis protocol of DCE and DSC MR imaging is feasible and highly reproducible. Both techniques showed a comparable, high diagnostic accuracy for grading gliomas. © RSNA, 2018 Online supplemental material is available for this article.

  1. Computational simulation and aerodynamic sensitivity analysis of film-cooled turbines

    NASA Astrophysics Data System (ADS)

    Massa, Luca

    A computational tool is developed for the time accurate sensitivity analysis of the stage performance of hot gas, unsteady turbine components. An existing turbomachinery internal flow solver is adapted to the high temperature environment typical of the hot section of jet engines. A real gas model and film cooling capabilities are successfully incorporated in the software. The modifications to the existing algorithm are described; both the theoretical model and the numerical implementation are validated. The accuracy of the code in evaluating turbine stage performance is tested using a turbine geometry typical of the last stage of aeronautical jet engines. The results of the performance analysis show that the predictions differ from the experimental data by less than 3%. A reliable grid generator, applicable to the domain discretization of the internal flow field of axial flow turbine is developed. A sensitivity analysis capability is added to the flow solver, by rendering it able to accurately evaluate the derivatives of the time varying output functions. The complex Taylor's series expansion (CTSE) technique is reviewed. Two of them are used to demonstrate the accuracy and time dependency of the differentiation process. The results are compared with finite differences (FD) approximations. The CTSE is more accurate than the FD, but less efficient. A "black box" differentiation of the source code, resulting from the automated application of the CTSE, generates high fidelity sensitivity algorithms, but with low computational efficiency and high memory requirements. New formulations of the CTSE are proposed and applied. Selective differentiation of the method for solving the non-linear implicit residual equation leads to sensitivity algorithms with the same accuracy but improved run time. The time dependent sensitivity derivatives are computed in run times comparable to the ones required by the FD approach.

  2. Artificial neural network modeling using clinical and knowledge independent variables predicts salt intake reduction behavior

    PubMed Central

    Isma’eel, Hussain A.; Sakr, George E.; Almedawar, Mohamad M.; Fathallah, Jihan; Garabedian, Torkom; Eddine, Savo Bou Zein

    2015-01-01

    Background High dietary salt intake is directly linked to hypertension and cardiovascular diseases (CVDs). Predicting behaviors regarding salt intake habits is vital to guide interventions and increase their effectiveness. We aim to compare the accuracy of an artificial neural network (ANN) based tool that predicts behavior from key knowledge questions along with clinical data in a high cardiovascular risk cohort relative to the least square models (LSM) method. Methods We collected knowledge, attitude and behavior data on 115 patients. A behavior score was calculated to classify patients’ behavior towards reducing salt intake. Accuracy comparison between ANN and regression analysis was calculated using the bootstrap technique with 200 iterations. Results Starting from a 69-item questionnaire, a reduced model was developed and included eight knowledge items found to result in the highest accuracy of 62% CI (58-67%). The best prediction accuracy in the full and reduced models was attained by ANN at 66% and 62%, respectively, compared to full and reduced LSM at 40% and 34%, respectively. The average relative increase in accuracy over all in the full and reduced models is 82% and 102%, respectively. Conclusions Using ANN modeling, we can predict salt reduction behaviors with 66% accuracy. The statistical model has been implemented in an online calculator and can be used in clinics to estimate the patient’s behavior. This will help implementation in future research to further prove clinical utility of this tool to guide therapeutic salt reduction interventions in high cardiovascular risk individuals. PMID:26090333

  3. Random forests for classification in ecology

    USGS Publications Warehouse

    Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J.

    2007-01-01

    Classification procedures are some of the most widely used statistical methods in ecology. Random forests (RF) is a new and powerful statistical classifier that is well established in other disciplines but is relatively unknown in ecology. Advantages of RF compared to other statistical classifiers include (1) very high classification accuracy; (2) a novel method of determining variable importance; (3) ability to model complex interactions among predictor variables; (4) flexibility to perform several types of statistical data analysis, including regression, classification, survival analysis, and unsupervised learning; and (5) an algorithm for imputing missing values. We compared the accuracies of RF and four other commonly used statistical classifiers using data on invasive plant species presence in Lava Beds National Monument, California, USA, rare lichen species presence in the Pacific Northwest, USA, and nest sites for cavity nesting birds in the Uinta Mountains, Utah, USA. We observed high classification accuracy in all applications as measured by cross-validation and, in the case of the lichen data, by independent test data, when comparing RF to other common classification methods. We also observed that the variables that RF identified as most important for classifying invasive plant species coincided with expectations based on the literature. ?? 2007 by the Ecological Society of America.

  4. Convolutional Neural Network for Histopathological Analysis of Osteosarcoma.

    PubMed

    Mishra, Rashika; Daescu, Ovidiu; Leavey, Patrick; Rakheja, Dinesh; Sengupta, Anita

    2018-03-01

    Pathologists often deal with high complexity and sometimes disagreement over osteosarcoma tumor classification due to cellular heterogeneity in the dataset. Segmentation and classification of histology tissue in H&E stained tumor image datasets is a challenging task because of intra-class variations, inter-class similarity, crowded context, and noisy data. In recent years, deep learning approaches have led to encouraging results in breast cancer and prostate cancer analysis. In this article, we propose convolutional neural network (CNN) as a tool to improve efficiency and accuracy of osteosarcoma tumor classification into tumor classes (viable tumor, necrosis) versus nontumor. The proposed CNN architecture contains eight learned layers: three sets of stacked two convolutional layers interspersed with max pooling layers for feature extraction and two fully connected layers with data augmentation strategies to boost performance. The use of a neural network results in higher accuracy of average 92% for the classification. We compare the proposed architecture with three existing and proven CNN architectures for image classification: AlexNet, LeNet, and VGGNet. We also provide a pipeline to calculate percentage necrosis in a given whole slide image. We conclude that the use of neural networks can assure both high accuracy and efficiency in osteosarcoma classification.

  5. Automatic segmentation of the left ventricle in a cardiac MR short axis image using blind morphological operation

    NASA Astrophysics Data System (ADS)

    Irshad, Mehreen; Muhammad, Nazeer; Sharif, Muhammad; Yasmeen, Mussarat

    2018-04-01

    Conventionally, cardiac MR image analysis is done manually. Automatic examination for analyzing images can replace the monotonous tasks of massive amounts of data to analyze the global and regional functions of the cardiac left ventricle (LV). This task is performed using MR images to calculate the analytic cardiac parameter like end-systolic volume, end-diastolic volume, ejection fraction, and myocardial mass, respectively. These analytic parameters depend upon genuine delineation of epicardial, endocardial, papillary muscle, and trabeculations contours. In this paper, we propose an automatic segmentation method using the sum of absolute differences technique to localize the left ventricle. Blind morphological operations are proposed to segment and detect the LV contours of the epicardium and endocardium, automatically. We test the benchmark Sunny Brook dataset for evaluation of the proposed work. Contours of epicardium and endocardium are compared quantitatively to determine contour's accuracy and observe high matching values. Similarity or overlapping of an automatic examination to the given ground truth analysis by an expert are observed with high accuracy as with an index value of 91.30% . The proposed method for automatic segmentation gives better performance relative to existing techniques in terms of accuracy.

  6. Image Analysis for Facility Siting: a Comparison of Lowand High-altitude Image Interpretability for Land Use/land Cover Mapping

    NASA Technical Reports Server (NTRS)

    Borella, H. M.; Estes, J. E.; Ezra, C. E.; Scepan, J.; Tinney, L. R.

    1982-01-01

    For two test sites in Pennsylvania the interpretability of commercially acquired low-altitude and existing high-altitude aerial photography are documented in terms of time, costs, and accuracy for Anderson Level II land use/land cover mapping. Information extracted from the imagery is to be used in the evaluation process for siting energy facilities. Land use/land cover maps were drawn at 1:24,000 scale using commercially flown color infrared photography obtained from the United States Geological Surveys' EROS Data Center. Detailed accuracy assessment of the maps generated by manual image analysis was accomplished employing a stratified unaligned adequate class representation. Both 'area-weighted' and 'by-class' accuracies were documented and field-verified. A discrepancy map was also drawn to illustrate differences in classifications between the two map scales. Results show that the 1:24,000 scale map set was more accurate (99% to 94% area-weighted) than the 1:62,500 scale set, especially when sampled by class (96% to 66%). The 1:24,000 scale maps were also more time-consuming and costly to produce, due mainly to higher image acquisition costs.

  7. Evaluation of registration accuracy between Sentinel-2 and Landsat 8

    NASA Astrophysics Data System (ADS)

    Barazzetti, Luigi; Cuca, Branka; Previtali, Mattia

    2016-08-01

    Starting from June 2015, Sentinel-2A is delivering high resolution optical images (ground resolution up to 10 meters) to provide a global coverage of the Earth's land surface every 10 days. The planned launch of Sentinel-2B along with the integration of Landsat images will provide time series with an unprecedented revisit time indispensable for numerous monitoring applications, in which high resolution multi-temporal information is required. They include agriculture, water bodies, natural hazards to name a few. However, the combined use of multi-temporal images requires an accurate geometric registration, i.e. pixel-to-pixel correspondence for terrain-corrected products. This paper presents an analysis of spatial co-registration accuracy for several datasets of Sentinel-2 and Landsat 8 images distributed all around the world. Images were compared with digital correlation techniques for image matching, obtaining an evaluation of registration accuracy with an affine transformation as geometrical model. Results demonstrate that sub-pixel accuracy was achieved between 10 m resolution Sentinel-2 bands (band 3) and 15 m resolution panchromatic Landsat images (band 8).

  8. Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications

    PubMed Central

    Lourenço, Célia; Turner, Claire

    2014-01-01

    Breath analysis is a promising field with great potential for non-invasive diagnosis of a number of disease states. Analysis of the concentrations of volatile organic compounds (VOCs) in breath with an acceptable accuracy are assessed by means of using analytical techniques with high sensitivity, accuracy, precision, low response time, and low detection limit, which are desirable characteristics for the detection of VOCs in human breath. “Breath fingerprinting”, indicative of a specific clinical status, relies on the use of multivariate statistics methods with powerful in-built algorithms. The need for standardisation of sample collection and analysis is the main issue concerning breath analysis, blocking the introduction of breath tests into clinical practice. This review describes recent scientific developments in basic research and clinical applications, namely issues concerning sampling and biochemistry, highlighting the diagnostic potential of breath analysis for disease diagnosis. Several considerations that need to be taken into account in breath analysis are documented here, including the growing need for metabolomics to deal with breath profiles. PMID:24957037

  9. Breath analysis in disease diagnosis: methodological considerations and applications.

    PubMed

    Lourenço, Célia; Turner, Claire

    2014-06-20

    Breath analysis is a promising field with great potential for non-invasive diagnosis of a number of disease states. Analysis of the concentrations of volatile organic compounds (VOCs) in breath with an acceptable accuracy are assessed by means of using analytical techniques with high sensitivity, accuracy, precision, low response time, and low detection limit, which are desirable characteristics for the detection of VOCs in human breath. "Breath fingerprinting", indicative of a specific clinical status, relies on the use of multivariate statistics methods with powerful in-built algorithms. The need for standardisation of sample collection and analysis is the main issue concerning breath analysis, blocking the introduction of breath tests into clinical practice. This review describes recent scientific developments in basic research and clinical applications, namely issues concerning sampling and biochemistry, highlighting the diagnostic potential of breath analysis for disease diagnosis. Several considerations that need to be taken into account in breath analysis are documented here, including the growing need for metabolomics to deal with breath profiles.

  10. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.; Shi, Y.

    1990-01-01

    A comprehensive boundary element method is presented for transient thermoelastic analysis of hot section Earth-to-Orbit engine components. This time-domain formulation requires discretization of only the surface of the component, and thus provides an attractive alternative to finite element analysis for this class of problems. In addition, steep thermal gradients, which often occur near the surface, can be captured more readily since with a boundary element approach there are no shape functions to constrain the solution in the direction normal to the surface. For example, the circular disc analysis indicates the high level of accuracy that can be obtained. In fact, on the basis of reduced modeling effort and improved accuracy, it appears that the present boundary element method should be the preferred approach for general problems of transient thermoelasticity.

  11. Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene

    NASA Astrophysics Data System (ADS)

    Zolot, A. M.; Giorgetta, F. R.; Baumann, E.; Swann, W. C.; Coddington, I.; Newbury, N. R.

    2013-03-01

    The Doppler-limited spectra of methane between 176 THz and 184 THz (5870-6130 cm-1) and acetylene between 193 THz and 199 THz (6430-6630 cm-1) are acquired via comb-tooth resolved dual comb spectroscopy with frequency accuracy traceable to atomic standards. A least squares analysis of the measured absorbance and phase line shapes provides line center frequencies with absolute accuracy of 0.2 MHz, or less than one thousandth of the room temperature Doppler width. This accuracy is verified through comparison with previous saturated absorption spectroscopy of 37 strong isolated lines of acetylene. For the methane spectrum, the center frequencies of 46 well-isolated strong lines are determined with similar high accuracy, along with the center frequencies for 1107 non-isolated lines at lower accuracy. The measured methane line-center frequencies have an uncertainty comparable to the few available laser heterodyne measurements in this region but span a much larger optical bandwidth, marking the first broad-band measurements of the methane 2ν3 region directly referenced to atomic frequency standards. This study demonstrates the promise of dual comb spectroscopy to obtain high resolution broadband spectra that are comparable to state-of-the-art Fourier-transform spectrometer measurements but with much improved frequency accuracy.Work of the US government, not subject to US copyright.

  12. Improving the Accuracy of Software-Based Energy Analysis for Residential Buildings (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polly, B.

    2011-09-01

    This presentation describes the basic components of software-based energy analysis for residential buildings, explores the concepts of 'error' and 'accuracy' when analysis predictions are compared to measured data, and explains how NREL is working to continuously improve the accuracy of energy analysis methods.

  13. Airbreathing hypersonic vehicle design and analysis methods

    NASA Technical Reports Server (NTRS)

    Lockwood, Mary Kae; Petley, Dennis H.; Hunt, James L.; Martin, John G.

    1996-01-01

    The design, analysis, and optimization of airbreathing hypersonic vehicles requires analyses involving many highly coupled disciplines at levels of accuracy exceeding those traditionally considered in a conceptual or preliminary-level design. Discipline analysis methods including propulsion, structures, thermal management, geometry, aerodynamics, performance, synthesis, sizing, closure, and cost are discussed. Also, the on-going integration of these methods into a working environment, known as HOLIST, is described.

  14. Filter parameter tuning analysis for operational orbit determination support

    NASA Technical Reports Server (NTRS)

    Dunham, J.; Cox, C.; Niklewski, D.; Mistretta, G.; Hart, R.

    1994-01-01

    The use of an extended Kalman filter (EKF) for operational orbit determination support is being considered by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD). To support that investigation, analysis was performed to determine how an EKF can be tuned for operational support of a set of earth-orbiting spacecraft. The objectives of this analysis were to design and test a general purpose scheme for filter tuning, evaluate the solution accuracies, and develop practical methods to test the consistency of the EKF solutions in an operational environment. The filter was found to be easily tuned to produce estimates that were consistent, agreed with results from batch estimation, and compared well among the common parameters estimated for several spacecraft. The analysis indicates that there is not a sharply defined 'best' tunable parameter set, especially when considering only the position estimates over the data arc. The comparison of the EKF estimates for the user spacecraft showed that the filter is capable of high-accuracy results and can easily meet the current accuracy requirements for the spacecraft included in the investigation. The conclusion is that the EKF is a viable option for FDD operational support.

  15. A Comparison of Successful and Unsuccessful Strategies in Individual Sight-Singing Preparation and Performance

    ERIC Educational Resources Information Center

    Killian, Janice N.; Henry, Michele L.

    2005-01-01

    High school singers (N = 198) individually sang two melodies from notation, with and without a 30-second practice opportunity. Overall accuracy scores were significantly higher with preparation time. The less accurate singers, however, did not benefit from practice time. Analysis of videoed tests indicated that high scorers tonicized (vocally…

  16. Spatial and thematic assessment of object-based forest stand delineation using an OFA-matrix

    NASA Astrophysics Data System (ADS)

    Hernando, A.; Tiede, D.; Albrecht, F.; Lang, S.

    2012-10-01

    The delineation and classification of forest stands is a crucial aspect of forest management. Object-based image analysis (OBIA) can be used to produce detailed maps of forest stands from either orthophotos or very high resolution satellite imagery. However, measures are then required for evaluating and quantifying both the spatial and thematic accuracy of the OBIA output. In this paper we present an approach for delineating forest stands and a new Object Fate Analysis (OFA) matrix for accuracy assessment. A two-level object-based orthophoto analysis was first carried out to delineate stands on the Dehesa Boyal public land in central Spain (Avila Province). Two structural features were first created for use in class modelling, enabling good differentiation between stands: a relational tree cover cluster feature, and an arithmetic ratio shadow/tree feature. We then extended the OFA comparison approach with an OFA-matrix to enable concurrent validation of thematic and spatial accuracies. Its diagonal shows the proportion of spatial and thematic coincidence between a reference data and the corresponding classification. New parameters for Spatial Thematic Loyalty (STL), Spatial Thematic Loyalty Overall (STLOVERALL) and Maximal Interfering Object (MIO) are introduced to summarise the OFA-matrix accuracy assessment. A stands map generated by OBIA (classification data) was compared with a map of the same area produced from photo interpretation and field data (reference data). In our example the OFA-matrix results indicate good spatial and thematic accuracies (>65%) for all stand classes except for the shrub stands (31.8%), and a good STLOVERALL (69.8%). The OFA-matrix has therefore been shown to be a valid tool for OBIA accuracy assessment.

  17. Fluorescence-based methods for detecting caries lesions: systematic review, meta-analysis and sources of heterogeneity.

    PubMed

    Gimenez, Thais; Braga, Mariana Minatel; Raggio, Daniela Procida; Deery, Chris; Ricketts, David N; Mendes, Fausto Medeiros

    2013-01-01

    Fluorescence-based methods have been proposed to aid caries lesion detection. Summarizing and analysing findings of studies about fluorescence-based methods could clarify their real benefits. We aimed to perform a comprehensive systematic review and meta-analysis to evaluate the accuracy of fluorescence-based methods in detecting caries lesions. Two independent reviewers searched PubMed, Embase and Scopus through June 2012 to identify papers/articles published. Other sources were checked to identify non-published literature. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS AND DIAGNOSTIC METHODS: The eligibility criteria were studies that: (1) have assessed the accuracy of fluorescence-based methods of detecting caries lesions on occlusal, approximal or smooth surfaces, in both primary or permanent human teeth, in the laboratory or clinical setting; (2) have used a reference standard; and (3) have reported sufficient data relating to the sample size and the accuracy of methods. A diagnostic 2×2 table was extracted from included studies to calculate the pooled sensitivity, specificity and overall accuracy parameters (Diagnostic Odds Ratio and Summary Receiver-Operating curve). The analyses were performed separately for each method and different characteristics of the studies. The quality of the studies and heterogeneity were also evaluated. Seventy five studies met the inclusion criteria from the 434 articles initially identified. The search of the grey or non-published literature did not identify any further studies. In general, the analysis demonstrated that the fluorescence-based method tend to have similar accuracy for all types of teeth, dental surfaces or settings. There was a trend of better performance of fluorescence methods in detecting more advanced caries lesions. We also observed moderate to high heterogeneity and evidenced publication bias. Fluorescence-based devices have similar overall performance; however, better accuracy in detecting more advanced caries lesions has been observed.

  18. Fast and accurate metrology of multi-layered ceramic materials by an automated boundary detection algorithm developed for optical coherence tomography data

    PubMed Central

    Ekberg, Peter; Su, Rong; Chang, Ernest W.; Yun, Seok Hyun; Mattsson, Lars

    2014-01-01

    Optical coherence tomography (OCT) is useful for materials defect analysis and inspection with the additional possibility of quantitative dimensional metrology. Here, we present an automated image-processing algorithm for OCT analysis of roll-to-roll multilayers in 3D manufacturing of advanced ceramics. It has the advantage of avoiding filtering and preset modeling, and will, thus, introduce a simplification. The algorithm is validated for its capability of measuring the thickness of ceramic layers, extracting the boundaries of embedded features with irregular shapes, and detecting the geometric deformations. The accuracy of the algorithm is very high, and the reliability is better than 1 µm when evaluating with the OCT images using the same gauge block step height reference. The method may be suitable for industrial applications to the rapid inspection of manufactured samples with high accuracy and robustness. PMID:24562018

  19. Functional Neuroimaging Distinguishes Posttraumatic Stress Disorder from Traumatic Brain Injury in Focused and Large Community Datasets

    PubMed Central

    Tarzwell, Robert; Newberg, Andrew; Henderson, Theodore A.

    2015-01-01

    Background Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are highly heterogeneous and often present with overlapping symptomology, providing challenges in reliable classification and treatment. Single photon emission computed tomography (SPECT) may be advantageous in the diagnostic separation of these disorders when comorbid or clinically indistinct. Methods Subjects were selected from a multisite database, where rest and on-task SPECT scans were obtained on a large group of neuropsychiatric patients. Two groups were analyzed: Group 1 with TBI (n=104), PTSD (n=104) or both (n=73) closely matched for demographics and comorbidity, compared to each other and healthy controls (N=116); Group 2 with TBI (n=7,505), PTSD (n=1,077) or both (n=1,017) compared to n=11,147 without either. ROIs and visual readings (VRs) were analyzed using a binary logistic regression model with predicted probabilities inputted into a Receiver Operating Characteristic analysis to identify sensitivity, specificity, and accuracy. One-way ANOVA identified the most diagnostically significant regions of increased perfusion in PTSD compared to TBI. Analysis included a 10-fold cross validation of the protocol in the larger community sample (Group 2). Results For Group 1, baseline and on-task ROIs and VRs showed a high level of accuracy in differentiating PTSD, TBI and PTSD+TBI conditions. This carefully matched group separated with 100% sensitivity, specificity and accuracy for the ROI analysis and at 89% or above for VRs. Group 2 had lower sensitivity, specificity and accuracy, but still in a clinically relevant range. Compared to subjects with TBI, PTSD showed increases in the limbic regions, cingulum, basal ganglia, insula, thalamus, prefrontal cortex and temporal lobes. Conclusions This study demonstrates the ability to separate PTSD and TBI from healthy controls, from each other, and detect their co-occurrence, even in highly comorbid samples, using SPECT. This modality may offer a clinical option for aiding diagnosis and treatment of these conditions. PMID:26132293

  20. Functional Neuroimaging Distinguishes Posttraumatic Stress Disorder from Traumatic Brain Injury in Focused and Large Community Datasets.

    PubMed

    Amen, Daniel G; Raji, Cyrus A; Willeumier, Kristen; Taylor, Derek; Tarzwell, Robert; Newberg, Andrew; Henderson, Theodore A

    2015-01-01

    Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are highly heterogeneous and often present with overlapping symptomology, providing challenges in reliable classification and treatment. Single photon emission computed tomography (SPECT) may be advantageous in the diagnostic separation of these disorders when comorbid or clinically indistinct. Subjects were selected from a multisite database, where rest and on-task SPECT scans were obtained on a large group of neuropsychiatric patients. Two groups were analyzed: Group 1 with TBI (n=104), PTSD (n=104) or both (n=73) closely matched for demographics and comorbidity, compared to each other and healthy controls (N=116); Group 2 with TBI (n=7,505), PTSD (n=1,077) or both (n=1,017) compared to n=11,147 without either. ROIs and visual readings (VRs) were analyzed using a binary logistic regression model with predicted probabilities inputted into a Receiver Operating Characteristic analysis to identify sensitivity, specificity, and accuracy. One-way ANOVA identified the most diagnostically significant regions of increased perfusion in PTSD compared to TBI. Analysis included a 10-fold cross validation of the protocol in the larger community sample (Group 2). For Group 1, baseline and on-task ROIs and VRs showed a high level of accuracy in differentiating PTSD, TBI and PTSD+TBI conditions. This carefully matched group separated with 100% sensitivity, specificity and accuracy for the ROI analysis and at 89% or above for VRs. Group 2 had lower sensitivity, specificity and accuracy, but still in a clinically relevant range. Compared to subjects with TBI, PTSD showed increases in the limbic regions, cingulum, basal ganglia, insula, thalamus, prefrontal cortex and temporal lobes. This study demonstrates the ability to separate PTSD and TBI from healthy controls, from each other, and detect their co-occurrence, even in highly comorbid samples, using SPECT. This modality may offer a clinical option for aiding diagnosis and treatment of these conditions.

  1. A Multitemporal, Multisensor Approach to Mapping the Canadian Boreal Forest

    NASA Astrophysics Data System (ADS)

    Reith, Ernest

    The main anthropogenic source of CO2 emissions is the combustion of fossil fuels, while the clearing and burning of forests contribute significant amounts as well. Vegetation represents a major reservoir for terrestrial carbon stocks, and improving our ability to inventory vegetation will enhance our understanding of the impacts of land cover and climate change on carbon stocks and fluxes. These relationships may be an indication of a series of troubling biosphere-atmospheric feedback mechanisms that need to be better understood and modeled. Valuable land cover information can be provided to the global climate change modeling community using advanced remote sensing capabilities such as Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR). Individually and synergistically, data were successfully used to characterize the complex nature of the Canadian boreal forest land cover types. The multiple endmember spectral mixture analysis process was applied against seasonal AVIRIS data to produce species-level vegetated land cover maps of two study sites in the Canadian boreal forest: Old Black Spruce (OBS) and Old Jack Pine (OJP). The highest overall accuracy was assessed to be at least 66% accurate to the available reference map, providing evidence that high-quality, species-level land cover mapping of the Canadian boreal forest is achievable at accuracy levels greater than other previous research efforts in the region. Backscatter information from multichannel, polarimetric SAR utilizing a binary decision tree-based classification technique methodology was moderately successfully applied to AIRSAR to produce maps of the boreal land cover types at both sites, with overall accuracies at least 59%. A process, centered around noise whitening and principal component analysis features of the minimum noise fraction transform, was implemented to leverage synergies contained within spatially coregistered multitemporal and multisensor AVIRIS and AIRSAR data sets to successfully produce high-accuracy boreal forest land cover maps. Overall land cover map accuracies of 78% and 72% were assessed for OJP and OBS sites, respectively, for either seasonal or multitemporal data sets. High individual land cover accuracies appeared to be independent of site, season, or multisensor combination in the minimum-noise fraction-based approach.

  2. In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography.

    PubMed

    Boone, M A L M; Suppa, M; Dhaenens, F; Miyamoto, M; Marneffe, A; Jemec, G B E; Del Marmol, V; Nebosis, R

    2016-01-01

    One of the most challenging problems in clinical dermatology is the early detection of melanoma. Reflectance confocal microscopy (RCM) is an added tool to dermoscopy improving considerably diagnostic accuracy. However, diagnosis strongly depends on the experience of physicians. High-definition optical coherence tomography (HD-OCT) appears to offer additional structural and cellular information on melanocytic lesions complementary to that of RCM. However, the diagnostic potential of HD-OCT seems to be not high enough for ruling out the diagnosis of melanoma if based on morphology analysis. The aim of this paper is first to quantify in vivo optical properties such as light attenuation in melanocytic lesions by HD-OCT. The second objective is to determine the best critical value of these optical properties for melanoma diagnosis. The technique of semi-log plot whereby an exponential function becomes a straight line has been implemented on HD-OCT signals coming from four successive skin layers (epidermis, upper papillary dermis, deeper papillary dermis and superficial reticular dermis). This permitted the HD-OCT in vivo measurement of skin entrance signal (SES), relative attenuation factor normalized for the skin entrance signal (µ raf1) and half value layer (z 1/2). The diagnostic accuracy of HD-OCT for melanoma detection based on the optical properties, µ raf1 , SES and z 1/2 was high (95.6, 82.2 and 88.9 %, respectively). High negative predictive values could be found for these optical properties (96.7, 89.3 and 96.3 %, respectively) compared to morphologic assessment alone (89.9 %), reducing the risk of mistreating a malignant lesion to a more acceptable level (3.3 % instead of 11.1 %). HD-OCT seems to enable the combination of in vivo morphological analysis of cellular and 3-D micro-architectural structures with in vivo analysis of optical properties of tissue scatterers in melanocytic lesions. In vivo HD-OCT analysis of optical properties permits melanoma diagnosis with higher accuracy than in vivo HD-OCT analysis of morphology alone.

  3. Computer aided manual validation of mass spectrometry-based proteomic data.

    PubMed

    Curran, Timothy G; Bryson, Bryan D; Reigelhaupt, Michael; Johnson, Hannah; White, Forest M

    2013-06-15

    Advances in mass spectrometry-based proteomic technologies have increased the speed of analysis and the depth provided by a single analysis. Computational tools to evaluate the accuracy of peptide identifications from these high-throughput analyses have not kept pace with technological advances; currently the most common quality evaluation methods are based on statistical analysis of the likelihood of false positive identifications in large-scale data sets. While helpful, these calculations do not consider the accuracy of each identification, thus creating a precarious situation for biologists relying on the data to inform experimental design. Manual validation is the gold standard approach to confirm accuracy of database identifications, but is extremely time-intensive. To palliate the increasing time required to manually validate large proteomic datasets, we provide computer aided manual validation software (CAMV) to expedite the process. Relevant spectra are collected, catalogued, and pre-labeled, allowing users to efficiently judge the quality of each identification and summarize applicable quantitative information. CAMV significantly reduces the burden associated with manual validation and will hopefully encourage broader adoption of manual validation in mass spectrometry-based proteomics. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Projection-based motion estimation for cardiac functional analysis with high temporal resolution: a proof-of-concept study with digital phantom experiment

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuki; Fung, George S. K.; Shen, Zeyang; Otake, Yoshito; Lee, Okkyun; Ciuffo, Luisa; Ashikaga, Hiroshi; Sato, Yoshinobu; Taguchi, Katsuyuki

    2017-03-01

    Cardiac motion (or functional) analysis has shown promise not only for non-invasive diagnosis of cardiovascular diseases but also for prediction of cardiac future events. Current imaging modalities has limitations that could degrade the accuracy of the analysis indices. In this paper, we present a projection-based motion estimation method for x-ray CT that estimates cardiac motion with high spatio-temporal resolution using projection data and a reference 3D volume image. The experiment using a synthesized digital phantom showed promising results for motion analysis.

  5. Improved quantitative analysis of spectra using a new method of obtaining derivative spectra based on a singular perturbation technique.

    PubMed

    Li, Zhigang; Wang, Qiaoyun; Lv, Jiangtao; Ma, Zhenhe; Yang, Linjuan

    2015-06-01

    Spectroscopy is often applied when a rapid quantitative analysis is required, but one challenge is the translation of raw spectra into a final analysis. Derivative spectra are often used as a preliminary preprocessing step to resolve overlapping signals, enhance signal properties, and suppress unwanted spectral features that arise due to non-ideal instrument and sample properties. In this study, to improve quantitative analysis of near-infrared spectra, derivatives of noisy raw spectral data need to be estimated with high accuracy. A new spectral estimator based on singular perturbation technique, called the singular perturbation spectra estimator (SPSE), is presented, and the stability analysis of the estimator is given. Theoretical analysis and simulation experimental results confirm that the derivatives can be estimated with high accuracy using this estimator. Furthermore, the effectiveness of the estimator for processing noisy infrared spectra is evaluated using the analysis of beer spectra. The derivative spectra of the beer and the marzipan are used to build the calibration model using partial least squares (PLS) modeling. The results show that the PLS based on the new estimator can achieve better performance compared with the Savitzky-Golay algorithm and can serve as an alternative choice for quantitative analytical applications.

  6. Efficient alignment-free DNA barcode analytics.

    PubMed

    Kuksa, Pavel; Pavlovic, Vladimir

    2009-11-10

    In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient species classification, but also opens possibility for accurate clustering analysis of putative species barcodes and identification of critical within-barcode loci distinguishing barcodes of different sample groups. New alignment-free methods provide highly accurate and fast DNA barcode-based identification and classification of species with substantial improvements in accuracy and speed over state-of-the-art barcode analysis methods. We evaluate our methods on problems of species classification and identification using barcodes, important and relevant analytical tasks in many practical applications (adverse species movement monitoring, sampling surveys for unknown or pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed alignment-free methods considerably improve prediction accuracy compared to prior results. We also observe significant running time improvements over the state-of-the-art methods. Our results show that newly developed alignment-free methods for DNA barcoding can efficiently and with high accuracy identify specimens by examining only few barcode features, resulting in increased scalability and interpretability of current computational approaches to barcoding.

  7. Perspectives for online analysis of raw material by pulsed neutron irradiation

    NASA Astrophysics Data System (ADS)

    Bach, Pierre; Le Tourneur, P.; Poumarede, B.

    1997-02-01

    On-line analysis by pulsed neutron irradiation is an example of an advanced technology application of nuclear techniques, concerning real problems in the cement, mineral and coal industries. The most significant of these nuclear techniques is their capability of continuous measurement without contact and without sampling, which can lead to improved control of processes and resultant large financial savings. Compared to Californium neutron sources, the use of electrical pulsed neutron generators allows to obtain a higher signal/noise ratio for a more sensitive measurement, and allows to overcome a number of safety problems concerning transportation, installation and maintenance. An experiment related to a possible new on-line raw material analyzer is described, using a pulsed neutron generator. The key factors contributing to an accurate measurement are related to a suitable generator, to a high count rate gamma ray spectroscopy electronics, and to computational tools. Calculation and results for the optimization of the neutron irradiation time diagram are reported. One of the operational characteristics of such an equipment is related to neutron flux available: it is possible to adjust it to the requested accuracy, i.e. for a high accuracy during a few hours/day and for a lower accuracy the rest of the time. This feature allows to operate the neutron tube during a longer time, and then to reduce the cost of analysis.

  8. The limits of direct satellite tracking with the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Bertiger, W. I.; Yunck, T. P.

    1988-01-01

    Recent advances in high precision differential Global Positioning System-based satellite tracking can be applied to the more conventional direct tracking of low earth satellites. To properly evaluate the limiting accuracy of direct GPS-based tracking, it is necessary to account for the correlations between the a-priori errors in GPS states, Y-bias, and solar pressure parameters. These can be obtained by careful analysis of the GPS orbit determination process. The analysis indicates that sub-meter accuracy can be readily achieved for a user above 1000 km altitude, even when the user solution is obtained with data taken 12 hours after the data used in the GPS orbit solutions.

  9. Value of lower respiratory tract surveillance cultures to predict bacterial pathogens in ventilator-associated pneumonia: systematic review and diagnostic test accuracy meta-analysis.

    PubMed

    Brusselaers, Nele; Labeau, Sonia; Vogelaers, Dirk; Blot, Stijn

    2013-03-01

    In ventilator-associated pneumonia (VAP), early appropriate antimicrobial therapy may be hampered by involvement of multidrug-resistant (MDR) pathogens. A systematic review and diagnostic test accuracy meta-analysis were performed to analyse whether lower respiratory tract surveillance cultures accurately predict the causative pathogens of subsequent VAP in adult patients. Selection and assessment of eligibility were performed by three investigators by mutual consideration. Of the 525 studies retrieved, 14 were eligible for inclusion (all in English; published since 1994), accounting for 791 VAP episodes. The following data were collected: study and population characteristics; in- and exclusion criteria; diagnostic criteria for VAP; microbiological workup of surveillance and diagnostic VAP cultures. Sub-analyses were conducted for VAP caused by Staphylococcus aureus, Pseudomonas spp., and Acinetobacter spp., MDR microorganisms, frequency of sampling, and consideration of all versus the most recent surveillance cultures. The meta-analysis showed a high accuracy of surveillance cultures, with pooled sensitivities up to 0.75 and specificities up to 0.92 in culture-positive VAP. The area under the curve (AUC) of the hierarchical summary receiver-operating characteristic curve demonstrates moderate accuracy (AUC: 0.90) in predicting multidrug resistance. A sampling frequency of >2/week (sensitivity 0.79; specificity 0.96) and consideration of only the most recent surveillance culture (sensitivity 0.78; specificity 0.96) are associated with a higher accuracy of prediction. This study provides evidence for the benefit of surveillance cultures in predicting MDR bacterial pathogens in VAP. However, clinical and statistical heterogeneity, limited samples sizes, and bias remain important limitations of this meta-analysis.

  10. MR thermometry analysis of sonication accuracy and safety margin of volumetric MR imaging-guided high-intensity focused ultrasound ablation of symptomatic uterine fibroids.

    PubMed

    Kim, Young-sun; Trillaud, Hervé; Rhim, Hyunchul; Lim, Hyo K; Mali, Willem; Voogt, Marianne; Barkhausen, Jörg; Eckey, Thomas; Köhler, Max O; Keserci, Bilgin; Mougenot, Charles; Sokka, Shunmugavelu D; Soini, Jouko; Nieminen, Heikki J

    2012-11-01

    To evaluate the accuracy of the size and location of the ablation zone produced by volumetric magnetic resonance (MR) imaging-guided high-intensity focused ultrasound ablation of uterine fibroids on the basis of MR thermometric analysis and to assess the effects of a feedback control technique. This prospective study was approved by the institutional review board, and written informed consent was obtained. Thirty-three women with 38 uterine fibroids were treated with an MR imaging-guided high-intensity focused ultrasound system capable of volumetric feedback ablation. Size (diameter times length) and location (three-dimensional displacements) of each ablation zone induced by 527 sonications (with [n=471] and without [n=56] feedback) were analyzed according to the thermal dose obtained with MR thermometry. Prospectively defined acceptance ranges of targeting accuracy were ±5 mm in left-right (LR) and craniocaudal (CC) directions and ±12 mm in anteroposterior (AP) direction. Effects of feedback control in 8- and 12-mm treatment cells were evaluated by using a mixed model with repeated observations within patients. Overall mean sizes of ablation zones produced by 4-, 8-, 12-, and 16-mm treatment cells (with and without feedback) were 4.6 mm±1.4 (standard deviation)×4.4 mm±4.8 (n=13), 8.9 mm±1.9×20.2 mm±6.5 (n=248), 13.0 mm±1.2×29.1 mm±5.6 (n=234), and 18.1 mm±1.4×38.2 mm±7.6 (n=32), respectively. Targeting accuracy values (displacements in absolute values) were 0.9 mm±0.7, 1.2 mm±0.9, and 2.8 mm±2.2 in LR, CC, and AP directions, respectively. Of 527 sonications, 99.8% (526 of 527) were within acceptance ranges. Feedback control had no statistically significant effect on targeting accuracy or ablation zone size. However, variations in ablation zone size were smaller in the feedback control group. Sonication accuracy of volumetric MR imaging-guided high-intensity focused ultrasound ablation of uterine fibroids appears clinically acceptable and may be further improved by feedback control to produce more consistent ablation zones. © RSNA, 2012

  11. Accuracy of urinary human papillomavirus testing for presence of cervical HPV: systematic review and meta-analysis

    PubMed Central

    Pathak, Neha; Dodds, Julie; Khan, Khalid

    2014-01-01

    Objective To determine the accuracy of testing for human papillomavirus (HPV) DNA in urine in detecting cervical HPV in sexually active women. Design Systematic review and meta-analysis. Data sources Searches of electronic databases from inception until December 2013, checks of reference lists, manual searches of recent issues of relevant journals, and contact with experts. Eligibility criteria Test accuracy studies in sexually active women that compared detection of urine HPV DNA with detection of cervical HPV DNA. Data extraction and synthesis Data relating to patient characteristics, study context, risk of bias, and test accuracy. 2×2 tables were constructed and synthesised by bivariate mixed effects meta-analysis. Results 16 articles reporting on 14 studies (1443 women) were eligible for meta-analysis. Most used commercial polymerase chain reaction methods on first void urine samples. Urine detection of any HPV had a pooled sensitivity of 87% (95% confidence interval 78% to 92%) and specificity of 94% (95% confidence interval 82% to 98%). Urine detection of high risk HPV had a pooled sensitivity of 77% (68% to 84%) and specificity of 88% (58% to 97%). Urine detection of HPV 16 and 18 had a pooled sensitivity of 73% (56% to 86%) and specificity of 98% (91% to 100%). Metaregression revealed an increase in sensitivity when urine samples were collected as first void compared with random or midstream (P=0.004). Limitations The major limitations of this review are the lack of a strictly uniform method for the detection of HPV in urine and the variation in accuracy between individual studies. Conclusions Testing urine for HPV seems to have good accuracy for the detection of cervical HPV, and testing first void urine samples is more accurate than random or midstream sampling. When cervical HPV detection is considered difficult in particular subgroups, urine testing should be regarded as an acceptable alternative. PMID:25232064

  12. High resolution frequency analysis techniques with application to the redshift experiment

    NASA Technical Reports Server (NTRS)

    Decher, R.; Teuber, D.

    1975-01-01

    High resolution frequency analysis methods, with application to the gravitational probe redshift experiment, are discussed. For this experiment a resolution of .00001 Hz is required to measure a slowly varying, low frequency signal of approximately 1 Hz. Major building blocks include fast Fourier transform, discrete Fourier transform, Lagrange interpolation, golden section search, and adaptive matched filter technique. Accuracy, resolution, and computer effort of these methods are investigated, including test runs on an IBM 360/65 computer.

  13. Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery.

    PubMed

    Belgiu, Mariana; Dr Guţ, Lucian

    2014-10-01

    Although multiresolution segmentation (MRS) is a powerful technique for dealing with very high resolution imagery, some of the image objects that it generates do not match the geometries of the target objects, which reduces the classification accuracy. MRS can, however, be guided to produce results that approach the desired object geometry using either supervised or unsupervised approaches. Although some studies have suggested that a supervised approach is preferable, there has been no comparative evaluation of these two approaches. Therefore, in this study, we have compared supervised and unsupervised approaches to MRS. One supervised and two unsupervised segmentation methods were tested on three areas using QuickBird and WorldView-2 satellite imagery. The results were assessed using both segmentation evaluation methods and an accuracy assessment of the resulting building classifications. Thus, differences in the geometries of the image objects and in the potential to achieve satisfactory thematic accuracies were evaluated. The two approaches yielded remarkably similar classification results, with overall accuracies ranging from 82% to 86%. The performance of one of the unsupervised methods was unexpectedly similar to that of the supervised method; they identified almost identical scale parameters as being optimal for segmenting buildings, resulting in very similar geometries for the resulting image objects. The second unsupervised method produced very different image objects from the supervised method, but their classification accuracies were still very similar. The latter result was unexpected because, contrary to previously published findings, it suggests a high degree of independence between the segmentation results and classification accuracy. The results of this study have two important implications. The first is that object-based image analysis can be automated without sacrificing classification accuracy, and the second is that the previously accepted idea that classification is dependent on segmentation is challenged by our unexpected results, casting doubt on the value of pursuing 'optimal segmentation'. Our results rather suggest that as long as under-segmentation remains at acceptable levels, imperfections in segmentation can be ruled out, so that a high level of classification accuracy can still be achieved.

  14. Automatic segmentation of invasive breast carcinomas from dynamic contrast-enhanced MRI using time series analysis.

    PubMed

    Jayender, Jagadaeesan; Chikarmane, Sona; Jolesz, Ferenc A; Gombos, Eva

    2014-08-01

    To accurately segment invasive ductal carcinomas (IDCs) from dynamic contrast-enhanced MRI (DCE-MRI) using time series analysis based on linear dynamic system (LDS) modeling. Quantitative segmentation methods based on black-box modeling and pharmacokinetic modeling are highly dependent on imaging pulse sequence, timing of bolus injection, arterial input function, imaging noise, and fitting algorithms. We modeled the underlying dynamics of the tumor by an LDS and used the system parameters to segment the carcinoma on the DCE-MRI. Twenty-four patients with biopsy-proven IDCs were analyzed. The lesions segmented by the algorithm were compared with an expert radiologist's segmentation and the output of a commercial software, CADstream. The results are quantified in terms of the accuracy and sensitivity of detecting the lesion and the amount of overlap, measured in terms of the Dice similarity coefficient (DSC). The segmentation algorithm detected the tumor with 90% accuracy and 100% sensitivity when compared with the radiologist's segmentation and 82.1% accuracy and 100% sensitivity when compared with the CADstream output. The overlap of the algorithm output with the radiologist's segmentation and CADstream output, computed in terms of the DSC was 0.77 and 0.72, respectively. The algorithm also shows robust stability to imaging noise. Simulated imaging noise with zero mean and standard deviation equal to 25% of the base signal intensity was added to the DCE-MRI series. The amount of overlap between the tumor maps generated by the LDS-based algorithm from the noisy and original DCE-MRI was DSC = 0.95. The time-series analysis based segmentation algorithm provides high accuracy and sensitivity in delineating the regions of enhanced perfusion corresponding to tumor from DCE-MRI. © 2013 Wiley Periodicals, Inc.

  15. Automatic Segmentation of Invasive Breast Carcinomas from DCE-MRI using Time Series Analysis

    PubMed Central

    Jayender, Jagadaeesan; Chikarmane, Sona; Jolesz, Ferenc A.; Gombos, Eva

    2013-01-01

    Purpose Quantitative segmentation methods based on black-box modeling and pharmacokinetic modeling are highly dependent on imaging pulse sequence, timing of bolus injection, arterial input function, imaging noise and fitting algorithms. To accurately segment invasive ductal carcinomas (IDCs) from dynamic contrast enhanced MRI (DCE-MRI) using time series analysis based on linear dynamic system (LDS) modeling. Methods We modeled the underlying dynamics of the tumor by a LDS and use the system parameters to segment the carcinoma on the DCE-MRI. Twenty-four patients with biopsy-proven IDCs were analyzed. The lesions segmented by the algorithm were compared with an expert radiologist’s segmentation and the output of a commercial software, CADstream. The results are quantified in terms of the accuracy and sensitivity of detecting the lesion and the amount of overlap, measured in terms of the Dice similarity coefficient (DSC). Results The segmentation algorithm detected the tumor with 90% accuracy and 100% sensitivity when compared to the radiologist’s segmentation and 82.1% accuracy and 100% sensitivity when compared to the CADstream output. The overlap of the algorithm output with the radiologist’s segmentation and CADstream output, computed in terms of the DSC was 0.77 and 0.72 respectively. The algorithm also shows robust stability to imaging noise. Simulated imaging noise with zero mean and standard deviation equal to 25% of the base signal intensity was added to the DCE-MRI series. The amount of overlap between the tumor maps generated by the LDS-based algorithm from the noisy and original DCE-MRI was DSC=0.95. Conclusion The time-series analysis based segmentation algorithm provides high accuracy and sensitivity in delineating the regions of enhanced perfusion corresponding to tumor from DCE-MRI. PMID:24115175

  16. Automatic differentiation for design sensitivity analysis of structural systems using multiple processors

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc T.; Storaasli, Olaf O.; Qin, Jiangning; Qamar, Ramzi

    1994-01-01

    An automatic differentiation tool (ADIFOR) is incorporated into a finite element based structural analysis program for shape and non-shape design sensitivity analysis of structural systems. The entire analysis and sensitivity procedures are parallelized and vectorized for high performance computation. Small scale examples to verify the accuracy of the proposed program and a medium scale example to demonstrate the parallel vector performance on multiple CRAY C90 processors are included.

  17. Research on Horizontal Accuracy Method of High Spatial Resolution Remotely Sensed Orthophoto Image

    NASA Astrophysics Data System (ADS)

    Xu, Y. M.; Zhang, J. X.; Yu, F.; Dong, S.

    2018-04-01

    At present, in the inspection and acceptance of high spatial resolution remotly sensed orthophoto image, the horizontal accuracy detection is testing and evaluating the accuracy of images, which mostly based on a set of testing points with the same accuracy and reliability. However, it is difficult to get a set of testing points with the same accuracy and reliability in the areas where the field measurement is difficult and the reference data with high accuracy is not enough. So it is difficult to test and evaluate the horizontal accuracy of the orthophoto image. The uncertainty of the horizontal accuracy has become a bottleneck for the application of satellite borne high-resolution remote sensing image and the scope of service expansion. Therefore, this paper proposes a new method to test the horizontal accuracy of orthophoto image. This method using the testing points with different accuracy and reliability. These points' source is high accuracy reference data and field measurement. The new method solves the horizontal accuracy detection of the orthophoto image in the difficult areas and provides the basis for providing reliable orthophoto images to the users.

  18. A Comparative Analysis of Machine Learning with WorldView-2 Pan-Sharpened Imagery for Tea Crop Mapping

    PubMed Central

    Chuang, Yung-Chung Matt; Shiu, Yi-Shiang

    2016-01-01

    Tea is an important but vulnerable economic crop in East Asia, highly impacted by climate change. This study attempts to interpret tea land use/land cover (LULC) using very high resolution WorldView-2 imagery of central Taiwan with both pixel and object-based approaches. A total of 80 variables derived from each WorldView-2 band with pan-sharpening, standardization, principal components and gray level co-occurrence matrix (GLCM) texture indices transformation, were set as the input variables. For pixel-based image analysis (PBIA), 34 variables were selected, including seven principal components, 21 GLCM texture indices and six original WorldView-2 bands. Results showed that support vector machine (SVM) had the highest tea crop classification accuracy (OA = 84.70% and KIA = 0.690), followed by random forest (RF), maximum likelihood algorithm (ML), and logistic regression analysis (LR). However, the ML classifier achieved the highest classification accuracy (OA = 96.04% and KIA = 0.887) in object-based image analysis (OBIA) using only six variables. The contribution of this study is to create a new framework for accurately identifying tea crops in a subtropical region with real-time high-resolution WorldView-2 imagery without field survey, which could further aid agriculture land management and a sustainable agricultural product supply. PMID:27128915

  19. A Comparative Analysis of Machine Learning with WorldView-2 Pan-Sharpened Imagery for Tea Crop Mapping.

    PubMed

    Chuang, Yung-Chung Matt; Shiu, Yi-Shiang

    2016-04-26

    Tea is an important but vulnerable economic crop in East Asia, highly impacted by climate change. This study attempts to interpret tea land use/land cover (LULC) using very high resolution WorldView-2 imagery of central Taiwan with both pixel and object-based approaches. A total of 80 variables derived from each WorldView-2 band with pan-sharpening, standardization, principal components and gray level co-occurrence matrix (GLCM) texture indices transformation, were set as the input variables. For pixel-based image analysis (PBIA), 34 variables were selected, including seven principal components, 21 GLCM texture indices and six original WorldView-2 bands. Results showed that support vector machine (SVM) had the highest tea crop classification accuracy (OA = 84.70% and KIA = 0.690), followed by random forest (RF), maximum likelihood algorithm (ML), and logistic regression analysis (LR). However, the ML classifier achieved the highest classification accuracy (OA = 96.04% and KIA = 0.887) in object-based image analysis (OBIA) using only six variables. The contribution of this study is to create a new framework for accurately identifying tea crops in a subtropical region with real-time high-resolution WorldView-2 imagery without field survey, which could further aid agriculture land management and a sustainable agricultural product supply.

  20. Global Study of the Simple Pendulum by the Homotopy Analysis Method

    ERIC Educational Resources Information Center

    Bel, A.; Reartes, W.; Torresi, A.

    2012-01-01

    Techniques are developed to find all periodic solutions in the simple pendulum by means of the homotopy analysis method (HAM). This involves the solution of the equations of motion in two different coordinate representations. Expressions are obtained for the cycles and periods of oscillations with a high degree of accuracy in the whole range of…

  1. Rice Crop Monitoring and Yield Assessment with MODIS 250m Gridded Vegetation Products: A Case Study of Sa Kaeo Province, Thailand

    NASA Astrophysics Data System (ADS)

    Wijesingha, J. S. J.; Deshapriya, N. L.; Samarakoon, L.

    2015-04-01

    Billions of people in the world depend on rice as a staple food and as an income-generating crop. Asia is the leader in rice cultivation and it is necessary to maintain an up-to-date rice-related database to ensure food security as well as economic development. This study investigates general applicability of high temporal resolution Moderate Resolution Imaging Spectroradiometer (MODIS) 250m gridded vegetation product for monitoring rice crop growth, mapping rice crop acreage and analyzing crop yield, at the province-level. The MODIS 250m Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) time series data, field data and crop calendar information were utilized in this research in Sa Kaeo Province, Thailand. The following methodology was used: (1) data pre-processing and rice plant growth analysis using Vegetation Indices (VI) (2) extraction of rice acreage and start-of-season dates from VI time series data (3) accuracy assessment, and (4) yield analysis with MODIS VI. The results show a direct relationship between rice plant height and MODIS VI. The crop calendar information and the smoothed NDVI time series with Whittaker Smoother gave high rice acreage estimation (with 86% area accuracy and 75% classification accuracy). Point level yield analysis showed that the MODIS EVI is highly correlated with rice yield and yield prediction using maximum EVI in the rice cycle predicted yield with an average prediction error 4.2%. This study shows the immense potential of MODIS gridded vegetation product for keeping an up-to-date Geographic Information System of rice cultivation.

  2. ROC analysis of the accuracy of Noncycloplegic retinoscopy, Retinomax Autorefractor, and SureSight Vision Screener for preschool vision screening.

    PubMed

    Ying, Gui-shuang; Maguire, Maureen; Quinn, Graham; Kulp, Marjean Taylor; Cyert, Lynn

    2011-12-28

    To evaluate, by receiver operating characteristic (ROC) analysis, the accuracy of three instruments of refractive error in detecting eye conditions among 3- to 5-year-old Head Start preschoolers and to evaluate differences in accuracy between instruments and screeners and by age of the child. Children participating in the Vision In Preschoolers (VIP) Study (n = 4040), had screening tests administered by pediatric eye care providers (phase I) or by both nurse and lay screeners (phase II). Noncycloplegic retinoscopy (NCR), the Retinomax Autorefractor (Nikon, Tokyo, Japan), and the SureSight Vision Screener (SureSight, Alpharetta, GA) were used in phase I, and Retinomax and SureSight were used in phase II. Pediatric eye care providers performed a standardized eye examination to identify amblyopia, strabismus, significant refractive error, and reduced visual acuity. The accuracy of the screening tests was summarized by the area under the ROC curve (AUC) and compared between instruments and screeners and by age group. The three screening tests had a high AUC for all categories of screening personnel. The AUC for detecting any VIP-targeted condition was 0.83 for NCR, 0.83 (phase I) to 0.88 (phase II) for Retinomax, and 0.86 (phase I) to 0.87 (phase II) for SureSight. The AUC was 0.93 to 0.95 for detecting group 1 (most severe) conditions and did not differ between instruments or screeners or by age of the child. NCR, Retinomax, and SureSight had similar and high accuracy in detecting vision disorders in preschoolers across all types of screeners and age of child, consistent with previously reported results at specificity levels of 90% and 94%.

  3. Predicting Voice Disorder Status From Smoothed Measures of Cepstral Peak Prominence Using Praat and Analysis of Dysphonia in Speech and Voice (ADSV).

    PubMed

    Sauder, Cara; Bretl, Michelle; Eadie, Tanya

    2017-09-01

    The purposes of this study were to (1) determine and compare the diagnostic accuracy of a single acoustic measure, smoothed cepstral peak prominence (CPPS), to predict voice disorder status from connected speech samples using two software systems: Analysis of Dysphonia in Speech and Voice (ADSV) and Praat; and (2) to determine the relationship between measures of CPPS generated from these programs. This is a retrospective cross-sectional study. Measures of CPPS were obtained from connected speech recordings of 100 subjects with voice disorders and 70 nondysphonic subjects without vocal complaints using commercially available ADSV and freely downloadable Praat software programs. Logistic regression and receiver operating characteristic (ROC) analyses were used to evaluate and compare the diagnostic accuracy of CPPS measures. Relationships between CPPS measures from the programs were determined. Results showed acceptable overall accuracy rates (75% accuracy, ADSV; 82% accuracy, Praat) and area under the ROC curves (area under the curve [AUC] = 0.81, ADSV; AUC = 0.91, Praat) for predicting voice disorder status, with slight differences in sensitivity and specificity. CPPS measures derived from Praat were uniquely predictive of disorder status above and beyond CPPS measures from ADSV (χ 2 (1) = 40.71, P < 0.001). CPPS measures from both programs were significantly and highly correlated (r = 0.88, P < 0.001). A single acoustic measure of CPPS was highly predictive of voice disorder status using either program. Clinicians may consider using CPPS to complement clinical voice evaluation and screening protocols. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Classification of large-scale fundus image data sets: a cloud-computing framework.

    PubMed

    Roychowdhury, Sohini

    2016-08-01

    Large medical image data sets with high dimensionality require substantial amount of computation time for data creation and data processing. This paper presents a novel generalized method that finds optimal image-based feature sets that reduce computational time complexity while maximizing overall classification accuracy for detection of diabetic retinopathy (DR). First, region-based and pixel-based features are extracted from fundus images for classification of DR lesions and vessel-like structures. Next, feature ranking strategies are used to distinguish the optimal classification feature sets. DR lesion and vessel classification accuracies are computed using the boosted decision tree and decision forest classifiers in the Microsoft Azure Machine Learning Studio platform, respectively. For images from the DIARETDB1 data set, 40 of its highest-ranked features are used to classify four DR lesion types with an average classification accuracy of 90.1% in 792 seconds. Also, for classification of red lesion regions and hemorrhages from microaneurysms, accuracies of 85% and 72% are observed, respectively. For images from STARE data set, 40 high-ranked features can classify minor blood vessels with an accuracy of 83.5% in 326 seconds. Such cloud-based fundus image analysis systems can significantly enhance the borderline classification performances in automated screening systems.

  5. Mediterranean Land Use and Land Cover Classification Assessment Using High Spatial Resolution Data

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Boteva, Silvena

    2016-10-01

    Landscape fragmentation is noticeably practiced in Mediterranean regions and imposes substantial complications in several satellite image classification methods. To some extent, high spatial resolution data were able to overcome such complications. For better classification performances in Land Use Land Cover (LULC) mapping, the current research adopts different classification methods comparison for LULC mapping using Sentinel-2 satellite as a source of high spatial resolution. Both of pixel-based and an object-based classification algorithms were assessed; the pixel-based approach employs Maximum Likelihood (ML), Artificial Neural Network (ANN) algorithms, Support Vector Machine (SVM), and, the object-based classification uses the Nearest Neighbour (NN) classifier. Stratified Masking Process (SMP) that integrates a ranking process within the classes based on spectral fluctuation of the sum of the training and testing sites was implemented. An analysis of the overall and individual accuracy of the classification results of all four methods reveals that the SVM classifier was the most efficient overall by distinguishing most of the classes with the highest accuracy. NN succeeded to deal with artificial surface classes in general while agriculture area classes, and forest and semi-natural area classes were segregated successfully with SVM. Furthermore, a comparative analysis indicates that the conventional classification method yielded better accuracy results than the SMP method overall with both classifiers used, ML and SVM.

  6. Thermal error analysis and compensation for digital image/volume correlation

    NASA Astrophysics Data System (ADS)

    Pan, Bing

    2018-02-01

    Digital image/volume correlation (DIC/DVC) rely on the digital images acquired by digital cameras and x-ray CT scanners to extract the motion and deformation of test samples. Regrettably, these imaging devices are unstable optical systems, whose imaging geometry may undergo unavoidable slight and continual changes due to self-heating effect or ambient temperature variations. Changes in imaging geometry lead to both shift and expansion in the recorded 2D or 3D images, and finally manifest as systematic displacement and strain errors in DIC/DVC measurements. Since measurement accuracy is always the most important requirement in various experimental mechanics applications, these thermal-induced errors (referred to as thermal errors) should be given serious consideration in order to achieve high accuracy, reproducible DIC/DVC measurements. In this work, theoretical analyses are first given to understand the origin of thermal errors. Then real experiments are conducted to quantify thermal errors. Three solutions are suggested to mitigate or correct thermal errors. Among these solutions, a reference sample compensation approach is highly recommended because of its easy implementation, high accuracy and in-situ error correction capability. Most of the work has appeared in our previously published papers, thus its originality is not claimed. Instead, this paper aims to give a comprehensive overview and more insights of our work on thermal error analysis and compensation for DIC/DVC measurements.

  7. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.

    PubMed

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-08-14

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  8. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

    PubMed Central

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-01-01

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms. PMID:26287203

  9. [Japanese learners' processing time for reading English relative clauses analyzed in relation to their English listening proficiency].

    PubMed

    Oyama, Yoshinori

    2011-06-01

    The present study examined Japanese university students' processing time for English subject and object relative clauses in relation to their English listening proficiency. In Analysis 1, the relation between English listening proficiency and reading span test scores was analyzed. The results showed that the high and low listening comprehension groups' reading span test scores do not differ. Analysis 2 investigated English listening proficiency and processing time for sentences with subject and object relative clauses. The results showed that reading the relative clause ending and the main verb section of a sentence with an object relative clause (such as "attacked" and "admitted" in the sentence "The reporter that the senator attacked admitted the error") takes less time for learners with high English listening scores than for learners with low English listening scores. In Analysis 3, English listening proficiency and comprehension accuracy for sentences with subject and object relative clauses were examined. The results showed no significant difference in comprehension accuracy between the high and low listening-comprehension groups. These results indicate that processing time for English relative clauses is related to the cognitive processes involved in listening comprehension, which requires immediate processing of syntactically complex audio information.

  10. A New Filtering and Smoothing Algorithm for Railway Track Surveying Based on Landmark and IMU/Odometer

    PubMed Central

    Jiang, Qingan; Wu, Wenqi; Jiang, Mingming; Li, Yun

    2017-01-01

    High-accuracy railway track surveying is essential for railway construction and maintenance. The traditional approaches based on total station equipment are not efficient enough since high precision surveying frequently needs static measurements. This paper proposes a new filtering and smoothing algorithm based on the IMU/odometer and landmarks integration for the railway track surveying. In order to overcome the difficulty of estimating too many error parameters with too few landmark observations, a new model with completely observable error states is established by combining error terms of the system. Based on covariance analysis, the analytical relationship between the railway track surveying accuracy requirements and equivalent gyro drifts including bias instability and random walk noise are established. Experiment results show that the accuracy of the new filtering and smoothing algorithm for railway track surveying can reach 1 mm (1σ) when using a Ring Laser Gyroscope (RLG)-based Inertial Measurement Unit (IMU) with gyro bias instability of 0.03°/h and random walk noise of 0.005°/h while control points of the track control network (CPIII) position observations are provided by the optical total station in about every 60 m interval. The proposed approach can satisfy at the same time the demands of high accuracy and work efficiency for railway track surveying. PMID:28629191

  11. Online virtual isocenter based radiation field targeting for high performance small animal microirradiation

    NASA Astrophysics Data System (ADS)

    Stewart, James M. P.; Ansell, Steve; Lindsay, Patricia E.; Jaffray, David A.

    2015-12-01

    Advances in precision microirradiators for small animal radiation oncology studies have provided the framework for novel translational radiobiological studies. Such systems target radiation fields at the scale required for small animal investigations, typically through a combination of on-board computed tomography image guidance and fixed, interchangeable collimators. Robust targeting accuracy of these radiation fields remains challenging, particularly at the millimetre scale field sizes achievable by the majority of microirradiators. Consistent and reproducible targeting accuracy is further hindered as collimators are removed and inserted during a typical experimental workflow. This investigation quantified this targeting uncertainty and developed an online method based on a virtual treatment isocenter to actively ensure high performance targeting accuracy for all radiation field sizes. The results indicated that the two-dimensional field placement uncertainty was as high as 1.16 mm at isocenter, with simulations suggesting this error could be reduced to 0.20 mm using the online correction method. End-to-end targeting analysis of a ball bearing target on radiochromic film sections showed an improved targeting accuracy with the three-dimensional vector targeting error across six different collimators reduced from 0.56+/- 0.05 mm (mean  ±  SD) to 0.05+/- 0.05 mm for an isotropic imaging voxel size of 0.1 mm.

  12. Gliomas: Application of Cumulative Histogram Analysis of Normalized Cerebral Blood Volume on 3 T MRI to Tumor Grading

    PubMed Central

    Kim, Hyungjin; Choi, Seung Hong; Kim, Ji-Hoon; Ryoo, Inseon; Kim, Soo Chin; Yeom, Jeong A.; Shin, Hwaseon; Jung, Seung Chai; Lee, A. Leum; Yun, Tae Jin; Park, Chul-Kee; Sohn, Chul-Ho; Park, Sung-Hye

    2013-01-01

    Background Glioma grading assumes significant importance in that low- and high-grade gliomas display different prognoses and are treated with dissimilar therapeutic strategies. The objective of our study was to retrospectively assess the usefulness of a cumulative normalized cerebral blood volume (nCBV) histogram for glioma grading based on 3 T MRI. Methods From February 2010 to April 2012, 63 patients with astrocytic tumors underwent 3 T MRI with dynamic susceptibility contrast perfusion-weighted imaging. Regions of interest containing the entire tumor volume were drawn on every section of the co-registered relative CBV (rCBV) maps and T2-weighted images. The percentile values from the cumulative nCBV histograms and the other histogram parameters were correlated with tumor grades. Cochran’s Q test and the McNemar test were used to compare the diagnostic accuracies of the histogram parameters after the receiver operating characteristic curve analysis. Using the parameter offering the highest diagnostic accuracy, a validation process was performed with an independent test set of nine patients. Results The 99th percentile of the cumulative nCBV histogram (nCBV C99), mean and peak height differed significantly between low- and high-grade gliomas (P = <0.001, 0.014 and <0.001, respectively) and between grade III and IV gliomas (P = <0.001, 0.001 and <0.001, respectively). The diagnostic accuracy of nCBV C99 was significantly higher than that of the mean nCBV (P = 0.016) in distinguishing high- from low-grade gliomas and was comparable to that of the peak height (P = 1.000). Validation using the two cutoff values of nCBV C99 achieved a diagnostic accuracy of 66.7% (6/9) for the separation of all three glioma grades. Conclusion Cumulative histogram analysis of nCBV using 3 T MRI can be a useful method for preoperative glioma grading. The nCBV C99 value is helpful in distinguishing high- from low-grade gliomas and grade IV from III gliomas. PMID:23704910

  13. Accuracy and Reliability of the Klales et al. (2012) Morphoscopic Pelvic Sexing Method.

    PubMed

    Lesciotto, Kate M; Doershuk, Lily J

    2018-01-01

    Klales et al. (2012) devised an ordinal scoring system for the morphoscopic pelvic traits described by Phenice (1969) and used for sex estimation of skeletal remains. The aim of this study was to test the accuracy and reliability of the Klales method using a large sample from the Hamann-Todd collection (n = 279). Two observers were blinded to sex, ancestry, and age and used the Klales et al. method to estimate the sex of each individual. Sex was correctly estimated for females with over 95% accuracy; however, the male allocation accuracy was approximately 50%. Weighted Cohen's kappa and intraclass correlation coefficient analysis for evaluating intra- and interobserver error showed moderate to substantial agreement for all traits. Although each trait can be reliably scored using the Klales method, low accuracy rates and high sex bias indicate better trait descriptions and visual guides are necessary to more accurately reflect the range of morphological variation. © 2017 American Academy of Forensic Sciences.

  14. Self-audit of lockout/tagout in manufacturing workplaces: A pilot study.

    PubMed

    Yamin, Samuel C; Parker, David L; Xi, Min; Stanley, Rodney

    2017-05-01

    Occupational health and safety (OHS) self-auditing is a common practice in industrial workplaces. However, few audit instruments have been tested for inter-rater reliability and accuracy. A lockout/tagout (LOTO) self-audit checklist was developed for use in manufacturing enterprises. It was tested for inter-rater reliability and accuracy using responses of business self-auditors and external auditors. Inter-rater reliability at ten businesses was excellent (κ = 0.84). Business self-auditors had high (100%) accuracy in identifying elements of LOTO practice that were present as well those that were absent (81% accuracy). Reliability and accuracy increased further when problematic checklist questions were removed from the analysis. Results indicate that the LOTO self-audit checklist would be useful in manufacturing firms' efforts to assess and improve their LOTO programs. In addition, a reliable self-audit instrument removes the need for external auditors to visit worksites, thereby expanding capacity for outreach and intervention while minimizing costs. © 2017 Wiley Periodicals, Inc.

  15. Trace analysis of high-purity graphite by LA-ICP-MS.

    PubMed

    Pickhardt, C; Becker, J S

    2001-07-01

    Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a very efficient and sensitive technique for the direct analysis of solids. In this work the capability of LA-ICP-MS was investigated for determination of trace elements in high-purity graphite. Synthetic laboratory standards with a graphite matrix were prepared for the purpose of quantifying the analytical results. Doped trace elements, concentration 0.5 microg g(-1), in a laboratory standard were determined with an accuracy of 1% to +/- 7% and a relative standard deviation (RSD) of 2-13%. Solution-based calibration was also used for quantitative analysis of high-purity graphite. It was found that such calibration led to analytical results for trace-element determination in graphite with accuracy similar to that obtained by use of synthetic laboratory standards for quantification of analytical results. Results from quantitative determination of trace impurities in a real reactor-graphite sample, using both quantification approaches, were in good agreement. Detection limits for all elements of interest were determined in the low ng g(-1) concentration range. Improvement of detection limits by a factor of 10 was achieved for analyses of high-purity graphite with LA-ICP-MS under wet plasma conditions, because the lower background signal and increased element sensitivity.

  16. An object-based image analysis approach for aquaculture ponds precise mapping and monitoring: a case study of Tam Giang-Cau Hai Lagoon, Vietnam.

    PubMed

    Virdis, Salvatore Gonario Pasquale

    2014-01-01

    Monitoring and mapping shrimp farms, including their impact on land cover and land use, is critical to the sustainable management and planning of coastal zones. In this work, a methodology was proposed to set up a cost-effective and reproducible procedure that made use of satellite remote sensing, object-based classification approach, and open-source software for mapping aquaculture areas with high planimetric and thematic accuracy between 2005 and 2008. The analysis focused on two characteristic areas of interest of the Tam Giang-Cau Hai Lagoon (in central Vietnam), which have similar farming systems to other coastal aquaculture worldwide: the first was primarily characterised by locally referred "low tide" shrimp ponds, which are partially submerged areas; the second by earthed shrimp ponds, locally referred to as "high tide" ponds, which are non-submerged areas on the lagoon coast. The approach was based on the region-growing segmentation of high- and very high-resolution panchromatic images, SPOT5 and Worldview-1, and the unsupervised clustering classifier ISOSEG embedded on SPRING non-commercial software. The results, the accuracy of which was tested with a field-based aquaculture inventory, showed that in favourable situations (high tide shrimp ponds), the classification results provided high rates of accuracy (>95 %) through a fully automatic object-based classification. In unfavourable situations (low tide shrimp ponds), the performance degraded due to the low contrast between the water and the pond embankments. In these situations, the automatic results were improved by manual delineation of the embankments. Worldview-1 necessarily showed better thematic accuracy, and precise maps have been realised at a scale of up to 1:2,000. However, SPOT5 provided comparable results in terms of number of correctly classified ponds, but less accurate results in terms of the precision of mapped features. The procedure also demonstrated high degrees of reproducibility because it was applied to images with different spatial resolutions in an area that, during the investigated period, did not experience significant land cover changes.

  17. Accuracy of clinical pallor in the diagnosis of anaemia in children: a meta-analysis.

    PubMed

    Chalco, Juan P; Huicho, Luis; Alamo, Carlos; Carreazo, Nilton Y; Bada, Carlos A

    2005-12-08

    Anaemia is highly prevalent in children of developing countries. It is associated with impaired physical growth and mental development. Palmar pallor is recommended at primary level for diagnosing it, on the basis of few studies. The objective of the study was to systematically assess the accuracy of clinical signs in the diagnosis of anaemia in children. A systematic review on the accuracy of clinical signs of anaemia in children. We performed an Internet search in various databases and an additional reference tracking. Studies had to be on performance of clinical signs in the diagnosis of anaemia, using haemoglobin as the gold standard. We calculated pooled diagnostic likelihood ratios (LR's) and odds ratios (DOR's) for each clinical sign at different haemoglobin thresholds. Eleven articles met the inclusion criteria. Most studies were performed in Africa, in children underfive. Chi-square test for proportions and Cochran Q for DOR's and for LR's showed heterogeneity. Type of observer and haemoglobin technique influenced the results. Pooling was done using the random effects model. Pooled DOR at haemoglobin <11 g/dL was 4.3 (95% CI 2.6-7.2) for palmar pallor, 3.7 (2.3-5.9) for conjunctival pallor, and 3.4 (1.8-6.3) for nailbed pallor. DOR's and LR's were slightly better for nailbed pallor at all other haemoglobin thresholds. The accuracy did not vary substantially after excluding outliers. This meta-analysis did not document a highly accurate clinical sign of anaemia. In view of poor performance of clinical signs, universal iron supplementation may be an adequate control strategy in high prevalence areas. Further well-designed studies are needed in settings other than Africa. They should assess inter-observer variation, performance of combined clinical signs, phenotypic differences, and different degrees of anaemia.

  18. Partition method and experimental validation for impact dynamics of flexible multibody system

    NASA Astrophysics Data System (ADS)

    Wang, J. Y.; Liu, Z. Y.; Hong, J. Z.

    2018-06-01

    The impact problem of a flexible multibody system is a non-smooth, high-transient, and strong-nonlinear dynamic process with variable boundary. How to model the contact/impact process accurately and efficiently is one of the main difficulties in many engineering applications. The numerical approaches being used widely in impact analysis are mainly from two fields: multibody system dynamics (MBS) and computational solid mechanics (CSM). Approaches based on MBS provide a more efficient yet less accurate analysis of the contact/impact problems, while approaches based on CSM are well suited for particularly high accuracy needs, yet require very high computational effort. To bridge the gap between accuracy and efficiency in the dynamic simulation of a flexible multibody system with contacts/impacts, a partition method is presented considering that the contact body is divided into two parts, an impact region and a non-impact region. The impact region is modeled using the finite element method to guarantee the local accuracy, while the non-impact region is modeled using the modal reduction approach to raise the global efficiency. A three-dimensional rod-plate impact experiment is designed and performed to validate the numerical results. The principle for how to partition the contact bodies is proposed: the maximum radius of the impact region can be estimated by an analytical method, and the modal truncation orders of the non-impact region can be estimated by the highest frequency of the signal measured. The simulation results using the presented method are in good agreement with the experimental results. It shows that this method is an effective formulation considering both accuracy and efficiency. Moreover, a more complicated multibody impact problem of a crank slider mechanism is investigated to strengthen this conclusion.

  19. Lateral cephalometric analysis for treatment planning in orthodontics based on MRI compared with radiographs: A feasibility study in children and adolescents

    PubMed Central

    Lazo Gonzalez, Eduardo; Hilgenfeld, Tim; Kickingereder, Philipp; Bendszus, Martin; Heiland, Sabine; Ozga, Ann-Kathrin; Sommer, Andreas; Lux, Christopher J.; Zingler, Sebastian

    2017-01-01

    Objective The objective of this prospective study was to evaluate whether magnetic resonance imaging (MRI) is equivalent to lateral cephalometric radiographs (LCR, “gold standard”) in cephalometric analysis. Methods The applied MRI technique was optimized for short scanning time, high resolution, high contrast and geometric accuracy. Prior to orthodontic treatment, 20 patients (mean age ± SD, 13.95 years ± 5.34) received MRI and LCR. MRI datasets were postprocessed into lateral cephalograms. Cephalometric analysis was performed twice by two independent observers for both modalities with an interval of 4 weeks. Eight bilateral and 10 midsagittal landmarks were identified, and 24 widely used measurements (14 angles, 10 distances) were calculated. Statistical analysis was performed by using intraclass correlation coefficient (ICC), Bland-Altman analysis and two one-sided tests (TOST) within the predefined equivalence margin of ± 2°/mm. Results Geometric accuracy of the MRI technique was confirmed by phantom measurements. Mean intraobserver ICC were 0.977/0.975 for MRI and 0.975/0.961 for LCR. Average interobserver ICC were 0.980 for MRI and 0.929 for LCR. Bland-Altman analysis showed high levels of agreement between the two modalities, bias range (mean ± SD) was -0.66 to 0.61 mm (0.06 ± 0.44) for distances and -1.33 to 1.14° (0.06 ± 0.71) for angles. Except for the interincisal angle (p = 0.17) all measurements were statistically equivalent (p < 0.05). Conclusions This study demonstrates feasibility of orthodontic treatment planning without radiation exposure based on MRI. High-resolution isotropic MRI datasets can be transformed into lateral cephalograms allowing reliable measurements as applied in orthodontic routine with high concordance to the corresponding measurements on LCR. PMID:28334054

  20. Lateral cephalometric analysis for treatment planning in orthodontics based on MRI compared with radiographs: A feasibility study in children and adolescents.

    PubMed

    Heil, Alexander; Lazo Gonzalez, Eduardo; Hilgenfeld, Tim; Kickingereder, Philipp; Bendszus, Martin; Heiland, Sabine; Ozga, Ann-Kathrin; Sommer, Andreas; Lux, Christopher J; Zingler, Sebastian

    2017-01-01

    The objective of this prospective study was to evaluate whether magnetic resonance imaging (MRI) is equivalent to lateral cephalometric radiographs (LCR, "gold standard") in cephalometric analysis. The applied MRI technique was optimized for short scanning time, high resolution, high contrast and geometric accuracy. Prior to orthodontic treatment, 20 patients (mean age ± SD, 13.95 years ± 5.34) received MRI and LCR. MRI datasets were postprocessed into lateral cephalograms. Cephalometric analysis was performed twice by two independent observers for both modalities with an interval of 4 weeks. Eight bilateral and 10 midsagittal landmarks were identified, and 24 widely used measurements (14 angles, 10 distances) were calculated. Statistical analysis was performed by using intraclass correlation coefficient (ICC), Bland-Altman analysis and two one-sided tests (TOST) within the predefined equivalence margin of ± 2°/mm. Geometric accuracy of the MRI technique was confirmed by phantom measurements. Mean intraobserver ICC were 0.977/0.975 for MRI and 0.975/0.961 for LCR. Average interobserver ICC were 0.980 for MRI and 0.929 for LCR. Bland-Altman analysis showed high levels of agreement between the two modalities, bias range (mean ± SD) was -0.66 to 0.61 mm (0.06 ± 0.44) for distances and -1.33 to 1.14° (0.06 ± 0.71) for angles. Except for the interincisal angle (p = 0.17) all measurements were statistically equivalent (p < 0.05). This study demonstrates feasibility of orthodontic treatment planning without radiation exposure based on MRI. High-resolution isotropic MRI datasets can be transformed into lateral cephalograms allowing reliable measurements as applied in orthodontic routine with high concordance to the corresponding measurements on LCR.

  1. A study on using texture analysis methods for identifying lobar fissure regions in isotropic CT images.

    PubMed

    Wei, Q; Hu, Y

    2009-01-01

    The major hurdle for segmenting lung lobes in computed tomographic (CT) images is to identify fissure regions, which encase lobar fissures. Accurate identification of these regions is difficult due to the variable shape and appearance of the fissures, along with the low contrast and high noise associated with CT images. This paper studies the effectiveness of two texture analysis methods - the gray level co-occurrence matrix (GLCM) and the gray level run length matrix (GLRLM) - in identifying fissure regions from isotropic CT image stacks. To classify GLCM and GLRLM texture features, we applied a feed-forward back-propagation neural network and achieved the best classification accuracy utilizing 16 quantized levels for computing the GLCM and GLRLM texture features and 64 neurons in the input/hidden layers of the neural network. Tested on isotropic CT image stacks of 24 patients with the pathologic lungs, we obtained accuracies of 86% and 87% for identifying fissure regions using the GLCM and GLRLM methods, respectively. These accuracies compare favorably with surgeons/radiologists' accuracy of 80% for identifying fissure regions in clinical settings. This shows promising potential for segmenting lung lobes using the GLCM and GLRLM methods.

  2. Running accuracy analysis of a 3-RRR parallel kinematic machine considering the deformations of the links

    NASA Astrophysics Data System (ADS)

    Wang, Liping; Jiang, Yao; Li, Tiemin

    2014-09-01

    Parallel kinematic machines have drawn considerable attention and have been widely used in some special fields. However, high precision is still one of the challenges when they are used for advanced machine tools. One of the main reasons is that the kinematic chains of parallel kinematic machines are composed of elongated links that can easily suffer deformations, especially at high speeds and under heavy loads. A 3-RRR parallel kinematic machine is taken as a study object for investigating its accuracy with the consideration of the deformations of its links during the motion process. Based on the dynamic model constructed by the Newton-Euler method, all the inertia loads and constraint forces of the links are computed and their deformations are derived. Then the kinematic errors of the machine are derived with the consideration of the deformations of the links. Through further derivation, the accuracy of the machine is given in a simple explicit expression, which will be helpful to increase the calculating speed. The accuracy of this machine when following a selected circle path is simulated. The influences of magnitude of the maximum acceleration and external loads on the running accuracy of the machine are investigated. The results show that the external loads will deteriorate the accuracy of the machine tremendously when their direction coincides with the direction of the worst stiffness of the machine. The proposed method provides a solution for predicting the running accuracy of the parallel kinematic machines and can also be used in their design optimization as well as selection of suitable running parameters.

  3. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis.

    PubMed

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-06-16

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.

  4. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy.

    PubMed

    Kusumaningrum, Dewi; Lee, Hoonsoo; Lohumi, Santosh; Mo, Changyeun; Kim, Moon S; Cho, Byoung-Kwan

    2018-03-01

    The viability of seeds is important for determining their quality. A high-quality seed is one that has a high capability of germination that is necessary to ensure high productivity. Hence, developing technology for the detection of seed viability is a high priority in agriculture. Fourier transform near-infrared (FT-NIR) spectroscopy is one of the most popular devices among other vibrational spectroscopies. This study aims to use FT-NIR spectroscopy to determine the viability of soybean seeds. Viable and artificial ageing seeds as non-viable soybeans were used in this research. The FT-NIR spectra of soybean seeds were collected and analysed using a partial least-squares discriminant analysis (PLS-DA) to classify viable and non-viable soybean seeds. Moreover, the variable importance in projection (VIP) method for variable selection combined with the PLS-DA was employed. The most effective wavelengths were selected by the VIP method, which selected 146 optimal variables from the full set of 1557 variables. The results demonstrated that the FT-NIR spectral analysis with the PLS-DA method that uses all variables or the selected variables showed good performance based on the high value of prediction accuracy for soybean viability with an accuracy close to 100%. Hence, FT-NIR techniques with a chemometric analysis have the potential for rapidly measuring soybean seed viability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Validation of a novel computer-assisted sperm analysis (CASA) system using multitarget-tracking algorithms.

    PubMed

    Tomlinson, Mathew James; Pooley, Karen; Simpson, Tracey; Newton, Thomas; Hopkisson, James; Jayaprakasan, Kannamanadias; Jayaprakasan, Rajisha; Naeem, Asad; Pridmore, Tony

    2010-04-01

    To determine the accuracy and precision of a novel computer-assisted sperm analysis (CASA) system by comparison with existing recommended manual methods. Prospective study using comparative measurements of sperm concentration and motility on latex beads and immotile and motile sperm. Tertiary referral fertility center with strong academic links. Sperm donors and male partners of couples attending for fertility investigations. None. Achievement of Accubead target value for high and low concentration suspensions. Repeatability as demonstrated by coefficients of variation and intraclass correlation coefficients. Correlation and limits of agreement between CASA and manual methods. The CASA measurements of latex beads and sperm concentrations demonstrated a high level of accuracy and repeatability. Repeated Accubead measurements attained the required target value (mean difference from target of 2.61% and 3.71% for high- and low-concentration suspensions, respectively) and were highly reproducible. Limits of agreement analysis suggested that manual and CASA counts compared directly could be deemed to be interchangeable. Manual and CASA motility measurements were highly correlated for grades a, b, and d but could not be deemed to be interchangeable, and manual motility estimates were consistently higher for motile sperm. The novel CASA system was able to provide semen quality measurements for sperm concentration and motility measurements which were at least as reliable as current manual methods. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. A novel redundant INS based on triple rotary inertial measurement units

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Li, Kui; Wang, Wei; Li, Peng

    2016-10-01

    Accuracy and reliability are two key performances of inertial navigation system (INS). Rotation modulation (RM) can attenuate the bias of inertial sensors and make it possible for INS to achieve higher navigation accuracy with lower-class sensors. Therefore, the conflict between the accuracy and cost of INS can be eased. Traditional system redundancy and recently researched sensor redundancy are two primary means to improve the reliability of INS. However, how to make the best use of the redundant information from redundant sensors hasn’t been studied adequately, especially in rotational INS. This paper proposed a novel triple rotary unit strapdown inertial navigation system (TRUSINS), which combines RM and sensor redundancy design to enhance the accuracy and reliability of rotational INS. Each rotary unit independently rotates to modulate the errors of two gyros and two accelerometers. Three units can provide double sets of measurements along all three axes of body frame to constitute a couple of INSs which make TRUSINS redundant. Experiments and simulations based on a prototype which is made up of six fiber-optic gyros with drift stability of 0.05° h-1 show that TRUSINS can achieve positioning accuracy of about 0.256 n mile h-1, which is ten times better than that of a normal non-rotational INS with the same level inertial sensors. The theoretical analysis and the experimental results show that due to the advantage of the innovative structure, the designed fault detection and isolation (FDI) strategy can tolerate six sensor faults at most, and is proved to be effective and practical. Therefore, TRUSINS is particularly suitable and highly beneficial for the applications where high accuracy and high reliability is required.

  7. Accuracy of recommended sampling and assay methods for the determination of plasma-free and urinary fractionated metanephrines in the diagnosis of pheochromocytoma and paraganglioma: a systematic review.

    PubMed

    Därr, Roland; Kuhn, Matthias; Bode, Christoph; Bornstein, Stefan R; Pacak, Karel; Lenders, Jacques W M; Eisenhofer, Graeme

    2017-06-01

    To determine the accuracy of biochemical tests for the diagnosis of pheochromocytoma and paraganglioma. A search of the PubMed database was conducted for English-language articles published between October 1958 and December 2016 on the biochemical diagnosis of pheochromocytoma and paraganglioma using immunoassay methods or high-performance liquid chromatography with coulometric/electrochemical or tandem mass spectrometric detection for measurement of fractionated metanephrines in 24-h urine collections or plasma-free metanephrines obtained under seated or supine blood sampling conditions. Application of the Standards for Reporting of Diagnostic Studies Accuracy Group criteria yielded 23 suitable articles. Summary receiver operating characteristic analysis revealed sensitivities/specificities of 94/93% and 91/93% for measurement of plasma-free metanephrines and urinary fractionated metanephrines using high-performance liquid chromatography or immunoassay methods, respectively. Partial areas under the curve were 0.947 vs. 0.911. Irrespective of the analytical method, sensitivity was significantly higher for supine compared with seated sampling, 95 vs. 89% (p < 0.02), while specificity was significantly higher for supine sampling compared with 24-h urine, 95 vs. 90% (p < 0.03). Partial areas under the curve were 0.942, 0.913, and 0.932 for supine sampling, seated sampling, and urine. Test accuracy increased linearly from 90 to 93% for 24-h urine at prevalence rates of 0.0-1.0, decreased linearly from 94 to 89% for seated sampling and was constant at 95% for supine conditions. Current tests for the biochemical diagnosis of pheochromocytoma and paraganglioma show excellent diagnostic accuracy. Supine sampling conditions and measurement of plasma-free metanephrines using high-performance liquid chromatography with coulometric/electrochemical or tandem mass spectrometric detection provides the highest accuracy at all prevalence rates.

  8. Simulation of springback and microstructural analysis of dual phase steels

    NASA Astrophysics Data System (ADS)

    Kalyan, T. Sri.; Wei, Xing; Mendiguren, Joseba; Rolfe, Bernard

    2013-12-01

    With increasing demand for weight reduction and better crashworthiness abilities in car development, advanced high strength Dual Phase (DP) steels have been progressively used when making automotive parts. The higher strength steels exhibit higher springback and lower dimensional accuracy after stamping. This has necessitated the use of simulation of each stamped component prior to production to estimate the part's dimensional accuracy. Understanding the micro-mechanical behaviour of AHSS sheet may provide more accuracy to stamping simulations. This work can be divided basically into two parts: first modelling a standard channel forming process; second modelling the micro-structure of the process. The standard top hat channel forming process, benchmark NUMISHEET'93, is used for investigating springback effect of WISCO Dual Phase steels. The second part of this work includes the finite element analysis of microstructures to understand the behaviour of the multi-phase steel at a more fundamental level. The outcomes of this work will help in the dimensional control of steels during manufacturing stage based on the material's microstructure.

  9. Accuracy of un-supervised versus provider-supervised self-administered HIV testing in Uganda: A randomized implementation trial.

    PubMed

    Asiimwe, Stephen; Oloya, James; Song, Xiao; Whalen, Christopher C

    2014-12-01

    Unsupervised HIV self-testing (HST) has potential to increase knowledge of HIV status; however, its accuracy is unknown. To estimate the accuracy of unsupervised HST in field settings in Uganda, we performed a non-blinded, randomized controlled, non-inferiority trial of unsupervised compared with supervised HST among selected high HIV risk fisherfolk (22.1 % HIV Prevalence) in three fishing villages in Uganda between July and September 2013. The study enrolled 246 participants and randomized them in a 1:1 ratio to unsupervised HST or provider-supervised HST. In an intent-to-treat analysis, the HST sensitivity was 90 % in the unsupervised arm and 100 % among the provider-supervised, yielding a difference 0f -10 % (90 % CI -21, 1 %); non-inferiority was not shown. In a per protocol analysis, the difference in sensitivity was -5.6 % (90 % CI -14.4, 3.3 %) and did show non-inferiority. We conclude that unsupervised HST is feasible in rural Africa and may be non-inferior to provider-supervised HST.

  10. Evaluation of Raman spectra of human brain tumor tissue using the learning vector quantization neural network

    NASA Astrophysics Data System (ADS)

    Liu, Tuo; Chen, Changshui; Shi, Xingzhe; Liu, Chengyong

    2016-05-01

    The Raman spectra of tissue of 20 brain tumor patients was recorded using a confocal microlaser Raman spectroscope with 785 nm excitation in vitro. A total of 133 spectra were investigated. Spectra peaks from normal white matter tissue and tumor tissue were analyzed. Algorithms, such as principal component analysis, linear discriminant analysis, and the support vector machine, are commonly used to analyze spectral data. However, in this study, we employed the learning vector quantization (LVQ) neural network, which is typically used for pattern recognition. By applying the proposed method, a normal diagnosis accuracy of 85.7% and a glioma diagnosis accuracy of 89.5% were achieved. The LVQ neural network is a recent approach to excavating Raman spectra information. Moreover, it is fast and convenient, does not require the spectra peak counterpart, and achieves a relatively high accuracy. It can be used in brain tumor prognostics and in helping to optimize the cutting margins of gliomas.

  11. Multispectral imaging burn wound tissue classification system: a comparison of test accuracies between several common machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Squiers, John J.; Li, Weizhi; King, Darlene R.; Mo, Weirong; Zhang, Xu; Lu, Yang; Sellke, Eric W.; Fan, Wensheng; DiMaio, J. Michael; Thatcher, Jeffrey E.

    2016-03-01

    The clinical judgment of expert burn surgeons is currently the standard on which diagnostic and therapeutic decisionmaking regarding burn injuries is based. Multispectral imaging (MSI) has the potential to increase the accuracy of burn depth assessment and the intraoperative identification of viable wound bed during surgical debridement of burn injuries. A highly accurate classification model must be developed using machine-learning techniques in order to translate MSI data into clinically-relevant information. An animal burn model was developed to build an MSI training database and to study the burn tissue classification ability of several models trained via common machine-learning algorithms. The algorithms tested, from least to most complex, were: K-nearest neighbors (KNN), decision tree (DT), linear discriminant analysis (LDA), weighted linear discriminant analysis (W-LDA), quadratic discriminant analysis (QDA), ensemble linear discriminant analysis (EN-LDA), ensemble K-nearest neighbors (EN-KNN), and ensemble decision tree (EN-DT). After the ground-truth database of six tissue types (healthy skin, wound bed, blood, hyperemia, partial injury, full injury) was generated by histopathological analysis, we used 10-fold cross validation to compare the algorithms' performances based on their accuracies in classifying data against the ground truth, and each algorithm was tested 100 times. The mean test accuracy of the algorithms were KNN 68.3%, DT 61.5%, LDA 70.5%, W-LDA 68.1%, QDA 68.9%, EN-LDA 56.8%, EN-KNN 49.7%, and EN-DT 36.5%. LDA had the highest test accuracy, reflecting the bias-variance tradeoff over the range of complexities inherent to the algorithms tested. Several algorithms were able to match the current standard in burn tissue classification, the clinical judgment of expert burn surgeons. These results will guide further development of an MSI burn tissue classification system. Given that there are few surgeons and facilities specializing in burn care, this technology may improve the standard of burn care for patients without access to specialized facilities.

  12. A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches

    NASA Astrophysics Data System (ADS)

    Ye, Su; Pontius, Robert Gilmore; Rakshit, Rahul

    2018-07-01

    Object-based image analysis (OBIA) has gained widespread popularity for creating maps from remotely sensed data. Researchers routinely claim that OBIA procedures outperform pixel-based procedures; however, it is not immediately obvious how to evaluate the degree to which an OBIA map compares to reference information in a manner that accounts for the fact that the OBIA map consists of objects that vary in size and shape. Our study reviews 209 journal articles concerning OBIA published between 2003 and 2017. We focus on the three stages of accuracy assessment: (1) sampling design, (2) response design and (3) accuracy analysis. First, we report the literature's overall characteristics concerning OBIA accuracy assessment. Simple random sampling was the most used method among probability sampling strategies, slightly more than stratified sampling. Office interpreted remotely sensed data was the dominant reference source. The literature reported accuracies ranging from 42% to 96%, with an average of 85%. A third of the articles failed to give sufficient information concerning accuracy methodology such as sampling scheme and sample size. We found few studies that focused specifically on the accuracy of the segmentation. Second, we identify a recent increase of OBIA articles in using per-polygon approaches compared to per-pixel approaches for accuracy assessment. We clarify the impacts of the per-pixel versus the per-polygon approaches respectively on sampling, response design and accuracy analysis. Our review defines the technical and methodological needs in the current per-polygon approaches, such as polygon-based sampling, analysis of mixed polygons, matching of mapped with reference polygons and assessment of segmentation accuracy. Our review summarizes and discusses the current issues in object-based accuracy assessment to provide guidance for improved accuracy assessments for OBIA.

  13. Identifying HIV associated neurocognitive disorder using large-scale Granger causality analysis on resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    DSouza, Adora M.; Abidin, Anas Z.; Leistritz, Lutz; Wismüller, Axel

    2017-02-01

    We investigate the applicability of large-scale Granger Causality (lsGC) for extracting a measure of multivariate information flow between pairs of regional brain activities from resting-state functional MRI (fMRI) and test the effectiveness of these measures for predicting a disease state. Such pairwise multivariate measures of interaction provide high-dimensional representations of connectivity profiles for each subject and are used in a machine learning task to distinguish between healthy controls and individuals presenting with symptoms of HIV Associated Neurocognitive Disorder (HAND). Cognitive impairment in several domains can occur as a result of HIV infection of the central nervous system. The current paradigm for assessing such impairment is through neuropsychological testing. With fMRI data analysis, we aim at non-invasively capturing differences in brain connectivity patterns between healthy subjects and subjects presenting with symptoms of HAND. To classify the extracted interaction patterns among brain regions, we use a prototype-based learning algorithm called Generalized Matrix Learning Vector Quantization (GMLVQ). Our approach to characterize connectivity using lsGC followed by GMLVQ for subsequent classification yields good prediction results with an accuracy of 87% and an area under the ROC curve (AUC) of up to 0.90. We obtain a statistically significant improvement (p<0.01) over a conventional Granger causality approach (accuracy = 0.76, AUC = 0.74). High accuracy and AUC values using our multivariate method to connectivity analysis suggests that our approach is able to better capture changes in interaction patterns between different brain regions when compared to conventional Granger causality analysis known from the literature.

  14. Diagnostic accuracy of clinical tests of the hip: a systematic review with meta-analysis.

    PubMed

    Reiman, Michael P; Goode, Adam P; Hegedus, Eric J; Cook, Chad E; Wright, Alexis A

    2013-09-01

    Hip Physical Examination (HPE) tests have long been used to diagnose a myriad of intra-and extra-articular pathologies of the hip joint. Useful clinical utility is necessary to support diagnostic imaging and subsequent surgical decision making. Summarise and evaluate the current research and utility on the diagnostic accuracy of HPE tests for the hip joint germane to sports related injuries and pathology. A computer-assisted literature search of MEDLINE, CINHAL and EMBASE databases (January 1966 to January 2012) using keywords related to diagnostic accuracy of the hip joint. This systematic review with meta-analysis utilised the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for the search and reporting phases of the study. Der-Simonian and Laird random effects models were used to summarise sensitivities (SN), specificities (SP), likelihood ratios and diagnostic OR. The employed search strategy revealed 25 potential articles, with 10 demonstrating high quality. Fourteen articles qualified for meta-analysis. The meta-analysis demonstrated that most tests possess weak diagnostic properties with the exception of the patellar-pubic percussion test, which had excellent pooled SN 95 (95% CI 92 to 97%) and good specificity 86 (95% CI 78 to 92%). Several studies have investigated pathology in the hip. Few of the current studies are of substantial quality to dictate clinical decision-making. Currently, only the patellar-pubic percussion test is supported by the data as a stand-alone HPE test. Further studies involving high quality designs are needed to fully assess the value of HPE tests for patients with intra- and extra-articular hip dysfunction.

  15. Pediatric Disaster Triage: Multiple Simulation Curriculum Improves Prehospital Care Providers' Assessment Skills.

    PubMed

    Cicero, Mark Xavier; Whitfill, Travis; Overly, Frank; Baird, Janette; Walsh, Barbara; Yarzebski, Jorge; Riera, Antonio; Adelgais, Kathleen; Meckler, Garth D; Baum, Carl; Cone, David Christopher; Auerbach, Marc

    2017-01-01

    Paramedics and emergency medical technicians (EMTs) triage pediatric disaster victims infrequently. The objective of this study was to measure the effect of a multiple-patient, multiple-simulation curriculum on accuracy of pediatric disaster triage (PDT). Paramedics, paramedic students, and EMTs from three sites were enrolled. Triage accuracy was measured three times (Time 0, Time 1 [two weeks later], and Time 2 [6 months later]) during a disaster simulation, in which high and low fidelity manikins and actors portrayed 10 victims. Accuracy was determined by participant triage decision concordance with predetermined expected triage level (RED [Immediate], YELLOW [Delayed], GREEN [Ambulatory], BLACK [Deceased]) for each victim. Between Time 0 and Time 1, participants completed an interactive online module, and after each simulation there was an individual debriefing. Associations between participant level of training, years of experience, and enrollment site were determined, as were instances of the most dangerous mistriage, when RED and YELLOW victims were triaged BLACK. The study enrolled 331 participants, and the analysis included 261 (78.9%) participants who completed the study, 123 from the Connecticut site, 83 from Rhode Island, and 55 from Massachusetts. Triage accuracy improved significantly from Time 0 to Time 1, after the educational interventions (first simulation with debriefing, and an interactive online module), with a median 10% overall improvement (p < 0.001). Subgroup analyses showed between Time 0 and Time 1, paramedics and paramedic students improved more than EMTs (p = 0.002). Analysis of triage accuracy showed greatest improvement in overall accuracy for YELLOW triage patients (Time 0 50% accurate, Time1 100%), followed by RED patients (Time 0 80%, Time 1 100%). There was no significant difference in accuracy between Time 1 and Time 2 (p = 0.073). This study shows that the multiple-victim, multiple-simulation curriculum yields a durable 10% improvement in simulated triage accuracy. Future iterations of the curriculum can target greater improvements in EMT triage accuracy.

  16. Effect of data compression on diagnostic accuracy in digital hand and chest radiography

    NASA Astrophysics Data System (ADS)

    Sayre, James W.; Aberle, Denise R.; Boechat, Maria I.; Hall, Theodore R.; Huang, H. K.; Ho, Bruce K. T.; Kashfian, Payam; Rahbar, Guita

    1992-05-01

    Image compression is essential to handle a large volume of digital images including CT, MR, CR, and digitized films in a digital radiology operation. The full-frame bit allocation using the cosine transform technique developed during the last few years has been proven to be an excellent irreversible image compression method. This paper describes the effect of using the hardware compression module on diagnostic accuracy in hand radiographs with subperiosteal resorption and chest radiographs with interstitial disease. Receiver operating characteristic analysis using 71 hand radiographs and 52 chest radiographs with five observers each demonstrates that there is no statistical significant difference in diagnostic accuracy between the original films and the compressed images with a compression ratio as high as 20:1.

  17. Locating very high energy gamma-ray sources with arcminute accuracy

    NASA Technical Reports Server (NTRS)

    Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Harris, K.; Lawrence, M. A.; Fegan, D. J.; Lang, M. J.; Hillas, A. M.; Jennings, D. G.; Lamb, R. C.

    1991-01-01

    The angular accuracy of gamma-ray detectors is intrinsically limited by the physical processes involved in photon detection. Although a number of pointlike sources were detected by the COS B satellite, only two have been unambiguously identified by time signature with counterparts at longer wavelengths. By taking advantage of the extended longitudinal structure of VHE gamma-ray showers, measurements in the TeV energy range can pinpoint source coordinates to arcminute accuracy. This has now been demonstrated with new data analysis procedures applied to observations of the Crab Nebula using Cherenkov air shower imaging techniques. With two telescopes in coincidence, the individual event circular probable error will be 0.13 deg. The half-cone angle of the field of view is effectively 1 deg.

  18. Overhead spine arch analysis of dairy cows from three-dimensional video

    NASA Astrophysics Data System (ADS)

    Abdul Jabbar, K.; Hansen, M. F.; Smith, M. L.; Smith, L. N.

    2017-02-01

    We present a spine arch analysis method in dairy cows using overhead 3D video data. This method is aimed for early stage lameness detection. That is important in order to allow early treatment; and thus, reduce the animal suffering and minimize the high forecasted financial losses, caused by lameness. Our physical data collection setup is non-intrusive, covert and designed to allow full automation; therefore, it could be implemented on a large scale or daily basis with high accuracy. We track the animal's spine using shape index and curvedness measure from the 3D surface as she walks freely under the 3D camera. Our spinal analysis focuses on the thoracic vertebrae region, where we found most of the arching caused by lameness. A cubic polynomial is fitted to analyze the arch and estimate the locomotion soundness. We have found more accurate results by eliminating the regular neck/head movements' effect from the arch. Using 22-cow data set, we are able to achieve an early stage lameness detection accuracy of 95.4%.

  19. Modifications Of Discrete Ordinate Method For Computations With High Scattering Anisotropy: Comparative Analysis

    NASA Technical Reports Server (NTRS)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2012-01-01

    A numerical accuracy analysis of the radiative transfer equation (RTE) solution based on separation of the diffuse light field into anisotropic and smooth parts is presented. The analysis uses three different algorithms based on the discrete ordinate method (DOM). Two methods, DOMAS and DOM2+, that do not use the truncation of the phase function, are compared against the TMS-method. DOMAS and DOM2+ use the Small-Angle Modification of RTE and the single scattering term, respectively, as an anisotropic part. The TMS method uses Delta-M method for truncation of the phase function along with the single scattering correction. For reference, a standard discrete ordinate method, DOM, is also included in analysis. The obtained results for cases with high scattering anisotropy show that at low number of streams (16, 32) only DOMAS provides an accurate solution in the aureole area. Outside of the aureole, the convergence and accuracy of DOMAS, and TMS is found to be approximately similar: DOMAS was found more accurate in cases with coarse aerosol and liquid water cloud models, except low optical depth, while the TMS showed better results in case of ice cloud.

  20. Renal mass biopsy using Raman spectroscopy identifies malignant and benign renal tumors: potential for pre-operative diagnosis.

    PubMed

    Liu, Yufei; Du, Zhebin; Zhang, Jin; Jiang, Haowen

    2017-05-30

    The accuracy of renal mass biopsy to diagnose malignancy can be affected by multiple factors. Here, we investigated the feasibility of Raman spectroscopy to distinguish malignant and benign renal tumors using biopsy specimens. Samples were collected from 63 patients who received radical or partial nephrectomy, mass suspicious of cancer and distal parenchyma were obtained from resected kidney using an 18-gauge biopsy needle. Four Raman spectra were obtained for each sample, and Discriminant Analysis was applied for data analysis. A total of 383 Raman spectra were eventually gathered and each type of tumor had its characteristic spectrum. Raman could separate tumoral and normal tissues with an accuracy of 82.53%, and distinguish malignant and benign tumors with a sensitivity of 91.79% and specificity of 71.15%. It could classify low-grade and high-grade tumors with an accuracy of 86.98%. Besides, clear cell renal carcinoma was differentiated with oncocytoma and angiomyolipoma with accuracy of 100% and 89.25%, respectively. And histological subtypes of cell carcinoma were distinguished with an accuracy of 93.48%. When compared with final pathology and biopsy, Raman spectroscopy was able to correctly identify 7 of 11 "missed" biopsy diagnoses. These results suggested that Raman may serve as a promising non-invasive approach in the future for pre-operative diagnosis.

  1. Experimental characterization and numerical simulation of riveted lap-shear joints using Rivet Element

    NASA Astrophysics Data System (ADS)

    Vivio, Francesco; Fanelli, Pierluigi; Ferracci, Michele

    2018-03-01

    In aeronautical and automotive industries the use of rivets for applications requiring several joining points is now very common. In spite of a very simple shape, a riveted junction has many contact surfaces and stress concentrations that make the local stiffness very difficult to be calculated. To overcome this difficulty, commonly finite element models with very dense meshes are performed for single joint analysis because the accuracy is crucial for a correct structural analysis. Anyhow, when several riveted joints are present, the simulation becomes computationally too heavy and usually significant restrictions to joint modelling are introduced, sacrificing the accuracy of local stiffness evaluation. In this paper, we tested the accuracy of a rivet finite element presented in previous works by the authors. The structural behaviour of a lap joint specimen with a rivet joining is simulated numerically and compared to experimental measurements. The Rivet Element, based on a closed-form solution of a reference theoretical model of the rivet joint, simulates local and overall stiffness of the junction combining high accuracy with low degrees of freedom contribution. In this paper the Rivet Element performances are compared to that of a FE non-linear model of the rivet, built with solid elements and dense mesh, and to experimental data. The promising results reported allow to consider the Rivet Element able to simulate, with a great accuracy, actual structures with several rivet connections.

  2. Rolling bearing fault diagnosis based on information fusion using Dempster-Shafer evidence theory

    NASA Astrophysics Data System (ADS)

    Pei, Di; Yue, Jianhai; Jiao, Jing

    2017-10-01

    This paper presents a fault diagnosis method for rolling bearing based on information fusion. Acceleration sensors are arranged at different position to get bearing vibration data as diagnostic evidence. The Dempster-Shafer (D-S) evidence theory is used to fuse multi-sensor data to improve diagnostic accuracy. The efficiency of the proposed method is demonstrated by the high speed train transmission test bench. The results of experiment show that the proposed method in this paper improves the rolling bearing fault diagnosis accuracy compared with traditional signal analysis methods.

  3. Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions.

    PubMed

    Senol Cali, Damla; Kim, Jeremie S; Ghose, Saugata; Alkan, Can; Mutlu, Onur

    2018-04-02

    Nanopore sequencing technology has the potential to render other sequencing technologies obsolete with its ability to generate long reads and provide portability. However, high error rates of the technology pose a challenge while generating accurate genome assemblies. The tools used for nanopore sequence analysis are of critical importance, as they should overcome the high error rates of the technology. Our goal in this work is to comprehensively analyze current publicly available tools for nanopore sequence analysis to understand their advantages, disadvantages and performance bottlenecks. It is important to understand where the current tools do not perform well to develop better tools. To this end, we (1) analyze the multiple steps and the associated tools in the genome assembly pipeline using nanopore sequence data, and (2) provide guidelines for determining the appropriate tools for each step. Based on our analyses, we make four key observations: (1) the choice of the tool for basecalling plays a critical role in overcoming the high error rates of nanopore sequencing technology. (2) Read-to-read overlap finding tools, GraphMap and Minimap, perform similarly in terms of accuracy. However, Minimap has a lower memory usage, and it is faster than GraphMap. (3) There is a trade-off between accuracy and performance when deciding on the appropriate tool for the assembly step. The fast but less accurate assembler Miniasm can be used for quick initial assembly, and further polishing can be applied on top of it to increase the accuracy, which leads to faster overall assembly. (4) The state-of-the-art polishing tool, Racon, generates high-quality consensus sequences while providing a significant speedup over another polishing tool, Nanopolish. We analyze various combinations of different tools and expose the trade-offs between accuracy, performance, memory usage and scalability. We conclude that our observations can guide researchers and practitioners in making conscious and effective choices for each step of the genome assembly pipeline using nanopore sequence data. Also, with the help of bottlenecks we have found, developers can improve the current tools or build new ones that are both accurate and fast, to overcome the high error rates of the nanopore sequencing technology.

  4. Gas-phase conformations of 2-methyl-1,3-dithiolane investigated by microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Van, Vinh; Stahl, Wolfgang; Schwell, Martin; Nguyen, Ha Vinh Lam

    2018-03-01

    The conformational analysis of 2-methyl-1,3-dithiolane using quantum chemical calculations at some levels of theory yielded only one stable conformer with envelope geometry. However, other levels of theory indicated two envelope conformers. Analysis of the microwave spectrum recorded using two molecular jet Fourier transform microwave spectrometers covering the frequency range from 2 to 40 GHz confirms that only one conformer exists under jet conditions. The experimental spectrum was reproduced using a rigid-rotor model with centrifugal distortion correction within the measurement accuracy of 1.5 kHz, and molecular parameters were determined with very high accuracy. The gas phase structure of the title molecule is compared with the structures of other related molecules studied under the same experimental conditions.

  5. CCD centroiding analysis for Nano-JASMINE observation data

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshito; Yano, Taihei; Araki, Hiroshi; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Tazawa, Seiichi; Hanada, Hideo

    2010-07-01

    Nano-JASMINE is a very small satellite mission for global space astrometry with milli-arcsecond accuracy, which will be launched in 2011. In this mission, centroids of stars in CCD image frames are estimated with sub-pixel accuracy. In order to realize such a high precision centroiding an algorithm utilizing a least square method is employed. One of the advantages is that centroids can be calculated without explicit assumption of the point spread functions of stars. CCD centroiding experiment has been performed to investigate whether this data analysis is available, and centroids of artificial star images on a CCD are determined with a precision of less than 0.001 pixel. This result indicates parallaxes of stars within 300 pc from Sun can be observed in Nano-JASMINE.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    The ResStock analysis tool is helping states, municipalities, utilities, and manufacturers identify which home upgrades save the most energy and money. Across the country there's a vast diversity in the age, size, construction practices, installed equipment, appliances, and resident behavior of the housing stock, not to mention the range of climates. These variations have hindered the accuracy of predicting savings for existing homes. Researchers at the National Renewable Energy Laboratory (NREL) developed ResStock. It's a versatile tool that takes a new approach to large-scale residential energy analysis by combining: large public and private data sources, statistical sampling, detailed subhourly buildingmore » simulations, high-performance computing. This combination achieves unprecedented granularity and most importantly - accuracy - in modeling the diversity of the single-family housing stock.« less

  7. How to select electrical end-use meters for proper measurement of DSM impact estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, M.

    1994-12-31

    Does metering actually provide higher accuracy impact estimates? The answer is sometimes yes, sometimes no. It depends on how the metered data will be used. DSM impact estimates can be achieved in a variety of ways, including engineering algorithms, modeling and statistical methods. Yet for all of these methods, impacts can be calculated as the difference in pre- and post-installation annual load shapes. Increasingly, end-use metering is being used to either adjust and calibrate a particular estimate method, or measure load shapes directly. It is therefore not surprising that metering has become synonymous with higher accuracy impact estimates. If meteredmore » data is used as a component in an estimating methodology, its relative contribution to accuracy can be analyzed through propagation of error or {open_quotes}POE{close_quotes} analysis. POE analysis is a framework which can be used to evaluate different metering options and their relative effects on cost and accuracy. If metered data is used to directly measure pre- and post-installation load shapes to calculate energy and demand impacts, then the accuracy of the whole metering process directly affects the accuracy of the impact estimate. This paper is devoted to the latter case, where the decision has been made to collect high-accuracy metered data of electrical energy and demand. The underlying assumption is that all meters can yield good results if applied within the scope of their limitations. The objective is to know the application, understand what meters are actually doing to measure and record power, and decide with confidence when a sophisticated meter is required, and when a less expensive type will suffice.« less

  8. Analysis of high-purity germanium dioxide by ETV-ICP-AES with preliminary concentration of trace elements.

    PubMed

    Medvedev, Nickolay S; Shaverina, Anastasiya V; Tsygankova, Alphiya R; Saprykin, Anatoly I

    2016-08-01

    The paper presents a combined technique of germanium dioxide analysis by inductively coupled plasma atomic emission spectrometry (ICP-AES) with preconcentration of trace elements by distilling off matrix and electrothermal (ETV) introduction of the trace elements concentrate into the ICP. Evaluation of metrological characteristics of the developed technique of high-purity germanium dioxide analysis was performed. The limits of detection (LODs) for 25 trace elements ranged from 0.05 to 20ng/g. The accuracy of proposed technique is confirmed by "added-found" («or spiking») experiment and comparing the results of ETV-ICP-AES and ICP-AES analysis of high purity germanium dioxide samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. On a fast calculation of structure factors at a subatomic resolution.

    PubMed

    Afonine, P V; Urzhumtsev, A

    2004-01-01

    In the last decade, the progress of protein crystallography allowed several protein structures to be solved at a resolution higher than 0.9 A. Such studies provide researchers with important new information reflecting very fine structural details. The signal from these details is very weak with respect to that corresponding to the whole structure. Its analysis requires high-quality data, which previously were available only for crystals of small molecules, and a high accuracy of calculations. The calculation of structure factors using direct formulae, traditional for 'small-molecule' crystallography, allows a relatively simple accuracy control. For macromolecular crystals, diffraction data sets at a subatomic resolution contain hundreds of thousands of reflections, and the number of parameters used to describe the corresponding models may reach the same order. Therefore, the direct way of calculating structure factors becomes very time expensive when applied to large molecules. These problems of high accuracy and computational efficiency require a re-examination of computer tools and algorithms. The calculation of model structure factors through an intermediate generation of an electron density [Sayre (1951). Acta Cryst. 4, 362-367; Ten Eyck (1977). Acta Cryst. A33, 486-492] may be much more computationally efficient, but contains some parameters (grid step, 'effective' atom radii etc.) whose influence on the accuracy of the calculation is not straightforward. At the same time, the choice of parameters within safety margins that largely ensure a sufficient accuracy may result in a significant loss of the CPU time, making it close to the time for the direct-formulae calculations. The impact of the different parameters on the computer efficiency of structure-factor calculation is studied. It is shown that an appropriate choice of these parameters allows the structure factors to be obtained with a high accuracy and in a significantly shorter time than that required when using the direct formulae. Practical algorithms for the optimal choice of the parameters are suggested.

  10. Systematic review of discharge coding accuracy

    PubMed Central

    Burns, E.M.; Rigby, E.; Mamidanna, R.; Bottle, A.; Aylin, P.; Ziprin, P.; Faiz, O.D.

    2012-01-01

    Introduction Routinely collected data sets are increasingly used for research, financial reimbursement and health service planning. High quality data are necessary for reliable analysis. This study aims to assess the published accuracy of routinely collected data sets in Great Britain. Methods Systematic searches of the EMBASE, PUBMED, OVID and Cochrane databases were performed from 1989 to present using defined search terms. Included studies were those that compared routinely collected data sets with case or operative note review and those that compared routinely collected data with clinical registries. Results Thirty-two studies were included. Twenty-five studies compared routinely collected data with case or operation notes. Seven studies compared routinely collected data with clinical registries. The overall median accuracy (routinely collected data sets versus case notes) was 83.2% (IQR: 67.3–92.1%). The median diagnostic accuracy was 80.3% (IQR: 63.3–94.1%) with a median procedure accuracy of 84.2% (IQR: 68.7–88.7%). There was considerable variation in accuracy rates between studies (50.5–97.8%). Since the 2002 introduction of Payment by Results, accuracy has improved in some respects, for example primary diagnoses accuracy has improved from 73.8% (IQR: 59.3–92.1%) to 96.0% (IQR: 89.3–96.3), P= 0.020. Conclusion Accuracy rates are improving. Current levels of reported accuracy suggest that routinely collected data are sufficiently robust to support their use for research and managerial decision-making. PMID:21795302

  11. Commercial enzyme-linked immunosorbent assay versuspolymerase chain reaction for the diagnosis of chronic Chagas disease: a systematic review and meta-analysis.

    PubMed

    Brasil, Pedro Emmanuel Alvarenga Americano do; Castro, Rodolfo; Castro, Liane de

    2016-01-01

    Chronic Chagas disease diagnosis relies on laboratory tests due to its clinical characteristics. The aim of this research was to review commercial enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) diagnostic test performance. Performance of commercial ELISA or PCR for the diagnosis of chronic Chagas disease were systematically searched in PubMed, Scopus, Embase, ISI Web, and LILACS through the bibliography from 1980-2014 and by contact with the manufacturers. The risk of bias was assessed with QUADAS-2. Heterogeneity was estimated with the I2 statistic. Accuracies provided by the manufacturers usually overestimate the accuracy provided by academia. The risk of bias is high in most tests and in most QUADAS dimensions. Heterogeneity is high in either sensitivity, specificity, or both. The evidence regarding commercial ELISA and ELISA-rec sensitivity and specificity indicates that there is overestimation. The current recommendation to use two simultaneous serological tests can be supported by the risk of bias analysis and the amount of heterogeneity but not by the observed accuracies. The usefulness of PCR tests are debatable and health care providers should not order them on a routine basis. PCR may be used in selected cases due to its potential to detect seronegative subjects.

  12. Limits of Active Laser Triangulation as an Instrument for High Precision Plant Imaging

    PubMed Central

    Paulus, Stefan; Eichert, Thomas; Goldbach, Heiner E.; Kuhlmann, Heiner

    2014-01-01

    Laser scanning is a non-invasive method for collecting and parameterizing 3D data of well reflecting objects. These systems have been used for 3D imaging of plant growth and structure analysis. A prerequisite is that the recorded signals originate from the true plant surface. In this paper we studied the effects of species, leaf chlorophyll content and sensor settings on the suitability and accuracy of a commercial 660 nm active laser triangulation scanning device. We found that surface images of Ficus benjamina leaves were inaccurate at low chlorophyll concentrations and a long sensor exposure time. Imaging of the rough waxy leaf surface of leek (Allium porrum) was possible using very low exposure times, whereas at higher exposure times penetration and multiple refraction prevented the correct imaging of the surface. A comparison of scans with varying exposure time enabled the target-oriented analysis to identify chlorotic, necrotic and healthy leaf areas or mildew infestations. We found plant properties and sensor settings to have a strong influence on the accuracy of measurements. These interactions have to be further elucidated before laser imaging of plants is possible with the high accuracy required for e.g., the observation of plant growth or reactions to water stress. PMID:24504106

  13. Commercial enzyme-linked immunosorbent assay versus polymerase chain reaction for the diagnosis of chronic Chagas disease: a systematic review and meta-analysis

    PubMed Central

    do Brasil, Pedro Emmanuel Alvarenga Americano; Castro, Rodolfo; de Castro, Liane

    2016-01-01

    Chronic Chagas disease diagnosis relies on laboratory tests due to its clinical characteristics. The aim of this research was to review commercial enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) diagnostic test performance. Performance of commercial ELISA or PCR for the diagnosis of chronic Chagas disease were systematically searched in PubMed, Scopus, Embase, ISI Web, and LILACS through the bibliography from 1980-2014 and by contact with the manufacturers. The risk of bias was assessed with QUADAS-2. Heterogeneity was estimated with the I2 statistic. Accuracies provided by the manufacturers usually overestimate the accuracy provided by academia. The risk of bias is high in most tests and in most QUADAS dimensions. Heterogeneity is high in either sensitivity, specificity, or both. The evidence regarding commercial ELISA and ELISA-rec sensitivity and specificity indicates that there is overestimation. The current recommendation to use two simultaneous serological tests can be supported by the risk of bias analysis and the amount of heterogeneity but not by the observed accuracies. The usefulness of PCR tests are debatable and health care providers should not order them on a routine basis. PCR may be used in selected cases due to its potential to detect seronegative subjects. PMID:26814640

  14. Highly accurate fast lung CT registration

    NASA Astrophysics Data System (ADS)

    Rühaak, Jan; Heldmann, Stefan; Kipshagen, Till; Fischer, Bernd

    2013-03-01

    Lung registration in thoracic CT scans has received much attention in the medical imaging community. Possible applications range from follow-up analysis, motion correction for radiation therapy, monitoring of air flow and pulmonary function to lung elasticity analysis. In a clinical environment, runtime is always a critical issue, ruling out quite a few excellent registration approaches. In this paper, a highly efficient variational lung registration method based on minimizing the normalized gradient fields distance measure with curvature regularization is presented. The method ensures diffeomorphic deformations by an additional volume regularization. Supplemental user knowledge, like a segmentation of the lungs, may be incorporated as well. The accuracy of our method was evaluated on 40 test cases from clinical routine. In the EMPIRE10 lung registration challenge, our scheme ranks third, with respect to various validation criteria, out of 28 algorithms with an average landmark distance of 0.72 mm. The average runtime is about 1:50 min on a standard PC, making it by far the fastest approach of the top-ranking algorithms. Additionally, the ten publicly available DIR-Lab inhale-exhale scan pairs were registered to subvoxel accuracy at computation times of only 20 seconds. Our method thus combines very attractive runtimes with state-of-the-art accuracy in a unique way.

  15. Diagnostic Accuracy of Imaging Modalities and Injection Techniques for the Diagnosis of Femoroacetabular Impingement/Labral Tear: A Systematic Review With Meta-analysis.

    PubMed

    Reiman, Michael P; Thorborg, Kristian; Goode, Adam P; Cook, Chad E; Weir, Adam; Hölmich, Per

    2017-09-01

    Diagnosing femoroacetabular impingement/acetabular labral tear (FAI/ALT) and subsequently making a decision regarding surgery are based primarily on diagnostic imaging and intra-articular hip joint injection techniques of unknown accuracy. Summarize and evaluate the diagnostic accuracy and clinical utility of various imaging modalities and injection techniques relevant to hip FAI/ALT. Systematic review with meta-analysis. A computer-assisted literature search was conducted of MEDLINE, CINAHL, and EMBASE databases using keywords related to diagnostic accuracy of hip joint pathologic changes. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were used for the search and reporting phases of the study. Quality assessment of bias and applicability was conducted using the Quality of Diagnostic Accuracy Studies (QUADAS) tool. Random effects models were used to summarize sensitivities (SN), specificities (SP), likelihood ratios (+LR and -LR), diagnostic odds ratios (DOR), and respective confidence intervals (CI). The search strategy and assessment for risk of bias revealed 25 articles scoring above 10/14 on the items of the QUADAS. Four studies investigated FAI, and the data were not pooled. Twenty articles on ALT qualified for meta-analysis. Pretest probability of ALT in the studies in this review was 81% (72%-88%), while the pretest probability of FAI diagnosis was 74% (95% CI, 51%-91%). The meta-analysis showed that computed tomography arthrography (CTA) demonstrated the strongest overall diagnostic accuracy: pooled SN 0.91 (95% CI, 0.83-0.96); SP 0.89 (95% CI, 0.74-0.97); +LR 6.28 (95% CI, 2.78-14.21); -LR 0.11 (95% CI, 0.06-0.21); and DOR 64.38 (95% CI, 19.17-216.21). High pretest probability of disease was demonstrated. Positive imaging findings increased the probability that a labral tear existed by a minimal to small degree with the use of magnetic resonance imaging/magnetic resonance angiogram (MRI/MRA) and ultrasound (US) and by a moderate degree for CTA. Negative imaging findings decreased the probability that a labral tear existed by a minimal degree with the use of MRI and US, a small to moderate degree with MRA, and a moderate degree with CTA. Although findings of the included studies suggested potentially favorable use of these modalities for the diagnosis of ALT and FAI, our results suggest that these findings have limited generalizability and clinical utility given very high pretest prevalence, large confidence intervals, and selection criteria of the studies. Registration: PROSPERO Registration #CRD42015027745.

  16. Application of high precision two-way S-band ranging to the navigation of the Galileo Earth encounters

    NASA Technical Reports Server (NTRS)

    Pollmeier, Vincent M.; Kallemeyn, Pieter H.; Thurman, Sam W.

    1993-01-01

    The application of high-accuracy S/S-band (2.1 GHz uplink/2.3 GHz downlink) ranging to orbit determination with relatively short data arcs is investigated for the approach phase of each of the Galileo spacecraft's two Earth encounters (8 December 1990 and 8 December 1992). Analysis of S-band ranging data from Galileo indicated that under favorable signal levels, meter-level precision was attainable. It is shown that ranginging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. Explicit modeling of ranging bias parameters for each station pass is used to largely remove systematic ground system calibration errors and transmission media effects from the Galileo range measurements, which would otherwise corrupt the angle finding capabilities of the data. The accuracy achieved using the precision range filtering strategy proved markedly better when compared to post-flyby reconstructions than did solutions utilizing a traditional Doppler/range filter strategy. In addition, the navigation accuracy achieved with precision ranging was comparable to that obtained using delta-Differenced One-Way Range, an interferometric measurement of spacecraft angular position relative to a natural radio source, which was also used operationally.

  17. Analysis of Sources of Large Positioning Errors in Deterministic Fingerprinting

    PubMed Central

    2017-01-01

    Wi-Fi fingerprinting is widely used for indoor positioning and indoor navigation due to the ubiquity of wireless networks, high proliferation of Wi-Fi-enabled mobile devices, and its reasonable positioning accuracy. The assumption is that the position can be estimated based on the received signal strength intensity from multiple wireless access points at a given point. The positioning accuracy, within a few meters, enables the use of Wi-Fi fingerprinting in many different applications. However, it has been detected that the positioning error might be very large in a few cases, which might prevent its use in applications with high accuracy positioning requirements. Hybrid methods are the new trend in indoor positioning since they benefit from multiple diverse technologies (Wi-Fi, Bluetooth, and Inertial Sensors, among many others) and, therefore, they can provide a more robust positioning accuracy. In order to have an optimal combination of technologies, it is crucial to identify when large errors occur and prevent the use of extremely bad positioning estimations in hybrid algorithms. This paper investigates why large positioning errors occur in Wi-Fi fingerprinting and how to detect them by using the received signal strength intensities. PMID:29186921

  18. Researched applied to transonic compressors in numerical fluid mechanics of inviscid flow and viscous flow

    NASA Technical Reports Server (NTRS)

    Thompkins, W. T., Jr.

    1985-01-01

    A streamline Euler solver which combines high accuracy and good convergence rates with capabilities for inverse or direct mode solution modes and an analysis technique for finite difference models of hyperbolic partial difference equations were developed.

  19. In-depth analysis and discussions of water absorption-typed high power laser calorimeter

    NASA Astrophysics Data System (ADS)

    Wei, Ji Feng

    2017-02-01

    In high-power and high-energy laser measurement, the absorber materials can be easily destroyed under long-term direct laser irradiation. In order to improve the calorimeter's measuring capacity, a measuring system directly using water flow as the absorber medium was built. The system's basic principles and the designing parameters of major parts were elaborated. The system's measuring capacity, the laser working modes, and the effects of major parameters were analyzed deeply. Moreover, the factors that may affect the accuracy of measurement were analyzed and discussed. The specific control measures and methods were elaborated. The self-calibration and normal calibration experiments show that this calorimeter has very high accuracy. In electrical calibration, the average correction coefficient is only 1.015, with standard deviation of only 0.5%. In calibration experiments, the standard deviation relative to a middle-power standard calorimeter is only 1.9%.

  20. Analysis of orbit determination from Earth-based tracking for relay satellites in a perturbed areostationary orbit

    NASA Astrophysics Data System (ADS)

    Romero, P.; Pablos, B.; Barderas, G.

    2017-07-01

    Areostationary satellites are considered a high interest group of satellites to satisfy the telecommunications needs of the foreseen missions to Mars. An areostationary satellite, in an areoequatorial circular orbit with a period of 1 Martian sidereal day, would orbit Mars remaining at a fixed location over the Martian surface, analogous to a geostationary satellite around the Earth. This work addresses an analysis of the perturbed orbital motion of an areostationary satellite as well as a preliminary analysis of the aerostationary orbit estimation accuracy based on Earth tracking observations. First, the models for the perturbations due to the Mars gravitational field, the gravitational attraction of the Sun and the Martian moons, Phobos and Deimos, and solar radiation pressure are described. Then, the observability from Earth including possible occultations by Mars of an areostationary satellite in a perturbed areosynchronous motion is analyzed. The results show that continuous Earth-based tracking is achievable using observations from the three NASA Deep Space Network Complexes in Madrid, Goldstone and Canberra in an occultation-free scenario. Finally, an analysis of the orbit determination accuracy is addressed considering several scenarios including discontinuous tracking schedules for different epochs and different areoestationary satellites. Simulations also allow to quantify the aerostationary orbit estimation accuracy for various tracking series durations and observed orbit arc-lengths.

  1. Performance of blend sign in predicting hematoma expansion in intracerebral hemorrhage: A meta-analysis.

    PubMed

    Yu, Zhiyuan; Zheng, Jun; Guo, Rui; Ma, Lu; Li, Mou; Wang, Xiaoze; Lin, Sen; Li, Hao; You, Chao

    2017-12-01

    Hematoma expansion is independently associated with poor outcome in intracerebral hemorrhage (ICH). Blend sign is a simple predictor for hematoma expansion on non-contrast computed tomography. However, its accuracy for predicting hematoma expansion is inconsistent in previous studies. This meta-analysis is aimed to systematically assess the performance of blend sign in predicting hematoma expansion in ICH. A systematic literature search was conducted. Original studies about predictive accuracy of blend sign for hematoma expansion in ICH were included. Pooled sensitivity, specificity, positive and negative likelihood ratios were calculated. Summary receiver operating characteristics curve was constructed. Publication bias was assessed by Deeks' funnel plot asymmetry test. A total of 5 studies with 2248 patients were included in this meta-analysis. The pooled sensitivity, specificity, positive and negative likelihood ratios of blend sign for predicting hematoma expansion were 0.28, 0.92, 3.4 and 0.78, respectively. The area under the curve (AUC) was 0.85. No significant publication bias was found. This meta-analysis demonstrates that blend sign is a useful predictor with high specificity for hematoma expansion in ICH. Further studies with larger sample size are still necessary to verify the accuracy of blend sign for predicting hematoma expansion. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Efficient alignment-free DNA barcode analytics

    PubMed Central

    Kuksa, Pavel; Pavlovic, Vladimir

    2009-01-01

    Background In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient species classification, but also opens possibility for accurate clustering analysis of putative species barcodes and identification of critical within-barcode loci distinguishing barcodes of different sample groups. Results New alignment-free methods provide highly accurate and fast DNA barcode-based identification and classification of species with substantial improvements in accuracy and speed over state-of-the-art barcode analysis methods. We evaluate our methods on problems of species classification and identification using barcodes, important and relevant analytical tasks in many practical applications (adverse species movement monitoring, sampling surveys for unknown or pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed alignment-free methods considerably improve prediction accuracy compared to prior results. We also observe significant running time improvements over the state-of-the-art methods. Conclusion Our results show that newly developed alignment-free methods for DNA barcoding can efficiently and with high accuracy identify specimens by examining only few barcode features, resulting in increased scalability and interpretability of current computational approaches to barcoding. PMID:19900305

  3. Multiple-input multiple-output causal strategies for gene selection.

    PubMed

    Bontempi, Gianluca; Haibe-Kains, Benjamin; Desmedt, Christine; Sotiriou, Christos; Quackenbush, John

    2011-11-25

    Traditional strategies for selecting variables in high dimensional classification problems aim to find sets of maximally relevant variables able to explain the target variations. If these techniques may be effective in generalization accuracy they often do not reveal direct causes. The latter is essentially related to the fact that high correlation (or relevance) does not imply causation. In this study, we show how to efficiently incorporate causal information into gene selection by moving from a single-input single-output to a multiple-input multiple-output setting. We show in synthetic case study that a better prioritization of causal variables can be obtained by considering a relevance score which incorporates a causal term. In addition we show, in a meta-analysis study of six publicly available breast cancer microarray datasets, that the improvement occurs also in terms of accuracy. The biological interpretation of the results confirms the potential of a causal approach to gene selection. Integrating causal information into gene selection algorithms is effective both in terms of prediction accuracy and biological interpretation.

  4. Normed kernel function-based fuzzy possibilistic C-means (NKFPCM) algorithm for high-dimensional breast cancer database classification with feature selection is based on Laplacian Score

    NASA Astrophysics Data System (ADS)

    Lestari, A. W.; Rustam, Z.

    2017-07-01

    In the last decade, breast cancer has become the focus of world attention as this disease is one of the primary leading cause of death for women. Therefore, it is necessary to have the correct precautions and treatment. In previous studies, Fuzzy Kennel K-Medoid algorithm has been used for multi-class data. This paper proposes an algorithm to classify the high dimensional data of breast cancer using Fuzzy Possibilistic C-means (FPCM) and a new method based on clustering analysis using Normed Kernel Function-Based Fuzzy Possibilistic C-Means (NKFPCM). The objective of this paper is to obtain the best accuracy in classification of breast cancer data. In order to improve the accuracy of the two methods, the features candidates are evaluated using feature selection, where Laplacian Score is used. The results show the comparison accuracy and running time of FPCM and NKFPCM with and without feature selection.

  5. Mapping the Daily Progression of Large Wildland Fires Using MODIS Active Fire Data

    NASA Technical Reports Server (NTRS)

    Veraverbeke, Sander; Sedano, Fernando; Hook, Simon J.; Randerson, James T.; Jin, Yufang; Rogers, Brendan

    2013-01-01

    High temporal resolution information on burned area is a prerequisite for incorporating bottom-up estimates of wildland fire emissions in regional air transport models and for improving models of fire behavior. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the evolution of nine large wildland fires. For each fire, local input parameters for the kriging model were defined using variogram analysis. The accuracy of the kriging model was assessed using high resolution daily fire perimeter data available from the U.S. Forest Service. We also assessed the temporal reporting accuracy of the MODIS burned area products (MCD45A1 and MCD64A1). Averaged over the nine fires, the kriging method correctly mapped 73% of the pixels within the accuracy of a single day, compared to 33% for MCD45A1 and 53% for MCD64A1.

  6. Impulsivity modulates performance under response uncertainty in a reaching task.

    PubMed

    Tzagarakis, C; Pellizzer, G; Rogers, R D

    2013-03-01

    We sought to explore the interaction of the impulsivity trait with response uncertainty. To this end, we used a reaching task (Pellizzer and Hedges in Exp Brain Res 150:276-289, 2003) where a motor response direction was cued at different levels of uncertainty (1 cue, i.e., no uncertainty, 2 cues or 3 cues). Data from 95 healthy adults (54 F, 41 M) were analysed. Impulsivity was measured using the Barratt Impulsiveness Scale version 11 (BIS-11). Behavioral variables recorded were reaction time (RT), errors of commission (referred to as 'early errors') and errors of precision. Data analysis employed generalised linear mixed models and generalised additive mixed models. For the early errors, there was an interaction of impulsivity with uncertainty and gender, with increased errors for high impulsivity in the one-cue condition for women and the three-cue condition for men. There was no effect of impulsivity on precision errors or RT. However, the analysis of the effect of RT and impulsivity on precision errors showed a different pattern for high versus low impulsives in the high uncertainty (3 cue) condition. In addition, there was a significant early error speed-accuracy trade-off for women, primarily in low uncertainty and a 'reverse' speed-accuracy trade-off for men in high uncertainty. These results extend those of past studies of impulsivity which help define it as a behavioural trait that modulates speed versus accuracy response styles depending on environmental constraints and highlight once more the importance of gender in the interplay of personality and behaviour.

  7. The utility of low-density genotyping for imputation in the Thoroughbred horse

    PubMed Central

    2014-01-01

    Background Despite the dramatic reduction in the cost of high-density genotyping that has occurred over the last decade, it remains one of the limiting factors for obtaining the large datasets required for genomic studies of disease in the horse. In this study, we investigated the potential for low-density genotyping and subsequent imputation to address this problem. Results Using the haplotype phasing and imputation program, BEAGLE, it is possible to impute genotypes from low- to high-density (50K) in the Thoroughbred horse with reasonable to high accuracy. Analysis of the sources of variation in imputation accuracy revealed dependence both on the minor allele frequency of the single nucleotide polymorphisms (SNPs) being imputed and on the underlying linkage disequilibrium structure. Whereas equidistant spacing of the SNPs on the low-density panel worked well, optimising SNP selection to increase their minor allele frequency was advantageous, even when the panel was subsequently used in a population of different geographical origin. Replacing base pair position with linkage disequilibrium map distance reduced the variation in imputation accuracy across SNPs. Whereas a 1K SNP panel was generally sufficient to ensure that more than 80% of genotypes were correctly imputed, other studies suggest that a 2K to 3K panel is more efficient to minimize the subsequent loss of accuracy in genomic prediction analyses. The relationship between accuracy and genotyping costs for the different low-density panels, suggests that a 2K SNP panel would represent good value for money. Conclusions Low-density genotyping with a 2K SNP panel followed by imputation provides a compromise between cost and accuracy that could promote more widespread genotyping, and hence the use of genomic information in horses. In addition to offering a low cost alternative to high-density genotyping, imputation provides a means to combine datasets from different genotyping platforms, which is becoming necessary since researchers are starting to use the recently developed equine 70K SNP chip. However, more work is needed to evaluate the impact of between-breed differences on imputation accuracy. PMID:24495673

  8. Land cover classification of VHR airborne images for citrus grove identification

    NASA Astrophysics Data System (ADS)

    Amorós López, J.; Izquierdo Verdiguier, E.; Gómez Chova, L.; Muñoz Marí, J.; Rodríguez Barreiro, J. Z.; Camps Valls, G.; Calpe Maravilla, J.

    Managing land resources using remote sensing techniques is becoming a common practice. However, data analysis procedures should satisfy the high accuracy levels demanded by users (public or private companies and governments) in order to be extensively used. This paper presents a multi-stage classification scheme to update the citrus Geographical Information System (GIS) of the Comunidad Valenciana region (Spain). Spain is the first citrus fruit producer in Europe and the fourth in the world. In particular, citrus fruits represent 67% of the agricultural production in this region, with a total production of 4.24 million tons (campaign 2006-2007). The citrus GIS inventory, created in 2001, needs to be regularly updated in order to monitor changes quickly enough, and allow appropriate policy making and citrus production forecasting. Automatic methods are proposed in this work to facilitate this update, whose processing scheme is summarized as follows. First, an object-oriented feature extraction process is carried out for each cadastral parcel from very high spatial resolution aerial images (0.5 m). Next, several automatic classifiers (decision trees, artificial neural networks, and support vector machines) are trained and combined to improve the final classification accuracy. Finally, the citrus GIS is automatically updated if a high enough level of confidence, based on the agreement between classifiers, is achieved. This is the case for 85% of the parcels and accuracy results exceed 94%. The remaining parcels are classified by expert photo-interpreters in order to guarantee the high accuracy demanded by policy makers.

  9. Prediction-Oriented Marker Selection (PROMISE): With Application to High-Dimensional Regression.

    PubMed

    Kim, Soyeon; Baladandayuthapani, Veerabhadran; Lee, J Jack

    2017-06-01

    In personalized medicine, biomarkers are used to select therapies with the highest likelihood of success based on an individual patient's biomarker/genomic profile. Two goals are to choose important biomarkers that accurately predict treatment outcomes and to cull unimportant biomarkers to reduce the cost of biological and clinical verifications. These goals are challenging due to the high dimensionality of genomic data. Variable selection methods based on penalized regression (e.g., the lasso and elastic net) have yielded promising results. However, selecting the right amount of penalization is critical to simultaneously achieving these two goals. Standard approaches based on cross-validation (CV) typically provide high prediction accuracy with high true positive rates but at the cost of too many false positives. Alternatively, stability selection (SS) controls the number of false positives, but at the cost of yielding too few true positives. To circumvent these issues, we propose prediction-oriented marker selection (PROMISE), which combines SS with CV to conflate the advantages of both methods. Our application of PROMISE with the lasso and elastic net in data analysis shows that, compared to CV, PROMISE produces sparse solutions, few false positives, and small type I + type II error, and maintains good prediction accuracy, with a marginal decrease in the true positive rates. Compared to SS, PROMISE offers better prediction accuracy and true positive rates. In summary, PROMISE can be applied in many fields to select regularization parameters when the goals are to minimize false positives and maximize prediction accuracy.

  10. Statistical validation of a solar wind propagation model from 1 to 10 AU

    NASA Astrophysics Data System (ADS)

    Zieger, Bertalan; Hansen, Kenneth C.

    2008-08-01

    A one-dimensional (1-D) numerical magnetohydrodynamic (MHD) code is applied to propagate the solar wind from 1 AU through 10 AU, i.e., beyond the heliocentric distance of Saturn's orbit, in a non-rotating frame of reference. The time-varying boundary conditions at 1 AU are obtained from hourly solar wind data observed near the Earth. Although similar MHD simulations have been carried out and used by several authors, very little work has been done to validate the statistical accuracy of such solar wind predictions. In this paper, we present an extensive analysis of the prediction efficiency, using 12 selected years of solar wind data from the major heliospheric missions Pioneer, Voyager, and Ulysses. We map the numerical solution to each spacecraft in space and time, and validate the simulation, comparing the propagated solar wind parameters with in-situ observations. We do not restrict our statistical analysis to the times of spacecraft alignment, as most of the earlier case studies do. Our superposed epoch analysis suggests that the prediction efficiency is significantly higher during periods with high recurrence index of solar wind speed, typically in the late declining phase of the solar cycle. Among the solar wind variables, the solar wind speed can be predicted to the highest accuracy, with a linear correlation of 0.75 on average close to the time of opposition. We estimate the accuracy of shock arrival times to be as high as 10-15 hours within ±75 d from apparent opposition during years with high recurrence index. During solar activity maximum, there is a clear bias for the model to predicted shocks arriving later than observed in the data, suggesting that during these periods, there is an additional acceleration mechanism in the solar wind that is not included in the model.

  11. Reuse of imputed data in microarray analysis increases imputation efficiency

    PubMed Central

    Kim, Ki-Yeol; Kim, Byoung-Jin; Yi, Gwan-Su

    2004-01-01

    Background The imputation of missing values is necessary for the efficient use of DNA microarray data, because many clustering algorithms and some statistical analysis require a complete data set. A few imputation methods for DNA microarray data have been introduced, but the efficiency of the methods was low and the validity of imputed values in these methods had not been fully checked. Results We developed a new cluster-based imputation method called sequential K-nearest neighbor (SKNN) method. This imputes the missing values sequentially from the gene having least missing values, and uses the imputed values for the later imputation. Although it uses the imputed values, the efficiency of this new method is greatly improved in its accuracy and computational complexity over the conventional KNN-based method and other methods based on maximum likelihood estimation. The performance of SKNN was in particular higher than other imputation methods for the data with high missing rates and large number of experiments. Application of Expectation Maximization (EM) to the SKNN method improved the accuracy, but increased computational time proportional to the number of iterations. The Multiple Imputation (MI) method, which is well known but not applied previously to microarray data, showed a similarly high accuracy as the SKNN method, with slightly higher dependency on the types of data sets. Conclusions Sequential reuse of imputed data in KNN-based imputation greatly increases the efficiency of imputation. The SKNN method should be practically useful to save the data of some microarray experiments which have high amounts of missing entries. The SKNN method generates reliable imputed values which can be used for further cluster-based analysis of microarray data. PMID:15504240

  12. Comparison of high performance liquid chromatography and enzymatic analysis of soluble carbohydrates in loblolly pine

    Treesearch

    Patricia L. Faulkner; Michele M. Schoeneberger; Kim H. Ludovici

    1993-01-01

    Foliar tissue was collected from a field study designed to test impacts of atmospheric pollutants on loblolIy pine (Pinus taeda L.) seedlings. Standard enzymatic (ENZ) and high performance liquid chromatography (HPLC) methods were used to analyze the tissue for soluble sugars. A comparison of the methods revealed no significant diffennces in accuracy...

  13. Data accuracy assessment using enterprise architecture

    NASA Astrophysics Data System (ADS)

    Närman, Per; Holm, Hannes; Johnson, Pontus; König, Johan; Chenine, Moustafa; Ekstedt, Mathias

    2011-02-01

    Errors in business processes result in poor data accuracy. This article proposes an architecture analysis method which utilises ArchiMate and the Probabilistic Relational Model formalism to model and analyse data accuracy. Since the resources available for architecture analysis are usually quite scarce, the method advocates interviews as the primary data collection technique. A case study demonstrates that the method yields correct data accuracy estimates and is more resource-efficient than a competing sampling-based data accuracy estimation method.

  14. Effectiveness of Myocardial Contrast Echocardiography Quantitative Analysis during Adenosine Stress versus Visual Analysis before Percutaneous Therapy in Acute Coronary Pain: A Coronary Artery TIMI Grading Comparing Study

    PubMed Central

    Yang, Lixia; Mu, Yuming; Quaglia, Luiz Augusto; Tang, Qi; Guan, Lina; Wang, Chunmei; Shih, Ming Chi

    2012-01-01

    The study aim was to compare two different stress echocardiography interpretation techniques based on the correlation with thrombosis in myocardial infarction (TIMI ) flow grading from acute coronary syndrome (ACS) patients. Forty-one patients with suspected ACS were studied before diagnostic coronary angiography with myocardial contrast echocardiography (MCE) at rest and at stress. The correlation of visual interpretation of MCE and TIMI flow grade was significant. The quantitative analysis (myocardial perfusion parameters: A, β, and A × β) and TIMI flow grade were significant. MCE visual interpretation and TIMI flow grade had a high degree of agreement, on diagnosing myocardial perfusion abnormality. If one considers TIMI flow grade <3 as abnormal, MCE visual interpretation at rest had 73.1% accuracy with 58.2% sensitivity and 84.2% specificity and at stress had 80.4% accuracy with 76.6% sensitivity and 83.3% specificity. The MCE quantitative analysis has better accuracy with 100% of agreement with different level of TIMI flow grading. MCE quantitative analysis at stress has showed a direct correlation with TIMI flow grade, more significant than the visual interpretation technique. Further studies could measure the clinical relevance of this more objective approach to managing acute coronary syndrome patient before percutaneous coronary intervention (PCI). PMID:22778555

  15. At risk or not at risk? A meta-analysis of the prognostic accuracy of psychometric interviews for psychosis prediction

    PubMed Central

    Fusar-Poli, Paolo; Cappucciati, Marco; Rutigliano, Grazia; Schultze-Lutter, Frauke; Bonoldi, Ilaria; Borgwardt, Stefan; Riecher-Rössler, Anita; Addington, Jean; Perkins, Diana; Woods, Scott W; McGlashan, Thomas H; Lee, Jimmy; Klosterkötter, Joachim; Yung, Alison R; McGuire, Philip

    2015-01-01

    An accurate detection of individuals at clinical high risk (CHR) for psychosis is a prerequisite for effective preventive interventions. Several psychometric interviews are available, but their prognostic accuracy is unknown. We conducted a prognostic accuracy meta-analysis of psychometric interviews used to examine referrals to high risk services. The index test was an established CHR psychometric instrument used to identify subjects with and without CHR (CHR+ and CHR−). The reference index was psychosis onset over time in both CHR+ and CHR− subjects. Data were analyzed with MIDAS (STATA13). Area under the curve (AUC), summary receiver operating characteristic curves, quality assessment, likelihood ratios, Fagan’s nomogram and probability modified plots were computed. Eleven independent studies were included, with a total of 2,519 help-seeking, predominately adult subjects (CHR+: N=1,359; CHR−: N=1,160) referred to high risk services. The mean follow-up duration was 38 months. The AUC was excellent (0.90; 95% CI: 0.87-0.93), and comparable to other tests in preventive medicine, suggesting clinical utility in subjects referred to high risk services. Meta-regression analyses revealed an effect for exposure to antipsychotics and no effects for type of instrument, age, gender, follow-up time, sample size, quality assessment, proportion of CHR+ subjects in the total sample. Fagan’s nomogram indicated a low positive predictive value (5.74%) in the general non-help-seeking population. Albeit the clear need to further improve prediction of psychosis, these findings support the use of psychometric prognostic interviews for CHR as clinical tools for an indicated prevention in subjects seeking help at high risk services worldwide. PMID:26407788

  16. Parallel computing in experimental mechanics and optical measurement: A review (II)

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Kemao, Qian

    2018-05-01

    With advantages such as non-destructiveness, high sensitivity and high accuracy, optical techniques have successfully integrated into various important physical quantities in experimental mechanics (EM) and optical measurement (OM). However, in pursuit of higher image resolutions for higher accuracy, the computation burden of optical techniques has become much heavier. Therefore, in recent years, heterogeneous platforms composing of hardware such as CPUs and GPUs, have been widely employed to accelerate these techniques due to their cost-effectiveness, short development cycle, easy portability, and high scalability. In this paper, we analyze various works by first illustrating their different architectures, followed by introducing their various parallel patterns for high speed computation. Next, we review the effects of CPU and GPU parallel computing specifically in EM & OM applications in a broad scope, which include digital image/volume correlation, fringe pattern analysis, tomography, hyperspectral imaging, computer-generated holograms, and integral imaging. In our survey, we have found that high parallelism can always be exploited in such applications for the development of high-performance systems.

  17. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited.

    PubMed

    Thomas, Cibu; Ye, Frank Q; Irfanoglu, M Okan; Modi, Pooja; Saleem, Kadharbatcha S; Leopold, David A; Pierpaoli, Carlo

    2014-11-18

    Tractography based on diffusion-weighted MRI (DWI) is widely used for mapping the structural connections of the human brain. Its accuracy is known to be limited by technical factors affecting in vivo data acquisition, such as noise, artifacts, and data undersampling resulting from scan time constraints. It generally is assumed that improvements in data quality and implementation of sophisticated tractography methods will lead to increasingly accurate maps of human anatomical connections. However, assessing the anatomical accuracy of DWI tractography is difficult because of the lack of independent knowledge of the true anatomical connections in humans. Here we investigate the future prospects of DWI-based connectional imaging by applying advanced tractography methods to an ex vivo DWI dataset of the macaque brain. The results of different tractography methods were compared with maps of known axonal projections from previous tracer studies in the macaque. Despite the exceptional quality of the DWI data, none of the methods demonstrated high anatomical accuracy. The methods that showed the highest sensitivity showed the lowest specificity, and vice versa. Additionally, anatomical accuracy was highly dependent upon parameters of the tractography algorithm, with different optimal values for mapping different pathways. These results suggest that there is an inherent limitation in determining long-range anatomical projections based on voxel-averaged estimates of local fiber orientation obtained from DWI data that is unlikely to be overcome by improvements in data acquisition and analysis alone.

  18. Accuracy Analysis on Large Blocks of High Resolution Images

    NASA Technical Reports Server (NTRS)

    Passini, Richardo M.

    2007-01-01

    Although high altitude frequencies effects are removed at the time of basic image generation, low altitude (Yaw) effects are still present in form of affinity/angular affinity. They are effectively removed by additional parameters. Bundle block adjustment based on properly weighted ephemeris/altitude quaternions (BBABEQ) are not enough to remove the systematic effect. Moreover, due to the narrow FOV of the HRSI, position and altitude are highly correlated making it almost impossible to separate and remove their systematic effects without extending the geometric model (Self-Calib.) The systematic effects gets evident on the increase of accuracy (in terms of RMSE at GCPs) for looser and relaxed ground control at the expense of large and strong block deformation with large residuals at check points. Systematic errors are most freely distributed and their effects propagated all over the block.

  19. Spectral imaging analysis for silkworm gender classification

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun; Kamtongdee, Chakkrit; Sa-Ngiamsak, Chiranut

    2013-05-01

    We examine the effect of different wavelength spectra in the performance of our optical penetration-based silkworm pupa sex identification system. With available low-cost light emitting diodes (LEDs), each emitting different wavelength spectra at 468 nm, 565 nm, 639 nm, 940 nm, and broad white light, we find that the body of the silkworm pupa can block blue and near infrared light while allowing green and red light pass through. In particular, the red light can clearly highlight an important organ called "chitin gland" of the female, leading to high accuracy of silkworm gender identification. In our experiment with 120 silkworm pupae, measured high average 92.8% and lower average 87.5% accuracies in identifying silkworm gender are obtained under red and white light LEDs, respectively.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, M. J.; Brunthaler, A.; Menten, K. M.

    The BeSSeL Survey is mapping the spiral structure of the Milky Way by measuring trigonometric parallaxes of hundreds of maser sources associated with high-mass star formation. While parallax techniques for water masers at high frequency (22 GHz) have been well documented, recent observations of methanol masers at lower frequency (6.7 GHz) have revealed astrometric issues associated with signal propagation through the ionosphere that could significantly limit parallax accuracy. These problems displayed as a “parallax gradient” on the sky when measured against different background quasars. We present an analysis method in which we generate position data relative to an “artificial quasar”more » at the target maser position at each epoch. Fitting parallax to these data can significantly mitigate the problems and improve parallax accuracy.« less

  1. Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder.

    PubMed

    Boriskin, Artem V; Boriskina, Svetlana V; Rolland, Anthony; Sauleau, Ronan; Nosich, Alexander I

    2008-05-01

    Our objective is the assessment of the accuracy of a conventional finite-difference time-domain (FDTD) code in the computation of the near- and far-field scattering characteristics of a circular dielectric cylinder. We excite the cylinder with an electric or magnetic line current and demonstrate the failure of the two-dimensional FDTD algorithm to accurately characterize the emission rate and the field patterns near high-Q whispering-gallery-mode resonances. This is proven by comparison with the exact series solutions. The computational errors in the emission rate are then studied at the resonances still detectable with FDTD, i.e., having Q-factors up to 10(3).

  2. Structure determination from XAFS using high-accuracy measurements of x-ray mass attenuation coefficients of silver, 11 keV-28 keV, and development of an all-energies approach to local dynamical analysis of bond length, revealing variation of effective thermal contributions across the XAFS spectrum.

    PubMed

    Tantau, L J; Chantler, C T; Bourke, J D; Islam, M T; Payne, A T; Rae, N A; Tran, C Q

    2015-07-08

    We use the x-ray extended range technique (XERT) to experimentally determine the mass attenuation coefficient of silver in the x-ray energy range 11 kev-28 kev including the silver K absorption edge. The results are accurate to better than 0.1%, permitting critical tests of atomic and solid state theory. This is one of the most accurate demonstrations of cross-platform accuracy in synchrotron studies thus far. We derive the mass absorption coefficients and the imaginary component of the form factor over this range. We apply conventional XAFS analytic techniques, extended to include error propagation and uncertainty, yielding bond lengths accurate to approximately 0.24% and thermal Debye-Waller parameters accurate to 30%. We then introduce the FDMX technique for accurate analysis of such data across the full XAFS spectrum, built on full-potential theory, yielding a bond length accuracy of order 0.1% and the demonstration that a single Debye parameter is inadequate and inconsistent across the XAFS range. Two effective Debye-Waller parameters are determined: a high-energy value based on the highly-correlated motion of bonded atoms (σ(DW) = 0.1413(21) Å), and an uncorrelated bulk value (σ(DW) = 0.1766(9) Å) in good agreement with that derived from (room-temperature) crystallography.

  3. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemannmore » problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. Finally, the upwind scheme is shown to be robust and provide high-order accuracy.« less

  4. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    DOE PAGES

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2017-09-28

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemannmore » problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. Finally, the upwind scheme is shown to be robust and provide high-order accuracy.« less

  5. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    NASA Astrophysics Data System (ADS)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2018-01-01

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw [1] how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemann problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. The upwind scheme is shown to be robust and provide high-order accuracy.

  6. Dynamic analysis of pretwisted elastically-coupled rotor blades

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Hinnant, Howard E.

    1994-01-01

    The accuracy of using a one-dimensional analysis to predict frequencies of elastically-coupled highly-twisted rotor blades is addressed. Degrees of freedom associated with shear deformation are statically condensed from the formulation, so the analysis uses only those degrees of freedom associated with classical beam theory. The effects of cross section deformation (warping) are considered, and are shown to become significant for some types of elastic coupling. Improved results are demonstrated for highly-coupled blade structures through account of warping in a local cross section analysis, without explicit inclusion of these effects in the beam analysis. A convergence study is also provided which investigates the potential for improving efficiency of elastically-coupled beam analysis through implementation of a p-version beam finite element.

  7. Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Famiglietti, Joseph; Walden, Harvey; Prasad, Coorg

    1995-01-01

    A near infrared differential absorption lidar technique is developed using atmospheric oxygen as a tracer for high resolution vertical profiles of pressure and temperature with high accuracy. Solid-state tunable lasers and high-resolution spectrum analyzers are developed to carry out ground-based and airborne measurement demonstrations and results of the measurements presented. Numerical error analysis of high-altitude airborne and spaceborne experiments is carried out, and system concepts developed for their implementation.

  8. Composition Analysis of III-Nitrides at the Nanometer Scale: Comparison of Energy Dispersive X-ray Spectroscopy and Atom Probe Tomography.

    PubMed

    Bonef, Bastien; Lopez-Haro, Miguel; Amichi, Lynda; Beeler, Mark; Grenier, Adeline; Robin, Eric; Jouneau, Pierre-Henri; Mollard, Nicolas; Mouton, Isabelle; Monroy, Eva; Bougerol, Catherine

    2016-12-01

    The enhancement of the performance of advanced nitride-based optoelectronic devices requires the fine tuning of their composition, which has to be determined with a high accuracy and at the nanometer scale. For that purpose, we have evaluated and compared energy dispersive X-ray spectroscopy (EDX) in a scanning transmission electron microscope (STEM) and atom probe tomography (APT) in terms of composition analysis of AlGaN/GaN multilayers. Both techniques give comparable results with a composition accuracy better than 0.6 % even for layers as thin as 3 nm. In case of EDX, we show the relevance of correcting the X-ray absorption by simultaneous determination of the mass thickness and chemical composition at each point of the analysis. Limitations of both techniques are discussed when applied to specimens with different geometries or compositions.

  9. Ice Wedge Polygon Bromide Tracer Experiment in Subsurface Flow, Barrow, Alaska, 2015-2016

    DOE Data Explorer

    Nathan Wales

    2018-02-15

    Time series of bromide tracer concentrations at several points within a low-centered polygon and a high-centered polygon. Concentration values were obtained from the analysis of water samples via ion chromatography with an accuracy of 0.01 mg/l.

  10. Accuracy Analysis of a Box-wing Theoretical SRP Model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoya; Hu, Xiaogong; Zhao, Qunhe; Guo, Rui

    2016-07-01

    For Beidou satellite navigation system (BDS) a high accuracy SRP model is necessary for high precise applications especially with Global BDS establishment in future. The BDS accuracy for broadcast ephemeris need be improved. So, a box-wing theoretical SRP model with fine structure and adding conical shadow factor of earth and moon were established. We verified this SRP model by the GPS Block IIF satellites. The calculation was done with the data of PRN 1, 24, 25, 27 satellites. The results show that the physical SRP model for POD and forecast for GPS IIF satellite has higher accuracy with respect to Bern empirical model. The 3D-RMS of orbit is about 20 centimeters. The POD accuracy for both models is similar but the prediction accuracy with the physical SRP model is more than doubled. We tested 1-day 3-day and 7-day orbit prediction. The longer is the prediction arc length, the more significant is the improvement. The orbit prediction accuracy with the physical SRP model for 1-day, 3-day and 7-day arc length are 0.4m, 2.0m, 10.0m respectively. But they are 0.9m, 5.5m and 30m with Bern empirical model respectively. We apply this means to the BDS and give out a SRP model for Beidou satellites. Then we test and verify the model with Beidou data of one month only for test. Initial results show the model is good but needs more data for verification and improvement. The orbit residual RMS is similar to that with our empirical force model which only estimate the force for along track, across track direction and y-bias. But the orbit overlap and SLR observation evaluation show some improvement. The remaining empirical force is reduced significantly for present Beidou constellation.

  11. Accuracy of computer-aided diagnosis based on narrow-band imaging endocytoscopy for diagnosing colorectal lesions: comparison with experts.

    PubMed

    Misawa, Masashi; Kudo, Shin-Ei; Mori, Yuichi; Takeda, Kenichi; Maeda, Yasuharu; Kataoka, Shinichi; Nakamura, Hiroki; Kudo, Toyoki; Wakamura, Kunihiko; Hayashi, Takemasa; Katagiri, Atsushi; Baba, Toshiyuki; Ishida, Fumio; Inoue, Haruhiro; Nimura, Yukitaka; Oda, Msahiro; Mori, Kensaku

    2017-05-01

    Real-time characterization of colorectal lesions during colonoscopy is important for reducing medical costs, given that the need for a pathological diagnosis can be omitted if the accuracy of the diagnostic modality is sufficiently high. However, it is sometimes difficult for community-based gastroenterologists to achieve the required level of diagnostic accuracy. In this regard, we developed a computer-aided diagnosis (CAD) system based on endocytoscopy (EC) to evaluate cellular, glandular, and vessel structure atypia in vivo. The purpose of this study was to compare the diagnostic ability and efficacy of this CAD system with the performances of human expert and trainee endoscopists. We developed a CAD system based on EC with narrow-band imaging that allowed microvascular evaluation without dye (ECV-CAD). The CAD algorithm was programmed based on texture analysis and provided a two-class diagnosis of neoplastic or non-neoplastic, with probabilities. We validated the diagnostic ability of the ECV-CAD system using 173 randomly selected EC images (49 non-neoplasms, 124 neoplasms). The images were evaluated by the CAD and by four expert endoscopists and three trainees. The diagnostic accuracies for distinguishing between neoplasms and non-neoplasms were calculated. ECV-CAD had higher overall diagnostic accuracy than trainees (87.8 vs 63.4%; [Formula: see text]), but similar to experts (87.8 vs 84.2%; [Formula: see text]). With regard to high-confidence cases, the overall accuracy of ECV-CAD was also higher than trainees (93.5 vs 71.7%; [Formula: see text]) and comparable to experts (93.5 vs 90.8%; [Formula: see text]). ECV-CAD showed better diagnostic accuracy than trainee endoscopists and was comparable to that of experts. ECV-CAD could thus be a powerful decision-making tool for less-experienced endoscopists.

  12. In-line calibration of Raman systems for analysis of gas mixtures of hydrogen isotopologues with sub-percent accuracy.

    PubMed

    Schlösser, Magnus; Seitz, Hendrik; Rupp, Simone; Herwig, Philipp; Alecu, Catalin Gabriel; Sturm, Michael; Bornschein, Beate

    2013-03-05

    Highly accurate, in-line, and real-time composition measurements of gases are mandatory in many processing applications. The quantitative analysis of mixtures of hydrogen isotopologues (H2, D2, T2, HD, HT, and DT) is of high importance in such fields as DT fusion, neutrino mass measurements using tritium β-decay or photonuclear experiments where HD targets are used. Raman spectroscopy is a favorable method for these tasks. In this publication we present a method for the in-line calibration of Raman systems for the nonradioactive hydrogen isotopologues. It is based on precise volumetric gas mixing of the homonuclear species H2/D2 and a controlled catalytic production of the heteronuclear species HD. Systematic effects like spurious exchange reactions with wall materials and others are considered with care during the procedure. A detailed discussion of statistical and systematic uncertainties is presented which finally yields a calibration accuracy of better than 0.4%.

  13. "Sturdy as a house with four windows," the star tracker of the future

    NASA Astrophysics Data System (ADS)

    Duivenvoorde, Tom; Leijtens, Johan; van der Heide, Erik J.

    2017-11-01

    Ongoing miniaturization of spacecraft demands the reduction in size of Attitude and Orbit Control Systems (AOCS). Therefore TNO has created a new design of a multi aperture, high performance, and miniaturized star tracker. The innovative design incorporates the latest developments in camera technology, attitude calculation and mechanical design into a system with 5 arc seconds accuracy, making the system usable for many applications. In this paper the results are presented of the system design and analysis, as well as the performance predictions for the Multi Aperture Baffled Star Tracker (MABS). The highly integrated system consists of multiple apertures without the need for external baffles, resulting in major advantages in mass, volume, alignment with the spacecraft and relative aperture stability. In the analysis part of this paper, the thermal and mechanical stability are discussed. In the final part the simulation results will be described that have lead to the predicted accuracy of the star tracker system and a peek into the future of attitude sensors is given.

  14. Analysis of Broadband Metamaterial Shielding for Counter-Directed Energy Weapons

    DTIC Science & Technology

    2017-06-01

    SHIELDING FOR COUNTER-DIRECTED ENERGY WEAPONS by Chester H. Hewitt III June 2017 Thesis Advisor: Dragoslav Grbovic Second Reader: James H...COVERED Master’s thesis 4. TITLE AND SUBTITLE ANALYSIS OF BROADBAND METAMATERIAL SHIELDING FOR COUNTER-DIRECTED ENERGY WEAPONS 5. FUNDING NUMBERS 6...high-power microwave (HPM) directed- energy weapons (DEWs), which can disrupt electronics remotely with great accuracy without the need to inflict

  15. Distributed collaborative response surface method for mechanical dynamic assembly reliability design

    NASA Astrophysics Data System (ADS)

    Bai, Guangchen; Fei, Chengwei

    2013-11-01

    Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the randomness from a probabilistic perspective. To improve the accuracy and efficiency of dynamic assembly relationship reliability analysis, the mechanical dynamic assembly reliability(MDAR) theory and a distributed collaborative response surface method(DCRSM) are proposed. The mathematic model of DCRSM is established based on the quadratic response surface function, and verified by the assembly relationship reliability analysis of aeroengine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). Through the comparison of the DCRSM, traditional response surface method(RSM) and Monte Carlo Method(MCM), the results show that the DCRSM is not able to accomplish the computational task which is impossible for the other methods when the number of simulation is more than 100 000 times, but also the computational precision for the DCRSM is basically consistent with the MCM and improved by 0.40˜4.63% to the RSM, furthermore, the computational efficiency of DCRSM is up to about 188 times of the MCM and 55 times of the RSM under 10000 times simulations. The DCRSM is demonstrated to be a feasible and effective approach for markedly improving the computational efficiency and accuracy of MDAR analysis. Thus, the proposed research provides the promising theory and method for the MDAR design and optimization, and opens a novel research direction of probabilistic analysis for developing the high-performance and high-reliability of aeroengine.

  16. Feasibility Analysis of DEM Differential Method on Tree Height Assessment wit Terra-SAR/TanDEM-X Data

    NASA Astrophysics Data System (ADS)

    Zhang, Wangfei; Chen, Erxue; Li, Zengyuan; Feng, Qi; Zhao, Lei

    2016-08-01

    DEM Differential Method is an effective and efficient way for forest tree height assessment with Polarimetric and interferometric technology, however, the assessment accuracy of it is based on the accuracy of interferometric results and DEM. Terra-SAR/TanDEM-X, which established the first spaceborne bistatic interferometer, can provide highly accurate cross-track interferometric images in the whole global without inherent accuracy limitations like temporal decorrelation and atmospheric disturbance. These characters of Terra-SAR/TandDEM-X give great potential for global or regional tree height assessment, which have been constraint by the temporal decorrelation in traditional repeat-pass interferometry. Currently, in China, it will be costly to collect high accurate DEM with Lidar. At the same time, it is also difficult to get truly representative ground survey samples to test and verify the assessment results. In this paper, we analyzed the feasibility of using TerraSAR/TanDEM-X data to assess forest tree height with current free DEM data like ASTER-GDEM and archived ground in-suit data like forest management inventory data (FMI). At first, the accuracy and of ASTER-GDEM and forest management inventory data had been assessment according to the DEM and canopy height model (CHM) extracted from Lidar data. The results show the average elevation RMSE between ASTER-GEDM and Lidar-DEM is about 13 meters, but they have high correlation with the correlation coefficient of 0.96. With a linear regression model, we can compensate ASTER-GDEM and improve its accuracy nearly to the Lidar-DEM with same scale. The correlation coefficient between FMI and CHM is 0.40. its accuracy is able to be improved by a linear regression model withinconfidence intervals of 95%. After compensation of ASTER-GDEM and FMI, we calculated the tree height in Mengla test site with DEM Differential Method. The results showed that the corrected ASTER-GDEM can effectively improve the assessment accuracy. The average assessment accuracy before and after corrected is 0.73 and 0.76, the RMSE is 5.5 and 4.4, respectively.

  17. SU-E-J-03: Characterization of the Precision and Accuracy of a New, Preclinical, MRI-Guided Focused Ultrasound System for Image-Guided Interventions in Small-Bore, High-Field Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellens, N; Farahani, K

    2015-06-15

    Purpose: MRI-guided focused ultrasound (MRgFUS) has many potential and realized applications including controlled heating and localized drug delivery. The development of many of these applications requires extensive preclinical work, much of it in small animal models. The goal of this study is to characterize the spatial targeting accuracy and reproducibility of a preclinical high field MRgFUS system for thermal ablation and drug delivery applications. Methods: The RK300 (FUS Instruments, Toronto, Canada) is a motorized, 2-axis FUS positioning system suitable for small bore (72 mm), high-field MRI systems. The accuracy of the system was assessed in three ways. First, the precisionmore » of the system was assessed by sonicating regular grids of 5 mm squares on polystyrene plates and comparing the resulting focal dimples to the intended pattern, thereby assessing the reproducibility and precision of the motion control alone. Second, the targeting accuracy was assessed by imaging a polystyrene plate with randomly drilled holes and replicating the hole pattern by sonicating the observed hole locations on intact polystyrene plates and comparing the results. Third, the practicallyrealizable accuracy and precision were assessed by comparing the locations of transcranial, FUS-induced blood-brain-barrier disruption (BBBD) (observed through Gadolinium enhancement) to the intended targets in a retrospective analysis of animals sonicated for other experiments. Results: The evenly-spaced grids indicated that the precision was 0.11 +/− 0.05 mm. When image-guidance was included by targeting random locations, the accuracy was 0.5 +/− 0.2 mm. The effective accuracy in the four rodent brains assessed was 0.8 +/− 0.6 mm. In all cases, the error appeared normally distributed (p<0.05) in both orthogonal axes, though the left/right error was systematically greater than the superior/inferior error. Conclusions: The targeting accuracy of this device is sub-millimeter, suitable for many preclinical applications including focused drug delivery and thermal therapy. Funding support provided by Philips Healthcare.« less

  18. D Tracking Based Augmented Reality for Cultural Heritage Data Management

    NASA Astrophysics Data System (ADS)

    Battini, C.; Landi, G.

    2015-02-01

    The development of contactless documentation techniques is allowing researchers to collect high volumes of three-dimensional data in a short time but with high levels of accuracy. The digitalisation of cultural heritage opens up the possibility of using image processing and analysis, and computer graphics techniques, to preserve this heritage for future generations; augmenting it with additional information or with new possibilities for its enjoyment and use. The collection of precise datasets about cultural heritage status is crucial for its interpretation, its conservation and during the restoration processes. The application of digital-imaging solutions for various feature extraction, image data-analysis techniques, and three-dimensional reconstruction of ancient artworks, allows the creation of multidimensional models that can incorporate information coming from heterogeneous data sets, research results and historical sources. Real objects can be scanned and reconstructed virtually, with high levels of data accuracy and resolution. Real-time visualisation software and hardware is rapidly evolving and complex three-dimensional models can be interactively visualised and explored on applications developed for mobile devices. This paper will show how a 3D reconstruction of an object, with multiple layers of information, can be stored and visualised through a mobile application that will allow interaction with a physical object for its study and analysis, using 3D Tracking based Augmented Reality techniques.

  19. Guidance for deriving and presenting percentage study weights in meta-analysis of test accuracy studies.

    PubMed

    Burke, Danielle L; Ensor, Joie; Snell, Kym I E; van der Windt, Danielle; Riley, Richard D

    2018-06-01

    Percentage study weights in meta-analysis reveal the contribution of each study toward the overall summary results and are especially important when some studies are considered outliers or at high risk of bias. In meta-analyses of test accuracy reviews, such as a bivariate meta-analysis of sensitivity and specificity, the percentage study weights are not currently derived. Rather, the focus is on representing the precision of study estimates on receiver operating characteristic plots by scaling the points relative to the study sample size or to their standard error. In this article, we recommend that researchers should also provide the percentage study weights directly, and we propose a method to derive them based on a decomposition of Fisher information matrix. This method also generalises to a bivariate meta-regression so that percentage study weights can also be derived for estimates of study-level modifiers of test accuracy. Application is made to two meta-analyses examining test accuracy: one of ear temperature for diagnosis of fever in children and the other of positron emission tomography for diagnosis of Alzheimer's disease. These highlight that the percentage study weights provide important information that is otherwise hidden if the presentation only focuses on precision based on sample size or standard errors. Software code is provided for Stata, and we suggest that our proposed percentage weights should be routinely added on forest and receiver operating characteristic plots for sensitivity and specificity, to provide transparency of the contribution of each study toward the results. This has implications for the PRISMA-diagnostic test accuracy guidelines that are currently being produced. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Spectral Accuracy and Sulfur Counting Capabilities of the LTQ-FT-ICR and the LTQ-Orbitrap XL for Small Molecule Analysis

    NASA Astrophysics Data System (ADS)

    Blake, Samantha L.; Walker, S. Hunter; Muddiman, David C.; Hinks, David; Beck, Keith R.

    2011-12-01

    Color Index Disperse Yellow 42 (DY42), a high-volume disperse dye for polyester, was used to compare the capabilities of the LTQ-Orbitrap XL and the LTQ-FT-ICR with respect to mass measurement accuracy (MMA), spectral accuracy, and sulfur counting. The results of this research will be used in the construction of a dye database for forensic purposes; the additional spectral information will increase the confidence in the identification of unknown dyes found in fibers at crime scenes. Initial LTQ-Orbitrap XL data showed MMAs greater than 3 ppm and poor spectral accuracy. Modification of several Orbitrap installation parameters (e.g., deflector voltage) resulted in a significant improvement of the data. The LTQ-FT-ICR and LTQ-Orbitrap XL (after installation parameters were modified) exhibited MMA ≤ 3 ppm, good spectral accuracy (χ2 values for the isotopic distribution ≤ 2), and were correctly able to ascertain the number of sulfur atoms in the compound at all resolving powers investigated for AGC targets of 5.00 × 105 and 1.00 × 106.

  1. High-resolution endoscopic ultrasound imaging and the number of needle passages are significant factors predicting high yield of endoscopic ultrasound-guided fine needle aspiration for pancreatic solid masses without an on-site cytopathologist

    PubMed Central

    Jeong, Seok Hoo; Yoon, Hyun Hwa; Kim, Eui Joo; Kim, Yoon Jae; Kim, Yeon Suk; Cho, Jae Hee

    2017-01-01

    Abstract Endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) is the accurate diagnostic method for pancreatic masses and its accuracy is affected by various FNA methods and EUS equipment. Therefore, we aimed to elucidate the instrumental and methodologic factors for determining the diagnostic yield of EUS-FNA for pancreatic solid masses without an on-site cytopathology evaluation. We retrospectively reviewed the medical records of 260 patients (265 pancreatic solid masses) who underwent EUS-FNA. We compared historical conventional EUS groups with high-resolution imaging devices and finally analyzed various factors affecting EUS-FNA accuracy. In total, 265 pancreatic solid masses of 260 patients were included in this study. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of EUS-FNA for pancreatic solid masses without on-site cytopathology evaluation were 83.4%, 81.8%, 100.0%, 100.0%, and 34.3%, respectively. In comparison with conventional image group, high-resolution image group showed the increased accuracy, sensitivity and specificity of EUS-FNA (71.3% vs 92.7%, 68.9% vs 91.9%, and 100% vs 100%, respectively). On the multivariate analysis with various instrumental and methodologic factors, high-resolution imaging (P = 0.040, odds ratio = 3.28) and 3 or more needle passes (P = 0.039, odds ratio = 2.41) were important factors affecting diagnostic yield of pancreatic solid masses. High-resolution imaging and 3 or more passes were the most significant factors influencing diagnostic yield of EUS-FNA in patients with pancreatic solid masses without an on-site cytopathologist. PMID:28079803

  2. Modeling time-to-event (survival) data using classification tree analysis.

    PubMed

    Linden, Ariel; Yarnold, Paul R

    2017-12-01

    Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.

  3. Geolocation and Pointing Accuracy Analysis for the WindSat Sensor

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank J.; Purdy, William E.; Gaiser, Peter W.; Poe, Gene; Uliana, Enzo A.

    2006-01-01

    Geolocation and pointing accuracy analyses of the WindSat flight data are presented. The two topics were intertwined in the flight data analysis and will be addressed together. WindSat has no unusual geolocation requirements relative to other sensors, but its beam pointing knowledge accuracy is especially critical to support accurate polarimetric radiometry. Pointing accuracy was improved and verified using geolocation analysis in conjunction with scan bias analysis. nvo methods were needed to properly identify and differentiate between data time tagging and pointing knowledge errors. Matchups comparing coastlines indicated in imagery data with their known geographic locations were used to identify geolocation errors. These coastline matchups showed possible pointing errors with ambiguities as to the true source of the errors. Scan bias analysis of U, the third Stokes parameter, and of vertical and horizontal polarizations provided measurement of pointing offsets resolving ambiguities in the coastline matchup analysis. Several geolocation and pointing bias sources were incfementally eliminated resulting in pointing knowledge and geolocation accuracy that met all design requirements.

  4. The effects of choir spacing and choir formation on the tuning accuracy and intonation tendencies of a mixed choir

    NASA Astrophysics Data System (ADS)

    Daugherty, James F.

    2005-09-01

    The tuning accuracy and intonation tendencies of a high school mixed choir (N=46) were measured from digital recordings obtained as the ensemble performed an a cappella motet under concert conditions in N=3 singer spacing configurations (close, lateral, circumambient) and N=2 choir formations (sectional and mixed). Methods of analysis were modeled on Howard's (2004) pitch-based measurements of the tuning accuracy of crowds of football fans. Results were discussed in terms of (a) previous studies on choir spacing (Daugherty, 1999, 2003) and self-to-other singer ratios (Ternstrm, 1995, 1999); (b) contributions of choir spacing to vocal/choral pedagogy; and (c) potential ramifications for the design and use of auditoria and portable standing risers for choral performances.

  5. Application of mixsep software package: Performance verification of male-mixed DNA analysis

    PubMed Central

    HU, NA; CONG, BIN; GAO, TAO; CHEN, YU; SHEN, JUNYI; LI, SHUJIN; MA, CHUNLING

    2015-01-01

    An experimental model of male-mixed DNA (n=297) was constructed according to the mixed DNA construction principle. This comprised the use of the Applied Biosystems (ABI) 7500 quantitative polymerase chain reaction system, with scientific validation of mixture proportion (Mx; root-mean-square error ≤0.02). Statistical analysis was performed on locus separation accuracy using mixsep, a DNA mixture separation R-package, and the analytical performance of mixsep was assessed by examining the data distribution pattern of different mixed gradients, short tandem repeat (STR) loci and mixed DNA types. The results showed that locus separation accuracy had a negative linear correlation with the mixed gradient (R2=−0.7121). With increasing mixed gradient imbalance, locus separation accuracy first increased and then decreased, with the highest value detected at a gradient of 1:3 (≥90%). The mixed gradient, which is the theoretical Mx, was one of the primary factors that influenced the success of mixed DNA analysis. Among the 16 STR loci detected by Identifiler®, the separation accuracy was relatively high (>88%) for loci D5S818, D8S1179 and FGA, whereas the median separation accuracy value was lowest for the D7S820 locus. STR loci with relatively large numbers of allelic drop-out (ADO; >15) were all located in the yellow and red channels, including loci D18S51, D19S433, FGA, TPOX and vWA. These five loci featured low allele peak heights, which was consistent with the low sensitivity of the ABI 3130xl Genetic Analyzer to yellow and red fluorescence. The locus separation accuracy of the mixsep package was substantially different with and without the inclusion of ADO loci; inclusion of ADO significantly reduced the analytical performance of the mixsep package, which was consistent with the lack of an ADO functional module in this software. The present study demonstrated that the mixsep software had a number of advantages and was recommended for analysis of mixed DNA. This software was easy to operate and produced understandable results with a degree of controllability. PMID:25936428

  6. Mapping of land cover in northern California with simulated hyperspectral satellite imagery

    NASA Astrophysics Data System (ADS)

    Clark, Matthew L.; Kilham, Nina E.

    2016-09-01

    Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Analysis of hyperspectral, or imaging spectrometer, imagery has shown an impressive capacity to map a wide range of natural and anthropogenic land cover. Applications have been mostly with single-date imagery from relatively small spatial extents. Future hyperspectral satellites will provide imagery at greater spatial and temporal scales, and there is a need to assess techniques for mapping land cover with these data. Here we used simulated multi-temporal HyspIRI satellite imagery over a 30,000 km2 area in the San Francisco Bay Area, California to assess its capabilities for mapping classes defined by the international Land Cover Classification System (LCCS). We employed a mapping methodology and analysis framework that is applicable to regional and global scales. We used the Random Forests classifier with three sets of predictor variables (reflectance, MNF, hyperspectral metrics), two temporal resolutions (summer, spring-summer-fall), two sample scales (pixel, polygon) and two levels of classification complexity (12, 20 classes). Hyperspectral metrics provided a 16.4-21.8% and 3.1-6.7% increase in overall accuracy relative to MNF and reflectance bands, respectively, depending on pixel or polygon scales of analysis. Multi-temporal metrics improved overall accuracy by 0.9-3.1% over summer metrics, yet increases were only significant at the pixel scale of analysis. Overall accuracy at pixel scales was 72.2% (Kappa 0.70) with three seasons of metrics. Anthropogenic and homogenous natural vegetation classes had relatively high confidence and producer and user accuracies were over 70%; in comparison, woodland and forest classes had considerable confusion. We next focused on plant functional types with relatively pure spectra by removing open-canopy shrublands, woodlands and mixed forests from the classification. This 12-class map had significantly improved accuracy of 85.1% (Kappa 0.83) and most classes had over 70% producer and user accuracies. Finally, we summarized important metrics from the multi-temporal Random Forests to infer the underlying chemical and structural properties that best discriminated our land-cover classes across seasons.

  7. Practical aspects of estimating energy components in rodents

    PubMed Central

    van Klinken, Jan B.; van den Berg, Sjoerd A. A.; van Dijk, Ko Willems

    2013-01-01

    Recently there has been an increasing interest in exploiting computational and statistical techniques for the purpose of component analysis of indirect calorimetry data. Using these methods it becomes possible to dissect daily energy expenditure into its components and to assess the dynamic response of the resting metabolic rate (RMR) to nutritional and pharmacological manipulations. To perform robust component analysis, however, is not straightforward and typically requires the tuning of parameters and the preprocessing of data. Moreover the degree of accuracy that can be attained by these methods depends on the configuration of the system, which must be properly taken into account when setting up experimental studies. Here, we review the methods of Kalman filtering, linear, and penalized spline regression, and minimal energy expenditure estimation in the context of component analysis and discuss their results on high resolution datasets from mice and rats. In addition, we investigate the effect of the sample time, the accuracy of the activity sensor, and the washout time of the chamber on the estimation accuracy. We found that on the high resolution data there was a strong correlation between the results of Kalman filtering and penalized spline (P-spline) regression, except for the activity respiratory quotient (RQ). For low resolution data the basal metabolic rate (BMR) and resting RQ could still be estimated accurately with P-spline regression, having a strong correlation with the high resolution estimate (R2 > 0.997; sample time of 9 min). In contrast, the thermic effect of food (TEF) and activity related energy expenditure (AEE) were more sensitive to a reduction in the sample rate (R2 > 0.97). In conclusion, for component analysis on data generated by single channel systems with continuous data acquisition both Kalman filtering and P-spline regression can be used, while for low resolution data from multichannel systems P-spline regression gives more robust results. PMID:23641217

  8. MASH Suite: a user-friendly and versatile software interface for high-resolution mass spectrometry data interpretation and visualization.

    PubMed

    Guner, Huseyin; Close, Patrick L; Cai, Wenxuan; Zhang, Han; Peng, Ying; Gregorich, Zachery R; Ge, Ying

    2014-03-01

    The rapid advancements in mass spectrometry (MS) instrumentation, particularly in Fourier transform (FT) MS, have made the acquisition of high-resolution and high-accuracy mass measurements routine. However, the software tools for the interpretation of high-resolution MS data are underdeveloped. Although several algorithms for the automatic processing of high-resolution MS data are available, there is still an urgent need for a user-friendly interface with functions that allow users to visualize and validate the computational output. Therefore, we have developed MASH Suite, a user-friendly and versatile software interface for processing high-resolution MS data. MASH Suite contains a wide range of features that allow users to easily navigate through data analysis, visualize complex high-resolution MS data, and manually validate automatically processed results. Furthermore, it provides easy, fast, and reliable interpretation of top-down, middle-down, and bottom-up MS data. MASH Suite is convenient, easily operated, and freely available. It can greatly facilitate the comprehensive interpretation and validation of high-resolution MS data with high accuracy and reliability.

  9. Cause and Cure - Deterioration in Accuracy of CFD Simulations with Use of High-Aspect-Ratio Triangular/Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar

    2017-01-01

    Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD researchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where simplex elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identifies the reason behind the difficulties in use of such high-aspect ratio simplex elements is formulated using two different approaches and presented here. Drawing insights from the analysis, a potential solution to avoid that pitfall is also provided as part of this work. Furthermore, through the use of numerical simulations of practical viscous problems involving high-Reynolds number flows, how the gradient evaluation procedures of the CESE framework can be effectively used to produce accurate and stable results on such high-aspect ratio simplex meshes is also showcased.

  10. Rapid screening of drugs of abuse in human urine by high-performance liquid chromatography coupled with high resolution and high mass accuracy hybrid linear ion trap-Orbitrap mass spectrometry.

    PubMed

    Li, Xiaowen; Shen, Baohua; Jiang, Zheng; Huang, Yi; Zhuo, Xianyi

    2013-08-09

    A novel analytical toxicology method has been developed for the analysis of drugs of abuse in human urine by using a high resolution and high mass accuracy hybrid linear ion trap-Orbitrap mass spectrometer (LTQ-Orbitrap-MS). This method allows for the detection of different drugs of abuse, including amphetamines, cocaine, opiate alkaloids, cannabinoids, hallucinogens and their metabolites. After solid-phase extraction with Oasis HLB cartridges, spiked urine samples were analysed by HPLC/LTQ-Orbitrap-MS using an electrospray interface in positive ionisation mode, with resolving power of 30,000 full width at half maximum (FWHM). Gradient elution off of a Hypersil Gold PFP column (50mm×2.1mm) allowed to resolve 65 target compounds and 3 internal standards in a total chromatographic run time of 20min. Validation of this method consisted of confirmation of identity, selectivity, linearity, limit of detection (LOD), lowest limits of quantification (LLOQ), accuracy, precision, extraction recovery and matrix effect. The regression coefficients (r(2)) for the calibration curves (LLOQ - 100ng/mL) in the study were ≥0.99. The LODs for 65 validated compounds were better than 5ng/ml except for 4 compounds. The relative standard deviation (RSD), which was used to estimate repeatability at three concentrations, was always less than 15%. The recovery of extraction and matrix effects were above 50 and 70%, respectively. Mass accuracy was always better than 2ppm, corresponding to a maximum mass error of 0.8 millimass units (mmu). The accurate masses of characteristic fragments were obtained by collisional experiments for a more reliable identification of the analytes. Automated data analysis and reporting were performed using ToxID software with an exact mass database. This procedure was then successfully applied to analyse drugs of abuse in a real urine sample from subject who was assumed to be drug addict. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  11. The performance of a prototype device designed to evaluate general quality parameters of X-ray equipment

    NASA Astrophysics Data System (ADS)

    Murata, C. H.; Fernandes, D. C.; Lavínia, N. C.; Caldas, L. V. E.; Pires, S. R.; Medeiros, R. B.

    2014-02-01

    The performance of radiological equipment can be assessed using non-invasive methods and portable instruments that can analyze an X-ray beam with just one exposure. These instruments use either an ionization chamber or a state solid detector (SSD) to evaluate X-ray beam parameters. In Brazil, no such instruments are currently being manufactured; consequently, these instruments come at a higher cost to users due to importation taxes. Additionally, quality control tests are time consuming and impose a high workload on the X-ray tubes when evaluating their performance parameters. The assessment of some parameters, such as the half-value layer (HVL), requires several exposures; however, this can be reduced by using a SSD that requires only a single exposure. One such SSD uses photodiodes designed for high X-ray sensitivity without the use of scintillation crystals. This sensitivity allows one electron-hole pair to be created per 3.63 eV of incident energy, resulting in extremely high and stable quantum efficiencies. These silicon photodiodes operate by absorbing photons and generating a flow of current that is proportional to the incident power. The aim of this study was to show the response of the solid sensor PIN RD100A detector in a multifunctional X-ray analysis system that is designed to evaluate the average peak voltage (kVp), exposure time, and HVL of radiological equipment. For this purpose, a prototype board that uses four SSDs was developed to measure kVp, exposure time, and HVL using a single exposure. The reproducibility and accuracy of the results were compared to that of different X-ray beam analysis instruments. The kVp reproducibility and accuracy results were 2% and 3%, respectively; the exposure time reproducibility and accuracy results were 2% and 1%, respectively; and the HVL accuracy was ±2%. The prototype's methodology was able to calculate these parameters with appropriate reproducibility and accuracy. Therefore, the prototype can be considered a multifunctional instrument that can appropriately evaluate the performance of radiological equipment.

  12. Cause and Cure - Deterioration in Accuracy of CFD Simulations With Use of High-Aspect-Ratio Triangular Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar

    2017-01-01

    Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD re-searchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions and also cause numerical instability. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where triangular/tetrahedral elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identities the reason behind the difficulties in use of such high-aspect ratio triangular/tetrahedral elements is presented here. As will be shown, it turns out that the degree of accuracy deterioration of gradient computation involving a triangular element is hinged on the value of its shape factor Gamma def = sq sin Alpha1 + sq sin Alpha2 + sq sin Alpha3, where Alpha1; Alpha2 and Alpha3 are the internal angles of the element. In fact, it is shown that the degree of accuracy deterioration increases monotonically as the value of Gamma decreases monotonically from its maximal value 9/4 (attained by an equilateral triangle only) to a value much less than 1 (associated with a highly obtuse triangle). By taking advantage of the fact that a high-aspect ratio triangle is not necessarily highly obtuse, and in fact it can have a shape factor whose value is close to the maximal value 9/4, a potential solution to avoid accuracy deterioration of gradient computation associated with a high-aspect ratio triangular grid is given. Also a brief discussion on the extension of the current mathematical framework to the tetrahedral-grid case along with some of the practical results of this extension is also provided. Furthermore, through the use of numerical simulations of practical viscous problems involving high-Reynolds number flows, the effectiveness of the gradient evaluation procedures within the CESE framework (that have their basis on the analysis presented here) to produce accurate and stable results on such high-aspect ratio meshes is also showcased.

  13. Empirical Analysis of the Subjective Impressions and Objective Measures of Domain Scientists’ Visual Analytic Judgments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Aritra; Burrows, Susannah M.; Han, Kyungsik

    2017-05-08

    Scientists often use specific data analysis and presentation methods familiar within their domain. But does high familiarity drive better analytical judgment? This question is especially relevant when familiar methods themselves can have shortcomings: many visualizations used conventionally for scientific data analysis and presentation do not follow established best practices. This necessitates new methods that might be unfamiliar yet prove to be more effective. But there is little empirical understanding of the relationships between scientists’ subjective impressions about familiar and unfamiliar visualizations and objective measures of their visual analytic judgments. To address this gap and to study these factors, we focusmore » on visualizations used for comparison of climate model performance. We report on a comprehensive survey-based user study with 47 climate scientists and present an analysis of : i) relationships among scientists’ familiarity, their perceived lev- els of comfort, confidence, accuracy, and objective measures of accuracy, and ii) relationships among domain experience, visualization familiarity, and post-study preference.« less

  14. Upper Atmosphere Research Satellite (UARS) onboard attitude determination using a Kalman filter

    NASA Technical Reports Server (NTRS)

    Garrick, Joseph

    1993-01-01

    The Upper Atmospheric Research Satellite (UARS) requires a highly accurate knowledge of its attitude to accomplish its mission. Propagation of the attitude state using gyro measurements is not sufficient to meet the accuracy requirements, and must be supplemented by a observer/compensation process to correct for dynamics and observation anomalies. The process of amending the attitude state utilizes a well known method, the discrete Kalman Filter. This study is a sensitivity analysis of the discrete Kalman Filter as implemented in the UARS Onboard Computer (OBC). The stability of the Kalman Filter used in the normal on-orbit control mode within the OBC, is investigated for the effects of corrupted observations and nonlinear errors. Also, a statistical analysis on the residuals of the Kalman Filter is performed. These analysis is based on simulations using the UARS Dynamics Simulator (UARSDSIM) and compared against attitude requirements as defined by General Electric (GE). An independent verification of expected accuracies is performed using the Attitude Determination Error Analysis System (ADEAS).

  15. Accuracy and reproducibility of bending stiffness measurements by mechanical response tissue analysis in artificial human ulnas.

    PubMed

    Arnold, Patricia A; Ellerbrock, Emily R; Bowman, Lyn; Loucks, Anne B

    2014-11-07

    Osteoporosis is characterized by reduced bone strength, but no FDA-approved medical device measures bone strength. Bone strength is strongly associated with bone stiffness, but no FDA-approved medical device measures bone stiffness either. Mechanical Response Tissue Analysis (MRTA) is a non-significant risk, non-invasive, radiation-free, vibration analysis technique for making immediate, direct functional measurements of the bending stiffness of long bones in humans in vivo. MRTA has been used for research purposes for more than 20 years, but little has been published about its accuracy. To begin to investigate its accuracy, we compared MRTA measurements of bending stiffness in 39 artificial human ulna bones to measurements made by Quasistatic Mechanical Testing (QMT). In the process, we also quantified the reproducibility (i.e., precision and repeatability) of both methods. MRTA precision (1.0±1.0%) and repeatability (3.1 ± 3.1%) were not as high as those of QMT (0.2 ± 0.2% and 1.3+1.7%, respectively; both p<10(-4)). The relationship between MRTA and QMT measurements of ulna bending stiffness was indistinguishable from the identity line (p=0.44) and paired measurements by the two methods agreed within a 95% confidence interval of ± 5%. If such accuracy can be achieved on real human ulnas in situ, and if the ulna is representative of the appendicular skeleton, MRTA may prove clinically useful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Horizontal Temperature Variability in the Stratosphere: Global Variations Inferred from CRISTA Data

    NASA Technical Reports Server (NTRS)

    Eidmann, G.; Offermann, D.; Jarisch, M.; Preusse, P.; Eckermann, S. D.; Schmidlin, F. J.

    2001-01-01

    In two separate orbital campaigns (November, 1994 and August, 1997), the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument acquired global stratospheric data of high accuracy and high spatial resolution. The standard limb-scanned CRISTA measurements resolved atmospheric spatial structures with vertical dimensions greater than or equal to 1.5 - 2 km and horizontal dimensions is greater than or equal to 100 - 200 km. A fluctuation analysis of horizontal temperature distributions derived from these data is presented. This method is somewhat complementary to conventional power-spectral analysis techniques.

  17. High Energy Astronomy Observatory, Mission C, Phase A. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Technical data, and experiment and spacecraft alternatives are presented in support of the HEAO-C, whose primary objective is a detailed study of the more interesting high energy sources, using grazing incidence X-ray telescopes and a spacecraft pointing accuracy of + or - 1 arc minute. The analyses presented cover the mission analysis and launch vehicle; thermal control trade studies and supporting analyses; attitude sensing and control analyses; electrical systems; and reliability analysis. The alternate experiments which were considered are listed, and the advantages and disadvantages of several alternate observatory configurations are assessed.

  18. Cryo-EM image alignment based on nonuniform fast Fourier transform.

    PubMed

    Yang, Zhengfan; Penczek, Pawel A

    2008-08-01

    In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform fast Fourier transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis.

  19. Voltammetric Electronic Tongue and Support Vector Machines for Identification of Selected Features in Mexican Coffee

    PubMed Central

    Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel

    2014-01-01

    This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure. PMID:25254303

  20. Voltammetric electronic tongue and support vector machines for identification of selected features in Mexican coffee.

    PubMed

    Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel

    2014-09-24

    This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure.

  1. Cryo-EM Image Alignment Based on Nonuniform Fast Fourier Transform

    PubMed Central

    Yang, Zhengfan; Penczek, Pawel A.

    2008-01-01

    In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform Fast Fourier Transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis. PMID:18499351

  2. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis

    PubMed Central

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-01-01

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment. PMID:27322266

  3. High accuracy analysis of whistlers measured simultaneously on ground station and on board of the DEMETER satellite

    NASA Astrophysics Data System (ADS)

    Hamar, D.; Ferencz, Cs.; Steinbach, P.; Lichtenberger, J.; Ferencz, O. E.; Parrot, M.

    2009-04-01

    Examining the mechanism and effect of the coupling of the electromagnetic signals from the lower ionosphere into the Earth-ionosphere waveguide (EIWG) can be maintained with the analysis of simultaneous broadband VLF recordings acquired at ground station (Tihany, Hungary) and on LEO orbiting satellite (DEMETER) during nearby passes. Single hop whistlers, selected from concurrent broadband VLF data sets were analyzed with high accuracy applying the matched filtering (MF) technique, developed previously for signal analysis. The accuracy of the frequency-time-amplitude pattern and the resolution of the closely spaced whistler traces were further increased with least-square estimation of the parameters of the output of MF procedure. One result of this analysis is the fine structure of the whistler which can not be recognized in conventional spectrogram. The comparison of the detailed fine structure of the whistlers measured on board and on the ground enabled us to select reliably the corresponding signal pairs. The remarkable difference seen in the fine structure of matching whistler occurrences in the satellite and the ground data series can be addressed e.g. to the effect of the inhomogeneous ionospheric plasma (trans-ionosperic impulse propagation) or the process of wave energy leaking out from the ionized medium into the EIWG. This field needs further investigations. References: Ferencz Cs., Ferencz O. E., Hamar D. and Lichtenberger, J., (2001) Whistler Phenomena, Short Impulse Propagation; Kluwer Academic Publisher, ISBN 0-7923-6995-5, Netherlands Lichtenberger, J., Hamar D. and Ferencz Cs.,(2003) Methods for analyzing the structure and propagation characteristics of whistlers, in: Very Low Frequency (VLF) Phenomena, Narosa Publishing House, New Delhi, p. 88-107.

  4. Accuracy of gap analysis habitat models in predicting physical features for wildlife-habitat associations in the southwest U.S.

    USGS Publications Warehouse

    Boykin, K.G.; Thompson, B.C.; Propeck-Gray, S.

    2010-01-01

    Despite widespread and long-standing efforts to model wildlife-habitat associations using remotely sensed and other spatially explicit data, there are relatively few evaluations of the performance of variables included in predictive models relative to actual features on the landscape. As part of the National Gap Analysis Program, we specifically examined physical site features at randomly selected sample locations in the Southwestern U.S. to assess degree of concordance with predicted features used in modeling vertebrate habitat distribution. Our analysis considered hypotheses about relative accuracy with respect to 30 vertebrate species selected to represent the spectrum of habitat generalist to specialist and categorization of site by relative degree of conservation emphasis accorded to the site. Overall comparison of 19 variables observed at 382 sample sites indicated ???60% concordance for 12 variables. Directly measured or observed variables (slope, soil composition, rock outcrop) generally displayed high concordance, while variables that required judgments regarding descriptive categories (aspect, ecological system, landform) were less concordant. There were no differences detected in concordance among taxa groups, degree of specialization or generalization of selected taxa, or land conservation categorization of sample sites with respect to all sites. We found no support for the hypothesis that accuracy of habitat models is inversely related to degree of taxa specialization when model features for a habitat specialist could be more difficult to represent spatially. Likewise, we did not find support for the hypothesis that physical features will be predicted with higher accuracy on lands with greater dedication to biodiversity conservation than on other lands because of relative differences regarding available information. Accuracy generally was similar (>60%) to that observed for land cover mapping at the ecological system level. These patterns demonstrate resilience of gap analysis deductive model processes to the type of remotely sensed or interpreted data used in habitat feature predictions. ?? 2010 Elsevier B.V.

  5. A promising tool to achieve chemical accuracy for density functional theory calculations on Y-NO homolysis bond dissociation energies.

    PubMed

    Li, Hong Zhi; Hu, Li Hong; Tao, Wei; Gao, Ting; Li, Hui; Lu, Ying Hua; Su, Zhong Min

    2012-01-01

    A DFT-SOFM-RBFNN method is proposed to improve the accuracy of DFT calculations on Y-NO (Y = C, N, O, S) homolysis bond dissociation energies (BDE) by combining density functional theory (DFT) and artificial intelligence/machine learning methods, which consist of self-organizing feature mapping neural networks (SOFMNN) and radial basis function neural networks (RBFNN). A descriptor refinement step including SOFMNN clustering analysis and correlation analysis is implemented. The SOFMNN clustering analysis is applied to classify descriptors, and the representative descriptors in the groups are selected as neural network inputs according to their closeness to the experimental values through correlation analysis. Redundant descriptors and intuitively biased choices of descriptors can be avoided by this newly introduced step. Using RBFNN calculation with the selected descriptors, chemical accuracy (≤1 kcal·mol(-1)) is achieved for all 92 calculated organic Y-NO homolysis BDE calculated by DFT-B3LYP, and the mean absolute deviations (MADs) of the B3LYP/6-31G(d) and B3LYP/STO-3G methods are reduced from 4.45 and 10.53 kcal·mol(-1) to 0.15 and 0.18 kcal·mol(-1), respectively. The improved results for the minimal basis set STO-3G reach the same accuracy as those of 6-31G(d), and thus B3LYP calculation with the minimal basis set is recommended to be used for minimizing the computational cost and to expand the applications to large molecular systems. Further extrapolation tests are performed with six molecules (two containing Si-NO bonds and two containing fluorine), and the accuracy of the tests was within 1 kcal·mol(-1). This study shows that DFT-SOFM-RBFNN is an efficient and highly accurate method for Y-NO homolysis BDE. The method may be used as a tool to design new NO carrier molecules.

  6. A Promising Tool to Achieve Chemical Accuracy for Density Functional Theory Calculations on Y-NO Homolysis Bond Dissociation Energies

    PubMed Central

    Li, Hong Zhi; Hu, Li Hong; Tao, Wei; Gao, Ting; Li, Hui; Lu, Ying Hua; Su, Zhong Min

    2012-01-01

    A DFT-SOFM-RBFNN method is proposed to improve the accuracy of DFT calculations on Y-NO (Y = C, N, O, S) homolysis bond dissociation energies (BDE) by combining density functional theory (DFT) and artificial intelligence/machine learning methods, which consist of self-organizing feature mapping neural networks (SOFMNN) and radial basis function neural networks (RBFNN). A descriptor refinement step including SOFMNN clustering analysis and correlation analysis is implemented. The SOFMNN clustering analysis is applied to classify descriptors, and the representative descriptors in the groups are selected as neural network inputs according to their closeness to the experimental values through correlation analysis. Redundant descriptors and intuitively biased choices of descriptors can be avoided by this newly introduced step. Using RBFNN calculation with the selected descriptors, chemical accuracy (≤1 kcal·mol−1) is achieved for all 92 calculated organic Y-NO homolysis BDE calculated by DFT-B3LYP, and the mean absolute deviations (MADs) of the B3LYP/6-31G(d) and B3LYP/STO-3G methods are reduced from 4.45 and 10.53 kcal·mol−1 to 0.15 and 0.18 kcal·mol−1, respectively. The improved results for the minimal basis set STO-3G reach the same accuracy as those of 6-31G(d), and thus B3LYP calculation with the minimal basis set is recommended to be used for minimizing the computational cost and to expand the applications to large molecular systems. Further extrapolation tests are performed with six molecules (two containing Si-NO bonds and two containing fluorine), and the accuracy of the tests was within 1 kcal·mol−1. This study shows that DFT-SOFM-RBFNN is an efficient and highly accurate method for Y-NO homolysis BDE. The method may be used as a tool to design new NO carrier molecules. PMID:22942689

  7. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    PubMed Central

    Zhou, Guanwu; Zhao, Yulong; Guo, Fangfang; Xu, Wenju

    2014-01-01

    Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM) as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU) after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system's performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor. PMID:25006998

  8. Autonomous satellite navigation using starlight refraction angle measurements

    NASA Astrophysics Data System (ADS)

    Ning, Xiaolin; Wang, Longhua; Bai, Xinbei; Fang, Jiancheng

    2013-05-01

    An on-board autonomous navigation capability is required to reduce the operation costs and enhance the navigation performance of future satellites. Autonomous navigation by stellar refraction is a type of autonomous celestial navigation method that uses high-accuracy star sensors instead of Earth sensors to provide information regarding Earth's horizon. In previous studies, the refraction apparent height has typically been used for such navigation. However, the apparent height cannot be measured directly by a star sensor and can only be calculated by the refraction angle and an atmospheric refraction model. Therefore, additional errors are introduced by the uncertainty and nonlinearity of atmospheric refraction models, which result in reduced navigation accuracy and reliability. A new navigation method based on the direct measurement of the refraction angle is proposed to solve this problem. Techniques for the determination of the refraction angle are introduced, and a measurement model for the refraction angle is established. The method is tested and validated by simulations. When the starlight refraction height ranges from 20 to 50 km, a positioning accuracy of better than 100 m can be achieved for a low-Earth-orbit (LEO) satellite using the refraction angle, while the positioning accuracy of the traditional method using the apparent height is worse than 500 m under the same conditions. Furthermore, an analysis of the factors that affect navigation accuracy, including the measurement accuracy of the refraction angle, the number of visible refracted stars per orbit and the installation azimuth of star sensor, is presented. This method is highly recommended for small satellites in particular, as no additional hardware besides two star sensors is required.

  9. Accuracy of electronic implant torque controllers following time in clinical service.

    PubMed

    Mitrani, R; Nicholls, J I; Phillips, K M; Ma, T

    2001-01-01

    Tightening of the screws in implant-supported restorations has been reported to be problematic, in that if the applied torque is too low, screw loosening occurs. If the torque is too high, then screw fracture can take place. Thus, accuracy of the torque driver is of the utmost importance. This study evaluated 4 new electronic torque drivers (controls) and 10 test electronic torque drivers, which had been in clinical service for a minimum of 5 years. Torque values of the test drivers were measured and were compared with the control values using a 1-way analysis of variance. Torque delivery accuracy was measured using a technique that simulated the clinical situation. In vivo, the torque driver turns the screw until the selected tightening torque is reached. In this laboratory experiment, an implant, along with an attached abutment and abutment gold screw, was held firmly in a Tohnichi torque gauge. Calibration accuracy for the Tohnichi is +/- 3% of the scale value. During torque measurement, the gold screw turned a minimum of 180 degrees before contact was made between the screw and abutment. Three torque values (10, 20, and 32 N-cm) were evaluated, at both high- and low-speed settings. The recorded torque measurements indicated that the 10 test electronic torque drivers maintained a torque delivery accuracy equivalent to the 4 new (unused) units. Judging from the torque output values obtained from the 10 test units, the clinical use of the electronic torque driver suggests that accuracy did not change significantly over the 5-year period of clinical service.

  10. An onboard data analysis method to track the seasonal polar caps on Mars

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Castano, Rebecca; Chien, Steve; Ivanov, Anton B.; Pounders, Erik; Titus, Timothy N.

    2005-01-01

    In this paper, we evaluate our method on uncalibrated THEMIS data and find 1) agreement with manual cap edge identifications to within 28.2 km, and 2) high accuracy even with a reduced context window, yielding large reductions in memory requirements.

  11. Gleason Score Determination with Transrectal Ultrasound-Magnetic Resonance Imaging Fusion Guided Prostate Biopsies--Are We Gaining in Accuracy?

    PubMed

    Lanz, Camille; Cornud, François; Beuvon, Frédéric; Lefèvre, Arnaud; Legmann, Paul; Zerbib, Marc; Delongchamps, Nicolas Barry

    2016-01-01

    We evaluated the accuracy of prostate magnetic resonance imaging- transrectal ultrasound targeted biopsy for Gleason score determination. We selected 125 consecutive patients treated with radical prostatectomy for a clinically localized prostate cancer diagnosed on magnetic resonance imaging-transrectal ultrasound targeted biopsy and/or systematic biopsy. On multiparametric magnetic resonance imaging each suspicious area was graded according to PI-RADS™ score. A correlation analysis between multiparametric magnetic resonance imaging and pathological findings was performed. Factors associated with determining the accuracy of Gleason score on targeted biopsy were statistically assessed. Pathological analysis of radical prostatectomy specimens detected 230 tumor foci. Multiparametric magnetic resonance imaging detected 151 suspicious areas. Of these areas targeted biopsy showed 126 cancer foci in 115 patients, and detected the index lesion in all of them. The primary Gleason grade, secondary Gleason grade and Gleason score of the 126 individual tumors were determined accurately in 114 (90%), 75 (59%) and 85 (67%) cases, respectively. Maximal Gleason score was determined accurately in 80 (70%) patients. Gleason score determination accuracy on targeted biopsy was significantly higher for low Gleason and high PI-RADS score tumors. Magnetic resonance imaging-transrectal ultrasound targeted biopsy allowed for an accurate estimation of Gleason score in more than two-thirds of patients. Gleason score misclassification was mostly due to a lack of accuracy in the determination of the secondary Gleason grade. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Accuracy of genomic breeding values in multibreed beef cattle populations derived from deregressed breeding values and phenotypes.

    PubMed

    Weber, K L; Thallman, R M; Keele, J W; Snelling, W M; Bennett, G L; Smith, T P L; McDaneld, T G; Allan, M F; Van Eenennaam, A L; Kuehn, L A

    2012-12-01

    Genomic selection involves the assessment of genetic merit through prediction equations that allocate genetic variation with dense marker genotypes. It has the potential to provide accurate breeding values for selection candidates at an early age and facilitate selection for expensive or difficult to measure traits. Accurate across-breed prediction would allow genomic selection to be applied on a larger scale in the beef industry, but the limited availability of large populations for the development of prediction equations has delayed researchers from providing genomic predictions that are accurate across multiple beef breeds. In this study, the accuracy of genomic predictions for 6 growth and carcass traits were derived and evaluated using 2 multibreed beef cattle populations: 3,358 crossbred cattle of the U.S. Meat Animal Research Center Germplasm Evaluation Program (USMARC_GPE) and 1,834 high accuracy bull sires of the 2,000 Bull Project (2000_BULL) representing influential breeds in the U.S. beef cattle industry. The 2000_BULL EPD were deregressed, scaled, and weighted to adjust for between- and within-breed heterogeneous variance before use in training and validation. Molecular breeding values (MBV) trained in each multibreed population and in Angus and Hereford purebred sires of 2000_BULL were derived using the GenSel BayesCπ function (Fernando and Garrick, 2009) and cross-validated. Less than 10% of large effect loci were shared between prediction equations trained on (USMARC_GPE) relative to 2000_BULL although locus effects were moderately to highly correlated for most traits and the traits themselves were highly correlated between populations. Prediction of MBV accuracy was low and variable between populations. For growth traits, MBV accounted for up to 18% of genetic variation in a pooled, multibreed analysis and up to 28% in single breeds. For carcass traits, MBV explained up to 8% of genetic variation in a pooled, multibreed analysis and up to 42% in single breeds. Prediction equations trained in multibreed populations were more accurate for Angus and Hereford subpopulations because those were the breeds most highly represented in the training populations. Accuracies were less for prediction equations trained in a single breed due to the smaller number of records derived from a single breed in the training populations.

  13. Polyatomic interferences on high precision uranium isotope ratio measurements by MC-ICP-MS: Applications to environmental sampling for nuclear safeguards

    DOE PAGES

    Pollington, Anthony D.; Kinman, William S.; Hanson, Susan K.; ...

    2015-09-04

    Modern mass spectrometry and separation techniques have made measurement of major uranium isotope ratios a routine task; however accurate and precise measurement of the minor uranium isotopes remains a challenge as sample size decreases. One particular challenge is the presence of isobaric interferences and their impact on the accuracy of minor isotope 234U and 236U measurements. Furthermore, we present techniques used for routine U isotopic analysis of environmental nuclear safeguards samples and evaluate polyatomic interferences that negatively impact accuracy as well as methods to mitigate their impacts.

  14. The FieldTrip-SimBio pipeline for EEG forward solutions.

    PubMed

    Vorwerk, Johannes; Oostenveld, Robert; Piastra, Maria Carla; Magyari, Lilla; Wolters, Carsten H

    2018-03-27

    Accurately solving the electroencephalography (EEG) forward problem is crucial for precise EEG source analysis. Previous studies have shown that the use of multicompartment head models in combination with the finite element method (FEM) can yield high accuracies both numerically and with regard to the geometrical approximation of the human head. However, the workload for the generation of multicompartment head models has often been too high and the use of publicly available FEM implementations too complicated for a wider application of FEM in research studies. In this paper, we present a MATLAB-based pipeline that aims to resolve this lack of easy-to-use integrated software solutions. The presented pipeline allows for the easy application of five-compartment head models with the FEM within the FieldTrip toolbox for EEG source analysis. The FEM from the SimBio toolbox, more specifically the St. Venant approach, was integrated into the FieldTrip toolbox. We give a short sketch of the implementation and its application, and we perform a source localization of somatosensory evoked potentials (SEPs) using this pipeline. We then evaluate the accuracy that can be achieved using the automatically generated five-compartment hexahedral head model [skin, skull, cerebrospinal fluid (CSF), gray matter, white matter] in comparison to a highly accurate tetrahedral head model that was generated on the basis of a semiautomatic segmentation with very careful and time-consuming manual corrections. The source analysis of the SEP data correctly localizes the P20 component and achieves a high goodness of fit. The subsequent comparison to the highly detailed tetrahedral head model shows that the automatically generated five-compartment head model performs about as well as a highly detailed four-compartment head model (skin, skull, CSF, brain). This is a significant improvement in comparison to a three-compartment head model, which is frequently used in praxis, since the importance of modeling the CSF compartment has been shown in a variety of studies. The presented pipeline facilitates the use of five-compartment head models with the FEM for EEG source analysis. The accuracy with which the EEG forward problem can thereby be solved is increased compared to the commonly used three-compartment head models, and more reliable EEG source reconstruction results can be obtained.

  15. Diagnostic accuracy of level 3 portable sleep tests versus level 1 polysomnography for sleep-disordered breathing: a systematic review and meta-analysis

    PubMed Central

    El Shayeb, Mohamed; Topfer, Leigh-Ann; Stafinski, Tania; Pawluk, Lawrence; Menon, Devidas

    2014-01-01

    Background: Greater awareness of sleep-disordered breathing and rising obesity rates have fueled demand for sleep studies. Sleep testing using level 3 portable devices may expedite diagnosis and reduce the costs associated with level 1 in-laboratory polysomnography. We sought to assess the diagnostic accuracy of level 3 testing compared with level 1 testing and to identify the appropriate patient population for each test. Methods: We conducted a systematic review and meta-analysis of comparative studies of level 3 versus level 1 sleep tests in adults with suspected sleep-disordered breathing. We searched 3 research databases and grey literature sources for studies that reported on diagnostic accuracy parameters or disease management after diagnosis. Two reviewers screened the search results, selected potentially relevant studies and extracted data. We used a bivariate mixed-effects binary regression model to estimate summary diagnostic accuracy parameters. Results: We included 59 studies involving a total of 5026 evaluable patients (mostly patients suspected of having obstructive sleep apnea). Of these, 19 studies were included in the meta-analysis. The estimated area under the receiver operating characteristics curve was high, ranging between 0.85 and 0.99 across different levels of disease severity. Summary sensitivity ranged between 0.79 and 0.97, and summary specificity ranged between 0.60 and 0.93 across different apnea–hypopnea cut-offs. We saw no significant difference in the clinical management parameters between patients who underwent either test to receive their diagnosis. Interpretation: Level 3 portable devices showed good diagnostic performance compared with level 1 sleep tests in adult patients with a high pretest probability of moderate to severe obstructive sleep apnea and no unstable comorbidities. For patients suspected of having other types of sleep-disordered breathing or sleep disorders not related to breathing, level 1 testing remains the reference standard. PMID:24218531

  16. First-trimester ultrasound determination of chorionicity in twin gestations using the lambda sign: a systematic review and meta-analysis.

    PubMed

    Maruotti, G M; Saccone, G; Morlando, M; Martinelli, P

    2016-07-01

    To evaluate the accuracy of first-trimester sonographic determination of chorionicity in twin gestations using the lambda sign. Electronic databases (MEDLINE, PROSPERO, Scopus, ClinicalTrials.gov, EMBASE, Sciencedirect) were searched from their inception until April 2016. We included only study assessing the accuracy lambda sign in prediction of monochorionicity in the first trimester. Forest plots for pooled sensitivity and specificity with 95% confidence intervals (CI) were generated. In addition, symmetric summary receiver-operating characteristic curves were plotted. The area under the curve (AUC) was also computed to evaluate the overall accuracy of the diagnostic test. Nine studies, including 2292 twins, were analysed. In all of these studies, identification of the lambda sign was used to diagnose chorionicity on real-time B-mode imaging. Twins were classified as monochorionic if there was a single placental mass in the absence of the lambda sign, and dichorionic if there was a single placental mass but the lambda sign was present or the placentas were not adjacent to each other. In all nine studies, placental histology or discordant fetal sex were used to confirm chorionicity. Pooled results from the meta-analysis showed that sensitivity of the presence of the lambda sign in the prediction of dichorionicity was 99% (95% CI 98-100%), and specificity was 95% (95% CI 92-97%). Pooled sensitivity of the absence of the lambda sign in the prediction of monochorionicity was 96% (95% CI 92-98%) and pooled specificity was 99% (95% CI 98-99%). The AUC for diagnostic accuracy was 0.99, and suggested very high diagnostic accuracy. The lambda sign predicts chorionicity with a high degree of accuracy before 14 weeks of gestation. Presence of the lambda sign indicates dichorionicity, and absence of the lambda sign indicates monochorionicity. All hospitals should encourage departments providing ultrasound services to determine chorionicity when examining women with twin pregnancies in the first trimester. As determination of chorionicity is most accurate before 14 weeks when the amnion and chorion have not yet fused, the first-trimester scan in twin pregnancy is paramount. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method

    NASA Astrophysics Data System (ADS)

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13C NMR spectrometry (irm-13C NMR) provides the complete 13C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13C natural abundance values (50‰), irm-13C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13C NMR. Until now, the conventional strategy to determine the position-specific abundance xi relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1H NMR pulse sequence (named DWET) with a 13C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T1, which forms a serious limitation for irm-13C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T1 variations. Their performance is evaluated on the determination of the 13C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm-13C NMR since it is now possible to perform isotopic analysis with high relaxing agent concentrations, leading to a strong reduction of the overall experiment time.

  18. Optimized hyperspectral band selection using hybrid genetic algorithm and gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie

    2015-12-01

    The serious information redundancy in hyperspectral images (HIs) cannot contribute to the data analysis accuracy, instead it require expensive computational resources. Consequently, to identify the most useful and valuable information from the HIs, thereby improve the accuracy of data analysis, this paper proposed a novel hyperspectral band selection method using the hybrid genetic algorithm and gravitational search algorithm (GA-GSA). In the proposed method, the GA-GSA is mapped to the binary space at first. Then, the accuracy of the support vector machine (SVM) classifier and the number of selected spectral bands are utilized to measure the discriminative capability of the band subset. Finally, the band subset with the smallest number of spectral bands as well as covers the most useful and valuable information is obtained. To verify the effectiveness of the proposed method, studies conducted on an AVIRIS image against two recently proposed state-of-the-art GSA variants are presented. The experimental results revealed the superiority of the proposed method and indicated that the method can indeed considerably reduce data storage costs and efficiently identify the band subset with stable and high classification precision.

  19. Feeling Validated Versus Being Correct:A Meta-Analysis of Selective Exposure to Information

    PubMed Central

    Hart, William; Albarracín, Dolores; Eagly, Alice H.; Brechan, Inge; Lindberg, Matthew J.; Merrill, Lisa

    2013-01-01

    A meta-analysis assessed whether exposure to information is guided by defense or accuracy motives. The studies examined information preferences in relation to attitudes, beliefs, and behaviors in situations that provided choices between congenial information, which supported participants' pre-existing attitudes, beliefs, or behaviors, and uncongenial information, which challenged these tendencies. Analyses indicated a moderate preference for congenial over uncongenial information (d. = 0.36). As predicted, this congeniality bias was moderated by variables that affect the strength of participants' defense motivation and accuracy motivation. In support of the importance of defense motivation, the congeniality bias was weaker when participants' attitudes, beliefs, or behaviors were supported prior to information selection, when participants' attitudes, beliefs, or behaviors were not relevant to their values or not held with conviction, when the available information was low in quality, when participants' closed-mindedness was low, and when their confidence in the attitude, belief, or behavior was high. In support of the importance of accuracy motivation, an uncongeniality bias emerged when uncongenial information was relevant to accomplishing a current goal. PMID:19586162

  20. Feeling validated versus being correct: a meta-analysis of selective exposure to information.

    PubMed

    Hart, William; Albarracín, Dolores; Eagly, Alice H; Brechan, Inge; Lindberg, Matthew J; Merrill, Lisa

    2009-07-01

    A meta-analysis assessed whether exposure to information is guided by defense or accuracy motives. The studies examined information preferences in relation to attitudes, beliefs, and behaviors in situations that provided choices between congenial information, which supported participants' pre-existing attitudes, beliefs, or behaviors, and uncongenial information, which challenged these tendencies. Analyses indicated a moderate preference for congenial over uncongenial information (d=0.36). As predicted, this congeniality bias was moderated by variables that affect the strength of participants' defense motivation and accuracy motivation. In support of the importance of defense motivation, the congeniality bias was weaker when participants' attitudes, beliefs, or behaviors were supported prior to information selection; when participants' attitudes, beliefs, or behaviors were not relevant to their values or not held with conviction; when the available information was low in quality; when participants' closed-mindedness was low; and when their confidence in the attitude, belief, or behavior was high. In support of the importance of accuracy motivation, an uncongeniality bias emerged when uncongenial information was relevant to accomplishing a current goal. Copyright (c) 2009 APA, all rights reserved.

  1. Prediction of Spirometric Forced Expiratory Volume (FEV1) Data Using Support Vector Regression

    NASA Astrophysics Data System (ADS)

    Kavitha, A.; Sujatha, C. M.; Ramakrishnan, S.

    2010-01-01

    In this work, prediction of forced expiratory volume in 1 second (FEV1) in pulmonary function test is carried out using the spirometer and support vector regression analysis. Pulmonary function data are measured with flow volume spirometer from volunteers (N=175) using a standard data acquisition protocol. The acquired data are then used to predict FEV1. Support vector machines with polynomial kernel function with four different orders were employed to predict the values of FEV1. The performance is evaluated by computing the average prediction accuracy for normal and abnormal cases. Results show that support vector machines are capable of predicting FEV1 in both normal and abnormal cases and the average prediction accuracy for normal subjects was higher than that of abnormal subjects. Accuracy in prediction was found to be high for a regularization constant of C=10. Since FEV1 is the most significant parameter in the analysis of spirometric data, it appears that this method of assessment is useful in diagnosing the pulmonary abnormalities with incomplete data and data with poor recording.

  2. Automatic localization of cerebral cortical malformations using fractal analysis.

    PubMed

    De Luca, A; Arrigoni, F; Romaniello, R; Triulzi, F M; Peruzzo, D; Bertoldo, A

    2016-08-21

    Malformations of cortical development (MCDs) encompass a variety of brain disorders affecting the normal development and organization of the brain cortex. The relatively low incidence and the extreme heterogeneity of these disorders hamper the application of classical group level approaches for the detection of lesions. Here, we present a geometrical descriptor for a voxel level analysis based on fractal geometry, then define two similarity measures to detect the lesions at single subject level. The pipeline was applied to 15 normal children and nine pediatric patients affected by MCDs following two criteria, maximum accuracy (WACC) and minimization of false positives (FPR), and proved that our lesion detection algorithm is able to detect and locate abnormalities of the brain cortex with high specificity (WACC  =  85%, FPR  =  96%), sensitivity (WACC  =  83%, FPR  =  63%) and accuracy (WACC  =  85%, FPR  =  90%). The combination of global and local features proves to be effective, making the algorithm suitable for the detection of both focal and diffused malformations. Compared to other existing algorithms, this method shows higher accuracy and sensitivity.

  3. Automatic localization of cerebral cortical malformations using fractal analysis

    NASA Astrophysics Data System (ADS)

    De Luca, A.; Arrigoni, F.; Romaniello, R.; Triulzi, F. M.; Peruzzo, D.; Bertoldo, A.

    2016-08-01

    Malformations of cortical development (MCDs) encompass a variety of brain disorders affecting the normal development and organization of the brain cortex. The relatively low incidence and the extreme heterogeneity of these disorders hamper the application of classical group level approaches for the detection of lesions. Here, we present a geometrical descriptor for a voxel level analysis based on fractal geometry, then define two similarity measures to detect the lesions at single subject level. The pipeline was applied to 15 normal children and nine pediatric patients affected by MCDs following two criteria, maximum accuracy (WACC) and minimization of false positives (FPR), and proved that our lesion detection algorithm is able to detect and locate abnormalities of the brain cortex with high specificity (WACC  =  85%, FPR  =  96%), sensitivity (WACC  =  83%, FPR  =  63%) and accuracy (WACC  =  85%, FPR  =  90%). The combination of global and local features proves to be effective, making the algorithm suitable for the detection of both focal and diffused malformations. Compared to other existing algorithms, this method shows higher accuracy and sensitivity.

  4. Brain-Computer Interface Based on Generation of Visual Images

    PubMed Central

    Bobrov, Pavel; Frolov, Alexander; Cantor, Charles; Fedulova, Irina; Bakhnyan, Mikhail; Zhavoronkov, Alexander

    2011-01-01

    This paper examines the task of recognizing EEG patterns that correspond to performing three mental tasks: relaxation and imagining of two types of pictures: faces and houses. The experiments were performed using two EEG headsets: BrainProducts ActiCap and Emotiv EPOC. The Emotiv headset becomes widely used in consumer BCI application allowing for conducting large-scale EEG experiments in the future. Since classification accuracy significantly exceeded the level of random classification during the first three days of the experiment with EPOC headset, a control experiment was performed on the fourth day using ActiCap. The control experiment has shown that utilization of high-quality research equipment can enhance classification accuracy (up to 68% in some subjects) and that the accuracy is independent of the presence of EEG artifacts related to blinking and eye movement. This study also shows that computationally-inexpensive Bayesian classifier based on covariance matrix analysis yields similar classification accuracy in this problem as a more sophisticated Multi-class Common Spatial Patterns (MCSP) classifier. PMID:21695206

  5. An Improved Version of the NASA-Lockheed Multielement Airfoil Analysis Computer Program

    NASA Technical Reports Server (NTRS)

    Brune, G. W.; Manke, J. W.

    1978-01-01

    An improved version of the NASA-Lockheed computer program for the analysis of multielement airfoils is described. The predictions of the program are evaluated by comparison with recent experimental high lift data including lift, pitching moment, profile drag, and detailed distributions of surface pressures and boundary layer parameters. The results of the evaluation show that the contract objectives of improving program reliability and accuracy have been met.

  6. The Accuracy Analysis of Lidar-Derived Elevation Data for the Geometric Description of Cross-Sections of a Riverbed

    NASA Astrophysics Data System (ADS)

    Caroti, G.; Camiciottoli, F.; Piemonte, A.; Redini, M.

    2013-01-01

    The work stems from a joint study between the Laboratory ASTRO (Department of Civil and Industrial Engineering - University of Pisa), the municipality of Pisa and the province of Arezzo on the advanced analysis and use of digital elevation data. Besides, it is framed in the research carried on by ASTRO about the definition of the priority informative layers for emergency management in the territory, as of PRIN 2008. Specifically, this work is in continuity with other already published results concerning rigorous accuracy checks of LIDAR data and testing of the procedures to transform raw data in formats consistent with CTR and survey data. The analysis of sections of riverbed, derived from interpolation by DTMs featuring different grid density with those detected topographically, is presented. Validation by differential GNSS methodology of the DTMs used showed a good overall quality of the model for open, low-sloping areas. Analysis of the sections, however, has shown that the representation of small or high-sloping (ditches, embankments) morphological elements requires a high point density such as in laser scanner surveys, and a small mesh size of the grid. In addition, the correct representation of riverside structures is often hindered by the presence of thick vegetation and poor raw LIDAR data filtering.

  7. Implementing Photodissociation in an Orbitrap Mass Spectrometer

    PubMed Central

    Vasicek, Lisa A.; Ledvina, Aaron R.; Shaw, Jared; Griep-Raming, Jens; Westphall, Michael S.; Coon, Joshua J.; Brodbelt, Jennifer S.

    2011-01-01

    We modified a dual pressure linear ion trap Orbitrap to permit infrared multiphoton dissociation (IRMPD) in the higher energy collisional dissociation (HCD) cell for high resolution analysis. A number of parameters, including the pressures of the C-trap and HCD cell, the radio frequency (rf) amplitude applied to the C-trap, and the HCD DC offset, were evaluated to optimize IRMPD efficiency and maintain a high signal-to-noise ratio. IRMPD was utilized for characterization of phosphopeptides, supercharged peptides, and N-terminal modified peptides, as well as for top-down protein analysis. The high resolution and high mass accuracy capabilities of the Orbitrap analyzer facilitated confident assignment of product ions arising from IRMPD. PMID:21953052

  8. On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP.

    PubMed

    Winkler, Irene; Debener, Stefan; Müller, Klaus-Robert; Tangermann, Michael

    2015-01-01

    Standard artifact removal methods for electroencephalographic (EEG) signals are either based on Independent Component Analysis (ICA) or they regress out ocular activity measured at electrooculogram (EOG) channels. Successful ICA-based artifact reduction relies on suitable pre-processing. Here we systematically evaluate the effects of high-pass filtering at different frequencies. Offline analyses were based on event-related potential data from 21 participants performing a standard auditory oddball task and an automatic artifactual component classifier method (MARA). As a pre-processing step for ICA, high-pass filtering between 1-2 Hz consistently produced good results in terms of signal-to-noise ratio (SNR), single-trial classification accuracy and the percentage of `near-dipolar' ICA components. Relative to no artifact reduction, ICA-based artifact removal significantly improved SNR and classification accuracy. This was not the case for a regression-based approach to remove EOG artifacts.

  9. When the face fits: recognition of celebrities from matching and mismatching faces and voices.

    PubMed

    Stevenage, Sarah V; Neil, Greg J; Hamlin, Iain

    2014-01-01

    The results of two experiments are presented in which participants engaged in a face-recognition or a voice-recognition task. The stimuli were face-voice pairs in which the face and voice were co-presented and were either "matched" (same person), "related" (two highly associated people), or "mismatched" (two unrelated people). Analysis in both experiments confirmed that accuracy and confidence in face recognition was consistently high regardless of the identity of the accompanying voice. However accuracy of voice recognition was increasingly affected as the relationship between voice and accompanying face declined. Moreover, when considering self-reported confidence in voice recognition, confidence remained high for correct responses despite the proportion of these responses declining across conditions. These results converged with existing evidence indicating the vulnerability of voice recognition as a relatively weak signaller of identity, and results are discussed in the context of a person-recognition framework.

  10. High-resolution eye tracking using V1 neuron activity

    PubMed Central

    McFarland, James M.; Bondy, Adrian G.; Cumming, Bruce G.; Butts, Daniel A.

    2014-01-01

    Studies of high-acuity visual cortical processing have been limited by the inability to track eye position with sufficient accuracy to precisely reconstruct the visual stimulus on the retina. As a result, studies on primary visual cortex (V1) have been performed almost entirely on neurons outside the high-resolution central portion of the visual field (the fovea). Here we describe a procedure for inferring eye position using multi-electrode array recordings from V1 coupled with nonlinear stimulus processing models. We show that this method can be used to infer eye position with one arc-minute accuracy – significantly better than conventional techniques. This allows for analysis of foveal stimulus processing, and provides a means to correct for eye-movement induced biases present even outside the fovea. This method could thus reveal critical insights into the role of eye movements in cortical coding, as well as their contribution to measures of cortical variability. PMID:25197783

  11. Alaska national hydrography dataset positional accuracy assessment study

    USGS Publications Warehouse

    Arundel, Samantha; Yamamoto, Kristina H.; Constance, Eric; Mantey, Kim; Vinyard-Houx, Jeremy

    2013-01-01

    Initial visual assessments Wide range in the quality of fit between features in NHD and these new image sources. No statistical analysis has been performed to actually quantify accuracy Determining absolute accuracy is cost prohibitive (must collect independent, well defined test points) Quantitative analysis of relative positional error is feasible.

  12. EpiProfile Quantifies Histone Peptides With Modifications by Extracting Retention Time and Intensity in High-resolution Mass Spectra*

    PubMed Central

    Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C.; Cao, Xing-Jun; Bhanu, Natarajan V.; Wang, Xiaoshi; Sidoli, Simone; Liu, Shichong; Garcia, Benjamin A.

    2015-01-01

    Histone post-translational modifications contribute to chromatin function through their chemical properties which influence chromatin structure and their ability to recruit chromatin interacting proteins. Nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry (nanoLC-MS/MS) has emerged as the most suitable technology for global histone modification analysis because of the high sensitivity and the high mass accuracy of this approach that provides confident identification. However, analysis of histones with this method is even more challenging because of the large number and variety of isobaric histone peptides and the high dynamic range of histone peptide abundances. Here, we introduce EpiProfile, a software tool that discriminates isobaric histone peptides using the distinguishing fragment ions in their tandem mass spectra and extracts the chromatographic area under the curve using previous knowledge about peptide retention time. The accuracy of EpiProfile was evaluated by analysis of mixtures containing different ratios of synthetic histone peptides. In addition to label-free quantification of histone peptides, EpiProfile is flexible and can quantify different types of isotopically labeled histone peptides. EpiProfile is unique in generating layouts (i.e. relative retention time) of histone peptides when compared with manual quantification of the data and other programs (such as Skyline), filling the need of an automatic and freely available tool to quantify labeled and non-labeled modified histone peptides. In summary, EpiProfile is a valuable nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry-based quantification tool for histone peptides, which can also be adapted to analyze nonhistone protein samples. PMID:25805797

  13. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    PubMed Central

    Zimmer, Jennifer S.D.; Monroe, Matthew E.; Qian, Wei-Jun; Smith, Richard D.

    2007-01-01

    Proteomics has recently demonstrated utility in understanding cellular processes on the molecular level as a component of systems biology approaches and for identifying potential biomarkers of various disease states. The large amount of data generated by utilizing high efficiency (e.g., chromatographic) separations coupled to high mass accuracy mass spectrometry for high-throughput proteomics analyses presents challenges related to data processing, analysis, and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics approaches and the accompanying data processing tools that have been developed to display and interpret the large volumes of data being produced. PMID:16429408

  14. Recognition of skin melanoma through dermoscopic image analysis

    NASA Astrophysics Data System (ADS)

    Gómez, Catalina; Herrera, Diana Sofia

    2017-11-01

    Melanoma skin cancer diagnosis can be challenging due to the similarities of the early stage symptoms with regular moles. Standardized visual parameters can be determined and characterized to suspect a melanoma cancer type. The automation of this diagnosis could have an impact in the medical field by providing a tool to support the specialists with high accuracy. The objective of this study is to develop an algorithm trained to distinguish a highly probable melanoma from a non-dangerous mole by the segmentation and classification of dermoscopic mole images. We evaluate our approach on the dataset provided by the International Skin Imaging Collaboration used in the International Challenge Skin Lesion Analysis Towards Melanoma Detection. For the segmentation task, we apply a preprocessing algorithm and use Otsu's thresholding in the best performing color space; the average Jaccard Index in the test dataset is 70.05%. For the subsequent classification stage, we use joint histograms in the YCbCr color space, a RBF Gaussian SVM trained with five features concerning circularity and irregularity of the segmented lesion, and the Gray Level Co-occurrence matrix features for texture analysis. These features are combined to obtain an Average Classification Accuracy of 63.3% in the test dataset.

  15. Fast and Accurate Simulation of the Cray XMT Multithreaded Supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, Oreste; Tumeo, Antonino; Secchi, Simone

    Irregular applications, such as data mining and analysis or graph-based computations, show unpredictable memory/network access patterns and control structures. Highly multithreaded architectures with large processor counts, like the Cray MTA-1, MTA-2 and XMT, appear to address their requirements better than commodity clusters. However, the research on highly multithreaded systems is currently limited by the lack of adequate architectural simulation infrastructures due to issues such as size of the machines, memory footprint, simulation speed, accuracy and customization. At the same time, Shared-memory MultiProcessors (SMPs) with multi-core processors have become an attractive platform to simulate large scale machines. In this paper, wemore » introduce a cycle-level simulator of the highly multithreaded Cray XMT supercomputer. The simulator runs unmodified XMT applications. We discuss how we tackled the challenges posed by its development, detailing the techniques introduced to make the simulation as fast as possible while maintaining a high accuracy. By mapping XMT processors (ThreadStorm with 128 hardware threads) to host computing cores, the simulation speed remains constant as the number of simulated processors increases, up to the number of available host cores. The simulator supports zero-overhead switching among different accuracy levels at run-time and includes a network model that takes into account contention. On a modern 48-core SMP host, our infrastructure simulates a large set of irregular applications 500 to 2000 times slower than real time when compared to a 128-processor XMT, while remaining within 10\\% of accuracy. Emulation is only from 25 to 200 times slower than real time.« less

  16. Stroke maximizing and high efficient hysteresis hybrid modeling for a rhombic piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Shao, Shubao; Xu, Minglong; Zhang, Shuwen; Xie, Shilin

    2016-06-01

    Rhombic piezoelectric actuator (RPA), which employs a rhombic mechanism to amplify the small stroke of PZT stack, has been widely used in many micro-positioning machineries due to its remarkable properties such as high displacement resolution and compact structure. In order to achieve large actuation range along with high accuracy, the stroke maximizing and compensation for the hysteresis are two concerns in the use of RPA. However, existing maximization methods based on theoretical model can hardly accurately predict the maximum stroke of RPA because of approximation errors that are caused by the simplifications that must be made in the analysis. Moreover, despite the high hysteresis modeling accuracy of Preisach model, its modeling procedure is trivial and time-consuming since a large set of experimental data is required to determine the model parameters. In our research, to improve the accuracy of theoretical model of RPA, the approximation theory is employed in which the approximation errors can be compensated by two dimensionless coefficients. To simplify the hysteresis modeling procedure, a hybrid modeling method is proposed in which the parameters of Preisach model can be identified from only a small set of experimental data by using the combination of discrete Preisach model (DPM) with particle swarm optimization (PSO) algorithm. The proposed novel hybrid modeling method can not only model the hysteresis with considerable accuracy but also significantly simplified the modeling procedure. Finally, the inversion of hysteresis is introduced to compensate for the hysteresis non-linearity of RPA, and consequently a pseudo-linear system can be obtained.

  17. Intelligence and Interpersonal Sensitivity: A Meta-Analysis

    ERIC Educational Resources Information Center

    Murphy, Nora A.; Hall, Judith A.

    2011-01-01

    A meta-analytic review investigated the association between general intelligence and interpersonal sensitivity. The review involved 38 independent samples with 2988 total participants. There was a highly significant small-to-medium effect for intelligence measures to be correlated with decoding accuracy (r=0.19, p less than 0.001). Significant…

  18. Semi Inextensional Post Buckling Analysis of Annular Plates,

    DTIC Science & Technology

    1981-09-01

    too. These methods have their advantages in accuracy but suffer from the drawback of being difficult to use for overall design data or for the...The fact that the high postbuckling curve of the plate approaches a straight line was observed eperimentally [81, [10], where the use of the two

  19. Hospital Stay as a Proxy Indicator for Severe Injury in Earthquakes: A Retrospective Analysis

    PubMed Central

    Zhao, Lu-Ping; Gerdin, Martin; Westman, Lina; Rodriguez-Llanes, Jose Manuel; Wu, Qi; van den Oever, Barbara; Pan, Liang; Albela, Manuel; Chen, Gao; Zhang, De-Sheng; Guha-Sapir, Debarati; von Schreeb, Johan

    2013-01-01

    Introduction Earthquakes are the most violent type of natural disasters and injuries are the dominant medical problem in the early phases after earthquakes. However, likely because of poor data availability, high-quality research on injuries after earthquakes is lacking. Length of hospital stay (LOS) has been validated as a proxy indicator for injury severity in high-income settings and could potentially be used in retrospective research of injuries after earthquakes. In this study, we assessed LOS as an adequate proxy indicator for severe injury in trauma survivors of an earthquake. Methods A retrospective analysis was conducted using a database of 1,878 injured patients from the 2008 Wenchuan earthquake. Our primary outcome was severe injury, defined as a composite measure of serious injury or resource use. Secondary outcomes were serious injury and resource use, analysed separately. Non-parametric receiver operating characteristics (ROC) and area under the curve (AUC) analysis was used to test the discriminatory accuracy of LOS when used to identify severe injury. An 0.7

  20. Biomarkers of acute appendicitis: systematic review and cost-benefit trade-off analysis.

    PubMed

    Acharya, Amish; Markar, Sheraz R; Ni, Melody; Hanna, George B

    2017-03-01

    Acute appendicitis is the most common surgical emergency and can represent a challenging diagnosis, with a negative appendectomy rate as high as 20 %. This review aimed to evaluate the clinical utility of individual biomarkers in the diagnosis of appendicitis and appraise the quality of these studies. A systematic review of the literature between January 2000 and September 2015 using of PubMed, OvidMedline, EMBASE and Google Scholar was conducted. Studies in which the diagnostic accuracy, statistical heterogeneity and predictive ability for severity of several biomarkers could be elicited were included. Information regarding costs and process times was retrieved from the regional laboratory. European surgeons blinded to these reviews were independently asked to rank which characteristics of biomarkers were most important in acute appendicitis to inform a cost-benefit trade-off. Sensitivity testing and the QUADAS-2 tool were used to assess the robustness of the analysis and study quality, respectively. Sixty-two studies met the inclusion criteria and were assessed. Traditional biomarkers (such as white cell count) were found to have a moderate diagnostic accuracy (0.75) but lower costs in the diagnosis of acute appendicitis. Conversely, novel markers (pro-calcitonin, IL 6 and urinary 5-HIAA) were found to have high process-related costs including analytical times, but improved diagnostic accuracy. QUADAS-2 analysis revealed significant potential biases in the literature. When assessing biomarkers, an appreciation of the trade-offs between the costs and benefits of individual biomarkers is needed. Further studies should seek to investigate new biomarkers and address concerns over bias, in order to improve the diagnosis of acute appendicitis.

  1. Population differences in the postcrania of modern South Africans and the implications for ancestry estimation.

    PubMed

    Liebenberg, Leandi; L'Abbé, Ericka N; Stull, Kyra E

    2015-12-01

    The cranium is widely recognized as the most important skeletal element to use when evaluating population differences and estimating ancestry. However, the cranium is not always intact or available for analysis, which emphasizes the need for postcranial alternatives. The purpose of this study was to quantify postcraniometric differences among South Africans that can be used to estimate ancestry. Thirty-nine standard measurements from 11 postcranial bones were collected from 360 modern black, white and coloured South Africans; the sex and ancestry distribution were equal. Group differences were explored with analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD) test. Linear and flexible discriminant analysis (LDA and FDA, respectively) were conducted with bone models as well as numerous multivariate subsets to identify the model and method that yielded the highest correct classifications. Leave-one-out (LDA) and k-fold (k=10; FDA) cross-validation with equal priors were used for all models. ANOVA and Tukey's HSD results reveal statistically significant differences between at least two of the three groups for the majority of the variables, with varying degrees of group overlap. Bone models, which consisted of all measurements per bone, resulted in low accuracies that ranged from 46% to 63% (LDA) and 41% to 66% (FDA). In contrast, the multivariate subsets, which consisted of different variable combinations from all elements, achieved accuracies as high as 85% (LDA) and 87% (FDA). Thus, when using a multivariate approach, the postcranial skeleton can distinguish among three modern South African groups with high accuracy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Real-time In vivo Diagnosis of Nasopharyngeal Carcinoma Using Rapid Fiber-Optic Raman Spectroscopy.

    PubMed

    Lin, Kan; Zheng, Wei; Lim, Chwee Ming; Huang, Zhiwei

    2017-01-01

    We report the utility of a simultaneous fingerprint (FP) (i.e., 800-1800 cm -1 ) and high-wavenumber (HW) (i.e., 2800-3600 cm -1 ) fiber-optic Raman spectroscopy developed for real-time in vivo diagnosis of nasopharyngeal carcinoma (NPC) at endoscopy. A total of 3731 high-quality in vivo FP/HW Raman spectra (normal=1765; cancer=1966) were acquired in real-time from 204 tissue sites (normal=95; cancer=109) of 95 subjects (normal=57; cancer=38) undergoing endoscopic examination. FP/HW Raman spectra differ significantly between normal and cancerous nasopharyngeal tissues that could be attributed to changes of proteins, lipids, nucleic acids, and the bound water content in NPC. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with leave-one subject-out, cross-validation (LOO-CV) were implemented to develop robust Raman diagnostic models. The simultaneous FP/HW Raman spectroscopy technique together with PCA-LDA and LOO-CV modeling provides a diagnostic accuracy of 93.1% (sensitivity of 93.6%; specificity of 92.6%) for nasopharyngeal cancer identification, which is superior to using either FP (accuracy of 89.2%; sensitivity of 89.9%; specificity of 88.4%) or HW (accuracy of 89.7%; sensitivity of 89.0%; specificity of 90.5%) Raman technique alone. Further receiver operating characteristic (ROC) analysis reconfirms the best performance of the simultaneous FP/HW Raman technique for in vivo diagnosis of NPC. This work demonstrates for the first time that simultaneous FP/HW fiber-optic Raman spectroscopy technique has great promise for enhancing real-time in vivo cancer diagnosis in the nasopharynx during endoscopic examination.

  3. Effect of hormonal variation on in vivo high wavenumber Raman spectra improves cervical precancer detection

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J. H.; Ilancheran, A.; Huang, Zhiwei

    2012-03-01

    Raman spectroscopy is a unique analytical probe for molecular vibration and is capable of providing specific spectroscopic fingerprints of molecular compositions and structures of biological tissues. The aim of this study is to improve the classification accuracy of cervical precancer by characterizing the variations in the normal high wavenumber (HW - 2800-3700cm-1) Raman spectra arising from the menopausal status of the cervix. A rapidacquisition near-infrared (NIR) Raman spectroscopic system was used for in vivo tissue Raman measurements at 785 nm excitation. Individual HW Raman spectrum was measured with a 5s exposure time from both normal and precancer tissue sites of 15 patients recruited. The acquired Raman spectra were stratified based on the menopausal status of the cervix before the data analysis. Significant differences were noticed in Raman intensities of prominent band at 2924 cm-1 (CH3 stretching of proteins) and the broad water Raman band (in the 3100-3700 cm-1 range) with a peak at 3390 cm-1 in normal and dysplasia cervical tissue sites. Multivariate diagnostic decision algorithm based on principal component analysis (PCA) and linear discriminant analysis (LDA) was utilized to successfully differentiate the normal and precancer cervical tissue sites. By considering the variations in the Raman spectra of normal cervix due to the hormonal or menopausal status of women, the diagnostic accuracy was improved from 71 to 91%. By incorporating these variations prior to tissue classification, we can significantly improve the accuracy of cervical precancer detection using HW Raman spectroscopy.

  4. Hospital stay as a proxy indicator for severe injury in earthquakes: a retrospective analysis.

    PubMed

    Zhao, Lu-Ping; Gerdin, Martin; Westman, Lina; Rodriguez-Llanes, Jose Manuel; Wu, Qi; van den Oever, Barbara; Pan, Liang; Albela, Manuel; Chen, Gao; Zhang, De-Sheng; Guha-Sapir, Debarati; von Schreeb, Johan

    2013-01-01

    Earthquakes are the most violent type of natural disasters and injuries are the dominant medical problem in the early phases after earthquakes. However, likely because of poor data availability, high-quality research on injuries after earthquakes is lacking. Length of hospital stay (LOS) has been validated as a proxy indicator for injury severity in high-income settings and could potentially be used in retrospective research of injuries after earthquakes. In this study, we assessed LOS as an adequate proxy indicator for severe injury in trauma survivors of an earthquake. A retrospective analysis was conducted using a database of 1,878 injured patients from the 2008 Wenchuan earthquake. Our primary outcome was severe injury, defined as a composite measure of serious injury or resource use. Secondary outcomes were serious injury and resource use, analysed separately. Non-parametric receiver operating characteristics (ROC) and area under the curve (AUC) analysis was used to test the discriminatory accuracy of LOS when used to identify severe injury. An 0.7

  5. Myocardial perfusion magnetic resonance imaging using sliding-window conjugate-gradient highly constrained back-projection reconstruction for detection of coronary artery disease.

    PubMed

    Ma, Heng; Yang, Jun; Liu, Jing; Ge, Lan; An, Jing; Tang, Qing; Li, Han; Zhang, Yu; Chen, David; Wang, Yong; Liu, Jiabin; Liang, Zhigang; Lin, Kai; Jin, Lixin; Bi, Xiaoming; Li, Kuncheng; Li, Debiao

    2012-04-15

    Myocardial perfusion magnetic resonance imaging (MRI) with sliding-window conjugate-gradient highly constrained back-projection reconstruction (SW-CG-HYPR) allows whole left ventricular coverage, improved temporal and spatial resolution and signal/noise ratio, and reduced cardiac motion-related image artifacts. The accuracy of this technique for detecting coronary artery disease (CAD) has not been determined in a large number of patients. We prospectively evaluated the diagnostic performance of myocardial perfusion MRI with SW-CG-HYPR in patients with suspected CAD. A total of 50 consecutive patients who were scheduled for coronary angiography with suspected CAD underwent myocardial perfusion MRI with SW-CG-HYPR at 3.0 T. The perfusion defects were interpreted qualitatively by 2 blinded observers and were correlated with x-ray angiographic stenoses ≥50%. The prevalence of CAD was 56%. In the per-patient analysis, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of SW-CG-HYPR was 96% (95% confidence interval 82% to 100%), 82% (95% confidence interval 60% to 95%), 87% (95% confidence interval 70% to 96%), 95% (95% confidence interval 74% to100%), and 90% (95% confidence interval 82% to 98%), respectively. In the per-vessel analysis, the corresponding values were 98% (95% confidence interval 91% to 100%), 89% (95% confidence interval 80% to 94%), 86% (95% confidence interval 76% to 93%), 99% (95% confidence interval 93% to 100%), and 93% (95% confidence interval 89% to 97%), respectively. In conclusion, myocardial perfusion MRI using SW-CG-HYPR allows whole left ventricular coverage and high resolution and has high diagnostic accuracy in patients with suspected CAD. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Multivariate pattern analysis of obsessive-compulsive disorder using structural neuroanatomy.

    PubMed

    Hu, Xinyu; Liu, Qi; Li, Bin; Tang, Wanjie; Sun, Huaiqiang; Li, Fei; Yang, Yanchun; Gong, Qiyong; Huang, Xiaoqi

    2016-02-01

    Magnetic resonance imaging (MRI) studies have revealed brain structural abnormalities in obsessive-compulsive disorder (OCD) patients, involving both gray matter (GM) and white matter (WM). However, the results of previous publications were based on average differences between groups, which limited their usages in clinical practice. Therefore, the aim of this study was to examine whether the application of multivariate pattern analysis (MVPA) to high-dimensional structural images would allow accurate discrimination between OCD patients and healthy control subjects (HCS). High-resolution T1-weighted images were acquired from 33 OCD patients and 33 demographically matched HCS in a 3.0 T scanner. Differences in GM and WM volume between OCD and HCS were examined using two types of well-established MVPA techniques: support vector machine (SVM) and Gaussian process classifier (GPC). We also drew a receiver operating characteristic (ROC) curve to evaluate the performance of each classifier. The classification accuracies for both classifiers using GM and WM anatomy were all above 75%. The highest classification accuracy (81.82%, P<0.001) was achieved with the SVM classifier using WM information. Regional brain anomalies with high discriminative power were based on three distributed networks including the fronto-striatal circuit, the temporo-parieto-occipital junction and the cerebellum. Our study illustrated that both GM and WM anatomical features may be useful in differentiating OCD patients from HCS. WM volume using the SVM approach showed the highest accuracy in our population for revealing group differences, which suggested its potential diagnostic role in detecting highly enriched OCD patients at the level of the individual. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  7. Quality Analysis of Chlorogenic Acid and Hyperoside in Crataegi fructus

    PubMed Central

    Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je

    2016-01-01

    Background: Crataegi fructus is a herbal medicine for strong stomach, sterilization, and alcohol detoxification. Chlorogenic acid and hyperoside are the major compounds in Crataegi fructus. Objective: In this study, we established novel high-performance liquid chromatography (HPLC)-diode array detection analysis method of chlorogenic acid and hyperoside for quality control of Crataegi fructus. Materials and Methods: HPLC analysis was achieved on a reverse-phase C18 column (5 μm, 4.6 mm × 250 mm) using water and acetonitrile as mobile phase with gradient system. The method was validated for linearity, precision, and accuracy. About 31 batches of Crataegi fructus samples collected from Korea and China were analyzed by using HPLC fingerprint of developed HPLC method. Then, the contents of chlorogenic acid and hyperoside were compared for quality evaluation of Crataegi fructus. Results: The results have shown that the average contents (w/w %) of chlorogenic acid and hyperoside in Crataegi fructus collected from Korea were 0.0438% and 0.0416%, respectively, and the average contents (w/w %) of 0.0399% and 0.0325%, respectively. Conclusion: In conclusion, established HPLC analysis method was stable and could provide efficient quality evaluation for monitoring of commercial Crataegi fructus. SUMMARY Quantitative analysis method of chlorogenic acid and hyperoside in Crataegi fructus is developed by high.performance liquid chromatography.(HPLC).diode array detectionEstablished HPLC analysis method is validated with linearity, precision, and accuracyThe developed method was successfully applied for quantitative analysis of Crataegi fructus sample collected from Korea and China. Abbreviations used: HPLC: High-performance liquid chromatography, GC: Gas chromatography, MS: Mass spectrometer, LOD: Limits of detection, LOQ: Limits of quantification, RSD: Relative standard deviation, RRT: Relative retention time, RPA: Relation peak area. PMID:27076744

  8. Serum Immunoglobulin G4 in Discriminating Autoimmune Pancreatitis From Pancreatic Cancer: A Diagnostic Meta-analysis.

    PubMed

    Dai, Cong; Cao, Qin; Jiang, Min; Sun, Ming-Jun

    2018-03-01

    Differentiation between autoimmune pancreatitis (AIP) and pancreatic cancer (PC) is a clinical challenge. Emerging published data on the accuracy of serum immunoglobulin G4 (IgG4) for the differential diagnosis between AIP and PC are inconsistent. The objective of our study was to perform a meta-analysis evaluating the clinical utility of serum IgG4 in the differential diagnosis between AIP and PC. We performed a systematic literature search of multiple electronic databases. The methodological quality of each study was assessed according to the Quality Assessment of Diagnostic Accuracy Studies checklist. Random-effects model was used to summarize the diagnostic odds ratio and other measures of accuracy. Eleven studies comprising 523 AIP patients and 771 PC patients were included in the meta-analysis. The summary estimates for serum IgG4 in distinguishing AIP from PC were as follows: diagnostic odds ratio, 57.30 (95% confidence interval [CI], 23.17-141.67); sensitivity, 0.72 (95% CI, 0.68-0.76); specificity, 0.93 (95% CI, 0.91-0.94). The area under the curve of serum IgG4 in distinguishing AIP from PC was 0.9200. Our meta-analysis found that serum IgG4 has high specificity and relatively low sensitivity in the differential diagnosis between AIP and PC. Therefore, serum IgG4 is useful in distinguishing AIP from PC.

  9. Three-dimensional computer simulation of radiostereometric analysis (RSA) in distal radius fractures.

    PubMed

    Madanat, Rami; Moritz, Niko; Aro, Hannu T

    2007-01-01

    Physical phantom models have conventionally been used to determine the accuracy and precision of radiostereometric analysis (RSA) in various orthopaedic applications. Using a phantom model of a fracture of the distal radius it has previously been shown that RSA is a highly accurate and precise method for measuring both translation and rotation in three-dimensions (3-D). The main shortcoming of a physical phantom model is its inability to mimic complex 3-D motion. The goal of this study was to create a realistic computer model for preoperative planning of RSA studies and to test the accuracy of RSA in measuring complex movements in fractures of the distal radius using this new model. The 3-D computer model was created from a set of tomographic scans. The simulation of the radiographic imaging was performed using ray-tracing software (POV-Ray). RSA measurements were performed according to standard protocol. Using a two-part fracture model (AO/ASIF type A2), it was found that for simple movements in one axis, translations in the range of 25microm-2mm could be measured with an accuracy of +/-2microm. Rotations ranging from 16 degrees to 2 degrees could be measured with an accuracy of +/-0.015 degrees . Using a three-part fracture model the corresponding values of accuracy were found to be +/-4microm and +/-0.031 degrees for translation and rotation, respectively. For complex 3-D motion in a three-part fracture model (AO/ASIF type C1) the accuracy was +/-6microm for translation and +/-0.120 degrees for rotation. The use of 3-D computer modelling can provide a method for preoperative planning of RSA studies in complex fractures of the distal radius and in other clinical situations in which the RSA method is applicable.

  10. About the inevitable compromise between spatial resolution and accuracy of strain measurement for bone tissue: a 3D zero-strain study.

    PubMed

    Dall'Ara, E; Barber, D; Viceconti, M

    2014-09-22

    The accurate measurement of local strain is necessary to study bone mechanics and to validate micro computed tomography (µCT) based finite element (FE) models at the tissue scale. Digital volume correlation (DVC) has been used to provide a volumetric estimation of local strain in trabecular bone sample with a reasonable accuracy. However, nothing has been reported so far for µCT based analysis of cortical bone. The goal of this study was to evaluate accuracy and precision of a deformable registration method for prediction of local zero-strains in bovine cortical and trabecular bone samples. The accuracy and precision were analyzed by comparing scans virtually displaced, repeated scans without any repositioning of the sample in the scanner and repeated scans with repositioning of the samples. The analysis showed that both precision and accuracy errors decrease with increasing the size of the region analyzed, by following power laws. The main source of error was found to be the intrinsic noise of the images compared to the others investigated. The results, once extrapolated for larger regions of interest that are typically used in the literature, were in most cases better than the ones previously reported. For a nodal spacing equal to 50 voxels (498 µm), the accuracy and precision ranges were 425-692 µε and 202-394 µε, respectively. In conclusion, it was shown that the proposed method can be used to study the local deformation of cortical and trabecular bone loaded beyond yield, if a sufficiently high nodal spacing is used. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A Subspace Pursuit–based Iterative Greedy Hierarchical Solution to the Neuromagnetic Inverse Problem

    PubMed Central

    Babadi, Behtash; Obregon-Henao, Gabriel; Lamus, Camilo; Hämäläinen, Matti S.; Brown, Emery N.; Purdon, Patrick L.

    2013-01-01

    Magnetoencephalography (MEG) is an important non-invasive method for studying activity within the human brain. Source localization methods can be used to estimate spatiotemporal activity from MEG measurements with high temporal resolution, but the spatial resolution of these estimates is poor due to the ill-posed nature of the MEG inverse problem. Recent developments in source localization methodology have emphasized temporal as well as spatial constraints to improve source localization accuracy, but these methods can be computationally intense. Solutions emphasizing spatial sparsity hold tremendous promise, since the underlying neurophysiological processes generating MEG signals are often sparse in nature, whether in the form of focal sources, or distributed sources representing large-scale functional networks. Recent developments in the theory of compressed sensing (CS) provide a rigorous framework to estimate signals with sparse structure. In particular, a class of CS algorithms referred to as greedy pursuit algorithms can provide both high recovery accuracy and low computational complexity. Greedy pursuit algorithms are difficult to apply directly to the MEG inverse problem because of the high-dimensional structure of the MEG source space and the high spatial correlation in MEG measurements. In this paper, we develop a novel greedy pursuit algorithm for sparse MEG source localization that overcomes these fundamental problems. This algorithm, which we refer to as the Subspace Pursuit-based Iterative Greedy Hierarchical (SPIGH) inverse solution, exhibits very low computational complexity while achieving very high localization accuracy. We evaluate the performance of the proposed algorithm using comprehensive simulations, as well as the analysis of human MEG data during spontaneous brain activity and somatosensory stimuli. These studies reveal substantial performance gains provided by the SPIGH algorithm in terms of computational complexity, localization accuracy, and robustness. PMID:24055554

  12. Nonintrusive Finger-Vein Recognition System Using NIR Image Sensor and Accuracy Analyses According to Various Factors

    PubMed Central

    Pham, Tuyen Danh; Park, Young Ho; Nguyen, Dat Tien; Kwon, Seung Yong; Park, Kang Ryoung

    2015-01-01

    Biometrics is a technology that enables an individual person to be identified based on human physiological and behavioral characteristics. Among biometrics technologies, face recognition has been widely used because of its advantages in terms of convenience and non-contact operation. However, its performance is affected by factors such as variation in the illumination, facial expression, and head pose. Therefore, fingerprint and iris recognitions are preferred alternatives. However, the performance of the former can be adversely affected by the skin condition, including scarring and dryness. In addition, the latter has the disadvantages of high cost, large system size, and inconvenience to the user, who has to align their eyes with the iris camera. In an attempt to overcome these problems, finger-vein recognition has been vigorously researched, but an analysis of its accuracies according to various factors has not received much attention. Therefore, we propose a nonintrusive finger-vein recognition system using a near infrared (NIR) image sensor and analyze its accuracies considering various factors. The experimental results obtained with three databases showed that our system can be operated in real applications with high accuracy; and the dissimilarity of the finger-veins of different people is larger than that of the finger types and hands. PMID:26184214

  13. Nonintrusive Finger-Vein Recognition System Using NIR Image Sensor and Accuracy Analyses According to Various Factors.

    PubMed

    Pham, Tuyen Danh; Park, Young Ho; Nguyen, Dat Tien; Kwon, Seung Yong; Park, Kang Ryoung

    2015-07-13

    Biometrics is a technology that enables an individual person to be identified based on human physiological and behavioral characteristics. Among biometrics technologies, face recognition has been widely used because of its advantages in terms of convenience and non-contact operation. However, its performance is affected by factors such as variation in the illumination, facial expression, and head pose. Therefore, fingerprint and iris recognitions are preferred alternatives. However, the performance of the former can be adversely affected by the skin condition, including scarring and dryness. In addition, the latter has the disadvantages of high cost, large system size, and inconvenience to the user, who has to align their eyes with the iris camera. In an attempt to overcome these problems, finger-vein recognition has been vigorously researched, but an analysis of its accuracies according to various factors has not received much attention. Therefore, we propose a nonintrusive finger-vein recognition system using a near infrared (NIR) image sensor and analyze its accuracies considering various factors. The experimental results obtained with three databases showed that our system can be operated in real applications with high accuracy; and the dissimilarity of the finger-veins of different people is larger than that of the finger types and hands.

  14. Otitis Media Diagnosis for Developing Countries Using Tympanic Membrane Image-Analysis.

    PubMed

    Myburgh, Hermanus C; van Zijl, Willemien H; Swanepoel, DeWet; Hellström, Sten; Laurent, Claude

    2016-03-01

    Otitis media is one of the most common childhood diseases worldwide, but because of lack of doctors and health personnel in developing countries it is often misdiagnosed or not diagnosed at all. This may lead to serious, and life-threatening complications. There is, thus a need for an automated computer based image-analyzing system that could assist in making accurate otitis media diagnoses anywhere. A method for automated diagnosis of otitis media is proposed. The method uses image-processing techniques to classify otitis media. The system is trained using high quality pre-assessed images of tympanic membranes, captured by digital video-otoscopes, and classifies undiagnosed images into five otitis media categories based on predefined signs. Several verification tests analyzed the classification capability of the method. An accuracy of 80.6% was achieved for images taken with commercial video-otoscopes, while an accuracy of 78.7% was achieved for images captured on-site with a low cost custom-made video-otoscope. The high accuracy of the proposed otitis media classification system compares well with the classification accuracy of general practitioners and pediatricians (~64% to 80%) using traditional otoscopes, and therefore holds promise for the future in making automated diagnosis of otitis media in medically underserved populations.

  15. Parametric diagnosis of the adaptive gas path in the automatic control system of the aircraft engine

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. A.

    2017-01-01

    The paper dwells on the adaptive multimode mathematical model of the gas-turbine aircraft engine (GTE) embedded in the automatic control system (ACS). The mathematical model is based on the throttle performances, and is characterized by high accuracy of engine parameters identification in stationary and dynamic modes. The proposed on-board engine model is the state space linearized low-level simulation. The engine health is identified by the influence of the coefficient matrix. The influence coefficient is determined by the GTE high-level mathematical model based on measurements of gas-dynamic parameters. In the automatic control algorithm, the sum of squares of the deviation between the parameters of the mathematical model and real GTE is minimized. The proposed mathematical model is effectively used for gas path defects detecting in on-line GTE health monitoring. The accuracy of the on-board mathematical model embedded in ACS determines the quality of adaptive control and reliability of the engine. To improve the accuracy of identification solutions and sustainability provision, the numerical method of Monte Carlo was used. The parametric diagnostic algorithm based on the LPτ - sequence was developed and tested. Analysis of the results suggests that the application of the developed algorithms allows achieving higher identification accuracy and reliability than similar models used in practice.

  16. Sensitivity and accuracy of high-throughput metabarcoding methods for early detection of invasive fish species

    NASA Astrophysics Data System (ADS)

    Hatzenbuhler, Chelsea; Kelly, John R.; Martinson, John; Okum, Sara; Pilgrim, Erik

    2017-04-01

    High-throughput DNA metabarcoding has gained recognition as a potentially powerful tool for biomonitoring, including early detection of aquatic invasive species (AIS). DNA based techniques are advancing, but our understanding of the limits to detection for metabarcoding complex samples is inadequate. For detecting AIS at an early stage of invasion when the species is rare, accuracy at low detection limits is key. To evaluate the utility of metabarcoding in future fish community monitoring programs, we conducted several experiments to determine the sensitivity and accuracy of routine metabarcoding methods. Experimental mixes used larval fish tissue from multiple “common” species spiked with varying proportions of tissue from an additional “rare” species. Pyrosequencing of genetic marker, COI (cytochrome c oxidase subunit I) and subsequent sequence data analysis provided experimental evidence of low-level detection of the target “rare” species at biomass percentages as low as 0.02% of total sample biomass. Limits to detection varied interspecifically and were susceptible to amplification bias. Moreover, results showed some data processing methods can skew sequence-based biodiversity measurements from corresponding relative biomass abundances and increase false absences. We suggest caution in interpreting presence/absence and relative abundance in larval fish assemblages until metabarcoding methods are optimized for accuracy and precision.

  17. Otitis Media Diagnosis for Developing Countries Using Tympanic Membrane Image-Analysis

    PubMed Central

    Myburgh, Hermanus C.; van Zijl, Willemien H.; Swanepoel, DeWet; Hellström, Sten; Laurent, Claude

    2016-01-01

    Background Otitis media is one of the most common childhood diseases worldwide, but because of lack of doctors and health personnel in developing countries it is often misdiagnosed or not diagnosed at all. This may lead to serious, and life-threatening complications. There is, thus a need for an automated computer based image-analyzing system that could assist in making accurate otitis media diagnoses anywhere. Methods A method for automated diagnosis of otitis media is proposed. The method uses image-processing techniques to classify otitis media. The system is trained using high quality pre-assessed images of tympanic membranes, captured by digital video-otoscopes, and classifies undiagnosed images into five otitis media categories based on predefined signs. Several verification tests analyzed the classification capability of the method. Findings An accuracy of 80.6% was achieved for images taken with commercial video-otoscopes, while an accuracy of 78.7% was achieved for images captured on-site with a low cost custom-made video-otoscope. Interpretation The high accuracy of the proposed otitis media classification system compares well with the classification accuracy of general practitioners and pediatricians (~ 64% to 80%) using traditional otoscopes, and therefore holds promise for the future in making automated diagnosis of otitis media in medically underserved populations. PMID:27077122

  18. System Design, Calibration and Performance Analysis of a Novel 360° Stereo Panoramic Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Blaser, S.; Nebiker, S.; Cavegn, S.

    2017-05-01

    Image-based mobile mapping systems enable the efficient acquisition of georeferenced image sequences, which can later be exploited in cloud-based 3D geoinformation services. In order to provide a 360° coverage with accurate 3D measuring capabilities, we present a novel 360° stereo panoramic camera configuration. By using two 360° panorama cameras tilted forward and backward in combination with conventional forward and backward looking stereo camera systems, we achieve a full 360° multi-stereo coverage. We furthermore developed a fully operational new mobile mapping system based on our proposed approach, which fulfils our high accuracy requirements. We successfully implemented a rigorous sensor and system calibration procedure, which allows calibrating all stereo systems with a superior accuracy compared to that of previous work. Our study delivered absolute 3D point accuracies in the range of 4 to 6 cm and relative accuracies of 3D distances in the range of 1 to 3 cm. These results were achieved in a challenging urban area. Furthermore, we automatically reconstructed a 3D city model of our study area by employing all captured and georeferenced mobile mapping imagery. The result is a very high detailed and almost complete 3D city model of the street environment.

  19. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis.

    PubMed

    van Dijk, R; van Assen, M; Vliegenthart, R; de Bock, G H; van der Harst, P; Oudkerk, M

    2017-11-27

    Stress cardiovascular magnetic resonance (CMR) perfusion imaging is a promising modality for the evaluation of coronary artery disease (CAD) due to high spatial resolution and absence of radiation. Semi-quantitative and quantitative analysis of CMR perfusion are based on signal-intensity curves produced during the first-pass of gadolinium contrast. Multiple semi-quantitative and quantitative parameters have been introduced. Diagnostic performance of these parameters varies extensively among studies and standardized protocols are lacking. This study aims to determine the diagnostic accuracy of semi- quantitative and quantitative CMR perfusion parameters, compared to multiple reference standards. Pubmed, WebOfScience, and Embase were systematically searched using predefined criteria (3272 articles). A check for duplicates was performed (1967 articles). Eligibility and relevance of the articles was determined by two reviewers using pre-defined criteria. The primary data extraction was performed independently by two researchers with the use of a predefined template. Differences in extracted data were resolved by discussion between the two researchers. The quality of the included studies was assessed using the 'Quality Assessment of Diagnostic Accuracy Studies Tool' (QUADAS-2). True positives, false positives, true negatives, and false negatives were subtracted/calculated from the articles. The principal summary measures used to assess diagnostic accuracy were sensitivity, specificity, andarea under the receiver operating curve (AUC). Data was pooled according to analysis territory, reference standard and perfusion parameter. Twenty-two articles were eligible based on the predefined study eligibility criteria. The pooled diagnostic accuracy for segment-, territory- and patient-based analyses showed good diagnostic performance with sensitivity of 0.88, 0.82, and 0.83, specificity of 0.72, 0.83, and 0.76 and AUC of 0.90, 0.84, and 0.87, respectively. In per territory analysis our results show similar diagnostic accuracy comparing anatomical (AUC 0.86(0.83-0.89)) and functional reference standards (AUC 0.88(0.84-0.90)). Only the per territory analysis sensitivity did not show significant heterogeneity. None of the groups showed signs of publication bias. The clinical value of semi-quantitative and quantitative CMR perfusion analysis remains uncertain due to extensive inter-study heterogeneity and large differences in CMR perfusion acquisition protocols, reference standards, and methods of assessment of myocardial perfusion parameters. For wide spread implementation, standardization of CMR perfusion techniques is essential. CRD42016040176 .

  20. PAX1 Methylation Hallmarks Promising Accuracy for Cervical Cancer Screening in Asians: Results from a Meta-Analysis.

    PubMed

    Kong, Ling-Ying; Du, Wei; Wang, Li; Yang, Zhi; Zhang, Hong-Sheng

    2015-01-01

    DNA methylation has been proposed as a potential biomarker for cervical cancer detection. This study aimed to evaluate the diagnostic role of paired boxed gene 1 (PAX1) methylation for cervical cancer screening in Asians. Eligible studies were retrieved by searching the electronic databases, and the quality of the enrolled studies was assessed via the quality assessment for studies of diagnostic accuracy (QUADAS) tool. The bivariate meta-analysis model was employed to generate the summary receiver operator characteristic (SROC) curve using Stata 12.0 software. Cochran's Q test and I2 statistics were applied to assess heterogeneity among studies. Publication bias was evaluated by the Deeks' funnel plot asymmetry test. A total of 9 articles containing 15 individual studies were included. The SROC analysis showed that single PAX1 methylation allowed for the discrimination between cancer/high-grade squamous intraepithelial lesion (HSIL) patients and normal individuals with a sensitivity (95% confidence interval) of 0.80 (0.70 - 0.87) and specificity of 0.89 (0.86 - 0.92), corresponding to an area under curve (AUC) of 0.92. Notably, our subgroup analysis suggested that combing parallel testing of PAX1 methylation and HPV DNA (AUC, sensitivity, and specificity of 0.90, 0.82, and 0.84, respectively) seemed to harbor higher accuracy than single HPV DNA testing (AUC, sensitivity, and specificity of 0.81, 0.86, and 0.67, respectively). PAX1 methylation hallmarks a potential diagnostic value for cervical cancer screening in Asians, and parallel testing of PAX1 methylation and HPV in cervical scrapings confers an improved accuracy than single HPV DNA testing.

  1. Electrohydraulic Synchronizing Servo Control of a Robotic Arm

    NASA Astrophysics Data System (ADS)

    Li, S.; Ruan, J.; Pei, X.; Yu, Z. Q.; Zhu, F. M.

    2006-10-01

    The large robotic arm is usually driven by the electrodraulic synchronizing control system. The electrodraulic synchronizing system is designed with the digital valve to eliminate the effect of the nonlinearities, such as hysteresis, saturation, definite resolution. The working principle of the electrodraulic synchronizing control system is introduced and the mathematical model is established through construction of flow rate equation, continuity equation, force equilibrium equation, etc. To obtain the high accuracy, the PID control is introduced in the system. Simulation analysis shows that the dynamic performance of the synchronizing system is good, and its steady state error is very small. To validate the results, the experimental set-up of the synchronizing system is built. The experiment makes it clear that the control system has high accuracy. The synchronizing system can be applied widely in practice.

  2. CoLiTec software - detection of the near-zero apparent motion

    NASA Astrophysics Data System (ADS)

    Khlamov, Sergii V.; Savanevych, Vadym E.; Briukhovetskyi, Olexandr B.; Pohorelov, Artem V.

    2017-06-01

    In this article we described CoLiTec software for full automated frames processing. CoLiTec software allows processing the Big Data of observation results as well as processing of data that is continuously formed during observation. The scope of solving tasks includes frames brightness equalization, moving objects detection, astrometry, photometry, etc. Along with the high efficiency of Big Data processing CoLiTec software also ensures high accuracy of data measurements. A comparative analysis of the functional characteristics and positional accuracy was performed between CoLiTec and Astrometrica software. The benefits of CoLiTec used with wide field and low quality frames were observed. The efficiency of the CoLiTec software was proved by about 700.000 observations and over 1.500 preliminary discoveries.

  3. Optimum element density studies for finite-element thermal analysis of hypersonic aircraft structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Olona, Timothy; Muramoto, Kyle M.

    1990-01-01

    Different finite element models previously set up for thermal analysis of the space shuttle orbiter structure are discussed and their shortcomings identified. Element density criteria are established for the finite element thermal modelings of space shuttle orbiter-type large, hypersonic aircraft structures. These criteria are based on rigorous studies on solution accuracies using different finite element models having different element densities set up for one cell of the orbiter wing. Also, a method for optimization of the transient thermal analysis computer central processing unit (CPU) time is discussed. Based on the newly established element density criteria, the orbiter wing midspan segment was modeled for the examination of thermal analysis solution accuracies and the extent of computation CPU time requirements. The results showed that the distributions of the structural temperatures and the thermal stresses obtained from this wing segment model were satisfactory and the computation CPU time was at the acceptable level. The studies offered the hope that modeling the large, hypersonic aircraft structures using high-density elements for transient thermal analysis is possible if a CPU optimization technique was used.

  4. Comparison Between Automatic and Visual Scorings of REM Sleep Without Atonia for the Diagnosis of REM Sleep Behavior Disorder in Parkinson Disease.

    PubMed

    Figorilli, Michela; Ferri, Raffaele; Zibetti, Maurizio; Beudin, Patricia; Puligheddu, Monica; Lopiano, Leonardo; Cicolin, Alessandro; Durif, Frank; Marques, Ana; Fantini, Maria Livia

    2017-02-01

    To compare three different methods, two visual and one automatic, for the quantification of rapid eye movement (REM) sleep without atonia (RSWA) in the diagnosis of REM sleep behavior disorder (RBD) in Parkinson's disease (PD) patients. Sixty-two consecutive patients with idiopathic PD underwent video-polysomnographic recording and showed more than 5 minutes of REM sleep. The electromyogram during REM sleep was analyzed by means of two visual methods (Montréal and SINBAR) and one automatic analysis (REM Atonia Index or RAI). RBD was diagnosed according to standard criteria and a series of diagnostic accuracy measures were calculated for each method, as well as the agreement between them. RBD was diagnosed in 59.7% of patients. The accuracy (85.5%), receiver operating characteristic (ROC) area (0.833) and Cohen's K coefficient (0.688) obtained with RAI were similar to those of the visual parameters. Visual tonic parameters, alone or in combination with phasic activity, showed high values of accuracy (93.5-95.2%), ROC area (0.92-0.94), and Cohen's K (0.862-0.933). Similarly, the agreement between the two visual methods was very high, and the agreement between each visual methods and RAI was substantial. Visual phasic measures alone performed worse than all the other measures. The diagnostic accuracy of RSWA obtained with both visual and automatic methods was high and there was a general agreement between methods. RAI may be used as the first line method to detect RSWA in the diagnosis of RBD in PD, together with the visual inspection of video-recorded behaviors, while the visual analysis of RSWA might be used in doubtful cases. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  5. Accuracy of clinical pallor in the diagnosis of anaemia in children: a meta-analysis

    PubMed Central

    Chalco, Juan P; Huicho, Luis; Alamo, Carlos; Carreazo, Nilton Y; Bada, Carlos A

    2005-01-01

    Background Anaemia is highly prevalent in children of developing countries. It is associated with impaired physical growth and mental development. Palmar pallor is recommended at primary level for diagnosing it, on the basis of few studies. The objective of the study was to systematically assess the accuracy of clinical signs in the diagnosis of anaemia in children. Methods A systematic review on the accuracy of clinical signs of anaemia in children. We performed an Internet search in various databases and an additional reference tracking. Studies had to be on performance of clinical signs in the diagnosis of anaemia, using haemoglobin as the gold standard. We calculated pooled diagnostic likelihood ratios (LR's) and odds ratios (DOR's) for each clinical sign at different haemoglobin thresholds. Results Eleven articles met the inclusion criteria. Most studies were performed in Africa, in children underfive. Chi-square test for proportions and Cochran Q for DOR's and for LR's showed heterogeneity. Type of observer and haemoglobin technique influenced the results. Pooling was done using the random effects model. Pooled DOR at haemoglobin <11 g/dL was 4.3 (95% CI 2.6–7.2) for palmar pallor, 3.7 (2.3–5.9) for conjunctival pallor, and 3.4 (1.8–6.3) for nailbed pallor. DOR's and LR's were slightly better for nailbed pallor at all other haemoglobin thresholds. The accuracy did not vary substantially after excluding outliers. Conclusion This meta-analysis did not document a highly accurate clinical sign of anaemia. In view of poor performance of clinical signs, universal iron supplementation may be an adequate control strategy in high prevalence areas. Further well-designed studies are needed in settings other than Africa. They should assess inter-observer variation, performance of combined clinical signs, phenotypic differences, and different degrees of anaemia. PMID:16336667

  6. Prediction of psychosis across protocols and risk cohorts using automated language analysis.

    PubMed

    Corcoran, Cheryl M; Carrillo, Facundo; Fernández-Slezak, Diego; Bedi, Gillinder; Klim, Casimir; Javitt, Daniel C; Bearden, Carrie E; Cecchi, Guillermo A

    2018-02-01

    Language and speech are the primary source of data for psychiatrists to diagnose and treat mental disorders. In psychosis, the very structure of language can be disturbed, including semantic coherence (e.g., derailment and tangentiality) and syntactic complexity (e.g., concreteness). Subtle disturbances in language are evident in schizophrenia even prior to first psychosis onset, during prodromal stages. Using computer-based natural language processing analyses, we previously showed that, among English-speaking clinical (e.g., ultra) high-risk youths, baseline reduction in semantic coherence (the flow of meaning in speech) and in syntactic complexity could predict subsequent psychosis onset with high accuracy. Herein, we aimed to cross-validate these automated linguistic analytic methods in a second larger risk cohort, also English-speaking, and to discriminate speech in psychosis from normal speech. We identified an automated machine-learning speech classifier - comprising decreased semantic coherence, greater variance in that coherence, and reduced usage of possessive pronouns - that had an 83% accuracy in predicting psychosis onset (intra-protocol), a cross-validated accuracy of 79% of psychosis onset prediction in the original risk cohort (cross-protocol), and a 72% accuracy in discriminating the speech of recent-onset psychosis patients from that of healthy individuals. The classifier was highly correlated with previously identified manual linguistic predictors. Our findings support the utility and validity of automated natural language processing methods to characterize disturbances in semantics and syntax across stages of psychotic disorder. The next steps will be to apply these methods in larger risk cohorts to further test reproducibility, also in languages other than English, and identify sources of variability. This technology has the potential to improve prediction of psychosis outcome among at-risk youths and identify linguistic targets for remediation and preventive intervention. More broadly, automated linguistic analysis can be a powerful tool for diagnosis and treatment across neuropsychiatry. © 2018 World Psychiatric Association.

  7. Electron Probe MicroAnalysis (EPMA) Standards. Issues Related to Measurement and Accuracy Evaluation in EPMA

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul

    2003-01-01

    Electron-probe microanalysis standards and issues related to measurement and accuracy of microanalysis will be discussed. Critical evaluation of standards based on homogeneity and comparison with wet-chemical analysis will be made. Measurement problems such as spectrometer dead-time will be discussed. Analytical accuracy issues will be evaluated for systems by alpha-factor analysis and comparison with experimental k-ratio databases.

  8. Tumor necrosis factor α level in cerebrospinal fluid for bacterial and aseptic meningitis: a diagnostic meta-analysis.

    PubMed

    Lv, S; Zhao, J; Zhang, J; Kwon, S; Han, M; Bian, R; Fu, H; Zhang, Y; Pan, H

    2014-08-01

    In our previous study, tumor necrosis factor α (TNF-α) was identified as an effective target for sepsis patients (Int J Clin Pract, 68, 2014, 520). TNF-α in cerebrospinal fluid (CSF) was also investigated for its utility in the differential diagnosis of bacterial and aseptic meningitis. However, there has been neither definite nor convincing evidence so far. Here the overall diagnostic accuracy of TNF-α in differentiation between bacterial and aseptic meningitis was evaluated through the meta-analysis of diagnostic tests. The sensitivity, specificity and other measures of accuracy were pooled using random effect models. Summary receiver operating characteristic curves were used to assess overall test performance. Publication bias was evaluated using funnel plots, and sensitivity analysis was also introduced. A total of 21 studies involving bacterial meningitis (678) and aseptic meningitis (694) involved a total of 1372 patients. The pooled sensitivity and specificity for the TNF-α test were 0.83 [95% confidence interval (CI) 0.80-0.86, I(2)  = 65.1] and 0.92 (95% CI 0.89-0.94, I(2)  = 61.8), respectively. The positive likelihood ratio was 12.05 (95% CI 7.41-19.60, I(2)  = 36.5), the negative likelihood ratio was 0.17 (95% CI 0.13-0.24, I(2)  = 59.4), and TNF-α was significantly associated with bacterial meningitis, with a diagnostic odds ratio of 49.84 (95% CI 28.53-87.06, I(2)  = 47.9). The overall accuracy of the TNF-α test was very high with the area under the curve 0.9317. Publication bias was absent, and sensitivity analysis suggested that our results were highly stable. Our meta-analysis suggested that TNF-α could be recommended as a useful marker for diagnosis of bacterial meningitis and differential diagnosis between bacterial and aseptic meningitis with high sensitivity and specificity. Thus, hospitals should be encouraged to conduct TNF-α tests in CSF after lumbar puncture. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.

  9. Detection of stress factors in crop and weed species using hyperspectral remote sensing reflectance

    NASA Astrophysics Data System (ADS)

    Henry, William Brien

    The primary objective of this work was to determine if stress factors such as moisture stress or herbicide injury stress limit the ability to distinguish between weeds and crops using remotely sensed data. Additional objectives included using hyperspectral reflectance data to measure moisture content within a species, and to measure crop injury in response to drift rates of non-selective herbicides. Moisture stress did not reduce the ability to discriminate between species. Regardless of analysis technique, the trend was that as moisture stress increased, so too did the ability to distinguish between species. Signature amplitudes (SA) of the top 5 bands, discrete wavelet transforms (DWT), and multiple indices were promising analysis techniques. Discriminant models created from one year's data set and validated on additional data sets provided, on average, approximately 80% accurate classification among weeds and crop. This suggests that these models are relatively robust and could potentially be used across environmental conditions in field scenarios. Distinguishing between leaves grown at high-moisture stress and no-stress was met with limited success, primarily because there was substantial variation among samples within the treatments. Leaf water potential (LWP) was measured, and these were classified into three categories using indices. Classification accuracies were as high as 68%. The 10 bands most highly correlated to LWP were selected; however, there were no obvious trends or patterns in these top 10 bands with respect to time, species or moisture level, suggesting that LWP is an elusive parameter to quantify spectrally. In order to address herbicide injury stress and its impact on species discrimination, discriminant models were created from combinations of multiple indices. The model created from the second experimental run's data set and validated on the first experimental run's data provided an average of 97% correct classification of soybean and an overall average classification accuracy of 65% for all species. This suggests that these models are relatively robust and could potentially be used across a wide range of herbicide applications in field scenarios. From the pooled data set, a single discriminant model was created with multiple indices that discriminated soybean from weeds 88%, on average, regardless of herbicide, rate or species. Several analysis techniques including multiple indices, signature amplitude with spectral bands as features, and wavelet analysis were employed to distinguish between herbicide-treated and nontreated plants. Classification accuracy using signature amplitude (SA) analysis of paraquat injury on soybean was better than 75% for both 1/2 and 1/8X rates at 1, 4, and 7 DAA. Classification accuracy of paraquat injury on corn was better than 72% for the 1/2X rate at 1, 4, and 7 DAA. These data suggest that hyperspectral reflectance may be used to distinguish between healthy plants and injured plants to which herbicides have been applied; however, the classification accuracies remained at 75% or higher only when the higher rates of herbicide were applied. (Abstract shortened by UMI.)

  10. Assuring high quality treatment delivery in clinical trials - Results from the Trans-Tasman Radiation Oncology Group (TROG) study 03.04 "RADAR" set-up accuracy study.

    PubMed

    Haworth, Annette; Kearvell, Rachel; Greer, Peter B; Hooton, Ben; Denham, James W; Lamb, David; Duchesne, Gillian; Murray, Judy; Joseph, David

    2009-03-01

    A multi-centre clinical trial for prostate cancer patients provided an opportunity to introduce conformal radiotherapy with dose escalation. To verify adequate treatment accuracy prior to patient recruitment, centres submitted details of a set-up accuracy study (SUAS). We report the results of the SUAS, the variation in clinical practice and the strategies used to help centres improve treatment accuracy. The SUAS required each of the 24 participating centres to collect data on at least 10 pelvic patients imaged on a minimum of 20 occasions. Software was provided for data collection and analysis. Support to centres was provided through educational lectures, the trial quality assurance team and an information booklet. Only two centres had recently carried out a SUAS prior to the trial opening. Systematic errors were generally smaller than those previously reported in the literature. The questionnaire identified many differences in patient set-up protocols. As a result of participating in this QA activity more than 65% of centres improved their treatment delivery accuracy. Conducting a pre-trial SUAS has led to improvement in treatment delivery accuracy in many centres. Treatment techniques and set-up accuracy varied greatly, demonstrating a need to ensure an on-going awareness for such studies in future trials and with the introduction of dose escalation or new technologies.

  11. A comparative analysis of pixel- and object-based detection of landslides from very high-resolution images

    NASA Astrophysics Data System (ADS)

    Keyport, Ren N.; Oommen, Thomas; Martha, Tapas R.; Sajinkumar, K. S.; Gierke, John S.

    2018-02-01

    A comparative analysis of landslides detected by pixel-based and object-oriented analysis (OOA) methods was performed using very high-resolution (VHR) remotely sensed aerial images for the San Juan La Laguna, Guatemala, which witnessed widespread devastation during the 2005 Hurricane Stan. A 3-band orthophoto of 0.5 m spatial resolution together with a 115 field-based landslide inventory were used for the analysis. A binary reference was assigned with a zero value for landslide and unity for non-landslide pixels. The pixel-based analysis was performed using unsupervised classification, which resulted in 11 different trial classes. Detection of landslides using OOA includes 2-step K-means clustering to eliminate regions based on brightness; elimination of false positives using object properties such as rectangular fit, compactness, length/width ratio, mean difference of objects, and slope angle. Both overall accuracy and F-score for OOA methods outperformed pixel-based unsupervised classification methods in both landslide and non-landslide classes. The overall accuracy for OOA and pixel-based unsupervised classification was 96.5% and 94.3%, respectively, whereas the best F-score for landslide identification for OOA and pixel-based unsupervised methods: were 84.3% and 77.9%, respectively.Results indicate that the OOA is able to identify the majority of landslides with a few false positive when compared to pixel-based unsupervised classification.

  12. High resolution mapping of development in the wildland-urban interface using object based image extraction.

    PubMed

    Caggiano, Michael D; Tinkham, Wade T; Hoffman, Chad; Cheng, Antony S; Hawbaker, Todd J

    2016-10-01

    The wildland-urban interface (WUI), the area where human development encroaches on undeveloped land, is expanding throughout the western United States resulting in increased wildfire risk to homes and communities. Although census based mapping efforts have provided insights into the pattern of development and expansion of the WUI at regional and national scales, these approaches do not provide sufficient detail for fine-scale fire and emergency management planning, which requires maps of individual building locations. Although fine-scale maps of the WUI have been developed, they are often limited in their spatial extent, have unknown accuracies and biases, and are costly to update over time. In this paper we assess a semi-automated Object Based Image Analysis (OBIA) approach that utilizes 4-band multispectral National Aerial Image Program (NAIP) imagery for the detection of individual buildings within the WUI. We evaluate this approach by comparing the accuracy and overall quality of extracted buildings to a building footprint control dataset. In addition, we assessed the effects of buffer distance, topographic conditions, and building characteristics on the accuracy and quality of building extraction. The overall accuracy and quality of our approach was positively related to buffer distance, with accuracies ranging from 50 to 95% for buffer distances from 0 to 100 m. Our results also indicate that building detection was sensitive to building size, with smaller outbuildings (footprints less than 75 m 2 ) having detection rates below 80% and larger residential buildings having detection rates above 90%. These findings demonstrate that this approach can successfully identify buildings in the WUI in diverse landscapes while achieving high accuracies at buffer distances appropriate for most fire management applications while overcoming cost and time constraints associated with traditional approaches. This study is unique in that it evaluates the ability of an OBIA approach to extract highly detailed data on building locations in a WUI setting.

  13. High resolution mapping of development in the wildland-urban interface using object based image extraction

    USGS Publications Warehouse

    Caggiano, Michael D.; Tinkham, Wade T.; Hoffman, Chad; Cheng, Antony S.; Hawbaker, Todd J.

    2016-01-01

    The wildland-urban interface (WUI), the area where human development encroaches on undeveloped land, is expanding throughout the western United States resulting in increased wildfire risk to homes and communities. Although census based mapping efforts have provided insights into the pattern of development and expansion of the WUI at regional and national scales, these approaches do not provide sufficient detail for fine-scale fire and emergency management planning, which requires maps of individual building locations. Although fine-scale maps of the WUI have been developed, they are often limited in their spatial extent, have unknown accuracies and biases, and are costly to update over time. In this paper we assess a semi-automated Object Based Image Analysis (OBIA) approach that utilizes 4-band multispectral National Aerial Image Program (NAIP) imagery for the detection of individual buildings within the WUI. We evaluate this approach by comparing the accuracy and overall quality of extracted buildings to a building footprint control dataset. In addition, we assessed the effects of buffer distance, topographic conditions, and building characteristics on the accuracy and quality of building extraction. The overall accuracy and quality of our approach was positively related to buffer distance, with accuracies ranging from 50 to 95% for buffer distances from 0 to 100 m. Our results also indicate that building detection was sensitive to building size, with smaller outbuildings (footprints less than 75 m2) having detection rates below 80% and larger residential buildings having detection rates above 90%. These findings demonstrate that this approach can successfully identify buildings in the WUI in diverse landscapes while achieving high accuracies at buffer distances appropriate for most fire management applications while overcoming cost and time constraints associated with traditional approaches. This study is unique in that it evaluates the ability of an OBIA approach to extract highly detailed data on building locations in a WUI setting.

  14. A new method for measuring the rotational accuracy of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Zhao, Xiangsong; Gao, Weiguo; Hu, Gaofeng; Zhang, Shizhen; Zhang, Dawei

    2016-12-01

    The rotational accuracy of a machine tool spindle has critical influence upon the geometric shape and surface roughness of finished workpiece. The rotational performance of the rolling element bearings is a main factor which affects the spindle accuracy, especially in the ultra-precision machining. In this paper, a new method is developed to measure the rotational accuracy of rolling element bearings of machine tool spindles. Variable and measurable axial preload is applied to seat the rolling elements in the bearing races, which is used to simulate the operating conditions. A high-precision (radial error is less than 300 nm) and high-stiffness (radial stiffness is 600 N/μm) hydrostatic reference spindle is adopted to rotate the inner race of the test bearing. To prevent the outer race from rotating, a 2-degrees of freedom flexure hinge mechanism (2-DOF FHM) is designed. Correction factors by using stiffness analysis are adopted to eliminate the influences of 2-DOF FHM in the radial direction. Two capacitive displacement sensors with nano-resolution (the highest resolution is 9 nm) are used to measure the radial error motion of the rolling element bearing, without separating the profile error as the traditional rotational accuracy metrology of the spindle. Finally, experimental measurements are performed at different spindle speeds (100-4000 rpm) and axial preloads (75-780 N). Synchronous and asynchronous error motion values are evaluated to demonstrate the feasibility and repeatability of the developed method and instrument.

  15. Confidence and memory: assessing positive and negative correlations.

    PubMed

    Roediger, Henry L; DeSoto, K Andrew

    2014-01-01

    The capacity to learn and remember surely evolved to help animals solve problems in their quest to reproduce and survive. In humans we assume that metacognitive processes also evolved, so that we know when to trust what we remember (i.e., when we have high confidence in our memories) and when not to (when we have low confidence). However this latter feature has been questioned by researchers, with some finding a high correlation between confidence and accuracy in reports from memory and others finding little to no correlation. In two experiments we report a recognition memory paradigm that, using the same materials (categorised lists), permits the study of positive correlations, zero correlations, and negative correlations between confidence and accuracy within the same procedure. We had subjects study words from semantic categories with the five items most frequently produced in norms omitted from the list; later, subjects were given an old/new recognition test and made confidence ratings on their judgements. Although the correlation between confidence and accuracy for studied items was generally positive, the correlation for the five omitted items was negative in some methods of analysis. We pinpoint the similarity between lures and targets as creating inversions between confidence and accuracy in memory. We argue that, while confidence is generally a useful indicant of accuracy in reports from memory, in certain environmental circumstances even adaptive processes can foster illusions of memory. Thus understanding memory illusions is similar to understanding perceptual illusions: Processes that are usually adaptive can go awry under certain circumstances.

  16. Crowdsourcing for translational research: analysis of biomarker expression using cancer microarrays

    PubMed Central

    Lawson, Jonathan; Robinson-Vyas, Rupesh J; McQuillan, Janette P; Paterson, Andy; Christie, Sarah; Kidza-Griffiths, Matthew; McDuffus, Leigh-Anne; Moutasim, Karwan A; Shaw, Emily C; Kiltie, Anne E; Howat, William J; Hanby, Andrew M; Thomas, Gareth J; Smittenaar, Peter

    2017-01-01

    Background: Academic pathology suffers from an acute and growing lack of workforce resource. This especially impacts on translational elements of clinical trials, which can require detailed analysis of thousands of tissue samples. We tested whether crowdsourcing – enlisting help from the public – is a sufficiently accurate method to score such samples. Methods: We developed a novel online interface to train and test lay participants on cancer detection and immunohistochemistry scoring in tissue microarrays. Lay participants initially performed cancer detection on lung cancer images stained for CD8, and we measured how extending a basic tutorial by annotated example images and feedback-based training affected cancer detection accuracy. We then applied this tutorial to additional cancer types and immunohistochemistry markers – bladder/ki67, lung/EGFR, and oesophageal/CD8 – to establish accuracy compared with experts. Using this optimised tutorial, we then tested lay participants' accuracy on immunohistochemistry scoring of lung/EGFR and bladder/p53 samples. Results: We observed that for cancer detection, annotated example images and feedback-based training both improved accuracy compared with a basic tutorial only. Using this optimised tutorial, we demonstrate highly accurate (>0.90 area under curve) detection of cancer in samples stained with nuclear, cytoplasmic and membrane cell markers. We also observed high Spearman correlations between lay participants and experts for immunohistochemistry scoring (0.91 (0.78, 0.96) and 0.97 (0.91, 0.99) for lung/EGFR and bladder/p53 samples, respectively). Conclusions: These results establish crowdsourcing as a promising method to screen large data sets for biomarkers in cancer pathology research across a range of cancers and immunohistochemical stains. PMID:27959886

  17. L-DOPA decarboxylase mRNA levels provide high diagnostic accuracy and discrimination between clear cell and non-clear cell subtypes in renal cell carcinoma.

    PubMed

    Papadopoulos, Emmanuel I; Petraki, Constantina; Gregorakis, Alkiviadis; Chra, Eleni; Fragoulis, Emmanuel G; Scorilas, Andreas

    2015-06-01

    Renal cell carcinoma (RCC) is the most frequent type of kidney cancer. RCC patients frequently present with arterial hypertension due to various causes, including intrarenal dopamine deficiency. L-DOPA decarboxylase (DDC) is the gene encoding the enzyme that catalyzes the biosynthesis of dopamine in humans. Several studies have shown that the expression levels of DDC are significantly deregulated in cancer. Thus, we herein sought to analyze the mRNA levels of DDC and evaluate their clinical significance in RCC. DDC levels were analyzed in 58 surgically resected RCC tumors and 44 adjacent non-cancerous renal tissue specimens via real-time PCR. Relative levels of DDC were estimated by applying the 2(-ΔΔC)T method, while their diagnostic accuracy and correlation with the clinicopathological features of RCC tumors were assessed by comprehensive statistical analysis. DDC mRNA levels were found to be dramatically downregulated (p<0.001) in RCC tumors, exhibiting remarkable diagnostic accuracy as assessed by ROC curve analysis (AUC: 0.910; p<0.001) and logistic regression (OR: 0.678; p=0.001). Likewise, DDC was found to be differentially expressed between clear cell RCC and the group of non-clear cell subtypes (p=0.001) consisted of papillary and chromophobe RCC specimens. Furthermore, a statistically significant inverse correlation was also observed when the mRNA levels of DDC were analyzed in relation to tumor grade (p=0.049). Our data showed that DDC constitutes a highly promising molecular marker for RCC, exhibiting remarkable diagnostic accuracy and potential to discriminate between clear cell and non-clear cell histological subtypes of RCC. Copyright © 2015. Published by Elsevier Inc.

  18. Diagnostic Accuracy of CT Coronary Angiography According to Pretest Probability of Coronary Artery Disease and Severity of Coronary Arterial Calcification: The CorE-64 International, Multicenter Study

    PubMed Central

    Arbab-Zadeh, Armin; Miller, Julie M; Rochitte, Carlos E; Dewey, Marc; Niinuma, Hiroyuki; Gottlieb, Ilan; Paul, Narinder; Clouse, Melvin E.; Shapiro, Edward P.; Hoe, John; Lardo, Albert C.; Bush, David E.; de Roos, Albert; Cox, Christopher; Brinker, Jeffrey; Lima, Joăo A. C.

    2012-01-01

    Objectives Assess the impact of patient population characteristics on accuracy by CT angiography (CTA) to detect obstructive coronary artery disease (CAD). Background The ability of CTA to exclude obstructive CAD in patients of different pretest probabilities and in presence of coronary calcification remains uncertain. Methods For the CorE-64 study 371 patients underwent CTA and cardiac catheterization for the detection of obstructive CAD defined as 50% or greater luminal stenosis by quantitative coronary angiography (QCA). This analysis includes 80 initially excluded patients with a calcium score ≥ 600. Area under the receiver-operating-characteristics curve (AUC) was used to evaluate CTA diagnostic accuracy compared to QCA in patients according to calcium score and pretest probability of CAD. Results Analysis of patient-based quantitative CTA accuracy revealed an AUC of 0.93 (95% confidence interval [CI] 0.90-0.95). AUC remained 0.93 (0.90-0.96) after excluding patients with known CAD but decreased to 0.81 (0.71-0.89) in patients with calcium score ≥ 600 (p=0.077). While AUC were similar (0.93, 0.92, and 0.93, respectively) for patients with intermediate, high pretest probability for CAD, and known CAD, negative predictive values were different: 0.90, 0.83, and 0.50, respectively. Negative predictive values decreased from 0.93 to 0.75 for patients with calcium score < or ≥ 100, respectively (p= 0.053). Conclusions Both pretest probability for CAD and coronary calcium scoring should be considered before using CTA for excluding obstructive CAD. CTA is less effective for this purpose in patients with calcium score ≥ 600 and in patients with a high pretest probability for obstructive CAD. PMID:22261160

  19. Longer-Term Investigation of the Value of 18F-FDG-PET and Magnetic Resonance Imaging for Predicting the Conversion of Mild Cognitive Impairment to Alzheimer's Disease: A Multicenter Study.

    PubMed

    Inui, Yoshitaka; Ito, Kengo; Kato, Takashi

    2017-01-01

    The value of fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and magnetic resonance imaging (MRI) for predicting conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD) in longer-term is unclear. To evaluate longer-term prediction of MCI to AD conversion using 18F-FDG-PET and MRI in a multicenter study. One-hundred and fourteen patients with MCI were followed for 5 years. They underwent clinical and neuropsychological examinations, 18F-FDG-PET, and MRI at baseline. PET images were visually classified into predefined dementia patterns. PET scores were calculated as a semi quantitative index. For structural MRI, z-scores in medial temporal area were calculated by automated volume-based morphometry (VBM). Overall, 72% patients with amnestic MCI progressed to AD during the 5-year follow-up. The diagnostic accuracy of PET scores over 5 years was 60% with 53% sensitivity and 84% specificity. Visual interpretation of PET images predicted conversion to AD with an overall 82% diagnostic accuracy, 94% sensitivity, and 53% specificity. The accuracy of VBM analysis presented little fluctuation through 5 years and it was highest (73%) at the 5-year follow-up, with 79% sensitivity and 63% specificity. The best performance (87.9% diagnostic accuracy, 89.8% sensitivity, and 82.4% specificity) was with a combination identified using multivariate logistic regression analysis that included PET visual interpretation, educational level, and neuropsychological tests as predictors. 18F-FDG-PET visual assessment showed high performance for predicting conversion to AD from MCI, particularly in combination with neuropsychological tests. PET scores showed high diagnostic specificity. Structural MRI focused on the medial temporal area showed stable predictive value throughout the 5-year course.

  20. Bedside red cell volumetry by low-dose carboxyhaemoglobin dilution using expiratory gas analysis.

    PubMed

    Sawano, M; Mato, T; Tsutsumi, H

    2006-02-01

    We developed a non-invasive, continuous, high-resolution method of measuring carboxyhaemoglobin fraction (COHb%) using expiratory gas analysis (EGA). We assessed whether application of EGA to carboxyhaemoglobin dilution provides red cell volume (RCV) measurement with accuracy equivalent to that of CO-haemoximetry, with a smaller infusion volume of carbon-monoxide-saturated autologous blood (COB). Method. We assessed the agreement between repeated COHb% measurements by EGA and simultaneous measurement by CO-haemoximetry, using Bland and Altman plot, in healthy subjects and patients with artificially controlled ventilation and no radiological evidence of pulmonary oedema or atelectasis. We assessed the agreement between RCV measurements by EGA with infusion of 20 ml of COB (RCVEGA) and RCV measurements by CO-haemoximetry with infusion of 100 ml of COB (RCVHEM), in healthy subjects. The 'limits of agreement' between COHb% measurement by EGA (1 min average) and CO-haemoximetry were -0.09 and 0.08% in healthy subjects, and -0.11 and 0.09% in patients. Given the resolution of CO-haemoximetry (0.1%), the accuracy of EGA was equivalent to or greater than that of CO-haemoximetry. The 'limits of agreement' between RCVEGA and RCVHEM were -0.14 and 0.15 litre. Given the average resolution of RCVHEM (0.14 litre), the accuracy of RCVEGA was equivalent to that of RCVHEM. EGA provided non-invasive, accurate, continuous, high-resolution COHb% measurements. Applying EGA to carboxyhaemoglobin dilution, we achieved RCV measurements with accuracy equivalent to that of CO-haemoximetry, with one-fifth of the COB infusion volume. However, clinical application of the method is limited to patients with no radiological evidence of pulmonary oedema or atelectasis.

  1. Meta-analytical prognostic accuracy of the Comprehensive Assessment of at Risk Mental States (CAARMS): The need for refined prediction.

    PubMed

    Oliver, D; Kotlicka-Antczak, M; Minichino, A; Spada, G; McGuire, P; Fusar-Poli, P

    2018-03-01

    Primary indicated prevention is reliant on accurate tools to predict the onset of psychosis. The gold standard assessment for detecting individuals at clinical high risk (CHR-P) for psychosis in the UK and many other countries is the Comprehensive Assessment for At Risk Mental States (CAARMS). While the prognostic accuracy of CHR-P instruments has been assessed in general, this is the first study to specifically analyse that of the CAARMS. As such, the CAARMS was used as the index test, with the reference index being psychosis onset within 2 years. Six independent studies were analysed using MIDAS (STATA 14), with a total of 1876 help-seeking subjects referred to high risk services (CHR-P+: n=892; CHR-P-: n=984). Area under the curve (AUC), summary receiver operating characteristic curves (SROC), quality assessment, likelihood ratios, and probability modified plots were computed, along with sensitivity analyses and meta-regressions. The current meta-analysis confirmed that the 2-year prognostic accuracy of the CAARMS is only acceptable (AUC=0.79 95% CI: 0.75-0.83) and not outstanding as previously reported. In particular, specificity was poor. Sensitivity of the CAARMS is inferior compared to the SIPS, while specificity is comparably low. However, due to the difficulties in performing these types of studies, power in this meta-analysis was low. These results indicate that refining and improving the prognostic accuracy of the CAARMS should be the mainstream area of research for the next era. Avenues of prediction improvement are critically discussed and presented to better benefit patients and improve outcomes of first episode psychosis. Copyright © 2017 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  2. An evaluation of the accuracy and precision of methane prediction equations for beef cattle fed high-forage and high-grain diets.

    PubMed

    Escobar-Bahamondes, P; Oba, M; Beauchemin, K A

    2017-01-01

    The study determined the performance of equations to predict enteric methane (CH4) from beef cattle fed forage- and grain-based diets. Many equations are available to predict CH4 from beef cattle and the predictions vary substantially among equations. The aims were to (1) construct a database of CH4 emissions for beef cattle from published literature, and (2) identify the most precise and accurate extant CH4 prediction models for beef cattle fed diets varying in forage content. The database was comprised of treatment means of CH4 production from in vivo beef studies published from 2000 to 2015. Criteria to include data in the database were as follows: animal description, intakes, diet composition and CH4 production. In all, 54 published equations that predict CH4 production from diet composition were evaluated. Precision and accuracy of the equations were evaluated using the concordance correlation coefficient (r c ), root mean square prediction error (RMSPE), model efficiency and analysis of errors. Equations were ranked using a combined index of the various statistical assessments based on principal component analysis. The final database contained 53 studies and 207 treatment means that were divided into two data sets: diets containing ⩾400 g/kg dry matter (DM) forage (n=116) and diets containing ⩽200 g/kg DM forage (n=42). Diets containing between ⩽400 and ⩾200 g/kg DM forage were not included in the analysis because of their limited numbers (n=6). Outliers, treatment means where feed was fed restrictively and diets with CH4 mitigation additives were omitted (n=43). Using the high-forage dataset the best-fit equations were the International Panel on Climate Change Tier 2 method, 3 equations for steers that considered gross energy intake (GEI) and body weight and an equation that considered dry matter intake and starch:neutral detergent fiber with r c ranging from 0.60 to 0.73 and RMSPE from 35.6 to 45.9 g/day. For the high-grain diets, the 5 best-fit equations considered intakes of metabolisable energy, cellulose, hemicellulose and fat, or for steers GEI and body weight, with r c ranging from 0.35 to 0.52 and RMSPE from 47.4 to 62.9 g/day. Ranking of extant CH4 prediction equations for their accuracy and precision differed with forage content of the diet. When used for cattle fed high-grain diets, extant CH4 prediction models were generally imprecise and lacked accuracy.

  3. A Framework Based on Reference Data with Superordinate Accuracy for the Quality Analysis of Terrestrial Laser Scanning-Based Multi-Sensor-Systems.

    PubMed

    Stenz, Ulrich; Hartmann, Jens; Paffenholz, Jens-André; Neumann, Ingo

    2017-08-16

    Terrestrial laser scanning (TLS) is an efficient solution to collect large-scale data. The efficiency can be increased by combining TLS with additional sensors in a TLS-based multi-sensor-system (MSS). The uncertainty of scanned points is not homogenous and depends on many different influencing factors. These include the sensor properties, referencing, scan geometry (e.g., distance and angle of incidence), environmental conditions (e.g., atmospheric conditions) and the scanned object (e.g., material, color and reflectance, etc.). The paper presents methods, infrastructure and results for the validation of the suitability of TLS and TLS-based MSS. Main aspects are the backward modelling of the uncertainty on the basis of reference data (e.g., point clouds) with superordinate accuracy and the appropriation of a suitable environment/infrastructure (e.g., the calibration process of the targets for the registration of laser scanner and laser tracker data in a common coordinate system with high accuracy) In this context superordinate accuracy means that the accuracy of the acquired reference data is better by a factor of 10 than the data of the validated TLS and TLS-based MSS. These aspects play an important role in engineering geodesy, where the aimed accuracy lies in a range of a few mm or less.

  4. Diagnostic accuracy of Xpert MTB/RIF assay for musculoskeletal tuberculosis: a meta-analysis.

    PubMed

    Wen, Hai; Li, Pengzhi; Ma, Hong; Lv, Guohua

    2017-01-01

    Xpert MTB/RIF assay, a rapid and automated real-time nucleic acid amplification test, has been reported for the diagnosis of musculoskeletal tuberculosis (TB) in current years. This meta-analysis aims to determine the diagnostic accuracy of Xpert for the detection of musculoskeletal TB and rifampicin (RIF) resistance. We searched PubMed, Embase, China National Knowledge Infrastructure, and Wanfang for original articles published up to 1st June 2017 to identify studies in which the Xpert assay was applied to diagnose musculoskeletal TB. Pooled estimates were calculated using a random-effects model or a fixed-effects model according to heterogeneity. Summary receiver operating characteristic curves and the area under the curve (AUC) were used to summarize overall diagnostic performance. Deeks' test was performed to evaluate potential publication bias. Twelve studies were identified with a pooled sensitivity and specificity of respectively 0.81 (95% confidence interval [CI] 0.78-0.83) and 0.83 (95% CI 0.80-0.86) of Xpert for the diagnosis of musculoskeletal TB. Xpert was highly sensitive (0.89, 95% CI 0.79-0.95) and highly specific (0.96, 95% CI 0.92-0.98) in detecting RIF resistance. AUC (over 0.9) suggested a relatively high level of overall diagnostic accuracy of Xpert for detecting musculoskeletal TB and RIF resistance. Prevalence and reference standard were indicated to be sources of heterogeneity between studies. No publication bias was found. This study provides available evidence of the rapid and effective role of Xpert in diagnosing musculoskeletal TB and detecting RIF resistance.

  5. Increasing the accuracy and scalability of the Immunofluorescence Assay for Epstein Barr Virus by inferring continuous titers from a single sample dilution.

    PubMed

    Goh, Sherry Meow Peng; Swaminathan, Muthukaruppan; Lai, Julian U-Ming; Anwar, Azlinda; Chan, Soh Ha; Cheong, Ian

    2017-01-01

    High Epstein Barr Virus (EBV) titers detected by the indirect Immunofluorescence Assay (IFA) are a reliable predictor of Nasopharyngeal Carcinoma (NPC). Despite being the gold standard for serological detection of NPC, the IFA is limited by scaling bottlenecks. Specifically, 5 serial dilutions of each patient sample must be prepared and visually matched by an evaluator to one of 5 discrete titers. Here, we describe a simple method for inferring continuous EBV titers from IFA images acquired from NPC-positive patient sera using only a single sample dilution. In the first part of our study, 2 blinded evaluators used a set of reference titer standards to perform independent re-evaluations of historical samples with known titers. Besides exhibiting high inter-evaluator agreement, both evaluators were also in high concordance with historical titers, thus validating the accuracy of the reference titer standards. In the second part of the study, the reference titer standards were IFA-processed and assigned an 'EBV Score' using image analysis. A log-linear relationship between titers and EBV Score was observed. This relationship was preserved even when images were acquired and analyzed 3days post-IFA. We conclude that image analysis of IFA-processed samples can be used to infer a continuous EBV titer with just a single dilution of NPC-positive patient sera. This work opens new possibilities for improving the accuracy and scalability of IFA in the context of clinical screening. Copyright © 2016. Published by Elsevier B.V.

  6. Systematic Review and Meta-Analysis of CT Features for Differentiating Complicated and Uncomplicated Appendicitis.

    PubMed

    Kim, Hae Young; Park, Ji Hoon; Lee, Yoon Jin; Lee, Sung Soo; Jeon, Jong-June; Lee, Kyoung Ho

    2018-04-01

    Purpose To perform a systematic review and meta-analysis to identify computed tomographic (CT) features for differentiating complicated appendicitis in patients suspected of having appendicitis and to summarize their diagnostic accuracy. Materials and Methods Studies on diagnostic accuracy of CT features for differentiating complicated appendicitis (perforated or gangrenous appendicitis) in patients suspected of having appendicitis were searched in Ovid-MEDLINE, EMBASE, and the Cochrane Library. Overlapping descriptors used in different studies to denote the same image finding were subsumed under a single CT feature. Pooled diagnostic accuracy of the CT features was calculated by using a bivariate random effects model. CT features with pooled diagnostic odds ratios with 95% confidence intervals not including 1 were considered as informative. Results Twenty-three studies were included, and 184 overlapping descriptors for various CT findings were subsumed under 14 features. Of these, 10 features were informative for complicated appendicitis. There was a general tendency for these features to show relatively high specificity but low sensitivity. Extraluminal appendicolith, abscess, appendiceal wall enhancement defect, extraluminal air, ileus, periappendiceal fluid collection, ascites, intraluminal air, and intraluminal appendicolith showed pooled specificity greater than 70% (range, 74%-100%), but sensitivity was limited (range, 14%-59%). Periappendiceal fat stranding was the only feature that showed high sensitivity (94%; 95% confidence interval: 86%, 98%) but low specificity (40%; 95% confidence interval, 23%, 60%). Conclusion Ten informative CT features for differentiating complicated appendicitis were identified in this study, nine of which showed high specificity, but low sensitivity. © RSNA, 2017 Online supplemental material is available for this article.

  7. Molecular Tools for Diagnosis of Visceral Leishmaniasis: Systematic Review and Meta-Analysis of Diagnostic Test Accuracy

    PubMed Central

    de Ruiter, C. M.; van der Veer, C.; Leeflang, M. M. G.; Deborggraeve, S.; Lucas, C.

    2014-01-01

    Molecular methods have been proposed as highly sensitive tools for the detection of Leishmania parasites in visceral leishmaniasis (VL) patients. Here, we evaluate the diagnostic accuracy of these tools in a meta-analysis of the published literature. The selection criteria were original studies that evaluate the sensitivities and specificities of molecular tests for diagnosis of VL, adequate classification of study participants, and the absolute numbers of true positives and negatives derivable from the data presented. Forty studies met the selection criteria, including PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), and loop-mediated isothermal amplification (LAMP). The sensitivities of the individual studies ranged from 29 to 100%, and the specificities ranged from 25 to 100%. The pooled sensitivity of PCR in whole blood was 93.1% (95% confidence interval [CI], 90.0 to 95.2), and the specificity was 95.6% (95% CI, 87.0 to 98.6). The specificity was significantly lower in consecutive studies, at 63.3% (95% CI, 53.9 to 71.8), due either to true-positive patients not being identified by parasitological methods or to the number of asymptomatic carriers in areas of endemicity. PCR for patients with HIV-VL coinfection showed high diagnostic accuracy in buffy coat and bone marrow, ranging from 93.1 to 96.9%. Molecular tools are highly sensitive assays for Leishmania detection and may contribute as an additional test in the algorithm, together with a clear clinical case definition. We observed wide variety in reference standards and study designs and now recommend consecutively designed studies. PMID:24829226

  8. Discrimination of benign and neoplastic mucosa with a high-resolution microendoscope (HRME) in head and neck cancer.

    PubMed

    Vila, Peter M; Park, Chan W; Pierce, Mark C; Goldstein, Gregg H; Levy, Lauren; Gurudutt, Vivek V; Polydorides, Alexandros D; Godbold, James H; Teng, Marita S; Genden, Eric M; Miles, Brett A; Anandasabapathy, Sharmila; Gillenwater, Ann M; Richards-Kortum, Rebecca; Sikora, Andrew G

    2012-10-01

    The efficacy of ablative surgery for head and neck squamous cell carcinoma (HNSCC) depends critically on obtaining negative margins. Although intraoperative "frozen section" analysis of margins is a valuable adjunct, it is expensive, time-consuming, and highly dependent on pathologist expertise. Optical imaging has potential to improve the accuracy of margins by identifying cancerous tissue in real time. Our goal was to determine the accuracy and inter-rater reliability of head and neck cancer specialists using high-resolution microendoscopic (HRME) images to discriminate between cancerous and benign mucosa. Thirty-eight patients diagnosed with head and neck squamous cell carcinoma (HNSCC) were enrolled in this single-center study. HRME was used to image each specimen after application of proflavine, with concurrent standard histopathologic analysis. Images were evaluated for quality control, and a training set containing representative images of benign and neoplastic tissue was assembled. After viewing training images, seven head and neck cancer specialists with no previous HRME experience reviewed 36 test images and were asked to classify each. The mean accuracy of all reviewers in correctly diagnosing neoplastic mucosa was 97% (95% confidence interval (CI), 94-99%). The mean sensitivity and specificity were 98% (97-100%) and 92% (87-98%), respectively. The Fleiss kappa statistic for inter-rater reliability was 0.84 (0.77-0.91). Medical professionals can be quickly trained to use HRME to discriminate between benign and neoplastic mucosa in the head and neck. With further development, the HRME shows promise as a method of real-time margin determination at the point of care.

  9. Discrimination of Benign and Neoplastic Mucosa with a High-Resolution Microendoscope (HRME) in Head and Neck Cancer

    PubMed Central

    Vila, Peter M.; Park, Chan W.; Pierce, Mark C.; Goldstein, Gregg H.; Levy, Lauren; Gurudutt, Vivek V.; Polydorides, Alexandras D.; Godbold, James H.; Teng, Marita S.; Genden, Eric M.; Miles, Brett A.; Anandasabapathy, Sharmila; Gillenwater, Ann M.; Richards-Kortum, Rebecca; Sikora, Andrew G.

    2012-01-01

    Background The efficacy of ablative surgery for head and neck squamous cell carcinoma (HNSCC) depends critically on obtaining negative margins. While intraoperative "frozen section" analysis of margins is a valuable adjunct, it is expensive, time-consuming, and highly dependent on pathologist expertise. Optical imaging has potential to improve the accuracy of margins by identifying cancerous tissue in real time. Our aim was to determine the accuracy and inter-rater reliability of head and neck cancer specialists using high-resolution microendoscopic (HRME) images to discriminate between cancerous and benign mucosa. Methods Thirty-eight patients diagnosed with HNSCC were enrolled in this single-center study. HRME was used to image each specimen after application of proflavine, with concurrent standard histopathologic analysis. Images were evaluated for quality control, and a training set containing representative images of benign and neoplastic tissue was assembled. After viewing training images, seven head and neck cancer specialists with no prior HRME experience reviewed 37 test images and were asked to classify each. Results The mean accuracy of all reviewers in correctly diagnosing neoplastic mucosa was 97 percent (95% Cl = 94–99%). The mean sensitivity and specificity were 98 percent (97–100%) and 92 percent (87–98%), respectively. The Fleiss kappa statistic for inter-rater reliability was 0.84 (0.77–0.91). Conclusions Medical professionals can be quickly trained to use HRME to discriminate between benign and neoplastic mucosa in the head and neck. With further development, the HRME shows promise as a method of real-time margin determination at the point of care. PMID:22492225

  10. Individual Finger Control of the Modular Prosthetic Limb using High-Density Electrocorticography in a Human Subject

    PubMed Central

    Fifer, Matthew S.; Johannes, Matthew S.; Katyal, Kapil D.; Para, Matthew P.; Armiger, Robert; Anderson, William S.; Thakor, Nitish V.; Wester, Brock A.; Crone, Nathan E.

    2016-01-01

    Objective We used native sensorimotor representations of fingers in a brain-machine interface to achieve immediate online control of individual prosthetic fingers. Approach Using high gamma responses recorded with a high-density ECoG array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: 1) if any finger was moving, and, if so, 2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory (JHU/APL) Modular Prosthetic Limb (MPL). Main Results The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Significance Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time. PMID:26863276

  11. Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject

    NASA Astrophysics Data System (ADS)

    Hotson, Guy; McMullen, David P.; Fifer, Matthew S.; Johannes, Matthew S.; Katyal, Kapil D.; Para, Matthew P.; Armiger, Robert; Anderson, William S.; Thakor, Nitish V.; Wester, Brock A.; Crone, Nathan E.

    2016-04-01

    Objective. We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers. Approach. Using high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: (1) if any finger was moving, and, if so, (2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory modular prosthetic limb. Main results. The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Significance. Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time.

  12. Using Meta-Analysis to Inform the Design of Subsequent Studies of Diagnostic Test Accuracy

    ERIC Educational Resources Information Center

    Hinchliffe, Sally R.; Crowther, Michael J.; Phillips, Robert S.; Sutton, Alex J.

    2013-01-01

    An individual diagnostic accuracy study rarely provides enough information to make conclusive recommendations about the accuracy of a diagnostic test; particularly when the study is small. Meta-analysis methods provide a way of combining information from multiple studies, reducing uncertainty in the result and hopefully providing substantial…

  13. Low Frequency Error Analysis and Calibration for High-Resolution Optical Satellite's Uncontrolled Geometric Positioning

    NASA Astrophysics Data System (ADS)

    Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng

    2016-06-01

    The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.

  14. Identification of suitable genes contributes to lung adenocarcinoma clustering by multiple meta-analysis methods.

    PubMed

    Yang, Ze-Hui; Zheng, Rui; Gao, Yuan; Zhang, Qiang

    2016-09-01

    With the widespread application of high-throughput technology, numerous meta-analysis methods have been proposed for differential expression profiling across multiple studies. We identified the suitable differentially expressed (DE) genes that contributed to lung adenocarcinoma (ADC) clustering based on seven popular multiple meta-analysis methods. Seven microarray expression profiles of ADC and normal controls were extracted from the ArrayExpress database. The Bioconductor was used to perform the data preliminary preprocessing. Then, DE genes across multiple studies were identified. Hierarchical clustering was applied to compare the classification performance for microarray data samples. The classification efficiency was compared based on accuracy, sensitivity and specificity. Across seven datasets, 573 ADC cases and 222 normal controls were collected. After filtering out unexpressed and noninformative genes, 3688 genes were remained for further analysis. The classification efficiency analysis showed that DE genes identified by sum of ranks method separated ADC from normal controls with the best accuracy, sensitivity and specificity of 0.953, 0.969 and 0.932, respectively. The gene set with the highest classification accuracy mainly participated in the regulation of response to external stimulus (P = 7.97E-04), cyclic nucleotide-mediated signaling (P = 0.01), regulation of cell morphogenesis (P = 0.01) and regulation of cell proliferation (P = 0.01). Evaluation of DE genes identified by different meta-analysis methods in classification efficiency provided a new perspective to the choice of the suitable method in a given application. Varying meta-analysis methods always present varying abilities, so synthetic consideration should be taken when providing meta-analysis methods for particular research. © 2015 John Wiley & Sons Ltd.

  15. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong W. Lee

    During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalizedmore » room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.« less

  16. Estimation of Trees Outside Forests using IRS High Resolution data by Object Based Image Analysis

    NASA Astrophysics Data System (ADS)

    Pujar, G. S.; Reddy, P. M.; Reddy, C. S.; Jha, C. S.; Dadhwal, V. K.

    2014-11-01

    Assessment of Trees outside forests (TOF) is widely being recognized as a pivotal theme, in sustainable natural resource management, due to their role in offering variety of goods, such as timber, fruits and fodder as well as services like water, carbon, biodiversity. Forest Conservation efforts involving reduction of deforestation and degradation may have to increasingly rely on alternatives provided by TOF in catering to economic demands in forest edges. Spatial information systems involving imaging, analysis and monitoring to achieve objectives under protocols like REDD+, require incorporation of information content from areas under forest as well as trees outside forests, to aid holistic decisions. In this perspective, automation in retrieving information on area under trees, growing outside forests, using high resolution imaging is essential so that measuring and verification of extant carbon pools, are strengthened. Retrieval of this tree cover is demonstrated herewith, using object based image analysis in a forest edge of dry deciduous forests of Eastern Ghats, in Khammam district of Telangana state of India. IRS high resolution panchromatic 2.5 m data (Cartosat-1 Orthorectified) used in tandem with 5.8 m multispectral LISS IV data, discerns tree crowns and clusters at a detailed scale and hence semi-automated approach is attempted to classify TOF from a pair of image from relatively crop and cloud free season. Object based image analysis(OBIA) approach as implemented in commercial suite of e-Cognition (Ver 8.9) consists of segmentation at user defined scale followed by application of wide range of spectral, textural and object geometry based parameters for classification. Software offers innovative blend of raster and vector features that can be juxtaposed flexibly, across scales horizontally or vertically. Segmentation was carried out at multiple scales to discern first the major land covers, such as forest, water, agriculture followed by that at a finer scale, within cultivated landscape. Latter scale aimed to segregate TOF in configurations such as individual or scattered crowns, linear formations and patch TOF. As per the adopted norms in India for defining tree cover, units up to 1 ha area were considered as candidate TOF. Classification of fine scale (at 10) segments was accomplished using size, shape and texture. A customised parameter involving ratio of area of segment to its main skeleton length discerned linear formations consistently. Texture of Cartosat-1 2.5 m data was also used segregate tree cover from smoother crop patches in patch TOF category. In view of the specificity of the landscape character, continuum of cultivated area (b) and pockets of cultivation within forest (c) as well as the entire study area (a) were considered as three envelopes for evaluating the accuracy of the method. Accuracies not less than 75.1 per cent were reported in all the envelopes with a kappa accuracy of not less than 0.58. Overall accuracy of entire study area was 75.9 per cent with Kappa of 0.59 followed by 75.1 per cent ( Kappa: 0.58 ) of agricultural landscape (b). In pockets of cultivation context(c) accuracy was higher at 79.2 per cent ( Kappa: 0.64 ) possibly due to smaller population. Assessment showed that 1,791 ha of 24,140 ha studied (7.42 %) was under tree cover as per the definitions adopted. Strength of accuracy demonstrated obviously points to the potential of IRS high resolution data combination in setting up procedures to monitor the TOF in Indian context using OBIA approach so as to cater to the evolving demands of resource assessment and monitoring.

  17. Real-time catheter tracking for high-dose-rate prostate brachytherapy using an electromagnetic 3D-guidance device: A preliminary performance study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Jun; Sebastian, Evelyn; Mangona, Victor

    2013-02-15

    Purpose: In order to increase the accuracy and speed of catheter reconstruction in a high-dose-rate (HDR) prostate implant procedure, an automatic tracking system has been developed using an electromagnetic (EM) device (trakSTAR, Ascension Technology, VT). The performance of the system, including the accuracy and noise level with various tracking parameters and conditions, were investigated. Methods: A direct current (dc) EM transmitter (midrange model) and a sensor with diameter of 1.3 mm (Model 130) were used in the trakSTAR system for tracking catheter position during HDR prostate brachytherapy. Localization accuracy was assessed under both static and dynamic analyses conditions. For themore » static analysis, a calibration phantom was used to investigate error dependency on operating room (OR) table height (bottom vs midposition vs top), sensor position (distal tip of catheter vs connector end of catheter), direction [left-right (LR) vs anterior-posterior (AP) vs superior-inferior (SI)], sampling frequency (40 vs 80 vs 120 Hz), and interference from OR equipment (present vs absent). The mean and standard deviation of the localization offset in each direction and the corresponding error vectors were calculated. For dynamic analysis, the paths of five straight catheters were tracked to study the effects of directions, sampling frequency, and interference of EM field. Statistical analysis was conducted to compare the results in different configurations. Results: When interference was present in the static analysis, the error vectors were significantly higher at the top table position (3.3 {+-} 1.3 vs 1.8 {+-} 0.9 mm at bottom and 1.7 {+-} 1.0 mm at middle, p < 0.001), at catheter end position (3.1 {+-} 1.1 vs 1.4 {+-} 0.7 mm at the tip position, p < 0.001), and at 40 Hz sampling frequency (2.6 {+-} 1.1 vs 2.4 {+-} 1.5 mm at 80 Hz and 1.8 {+-} 1.1 at 160 Hz, p < 0.001). So did the mean offset errors in the LR direction (-1.7 {+-} 1.4 vs 0.4 {+-} 0.5 mm in AP and 0.8 {+-} 0.8 mm in SI directions, p < 0.001). The error vectors were significantly higher with surrounding interference (2.2 {+-} 1.3 mm) vs without interference (1.0 {+-} 0.7 mm, p < 0.001). An accuracy of 1.6 {+-} 0.2 mm can be reached when using optimum configuration (160 Hz at middle table position). When interference was present in the dynamic tracking, the mean tracking errors in LR direction (1.4 {+-} 0.5 mm) was significantly higher than that in AP direction (0.3 {+-} 0.2 mm, p < 0.001). So did the mean vector errors at 40 Hz (2.1 {+-} 0.2 mm vs 1.3 {+-} 0.2 mm at 80 Hz and 0.9 {+-} 0.2 mm at 160 Hz, p < 0.05). However, when interference was absent, they were comparable in the both directions and at all sampling frequencies. An accuracy of 0.9 {+-} 0.2 mm was obtained for the dynamic tracking when using optimum configuration. Conclusions: The performance of an EM tracking system depends highly on the system configuration and surrounding environment. The accuracy of EM tracking for catheter reconstruction in a prostate HDR brachytherapy procedure can be improved by reducing interference from surrounding equipment, decreasing distance from transmitter to tracking area, and choosing appropriated sampling frequency. A calibration scheme is needed to further reduce the tracking error when the interference is high.« less

  18. Automated radial basis function neural network based image classification system for diabetic retinopathy detection in retinal images

    NASA Astrophysics Data System (ADS)

    Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude

    2010-02-01

    Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.

  19. High-accuracy peak picking of proteomics data using wavelet techniques.

    PubMed

    Lange, Eva; Gröpl, Clemens; Reinert, Knut; Kohlbacher, Oliver; Hildebrandt, Andreas

    2006-01-01

    A new peak picking algorithm for the analysis of mass spectrometric (MS) data is presented. It is independent of the underlying machine or ionization method, and is able to resolve highly convoluted and asymmetric signals. The method uses the multiscale nature of spectrometric data by first detecting the mass peaks in the wavelet-transformed signal before a given asymmetric peak function is fitted to the raw data. In an optional third stage, the resulting fit can be further improved using techniques from nonlinear optimization. In contrast to currently established techniques (e.g. SNAP, Apex) our algorithm is able to separate overlapping peaks of multiply charged peptides in ESI-MS data of low resolution. Its improved accuracy with respect to peak positions makes it a valuable preprocessing method for MS-based identification and quantification experiments. The method has been validated on a number of different annotated test cases, where it compares favorably in both runtime and accuracy with currently established techniques. An implementation of the algorithm is freely available in our open source framework OpenMS.

  20. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals

    PubMed Central

    Zhang, Wei; Peng, Gaoliang; Li, Chuanhao; Chen, Yuanhang; Zhang, Zhujun

    2017-01-01

    Intelligent fault diagnosis techniques have replaced time-consuming and unreliable human analysis, increasing the efficiency of fault diagnosis. Deep learning models can improve the accuracy of intelligent fault diagnosis with the help of their multilayer nonlinear mapping ability. This paper proposes a novel method named Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN). The proposed method uses raw vibration signals as input (data augmentation is used to generate more inputs), and uses the wide kernels in the first convolutional layer for extracting features and suppressing high frequency noise. Small convolutional kernels in the preceding layers are used for multilayer nonlinear mapping. AdaBN is implemented to improve the domain adaptation ability of the model. The proposed model addresses the problem that currently, the accuracy of CNN applied to fault diagnosis is not very high. WDCNN can not only achieve 100% classification accuracy on normal signals, but also outperform the state-of-the-art DNN model which is based on frequency features under different working load and noisy environment conditions. PMID:28241451

  1. Elevation correction factor for absolute pressure measurements

    NASA Technical Reports Server (NTRS)

    Panek, Joseph W.; Sorrells, Mark R.

    1996-01-01

    With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.

  2. Checking the predictive accuracy of basic symptoms against ultra high-risk criteria and testing of a multivariable prediction model: Evidence from a prospective three-year observational study of persons at clinical high-risk for psychosis.

    PubMed

    Hengartner, M P; Heekeren, K; Dvorsky, D; Walitza, S; Rössler, W; Theodoridou, A

    2017-09-01

    The aim of this study was to critically examine the prognostic validity of various clinical high-risk (CHR) criteria alone and in combination with additional clinical characteristics. A total of 188 CHR positive persons from the region of Zurich, Switzerland (mean age 20.5 years; 60.2% male), meeting ultra high-risk (UHR) and/or basic symptoms (BS) criteria, were followed over three years. The test battery included the Structured Interview for Prodromal Syndromes (SIPS), verbal IQ and many other screening tools. Conversion to psychosis was defined according to ICD-10 criteria for schizophrenia (F20) or brief psychotic disorder (F23). Altogether n=24 persons developed manifest psychosis within three years and according to Kaplan-Meier survival analysis, the projected conversion rate was 17.5%. The predictive accuracy of UHR was statistically significant but poor (area under the curve [AUC]=0.65, P<.05), whereas BS did not predict psychosis beyond mere chance (AUC=0.52, P=.730). Sensitivity and specificity were 0.83 and 0.47 for UHR, and 0.96 and 0.09 for BS. UHR plus BS achieved an AUC=0.66, with sensitivity and specificity of 0.75 and 0.56. In comparison, baseline antipsychotic medication yielded a predictive accuracy of AUC=0.62 (sensitivity=0.42; specificity=0.82). A multivariable prediction model comprising continuous measures of positive symptoms and verbal IQ achieved a substantially improved prognostic accuracy (AUC=0.85; sensitivity=0.86; specificity=0.85; positive predictive value=0.54; negative predictive value=0.97). We showed that BS have no predictive accuracy beyond chance, while UHR criteria poorly predict conversion to psychosis. Combining BS with UHR criteria did not improve the predictive accuracy of UHR alone. In contrast, dimensional measures of both positive symptoms and verbal IQ showed excellent prognostic validity. A critical re-thinking of binary at-risk criteria is necessary in order to improve the prognosis of psychotic disorders. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Computer-aided analysis of star shot films for high-accuracy radiation therapy treatment units

    NASA Astrophysics Data System (ADS)

    Depuydt, Tom; Penne, Rudi; Verellen, Dirk; Hrbacek, Jan; Lang, Stephanie; Leysen, Katrien; Vandevondel, Iwein; Poels, Kenneth; Reynders, Truus; Gevaert, Thierry; Duchateau, Michael; Tournel, Koen; Boussaer, Marlies; Cosentino, Dorian; Garibaldi, Cristina; Solberg, Timothy; De Ridder, Mark

    2012-05-01

    As mechanical stability of radiation therapy treatment devices has gone beyond sub-millimeter levels, there is a rising demand for simple yet highly accurate measurement techniques to support the routine quality control of these devices. A combination of using high-resolution radiosensitive film and computer-aided analysis could provide an answer. One generally known technique is the acquisition of star shot films to determine the mechanical stability of rotations of gantries and the therapeutic beam. With computer-aided analysis, mechanical performance can be quantified as a radiation isocenter radius size. In this work, computer-aided analysis of star shot film is further refined by applying an analytical solution for the smallest intersecting circle problem, in contrast to the gradient optimization approaches used until today. An algorithm is presented and subjected to a performance test using two different types of radiosensitive film, the Kodak EDR2 radiographic film and the ISP EBT2 radiochromic film. Artificial star shots with a priori known radiation isocenter size are used to determine the systematic errors introduced by the digitization of the film and the computer analysis. The estimated uncertainty on the isocenter size measurement with the presented technique was 0.04 mm (2σ) and 0.06 mm (2σ) for radiographic and radiochromic films, respectively. As an application of the technique, a study was conducted to compare the mechanical stability of O-ring gantry systems with C-arm-based gantries. In total ten systems of five different institutions were included in this study and star shots were acquired for gantry, collimator, ring, couch rotations and gantry wobble. It was not possible to draw general conclusions about differences in mechanical performance between O-ring and C-arm gantry systems, mainly due to differences in the beam-MLC alignment procedure accuracy. Nevertheless, the best performing O-ring system in this study, a BrainLab/MHI Vero system, and the best performing C-arm system, a Varian Truebeam system, showed comparable mechanical performance: gantry isocenter radius of 0.12 and 0.09 mm, respectively, ring/couch rotation of below 0.10 mm for both systems and a wobble of 0.06 and 0.18 mm, respectively. The methodology described in this work can be used to monitor mechanical performance constancy of high-accuracy treatment devices, with means available in a clinical radiation therapy environment.

  4. Remote Sensing Applications with High Reliability in Changjiang Water Resource Management

    NASA Astrophysics Data System (ADS)

    Ma, L.; Gao, S.; Yang, A.

    2018-04-01

    Remote sensing technology has been widely used in many fields. But most of the applications cannot get the information with high reliability and high accuracy in large scale, especially for the applications using automatic interpretation methods. We have designed an application-oriented technology system (PIR) composed of a series of accurate interpretation techniques,which can get over 85 % correctness in Water Resource Management from the view of photogrammetry and expert knowledge. The techniques compose of the spatial positioning techniques from the view of photogrammetry, the feature interpretation techniques from the view of expert knowledge, and the rationality analysis techniques from the view of data mining. Each interpreted polygon is accurate enough to be applied to the accuracy sensitive projects, such as the Three Gorge Project and the South - to - North Water Diversion Project. In this paper, we present several remote sensing applications with high reliability in Changjiang Water Resource Management,including water pollution investigation, illegal construction inspection, and water conservation monitoring, etc.

  5. Robust continuous clustering

    PubMed Central

    Shah, Sohil Atul

    2017-01-01

    Clustering is a fundamental procedure in the analysis of scientific data. It is used ubiquitously across the sciences. Despite decades of research, existing clustering algorithms have limited effectiveness in high dimensions and often require tuning parameters for different domains and datasets. We present a clustering algorithm that achieves high accuracy across multiple domains and scales efficiently to high dimensions and large datasets. The presented algorithm optimizes a smooth continuous objective, which is based on robust statistics and allows heavily mixed clusters to be untangled. The continuous nature of the objective also allows clustering to be integrated as a module in end-to-end feature learning pipelines. We demonstrate this by extending the algorithm to perform joint clustering and dimensionality reduction by efficiently optimizing a continuous global objective. The presented approach is evaluated on large datasets of faces, hand-written digits, objects, newswire articles, sensor readings from the Space Shuttle, and protein expression levels. Our method achieves high accuracy across all datasets, outperforming the best prior algorithm by a factor of 3 in average rank. PMID:28851838

  6. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    DOE PAGES

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; ...

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less

  7. Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography.

    PubMed

    Marceau, R K W; Choi, P; Raabe, D

    2013-09-01

    A high-Mn TWIP steel having composition Fe-22Mn-0.6C (wt%) is considered in this study, where the need for accurate and quantitative analysis of clustering and short-range ordering by atom probe analysis requires a better understanding of the detection of carbon in this system. Experimental measurements reveal that a high percentage of carbon atoms are detected as molecular ion species and on multiple hit events, which is discussed with respect to issues such as optimal experimental parameters, correlated field evaporation and directional walk/migration of carbon atoms at the surface of the specimen tip during analysis. These phenomena impact the compositional and spatial accuracy of the atom probe measurement and thus require careful consideration for further cluster-finding analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Methodological quality of diagnostic accuracy studies on non-invasive coronary CT angiography: influence of QUADAS (Quality Assessment of Diagnostic Accuracy Studies included in systematic reviews) items on sensitivity and specificity.

    PubMed

    Schueler, Sabine; Walther, Stefan; Schuetz, Georg M; Schlattmann, Peter; Dewey, Marc

    2013-06-01

    To evaluate the methodological quality of diagnostic accuracy studies on coronary computed tomography (CT) angiography using the QUADAS (Quality Assessment of Diagnostic Accuracy Studies included in systematic reviews) tool. Each QUADAS item was individually defined to adapt it to the special requirements of studies on coronary CT angiography. Two independent investigators analysed 118 studies using 12 QUADAS items. Meta-regression and pooled analyses were performed to identify possible effects of methodological quality items on estimates of diagnostic accuracy. The overall methodological quality of coronary CT studies was merely moderate. They fulfilled a median of 7.5 out of 12 items. Only 9 of the 118 studies fulfilled more than 75 % of possible QUADAS items. One QUADAS item ("Uninterpretable Results") showed a significant influence (P = 0.02) on estimates of diagnostic accuracy with "no fulfilment" increasing specificity from 86 to 90 %. Furthermore, pooled analysis revealed that each QUADAS item that is not fulfilled has the potential to change estimates of diagnostic accuracy. The methodological quality of studies investigating the diagnostic accuracy of non-invasive coronary CT is only moderate and was found to affect the sensitivity and specificity. An improvement is highly desirable because good methodology is crucial for adequately assessing imaging technologies. • Good methodological quality is a basic requirement in diagnostic accuracy studies. • Most coronary CT angiography studies have only been of moderate design quality. • Weak methodological quality will affect the sensitivity and specificity. • No improvement in methodological quality was observed over time. • Authors should consider the QUADAS checklist when undertaking accuracy studies.

  9. A novel visual-inertial monocular SLAM

    NASA Astrophysics Data System (ADS)

    Yue, Xiaofeng; Zhang, Wenjuan; Xu, Li; Liu, JiangGuo

    2018-02-01

    With the development of sensors and computer vision research community, cameras, which are accurate, compact, wellunderstood and most importantly cheap and ubiquitous today, have gradually been at the center of robot location. Simultaneous localization and mapping (SLAM) using visual features, which is a system getting motion information from image acquisition equipment and rebuild the structure in unknown environment. We provide an analysis of bioinspired flights in insects, employing a novel technique based on SLAM. Then combining visual and inertial measurements to get high accuracy and robustness. we present a novel tightly-coupled Visual-Inertial Simultaneous Localization and Mapping system which get a new attempt to address two challenges which are the initialization problem and the calibration problem. experimental results and analysis show the proposed approach has a more accurate quantitative simulation of insect navigation, which can reach the positioning accuracy of centimeter level.

  10. The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites

    NASA Astrophysics Data System (ADS)

    Gwinner, K.; Jaumann, R.; Hauber, E.; Hoffmann, H.; Heipke, C.; Oberst, J.; Neukum, G.; Ansan, V.; Bostelmann, J.; Dumke, A.; Elgner, S.; Erkeling, G.; Fueten, F.; Hiesinger, H.; Hoekzema, N. M.; Kersten, E.; Loizeau, D.; Matz, K.-D.; McGuire, P. C.; Mertens, V.; Michael, G.; Pasewaldt, A.; Pinet, P.; Preusker, F.; Reiss, D.; Roatsch, T.; Schmidt, R.; Scholten, F.; Spiegel, M.; Stesky, R.; Tirsch, D.; van Gasselt, S.; Walter, S.; Wählisch, M.; Willner, K.

    2016-07-01

    The High Resolution Stereo Camera (HRSC) of ESA's Mars Express is designed to map and investigate the topography of Mars. The camera, in particular its Super Resolution Channel (SRC), also obtains images of Phobos and Deimos on a regular basis. As HRSC is a push broom scanning instrument with nine CCD line detectors mounted in parallel, its unique feature is the ability to obtain along-track stereo images and four colors during a single orbital pass. The sub-pixel accuracy of 3D points derived from stereo analysis allows producing DTMs with grid size of up to 50 m and height accuracy on the order of one image ground pixel and better, as well as corresponding orthoimages. Such data products have been produced systematically for approximately 40% of the surface of Mars so far, while global shape models and a near-global orthoimage mosaic could be produced for Phobos. HRSC is also unique because it bridges between laser altimetry and topography data derived from other stereo imaging instruments, and provides geodetic reference data and geological context to a variety of non-stereo datasets. This paper, in addition to an overview of the status and evolution of the experiment, provides a review of relevant methods applied for 3D reconstruction and mapping, and respective achievements. We will also review the methodology of specific approaches to science analysis based on joint analysis of DTM and orthoimage information, or benefitting from high accuracy of co-registration between multiple datasets, such as studies using multi-temporal or multi-angular observations, from the fields of geomorphology, structural geology, compositional mapping, and atmospheric science. Related exemplary results from analysis of HRSC data will be discussed. After 10 years of operation, HRSC covered about 70% of the surface by panchromatic images at 10-20 m/pixel, and about 97% at better than 100 m/pixel. As the areas with contiguous coverage by stereo data are increasingly abundant, we also present original data related to the analysis of image blocks and address methodology aspects of newly established procedures for the generation of multi-orbit DTMs and image mosaics. The current results suggest that multi-orbit DTMs with grid spacing of 50 m can be feasible for large parts of the surface, as well as brightness-adjusted image mosaics with co-registration accuracy of adjacent strips on the order of one pixel, and at the highest image resolution available. These characteristics are demonstrated by regional multi-orbit data products covering the MC-11 (East) quadrangle of Mars, representing the first prototype of a new HRSC data product level.

  11. Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry.

    PubMed

    von Roepenack-Lahaye, Edda; Degenkolb, Thomas; Zerjeski, Michael; Franz, Mathias; Roth, Udo; Wessjohann, Ludger; Schmidt, Jürgen; Scheel, Dierk; Clemens, Stephan

    2004-02-01

    Large-scale metabolic profiling is expected to develop into an integral part of functional genomics and systems biology. The metabolome of a cell or an organism is chemically highly complex. Therefore, comprehensive biochemical phenotyping requires a multitude of analytical techniques. Here, we describe a profiling approach that combines separation by capillary liquid chromatography with the high resolution, high sensitivity, and high mass accuracy of quadrupole time-of-flight mass spectrometry. About 2000 different mass signals can be detected in extracts of Arabidopsis roots and leaves. Many of these originate from Arabidopsis secondary metabolites. Detection based on retention times and exact masses is robust and reproducible. The dynamic range is sufficient for the quantification of metabolites. Assessment of the reproducibility of the analysis showed that biological variability exceeds technical variability. Tools were optimized or established for the automatic data deconvolution and data processing. Subtle differences between samples can be detected as tested with the chalcone synthase deficient tt4 mutant. The accuracy of time-of-flight mass analysis allows to calculate elemental compositions and to tentatively identify metabolites. In-source fragmentation and tandem mass spectrometry can be used to gain structural information. This approach has the potential to significantly contribute to establishing the metabolome of Arabidopsis and other model systems. The principles of separation and mass analysis of this technique, together with its sensitivity and resolving power, greatly expand the range of metabolic profiling.

  12. Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: A novel in vivo analysis method.

    PubMed

    Nedelcu, R; Olsson, P; Nyström, I; Rydén, J; Thor, A

    2018-02-01

    To evaluate a novel methodology using industrial scanners as a reference, and assess in vivo accuracy of 3 intraoral scanners (IOS) and conventional impressions. Further, to evaluate IOS precision in vivo. Four reference-bodies were bonded to the buccal surfaces of upper premolars and incisors in five subjects. After three reference-scans, ATOS Core 80 (ATOS), subjects were scanned three times with three IOS systems: 3M True Definition (3M), CEREC Omnicam (OMNI) and Trios 3 (TRIOS). One conventional impression (IMPR) was taken, 3M Impregum Penta Soft, and poured models were digitized with laboratory scanner 3shape D1000 (D1000). Best-fit alignment of reference-bodies and 3D Compare Analysis was performed. Precision of ATOS and D1000 was assessed for quantitative evaluation and comparison. Accuracy of IOS and IMPR were analyzed using ATOS as reference. Precision of IOS was evaluated through intra-system comparison. Precision of ATOS reference scanner (mean 0.6 μm) and D1000 (mean 0.5 μm) was high. Pairwise multiple comparisons of reference-bodies located in different tooth positions displayed a statistically significant difference of accuracy between two scanner-groups: 3M and TRIOS, over OMNI (p value range 0.0001 to 0.0006). IMPR did not show any statistically significant difference to IOS. However, deviations of IOS and IMPR were within a similar magnitude. No statistical difference was found for IOS precision. The methodology can be used for assessing accuracy of IOS and IMPR in vivo in up to five units bilaterally from midline. 3M and TRIOS had a higher accuracy than OMNI. IMPR overlapped both groups. Intraoral scanners can be used as a replacement for conventional impressions when restoring up to ten units without extended edentulous spans. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Urban Land Cover/use Change Detection Using High Resolution SPOT 5 and SPOT 6 Images and Urban Atlas Nomenclature

    NASA Astrophysics Data System (ADS)

    Akay, S. S.; Sertel, E.

    2016-06-01

    Urban land cover/use changes like urbanization and urban sprawl have been impacting the urban ecosystems significantly therefore determination of urban land cover/use changes is an important task to understand trends and status of urban ecosystems, to support urban planning and to aid decision-making for urban-based projects. High resolution satellite images could be used to accurately, periodically and quickly map urban land cover/use and their changes by time. This paper aims to determine urban land cover/use changes in Gaziantep city centre between 2010 and 2105 using object based images analysis and high resolution SPOT 5 and SPOT 6 images. 2.5 m SPOT 5 image obtained in 5th of June 2010 and 1.5 m SPOT 6 image obtained in 7th of July 2015 were used in this research to precisely determine land changes in five-year period. In addition to satellite images, various ancillary data namely Normalized Difference Vegetation Index (NDVI), Difference Water Index (NDWI) maps, cadastral maps, OpenStreetMaps, road maps and Land Cover maps, were integrated into the classification process to produce high accuracy urban land cover/use maps for these two years. Both images were geometrically corrected to fulfil the 1/10,000 scale geometric accuracy. Decision tree based object oriented classification was applied to identify twenty different urban land cover/use classes defined in European Urban Atlas project. Not only satellite images and satellite image-derived indices but also different thematic maps were integrated into decision tree analysis to create rule sets for accurate mapping of each class. Rule sets of each satellite image for the object based classification involves spectral, spatial and geometric parameter to automatically produce urban map of the city centre region. Total area of each class per related year and their changes in five-year period were determined and change trend in terms of class transformation were presented. Classification accuracy assessment was conducted by creating a confusion matrix to illustrate the thematic accuracy of each class.

  14. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies.

    PubMed

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1-98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting.

  15. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies

    PubMed Central

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O`Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting. PMID:26262681

  16. Multi-task Gaussian process for imputing missing data in multi-trait and multi-environment trials.

    PubMed

    Hori, Tomoaki; Montcho, David; Agbangla, Clement; Ebana, Kaworu; Futakuchi, Koichi; Iwata, Hiroyoshi

    2016-11-01

    A method based on a multi-task Gaussian process using self-measuring similarity gave increased accuracy for imputing missing phenotypic data in multi-trait and multi-environment trials. Multi-environmental trial (MET) data often encounter the problem of missing data. Accurate imputation of missing data makes subsequent analysis more effective and the results easier to understand. Moreover, accurate imputation may help to reduce the cost of phenotyping for thinned-out lines tested in METs. METs are generally performed for multiple traits that are correlated to each other. Correlation among traits can be useful information for imputation, but single-trait-based methods cannot utilize information shared by traits that are correlated. In this paper, we propose imputation methods based on a multi-task Gaussian process (MTGP) using self-measuring similarity kernels reflecting relationships among traits, genotypes, and environments. This framework allows us to use genetic correlation among multi-trait multi-environment data and also to combine MET data and marker genotype data. We compared the accuracy of three MTGP methods and iterative regularized PCA using rice MET data. Two scenarios for the generation of missing data at various missing rates were considered. The MTGP performed a better imputation accuracy than regularized PCA, especially at high missing rates. Under the 'uniform' scenario, in which missing data arise randomly, inclusion of marker genotype data in the imputation increased the imputation accuracy at high missing rates. Under the 'fiber' scenario, in which missing data arise in all traits for some combinations between genotypes and environments, the inclusion of marker genotype data decreased the imputation accuracy for most traits while increasing the accuracy in a few traits remarkably. The proposed methods will be useful for solving the missing data problem in MET data.

  17. Land cover in Upper Egypt assessed using regional and global land cover products derived from MODIS imagery.

    PubMed

    Fuller, Douglas O; Parenti, Michael S; Gad, Adel M; Beier, John C

    2012-01-01

    Irrigation along the Nile River has resulted in dramatic changes in the biophysical environment of Upper Egypt. In this study we used a combination of MODIS 250 m NDVI data and Landsat imagery to identify areas that changed from 2001-2008 as a result of irrigation and water-level fluctuations in the Nile River and nearby water bodies. We used two different methods of time series analysis -- principal components (PCA) and harmonic decomposition (HD), applied to the MODIS 250 m NDVI images to derive simple three-class land cover maps and then assessed their accuracy using a set of reference polygons derived from 30 m Landsat 5 and 7 imagery. We analyzed our MODIS 250 m maps against a new MODIS global land cover product (MOD12Q1 collection 5) to assess whether regionally specific mapping approaches are superior to a standard global product. Results showed that the accuracy of the PCA-based product was greater than the accuracy of either the HD or MOD12Q1 products for the years 2001, 2003, and 2008. However, the accuracy of the PCA product was only slightly better than the MOD12Q1 for 2001 and 2003. Overall, the results suggest that our PCA-based approach produces a high level of user and producer accuracies, although the MOD12Q1 product also showed consistently high accuracy. Overlay of 2001-2008 PCA-based maps showed a net increase of 12 129 ha of irrigated vegetation, with the largest increase found from 2006-2008 around the Districts of Edfu and Kom Ombo. This result was unexpected in light of ambitious government plans to develop 336 000 ha of irrigated agriculture around the Toshka Lakes.

  18. Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones.

    PubMed

    Khan, Adil Mehmood; Siddiqi, Muhammad Hameed; Lee, Seok-Won

    2013-09-27

    Smartphone-based activity recognition (SP-AR) recognizes users' activities using the embedded accelerometer sensor. Only a small number of previous works can be classified as online systems, i.e., the whole process (pre-processing, feature extraction, and classification) is performed on the device. Most of these online systems use either a high sampling rate (SR) or long data-window (DW) to achieve high accuracy, resulting in short battery life or delayed system response, respectively. This paper introduces a real-time/online SP-AR system that solves this problem. Exploratory data analysis was performed on acceleration signals of 6 activities, collected from 30 subjects, to show that these signals are generated by an autoregressive (AR) process, and an accurate AR-model in this case can be built using a low SR (20 Hz) and a small DW (3 s). The high within class variance resulting from placing the phone at different positions was reduced using kernel discriminant analysis to achieve position-independent recognition. Neural networks were used as classifiers. Unlike previous works, true subject-independent evaluation was performed, where 10 new subjects evaluated the system at their homes for 1 week. The results show that our features outperformed three commonly used features by 40% in terms of accuracy for the given SR and DW.

  19. High-resolution tree canopy mapping for New York City using LIDAR and object-based image analysis

    NASA Astrophysics Data System (ADS)

    MacFaden, Sean W.; O'Neil-Dunne, Jarlath P. M.; Royar, Anna R.; Lu, Jacqueline W. T.; Rundle, Andrew G.

    2012-01-01

    Urban tree canopy is widely believed to have myriad environmental, social, and human-health benefits, but a lack of precise canopy estimates has hindered quantification of these benefits in many municipalities. This problem was addressed for New York City using object-based image analysis (OBIA) to develop a comprehensive land-cover map, including tree canopy to the scale of individual trees. Mapping was performed using a rule-based expert system that relied primarily on high-resolution LIDAR, specifically its capacity for evaluating the height and texture of aboveground features. Multispectral imagery was also used, but shadowing and varying temporal conditions limited its utility. Contextual analysis was a key part of classification, distinguishing trees according to their physical and spectral properties as well as their relationships to adjacent, nonvegetated features. The automated product was extensively reviewed and edited via manual interpretation, and overall per-pixel accuracy of the final map was 96%. Although manual editing had only a marginal effect on accuracy despite requiring a majority of project effort, it maximized aesthetic quality and ensured the capture of small, isolated trees. Converting high-resolution LIDAR and imagery into usable information is a nontrivial exercise, requiring significant processing time and labor, but an expert system-based combination of OBIA and manual review was an effective method for fine-scale canopy mapping in a complex urban environment.

  20. F-18 FDG PET, CT, and MRI for detecting the malignant potential in patients with gastrointestinal stromal tumors: A protocol for a network meta-analysis of diagnostic test accuracy.

    PubMed

    Wei, Kongyuan; Pan, Bei; Yang, Huan; Lu, Cuncun; Ge, Long; Cao, Nong

    2018-04-01

    Gastrointestinal stromal tumor (GIST) is a rare cancer in gastrointestinal carcinomas and has been widely known as a curable disease among all the digestive tumors. However, early detection of malignant potential in patients with GIST has still been a huge challenge all around the world. CT, MRI, and F-18 FDG PET are all considered as good tests for diagnosing malignant GIST efficiently, but no recommended suggestions presents which test among the 3 is the prior one in detecting the malignant potential of GIST. We perform this study to assess the accuracy between CT, MRI, and F-18 FDG PET through network meta-analysis method, and to rank these tests. PubMed, EMBASE.com, CNKI, and CBM databases will be searched without search date and language restrictions. We will include diagnostic tests which assessed the accuracy of CT, MRI, and F-18 FDG PET in detecting the malignant potential of GIST. The risk of bias in each study will be independently assessed as low, moderate, or high using criteria adapted from Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Meta-analysis will be performed using STATA 12.0 and R 3.4.1 software. The competing diagnostic tests will be ranked by a superiority index. This study is ongoing, and will be submitted to a peer-reviewed journal for publication. This study will provide a comprehensive evidence summary of CT, MRI, and F-18 FDG PET in detecting the malignant potential of GIST.

Top